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Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity
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We summarize the basics of the loop representation of quantum gravity and describe the main aspects of the
formalism, including its latest developments, in a reorganized and consistent form. Recoupling theory, in its
graphical tangle-theoretic Temperley-Lieb formulation, provides a powerful calculation tool in this context.
We describe its application to the loop representation in detail. Using recoupling theory, we derive general
expressions for the spectrum of the quantum area and the quantum volume operators. We compute several
volume eigenvalues explicitly. We introduce a scalar product with respect to which area and volume are
symmetric operators, andthe trivalent expansions pfthe spin network states are orthonormal.
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[. INTRODUCTION perturbation scheme for computing diffeomorphism invariant
transition amplitude§27]; the extension of the theory to fer-
We start with a citation from Penro§g]: “My own view mions [28] to the electromagnetic fiell29,30. This rapid
is that ultimately physical laws should find their most naturaldevelopment has produced a certain amount of confusion in
expression in terms of essentially combinatorial principlesthe notation and the basics of the theory. A first aim of this
that is to say, in terms of finite processes such as counting graper is to bring some order in the kinematics of the loop
other basically simple manipulation procedures. Thus, in acrepresentation formalism, by presenting the basics formulas,
cordance with such a view, some form of discrete or combinotations and results in a consistent and self-contained form.
natorial space time should emerge.” The loop approach td@his allows us to insert a sign factor into the very definition
quantum general relativity2,3] seems to be leading pre- of the loop representation, short-cutting sign complications
cisely to a realization of such a vision of a combinatorial of the previous formulation. In a sense, we bring to full ma-
space-time, deriving it solely from a strict application of con-turity the insights of Ref[19].
ventional quantum ideas to standard general relativity. With this sign factor, loop states of the loop representa-
A number of recent advances in this direction havetion satisfy the axioms of Penrose’s “binor calculug31],
strengthened this hope. First of all, there is the mathematier, equivalently, the axioms of the tangle-theoretic formula-
cally rigorous development of the connection representatiotion of recoupling theory{32] for the special “classical”
[9,14—-16 which has lead to recovering the loop representavalue A= —1 of the deformation parameter. This fact brings
tion formalism from a general quantization program. Thisa powerful set of computational techniques at the service of
approach has sharpened various loop representation resujsantum gravity. We describe here in detail how this calcu-
using rigorousC* algebraic and measure theoretical tech-lus can be used. Calculations in loop quantum gravity were
niques, and has put them on a solid mathematical footindfirst performed using the grasping operation on single loops
For a discussion of the precise relation between the two forf3]. It was then realized, mainly ifl5], that such combina-
mulations of loop quantum gravity, see Reff$7,18. Fur-  torial techniques admitted a group theoretical interpretation
thermore: a simplification of the formalism due to the intro- [su(2) representation theory admits a fully combinatorial de-
duction in quantum gravity of the spin network bafi®]  scription. Recoupling theory is a further—and far more
(see alsd20,21)); the result that aref22] and volume op- powerful—level of sophistication for the same calculus.
eratorg 23,24 have discrete eigenvalues; the idea that in the The idea that recoupling theory plays a role in loop quan-
presence of matter these eigenvalues might be taken asm gravity has been advocated by Reisenbe@@rand by
physical predictions on quantum geomefB5]; a Hamil-  Smolin. Motivated by certain physical and mathematical
tonian generating clock time evolutid26] and a tentative considerations, Borissov, Major, and Smolid4,35 have
considered deformations of the standard loop representation
theory. Recoupling theory with general values of the defor-
:Electronic address: depietri@vaxpr.pr.infn.it mation parameteh plays a key role in the definition of these
Electronic address: rovelli@pitt.edu deformations. What we do here is very different in spirit: we
IFor an overview of current ideas on quantum geometry, se¢emain within the framework of the standard loop-
[4-6]; for a recent overview of canonical gravity, J&&; for intro- representation quantum general relativi§R), and use re-
ductions to loop quantum gravity, sg@—13]. coupling theory merely as a computational tool.
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Using recoupling theory, we derive general formulas for(up to indices’ position Notice the absence of thein Eq.
area and volume in quantum gravity. The spectrum of th€2.2), which yields thereal Ashtekar connection. The real
area agrees with previously published res[23]. The deri- Ashtekar connectiof2.2) is the natural variable for the Rie-
vation presented here is simpler and more elegant than thmannian theory, but it can be used as the basic field for the
one in Ref.[23]. The first of our main results is a general Lorentzian theory as well, at the price of a more complicated
formula for the volume. We present it here expressed irform of the Hamiltonian constraint. Recently, Thiemann and
terms of s@2) 6-j symbols(and related quantiti¢sWe con-  Ashtekar[39] have argued that the most promising strategy
firm the fact that trivalent vertices have zero volume, firstfor implementing the quantum reality conditions is to start
pointed out by Loll[24]. We explicitly compute many eigen- from the real Ashtekar connection, and circumvent the diffi-
states for four- and five-valent vertices. Loll has computed aulties due to the complicate form of the Lorentzian Hamil-
few of these eigenvalues [186] using a different technique. tonian constraint by expressing it in terms of the Riemannian
We find agreement with the numbers published by iedle = Hamiltonian constraint via a generalized Wick transform
also[35]). We show that the absolute value and the squarésee alsd40,41]). Here, we will not discuss the dynamics.
root that appear in the definition of the volume operator arelherefore our results can be significative for the Riemannian
well defined. Indeed, we show that the arguments of the abtheory as well as for the Lorentzian theory. We will discuss
solute value are finite dimensional matrices diagonalizabléhe necessary modifications of the formalism for applying it
and with real eigenvalues; and that the arguments of thé the complex Ashtekar connection at the end of Sec. VII.
square root are finite dimensional matrices diagonalizable It is useful for what follows to consider the dimensional
and with real non-negative eigenvalues. We show in generalharacter of the field with care. We set the dimension of the
that the eigenvalues of the volume are real and non-negativéelds as follows:

Finally, the technique introduced allows us to define a

scalar product in the loop representation, by requiring that [ganl=L2% [E3=L2

area and volume be symmetric, and that spin network states _

be orthogonal to each other — whatever the trivalent decom- [A,]= dimensionless. 2.3
position of high valence vertices we use. This is our second

main result. The popular choice of taking the metric dimensionless is not

The structure of this paper is the following. In Sec. Il, we very sensible in GR. It forces coordinates to have dimensions
review the basics of the Ashtekar formulation of generalof a length, but the freedom of arbitrary transformations on
relativity and we define the loop variabléa the new form  the coordinates is hardly compatible with dimensional coor-
that leads directly to recoupling thegnin Sec. Ill, we de- dinates. Coordinates, for instance, can be angles, and assign-
rive the basic equations of the loop representation. In Sec. INhg angles dimension of a length makes no sense. The Ein-
we discuss the role of recoupling theory. In Sec. V we definestein action can be rewrittefsee, for exampld8]) as
the spin network basis. In Sec. VI, we discuss the area op-

erator, and in Sec. VII the volume operator. In Sec. VIII we 10, 1 o [ 43
define the scalar product. Section IX contains our conclu- S_Gf d*x/gR= G dx” | dx
sions.

X[ —ALE2+AIC;+N3C,+N], (2.9
where we have set

Il. LOOP VARIABLES IN CLASSICAL GR s 167G newton 2.9
We begin by reviewing the canonical formulation of gen- c?
eral relativity in the real Ashtekar formalisf87—39. This is . , L ~
given as follows. We fix a three-dimensional manifotl ~ CNewwon DeINg Newton’s gravitational constant, ar@,
and consider two rea(smooth SO3) fields Al(x) and Cas W the diffeomorphism, Gauss, and Hamiltonian con-
straints. It follows that the momentum canonically conjugate

E3(x) on M. We usea,b, ...=1,2,3 for (abstrack spatial o Al is

indices andi,j, ...=1,2,3 for internal S@) indices. We a

indicate coordinates ol with x. The relation between these 5S 1

fields and conventional metric gravitational variables is as pA(X)= ———=— _Eia (2.6)
follows: EZ(x) is the(densitized inverse triad, related to the SAL(X) G

three-dimensional metrig,,(x) of the constant-time surface ) )
by and therefore the fundamental Poisson bracket of the Hamil-

tonian theory is
ab__ FagEb
aeTEEE 23 {ALX). E}()} =G 835 8°(x.y). @27
whereg is the determinant of,,; and o i ) o .
The spinorial version of the Ashtekar variables is given in
Ag(x):l“‘a(x)—kii(x), (2.2)  terms of the Pauli matrices; ,i=1,2,3, or the s(2) genera-
tors r,=— (i/2)o;, by
wherel“;(x) is the SU2) spin connection associated to the - ~ ~
triad andkl,(x) is the extrinsic curvature of the three surface E3(x)= —iE{(x)0;=2E{(X) 7; (2.9
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i i We indicate multiloops by a Greek letter, in the same manner
Aa(X) =~ 5 Aa(X) g =A(X) i . (29  as(single loops:[a]=[a1]...[an] .
Given a segmeny, we consider the parallel propagator of
A(x) andE?3(x) are 2x2 complex matrices. We use upper Aa alongy, This is defined by the equation

case indice#\,B, . ..=1,2 for the spinor space on which the dy2(7)
I?auh matnceE;s act. Thgs tBhe components of the gravitational d_UV( 7 70)+ 5 A(¥ (MU (7,70)=0, (2.1
fields areA 5" (X) andE25°(x). T T
In order to construct the loop variables, we start from . B 8
some definitions. with the boundary conditiod ,(7y,7)s= 65 The formal

SegmentA segmenty is a continuous and piecewise Selution is

smooth map from the closed interJdl,1] into M. We write .

75> 7%(s). Uy (7,7 >=7’e"‘< _f dry*A (wﬂ), (2.12
Loop. A loop « is a segment such thai?(0)=a?(1). v 0 :

Equivalently, it is a continuous, piecewise smooth map from

the circleS; into M3. where P indicates the path ordering of the exponential. We
Free Loop AlgebraWe consider(formal) linear combi- ~@lso write—in a somewhat imprecise notation—
nations® of (formal) products of loops, as in U'y:Lz'y()o:l) andU (sz,81) =U,(72,71) if s;=7y(72) and
51: Y\7T1)-
We can now define the fundamental loop variables. Given
(D:COJFZ Ci[ai]+% Cilajllan]+ -+ (210 4 loop a and the points,,s,, . .. ,s,e a we define

where thec’s are arbitrary complex number and thés are Tea]=—-TrU,] (213
loops; we denote the space of such objects as the free loop _
algebraA[ £]. (See alsd9].) T a](s)=—Tr{U.(s,S)E¥(s)] (2.14

Multiloop. We denote the monomials [ £], namely
the elements of the fornd=[a]...[a,] as multloops. and, in general,

T2%2 a](s1,S2) = —Tr{U ,(sy asz)Eaz(Sz) U,(s; ,Sl)Eal(Sl)] ; (2.19

T a](Sy, . Sn)=—THU (51,50 E*N(S)U (SN SN 1) - - - - - U.(S2,51)E®(sp)].

The function7[ «] defined in Eqg.(2.13 for a single loop, T[]l - [an]]=M ] - - T aq]
can be defined over the whole free loop algebtf £]:
given the generic elemedt e A[£] in Eq. (2.10, we pose =(=TrU, D (=TrU, D

=(-DNTU, ] MU, ]
=(~)M[{a}].

