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Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity
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We summarize the basics of the loop representation of quantum gravity and describe the main aspects of the
formalism, including its latest developments, in a reorganized and consistent form. Recoupling theory, in its
graphical tangle-theoretic Temperley-Lieb formulation, provides a powerful calculation tool in this context.
We describe its application to the loop representation in detail. Using recoupling theory, we derive general
expressions for the spectrum of the quantum area and the quantum volume operators. We compute several
volume eigenvalues explicitly. We introduce a scalar product with respect to which area and volume are
symmetric operators, and~the trivalent expansions of! the spin network states are orthonormal.
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I. INTRODUCTION

We start with a citation from Penrose@1#: ‘‘My own view
is that ultimately physical laws should find their most natur
expression in terms of essentially combinatorial principle
that is to say, in terms of finite processes such as counting
other basically simple manipulation procedures. Thus, in a
cordance with such a view, some form of discrete or comb
natorial space time should emerge.’’ The loop approach
quantum general relativity@2,3# seems to be leading pre-
cisely to a realization of such a vision of a combinatoria
space-time, deriving it solely from a strict application of con
ventional quantum ideas to standard general relativity.1

A number of recent advances in this direction hav
strengthened this hope. First of all, there is the mathema
cally rigorous development of the connection representati
@9,14–16# which has lead to recovering the loop represent
tion formalism from a general quantization program. Th
approach has sharpened various loop representation res
using rigorousC* algebraic and measure theoretical tech
niques, and has put them on a solid mathematical footin
For a discussion of the precise relation between the two fo
mulations of loop quantum gravity, see Refs.@17,18#. Fur-
thermore: a simplification of the formalism due to the intro
duction in quantum gravity of the spin network basis@19#
~see also@20,21#!; the result that area@22# and volume op-
erators@23,24# have discrete eigenvalues; the idea that in th
presence of matter these eigenvalues might be taken
physical predictions on quantum geometry@25#; a Hamil-
tonian generating clock time evolution@26# and a tentative

*Electronic address: depietri@vaxpr.pr.infn.it
†
Electronic address: rovelli@pitt.edu
1For an overview of current ideas on quantum geometry, s

@4–6#; for a recent overview of canonical gravity, see@7#; for intro-
ductions to loop quantum gravity, see@8–13#.
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perturbation scheme for computing diffeomorphism invaria
transition amplitudes@27#; the extension of the theory to fer-
mions @28# to the electromagnetic field@29,30#. This rapid
development has produced a certain amount of confusion
the notation and the basics of the theory. A first aim of th
paper is to bring some order in the kinematics of the loo
representation formalism, by presenting the basics formul
notations and results in a consistent and self-contained fo
This allows us to insert a sign factor into the very definitio
of the loop representation, short-cutting sign complicatio
of the previous formulation. In a sense, we bring to full ma
turity the insights of Ref.@19#.

With this sign factor, loop states of the loop represent
tion satisfy the axioms of Penrose’s ‘‘binor calculus’’@31#,
or, equivalently, the axioms of the tangle-theoretic formul
tion of recoupling theory@32# for the special ‘‘classical’’
valueA521 of the deformation parameter. This fact bring
a powerful set of computational techniques at the service
quantum gravity. We describe here in detail how this calc
lus can be used. Calculations in loop quantum gravity we
first performed using the grasping operation on single loo
@3#. It was then realized, mainly in@15#, that such combina-
torial techniques admitted a group theoretical interpretati
@su~2! representation theory admits a fully combinatorial de
scription#. Recoupling theory is a further—and far more
powerful—level of sophistication for the same calculus.

The idea that recoupling theory plays a role in loop qua
tum gravity has been advocated by Reisenberger@33# and by
Smolin. Motivated by certain physical and mathematic
considerations, Borissov, Major, and Smolin@34,35# have
considered deformations of the standard loop representa
theory. Recoupling theory with general values of the defo
mation parameterA plays a key role in the definition of these
deformations. What we do here is very different in spirit: w
remain within the framework of the standard loop
representation quantum general relativity~GR!, and use re-
coupling theory merely as a computational tool.

ee
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Using recoupling theory, we derive general formulas
area and volume in quantum gravity. The spectrum of
area agrees with previously published results@23#. The deri-
vation presented here is simpler and more elegant than
one in Ref.@23#. The first of our main results is a gener
formula for the volume. We present it here expressed
terms of su~2! 6-j symbols~and related quantities!. We con-
firm the fact that trivalent vertices have zero volume, fi
pointed out by Loll@24#. We explicitly compute many eigen
states for four- and five-valent vertices. Loll has compute
few of these eigenvalues in@36# using a different technique
We find agreement with the numbers published by Loll~see
also @35#!. We show that the absolute value and the squ
root that appear in the definition of the volume operator
well defined. Indeed, we show that the arguments of the
solute value are finite dimensional matrices diagonaliza
and with real eigenvalues; and that the arguments of
square root are finite dimensional matrices diagonaliza
and with real non-negative eigenvalues. We show in gen
that the eigenvalues of the volume are real and non-nega

Finally, the technique introduced allows us to define
scalar product in the loop representation, by requiring t
area and volume be symmetric, and that spin network st
be orthogonal to each other — whatever the trivalent dec
position of high valence vertices we use. This is our sec
main result.

The structure of this paper is the following. In Sec. II, w
review the basics of the Ashtekar formulation of gene
relativity and we define the loop variables~in the new form
that leads directly to recoupling theory!. In Sec. III, we de-
rive the basic equations of the loop representation. In Sec
we discuss the role of recoupling theory. In Sec. V we defi
the spin network basis. In Sec. VI, we discuss the area
erator, and in Sec. VII the volume operator. In Sec. VIII w
define the scalar product. Section IX contains our conc
sions.

II. LOOP VARIABLES IN CLASSICAL GR

We begin by reviewing the canonical formulation of ge
eral relativity in the real Ashtekar formalism@37–39#. This is
given as follows. We fix a three-dimensional manifoldM
and consider two real~smooth! SO~3! fields Aa

i (x) and

Ẽi
a(x) on M . We usea,b, . . .51,2,3 for ~abstract! spatial

indices andi , j , . . .51,2,3 for internal SO~3! indices. We
indicate coordinates onM with x. The relation between thes
fields and conventional metric gravitational variables is
follows: Ẽi

a(x) is the~densitized! inverse triad, related to the
three-dimensional metricgab(x) of the constant-time surfac
by

ggab5Ẽi
aẼi

b , ~2.1!

whereg is the determinant ofgab ; and

Aa
i ~x!5Ga

i ~x!2ka
i ~x!, ~2.2!

whereGa
i (x) is the SU~2! spin connection associated to th

triad andka
i (x) is the extrinsic curvature of the three surfa
for
the
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~up to indices’ position!. Notice the absence of thei in Eq.
~2.2!, which yields thereal Ashtekar connection. The real
Ashtekar connection~2.2! is the natural variable for the Rie-
mannian theory, but it can be used as the basic field for the
Lorentzian theory as well, at the price of a more complicated
form of the Hamiltonian constraint. Recently, Thiemann and
Ashtekar@39# have argued that the most promising strategy
for implementing the quantum reality conditions is to start
from the real Ashtekar connection, and circumvent the diffi-
culties due to the complicate form of the Lorentzian Hamil-
tonian constraint by expressing it in terms of the Riemannian
Hamiltonian constraint via a generalized Wick transform
~see also@40,41#!. Here, we will not discuss the dynamics.
Therefore our results can be significative for the Riemannian
theory as well as for the Lorentzian theory. We will discuss
the necessary modifications of the formalism for applying it
to the complex Ashtekar connection at the end of Sec. VII.

It is useful for what follows to consider the dimensional
character of the field with care. We set the dimension of the
fields as follows:

@gab#5L2, @Ẽi
a#5L2,

@Aa
i #5 dimensionless. ~2.3!

The popular choice of taking the metric dimensionless is not
very sensible in GR. It forces coordinates to have dimensions
of a length, but the freedom of arbitrary transformations on
the coordinates is hardly compatible with dimensional coor-
dinates. Coordinates, for instance, can be angles, and assig
ing angles dimension of a length makes no sense. The Ein
stein action can be rewritten~see, for example,@8#! as

S5
1

GE d4xAgR5
1

G E dx0 E d3x

3@2Ȧa
i Ẽi

a1Ȧ0
i C̃i1NaC̃a1N#, ~2.4!

where we have set

G5
16pGNewton

c3
, ~2.5!

GNewton being Newton’s gravitational constant, andC̃i ,
C̃a , W̃ the diffeomorphism, Gauss, and Hamiltonian con-
straints. It follows that the momentum canonically conjugate
to Aa

i is

pi
a~x!5

dS

dȦa
i ~x!

52
1

G
Ẽi
a ~2.6!

and therefore the fundamental Poisson bracket of the Hamil
tonian theory is

$Aa
i ~x!,Ẽj

b~y!%5Gda
bd j

id3~x,y!. ~2.7!

The spinorial version of the Ashtekar variables is given in
terms of the Pauli matricess i ,i51,2,3, or the su~2! genera-
tors t i52 ( i /2)s i , by

Ẽa~x!52 iẼ i
a~x!s i52Ẽi

a~x!t i ~2.8!
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Aa~x!52
i

2
Aa
i ~x!s i5Aa

i ~x!t i . ~2.9!

Aa(x) andẼ
a(x) are 232 complex matrices. We use uppe

case indicesA,B, . . .51,2 for the spinor space on which th
Pauli matrices act. Thus the components of the gravitatio
fields areAaA

B(x) and Ẽa
A
B(x).

In order to construct the loop variables, we start fro
some definitions.

Segment.A segmentg is a continuous and piecewis
smooth map from the closed interval@0,1# intoM . We write
g:s°ga(s).

Loop. A loop a is a segment such thataa(0)5aa(1).
Equivalently, it is a continuous, piecewise smooth map fro
the circleS1 into M

3.
Free Loop Algebra.We consider~formal! linear combi-

nationsF of ~formal! products of loops, as in

F5c01(
i
ci@a i #1(

jk
cjk@a j #@ak#1•••, ~2.10!

where thec’s are arbitrary complex number and thea ’s are
loops; we denote the space of such objects as the free
algebraAf@L#. ~See also@9#.!

Multiloop. We denote the monomials inAf@L#, namely
the elements of the formF5@a1# . . . @an# as multiloops.
r
e
nal

m

e

m

loop

We indicate multiloops by a Greek letter, in the same mann
as ~single! loops: @a#5@a1# . . . @an# .

Given a segmentg, we consider the parallel propagator of
Aa alongg, This is defined by the equation

d

dt
Ug~t,t0!1

dga~t!

dt
Aa„g~t!…Ug~t,t0!50, ~2.11!

with the boundary conditionUg(t0 ,t0)A
B5dA

B The formal
solution is

Ug~t,t0!5PexpS 2E
t0

t

dtġaAa„g~t!…D , ~2.12!

whereP indicates the path ordering of the exponential. W
also write—in a somewhat imprecise notation—
Ug5Ug(0,1) andUg(s2 ,s1)5Ug(t2 ,t1) if s25g(t2) and
s15g(t1).

We can now define the fundamental loop variables. Give
a loopa and the pointss1 ,s2 , . . . ,snPa we define

T@a#52Tr@Ua#, ~2.13!

Ta@a#~s!52Tr@Ua~s,s!Ẽa~s!# ~2.14!

and, in general,
Ta1a2@a#~s1 ,s2!52Tr@Ua~s1 ,s2!Ẽ
a2~s2!Ua~s2 ,s1!Ẽ

a1~s1!#, ~2.15!

Ta1 . . .aN@a#~s1 , . . . ,sN!52Tr@Ua~s1 ,sN!ẼaN~sN!Ua~sN ,sN21! . . . . . .Ua~s2 ,s1!Ẽ
a1~s1!#.
The functionT@a# defined in Eq.~2.13! for a single loop,
can be defined over the whole free loop algebraAf@L#:
given the generic elementFPAf@L# in Eq. ~2.10!, we pose

T@F#522c01(
i
ciT@a i #1(

i j
ci jT@a i #T@a j #1•••.

~2.16!

The reason for the22 in the first term is the following. We
may think of the first term of the sum as corresponding to
‘‘point loop,’’ or a loop whose image is a point. For thi
loop, the exponent in Eq.~2.12! is zero, the holonomy is the
identity @in sl~2,C), namely in two dimensions# and T is
therefore22.

Notice that there is a sign difference between the us
loops observables@2,3# ~denotedT variables! and these new
loop observables, denotedT variables. This is a key techni
cality at the origin of the simplification of the formalism
presented here. The new sign takes care immediately of
sign complications extensively discussed in Ref.@19#. The
suggestion that those sign complications could be avoided
inserting a minus sign in front of the trace was considered
Major as well @42#. Let us illustrate the consequences
having this sign. Consider anN component multiloop
a5a1a2 . . .aN . We have
the
s

ual

-

the

by
by
of

T@@a1#•••@aN##5T@a1#•••T@a1#

5~2Tr@Ua1
# !•••~2Tr@UaN

# !

5~21!NTr@Ua1
#••• Tr@UaN

#

5~21!NT@$a%#.