This shows that the new sign choice implements in the for-
The reason for the-2 in the first term is the following. We malism the sign factor for the number of loops that was
may think of the first term of the sum as corresponding to theecognized if19] as the key to transform the spinor relation
“point loop,” or a loop whose image is a point. For this into a local relation. In fact, we have
loop, the exponent in Eq2.12) is zero, the holonomy is the

TP)=-2c0+ 2 ¢ Tyl + 2 ¢y Ten]Tey]+ -
(2.19

identity [in sl(2,C), namely in two dimensiojsand 7 is TU T U gl =TI U U= Tr{U,Ug-1]=0,

therefore— 2. (2.17)
Notice that there is a sign difference between the usual

loops observable2,3] (denotedT variable$ and these new TNl Bl+ T a#Bl+ Ma# B 11=0, (2.18

loop observables, denotéllvariables. This is a key techni-

cality at the origin of the simplification of the formalism T[]l B+ T[a#B]]+ T [ a#B 1]]=0; (2.19

presented here. The new sign takes care immediately of the

sign complications extensively discussed in R@B]. The  namely the spinor identitpone + and two—) has become a
suggestion that those sign complications could be avoided bfginor identity (all +) (see Penrosg43]). While the first is
inserting a minus sign in front of the trace was considered byonlocal, the second is local, and is the basic identity at the
Major as well[42]. Let us illustrate the consequences of roots of binor calculus and=—1 recoupling theory. For
having this sign. Consider amN component multiloop the notationse and # (to be used in a momentsee for
a=ajay...ay. We have instance 8].
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We recall here, for later use, the retracing identity. For allwas originally defined in terms of ketg/) in the dual of
loops @ and segmenty, we have[3] V. These are represented on toeercompletgbasis(«| by

loop functionals
Mal=Tacyy 1. (2.20

= . 3.4
The Poisson bracket algebra of these loop variables is W) =(alv) 34

easily computed. For a rigorous way of performing these o principal consequences of the Mandelstam relations
computations, segt4]. We give here the Poisson bracket of are the following:

the T variables of order 0 and 1. (1) The elemen{ a| does not depends on the orientation
_ of @, [a]~[a1]; (2) the elementa| does not depend on
{Mal,B]}=0, 22D e parametrization of, [a]~[B] if B3(7)=a?(f(7)); (3)

(T )(s), T Bl} = — SGAY B,s] {T[ a#B] - T atf 1) retracing, ify is asegmenstarting in a point ofx, then
° " (222

[acyoy™ 1~[al; (3.5
where we have defined
(4) the binor identity
AT B,s]= fﬁdrﬂa(*r) &°[B(7),s]. (2.23 [a]-[B]~—[a#B]—[attsB 1] (3.6

The factor— %, different than in previous papers, is due to It has been conjectured that all Mandelstam relations can
the new conventions. be derived by repeated use of these identities. We expect that
the methods described below may allow to prove this con-
jecture, but we do not discuss this issue here.

Next, we define the quantum operators corresponding to
the 7 variables as linear operators dh These form a repre-
sentation of the loop variables Poisson algebra. We define
the loop operators as acting on the bra stétes from the

We now define the loop representatipb] of quantum  right. (Since they act on the right, they define, more pre-
gravity as a linear representation of the Poisson algebra dfisely, anantirepresentation of the Poisson algepi&e de-
the 7 variables. First, we define the carrier space of the repfine the7[ «] operator by
resentation. To this aim, we consider the linear subspace
of the free loop algebra defined by

Ill. THE LOOP REPRESENTATION
OF QUANTUM GRAVITY

<co+2 clail+ 3 cij[ai][am---‘%{a]

K={®e A[L]|7[P]=0}, (3.2
and we define the carrier spateof the representation by :<Co[01]+2i Ci[ai][a]inzj: Cilaillejl[a]+-- ’
V=A"L]IK. (3.2 (3.7

In other words, the state space of the loop representation i§ext, we define théﬁ[a](s) operator. This is a derivative

defined as the space of the equivalence classes of linear comperator (i.e., it satisfies Leibniz ruleover the free loop
binations of multiloops, under the equivalence defined by thegepra such that

Mandelstam relations

O~V if MD]=7V], (3.3 ([ﬁ]ﬁﬁ[a](s):—%iISAa[IB,s](<[a#sﬂ]|—<[a#sﬁ_1(]3),8)

namely by the equality of the corresponding holonomies
[9].2 We denote the equivalence classes defined in his wa)yy
namely the elements of the quantum state space of the theory
as Mandelstam classes, and we indicate them in Dirac nota- 2= /G=
tion as(®|. Clearly, the multiloop state&x| span(actually, 0
overspan the state spac®. Later we will define a scalar
product onV, and promote it to a Hilbert space. The reasonThe definition extends on the entire free loop algebra by
for preferring a bra notation over a ket notation is just his-Leibniz rule and linearity. The two operators commute with
torical at this point. We recall that the loop representationthe Mandelstam relations and are therefore well defined on
V.
Notice that the factoA?[ 3,s] in Eq. (3.8) depends on the

27[®] is a function on configuration space, namely a functionorientation of the loogs: it changes sign if the orientation of
over the space of smooth connections. Equality between functiong8 is reversed. So does the difference in the parentheses,
means of course having the same value for any value of the indgherefore the right-hand sidehs) of Eq. (3.8) is independent
pendent variable; here, for gémooth) connections. from the orientation of3, as the Ihs. On the other hand, both

here we have introduced the elementary lergthy

16m% Gy
Tﬁmon: 16l P23Ianck (3.9
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the rhs and the Ihs of E43.8) change sign if we reverse the  Valence.We say that a vertex has valencen, or is n
orientation ofc. A valent, if n edges are adjacent to it. A vertex can have any
The action of the7®[ a](s) operator on a stat§ 8]| can  positive integer valence, including 1 and 2.
be visualized graphically. The graphical action is denoted a Clearly,® is not uniquely determined by its graph, . If
“grasp,” and it can be described as follow$) Disjoin the  our only information about a state is its graph, then we do
two edges of the loop and the two edges of the loep that  not know how the state is decomposed into multiloops, nor
enter the intersection poist (ii) Pairwise join the four open how many single loops run along each edge, nor how the
ends ofe and g in the two possible alternative ways. This single loops are rooted through the vertices. We now intro-
defines two new states. Consider the difference betweegyce a graphical technique to represent this missing informa-
these two stategrbitrarily choosing one of the two as posi- tjon, The technique is based on the idea of “blowing up” the
tive). (i) Multiply this difference by the factor graph _as if viewed through an infinite magnifying glass—
—il5A%[B,s], where the direction of8 (which determines  anq representing the additional information in terms of pla-
the sign of A% B,s]) is determined as follows: it is the di- 5, tangles on the blown up graph. As we will see, these
rection induced orB by « (which is oriented in the term tangles obey recoupling theory.
chosen as positive. A moment of reflection shows that the First, draw a graph isomorphic I, in the sense of graph

definition is consistent, and independent from the choice o{heow (that is, the isomorphism preserves only adjacency
the positive term. An explicit computation shows that the ’

) . . : “relations between vertices and edgem a two-dimensional
operators defined realize a linear representation of the Poi dg
son algebra of the corresponding classical observables.
The grasping rule generalizes to higher or@esariables.
The action of 78 -2[a](s,, . ..,S,), over a single loop-
state[ B] is given as follows. First the result vanishes unles ions as “false intersections.” Next, replace each vefieat

g crosses all then points s;. If it does, the action of o taise intersectionshy (the interior of a circle in the
T a](sy, . . . .Sy) is given by the simultaneous grasp pjane, and each edge by a ribbon connecting two cir¢hds.
on all intersection points. This action produce$ ®rms.  fa|se intersections, ribbons bridge each other without merg-
These terms are summed algebraically with alternate sigmpmg_) In this way, we construct a “thickened out” graph: a
and the result is multiplied by a factoril 5A%[8,s1] for  two-dimensional oriented surface whigtoosely speaking
each grasp, where the sign of each coefficiéAt3,s;] is  has the topology of the graghy, times the[0,1] interval.
determined assuming th# is oriented consistently with Ribbon-net.We call this two-dimensional surface the
in the term chosen as positive. Again, a moment of reflectionripbon net” (or simply the ribboh of the graphl'y,, and
shows that the definition is consistent, and independent frorye denote it aRy, . Notice that the grapR ¢ is embedded in
the choice of the positive terms. The generalization to arbiw while its ribbon neRy, is not.
trary states, using Iinearity and the Leibnitz rule, is Straight- Now we can represent the missing information needed to
forward. This concludes the construction of the linear ingreteconstructd from I'y as(a formal linear combination of
dients of the loop representation. tangles drawn on the surfad®, . First, we represent each
multiloop in Eqg.(2.10 by means of a closed line ov&y :
Planar (representation of a) multiloog=or each loopy;
in a given multiloopa: we draw a loopy; over the ribbon net
Re, wrapping aroundRy in the same way in whichy;
wraps around’ . We denote the drawinpver Rg) of all

A quantum staté®| in the state spack is a Mandelstam the Ioopg of a multilpop as “the planar repre§entation” of
equivalence class of elements of the foftn10. We now the multiloopa, or simply as the “planar multiloop.” We
show that because of the equivalence relation, these statB¥licate it asP,, .
are related to tangles—in the sense of Kauffrfiéél— and For technical reasons, we allow edges and vertices of the
they obey the formal identities that define the TemperleyJibbon net to be empty of loops as well. Thus we identify a
Lieb-Kauffman recoupling theory described in RE82]. ribbon net containing a planar multiloop, with a second one
This fact yields two results. First, we can write a basis inobtained from the first by adding edges and vertices empty of
V. This basis is constructed in the next section. Second, rdoops. Finally:
coupling theory becomes a powerful calculus in loop quan- Planar (representation of a) stat&very state(®| is a

Turface. As usual in graph theory, we must distinguish points

representing vertices from accidental intersections between

edges generated by the fact that we are representing a non-
lanar graph on a plane. Denote these accidental intersec-

IV. LOOP STATES AND RECOUPLING THEORY

tum gravity. formal linear combination of multiloopg®|=ZXc;[ «;] (up
Consider the elemen, given in Eq.(2.10), of the vector O equivalence We denote the corresponding formal linear
spaceA'[ £]. We need some definitions. combinationP¢=chjPaj of planar multiloops on the rib-

Graph of a stateWe denote the union iM of the images bon netRg, (up to equivalence as a planar representation of
of all the loops in the rhs of Eq2.10 as the “graph of (®|.

®,” and we indicate it ad’'¢ . Notice thatl'y is a graph in We have split the information contained i in two

the sense of graph theop$7], embedded irM. parts:® determines a graphig embedded itM and a planar
Vertex.We denote the points whereI'y, fails to be a  statePg4. Py is a linear combinations of drawings of loops

smooth submanifold oM as “vertices.” over a surfacéthe ribbon neRy) and codes the information

Edge.We denote the lines of the graph connecting the on which loops are present and how they are rooted through
vertices as “edges.” intersections. This information igurely combinatorial On
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the second axiom of recoupling thediyq. (B2) in Appen-
. dix B] in the A= —1 case. The valuA= —1, correspond to
> < the case in which the distinction between over and under-
v crossings can be neglected, consistently with the fact such
distinction is irrelevant for the planar representation of a
loop.

Thus P4, can be interpreted as a linear combination of
tangles in the sense of RéB2]. The tangles obey the axi-

FIG. 1. The binor identity. oms of recoupling theory. They are confined inside the ori-
ented surfac®y with has a highly nontrivial topology. This
is the key result of this section.

The relation between loop states and recoupling theory is
the other hand['g contains the information on how the subtle, and may generate confusion. A source of confusion is
loops are embedded intd . given by the fact that the relation between recouplings and

Notice that a multiloop determines its planar representaknots in knot theory{32] is different from the relation be-
tion only up to smooth planar deformations of the linestween recouplings and knots in quantum gravity. In both
within the circles and the ribbons of the ribbon net. In othercases recouplings enters as a consequence of a gkein
words, we can arbitrarily deform the lines within each circlebinor) equation —as Eq(4.1)— holding at intersections. But
and within each ribbon, without changiny. In particular, in knot theory this equation is satisfied by the Kauffman
the lines of the planar representation will intersect in pointsPrackets at the “false intersections™ of the planar projection
of Ry, and we can apply Reidemeistet8] moves[46] to  Of & loop. Contrary to this, in quantum gravity H¢.1) does
such intersectiongthat is, disentangle themUnder and ot holdfor the false intersections. It holds for the intersec-
overcrossings of loops withiR,, are not distinguished. tions of lineswithin Ry, . _ .

Let us come to the key observation on which the possi- On the other hand, knots play a role in quantum gravity as
bility of using recoupling theory relies. Consider an element/ell [2], because of the diffeomorphism constraint. GR’s dif-
@ of the free vector algebra. For simplicity, let us momen-féomorphism invariance identifies states that have equivalent
tarily assume thatb is formed by a single loopp=[a] P, and whosegraphscan be deformed into each other by
(which may self-intersect and run over it9elfThus 3D diffeomorphism ofM in the connected component of the
®=(T',,P,). Consider an intersection of two lingswo  identity. To clarify this point, let us require that the ribbon
segments oP,) in Ry . Break the two lines meeting at this M€t Ry is generated by a two-dimensional projection of
intersection, and pairwise rejoin the four legs, in the twol ., and let us keep track of the resulting over and under-
alternative possible ways, as in Fig. 1. crossings at false intersections. Then diffeomorphism invari-

We obtain two new loops oRg, which we denote as ance identifies all states that have equivalRgt and whose
P.s and P;,;. Consider the elemen¥ of the free vector ribbon nets can be transformed into each other by Reide-

algebra uniquely determined by the graph=Tg, and by ~Meister movesat the false intersections Thus, as far as
the linear combination of planar representationsdiff-invariant states are concerned, Reidemeister moves can

Py=—P,—P.. Notice that¥ is different thand as an D€ used at the tangles’ intersectiawi¢hin the ribbon net as
element ﬁf the free vector algebra; however, the two are ifVell @s at the false intersections. But in the first case a skein
the same Mandelstam equivalence class because of the birgfuationlEq. (4.1)] holds, in the second it does rT°0M|>_<|ng_
relation(3.6), and therefore they define the same element of'P the two cases has generated a certain confusion in the
the quantum state spade Namely(¥|=(®|. We say that Past.

Selection state [B] state [Y]

two planar representatior, and P, are “equivalent” if An immediate consequence of the result is that we can
(¥|=(®|. Thus, in dealing with planar representations of a/fit¢ a basis in following [32]. Given a statd¥|, and its
quantum statéd|, we can freely use the identity ribbon netRy, we can use Eq4.1) to eliminate all inter-

sections from thé , of each multiloop. Next, we can retrace
each single line that returns over itself, and eliminate every
loop contractible inRq,. We obtain parallel lines without
>< = _| | - x (4.1  intersections along each ribbon and routings without inter-
sections at each vertex. No further use of the retracing or
binor identity is then possible without altering this form.
on P4 without changing the quantum state. This identity isThis procedure defines a basis of independent states, labeled
the identity(i) in p. 7 of Ref.[32] [Eq. (B1) in Appendix B, by the graph, the number of lines along each edge, and el-
which is the key axiom of recoupling theory — with the ementary routings at each node. An elementary routing is a
value of theA parameter set to- 1. planar rooting of loops through the vertex of the ribbon net,
An easy to derive consequence is that every closed line
entirely contained within a circle, or within a ribbon, can be
replaced by a factod=—2. Furthermore, it is easy to see 3This is true in general. One may wonder if there is any special
that the retracing identity3.5) implies that the loops oP quantum staté®,| for which the relation(4.1) holds at false inter-
can be arbitrarily deformed within thentire ribbon net, sections as well. The possibility that such a special state could exist
without changing the stat@b|. In particular, every loop con- in quantum gravity has been explored, with various motivations, by
tractible inRy can be replaced by a factdr=—2. This is  various author$34,49.
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having no intersections. This basis is not very practical for e, .
calculations. In the next section, we use the technology of e'\A) \\/ ’ é

[32] to define a more useful badis.

V. THE SPIN NETWORK BASIS

The representationl(y ,Py) of a state(®| can be ex-
panded in terms of a “virtual” trivalent representation as ﬂ ,/\
follows. eo/\\ e &
Virtual graph.To every grapH’, we can associate a triva-
lent graphI'® as follows. For eacm-valent vertexv of I', FIG. 2. Construction of “virtual” vertices and “virtual” strips
(arbitrarily) label the adjacent edges @g...€n-1), and  oyer ann-valent vertex.
disjoin them fromv. Then, replacey with n—2 trivalent
verticesN; ...N,_,, denoted “virtual” vertices. Join the
virtual vertices withn—3 “virtual” edges E,...E, _,,

where E; joins N;_; and N;. Prolong the edges ;
€ ...€n-1) to reach the corresponding virtual vertices can be described as elements of titangle-theoretic

Ni...Ny_ o, and the edges; andeq, 1 to reach the virtual 1 emperiey-Lieb algebra;? . A basis of this algebra is ob-
verticesN; andN,,_,. Denote the resulting trivalent graph tained by using the Jones-Wenz prqectﬂﬁe . Since we
I as the virtual graph associated Fo(for the chosen or- are here in the casa=—1, theII{? are just normalized

secting tangles with inputs andh outputs along each single
ribbone. As described in Sec 2.2 §82], tangles of this kind

dering of edges antisymmetrizers. More precisely, given the multiloBp

Virtual ribbon net.We denote the ribbon net 6%, as the ~ with n lines along the ribbore, call P(" ,p=1...n! the
virtual ribbon netRy, of ®. We view it as a subset &Ry, multiloops obtained by all possible permutatiopsin the
namely we view the virtual circlell; . . .N,_, and the vir-  way then lines enteringe are connected to the outgoing
tual ribbonsE, . . .E,_, as drawn inside the circle repre-  lines, and|p| the parity of the permutation, then

sentingv. This circle ¢ indicates that the virtual vertices
N; ...N,_, correspond all to the same point . (Thus a
virtual ribbon net is a trivalent ribbon net with strings of
adjacent intersections specifigd.

Virtual representationFinally, deformPg4 so that it lies
entirely insideRy, We indicate the deformeBy, asPg, and
call it the “virtual” planar representation ob. The virtual  Notice the 1! factor, which was not present in previous
representatiorPg, of a state is not unique, due to the arbi- conventions[23]. It follows from the completeness of the
trariness of assigning the orderieg. . . e, 1) to the edges  Jones-Wenzel projectors that a basis for all planar loops over

1
P,=r2 (~1)PPY. .9

of n-valent intersections. a givenRy, is given by the linear combination of loops in
The above construction is more difficult to describe inwhich the lines along eactvirtual and real edge are fully
words than to visualize, and is illustrated in Fig. 2. antisymmetrized. We can therefore expand every state in

Consider now deformations of the tandhg§, within Rg,  states in which lines are fully antisymmetrized along each
—a subset of the deformations within the f&},. We can ribbon. A state in which the lines along eaghirtual or rea)
move all intersections of deforiy, away from the vertices ribbon are fully antisymmetrized is a spin network state.
(to the virtual or real ribbons leaving trivalent vertices free Thus we recover the result of R¢L9], to which we refer for
from intersections. Next, we can use the binor relation todetails.
remove all intersections from the ribbons, leaving noninter- A spin network state is characterized by a grdphn

M, by the assignment of an ordering to the edges adjacent to
each vertex, and by the numby of (antisymmetrizeglines
“A basis in a linear space is a set of linearly independent vectord1 each virtual or real edge. We denote the integgx, as the
that span the linear space. The fact that for the moment we are stilicolor” of the corresponding edge of I'”. We will use also
working in linear spaces without fixing a scalar prodvee will fix the “spin” j, of the edge, defined as half its colgg=13
a scalar product only later, in Sec. Vllas raised some confusion Pe 5 At each vertex, the colorp;, p,, andp; of the three
in the past. It is perhaps worthwhile recalling that the notions ofadjacent edges satisfy a compatibility condition: there must
basis, eigenvalues and eigenvectors are well defined notions f@&@xist three positive integeis, b, andc (the number of lines
linear spaces, not just for Hilbert spacéShey do not require a rooted through each pair of edgesich that
scalar product to be defined in order to make se¢rSieilarly, the
fact that a linear operator is diagonalizable, or has real eigenvalues
does not depend on the presence of a scalar product. Given an p,=a+b, p,=b+c, pz=c+a. (5.2
arbitrary linear basis; in a finite dimensional linear space, a linear
operatorA is Hermitian in this basis if its matrix elemerfidefined
by (Av)i=A{vj] satisfyA{=A} . If A'is Hermitian in a basis, then  The oscillation between the historically motivated half integer
A is diagonalizable and has real eigenvalues. This is true indeperierminology “spin” and the rationally motivated integer terminol-
dently from any scalar product. ogy “color” goes back to Penrose’s papers on spin netwddd.
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It is easy to see that this condition is equivalent to the

Clebsh-Gordon condition that each of the thre€suepre- p 4{ /é?/ 1 ?/ ?/ . %/
sentations of spif;=1/2p, is contained in the tensor product GRASP =7

of the other twg43]. b

The spin network states form a basisMinThe basis ele-

ments are given as follows. For every grdplembedded in FIG. 3. Action of the grasp.

M, choose an ordering of the edges at each node. This choice

associates an oriented trivalent virtual grdpfh(nonembed-
ded to everyl.

Spin networkA spin networkS is given by a graph's in
M, and by a compatible coloringp,} of the associated ori-
ented trivalent virtual grapf’. ThusS=(I'g,{p¢})-

Spin network stateFFor every spin networlks, the spin
network quantum statéS|=(I'g,Pg) is the element of)
determined by the graphg and by the linear combination

P of planar multiloops obtained as follows. Drgw lines form. Indeed, one easily sees that E8.8) is equivalent to

H 1 U . H ! ™
on each ribbore of the ribbon netRs; connect lines at he folowing: acting on an edge with color 1, the grasp
intersections without crossings; this gives a planar multiloog, eates two virtual trivalent verticginside the same circle,

)=

ribbon netR associated td'. In this representation, the ac-
tion of 7] «] consists in adding the draw of overR. Using
the expression for the Jones-Wenz| projectorsi2] (p. 96),
one can expand the nonantisymmetrized lines, if any, in
combinations of antisymmetrized ones.

Higher order loop operators are expressed in terms of the
elementary grasp operation, E®.8). The ribbon construc-
tion allows us to represent the grasp operation in a simpler

P(so) then corresponding to the intersection pgirt- one on the spin-
network state and one the loop of the operator. The two
Pe= H HE)@P(SO) _ (5.3 vertices are jpined by a virtual sFrip of color 2, and the. over-
el e all multiplicative factor is determined as follows. The sign of

the tangent of3 in A?[ B,s] is determined by the orientation
We can represent a spin network state as a colored trivalegf g consistent with the positive terms of the loop expansion
graph over the ribbon nékg (with a single edge along each of the spin network. The equivalence between the old defi-
ribbon). This representation satisfies the identities of recounition of the grasp and the new one is illustrated in Fig. 3.
pling theory. We describe the main ones of these identities in A  straightforward computation, using Leibnitz rule,
Appendix E. As an example, we give here the formula thashows that acting on an edge with cofmrthe grasp has the
allows one to express the basis elements of a four-valentery same action, with the multiplicative factor multiplied by
intersection in terms of the basis elements of a differenp. Finally, notice that the two antisymmetrized loops form a
trivalent expansion. Using the recoupling theorem[82]  (virtual) spin network edge of color 2. Therefore, we can
(p. 60, we have, immediately, express the action of the grasp in the spin network basis by

the following equation:
J b i d
>_< =Z{idj} X (5.9

where the quantitie§2q]} are sii2) six-j symbols(normal-

ized as in[32]; see Appendices
A side remark should be added. An embedded colored
trivalent graph specify a sta® only up to a global sign,
?r?zceaduﬁﬁegrdcooerﬁb?r?;tif:)xn tgfemc:};ﬁlﬁglpzlg‘lr']ooljete?;tg::tlfgmms-rhis simple form of the action of the loop operators on the
; . ) . : spin-network basis is the reason that enables us to use
overall sign, one needsrientedtrivalent graphs, as in Ref.