This shows that the new sign choice implements in the for-
malism the sign factor for the number of loops that was
recognized in@19# as the key to transform the spinor relation
into a local relation. In fact, we have

Tr@Ua#Tr@Ub#2Tr@UaUb#2Tr@UaUb21#50,
~2.17!

T@a#T@b#1T@a#sb#1T@a#sb
21#50, ~2.18!

T@@a#@b##1T@@a#sb##1T@@a#sb
21##50; ~2.19!

namely the spinor identity~one1 and two2) has become a
binor identity ~all 1) ~see Penrose@43#!. While the first is
nonlocal, the second is local, and is the basic identity at the
roots of binor calculus andA521 recoupling theory. For
the notations+ and # ~to be used in a moment!, see for
instance@8#.
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We recall here, for later use, the retracing identity. For
loopsa and segmentsg, we have@3#

T@a#5T@a+g+g21#. ~2.20!

The Poisson bracket algebra of these loop variables
easily computed. For a rigorous way of performing the
computations, see@44#. We give here the Poisson bracket
the T variables of order 0 and 1.

$T@a#,T@b#%50, ~2.21!

$Ta@a#~s!,T@b#%52 1
2GDa@b,s# $T@a#sb#2T@a#sb

21#%,
~2.22!

where we have defined

Da@b,s#5E
b
dtḃa~t!d3@b~t!,s#. ~2.23!

The factor2 1
2, different than in previous papers, is due

the new conventions.

III. THE LOOP REPRESENTATION
OF QUANTUM GRAVITY

We now define the loop representation@45# of quantum
gravity as a linear representation of the Poisson algebra
theT variables. First, we define the carrier space of the r
resentation. To this aim, we consider the linear subspacK
of the free loop algebra defined by

K5$FPAf@L#uT@F#50%, ~3.1!

and we define the carrier spaceV of the representation by

V5Af@L#/K. ~3.2!

In other words, the state space of the loop representatio
defined as the space of the equivalence classes of linear c
binations of multiloops, under the equivalence defined by
Mandelstam relations

F;C if T@F#5T@C#, ~3.3!

namely by the equality of the corresponding holonom
@9#.2 We denote the equivalence classes defined in his w
namely the elements of the quantum state space of the th
as Mandelstam classes, and we indicate them in Dirac n
tion as^Fu. Clearly, the multiloop stateŝau span~actually,
overspan! the state spaceV. Later we will define a scalar
product onV, and promote it to a Hilbert space. The reas
for preferring a bra notation over a ket notation is just h
torical at this point. We recall that the loop representat

2T@F# is a function on configuration space, namely a functi
over the space of smooth connections. Equality between funct
means of course having the same value for any value of the in
pendent variable; here, for all~smooth! connections.
all
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was originally defined in terms of ketsuc& in the dual of
V. These are represented on the~overcomplete! basis^au by
loop functionals

c~a!5^auc&. ~3.4!

The principal consequences of the Mandelstam relations
are the following:

~1! The element̂ au does not depends on the orientation
of a, @a#;@a21#; ~2! the element̂ au does not depend on
the parametrization ofa, @a#;@b# if ba(t)5aa

„f (t)…; ~3!
retracing, ifg is a segmentstarting in a point ofa, then

@a+g+g21#;@a#; ~3.5!

~4! the binor identity

@a#•@b#;2@a#sb#2@a#sb
21#. ~3.6!

It has been conjectured that all Mandelstam relations can
be derived by repeated use of these identities. We expect tha
the methods described below may allow to prove this con-
jecture, but we do not discuss this issue here.

Next, we define the quantum operators corresponding to
theT variables as linear operators onV. These form a repre-
sentation of the loop variables Poisson algebra. We define
the loop operators as acting on the bra states^Fu from the
right. ~Since they act on the right, they define, more pre-
cisely, anantirepresentation of the Poisson algebra.! We de-
fine theT̂@a# operator by

K c01(
i
ci@a i #1(

i j
ci j @a i #@a j #1•••UT̂@a#

5K c0@a#1(
i
ci@a i #@a#1(

i j
ci j @a i #@a j #@a#1•••U.

~3.7!

Next, we define theT̂a@a#(s) operator. This is a derivative
operator ~i.e., it satisfies Leibniz rule! over the free loop
algebra such that

^@b#uT̂a@a#~s!52 1
2 il 0

2Da@b,s# ~^@a#sb#u2^@a#sb
21#u!,

~3.8!

where we have introduced the elementary lengthl 0 by

l 0
25\G5

16p\GNewton

c3
516p lPlanck

2 . ~3.9!

The definition extends on the entire free loop algebra by
Leibniz rule and linearity. The two operators commute with
the Mandelstam relations and are therefore well defined on
V.

Notice that the factorDa@b,s# in Eq. ~3.8! depends on the
orientation of the loopb: it changes sign if the orientation of
b is reversed. So does the difference in the parentheses
therefore the right-hand side~rhs! of Eq. ~3.8! is independent
from the orientation ofb, as the lhs. On the other hand, both
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the rhs and the lhs of Eq.~3.8! change sign if we reverse the
orientation ofa.

The action of theT̂a@a#(s) operator on a statê@b#u can
be visualized graphically. The graphical action is denoted
‘‘grasp,’’ and it can be described as follows.~i! Disjoin the
two edges of the loopb and the two edges of the loopa, that
enter the intersection points. ~ii ! Pairwise join the four open
ends ofa andb in the two possible alternative ways. Thi
defines two new states. Consider the difference betwe
these two states~arbitrarily choosing one of the two as posi
tive!. ~iii ! Multiply this difference by the factor
2 i l 0

2Da@b,s#, where the direction ofb ~which determines
the sign ofDa@b,s#) is determined as follows: it is the di-
rection induced onb by a ~which is oriented! in the term
chosen as positive. A moment of reflection shows that t
definition is consistent, and independent from the choice
the positive term. An explicit computation shows that th
operators defined realize a linear representation of the P
son algebra of the corresponding classical observables.

The grasping rule generalizes to higher orderT variables.
The action ofT̂a1 . . .an@a#(s1 , . . . ,sn), over a single loop-
state@b# is given as follows. First the result vanishes unle
b crosses all then points si . If it does, the action of
T̂a1 . . .an@a#(s1 , . . . ,sn) is given by the simultaneous gras
on all intersection points. This action produces 2n terms.
These terms are summed algebraically with alternate sig
and the result is multiplied by a factor2 i l 0

2Da@b,s1# for
each grasp, where the sign of each coefficientDa@b,si # is
determined assuming thatb is oriented consistently witha
in the term chosen as positive. Again, a moment of reflecti
shows that the definition is consistent, and independent fr
the choice of the positive terms. The generalization to ar
trary states, using linearity and the Leibnitz rule, is straigh
forward. This concludes the construction of the linear ingr
dients of the loop representation.

IV. LOOP STATES AND RECOUPLING THEORY

A quantum statêFu in the state spaceV is a Mandelstam
equivalence class of elements of the form~2.10!. We now
show that because of the equivalence relation, these st
are related to tangles—in the sense of Kauffman@46#— and
they obey the formal identities that define the Temperle
Lieb-Kauffman recoupling theory described in Ref.@32#.
This fact yields two results. First, we can write a basis
V. This basis is constructed in the next section. Second,
coupling theory becomes a powerful calculus in loop qua
tum gravity.

Consider the elementF, given in Eq.~2.10!, of the vector
spaceAf@L#. We need some definitions.

Graph of a state.We denote the union inM of the images
of all the loops in the rhs of Eq.~2.10! as the ‘‘graph of
F,’’ and we indicate it asGF . Notice thatGF is a graph in
the sense of graph theory@47#, embedded inM .

Vertex.We denote the pointsi whereGF fails to be a
smooth submanifold ofM as ‘‘vertices.’’

Edge.We denote the linese of the graph connecting the
vertices as ‘‘edges.’’
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Valence.We say that a vertexi has valencen, or is n
valent, if n edges are adjacent to it. A vertex can have an
positive integer valence, including 1 and 2.

Clearly,F is not uniquely determined by its graphGF . If
our only information about a state is its graph, then we do
not know how the state is decomposed into multiloops, no
how many single loops run along each edge, nor how th
single loops are rooted through the vertices. We now intro
duce a graphical technique to represent this missing inform
tion. The technique is based on the idea of ‘‘blowing up’’ the
graph —as if viewed through an infinite magnifying glass—
and representing the additional information in terms of pla
nar tangles on the blown up graph. As we will see, thes
tangles obey recoupling theory.

First, draw a graph isomorphic toGF in the sense of graph
theory ~that is, the isomorphism preserves only adjacenc
relations between vertices and edges!, on a two-dimensional
surface. As usual in graph theory, we must distinguish point
representing vertices from accidental intersections betwee
edges generated by the fact that we are representing a no
planar graph on a plane. Denote these accidental interse
tions as ‘‘false intersections.’’ Next, replace each vertex~not
the false intersections! by ~the interior of! a circle in the
plane, and each edge by a ribbon connecting two circles.~At
false intersections, ribbons bridge each other without merg
ing.! In this way, we construct a ‘‘thickened out’’ graph: a
two-dimensional oriented surface which~loosely speaking!
has the topology of the graphGF times the@0,1# interval.

Ribbon-net.We call this two-dimensional surface the
‘‘ribbon net’’ ~or simply the ribbon! of the graphGF , and
we denote it asRF . Notice that the graphGF is embedded in
M , while its ribbon netRF is not.

Now we can represent the missing information needed t
reconstructF from GF as ~a formal linear combination of!
tangles drawn on the surfaceRF . First, we represent each
multiloop in Eq.~2.10! by means of a closed line overRF :

Planar (representation of a) multiloop.For each loopa i
in a given multiloopa we draw a loopa i over the ribbon net
RF , wrapping aroundRF in the same way in whicha i
wraps aroundGF . We denote the drawing~overRF) of all
the loops of a multiloop as ‘‘the planar representation’’ of
the multiloopa, or simply as the ‘‘planar multiloop.’’ We
indicate it asPa .

For technical reasons, we allow edges and vertices of th
ribbon net to be empty of loops as well. Thus we identify a
ribbon net containing a planar multiloop, with a second one
obtained from the first by adding edges and vertices empty o
loops. Finally:

Planar (representation of a) state.Every statê Fu is a
formal linear combination of multiloops:^Fu5( j cj@a j # ~up
to equivalence!. We denote the corresponding formal linear
combinationPF5( j cjPa j

of planar multiloops on the rib-

bon netRF ~up to equivalence!, as a planar representation of
^Fu.

We have split the information contained inF in two
parts:F determines a graphGF embedded inM and a planar
statePF . PF is a linear combinations of drawings of loops
over a surface~the ribbon netRF) and codes the information
on which loops are present and how they are rooted throug
intersections. This information ispurely combinatorial. On
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the other hand,GF contains the information on how th
loops are embedded intoM .

Notice that a multiloop determines its planar represen
tion only up to smooth planar deformations of the lin
within the circles and the ribbons of the ribbon net. In oth
words, we can arbitrarily deform the lines within each circ
and within each ribbon, without changingF. In particular,
the lines of the planar representation will intersect in poi
of RF , and we can apply Reidemeister@48# moves@46# to
such intersections~that is, disentangle them!. Under and
overcrossings of loops withinRF are not distinguished.

Let us come to the key observation on which the pos
bility of using recoupling theory relies. Consider an eleme
F of the free vector algebra. For simplicity, let us mome
tarily assume thatF is formed by a single loopF5@a#
~which may self-intersect and run over itself!. Thus
F5(Ga ,Pa). Consider an intersection of two lines~two
segments ofPa) in RF . Break the two lines meeting at thi
intersection, and pairwise rejoin the four legs, in the tw
alternative possible ways, as in Fig. 1.

We obtain two new loops onRF , which we denote as
P@b# and P@g# . Consider the elementC of the free vector
algebra uniquely determined by the graphGC5GF , and by
the linear combination of planar representatio
PC52Pb2Pg . Notice thatC is different thanF as an
element of the free vector algebra; however, the two are
the same Mandelstam equivalence class because of the
relation~3.6!, and therefore they define the same elemen
the quantum state spaceV. Namely^Cu5^Fu. We say that
two planar representationsPF andPC are ‘‘equivalent’’ if
^Cu5^Fu. Thus, in dealing with planar representations o
quantum statêFu, we can freely use the identity

~4.1!

on PF without changing the quantum state. This identity
the identity~i! in p. 7 of Ref.@32# @Eq. ~B1! in Appendix B#,
which is the key axiom of recoupling theory — with th
value of theA parameter set to21.

An easy to derive consequence is that every closed
entirely contained within a circle, or within a ribbon, can b
replaced by a factord522. Furthermore, it is easy to se
that the retracing identity~3.5! implies that the loops ofPF

can be arbitrarily deformed within theentire ribbon net,
without changing the statêFu. In particular, every loop con-
tractible inRF can be replaced by a factord522. This is

FIG. 1. The binor identity.
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the second axiom of recoupling theory@Eq. ~B2! in Appen-
dix B# in theA521 case. The valueA521, correspond to
the case in which the distinction between over and und
crossings can be neglected, consistently with the fact su
distinction is irrelevant for the planar representation of
loop.