[43] where Penrose considered oriented spin networks and irnecoupllng—theory in actual calculations involving guantum

[19]. An orientation of a trivalent graph is an assignment Ofgravity operators. Notice that it is the ribbon-net construction

a cyclic order to the edges of each node, modijdthat is, that allows us to “open up” the intersection point and rep-

identifying two orientations if they differ in an even number ;Szgzlta?lyzgiigsn otLFY)VC;(\j/eg'gfﬁ:Z;i\;erc:haéngvgn\?ez\i/:és
of intersections I'Y is oriented by the order assigned to the 9 9 g '

. . .~ These two vertices and this edge are all in the same point of
edges entering each vertex, and ribbon-nets are orlentei e three-manifoldvi

(consistently, we assumes graphs because they are ori-

ented as two-surfaces: edges can be ordered, say, clockwiﬁ(;“jfJher order loop operators act similarly, as sketched in

(5.5

The action of the operators in the spin-network basis

. ~ . VI. THE AREA OPERATOR
We now describe how th& operators act on the spin

network states. From E¢3.7), the operatofl[ «], acting on A surfacel in M is an embedding of a two-dimensional
a state(®| simply adds a loop tg®|. Consider the graph manifold 3, with coordinateso"=(o,0%),u,v=1,2, into

' formed by the unior(in M) of the graphs ofb ande. M. We writeS:3 —M?3,0%—x3(a). The metric and the nor-
Since we admit empty edges, we can represeraver the mal one form ond are given by
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T ag(s,t) = — THEX(S)U (s, 1) EP(H)U 4(t,5)]
=2E%(x)EP(x)). (6.4)

Using this, we can write

CEx)ENx) = 5 [ Poma(o) [ )

b
FIG. 4. Representation of then grasp of the X T ay)(0,7)+0(e), (6.5

...8p . . ) .
7 al(sy, - - Sq) operator. wherea,, is, say, a(coordinate¢ circular loop with the two

pointso and 7 on antipodal points. Next, consider the area of
(6.1) the full surface,. By the very definition of Riemann inte-
gral, Eq.(6.3) can be written as

1 axP gx© -
I i 62 AST= | o inan ETEP

2 abco-,o_u Jda’

s X oxP
g =54, guy F?O' (90’Ugab’

The area ofs, is = lim E \/na(x,)nb(x.)Ea'(x|)E (x;) (6.9

Noow le

1 — — e—0
ALS =f d?o/ zzf d?o\/5 e gl gr o
2] ) deg s 2 w9 where, following Riemann, we have partitioned the surface

2 in N small surface§.5 of coordinate area” andx, is an
=f d?o\nn,EXEP, (6.3  arbitrary point inE,E. The convergence of the limit to the
. integral, and its independence from the details of the con-
struction, are assured by the Riemann theorem for all

bounded smooth fields. Inserting E®.5 in Eq. (6.6), we
- obtain the desired regularized expression for the classical

where we have used

a 9yb
gl gE = Ut Tl (9XU Oats ax_&x_gib_ area, suitable to be promoted to a quantum loop operator

da" do dol oo _

A[S]=limAJS], 6.7)
_ —0
u?axa X2 1 H?x " ox? T ‘
Pyt —€ o o Cararce =N,
i i ALS1=3 AT, 6.9
cc_l aac bbc
g9 QanJab - 1
AZ=_ f d?cd?mn,(o)ny (N T a,,](o,7). (6.9
€ 2 2| ®2|5

(On the role played by surface area in the Ashtekar’s formu-
lation of GR, se€¢50].) We want to construct the quantum Npgtice that the powers of the regulaterin Eq. (6.5 and

area operatoA[ X ], namely, a function of the loop represen- (6.6) combine nicely, so that appears in Eq(6.7) only in
tation operators whose classical limit A{>]. Following  the integration domains.

conventional quantum field theo[etical techniques, we deal We are now ready to define the area operator
with operator products by defining[X] as a limit of regu-

larized operator#\ [2] that do not contain operator prod- A[X]=1limA[X], (6.10
ucts. The difficulty in the present context is to find a regu- =0
larization that does not break general covariance. This can be
achieved by a geometrical regularizati@®,1q. _ 2
Following[23], we begin by constructing a classical regu- Ad 2] |EE \/A_f (6.13
larized expression for the area, namely a one parameter fam-
ily of classical functions of the loop variablés[ >, ] which ~ s 1 ~ab
converges to the area asapproaches zero. Consider a small Al = EL. o3, d°cd*r na(o)np(1) T a,,](0, 7).

region . of the surface>, whose coordinate area goes to 6.12
zero with €2. For everys in 3, the smoothness of the clas- '

sical fields implies thaE®(s)=E?¥(x|)+O(e€), wherex, is  The meaning of the limit in Eq(6.10 needs to be specified.
an arbitrary fixed point irS,. Also, U,(s,1)5=18+0(e) The specification of the topology in which the limit is taken
for anys,te Y, anda a(coordinate straightsegment join- is an integral part of the definition of the operator. As it is
ing s andt. It follows that[because of Eq(A.1)], to zeroth  usual for limits involved in the regularization of quantum
order ine, field theoretical operators, the limit cannot be taken in the
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Hilbert space topology where, in general, it does not existerator computed if23] and derived again below. Therefore
The limit must be taken in a topology that “remembers” the the spectrum of the area given [i23] is not complete. The
topology in which the corresponding classical lift7) is  physical relevance of these “degenerate” cases is unclear to
taken. This is easy to do in the present context. We say thats®

a sequence ofmulti) loops a, converges tox if «, con- For small enougrr each intersection will lie inside a
verges pointwise tay; we say that a sequence of quantum dlstlnctE, surface’ Let us callS; the surface containing

states( .| converges to the statey| if a.—a for at least  the intersection (at every fixede), ande; the edge through

onea.e(a (Ve) and onexe (al. This definition extends the intersectiori. Notice that<S|A§ vanishes for all sur-
immediately to general staté®| by linearity, and defines a

topology on the state space, and the corresponding operat@,cesl except the ones contammg intersections. Thus the
topology: o) —>O iff <CI>|O —’<<I>|O V(®|. Notice that the ~SUM over surfaceX, reduces to a sum over intersections.
above is equwalent to say tha | converges to(®| if Bringing the limit |nS|de the sum and the square root, we can
7[®.] converges pointwise td[®], which is the topology Write
implicitly used in[15] to regularize the area operator.

An imp_ortant consequence of the use of this topology is (S|A[2]=_ > (9 \/,2\? (6.13
the following. Let(® | converge to{®|. Then the graphs ie{sns}
F(I,E converge tal'¢ in the topology ofM. In other words,

A2_ i A2
given aé neighborhood of'y,, there exists ar such that Al _lmAif' (6.14
I'+ is included in thes neighborhood for alk’ <e. Visu-
ally, we can imagine that the ribbon ne®s,_*“merge” into For finite €, the state(SlAi has support on the union of

the ribbon netl'§’ as e approaches zero. In addition, the the graphs ofS and the graph of the loop,, in the argu-
representation®,_go to Py , up to equivalence. This fact ment of the operatof6.12. But the last converges to a point

allows us to separate the study of a limit in two steps. First®" I's as € goes to zero. Therefore,
we study of the graph of the limit state. In this process, the |

: : . imI =T A
representation®q,_are merged into the ribbon nBt of the <S‘A2 s 6.19

limit state. Second we can use recoupling theoryRprin
order to express the limit representation in terms of the spiffhe operatoA[ 3] does not affect the graph ¢§|. Next, we
network basis. A have to compute the planar representatiolf @fa;s;, which

We now study the action of the area operaAgE ] given i @ tangle onRgarsy, namely a tangle orRs. By Eg.
in Eq. (6.10 on a spin network statsS|. Namely, we com- (6.13, this is given by a sum of terms, one for eath
pute <S|A[2]. Let SNS be the set of the points in the €{SNX}. Consider one of these terms. By definition of the
intersection of['s and 3. In other words, we label by an 7 loop operators and of the grasp operati&ec. Ill), this is
indexi the points where the Spin network graﬁg and the obtained by inserting two trivalent intersections on the Spin
surface, intersect. GenericallgN's, is numerable, and does Network edgeg; (inside its ribbop, connected by a new edge
not include vertices of. Here we disregard spin networks Of color 2. This is because the cirdg, _has converged to a
that have a vertex lying o or a continuous number of point one;; in turn, this point is then expanded inside the
intersection points witfx . It was pointed out by A. Ashtekar ribbon as a degenerate loop following back and forward a
that spin networks with a verteand one -or more- of its segment connecting the two intersections. By indicating the
adjacent edges lying oB are eigenstates of the area with representation of the spin network simply by means of its
eigenvalues that are not included in the spectrum of the ope; edge, we thus have

e—0

N 1
P42 = _/ [aorl(o,T)
( =3 2&@2
Pe (616)
IF; b 2/ p 2
=-2 d%od*r na(U)Aa[ﬂeaa]nb(T)A [ﬂeaT] Pe ¢ ’
2 2 Q% Pe

where we have already taken the lirfiitside the integralin the state enclosed in the brackéfsNotice that this does not

5Note added. The complete spectrum of the area has been obtained in the meani#ilesind then reobtained {51] using the methods
developed in this paper.

"The (perhaps cavilingissue that an intersection may fall on theundary between twd . surfaces has been raised. This eventuality,
however, does not generate difficulties for the following reason. The integrals we are using are not Lebesgue integrals, because, due to the
presence of thé’s, regions of zero measure of the integration domain cannot be neglected — nor doubly counted. Therefore in selecting the
partition of %, in thel . surfaces one must include each boundary in one and only one of the two suvihégs are therefore partially open
and partially closed Boundary points are then normal points that fall inside one and only one integration domain.



2674 ROBERTO DE PIETRI AND CARLO ROVELLI 54

depend on the integration variables anymore, because the loop it contains does not represent the grasped loopefdniat finite
the a ribbon expansion of the limit state. Notice also that the two integrals are independent, and equal. Thus, we can write

Pe

2
A%( = _g (/ d’o na(U)Aa[ﬂeaa]> p§< nl) : (6.17
1.

Pe

(

Pe

The parenthesis is easy to compute. Using(B@3), it becomes the analytic form of the intersection number between the edge
and the surface

f dz(Tna(O')Aa[ﬂe,O']Zf dza'na(a)f dTBZ(T)éG[Be(T),S]:il, (6.18
2, 3, Be

where the sign, which depends on the relative orientation ofhe spectral values of the degenerate cases in which

the loop and the surface, becomes then irrelevant because BEN 3, includes vertices or a continuous number of points,

the square. Thus and a discussion on the relevance of these cases, will be
given elsewhere.

Pe

R 13 2
A? = _50 p§< Pe , (6.19 VIl. THE VOLUME OPERATOR

(

A. The volume in terms of loop variables

Consider a three-dimensional regi@ The volume of

where we have trivially taken the lim{6.14), since there is R is given by

no residual dependence @n We have now to express the
tangle inside the bracket in terms (dn edge of a spin
network state. But tangles inside ribbons satisfy recoupling V[R]=f d®x\/dety
theory, and we can therefore use the form(#a8) in the R
Appendix, obtaining

1 _~ — o~
=f d3X\/§|Eabc€ijkEa'EbJE°k|, (7.9
R !

A 0(Pe,Pes2) Pe(Pet2)
([PAA? = ~13p2 =5 ([P =13 = ("
e 24, 4 . : .
e In order to construct a regularized form of this expression,
Po [ Pe consider the three indefthree handsloop variable
:lg? E'ﬁ‘l <|pe|.