Thus PF can be interpreted as a linear combination
tangles in the sense of Ref.@32#. The tangles obey the axi-
oms of recoupling theory. They are confined inside the o
ented surfaceRF with has a highly nontrivial topology. This
is the key result of this section.

The relation between loop states and recoupling theory
subtle, and may generate confusion. A source of confusion
given by the fact that the relation between recouplings a
knots in knot theory@32# is different from the relation be-
tween recouplings and knots in quantum gravity. In bo
cases recouplings enters as a consequence of a skein~or
binor! equation —as Eq.~4.1!— holding at intersections. But
in knot theory this equation is satisfied by the Kauffma
brackets at the ‘‘false intersections’’ of the planar projectio
of a loop. Contrary to this, in quantum gravity Eq.~4.1! does
not hold for the false intersections. It holds for the interse
tions of lineswithin RF .

On the other hand, knots play a role in quantum gravity
well @2#, because of the diffeomorphism constraint. GR’s di
feomorphism invariance identifies states that have equival
PF , and whosegraphscan be deformed into each other b
3D diffeomorphism ofM in the connected component of the
identity. To clarify this point, let us require that the ribbo
net RF is generated by a two-dimensional projection o
GF , and let us keep track of the resulting over and unde
crossings at false intersections. Then diffeomorphism inva
ance identifies all states that have equivalentPF , and whose
ribbon nets can be transformed into each other by Reid
meister movesat the false intersections. Thus, as far as
diff-invariant states are concerned, Reidemeister moves
be used at the tangles’ intersectionswithin the ribbon net as
well as at the false intersections. But in the first case a sk
equation@Eq. ~4.1!# holds, in the second it does not.3 Mixing
up the two cases has generated a certain confusion in
past.

An immediate consequence of the result is that we c
write a basis inV following @32#. Given a statêCu, and its
ribbon netRF , we can use Eq.~4.1! to eliminate all inter-
sections from thePa of each multiloop. Next, we can retrace
each single line that returns over itself, and eliminate eve
loop contractible inRF . We obtain parallel lines without
intersections along each ribbon and routings without inte
sections at each vertex. No further use of the retracing
binor identity is then possible without altering this form
This procedure defines a basis of independent states, lab
by the graph, the number of lines along each edge, and
ementary routings at each node. An elementary routing i
planar rooting of loops through the vertex of the ribbon ne

3This is true in general. One may wonder if there is any spec
quantum statêF0u for which the relation~4.1! holds at false inter-
sections as well. The possibility that such a special state could e
in quantum gravity has been explored, with various motivations,
various authors@34,49#.



ver

in
ch

e.

t to

st

r

2670 54ROBERTO DE PIETRI AND CARLO ROVELLI
having no intersections. This basis is not very practical
calculations. In the next section, we use the technology
@32# to define a more useful basis.4

V. THE SPIN NETWORK BASIS

The representation (GF ,PF) of a state^Fu can be ex-
panded in terms of a ‘‘virtual’’ trivalent representation a
follows.

Virtual graph.To every graphG, we can associate a triva
lent graphGv as follows. For eachn-valent vertexv of G,
~arbitrarily! label the adjacent edges ase0 . . .e(n21) , and
disjoin them fromv. Then, replacev with n22 trivalent
verticesN1 . . .Nn22, denoted ‘‘virtual’’ vertices. Join the
virtual vertices with n23 ‘‘virtual’’ edges E2 . . .En22,
where Ei joins Ni21 and Ni . Prolong the edges
e2 . . .e(n21) to reach the corresponding virtual vertice
N1 . . .Nn22, and the edgese1 ande(n21) to reach the virtual
verticesN1 andNn22. Denote the resulting trivalent grap
Gv as the virtual graph associated toG ~for the chosen or-
dering of edges!.

Virtual ribbon net.We denote the ribbon net ofGF
v as the

virtual ribbon netRF
v of F. We view it as a subset ofRF ,

namely we view the virtual circlesN1 . . .Nn22 and the vir-
tual ribbonsE2 . . .En22 as drawn inside the circlec repre-
sentingv. This circle c indicates that the virtual vertice
N1 . . .Nn22 correspond all to the same point ofM . ~Thus a
virtual ribbon net is a trivalent ribbon net with strings o
adjacent intersections specified.!

Virtual representation.Finally, deformPF so that it lies
entirely insideRF

v We indicate the deformedPF asPF
v and

call it the ‘‘virtual’’ planar representation ofF. The virtual
representationPF

v of a state is not unique, due to the arb
trariness of assigning the orderinge0 . . .e(n21) to the edges
of n-valent intersections.

The above construction is more difficult to describe
words than to visualize, and is illustrated in Fig. 2.

Consider now deformations of the tanglePF
v within RF

v

—a subset of the deformations within the fullRF . We can
move all intersections of deformPF

v away from the vertices
~to the virtual or real ribbons!, leaving trivalent vertices free
from intersections. Next, we can use the binor relation
remove all intersections from the ribbons, leaving nonint

4A basis in a linear space is a set of linearly independent vec
that span the linear space. The fact that for the moment we are
working in linear spaces without fixing a scalar product~we will fix
a scalar product only later, in Sec. VIII! has raised some confusio
in the past. It is perhaps worthwhile recalling that the notions
basis, eigenvalues and eigenvectors are well defined notions
linear spaces, not just for Hilbert spaces.~They do not require a
scalar product to be defined in order to make sense.! Similarly, the
fact that a linear operator is diagonalizable, or has real eigenva
does not depend on the presence of a scalar product. Give
arbitrary linear basisv i in a finite dimensional linear space, a linea
operatorA is Hermitian in this basis if its matrix elements@defined
by (Av) i5Ai

jv j # satisfyAi
j5Āj

i . If A is Hermitian in a basis, then
A is diagonalizable and has real eigenvalues. This is true indep
dently from any scalar product.
for
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secting tangles withn inputs andn outputs along each single
ribbone. As described in Sec 2.2 of@32#, tangles of this kind
can be described as elements of the~tangle-theoretic!
Temperley-Lieb algebrasTn

(e) . A basis of this algebra is ob-
tained by using the Jones-Wenzl projectorsPn

(e) . Since we
are here in the caseA521, thePn

(e) are just normalized
antisymmetrizers. More precisely, given the multiloopPa

with n lines along the ribbone, call Pa
(p) ,p51 . . .n! the

multiloops obtained by all possible permutationsp in the
way then lines enteringe are connected to then outgoing
lines, andupu the parity of the permutation, then

Pn
~e!Pa5

1

n!(p ~21! upuPa
~p! . ~5.1!

Notice the 1/n! factor, which was not present in previous
conventions@23#. It follows from the completeness of the
Jones-Wenzel projectors that a basis for all planar loops o
a givenRF

v is given by the linear combination of loops in
which the lines along each~virtual and real! edge are fully
antisymmetrized. We can therefore expand every state
states in which lines are fully antisymmetrized along ea
ribbon. A state in which the lines along each~virtual or real!
ribbon are fully antisymmetrized is a spin network stat
Thus we recover the result of Ref.@19#, to which we refer for
details.

A spin network state is characterized by a graphG in
M , by the assignment of an ordering to the edges adjacen
each vertex, and by the numberpe of ~antisymmetrized! lines
in each virtual or real edgee. We denote the integerpe as the
‘‘color’’ of the corresponding edgee of Gv. We will use also
the ‘‘spin’’ j e of the edge, defined as half its color:j e5

1
2

pe .
5 At each vertex, the colorsp1, p2, andp3 of the three

adjacent edges satisfy a compatibility condition: there mu
exist three positive integersa, b, andc ~the number of lines
rooted through each pair of edges! such that

p15a1b, p25b1c, p35c1a. ~5.2!

tors
still

n
of
for

lues
n an
r

en-

5The oscillation between the historically motivated half intege
terminology ‘‘spin’’ and the rationally motivated integer terminol-
ogy ‘‘color’’ goes back to Penrose’s papers on spin networks@43#.

FIG. 2. Construction of ‘‘virtual’’ vertices and ‘‘virtual’’ strips
over ann-valent vertex.
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It is easy to see that this condition is equivalent to th
Clebsh-Gordon condition that each of the three su~2! repre-
sentations of spinj i51/2pi is contained in the tensor produc
of the other two@43#.

The spin network states form a basis inV. The basis ele-
ments are given as follows. For every graphG embedded in
M , choose an ordering of the edges at each node. This ch
associates an oriented trivalent virtual graphGv ~nonembed-
ded! to everyG.

Spin network.A spin networkS is given by a graphGS in
M , and by a compatible coloring$pe% of the associated ori-
ented trivalent virtual graphGv. ThusS5(GS ,$pe%).

Spin network state.For every spin networkS, the spin
network quantum statêSu5(GS ,PS) is the element ofV
determined by the graphGS and by the linear combination
PS of planar multiloops obtained as follows. Drawpe lines
on each ribbone of the ribbon netRS

v ; connect lines at
intersections without crossings; this gives a planar multilo
PS
(0) then

PS5 )
ePG

Ppe
~e!PS

~0! . ~5.3!

We can represent a spin network state as a colored triva
graph over the ribbon netRS

v ~with a single edge along each
ribbon!. This representation satisfies the identities of reco
pling theory. We describe the main ones of these identities
Appendix E. As an example, we give here the formula th
allows one to express the basis elements of a four-val
intersection in terms of the basis elements of a differe
trivalent expansion. Using the recoupling theorem of@32#
~p. 60!, we have, immediately,

~5.4!

where the quantities$cd j
abi% are su~2! six-j symbols~normal-

ized as in@32#; see Appendices!.
A side remark should be added. An embedded color

trivalent graph specify a stateF only up to a global sign,
because it does not fix the overall sign of the antisymm
trized linear combination of multiloops. To keep track of th
overall sign, one needsoriented trivalent graphs, as in Ref.
@43# where Penrose considered oriented spin networks an
@19#. An orientation of a trivalent graph is an assignment
a cyclic order to the edges of each node, moduloZ2 ~that is,
identifying two orientations if they differ in an even numbe
of intersections!. Gv is oriented by the order assigned to th
edges entering each vertex, and ribbon-nets are orien
~consistently, we assume! as graphs because they are or
ented as two-surfaces: edges can be ordered, say, clockw

The action of the operators in the spin-network basis

We now describe how theT̂ operators act on the spin
network states. From Eq.~3.7!, the operatorT̂@a#, acting on
a state^Fu simply adds a loop tôFu. Consider the graph
G formed by the union~in M ) of the graphs ofF anda.
Since we admit empty edges, we can representF over the
e
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ribbon netR associated toG. In this representation, the ac-
tion of T̂@a# consists in adding the draw ofa overR. Using
the expression for the Jones-Wenzl projectors in@32# ~p. 96!,
one can expand the nonantisymmetrized lines, if any,
combinations of antisymmetrized ones.

Higher order loop operators are expressed in terms of
elementary grasp operation, Eq.~3.8!. The ribbon construc-
tion allows us to represent the grasp operation in a simp
form. Indeed, one easily sees that Eq.~3.8! is equivalent to
the following: acting on an edge with color 1, the gras
creates two virtual trivalent vertices~inside the same circle,
corresponding to the intersection point! — one on the spin-
network state and one the loop of the operator. The tw
vertices are joined by a virtual strip of color 2, and the ove
all multiplicative factor is determined as follows. The sign o
the tangent ofb in Da@b,s# is determined by the orientation
of b consistent with the positive terms of the loop expansio
of the spin network. The equivalence between the old de
nition of the grasp and the new one is illustrated in Fig. 3

A straightforward computation, using Leibnitz rule
shows that acting on an edge with colorp, the grasp has the
very same action, with the multiplicative factor multiplied by
p. Finally, notice that the two antisymmetrized loops form
~virtual! spin network edge of color 2. Therefore, we ca
express the action of the grasp in the spin network basis
the following equation:

.
~5.5!

This simple form of the action of the loop operators on th
spin-network basis is the reason that enables us to
recoupling-theory in actual calculations involving quantum
gravity operators. Notice that it is the ribbon-net constructio
that allows us to ‘‘open up’’ the intersection point and rep
resent it by means of two vertices~one overa and one over
b) and a~‘‘zero length’’! edge connecting the two vertices
These two vertices and this edge are all in the same point
the three-manifoldM .

Higher order loop operators act similarly, as sketched
Fig. 4.

VI. THE AREA OPERATOR

A surfaceS in M is an embedding of a two-dimensiona
manifold S, with coordinatessu5(s1,s2),u,v51,2, into
M . We writeS:S→M3,su→xa(s). The metric and the nor-
mal one form onS are given by

FIG. 3. Action of the grasp.
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gS5S!g, guv
S 5

]xa

]su

]xb

]sv gab ; ~6.1!

na5
1

2
euveabc

]xb

]su

]xc

]sv . ~6.2!