7209 &](s,t,r) = — THEA(S)U ,(s,1)E"(1)
The square root in Eq6.13 is now easy to take because the XU (t r)EC(r)U rs)]. (7.2
operatorA? is diagonal o o

Because of EqA2), in the limit of the loofd «] shrinking to

(|Pe| A;={(|P¢| \/A?: A /lé% %+1 (P, (620 2 pointx we have

TP al(s,t,r)— 26, EVEPEX=262"de(E). (7.3

Inserting in the sun6.13, and shifting from color to spin

notation, we obtain the final result Following [23], fix an arbitrary chart oM, and consider a

small cubic regiorR, of coordinate volume?>. Letx, be an
(s, (6.21  arbitrary but fixed point inR,. Since classical fields are
smooth we havéE(s) =E(x;)+O(e) for everyse R,, and
U,(s,)8=18+0(e) for any s,te R, and straight segment
wherej; is the spin of the edge crossidgin i. This result 4 joining s andt. Consider the quantity
shows that the spin network stat@sith a finite number of
intersection points with the surface and no vertices on the

<SIA[21=(|3 > Vi1
ie{SNX}

1
surface are eigenstates of the area operator. The correspond- W, :mgf dza'f dZTJ d?p
ing spectrum is labeled by multiplets=(j;, ....j,) of R T R
positive half integers, with arbitrany, and given by % |na(g)nb(T)nC(p)qﬁbqam](g,T,p)|, (7.4)
AJ‘[E]:%Z i+ 1). (6.22 wherea, ., is a triangular loop joining the points, 7, and

p. Because of Eq(7.3), we have, to lowest order ia
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1 _ sible positions of three points on the surface of a cube. Let us
W|:m|de1(E(Xl))|J dszf dsz d%p denote this integration domain &°. The absolute value in
' R R i Eq. (7.10 plays a crucial role here: contributions from dif-
X |na(o)np(7)Ne(p) €2 ferent points ofD® have to be taken in their absolute value,
- while contributions from the same point &° have to be
=|detE(x)))|. (7.5  summed algebraically before taking the absolute value. The

position of each hand of the operator is integrated over the
Thus W, is a nonlocal quantity that approximates gleq;))  surface, and therefore each hand grasps each of the three
for small e. Using the Riemann theorem as in the case of thepoints r, s, andt, producing 3 distinct terms. However,
area, we can then write the voluwg¢R ] of the regionR as  because of the absolute value, a term in which two hands
follows. For everye, we partition of R in cubesR, of  grasp the same point, sayvanishes. This happens because
coordinate volume3. Then ¢ the result of the grasp is symmetric, but the operator is anti-
symmetric, in the two hands — as follows from the antisym-
metry of the trace of three sigma matrices. Thus, only terms
V[R]=IlimV[R]; (7.6 in which each hand grasps a distinct point give nonvanishing
€0 contributions. For each triple of points of intersection be-
tween spin network and cube’s surfaces andt, there are
3! ways in which the three hands can grasp the three points.
VE[R]=E e3W|1’2_ (7.7) These 3! terms have alternating signs because of the anti-
T, € symmetry of the operator, but the absolute value prevents the
sum from vanishing, and yields the same contribution for
each of the 3! terms.
If there are only two intersection points between the

B. Quantum volume operator boundary of the cube and the spin network, then there are
We have then immediately a definition of the quantumalways two hands grasping in the same point; contributions
volume operatof23] have to be summed before taking the absolute value, and

thus they cancel. Thus the sum in E@.9) reduces to a sum
over the cubes. whose boundary has at least three distinct
intersections with the spin network, and the surface integra-
tion reduces to a sum over the triple graspingsistinct
points. Fore small enough, the only cubes whose surface has
- ~ at least three intersections with the spin network are the
Vs[R]ZIE 63W|1£2; (7.9  cubes containing a vertdxof the spin network . Therefore,
€ the sum over cubes reduces to a sum over the vertices
e{SNR} of the spin network, contained inside. Let us

V[R]=limV [R]; (7.9

e—0

R 1 denote byl i the cube containing the vertéxWe then have
W, = —Gf dza'f dzrf
< 16X3!e’Jir, IR, IR,
X d2p|ny( @) PIN(p) T et ) (0,7 ) - (SVIRI=lim 5 eXSI\IWi,
(7.10
_ _ . « ils -
Notice the crucial cancellation of the® factor. We refer to <S|W|iE= 16x31 5 g;r (Ststrasiel, (7.11

the previous section on the area operator for the discussion

on the meaning of the limit and the split of the action of the o ) )

operator in the computation of the graph and the representé(\lh_eres’t' andr are thredistinct intersections between the

tion. We will discuss the meaning of the square root laterSPin network and the boundary of the box, and we have

For alternative definitions of the volume operators, and dndicated by S###, as,,| the result of the triple grasp of the

discussion on the relation between these, [&£3€ and three hands operator with loags, on S.

[17]. Let us compute one of the terms above, corresponding to
Let us now begin to compute the action of this operatora given triple of grasps, over anvalent intersections. First

on a spin network state. The three surface integrals on thef all, in the limit e—~0 the operator does not change the

surface of the cube and the line integrals along the loopgraph of the quantum state, for the same reason the area

combine—as in the case of the area—to give three interse@perator does not. Thus the computation reduces to a com-

tion numbers, which select three intersection points betweehinatorial computation of the action of the operator on the

the spin network and the boundary of the cube. In these thrempresentation of the planar state, involving recoupling

points, which we denote as s, andt, the loopa,., of the  theory.

operator grasps the spin network. Let us represent a spin network state simply by means of
Notice that the integration domain of tlithree surface the portion of its virtual net containing the vertex on which

integrals is a six-dimensional space—the space of the poghe operator is acting. We have
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P, o Py "
— 2, lg 2% d2r d2
< P %13 z,._& Pos| i =153 2 /av,®6v:®g\z e
%1 tn—1 r=0,...,n—-1
Py P, t=0,...,n—1
8=0,...,n—1
Py cee P,_3
) \ . . o (7.12
| na(@) A%, 0] m(r) A, I e Al (B I Paca | Wi
PO " ot Pn—l
Where\i\lf?t)s] is the operator that grasps thet, ands edge of the ther-valent vertex as follows:
P, P P,
W[;Z] - PTPtPS< 4 ir iy i ‘
i2 2 )
1
PO 2 2 Pn—l
P e P,_3
_ (n) ka...kn-
- Z W[rts]i:n-in—zz (Bo,» Pua) - < Py kg k3 kn—2 Prs ‘ ’ (7.13
k2,...,kn_2 Ky ka1
B P,

Notice that we have replaced the triangular loop with verti-where n; is the valence of theth intersection. Equations
cesr, s, andt by three edges of color 2 joining the three (7.13 and (7.15 completely define the volume operator.
pointsr, s, andt to a trivalent vertex. This can be done as There are two remaining tasks: to find the explicit expression
follows. First we deform the triangle over the ribbon net. for the matrix iw(™,,i"~2'3'2 (P, ;. ... Pg), which is

Indeed, as remarked for the case of the area, the tangle above, . . [rstlky_ - kgky'
does not represent a tangle extendedinbut just the ex- defined in Eq.(7.13 only implicitly, and to show that the

pansion over the ribbon net of a rooting of lines in a single@Psolute value and the square root in Eg.15 are well

point of M. Second, we notice that we can antisymmetrizedefined. Below, we complete both tasks: we provide an ex-

the two lines that exit from the hand of an operator by usingplicit expression foriWE?S)t]L';*ZZ'I"'l'lf?'ﬁz(Pn_l, ...,Pg), and

the binor identity, because tracing a hand with a zero lengthye prove that the argument of the absolute value is a diago-

loop gives a vanishing quantity. nalizable finite dimensional matrix with real eigenvalues,
The last equality in the last equation follows from the factand the argument of the square root is a finite dimensional

that trivalent spin network form a basisee Sec. Y. From  gjagonalizable matrix with positive real eigenvalues.

Eq. (7.12 we see that the action M/,ié splits into a multi-

plication by a numerical prefactor and a recoupling part C. Trivalent vertices
given by Eq.(7.13), which does not depend on the integra-
tion variables. Using Eq6.18 we can perform the integra-

tion in Eq. (7.12. This yields the intersection number be-

We begin studying the case=3. It is easy to see that
W§l;=0 from the relation

tween the edges, s, andt and the surface of the culg. P P P
The sign of the intersection number, coming from the rela- P P
tive orientation of the loop and the surface, is irrelevant, = W[E)al)z] Y © (7.19
because of the presence of the absolute value. 2 Py
Because of the symmetry properties of the three-valent 2 2

node (222), the 3! terms in E7.13 are related by
wim —(_1)PWE_”p>.

ligigig] = i ip]” (7.149  In fact, by closing the generic three-valent node with itself
1 F2 M3

we have
wherep; is a permutation of 123, angd is the order of the
permutation. Thus the action the volume operator on a ge-

neric spin network statéS| is given by

P0P1 P2

~ [
V[V =13 —wm
ad Oie{gﬂv} r:o,z,n—s 16 s

(7.19 (7.17
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Thus ng)lz] is determined by the WignerJ9symbol (the Using the same technique of the three-valent node we can
evaluation of the hexagonal nets compute the matriwfg)lz]i‘ for a four-valent node as follows:
P, Py Py ]
POP1P2 Po Pl P2 'Pl/‘Pz P3
2 2 2 o Py i
Wiolg= . (118
(022 0(Po,P1,P>) 5 5
But the hexagonal ndin the case oA= *1) it is antisym- _ Z W@ kg 0(Py, P, §)0(P2, P3,7)
metric for the exchange of two columns or of two rows. - [012]¢ Tk Aj )
Therefore the matrixVv® vanishes, and the trivalent vertices k (7.20
give no contribution to the volume. We have rederived the :
result that the volume of a three-valent vertex is zero, first )
obtained by Loll[24]. Using the relation
D. Four-valent vertices ] i j B :
Next, we study ther=4 n/ Tet[P2P22]2J
ext, we stu a=4 case: = — ' )
y Py P3 0(2a]71) Y’L (72])
w Ni P P j P z
A — (4) 4
W[012] >_< - Z W[om]f >_<
P Py .
0 3 Fo P3(7. 19  We obtain
|
Po Py j
T U T N
P0P1P2 I:’O Pl I ¢ Te
P, P, 2
. 2 2 2 A
8= k. _ —, (7.22
o1 0(2,j,1) 0(Po,P1,j)6(P;,P3,j)

We now prove that the matrik- ngiz]f is diagonalizable erty of the Tet symbdf,the matrixWL is antisymmetric. We
with real eigenvalues and, as a consequence, that its absoldtave shown that in the basis
values are well defined. To this aim, let us define the notation

Po Pi | @D hu b
o 1] i j P3 n= >‘< (7.28
PoP1P2 Po Pu1rTe P, P, 2 Py Py

Al 2 2 2
. 6(2,j,1) ’
(723 ihe action, Eq(7.19, of the operatotV{g), is given by
. A . —_
M()= \/G(Po,Pl,i)e(Pz,P3,i)' (7.24 Wiorani =2 Wiara!n; (7.29
WI=M(@HM(AT, (7.2 WhereVVEgiz]{ areal antisymmetric matrix. Moreover, from
Lo the admissibility condition for the three-valent node of Eg.
S=5M(i). (7.206

(7.21), we see thal\TVL vanishes unles&=I| or k=1*2,.

o . L i AH(4)
The matrixS) can be consider as a change of basis in thel "US, We have shown that the operaidfy;, may be b
space of the four-valent vertices and the maitriw/g) ;] can resented by a purely imaginary antisymmetric mait,
be rewritten as with nonvanishing matrix elements only f&=1=+2. Such

_ matrix is diagonalizable and has real eigenvalues.
iW(ELl=(S™HE (W) S, (7.29)

where, because of the antisymmetry properties of the 9 8For a discussion of the symmetry properties of thlesymbol
symbol under exchange of two rows and the symmetry propand related quantities, see for instafi6].
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Furthermore, notice the following. We write the depen-absolute value of the matricéd/() | | is well defined. It is

dence on the coloring of the external edges explicitly,given by a non-negativé.e., having real eigenvalues equal

namely we writéW(g),!(Po,P1,P,,P3). Using Eq.(7.20, it of greater than zejaantisymmetric matrix. But the sum of

is easy to see that the following relations hold between theon-negative matrices is a non-negative matrix. Therefore

matriceSWEfl)izia]{(Po,Pl.Pz,Pg) the sum of the the absolute values of the four matrices
iWEi?izis] is a non-negative antisymmetric matrix as well.
Thus the volume operator is diagonalizable on the spin net-

(7.30 work basiswith positive real eigenvalued all the vertices

[3)23]{(P0,P1,P2,P3)= _WE‘:&:,']{(P&PZ-PLPO)- thoa\\l/ir\t/iilssnfﬁ :r,béit.ral?;)e/zl\?;\;,e\rflvse.show that these results extend

W(e1g)(Po.P1,P2,P3)=W5i4(Po,P1,P3,Py),

W (P, P1,Py,P3)=—W 1(Pg,Py,Po,Py).
(1231170172203 (oazitt3»m 20 E. The case of am vertex

We have s.hpvzn that there exists a basisn which the We now show that there exists a basis in which all the
four operatorsWEil)izia] that define the action of the volume operatorsi\fvf{‘l)izi ((Po, -...Pn_1) are represented by a
on four valent vertices, are purely imaginaryAantisymmetricpurdy imaginary3antisymmetric matrix. Consider Eg.13.
matrices. The eigenvalues of the four operatt¥’, | 1 are By repeated application of the recoupling theorem, Eq.

real and, ifx is an eigenvalue, so is-x. Therefore, the (7.13 can be rewritten as

A AT P P P P .. P
P,P,P, , 2 |23 /1,14 . j _ ‘ Z W[(rr:)t]f:in_;z k .’;72 |i€3 ./;4 1 j (7.3)
\ J ka..kn—2

(we have assumed, without loss of generality, that there is no grasp & theP,,_; edge. Closing the vertex with itself and
using the relatio(E8) and (E9), we find

oy iwde g [P P POl [ ks K
ky Po okg) —inZsf . gn2mer" L0 lTet 270 Yapa;
k, "4 i 2 "3

" K ~ ~ n-2
WEps)t]?zmil(mZ: P.PPsy i, Py i 2 = K IZA 2 = PSA PSA 2 ~ (7.32
2:in-2 5 2 2 0(k2,2,i2) 0(K3,2,i3) O(Pg, Py Ka) O(kz, Py, k3) 6(k3, Ps,ky)
|
We now change basis in the same fashion as we did for the
four-valent vertesee Eq(7.28]. We define a new basis in P, ) . P,
which any edgdreal or virtua) is multiplied by JA; (i col- B Z{ g1 dr Ky } M
oring of the edgeand any vertex is divided by/d(a,b,c) in| e 2 B P ol ki
T 2

(a, b andc the coloring of the edges adjacent to the vertex 2
It is then easy to see that in this new basis the matrix on Eq. P,
(7.32 becomes real antisymmetric. Indeed, we have simply _ Z{ irp1 r Kp } [/\%]—1 k.
reduced the general problem to the case of four valent verti- 2 P P r R

ces. Now, the key result, that we shall prove in the next ke

section is that, in the basis we have defined, the recoupling (7.33
theorem is aunitary transformation. A unitary transforma- Second, we can use recoupling theorem repeatedly to move
tion preserves the property of a matrix of being diagonalizthe grasp all the way to the eddfg. We denote this opera-
able and having real eigenvalues. It follows that the resultsion as move 2:
we have obtained for the four-valent vertices hold in general.

We are now ready to find an explicit expression for the

recoupling matrixiwffgt]:(”:zz'.‘_‘_ik33i§2(Pn,l, ...,Pg) of Eq.

(7.13 for a general valence of the vertex. Let us begin by f"l k. 2 ko1 ] Pr1
sketching the procedure that we follow. First, the recoupling - ke = Z ip—1 Pro1 ir "',: kr
theorem allows us to move one of the three grasps from the *"~* kr ot

2 2
external edge, saf,, of Eq.(7.13, and bring it to a virtual

vertex. We denote this operation as move 1: (7.39
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In this way we can bring all three grasps to the eBgeThe

final step is just given by recognizing that we have Tet struc-

ture on the edg®,,.
Let us begin by applying move 1 to the nodé/Ne obtain

P

Pr—l Pr

Pt Pg

‘ (7.39

PO Pn—l

Then, using move 2 we can move the,k,,2) node to the

left of the node {;_1,P,_1,iy):

Pl Pr—lPr Pt P.

< i,_xlkr_l AT B
. 2
21
Po 2 2

We repeat move 2 until the first node with the 2 edge

‘ (7.36
Pn—-l
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Pl Pr -Pt Ps
< kike  kringa|de is ‘ (7.37
Po Pn—l

Before repeating this procedure for each of the three grasps,
it is convenient to rename the coldkg of the virtual edges
ask, (and to replace the remaining by k, as well; this can

be done by inserting a sum ovelkg multiplied by aéika).

Repeating the sequence of moves for the two grasps over
the edges ands, we transform the grasped vertex to the
final form

"":1 P21 Pn——3
< W NP | (3
kn—
Po 2 ’ Pn—l

This it is equal to the originah-valent vertex with the ,
replaced byk, and multiplied by Tdtk;,k;,k;;2,2,2] [see
~Eq. (E9)]. Bringing all together, we have shown that the

Isaction of the volume operator is described by the @5

coupled to theP, edge. In this way, after a finite number of extended over all vertices of the spin network, where the

moves 2, we have transformed the original network

toexplicit form for the recoupling matrix7.13 is given by

(ke ko Kk
Tet, 21}
Ky ... Kn_ _ _
W2 " (Po, . Poo)=_ X X PP X
Kiv..., Kn_p Kq,.v0) Kn—2 Po
T | g e 2
la=r+1 ' | 2 r P las1| ia Pa iass
M Rl
[b=t+1 Kp] 2 t Py |b=1 b Pa Kpirp
X_nl:[z kc_-M-ESJrl Es Ks iy Kev1 2 Ke (7.39
c=s+1 kc_ 2 S Ps c=1 kc Pa kc+1 '
and
1, r=0,
P P 2ipy-1 e 0 ke —1-
— AT [ , o<r<n-1,;
2 r PJ e 2 P, P (7.40
et

wherei;=k; =Py andi,_;=kn_;=kn_1=kn_1=P_;. (We have used the fact that fér=—1, \23=—1))
This formula can be specialized to the case of three-veriex3) and four-vertexif=4). In the case of three-vertex we

have

- P
W (Pg,Py,Py)=| X Poplpz[x.i?]l[
kq

ks

and a direct computation confirms that the volume of any three-vertex is zero. For the case of four-valent vertex, we obtain the

formula

PO ’Isz PO
2 2 2
Ap

2
Py

Po
P>

P, Py ki
2 Py Py

(7.4)

e

0
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T{Po K, Po}

~ Te

Po ki|[P3 2 Kk k 2 Py 2 2 2
i P3

2 P, P, P, kK, Py i Ap

[013]| E PoP1Ps(— 1)[)\2k1] 1r

kq 0

and the other three matrix that appear in the definition of thgyhere a)\( ) are real quantities and th@ﬂ%s] are the spec-

action of the volume operator are easily deduced from th?ral prOJectors of the finite dimensional matrix operator

identities(7.30. W[rt's] acting on thdth vertex’s basis.

From Eq.(7.42, we have then
F. Summary of the volume’s action

. . . [rts]
Finally, let us summarize the procedure for computing the V2= E E N ap(M) (7.45
eigenvalues and eigenvectors of the volume. Consider the 'm0 T3 416 [rts]” '
spin-network stateéS| with a fixed graph and a fixed color- t=r+l,...n-2

ing of the real edges, but with arbitrary intersections. The set
of these spin networks forms a finite dimensional subspac
V of the quantum state space. The subspéds invariant
under the action of the volume operator. We denote the va
lence of the real vertexby n; . Fix a trivalent decomposition
of each vertex e {SUR}. Consider all compatible colorings
of the \_/irtual edges. For every vertex, the number of the {/izzz )\[23. |5B' (7.46
compatible colorings depends on the valence of the vertex, i
as well as on the coloring of the external edges.Niebe the )
number of compatible colorings of the vertex The dimen-  With A 3 =0. Therefore we have
sion N of the subspac® we are considering iS=1II;N; .
Our aim is to diagonalize the volume operatonn 7 — B

We indicate a basis ii as follows. Given a vertekwith v 2 oPs (7.49
valencen;, we have previously denoted compatible color-

Eeing the sum of Hermitian non-negative matricé@ as
well is dlagonallzable with real non-negative eigenvalues,
which we denote asB , and spectral prOJectorBB

ings of the internal edges by, . . . i, ). Itis more con-  and the volume is given by

venient here to simplify the notation by introducing a single R

index K;=1,N;, which labels all compatible internal color- viV=13 > E NgPgs. (7.49
ings of the vertex. iefsoyy B P

We now recall the basic expression we have obtained, fo

the volume, namely, Eq7.15), Now the projectors acting on different vertices commute

among themselvesPB Pﬁ _Pﬁ PB if i#]. Therefore the

V[V]:IS > \“/i, eigenvectors ol are the common eigenvectors of Ml
ie{SNV} They are labeled by ong; for every vertexi, namely by a
multi—indexéz(,Bl, .. .,Bp), wherep is the number of ver-
- i~ n) tices in the region. The corresponding spectral projectors
Vi= \/ =0, n3 |16 lrts] (7.42 P; of V are the products over the vertices of the spectral
I;{H: - 12:5 projectors of the vertex volume operatd/fs

where the first sum is over the vertices and the second sum is |53= H |5Bi. (7.49
over the triples of edges adjacent to the vertex. We have !

(n; . . .
shown that the operatorW rts] are .dlagonallzable matrices |t is immediate to conclude that
with real eigenvalues. These matrices have components

/13 D-
(n) K, V_loz NiPs, (7.50
W[rts]K =[LHS of Eqg. (7.39]. (7.43 B
where the eigenvalues of the volume are the sums of the
) K eigenvalues of the volume of each intersection:
Since the matrlceSN[ ts ]K ' are diagonalizable with real ei-
genvalues, from the spectral theorem we can write them as Ng= > Ag. (7.5
i I
(n;) ay (M) The problem of the determination of the spectrum of the
W[rts] E )\[rts] P[fts]’ (7.44 D P

volume is reduced to a well defined calculation of the eigen-
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values\ g, which depend on the valence and coloring ofnetwork states corresporioh the connection representatjon

adjacent vertices of the vertéxLet us summarize the vari- t0 combination of parallel propagators oftimes the Ash-
ous steps of this computation. Given an arbitrary real vertetekar connection. These seem therefore to be the correct
i with coloring of adjacent edgeB,, ... ,P, _;: (i) deter-  physical states related to real geometries. However, this strat-

mine the set of the possible colorings of its virtual edges, an§9Y (éxplored in a previous version of this papés not
label them by an indeK; ; (ii) using Eq.(7.39 compute the V|ab_le, at least in this fprm. The reason is that l—]_q53 is

trix el /) Ky (i) 1 h of thi i not invariant under the internal gauge transformations gener-
matrix elemen [rsgk; M or €ach ot this matrices, com- - yiaq by the Gauss constraint. Perhaps this difficulty can be
pute its spectral decomposition, i.e., the eigenvalﬁ)e%‘tii] circumvented by exploiting the complexity of the group and
and the spectral projectorsP™  (iv) compute the matrix the nontriviality of the reality conditions, but for the moment
~ [rts] . . .

we have not been able to find a construction viable for the

V,‘ from Eq. (7.45; (v) compute the glgenvalues of the ma- Riemannian Ashtekar connection. We leave this problem to
trix V. The square root of these give thg's. All these 4o investigations.

steps can be fully performed using an algebraic manipulation
program such asiATHEMATICA. We have written avATH-

EMATICA program that performs these cglculations, anq we VIII. THE SCALAR PRODUCT

will give free access to this program on line. In Appendix F

we give the values of the quantitias; (P, ... Py _4) for The results above allow us to introduce a scalar product in
| 1

some four-valent and five-valent vertex, computed using thighe loop representation. The original definition of the loop
program. representation of quantum general relativity left the problem

of fixing the scalar product undetermined: the scalar product
had to be determined by requiring quantum observables to be
Hermitian[3]. The problem was complicated by the fact that
Before closing this section, let us discuss the modificathe loop “basis” is overcomplete. Later, the introduction of
tions that are necessary in order to use the complex Ashtekaie nonovercomplete spin network basis, and the realization
connection instead of the real one we have used here. On thiat spin network state@vith suitable bases chosen on the
subject, see alsp41]. The difference is simply the appear- high-valent verticesare eigenstates of the geometry, lead to
ance of a factor in the commutator between the connectionthe natural suggestion that spin network states ought to be
and the triad. This yields to an extran the factor associated orthogonal. For no reason, however, these states ought to be
to each grasp. This additional imaginary factor destroys therthanormat namely the norm of the spin network states
reality of the eigenvalues of area and volume, which is aemained undetermined. The methods introduced in this pa-
main result here. Probably this should be taken as an indicger allow us to complete the process, suggest a norm for the
tion that spin networks constructed from the propagator ogpin network states, and thus yield a complete definition for
the complexAshtekar connection are not physical states. Wea scalar produdf|). Here, we define a scalar prodyd¢x, and
can illustrate this by means of an analogy. Imagine that wenotivate the choice. We have no compelling argument for
study the eigenvalue equation for the momentum operatate uniqueness of this scalar product, but we will show that it
if dlox in the quantum mechanics of a single particle. For-satisfies all consistency requirements so far considered.
mally, the functionsy(x)=explkx} solve the eigenvalue Therefore, it is reasonable to take it as a first ansatz.
equation for any reak. However, the corresponding eigen-  Let us begin by considering amvalent vertex. This can
values are imaginary — an indication that these states are nbe  arbitrarily expanded in trivalent vertices. Let
physical. Indeed, they are outside the relevant Hilbert space,, . .. ,i,_3 be the colors of the internal edges, and let us
The physical eigenstates of the momentum are of the formepresent byi,, ... ,i,_3) the n-valent vertex expanded in
P(x) =explikx}, with ani, and these are corre@eneralizedl  trivalent vertices colored,, . . . ,i,_3. We would like to de-
physical states. Something similar happens here. In fact, onermine an orthogonal basis from the quantities
can check that if we insert anin the exponent of the ho- |i,, ... i,_3). We have two highly nontrivial requirements.
lonomies, namely, if we replace Eq®.11) and(2.12 by First, that this works independently from the way the
n-valent vertex is expanded in trivalent ones. Second, that
dy3(7) the volume be Hermitian in this basis. Rather remarkably, we
Y Aa(y (DU (7,70)=0 (7.52 believe, both requirements can be satisfied.