The area ofS is

A@S#5E
S
d2sAdetgS5E

S
d2sA1

2
eu ūev v̄guv

S gū v̄
S

5E
S
d2sAnanbẼaiẼi

b, ~6.3!

where we have used

eu ūev v̄guv
S gū v̄

S 5eu ūev v̄
]xa

]su

]xb

]sv gab
]xā

]s ū

]xb̄

]s v̄
gā b̄ ,

eu ū
]xa

]su

]xā

]s ū
5
1

2
eu ū

]xa8

]su

]xā8

]s ū
ea8ā8ce

a āc5nce
a āc,

ggc c̄5
1

2
ea āceb b̄ c̄gabgā b̄ .

~On the role played by surface area in the Ashtekar’s form
lation of GR, see@50#.! We want to construct the quantum
area operatorÂ@S#, namely, a function of the loop represen
tation operators whose classical limit isA@S#. Following
conventional quantum field theoretical techniques, we d
with operator products by definingÂ@S# as a limit of regu-
larized operatorsÂe@S# that do not contain operator prod
ucts. The difficulty in the present context is to find a reg
larization that does not break general covariance. This can
achieved by a geometrical regularization@22,10#.

Following @23#, we begin by constructing a classical regu
larized expression for the area, namely a one parameter f
ily of classical functions of the loop variablesAe@S# which
converges to the area ase approaches zero. Consider a sma
regionSe of the surfaceS, whose coordinate area goes t
zero withe2. For everys in S, the smoothness of the clas
sical fields implies thatẼa(s)5Ẽa(xI)1O(e), wherexI is
an arbitrary fixed point inSe . Also, Ua(s,t)A

B51A
B1O(e)

for anys,tPS I , anda a ~coordinate straight! segment join-
ing s and t. It follows that @because of Eq.~A.1!#, to zeroth
order ine,

FIG. 4. Representation of the n grasp of the
Ta1 . . .an@a#(s1 , . . . ,sn) operator.
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Tab@ast#~s,t !52Tr@Ẽa~s!Ua~s,t !Ẽb~ t !Ua~ t,s!#

52Ẽai~xI !Ẽi
b~xI !. ~6.4!

Using this, we can write

e4Ẽai~xI !Ẽi
b~xI !5

1

2ESe

d2sna~s!E
Se

d2tnb~t!

3Tab@ast#~s,t!1O~e!, ~6.5!

whereast is, say, a~coordinate! circular loop with the two
pointss andt on antipodal points. Next, consider the area of
the full surfaceS. By the very definition of Riemann inte-
gral, Eq.~6.3! can be written as

A@S#5E
S
d2sAnanbẼaiẼi

b

5 lim
N→`
e→0

(
I e

e2Ana~xI !nb~xI !Ẽai~xI !Ẽi
b~xI ! ~6.6!

where, following Riemann, we have partitioned the surface
S in N small surfacesS I e

of coordinate areae2 andxI is an

arbitrary point inS I e
. The convergence of the limit to the

integral, and its independence from the details of the con
struction, are assured by the Riemann theorem for al
bounded smooth fields. Inserting Eq.~6.5! in Eq. ~6.6!, we
obtain the desired regularized expression for the classica
area, suitable to be promoted to a quantum loop operator

A@S#5 lim
e→0

Ae@S#, ~6.7!

Ae@S#5(
I e

AAI e
2 , ~6.8!

AI e
2 5

1

2ES I e
^ S I e

d2sd2tna~s!nb~t!Tab@ast#~s,t!. ~6.9!

Notice that the powers of the regulatore in Eq. ~6.5! and
~6.6! combine nicely, so thate appears in Eq.~6.7! only in
the integration domains.

We are now ready to define the area operator

Â@S#5 lim
e→0

Âe@S#, ~6.10!

Ae@S#5(
I e

AÂI e
2 , ~6.11!

ÂI e
2 5

1

2ES I e
^ S I e

d2sd2t na~s!nb~t!T̂ab@ast#~s,t!.

~6.12!

The meaning of the limit in Eq.~6.10! needs to be specified.
The specification of the topology in which the limit is taken
is an integral part of the definition of the operator. As it is
usual for limits involved in the regularization of quantum
field theoretical operators, the limit cannot be taken in the
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Hilbert space topology where, in general, it does not ex
The limit must be taken in a topology that ‘‘remembers’’ th
topology in which the corresponding classical limit~6.7! is
taken. This is easy to do in the present context. We say
a sequence of~multi! loops ae converges toa if ae con-
verges pointwise toa; we say that a sequence of quantu
states^aeu converges to the statêau if ae→a for at least
oneaeP^aeu (;e) and oneaP^au. This definition extends
immediately to general states^Fu by linearity, and defines a
topology on the state space, and the corresponding ope
topology: Ôe→Ô iff ^FuÔe→^FuÔ,;^Fu. Notice that the
above is equivalent to say that^Feu converges tô Fu if
T@Fe# converges pointwise toT@F#, which is the topology
implicitly used in @15# to regularize the area operator.

An important consequence of the use of this topology
the following. Let ^Feu converge tô Fu. Then the graphs
GFe

converge toGF in the topology ofM . In other words,

given ad neighborhood ofGF , there exists ane such that
GF

e8
is included in thed neighborhood for alle8,e. Visu-

ally, we can imagine that the ribbon netsRFe
‘‘merge’’ into

the ribbon netGF
ex as e approaches zero. In addition, th

representationsPFe
go to PFe

, up to equivalence. This fac
allows us to separate the study of a limit in two steps. Fi
we study of the graph of the limit state. In this process,
representationsPFe

are merged into the ribbon netR of the

limit state. Second, we can use recoupling theory onR, in
order to express the limit representation in terms of the s
network basis.

We now study the action of the area operatorÂ@S# given
in Eq. ~6.10! on a spin network statêSu. Namely, we com-
pute ^SuÂ@S#. Let SùS be the set of the pointsi in the
intersection ofGS and S. In other words, we label by an
index i the points where the spin network graphGS and the
surfaceS intersect. GenericallySùS is numerable, and doe
not include vertices ofS. Here we disregard spin network
that have a vertex lying onS or a continuous number o
intersection points withS. It was pointed out by A. Ashteka
that spin networks with a vertexand one -or more- of its
adjacent edges lying onS are eigenstates of the area wi
eigenvalues that are not included in the spectrum of the
ist.
e

that

m

rator

is

e
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rst,
the

pin

s
s
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erator computed in@23# and derived again below. Therefore
the spectrum of the area given in@23# is not complete. The
physical relevance of these ‘‘degenerate’’ cases is unclear
us.6

For small enoughe, each intersectioni will lie inside a
distinct S I e

surface.7 Let us callS i e
the surface containing

the intersectioni ~at every fixede), andei the edge through
the intersectioni . Notice that^SuÂS I e

2 vanishes for all sur-

facesI e except the ones containing intersections. Thus th
sum over surfaces( I e

reduces to a sum over intersections
Bringing the limit inside the sum and the square root, we ca
write

^SuÂ@S#5 (
iP$SùS%

^SuAÂi
2, ~6.13!

Âi
25 lim

e→0
Âi e
2 . ~6.14!

For finite e, the statê SuÂi e
2 has support on the union of

the graphs ofS and the graph of the loopast in the argu-
ment of the operator~6.12!. But the last converges to a point
on GS ase goes to zero. Therefore,

lim
e→0

G^SuÂ
i e

25GS . ~6.15!

The operatorÂ@S# does not affect the graph of^Su. Next, we
have to compute the planar representation ofG^SuÂ@S# , which
is a tangle onR^SuÂ@S# , namely a tangle onRS . By Eq.
~6.13!, this is given by a sum of terms, one for eachi
P$SùS%. Consider one of these terms. By definition of the
T̂ loop operators and of the grasp operation~Sec. III!, this is
obtained by inserting two trivalent intersections on the sp
network edgeei ~inside its ribbon!, connected by a new edge
of color 2. This is because the circleGast

has converged to a

point onei ; in turn, this point is then expanded inside the
ribbon as a degenerate loop following back and forward
segment connecting the two intersections. By indicating th
representation of the spin network simply by means of i
ei edge, we thus have
,
e to the
ing the
~6.16!

where we have already taken the limit~inside the integral! in the state enclosed in the brackets^u. Notice that this does not

6Note added. The complete spectrum of the area has been obtained in the meanwhile in@16#, and then reobtained in@51# using the methods
developed in this paper.
7The ~perhaps caviling! issue that an intersection may fall on theboundary between twoI e surfaces has been raised. This eventuality

however, does not generate difficulties for the following reason. The integrals we are using are not Lebesgue integrals, because, du
presence of thed ’s, regions of zero measure of the integration domain cannot be neglected — nor doubly counted. Therefore in select
partition ofS in the I e surfaces one must include each boundary in one and only one of the two surfaces~which are therefore partially open
and partially closed!. Boundary points are then normal points that fall inside one and only one integration domain.
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depend on the integration variables anymore, because the loop it contains does not represent the grasped loop for a finie, but
the a ribbon expansion of the limit state. Notice also that the two integrals are independent, and equal. Thus, we ca

. ~6.17!

The parenthesis is easy to compute. Using Eq.~2.23!, it becomes the analytic form of the intersection number between the ed
and the surface

E
S i e

d2sna~s!Da@be ,s#5E
S i e

d2sna~s!E
be

dtḃe
a~t!d3@be~t!,s#561, ~6.18!
where the sign, which depends on the relative orientation
the loop and the surface, becomes then irrelevant becaus
the square. Thus

~6.19!

where we have trivially taken the limit~6.14!, since there is
no residual dependence one. We have now to express the
tangle inside the bracket in terms of~an edge of! a spin
network state. But tangles inside ribbons satisfy recoupli
theory, and we can therefore use the formula~E.8! in the
Appendix, obtaining

^upeuÂi e
2 52 l 0

4pe
2 u~pe ,pe,2!

2Dpe

^upeu5 l 0
4 pe~pe12!

4
^upeu

5 l 0
4 pe
2 S pe2 11D ^upeu.

The square root in Eq.~6.13! is now easy to take because th
operatorÂi

2 is diagonal

^upeuÂi5^upeuAÂi
25Al 0

4 pe
2 S pe2 11D ^upeu. ~6.20!

Inserting in the sum~6.13!, and shifting from color to spin
notation, we obtain the final result

^SuÂ@S#5S l 02 (
iP$SùS%

Aj i~ j i11! D ^Su, ~6.21!

where j i is the spin of the edge crossingS in i . This result
shows that the spin network states~with a finite number of
intersection points with the surface and no vertices on t
surface! are eigenstates of the area operator. The correspo
ing spectrum is labeled by multipletsjW5( j 1 , . . . ,j n) of
positive half integers, with arbitraryn, and given by

AjW@S#5 l 0
2(

i
Aj i~ j i11!. ~6.22!
of
e of

ng

e

he
nd-

The spectral values of the degenerate cases in which
GSùS includes vertices or a continuous number of points,
and a discussion on the relevance of these cases, will be
given elsewhere.

VII. THE VOLUME OPERATOR

A. The volume in terms of loop variables

Consider a three-dimensional regionR. The volume of
R is given by

V@R#5E
R
d3xAdetg

5E
R
d3xA 1

3!
ueabce i jk ẼaiẼb jẼcku, ~7.1!

In order to construct a regularized form of this expression,
consider the three index~three hands! loop variable

Tabc@a#~s,t,r !52Tr@Ẽa~s!Ua~s,t !Ẽb~ t !

3Ua~ t,r !Ẽc~r !Ua~r ,s!#. ~7.2!

Because of Eq.~A2!, in the limit of the loop@a# shrinking to
a pointx we have

Tabc@a#~s,t,r !→2e i jk Ẽ
aiẼb jẼck52eabcdet~Ẽ!. ~7.3!

Following @23#, fix an arbitrary chart ofM , and consider a
small cubic regionRI of coordinate volumee

3. Let xI be an
arbitrary but fixed point inRI . Since classical fields are
smooth we haveẼ(s)5Ẽ(xI)1O(e) for everysPRI , and
Ua(s,t)A

B51A
B1O(e) for any s,tPRI and straight segment

a joining s and t. Consider the quantity

WI5
1

1633!e6E]RI
d2sE

]RI
d2tE

]RI
d2r

3una~s!nb~t!nc~r!Tabc@astr#~s,t,r!u, ~7.4!

whereastr is a triangular loop joining the pointss, t, and
r. Because of Eq.~7.3!, we have, to lowest order ine
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WI5
1

833!e6
udet„Ẽ~xI !…u E

]RI
d2sE

]RI
d2tE

]RI
d2r

3una~s!nb~t!nc~r!eabcu

5udet„Ẽ~xI !…u. ~7.5!

ThusWI is a nonlocal quantity that approximates detg(xI)
for smalle. Using the Riemann theorem as in the case of
area, we can then write the volumeV@R# of the regionR as
follows. For everye, we partition ofR in cubesRI e

of

coordinate volumee3. Then

V@R#5 lim
e→0

Ve@R#; ~7.6!