G. Complex Ashtekar connection

—U (7,79)+i —— . L .

dr A(7:70) dr Let us begin by considering a four-valent vertex, for sim-
plicity. There are two ways in which we can expand it in

and trivalent vertices. Thus we have two distinct baggsand

li") for the four-valent vertices. If we wanted both of them to
be orthonormal, the transformation between the two had to
T be given by a unitary matrix. Now, the transformation matrix
U,(r, To)=77ex;:< —if d7y*A(¥( T))) (7.53  between the two bases is provided by the recoupling theo-
o rem. The matrix is given by a six-symbol, seen as a matrix
_ in its two rightmost entries. It is easy to see that this matrix
(whereA, is now thecomplexAshtekar connectiorthen the  is not unitary. However, we now show that we can rescale
eigenvalues of area and volume result to be real. Using Edhe length of the basis vectofs) in such a way that the
(7.53 as the definition of the holonomy implies that the spintransformation matrix becomes unitafipdeed, orthogonal
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Indeed, let symmetric matrix, as shown by Eq$7.23 and (7.27).
— —~ b . ¢ Therefore we have found a basis that satisfies all our require-
i J ments.
o e , We thus define the normalized spin-network states by the
\ a d (8.1)  following normalization: given an arbitrary spin-network
b c state(S|, we label with an index eV all the three-valent
CED f vertices of the expanded stafé@rtual and real and with a
—_— index e £ all its edges(virtual and regl. We denote the
(d (b . color of the edgee by with p. and the color of the three
4 d 8.2 edges adjacent to the vertedy a;, b;, andc;. We define
the normalizedspin network statéS|y by

"

In this basis, the recoupling theorem becomes Ape
(Shy igv eEIg 0(a ,b; aCi)<S| ®7
@ @? ] and we define a scalar product drby requiring that these

n = Z { ab v } 7o states are orthonormal. We have immediately from the dis-
J ; @ @ cdj cussion above that the definition does not depend on the
\ - trivalent expansion chosen, and that the volume and area
operators are symmetric with respect to this scalar product.

@ b . We think that the scalar product defined in this way is
= Z a c . i T precisely the one defined on the loop representation by the

i \ @ @ @ e d loop transform[3,4] of the Ashtekar-Lewandowski measure

[53], namely the conventional Haar measure lattice gauge

discussed by Reisenberd&3] and in[18]. In turn, we ex-
pect that(the norm derived fromthe scalar product we have
defined is equivalent to the evaluation of the Kauffman
bracket of the state, and to the trace of the Temperley-Lieb
algebra, discussed in Appendix B.

- Z Ula,b,c, d)ji fi; . (8.3)  theory scalar product for each graph. The precise relation is
i

We now prove that the matribd(a,b,c,d)} is real orthogo-
nal. The inverse transformation matrix from thebasis to
the n; basis is given by the same expressi@?3), with a

reordering of the external edges’ colorings: i.e.,
IX. CONCLUSIONS AND FUTURE DIRECTIONS

i :2 U(d,a,b,c)*n (8.4) We have reviewed the kinematics of the loop representa-
k4 STk ' tion of quantum gravity, and presented a number of results.
We have modified the definition of the theory by inserted a
Therefore we have the relation minus sign in the definition of the loop observables. With
this convention, the spinor identity is transformed into the
binor identity, allowing immediately a local graphical calcu-
lus for the grasping operation and the use of recoupling
theory. We have shown that the loop states obey the axioms
From direct inspection of Eq(8.3) it is easy to see that Of recoupling theory, and the corresponding graphical for-
U(a,b,c,d)i=U(d,a,b,c)k. As an immediate consequence Malism provides a powerful tool for computing the action of
of Eq. (8.5 we have orthogonality. Looking at EE?2) and _geom_etrlcal operators. We have dlscuss_ed in detail the way
(E4) we can easily compute the sign of the argument of thdn Which recoupling theory can be used in this context.

Ei U(a,b,c,d)ju(d,a,b,c)f= k. (8.5

square root, which is Using recoupling theory, we have rederived known results
on the eigenstates of the area, and the volume of trivalent
(—1)i(—1)] and four-valent vertices. We have given a general expression
sgn(y)= (— 1)@FbFD2T(crdriziardin2r(brerni for the volume of higher valence vertices. We have proven
that the square root in the volume operator is well defined,
=(—1)atbterd— 1 (8.6)  because the relevant operator is Hermitian. We have defined

a scalar product by a suitable normalization of the trivalent

We have thus shown that there exists a basis in which th&pin networks. We have shown that that the scalar product is
recoupling theorem yields a unitary transformation. Forwell defined and independent from the trivalent expansion
higher valence vertices, the transformation from one trivalenghosen, and that the volume is symmetric with respect to this
expansion to another can be obtained by a repeated applicécalar product. . .
tions of the recoupling theorem transformation, and therefore Notice that the area and volume operatarandV do not
by a product of orthogonal matrices. Thus the argumentorrespond to physical observables: they are not gauge in-
above extends immediately to higher valence. variant and do not commute with GR’s constraints. The areas

Now, the normalization we have found is exactly the oneand volumes that we routinely measure are associated to spa-
in which the volume operator is represented by a real antitial regions determined by matter. Indeed, the area and vol-
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ume of regions determined by physical mattee repre- APPENDIX A: PAULI MATRICES IDENTITIES

sented on the phase space of the coupled gravity-matter
theory by observables which are gauge invarigsge for
instanceg 54]). However, it was suggested in Rg25] that it
is reasonable to expect that these physical areas and volumes
(of spatial regions determined by majtée still expressed

Defining ;= — (i/2) o;, whereo; are the Pauli matrices,
we have the identities

1
by (operators unitary equivalent)té andV. See Refs[54] Trinim 20 (AL)
and[25] for the details of the argument. If this suggestion is
correct, the spectra computed here can be taken as physical N
Tl ri7im]=— 7 €ij » (A2)

predictions on short scale geometry, following from the loop
representation of quantum grav[i®5]. These predictions are
testable in principle, and could perhaps lead to indirect ob- B
servable consequences. S riamid=— 1 (3805 — €®Penc), (A3)
We consider the following open problems particularly im-
portant for the development of the theory.
We have not explored the degenerate cases in the action
of the area operatdbut se€g[16,51)).
We believe that the formalism is now well established for
a precise discussion of the Hamiltonian and for computing _1B_ BD c
transition amplitude$26,27). A Ta=€ eacAp, (A5)
Can a weav§22] be found for which not just the area but
the volume as well approximates smooth geometries? Can a

NTHAT]TABr]=— :{THAB]-TAB ']}, (A4)

weave related to a four-dimensional geomd&$] be con- SR05=050p+ €%Cenp, (AB)
structed?

A way of implementing the Lorentzian reality conditions
is, to our knowledge, still lackingfor an attempt to address THA]T{B]=Tr[AB]+Tr{AB 1], (A7)

this problem, se¢39]).
Under the optimistic assumption that the above technical
problems could be addressed, a possible first task for th@hereA andB are SL(2C) matrices.
theory could be the following: Compute the clock time evo-
lution of a weave representing a black hole, show that Hawk-

ing’s radiation[56] is emitted, and determine the final Stage APPENDIX B: KAUFEMAN BRACKETS

of the black hole after evaporation. AND TEMPERLEY-LIEB RECOUPLING THEORY
Supposing that area and volume eigenvalues computed

here describe an actual physical discretertiestie quantum In the context of Knot theory32], the appearance of re-

sensg of Planck scale geometry, could there be any lowcoupling theory _is.based on the observation that the Kauff-
energy observable consequence of such discretehess? ~ man bracket satisfies the propertiasd is completely deter-
mined by the propertigs
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Eqg.(B1), in a sum ofnonintersectingangles, the expression

product of elementary tanglés, U4, ...
(B7) is an element off,. As an example we give the defi-

,Up_1, given by

nition of II:
=l
: mm e [l [+ >
# = m“” {23
L - ea] [+a
B = [l =1 1+ mm m
=izl

where the product is interpreted as a stacking of two dia- . _ _
grams. Two such products represent tangles equivalent undéy the A= —1 case the projectors reduce to antisymmetriz-
the Kauffman brackets if and only they can be transformec®rs.

into each other by the relations )
2. A special sum of tangles: the three-vertex

Uf=du;, (B3) A special sum of tangles is indicated by a three-vertex.
Each line of the vertex is labeled with a positive integer
UiV Ui=U;, (B4) b, orc as shown below
which are at the basis of the Temperley-Lieb algebra. For \c/

example, Eq(B3), means
and it is assumed than=(a+b—c)/2, n=(b+c—a)/2,

o U andp=(c+a—Db)/2 are positive integers. This last condition
LU |
I - U ol =ah]. B8 s called theadmissibilty conditionfor the three-vertex
A N (a,b,c). A line labeled by a positive integer is interpreted

as the nonintersecting tanglel,. The three-vertex is then

Given ann tanglex, let x denote the standard closure of defined as
a m b
¢ b 4y @
Y e, N
C C

X, obtained by attaching thkth input to thekth output:
Here, it is understood that each Temperley-Lieb projector is

.
fully expanded. For instance,

The Temperley-Lieb algebrd, is the free additive algebra 11
over Z[ A,A™ 1] with multiplicative generators,, Uy, ..., \T/ =\W(_ 1\/
2 ¢ q
_ \/ 2 \ /

U,_4. The trace on the algebfg, is defined as followsi) If
Y Y
+ +
n .

x is ann tangle then trg) = (x) where() denotes the Kauff-
3. Chromatic evaluation

(B8)

man brackets, or, which is the same, the recursive evaluation 2 9
of x using Eqs.(B1) and(B2); (ii) tr(x+y)=tr(x) +tr(y). Y
2

It can be showr}32] that in the Temperley-Lieb algebra -
T, there exist ondéand only on¢ elementll,, € T,, such that
M2=1I, andI1,U;=U,II,, i=1, ... n—1. This unique el-
ement is called the Jones-Wenzel projector gf Its explicit
expression is given by

n ]
I, = I‘jjil = HZ(A_S)IPI PP,
p

P(p),p=1,...n!is the n tangle obtained by all possible
permutationsp in the way then lines enteringe are con-

1. The Jones-Wenzel projector

&l

If we join trivalent vertices by their edges, we obtain
trivalent networks. Thus, in the present context a trivalent
spin network is defined as a trivalent graph with an admis-
sible coloring. Notice that in this context spin networks are
not embedded in a three-dimensional space. An edge of color
n represents parallel lines and a Jones-Wenzel projector,
and a vertex is understood as completed expanded in terms

(B7)

nected to then outgoing Iines,Pﬁp) its @ minimal represen-
tation of the permutationp), and|p| its the parity of the

of nonintersecting tangles, as above. Thus a trivalent spin
network determines a closed tangle. We can compute the

representation. Since any tangle can be expanded, using Kauffman bracket, or the Temperley-Lieb trace, of such a
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tangle. This is also called the chromatic evaluation, or net- 4B YO
work evaluation. The explicit calculation of the trace is gen- €ABT T = (C2
erally based on a generalization of the chromatic method of
spin-network evaluatio60]. In Ref. [60] this method is = —eapepce’Pnin? = —m[) (C3
used in order to compute the Clebsch-Gordan coefficients for
the group S(). _ . o e sDSC A B _ g