Ve@R#5(
I e

e3WI e
1/2. ~7.7!

B. Quantum volume operator

We have then immediately a definition of the quantu
volume operator@23#

V̂@R#5 lim
e→0

V̂e@R#; ~7.8!

V̂e@R#5(
I e

e3ŴI e
1/2; ~7.9!

ŴI e
5

1

1633!e6E]RI
d2sE

]RI
d2tE

]RI

3d2runa~s!nb~t!nc~r!T̂abc@astr#~s,t,r!u.

~7.10!

Notice the crucial cancellation of thee6 factor. We refer to
the previous section on the area operator for the discus
on the meaning of the limit and the split of the action of t
operator in the computation of the graph and the represe
tion. We will discuss the meaning of the square root lat
For alternative definitions of the volume operators, and
discussion on the relation between these, see@24,36# and
@17#.

Let us now begin to compute the action of this opera
on a spin network state. The three surface integrals on
surface of the cube and the line integrals along the lo
combine—as in the case of the area—to give three inters
tion numbers, which select three intersection points betw
the spin network and the boundary of the cube. In these th
points, which we denote asr , s, andt, the loopastr of the
operator grasps the spin network.

Notice that the integration domain of the~three! surface
integrals is a six-dimensional space—the space of the p
the

m

sion
he
nta-
er.
a

tor
the
ops
ec-
een
ree

os-

sible positions of three points on the surface of a cube. Let u
denote this integration domain asD6. The absolute value in
Eq. ~7.10! plays a crucial role here: contributions from dif-
ferent points ofD6 have to be taken in their absolute value,
while contributions from the same point ofD6 have to be
summed algebraically before taking the absolute value. Th
position of each hand of the operator is integrated over th
surface, and therefore each hand grasps each of the thr
points r , s, and t, producing 33 distinct terms. However,
because of the absolute value, a term in which two hand
grasp the same point, sayr , vanishes. This happens because
the result of the grasp is symmetric, but the operator is anti
symmetric, in the two hands — as follows from the antisym-
metry of the trace of three sigma matrices. Thus, only term
in which each hand grasps a distinct point give nonvanishing
contributions. For each triple of points of intersection be-
tween spin network and cube’s surfacer , s and t, there are
3! ways in which the three hands can grasp the three point
These 3! terms have alternating signs because of the an
symmetry of the operator, but the absolute value prevents th
sum from vanishing, and yields the same contribution for
each of the 3! terms.

If there are only two intersection points between the
boundary of the cube and the spin network, then there ar
always two hands grasping in the same point; contribution
have to be summed before taking the absolute value, an
thus they cancel. Thus the sum in Eq.~7.9! reduces to a sum
over the cubesI e

i whose boundary has at least three distinct
intersections with the spin network, and the surface integra
tion reduces to a sum over the triple graspings indistinct
points. Fore small enough, the only cubes whose surface ha
at least three intersections with the spin network are the
cubes containing a vertexi of the spin network . Therefore,
the sum over cubes reduces to a sum over the verticesi
P$SùR% of the spin network, contained insideR. Let us
denote byI i e the cube containing the vertexi . We then have

^SuV̂@R#5 lim
e→0

(
iP$SùV%

e3^SuAuŴI
e
i u,

^SuŴI
e
i 5

i l 0
6

1633!e6 (
s,t,r

^S#̃s,t,ras,t,r u, ~7.11!

wheres,t, andr are threedistinct intersections between the
spin network and the boundary of the box, and we have

indicated bŷ S#̃s#̃t #̃rastru the result of the triple grasp of the
three hands operator with loopastr on S.

Let us compute one of the terms above, corresponding t
a given triple of grasps, over ann-valent intersections. First
of all, in the limit e→0 the operator does not change the
graph of the quantum state, for the same reason the are
operator does not. Thus the computation reduces to a com
binatorial computation of the action of the operator on the
representation of the planar state, involving recoupling
theory.

Let us represent a spin network state simply by means o
the portion of its virtual net containing the vertex on which
the operator is acting. We have
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. ~7.12!

whereŴ@rts#
(n) is the operator that grasps ther , t, ands edge of the then-valent vertex as follows:

~7.13!
t
e

z
n
g

c

l

g

r.
ion

ex-

go-
s,
nal

t

elf
Notice that we have replaced the triangular loop with ver
ces r , s, and t by three edges of color 2 joining the thre
points r , s, and t to a trivalent vertex. This can be done a
follows. First we deform the triangle over the ribbon ne
Indeed, as remarked for the case of the area, the tangle ab
does not represent a tangle extended inM , but just the ex-
pansion over the ribbon net of a rooting of lines in a sing
point of M . Second, we notice that we can antisymmetri
the two lines that exit from the hand of an operator by usi
the binor identity, because tracing a hand with a zero len
loop gives a vanishing quantity.

The last equality in the last equation follows from the fa
that trivalent spin network form a basis~see Sec. V!. From
Eq. ~7.12! we see that the action ofŴI

e
i splits into a multi-

plication by a numerical prefactor and a recoupling pa
given by Eq.~7.13!, which does not depend on the integra
tion variables. Using Eq.~6.18! we can perform the integra-
tion in Eq. ~7.12!. This yields the intersection number be
tween the edgesr , s, and t and the surface of the cubeVI .
The sign of the intersection number, coming from the re
tive orientation of the loop and the surface, is irrelevan
because of the presence of the absolute value.

Because of the symmetry properties of the three-vale
node (222), the 3! terms in Eq.~7.13! are related by

Ŵ@ i1i2i3#
~n! 5~21!pŴ@ i p1

i p2
i p3

#
~n! , ~7.14!

wherepi is a permutation of 123, andp is the order of the
permutation. Thus the action the volume operator on a
neric spin network statêSu is given by

V̂@V#5 l 0
3 (
iP$SùV% A (

r50, . . . ,n23
t5r11, . . . ,n22
s5t11, . . . ,n21

u
i

16
Ŵ

@rts#

~ni ! u,

~7.15!
i-

s
t.
ove

le
e
g
th

t

rt
-

-

a-
t,

nt

e-

where ni is the valence of thei th intersection. Equations
~7.13! and ~7.15! completely define the volume operato
There are two remaining tasks: to find the explicit express
for the matrix iW@rst#

(n)
kn22 . . . k3k2

i n22 . . . i3i2 (Pn21 , . . . ,P0), which is

defined in Eq.~7.13! only implicitly, and to show that the
absolute value and the square root in Eq.~7.15! are well
defined. Below, we complete both tasks: we provide an
plicit expression foriW@rst#

(n)
kn22 . . . k3k2

i n22 . . . i3i2 (Pn21 , . . . ,P0), and

we prove that the argument of the absolute value is a dia
nalizable finite dimensional matrix with real eigenvalue
and the argument of the square root is a finite dimensio
diagonalizable matrix with positive real eigenvalues.

C. Trivalent vertices

We begin studying the casen53. It is easy to see tha
W@012#

(3) 50 from the relation

~7.16!

In fact, by closing the generic three-valent node with its
we have

~7.17!
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ThusW@012#
(3) is determined by the Wigner 9J symbol ~the

evaluation of the hexagonal net! as

W@012#
~3! 5

P0P1P2H P0 P1 P2

P0 P1 P2

2 2 2
J

u~P0 ,P1 ,P2!
. ~7.18!

But the hexagonal net~in the case ofA561) it is antisym-
metric for the exchange of two columns or of two row
Therefore the matrixW3 vanishes, and the trivalent vertice
give no contribution to the volume. We have rederived t
result that the volume of a three-valent vertex is zero, fi
obtained by Loll@24#.

D. Four-valent vertices

Next, we study then54 case:

.

~7.19!
o

t

o

.

e
st

Using the same technique of the three-valent node we ca
compute the matrixW@012#

(4)
i
j for a four-valent node as follows:

~7.20!

Using the relation

~7.21!

we obtain
W@012#
~4!

i
j5

P0P1P2H P0 P1 j

P0 P1 i

2 2 2
J TetF i j P 3

P2 P2 2 G
u~2,j ,i !

D j

u~P0 ,P1 , j !u~P2 ,P3 , j !
. ~7.22!
We now prove that the matrixi •W@012#
(4)

i
j is diagonalizable

with real eigenvalues and, as a consequence, that its abs
values are well defined. To this aim, let us define the notat

Ai
j5

P0P1P2H P0 P1 j

P0 P1 i

2 2 2
J TetF i j P 3

P2 P2 2 G
u~2,j ,i !

,

~7.23!

M ~ i !5A D i

u~P0 ,P1 ,i !u~P2 ,P3 ,i !
, ~7.24!

W̃i
j5M ~ i !M ~ j !Ai

j , ~7.25!

Si
j5d i

jM ~ i !. ~7.26!

The matrixSi
j can be consider as a change of basis in

space of the four-valent vertices and the matrixi •W@012#
(4)

i
j can

be rewritten as

iW@012#
~4!

i
j5~S21! i

k
•~ iW̃k

l !•Sl
j , ~7.27!

where, because of the antisymmetry properties of theJ
symbol under exchange of two rows and the symmetry pr
lute
ion

he

9
p-

erty of the Tet symbol,8 the matrixW̃k
l is antisymmetric. We

have shown that in the basis

~7.28!

the action, Eq.~7.19!, of the operatorŴ@012#
(4) is given by

Ŵ@012#
~4! ni5(

j
W̃@012#

~4!
i
jnj , ~7.29!

whereW̃@012#
(4)

i
j a real antisymmetricmatrix. Moreover, from

the admissibility condition for the three-valent node of Eq.
~7.21!, we see thatW̃k

l vanishes unlessk5 l or k5 l62.
Thus, we have shown that the operatoriŴ@012#

(4) may be rep-
resented by a purely imaginary antisymmetric matrixiW̃k

l

with nonvanishing matrix elements only fork5 l62. Such
matrix is diagonalizable and has real eigenvalues.

8For a discussion of the symmetry properties of the 9J symbol
and related quantities, see for instance@52#.
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Furthermore, notice the following. We write the depe
dence on the coloring of the external edges explicit
namely we writeW@012#

(4)
i
j (P0 ,P1 ,P2 ,P3). Using Eq.~7.20!, it

is easy to see that the following relations hold between
matricesW@ i1i2i3#

(4)
i
j (P0 ,P1 ,P2 ,P3)

W@013#
~4!

i
j~P0 ,P1 ,P2 ,P3!5W@012#

~4!
i
j~P0 ,P1 ,P3 ,P2!,

~7.30!

W@023#
~4!

i
j~P0 ,P1 ,P2 ,P3!52W@123#

~4!
i
j~P3 ,P2 ,P1 ,P0!,

W@123#
~4!

i
j~P0 ,P1 ,P2 ,P3!52W@012#

~4!
i
j~P3 ,P2 ,P0 ,P1!.

We have shown that there exists a basisni in which the
four operatorsiŴ@ i1i2i3#

(4) that define the action of the volum

on four valent vertices, are purely imaginary antisymmet
matrices. The eigenvalues of the four operatorsiŴ@ i1i2i3#

(4) are

real and, if x is an eigenvalue, so is2x. Therefore, the
n-
ly;

the

e

ric

absolute value of the matricesiŴ@ i1i2i3#
(4) is well defined. It is

given by a non-negative~i.e., having real eigenvalues equa
or greater than zero! antisymmetric matrix. But the sum o
non-negative matrices is a non-negative matrix. Theref
the sum of the the absolute values of the four matric
iŴ@ i1i2i3#

(4) is a non-negative antisymmetric matrix as we

Thus the volume operator is diagonalizable on the spin n
work basis,with positive real eigenvalues, if all the vertices
have valence 3, 4. Below, we show that these results ext
to vertices of arbitrary valence.

E. The case of ann vertex

We now show that there exists a basis in which all t
operators iŴ@ i1i2i3#

(n) (P0 , . . . ,Pn21) are represented by a

purely imaginary antisymmetric matrix. Consider Eq.~7.13!.
By repeated application of the recoupling theorem, E
~7.13! can be rewritten as
~7.31!

~we have assumed, without loss of generality, that there is no grasp on theP0 or Pn21 edge!. Closing the vertex with itself and
using the relation~E8! and ~E9!, we find

W@rst#
~n!