Chromatic evaluations of simple networks are given in = —€cD0987 =- ] (C4)

Appendix E. We refer t¢32] for the details of the compu-

tations. Here, we perform one such computation explicitly, In the light of the example above, Penrose considered a
as an example. Let us consider the spin network formed bynodification of the spinor calculus, which he denoted as
two trivalent vertices joined to each other. This is called thebinor calculus. The binor calculus is obtained by adding two
6 network. Consider the case with edges of color 2,1,1c0nventions to the calculus aboy&) Assign a minus sign to

each minimumj2) assign a minus sign to each crossi(®);
1 L 1 ! maxima and minima are taken with respect to a fixed direc-
_ _ 2y . . o .
% N % tion in the plandthis direction is conventionally taken to be

the vertical direction on the written pagé4) a segment with

-

1 2 2 —2y\2 . . . L . . .
= —gd=d' —1=(~(A+ A7) -1 (BY) transversal intersection with all horizontal direction is taken
_ 3 = EUTBRIRIION to be a Kroneckeb. The advantage of these additional rules
(gt is that they make the calculus topological invariant, namely

one can arbitrarily smoothly deform a graphical expression
We have(1) expanded the trivalent vertices explicitf2)  \yithout changing)i/ts meanir)llg. grap P

computed the trace using E@2); (3) written the expression The other way around, any curve can now be decomposed

in terms of quantum intege(E1); (4) compared the result j, 5 product of &'s and €'s and any two curves that are
with the genel’al formula of the chromatic evaluation of theambient isotopiC, i_e_, that can be transformed one in the

¢ net(E4). In the A= —1 case, the above gives other by a sequence of Reidemeister moves, represent the
1 tensorial expression as product&$ and §'s.
=3 . (B10) A closed loop(with this conventioh has value 2),
because
O = —eap B =2 (C5)

APPENDIX C: PENROSE THEORY OF SPIN NETWORK
and we have the basic binor identity, which reads
In this appendix we discuss the relation between the Pen- U
rose theory of spin networks and the Kauffman bracket and >< + I | + A
Temperley-Lieb recoupling theory. This appendix is based )
esseztially)// on PenroseF’)s c?riginal ¥ormulatibrz)tg] and on an =(-1 ‘530 éf + ‘Sf 5BD +(=1) ean P =0
article by Kauffman[61]. A basic idea used by Penro§a (Co)
his doctoral thesjsis to rewrite any tensor expression in
which there are sums of indices in a graphical wWa&|.
Consider the calculus of spinors. Penrose represents the ba:
element of spinor calculus as

It is easy to see that these relations are exactly the same as
the propertiesB1) and(B2) of the Kauffmans brackets with
A=-1 andd=—2. Notice from Eq.(B1) that if A=—1
undercrossing and overcrossing are equivalent: indeed they

4 IA give the same expansion. Clearly in Penrose’s binor calculus
og" = o (Cla there is no meaning of the distinction between over and un-
dercrossing. The theory can then be developed as the recou-
_ AC _ - . : ;
€ac = Q e = tf (Cip pling theory of Appendix B with the special value=—1.
_ A_ iA Thus theA= —1 Kauffman bracket of a spin network is the
4= m= (C1lo  same at the Penrose’s spin network evaluation.

For more detail on the exact relation betwetamgle-
theoretic recoupling theory and spin networks see, for ex-
ample[32,46,61,. An important point that emerges from this

and generally to any tensor object brief discussion is the possibility of using a topological in-
variant calculus for writing generic SL(@) invariant tensor

X0 — ) c1 expressions(This was one of the original motivations of
AB AdB (C1d Penrose for introducing binojdt is possible to write any SL

(2,C) Mandelstam identitie$3.3) in a graphical way and in

particular we can express these identities in spin-network-
This convention provides the possibility of writing the prod- like graphical relations, in which each edge is the antisym-
uct of any two tensors in a graphical way. For example metrization of the holonomies along the edge.
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APPENDIX D: GRAPHICAL CALCULUS OF ANGULAR
MOMENTUM AND ITS RELATION J
WITH THE TANGLE-THEORETICAL >_<
RECOUPLING THEORY a d

lent to the graphical calculus of the algebra of the(3U a b 1
representations. In the literature there is a great number of = Z A;

results on the Wigner 18] symbols and a well developed i cdj a d
theory of graphical calculus for angular momentum. To our w B
knowledge the most used graphical method of computation (D4)

in the representation theory of (& are the one due to

Levinson [62] and developed by Yutsis, Levinson, and whereA; is interpreted as the dimension of the representa-
Vanagad63] and the slightly modified version of Brink and tion of spini/2. From Eqgs(D3) and (D4) we have the cor-
Satchelef52]. We discuss here the connection between theespondence between a Bring diagram and one of ours: one
tangle-theoretical recoupling theofin the casefx=l)10 and  has to divide any three-valent node Q&E(a,b,c)_ As an

the graphical method of Brink and Satche]6g]. We indi-  example, let us consider the relation between the tetrahedron
cate a diagram in the Brink convention with a subscBpt  evaluation(Tet) and the Wigner 8 symbol:

and the 31J symbol(in the standard normalizatibh with a
subscriptW. The two methods are identical up to a different

normalization of the three-valent vertex and the fact the the { g g f’,} = (@E )
w
A D B

B
Finally, the A= —1 case of recoupling theory is equiva- b X ¢
l

orientations of any vertex are explicit denoted with-dor a
counter-clockwise orientation and for a clockwise one(In

this appendix we are imprecise about this overall siiol- B/ N\C
lowing Kauffman, we have chosen to denote the recoupling N F
matrix of a four-valent node by curly brackets, while curly = ———
b_rackets are used in the angul_ar momentum Ilter_ature to in- \/ @
dicate Wigner's 8 symbols, which are the evaluation of the
tetragonal net. In other words, the Wignel 8nd 6J symbol Tet [A B E]
are defined as the evaluation _ CDF ~ (DY)
9(A, B,FY6(C,D,F)6(A, D, E)8(B,C, E)
{a,b,c}y=norm-6(a,b,c), (D1)
APPENDIX E: BASIC FORMULAS
OF RECOUPLING THEORY
a b c a b c . . .
d ff = norm-Te d | (D2) We collect here the basic formulas of recoupling theory in
€ w € the caseA= —1 andd= —2. Using the “quantum” integer
. . 2n_A72n

where the normalization factor “norm” df52] corresponds [N]=—p——=(—1)""'A, ,=n,
to the choice A=A

" )= A gy (ED

nNf=—1—-= n]=n,
abhaw= | b | =+ 1-A"
o, ©9
B {npt={1}-{2}---{n}=n!
This is also the standard normalization of the Clebsh-Gordo/e define(l) the symmetrizer
coefficient that gives the usual normalization of the Wigner
3nJ symbol. With this normalization the recoupling theorem Ap = @ =(-1)"n+1]=(=1)"n+1), (E2)
[Eq. (E5] becomes
(2) the exchange of line in a three-vertex,
The correspondence between the cAse—1 andA=1 and -
their equivalence is discussed by Penrosg3i. a b a b
e recall the fact that we use color and not spin to denote the = \2 Y ,

su2) representation associated to an edge. In the angular momen- c (E3)
tum literature, the spin notation is prevalent. As a consequence, ¢

numbers in Brink diagrams, or innd symbols in standard normal- L,
ization, must be understood as the spin of the edge; or, equivalentlyyhere N2P=(— 1)(@+*P=02A@+D'=¢D/2 gnd x' =x(x+2),
the color divided by two. (3) the 8 evaluation
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a

(E4)

(=)™ 2m + n+p+ 1! [m]! [n]! [p]!

- ]l 1! [

wherem=(a+b—c)/2, n=(b+c—a)/2, p=(c+a—hb)/2,
(4) the recoupling theorem

o |

a b i AiTetL q
¢ d j| e@diabei) (E6)
(5) the tetrahedral net

Tet [ B

BE_B C
D F|™
A D

Qe

DR

(=158 + 1! E
MS;SM IL (S —at I1; 16 = S) ° ED

where

A+D+E B+D+E+F
a1: 2 y bl: 2 ]

B+C+E A+C+E+F
a2: 2 y b2: 2 3

A+B+F A+B+C+D
= 2 [} b3: 2 ]

as

C+D+F
S

m=maxa;}, M=min{b;},

E=[A]'[B]'[C]'[D]'[E]'[F]', I=H [bj—a]!,
i]

and(6) the reduction formula

@ (E8)

(E9

These formulas are sufficient for the computations performeé

in the paper. For details on their derivation, $82].

APPENDIX F: SOME VOLUME EIGENVALUES

Finally, we present here some volume eigenvalues of
four- and five-valent vertices. Tables | and Il give the colors
of the external edges, the dimension of the veftexmber of
independent compatible coloringsnd the eigenvalues. The
numbers in parentheses indicate the multiplicity of the eigen-
values.

TABLE |. The eigenvalues of the volume for some four-valent
vertices.

Po Py P2 P Dim. Ag=Ng(Po, ... P3)

Vi3
2 2 2 2 3 (1)0, (21V3\3
3 3 3 3 4 (2)\/%,
(2)V335
4 4 4 4 5 (1)0,
(2)V3V22-257,
(2)V3V22+257
5 5 5 5 6 (2),/%@'
(2)\22211- 96481
(2)\5\2211+ 96481

6 6 6 6 7 (1)0,
(2243,
2313,
(2)V3723
@iB
@iz
@)iB
(2)/515
@33
@313
@32
@6
@)A1
@)A1
V&7
(2)VA1a
)3
(2)\/ /35
(2)\V\2
e
(2)\2
@6
@AB
@6
@VAE
@B
(2210

O O o O OO0 U g U oo MADDNDDNWW®WDNR
O o o MDD OO O DMND®WODA-NEON®WNNPRE
U W kP AN WOWN W EFPFDBNWNWRDINDNNOWERENLR PR
P P P R P RPN RPRRE PR P RNRPEPRREPENERERER R
N RN RN RN NN NN DNRNDMNDDNRNODNDNDRNNDNDNDNRNDNDNDDNDRNONDND
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TABLE I. (Continued.

TABLE I. (Continued.

Ps

BNEE
BN
BNE
V&5
()15
(2)J\V5
BNEE
ONNE
(2)VA/33
VAT
(VA5
(2)V/55
(2)V2V3
(2)V310
(2)J\V5

(1)0, (2113
(1)0, (21326
(1)0, (2)y3\6
(1)0, @11
(1)0, (2)y313
(1)0, (2)y313
(1)0, (2} /89
(1)0, (2)v/} /66
(1)0, (2)V}\174

(1)0, (2)V3V174
(1)0, (213

(1)0, (2} 131
(1)0, (2)V/3 69
(1)0, (2123
(1)0, (21317
(1)0, (2)V3\3

3

(1)0, (2} 69
(1)0, (2317
(1)0, (2)v}/209
(1)0, (21V3\5
(1)0, (2)v}/395
(1)0, (211122
(1)0, (2)3 38
(1)0, (21317

(2)VAB,
(2)VA/35
(2o 57,
(2)\RVo+ 57
(2) V66— 2753,
(2)VR66+2753
(2)+/% 511 16y721,
()% /511t 16v721
(2)\V3,
(2)V/30
(2)\V3,
(2)V/30
(2)V/3 /018~ 18,1801,
(2)\/% 918+ 181801
(2)/} V18332641,
(2)V/3 183+ 32641
(2)/3 1602 185281,
(2)\/3 1602+ 18,5281
(2)\A6,
(2)\/66
2VES,
(2)VATI5
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TABLE Il. The eigenvalues of the volume for some five-valent vertices.

PO Pl P2 P3 P4 D|m )\Bi:)\ﬁi(Po’ e ,P4)

2 1 1 1 1 3 3J2+43
CON—1

2 2 2 1 1 4 292+ 123+ 165

5V2+4\5
2ZRE
5y2+45
AN

2 2 2 2 2 6 (6)‘/%\/5
3 2 1 1 1 3 (2)\/21\/§+6\/§+18\/§+14\/1—5

192 '

152+ 18\5+4./15
W2 %ﬂ V15

4 2 2 1 1 3 40+ 102+ 45+56
(1) 80

60+ 152+ 203+ 12,5+ 10/6
1) 160

\/20+ J2+4\3+4\5
32

(1)
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