î 2 . . . î n22

k̂2 . . . k̂n225PrPtPsH k̂2 Pt k̂3

î 2 Pt î 3

2 2 2
J 21l

k̂2

î 22d
î 4

k̂4
•••d

î n22

k̂n22
•TetFPr Pr P0

k̂2 î 2 2 GTetF î 3 k̂3 k̂4

Ps Ps 2
GD k̂2

D k̂3

u~ k̂2,2,î 2!u~ k̂3,2,î 3!u~P0 ,Pr ,k̂2!u~ k̂2 ,Pt ,k̂3!u~ k̂3 ,Ps ,k̂4!
. ~7.32!
ove
We now change basis in the same fashion as we did fo
four-valent vertex@see Eq.~7.28!#. We define a new basis i
which any edge~real or virtual! is multiplied byAD i ( i col-
oring of the edge! and any vertex is divided byAu(a,b,c)
(a, b andc the coloring of the edges adjacent to the verte!.
It is then easy to see that in this new basis the matrix on
~7.32! becomes real antisymmetric. Indeed, we have sim
reduced the general problem to the case of four valent v
ces. Now, the key result, that we shall prove in the n
section is that, in the basis we have defined, the recoup
theorem is aunitary transformation. A unitary transforma
tion preserves the property of a matrix of being diagona
able and having real eigenvalues. It follows that the res
we have obtained for the four-valent vertices hold in gene

We are now ready to find an explicit expression for
recoupling matrixiW@rst#

(n)
kn22 . . . k3k2

i n22 . . . i3i2 (Pn21 , . . . ,P0) of Eq.

~7.13! for a general valencen of the vertex. Let us begin b
sketching the procedure that we follow. First, the recoup
theorem allows us to move one of the three grasps from
external edge, sayPr , of Eq. ~7.13!, and bring it to a virtua
vertex. We denote this operation as move 1:
r the
n

x
Eq.
ply
erti-
ext
ling
-
liz-
ults
ral.
the

y
ling
the

l

~7.33!

Second, we can use recoupling theorem repeatedly to m
the grasp all the way to the edgeP0. We denote this opera-
tion as move 2:

~7.34!
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In this way we can bring all three grasps to the edgeP0. The
final step is just given by recognizing that we have Tet str
ture on the edgeP0.

Let us begin by applying move 1 to the noder . We obtain

.
~7.35!

Then, using move 2 we can move the (i r ,kr ,2) node to the
left of the node (i r21 ,Pr21 ,i t):

~7.36!

We repeat move 2 until the first node with the 2 edge
coupled to theP0 edge. In this way, after a finite number o
moves 2, we have transformed the original network
uc-

is
f
to

~7.37!

Before repeating this procedure for each of the three grasp
it is convenient to rename the colorska of the virtual edges
ask̄a ~and to replace the remainingi a by ka as well; this can

be done by inserting a sum over ak̄a multiplied by ad i a
k̄ a).

Repeating the sequence of moves for the two grasps ove
the edgesr and s, we transform the grasped vertex to the
final form

~7.38!

This it is equal to the originaln-valent vertex with thei a
replaced byka and multiplied by Tet@k1 ,k̄1 ,k̃1 ;2,2,2# @see
Eq. ~E9!#. Bringing all together, we have shown that the
action of the volume operator is described by the sum~7.15!
extended over all vertices of the spin network, where the
explicit form for the recoupling matrix~7.13! is given by
in the
W@rst#
~n!

i2 . . . i n22

k2 . . . kn22~P0 , . . . ,Pn21!5 (
k̄1 , . . . ,k̄ n22

(
k̃1 , . . . ,k̃ n22

PtPrPs •

TetF k̄1 k̃1 k1

2 2 2
G

DP0

3F )
a5r11

n22

d i a
k̄ aG•MF i r11 i r k̄r

2 r Pr
G•F )

a51

r21 H k̄a11 2 k̄a

i a Pa i a11
J G

3F )
b5t11

n22

d
k̄ b

k̃bG•MF k̄r11 k̄r k̃r

2 t Pt
G•F )

b51

t21 H k̃b11 2 k̃b

k̄b Pa k̄b11
J G

3F )
c5s11

n22

d
k̃ c

kc G•MF k̃s11 k̃s ks

2 s Ps
G•F )

c51

s21 H kc11 2 kc

k̃c Pa k̃c11
J G ~7.39!

and

M F i r11 i r kr

2 r Pr
G55

1, r50;

@lkr

2i r#21H i r11 i r kr

2 Pr Pr
J , 0,r,n21;

lPn21

2Pn21521, r5n21,

~7.40!

wherei 15k15P0 and i n215kn215 k̄n215 k̃n215P21. ~We have used the fact that forA521, la
2a521.!

This formula can be specialized to the case of three-vertex (n53) and four-vertex (n54). In the case of three-vertex we
have

W~3!~P0 ,P1 ,P2!5U(
k̃1

P0P1P2@lP0

2 k̃1#21H P2 2 P0

k̃1 P1 P2
J H P2 P0 k̃1

2 P1 P1
J TetF

P0 k̃1 P0

2 2 2
G

DP0

U ~7.41!

and a direct computation confirms that the volume of any three-vertex is zero. For the case of four-valent vertex, we obta
formula
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W@013#
~4!

i
k5(

k̃1

P0P1P3~21!@lP0

2 k̃1#21H i P0 k̃1

2 P1 P1
J H P3 2 k

i P2 P3
J H k 2 P0

k̃1 P1 i J TetF
P0 k̃1 P0

2 2 2
G

DP0
r

s,

e

rs
al

he

e
-

and the other three matrix that appear in the definition of t
action of the volume operator are easily deduced from t
identities~7.30!.

F. Summary of the volume’s action

Finally, let us summarize the procedure for computing t
eigenvalues and eigenvectors of the volume. Consider
spin-network stateŝSu with a fixed graph and a fixed color-
ing of the real edges, but with arbitrary intersections. The
of these spin networks forms a finite dimensional subspa
V of the quantum state space. The subspaceV is invariant
under the action of the volume operator. We denote the
lence of the real vertexi by ni . Fix a trivalent decomposition
of each vertexiP$SøR%. Consider all compatible colorings
of the virtual edges. For every vertex, the number of t
compatible colorings depends on the valence of the vert
as well as on the coloring of the external edges. LetNi be the
number of compatible colorings of the vertexni . The dimen-
sion N of the subspaceV we are considering isN5) iNi .
Our aim is to diagonalize the volume operator inV.

We indicate a basis inV as follows. Given a vertexi with
valenceni , we have previously denoted compatible colo
ings of the internal edges by (i 2 , . . . ,i ni22). It is more con-
venient here to simplify the notation by introducing a sing
indexKi51,Ni , which labels all compatible internal color
ings of the vertexi .

We now recall the basic expression we have obtained,
the volume, namely, Eq.~7.15!,

V̂@V#5 l 0
3 (
iP$SùV%

V̂i ,

V̂i5A (
r50, . . . ,n23

t5r11, . . . ,n22
s5t11, . . . ,n21

U i

16
Ŵ

@rts#

~ni ! U, ~7.42!

where the first sum is over the vertices and the second sum
over the triples of edges adjacent to the vertex. We ha
shown that the operatorsiŴ

@rts#

(ni ) are diagonalizable matrices
with real eigenvalues. These matrices have components

Ŵ
@rts#

~ni !

KI i

K̄I i5@LHS of Eq. ~7.39!#. ~7.43!

Since the matricesiŴ
@rts#

(ni )

KI i

K̄I i are diagonalizable with real ei-

genvalues, from the spectral theorem we can write them

iŴ
@rts#

~ni ! 5(
a

al
@rts#

~ni ! aP̂@rts#
~ i ! , ~7.44!
he
he

he
the

set
ce
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whereal
@rts#

(ni ) are real quantities and theaP̂@rts#
( i ) are the spec-

tral projectors of the finite dimensional matrix operato
Ŵ

@rts#

(ni ) acting on thei th vertex’s basis.
From Eq.~7.42!, we have then

V̂i
25 (

r50, . . . ,ni23
t5r11, . . . ,ni22
s5t11, . . . ,ni21

(
a

ula
@rts#u
16

aP̂
@rts#

~ni ! . ~7.45!

Being the sum of Hermitian non-negative matrices,V̂i
2 as

well is diagonalizable with real non-negative eigenvalue
which we denote aslb i

2 , and spectral projectorsPb i
:

V̂i
25(

b i

lb i
2 P̂b i

~7.46!

with lb i
>0. Therefore we have

V̂i5(
b i

lb i
P̂b i

~7.47!

and the volume is given by

V̂@V#5 l 0
3 (
iP$SùV%

(
b i

lb i
P̂b i

. ~7.48!

Now, the projectors acting on different vertices commut
among themselves:P̂b i

P̂b
j8
5 P̂b

j8
P̂b i

if iÞ j . Therefore the

eigenvectors ofV̂ are the common eigenvectors of allV̂i .
They are labeled by oneb i for every vertexi , namely by a
multi-indexbW 5(b1 , . . . ,bp), wherep is the number of ver-
tices in the region. The corresponding spectral projecto
P̂bW of V̂ are the products over the vertices of the spectr
projectors of the vertex volume operatorsV̂i

P̂bW 5)
i
P̂b i

. ~7.49!

It is immediate to conclude that

V̂5 l 0
3(

bW
lbW P̂bW , ~7.50!

where the eigenvalues of the volume are the sums of t
eigenvalues of the volume of each intersection:

lbW 5(
i

lb i
. ~7.51!

The problem of the determination of the spectrum of th
volume is reduced to a well defined calculation of the eigen
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valueslb i
, which depend on the valence and coloring o

adjacent vertices of the vertexi . Let us summarize the vari-
ous steps of this computation. Given an arbitrary real vert
i with coloring of adjacent edgesP0 , . . . ,Pni21: ~i! deter-
mine the set of the possible colorings of its virtual edges, a
label them by an indexKi ; ~ii ! using Eq.~7.39! compute the

matrix elementsŴ
@rts#

(ni )
Ki

K̄i ~iii ! for each of this matrices, com-

pute its spectral decomposition, i.e., the eigenvaluesal
@rts#

(ni )

and the spectral projectorsaP̂
@rts#

(ni ) ~iv! compute the matrix

V̂i from Eq. ~7.45!; ~v! compute the eigenvalues of the ma
trix V̂i . The square root of these give thelb i

’s. All these
steps can be fully performed using an algebraic manipulati
program such asMATHEMATICA . We have written aMATH-
EMATICA program that performs these calculations, and w
will give free access to this program on line. In Appendix
we give the values of the quantitieslb i

(P0 , . . . ,Pni21) for
some four-valent and five-valent vertex, computed using th
program.

G. Complex Ashtekar connection

Before closing this section, let us discuss the modific
tions that are necessary in order to use the complex Ashte
connection instead of the real one we have used here. On
subject, see also@41#. The difference is simply the appear-
ance of a factori in the commutator between the connectio
and the triad. This yields to an extrai in the factor associated
to each grasp. This additional imaginary factor destroys t
reality of the eigenvalues of area and volume, which is
main result here. Probably this should be taken as an indi
tion that spin networks constructed from the propagator
thecomplexAshtekar connection are not physical states. W
can illustrate this by means of an analogy. Imagine that w
study the eigenvalue equation for the momentum opera
i\ ]/]x in the quantum mechanics of a single particle. Fo
mally, the functionsc(x)5exp$kx% solve the eigenvalue
equation for any realk. However, the corresponding eigen
values are imaginary — an indication that these states are
physical. Indeed, they are outside the relevant Hilbert spa
The physical eigenstates of the momentum are of the fo
c(x)5exp$ikx%, with ani , and these are correct~generalized!
physical states. Something similar happens here. In fact, o
can check that if we insert ani in the exponent of the ho-
lonomies, namely, if we replace Eqs.~2.11! and ~2.12! by

d

dt
Ug~t,t0!1 i

dga~t!

dt
Aa„g~t!…Ug~t,t0!50 ~7.52!

and

Ug~t,t0!5PexpS 2 i E
t0

t

dtġaAa„g~t!…D ~7.53!

~whereAa
i is now thecomplexAshtekar connection! then the

eigenvalues of area and volume result to be real. Using E
~7.53! as the definition of the holonomy implies that the spi
f
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network states correspond~in the connection representation!
to combination of parallel propagators ofi times the Ash-
tekar connection. These seem therefore to be the corre
physical states related to real geometries. However, this stra
egy ~explored in a previous version of this paper! is not
viable, at least in this form. The reason is that Eq.~7.53! is
not invariant under the internal gauge transformations gene
ated by the Gauss constraint. Perhaps this difficulty can b
circumvented by exploiting the complexity of the group and
the nontriviality of the reality conditions, but for the moment
we have not been able to find a construction viable for th
Riemannian Ashtekar connection. We leave this problem t
future investigations.

VIII. THE SCALAR PRODUCT

The results above allow us to introduce a scalar product i
the loop representation. The original definition of the loop
representation of quantum general relativity left the problem
of fixing the scalar product undetermined: the scalar produc
had to be determined by requiring quantum observables to b
Hermitian@3#. The problem was complicated by the fact that
the loop ‘‘basis’’ is overcomplete. Later, the introduction of
the nonovercomplete spin network basis, and the realizatio
that spin network states~with suitable bases chosen on the
high-valent vertices! are eigenstates of the geometry, lead to
the natural suggestion that spin network states ought to b
orthogonal. For no reason, however, these states ought to
orthonormal; namely the norm of the spin network states
remained undetermined. The methods introduced in this p
per allow us to complete the process, suggest a norm for th
spin network states, and thus yield a complete definition fo
a scalar product̂u&. Here, we define a scalar product^u&, and
motivate the choice. We have no compelling argument fo
the uniqueness of this scalar product, but we will show that
satisfies all consistency requirements so far considere
Therefore, it is reasonable to take it as a first ansatz.

Let us begin by considering ann-valent vertex. This can
be arbitrarily expanded in trivalent vertices. Let
i 1 , . . . ,i n23 be the colors of the internal edges, and let us
represent byu i 1 , . . . ,i n23& the n-valent vertex expanded in
trivalent vertices coloredi 1 , . . . ,i n23. We would like to de-
termine an orthogonal basis from the quantities
u i 1 , . . . ,i n23&. We have two highly nontrivial requirements.
First, that this works independently from the way the
n-valent vertex is expanded in trivalent ones. Second, tha
the volume be Hermitian in this basis. Rather remarkably, w
believe, both requirements can be satisfied.

Let us begin by considering a four-valent vertex, for sim-
plicity. There are two ways in which we can expand it in
trivalent vertices. Thus we have two distinct basesu i & and
u i 8& for the four-valent vertices. If we wanted both of them to
be orthonormal, the transformation between the two had t
be given by a unitary matrix. Now, the transformation matrix
between the two bases is provided by the recoupling theo
rem. The matrix is given by a six-J symbol, seen as a matrix
in its two rightmost entries. It is easy to see that this matrix
is not unitary. However, we now show that we can rescal
the length of the basis vectorsu i & in such a way that the
transformation matrix becomes unitary~indeed, orthogonal!.
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Indeed, let

,

.

~8.1!

~8.2!

In this basis, the recoupling theorem becomes

. ~8.3!

We now prove that the matrixU(a,b,c,d) j
i is real orthogo-

nal. The inverse transformation matrix from theñi basis to
the nj basis is given by the same expression~8.3!, with a
reordering of the external edges’ colorings: i.e.,

ñk5(
k
U~d,a,b,c! i

knk . ~8.4!

Therefore we have the relation

(
i
U~a,b,c,d! j

i U~d,a,b,c! i
k5d j

k . ~8.5!

From direct inspection of Eq.~8.3! it is easy to see tha
U(a,b,c,d)k

i 5U(d,a,b,c) i
k . As an immediate consequenc

of Eq. ~8.5! we have orthogonality. Looking at Eqs.~E2! and
~E4! we can easily compute the sign of the argument of
square root, which is

sgn~A !5
~21! i~21! j

~21!~a1b1 j !/21~c1d1 j !/21~a1d1 i !/21~b1c1 i !/2

5~21!a1b1c1d511. ~8.6!

We have thus shown that there exists a basis in which
recoupling theorem yields a unitary transformation. F
higher valence vertices, the transformation from one trival
expansion to another can be obtained by a repeated app
tions of the recoupling theorem transformation, and theref
by a product of orthogonal matrices. Thus the argum
above extends immediately to higher valence.

Now, the normalization we have found is exactly the o
in which the volume operator is represented by a real a
t
e

the

the
or
ent
lica-
ore
ent

ne
nti-

symmetric matrix, as shown by Eqs.~7.23! and ~7.27!.
Therefore we have found a basis that satisfies all our requ
ments.

We thus define the normalized spin-network states by t
following normalization: given an arbitrary spin-network
state^Su, we label with an indexiPV all the three-valent
vertices of the expanded state~virtual and real! and with a
index ePE all its edges~virtual and real!. We denote the
color of the edgee by with pe and the color of the three
edges adjacent to the vertexi by ai , bi , andci . We define
thenormalizedspin network statêSuN by

^SuN5A)
iPV

)
ePE

Dpe

u~ai ,bi ,ci !
^Su ~8.7!

and we define a scalar product onV by requiring that these
states are orthonormal. We have immediately from the d
cussion above that the definition does not depend on
trivalent expansion chosen, and that the volume and a
operators are symmetric with respect to this scalar produ

We think that the scalar product defined in this way
precisely the one defined on the loop representation by
loop transform@3,4# of the Ashtekar-Lewandowski measure
@53#, namely the conventional Haar measure lattice gau
theory scalar product for each graph. The precise relation
discussed by Reisenberger@33# and in @18#. In turn, we ex-
pect that~the norm derived from! the scalar product we have
defined is equivalent to the evaluation of the Kauffma
bracket of the state, and to the trace of the Temperley-Li
algebra, discussed in Appendix B.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

We have reviewed the kinematics of the loop represen
tion of quantum gravity, and presented a number of resu
We have modified the definition of the theory by inserted
minus sign in the definition of the loop observables. Wit
this convention, the spinor identity is transformed into th
binor identity, allowing immediately a local graphical calcu
lus for the grasping operation and the use of recoupli
theory. We have shown that the loop states obey the axio
of recoupling theory, and the corresponding graphical fo
malism provides a powerful tool for computing the action o
geometrical operators. We have discussed in detail the w
in which recoupling theory can be used in this context.

Using recoupling theory, we have rederived known resu
on the eigenstates of the area, and the volume of trivale
and four-valent vertices. We have given a general express
for the volume of higher valence vertices. We have prove
that the square root in the volume operator is well define
because the relevant operator is Hermitian. We have defin
a scalar product by a suitable normalization of the trivale
spin networks. We have shown that that the scalar produc
well defined and independent from the trivalent expansi
chosen, and that the volume is symmetric with respect to t
scalar product.

Notice that the area and volume operatorsÂ andV̂ do not
correspond to physical observables: they are not gauge
variant and do not commute with GR’s constraints. The are
and volumes that we routinely measure are associated to s
tial regions determined by matter. Indeed, the area and v
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ume of regions determined by physical matterare repre-
sented on the phase space of the coupled gravity-ma
theory by observables which are gauge invariant~see for
instance@54#!. However, it was suggested in Ref.@25# that it
is reasonable to expect that these physical areas and volu
~of spatial regions determined by matter! be still expressed
by ~operators unitary equivalent to! Â andV̂. See Refs.@54#
and@25# for the details of the argument. If this suggestion i
correct, the spectra computed here can be taken as phys
predictions on short scale geometry, following from the loo
representation of quantum gravity@25#. These predictions are
testable in principle, and could perhaps lead to indirect o
servable consequences.

We consider the following open problems particularly im
portant for the development of the theory.

We have not explored the degenerate cases in the ac
of the area operator~but see@16,51#!.

We believe that the formalism is now well established fo
a precise discussion of the Hamiltonian and for computin
transition amplitudes@26,27#.

Can a weave@22# be found for which not just the area bu
the volume as well approximates smooth geometries? Ca
weave related to a four-dimensional geometry@55# be con-
structed?

A way of implementing the Lorentzian reality conditions
is, to our knowledge, still lacking~for an attempt to address
this problem, see@39#!.

Under the optimistic assumption that the above technic
problems could be addressed, a possible first task for
theory could be the following: Compute the clock time evo
lution of a weave representing a black hole, show that Haw
ing’s radiation@56# is emitted, and determine the final stag
of the black hole after evaporation.

Supposing that area and volume eigenvalues compu
here describe an actual physical discreteness~in the quantum
sense! of Planck scale geometry, could there be any lo
energy observable consequence of such discreteness?9
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after the appearance of the preprint of this paper: one on bla
hole’s emission spectrum@57#, and one on black hole entropy@58#.
tter

mes

s
ical
p

b-

-

tion

r
g

t
n a

al
the
-
k-
e

ted

w

g
o-
r

g-
le

k
ri
ur-
SF

’

APPENDIX A: PAULI MATRICES IDENTITIES

Definingt i52 ( i /2)s i , wheres i are the Pauli matrices,
we have the identities

Tr@t it j #52 1
2 d i j , ~A1!

Tr@t it jtk#52 1
4 e i jk , ~A2!

d i j t i A
Bt j C

D52 1
4 ~dA

DdB
C2eBDeAC!, ~A3!

d i jTr@At i #Tr@Bt j #52 1
4 $Tr@AB#2Tr@AB21#%, ~A4!

A21
A
B5eBDeACAD

C , ~A5!

dA
BdD

C5dA
CdD

B1eBCeAD , ~A6!

Tr@A#Tr@B#5Tr@AB#1Tr@AB21#, ~A7!

whereA andB are SL(2,C) matrices.

APPENDIX B: KAUFFMAN BRACKETS
AND TEMPERLEY-LIEB RECOUPLING THEORY

In the context of Knot theory@32#, the appearance of re-
coupling theory is based on the observation that the Kauf
man bracket satisfies the properties~and is completely deter-
mined by the properties!

~B1!

and

~B2!

where ^& denotes the Kauffman bracket, where
d52A22A22 andK is any diagram that does not intersect
the added loop. These properties of the Kauffman bracket a
sufficient to generate the entire formalism of recoupling
theory. In particular, they generate a ‘‘tangle theoretic’’ in-
terpretation of the Temperley-Lieb algebra as follows.

A planar tangle is a set of lines on a plane. It is possible t
write an arbitrary tangle inside the Kauffman brackets as th
sum of nonintersecting tangles by applying Eq.~B1! to all
crossings. In@59# it is shown that every planar nonintersect-
ing n tangle withn inputs andn outputs is equivalent to the

ied
ck
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2684 54ROBERTO DE PIETRI AND CARLO ROVELLI
product of elementary tangles1n , U1, . . . ,Un21, given by

where the product is interpreted as a stacking of two d
grams. Two such products represent tangles equivalent un
the Kauffman brackets if and only they can be transform
into each other by the relations

Ui
25dUi , ~B3!

UiUi61Ui5Ui , ~B4!

UiU j5UjUi ,u i2 j u.1, ~B5!

which are at the basis of the Temperley-Lieb algebra. F
example, Eq.~B3!, means

~B6!

Given ann tanglex, let x̄ denote the standard closure o
x, obtained by attaching thekth input to thekth output:

The Temperley-Lieb algebraTn is the free additive algebra
over Z̃@A,A21# with multiplicative generators1n , U1, . . . ,
Un21. The trace on the algebraTn is defined as follows:~i! If
x is ann tangle then tr(x)5^x̄& where^& denotes the Kauff-
man brackets, or, which is the same, the recursive evalua
of x̄ using Eqs.~B1! and ~B2!; ~ii ! tr(x1y)5tr(x)1tr(y).

1. The Jones-Wenzel projector

It can be shown@32# that in the Temperley-Lieb algebra
Tn there exist one~and only one! elementPnPTn such that
Pn

25Pn andPnUi5UiPn , i51, . . . ,n21. This unique el-
ement is called the Jones-Wenzel projector ofTn . Its explicit
expression is given by

~B7!

P(p),p51, . . . ,n! is the n tangle obtained by all possible
permutationsp in the way then lines enteringe are con-
nected to then outgoing lines,Pn

(p) its a minimal represen-
tation of the permutation (p), and upu its the parity of the
representation. Since anyn tangle can be expanded, usin
ia-
der
ed

or

f

tion

g

Eq. ~B1!, in a sum ofnonintersectingtangles, the expression
~B7! is an element ofTn . As an example we give the defi-
nition of P2:

In the A521 case the projectors reduce to antisymmetri
ers.

2. A special sum of tangles: the three-vertex

A special sum of tangles is indicated by a three-verte
Each line of the vertex is labeled with a positive integera,
b, or c as shown below

and it is assumed thatm5(a1b2c)/2, n5(b1c2a)/2,
andp5(c1a2b)/2 are positive integers. This last conditio
is called theadmissibility condition for the three-vertex
(a,b,c). A line labeled by a positive integera is interpreted
as the nonintersectingn tangle1a . The three-vertex is then
defined as

~B8!

Here, it is understood that each Temperley-Lieb projector
fully expanded. For instance,

.

3. Chromatic evaluation

If we join trivalent vertices by their edges, we obtai
trivalent networks. Thus, in the present context a trivale
spin network is defined as a trivalent graph with an adm
sible coloring. Notice that in this context spin networks a
not embedded in a three-dimensional space. An edge of co
n representsn parallel lines and a Jones-Wenzel projecto
and a vertex is understood as completed expanded in te
of nonintersecting tangles, as above. Thus a trivalent s
network determines a closed tangle. We can compute
Kauffman bracket, or the Temperley-Lieb trace, of such
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tangle. This is also called the chromatic evaluation, or n
work evaluation. The explicit calculation of the trace is ge
erally based on a generalization of the chromatic method
spin-network evaluation@60#. In Ref. @60# this method is
used in order to compute the Clebsch-Gordan coefficients
the group SU~2!.

Chromatic evaluations of simple networks are given
Appendix E. We refer to@32# for the details of the compu-
tations. Here, we perform one such computation explicit
as an example. Let us consider the spin network formed
two trivalent vertices joined to each other. This is called t
u network. Consider the case with edges of color 2,1

~B9!

We have~1! expanded the trivalent vertices explicitly;~2!
computed the trace using Eq.~B2!; ~3! written the expression
in terms of quantum integer~E1!; ~4! compared the result
with the general formula of the chromatic evaluation of th
u net ~E4!. In theA521 case, the above gives

~B10!

APPENDIX C: PENROSE THEORY OF SPIN NETWORK

In this appendix we discuss the relation between the P
rose theory of spin networks and the Kauffman bracket a
Temperley-Lieb recoupling theory. This appendix is bas
essentially on Penrose’s original formulation@43# and on an
article by Kauffman@61#. A basic idea used by Penrose~in
his doctoral thesis! is to rewrite any tensor expression in
which there are sums of indices in a graphical way@31#.
Consider the calculus of spinors. Penrose represents the b
element of spinor calculus as

~C1a!

~C1b!

~C1c!

and generally to any tensor object

~C1d!

This convention provides the possibility of writing the prod
uct of any two tensors in a graphical way. For examp
et-
n-
of

for

in

ly,
by
he
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e
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~C2!

~C3!

~C4!

In the light of the example above, Penrose considered
modification of the spinor calculus, which he denoted a
binor calculus. The binor calculus is obtained by adding two
conventions to the calculus above:~1! Assign a minus sign to
each minimum;~2! assign a minus sign to each crossing;~3!
maxima and minima are taken with respect to a fixed direc
tion in the plane~this direction is conventionally taken to be
the vertical direction on the written page!; ~4! a segment with
transversal intersection with all horizontal direction is taken
to be a Kroneckerd. The advantage of these additional rules
is that they make the calculus topological invariant, namel
one can arbitrarily smoothly deform a graphical expressio
without changing its meaning.

The other way around, any curve can now be decompose
in a product ofd ’s and e ’s and any two curves that are
ambient isotopic, i.e., that can be transformed one in th
other by a sequence of Reidemeister moves, represent t
tensorial expression as product ofe ’s andd ’s.

A closed loop ~with this convention! has value (22),
because

~C5!

and we have the basic binor identity, which reads

~C6!

It is easy to see that these relations are exactly the same
the properties~B1! and~B2! of the Kauffmans brackets with
A521 andd522. Notice from Eq.~B1! that if A521
undercrossing and overcrossing are equivalent: indeed th
give the same expansion. Clearly in Penrose’s binor calculu
there is no meaning of the distinction between over and un
dercrossing. The theory can then be developed as the reco
pling theory of Appendix B with the special valueA521.
Thus theA521 Kauffman bracket of a spin network is the
same at the Penrose’s spin network evaluation.

For more detail on the exact relation betweentangle-
theoretic recoupling theory and spin networks see, for ex-
ample@32,46,61#,. An important point that emerges from this
brief discussion is the possibility of using a topological in-
variant calculus for writing generic SL(2,C) invariant tensor
expressions.~This was one of the original motivations of
Penrose for introducing binors.! It is possible to write any SL
(2,C) Mandelstam identities~3.3! in a graphical way and in
particular we can express these identities in spin-network
like graphical relations, in which each edge is the antisym
metrization of the holonomies along the edge.
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APPENDIX D: GRAPHICAL CALCULUS OF ANGULAR
MOMENTUM AND ITS RELATION
WITH THE TANGLE-THEORETICAL

RECOUPLING THEORY

Finally, theA521 case of recoupling theory is equiva
lent to the graphical calculus of the algebra of the SU~2!
representations. In the literature there is a great numbe
results on the Wigner 3nJ symbols and a well develope
theory of graphical calculus for angular momentum. To o
knowledge the most used graphical method of computa
in the representation theory of su~2! are the one due to
Levinson @62# and developed by Yutsis, Levinson, an
Vanagas@63# and the slightly modified version of Brink an
Satcheler@52#. We discuss here the connection between
tangle-theoretical recoupling theory~in the caseA51)10 and
the graphical method of Brink and Satcheler@52#. We indi-
cate a diagram in the Brink convention with a subscriptB,
and the 3nJ symbol~in the standard normalization11! with a
subscriptW. The two methods are identical up to a differe
normalization of the three-valent vertex and the fact the
orientations of any vertex are explicit denoted with a1 for a
counter-clockwise orientation and2 for a clockwise one.~In
this appendix we are imprecise about this overall sign.! Fol-
lowing Kauffman, we have chosen to denote the recoup
matrix of a four-valent node by curly brackets, while cur
brackets are used in the angular momentum literature to
dicate Wigner’s 6J symbols, which are the evaluation of th
tetragonal net. In other words, the Wigner 3J and 6J symbol
are defined as the evaluation

$a,b,c%W5norm•u~a,b,c!, ~D1!

H a b c

d e fJ
W

5norm•TetFa b c

d e fG , ~D2!

where the normalization factor ‘‘norm’’ of@52# corresponds
to the choice

~D3!

This is also the standard normalization of the Clebsh-Gor
coefficient that gives the usual normalization of the Wign
3nJ symbol. With this normalization the recoupling theore
@Eq. ~E5!# becomes

10The correspondence between the caseA521 andA51 and
their equivalence is discussed by Penrose in@31#.
11We recall the fact that we use color and not spin to denote

su~2! representation associated to an edge. In the angular mom
tum literature, the spin notation is prevalent. As a conseque
numbers in Brink diagrams, or in 3nJ symbols in standard normal
ization, must be understood as the spin of the edge; or, equivale
the color divided by two.
-
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~D4!

whereD i is interpreted as the dimension of the representa
tion of spin i /2. From Eqs.~D3! and ~D4! we have the cor-
respondence between a Bring diagram and one of ours: o
has to divide any three-valent node byAu(a,b,c). As an
example, let us consider the relation between the tetrahedr
evaluation~Tet! and the Wigner 6J symbol:

~D5!

APPENDIX E: BASIC FORMULAS
OF RECOUPLING THEORY

We collect here the basic formulas of recoupling theory in
the caseA521 andd522. Using the ‘‘quantum’’ integer

@n#5
A2n2A22n

A22A22 5~21!n21Dn215n,

$n%5
12A24n

12A24 5A2n22@n#5n, ~E1!

$n%!5$1%•$2%•••$n%5n!

we define~1! the symmetrizer

~E2!

~2! the exchange of line in a three-vertex,

,
~E3!

where lc
ab5(21)(a1b2c)/2A(a81b82c8)/2, and x85x(x12),

~3! the u evaluation

the
en-

nce,
-
ntly,
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,
~E4!

wherem5(a1b2c)/2, n5(b1c2a)/2, p5(c1a2b)/2,
~4! the recoupling theorem

, ~E5!

H a b i

c d jJ 5

D iTetFa b i

c d jG
u~a,d,i !u~b,c,i !

, ~E6!

~5! the tetrahedral net

~E7!

where

a15
A1D1E

2
, b15

B1D1E1F

2
,

a25
B1C1E

2
, b25

A1C1E1F

2
,

a35
A1B1F

2
, b35

A1B1C1D

2
,

a45
C1D1F

2
,

m5max$ai%, M5min$bj%,

E5@A#! @B#! @C#! @D#! @E#! @F#!, I5)
i j

@bj2ai #!,

and ~6! the reduction formula

~E8!

~E9!

These formulas are sufficient for the computations perform
in the paper. For details on their derivation, see@32#.
ed

APPENDIX F: SOME VOLUME EIGENVALUES

Finally, we present here some volume eigenvalues
four- and five-valent vertices. Tables I and II give the color
of the external edges, the dimension of the vertex~number of
independent compatible colorings!, and the eigenvalues. The
numbers in parentheses indicate the multiplicity of the eige
values.

TABLE I. The eigenvalues of the volume for some four-valen
vertices.

P0 P1 P2 P3 Dim. lb i
5lb i

(P0 , . . . ,P3)

1 1 1 1 2 (2)A1
8A3

2 2 2 2 3 (1)0, (2)A1
2A3

3 3 3 3 4 (2)A3
8A3,

(2)A3
8A35

4 4 4 4 5 (1)0,

(2)A3
4A2222A57,

(2)A3
4A2212A57

5 5 5 5 6 (2)A1
8A1155,

(2)A1
8A2211296A481

(2)A1
8A2211196A481

6 6 6 6 7 (1)0,

(2)A2A3,
(2)A9

2A3,
(2)A1

2A723
1 1 1 1 2 (2)A1

8A3
2 2 1 1 2 (2)A1

4A2
3 2 2 1 2 (2)A1

4A5
3 3 1 1 2 (2)A1

8A15
3 3 3 1 2 (2)A1

2A3
4 2 2 2 2 (2)A1

2A3
4 3 2 1 2 (2)A3

4

4 4 1 1 2 (2)A 1
4A6

4 4 3 1 2 (2)A 1
4A21

5 3 2 2 2 (2)A 1
4A21

5 3 3 1 2 (2)A 3
8A7

5 4 2 1 2 (2)A 1
4A14

5 4 4 1 2 (2)A3
2

5 5 1 1 2 (2)A 1
8A35

5 5 3 1 2 (2)AA2
5 5 5 1 2 (2)A 9

8A3
6 4 2 2 2 (2)A2
6 4 3 1 2 (2)A 1

2A6
6 5 2 1 2 (2)A 1

2A5
6 5 4 1 2 (2)A 3

4A6
6 6 1 1 2 (2)A 1

2A3
6 6 3 1 2 (2)A 3

4A5
6 6 5 1 2 (2)A 3

4A10
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TABLE I. ~Continued!.

P0 P1 P2 P3 Dim. lb i
5lb i

(P0 , . . . ,P3)

7 3 3 3 2 (2)A 9
8A3

7 4 3 2 2 (2)A 3
4A6

7 4 4 1 2 (2)A 3
2

7 5 2 2 2 (2)A 3
4A5

7 5 3 1 2 (2)A 3
8A15

7 5 5 1 2 (2)AA5

7 6 2 1 2 (2)A 3
4A3

7 6 4 1 2 (2)A5
4A3

7 6 6 1 2 (2)A 1
2A33

7 7 1 1 2 (2)A 3
8A7

7 7 3 1 2 (2)A 1
2A15

7 7 5 1 2 (2)A 3
8A55

7 7 7 1 2 (2)A2A3

8 4 3 3 2 (2)A 3
4A10

8 4 4 2 2 (2)AA5

2 2 2 2 3 (1)0, (2)A1
2A3

3 3 2 2 3 (1)0, (2)A1
4A26

4 3 3 2 3 (1)0, (2)A3
4A6

4 4 2 2 3 (1)0, (2)A1
2A11

4 4 4 2 3 (1)0, (2)A3
2A3

5 3 3 3 3 (1)0, (2)A3
2A3

5 4 3 2 3 (1)0, (2)A1
4A89

5 5 2 2 3 (1)0, (2)A1
4A66

5 5 4 2 3 (1)0, (2)A1
4A174

6 4 3 3 3 (1)0, (2)A1
4A174

6 4 4 2 3 (1)0, (2)A3

6 5 3 2 3 (1)0, (2)A1
4A131

6 5 5 2 3 (1)0, (2)A1
2A69

6 6 2 2 3 (1)0, (2)A1
2A23

6 6 4 2 3 (1)0, (2)A3
2A7

6 6 6 2 3 (1)0, (2)A3A3
TABLE I. ~Continued!.

P0 P1 P2 P3 Dim. lb i
5lb i

(P0 , . . . ,P3)

7 4 4 3 3 (1)0, (2)A1
2A69

7 5 3 3 3 (1)0, (2)A3
2A7

7 5 4 2 3 (1)0, (2)A1
4A209

7 6 3 2 3 (1)0, (2)A3
2A5

7 6 5 2 3 (1)0, (2)A1
4A395

7 7 2 2 3 (1)0, (2)A1
4A122

7 7 4 2 3 (1)0, (2)A3
4A38

7 7 6 2 3 (1)0, (2)A3
2A17

3 3 3 3 4 (2)A3
8A3,

(2)A3
8A35

4 4 3 3 4 (2)A3
4A92A57,

(2)A3
4A91A57

5 4 4 3 4 (2)A3
8A6622A753,

(2)A3
8A6612A753

5 5 3 3 4 (2)A1
8A511216A721,

(2)A1
8A511116A721

5 5 5 3 4 (2)AA3,

(2)AA30

6 4 4 4 4 (2)AA3,

(2)AA30

6 5 4 3 4 (2)A1
8A918218A1801,

(2)A1
8A918118A1801

6 6 3 3 4 (2)A1
4A18323A2641,

(2)A1
4A18313A2641

6 6 5 3 4 (2)A1
8A1602218A5281,

(2)A1
8A1602118A5281

7 6 4 3 4 (2)A3
4A6,

(2)A3
4A66

7 7 7 3 4 (2)A15
8A3,

(2)A 3
8A715
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TABLE II. The eigenvalues of the volume for some five-valent vertices.

P0 P1 P2 P3 P4 Dim. lb i
5lb i

(P0 , . . . ,P4)

2 1 1 1 1 3
(3)A3A21A3

12

2 2 2 1 1 4
(2)A29A2112A3116A5

96
,

(1)A5A214A5
16

,

(1)A5A214A5
24

2 2 2 2 2 6 (6)A5
3A3

3 2 1 1 1 3
(2)A21A216A3118A5114A15

192
,

(1)A15A2118A514A15
96

4 2 2 1 1 3
(1)A40110A214A515A6

80

(1)A60115A2120A3112A5110A6
160

(1)A201A214A314A5
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