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We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric Einstein-Maxwell
spacetimes with a negative cosmological constant. We impose boundary conditions that enforce every classical
solution to be an exterior region of a Reissner—Norastranti-de Sitter black hole with a nondegenerate
Killing horizon, with the spacelike hypersurfaces extending from the horizon bifurcation two-sphere to the
asymptotically anti—de Sitter infinity. The constraints are simplified by a canonical transformation, which
generalizes that given by Kuchar the spherically symmetric vacuum Einstein theory, and the theory is
reduced to its true dynamical degrees of freedom. After quantization, the grand partition function of a ther-
modynamical grand canonical ensemble is obtained by analytically continuing the Lorentzian time evolution
operator to imaginary time and taking the trace. A similar analysis under slightly modified boundary conditions
leads to the partition function of a thermodynamical canonical ensemble. The thermodynamics in each en-
semble is analyzed, and the conditions that(tfrand partition function be dominated by a classical Euclidean
black hole solution are found. When these conditions are satisfied, we recover, in particular, the Bekenstein-
Hawking entropy. The Ilimit of a vanishing cosmological constant is briefly discussed.
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I. INTRODUCTION gravitating systems, they do pose an obstacle to constructing
thermodynamical equilibrium ensembles from quantum
Hawking's celebrated result of black hole radiatiply  gravity. This is because the existence of a thermodynamical
and related development2—4] made it possible to consider ensemble implies the positivity of certain response functions
thermodynamical equilibrium systems involving black holesassociated with that ensemHi1]. For example, in the ca-
in the manner first anticipated by Bekenst¢m6]. At a  nonical ensemble the heat capacity is necessarily positive;
semiclassical, “phenomenological,” level, a black hole ther-consequently, a canonical ensemble of the usual kind does
modynamical equilibrium system can be introduced by simnot appear to exist for Schwarzschild black holes in an as-
ply immersing a radiating black hole in a heat bath such thagmptotically flat spacg22].
the outgoing Hawking radiation balances the radiation that To construct a thermodynamical ensemble appropriate for
falls in from the bath{7—11]. At a deeper level, one aspires black hole geometries from a quantum theory of gravity, one
to construct a full thermodynamical equilibrium ensemble bythus needs to choose the boundary conditions for the en-
starting from a quantum theory of gravity for black-hole-type semble in a judicious manner, motivated by the stability of
geometries|12—-17. For reviews, see, for example, Refs. the corresponding semiclassical equilibrium situations. One
[8,16,18-20. possibility is to replace an asymptotic infinity by a finite
At the semiclassical level, the thermodynamical equilib-“box” at which the local temperature is then fix¢d4,23—
rium configurations involving black holes tend to be unstable34]. The possibility on which we shall concentrate in this
against thermal fluctuatiori¥,8]. The classic example is a paper is to include a negative cosmological consta835—
Schwarzschild black hole in equilibrium with an asymptoti- 39].
cally flat heat bath, in the approximation where the back A negative cosmological constant makes classical black
reaction of the radiation on the geometry is neglected: théiole solutions asymptotically anti—de Sitter. We shall con-
heat capacity in this instance is(87T2) %, whereT is the  sider spherically symmetric spacetimes, and as the only mat-
temperature measured at the infinity, and the fact that thiger field we include the spherically symmetric Maxwell field.
heat capacity is negative indicates thermodynamical instabilall the relevant classical solutions then belong to the
ity. While such instabilities are not unexpected in self-Reissner—Nordsiro—anti-de Sitter(RNAdS) family [40—
43]. The temperature of the Hawking radiation is redshifted
to zero at the asymptotically anti—de Sitter infinity, but from
*On leave of absence from Department of Physics, University othe rate at which the local Hawking temperature approaches

Helsinki. Electronic address: louko@wam.umd.edu zero one can extract a “renormalized” Hawking tempera-
"Present address. ture, and this renormalized Hawking temperature can then be
*Electronic address: winters@csd.uwm.edu taken as one fixed quantity in the thermodynamical en-
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sembleq18,35,36,38 We shall consider both the canonical logically different “hot anti—de Sitter space” sector. In the
ensemble, in which the electric charge is fixed, and the grandanonical ensemble we find evidence for this kind of a phase
canonical ensemble, in which the electric potential differencdransition only in the special case when the charge vanishes.
between the event horizon and the infinity is fixed. When the charge is nonvanishing, there occurs a different
To quantize the theory and to build the equilibrium en-kind of phase transition in which the dominating contribution
sembles, we shall adapt the method introduced in 3  tO the partition function shifts from one classical solution to
in the context of spherically symmetric vacuum geometries2nother as the boundary data changes.
in the presence of a finite boundary. We shall first set up a 1he rest of the paper is as follows. In Sec. Il we set up a
classical Lorentzian Hamiltonian theory in which, on the Classical Hamiltonian theory under boundary conditions tai-

classical solutions, the right end of the spacelike hypersurj-ore_d to the_ grand (_:anonlcal thermodyna_mlcal ensemble,
faces is at the asymptotically anti—de Sitter infinity in an paying special attention to the falloff conditions at the as-

exterior region of a black hole spacetime, and the left end oY MPtotically anti—de Sitter infinity46,47. In particular, we

the hypersurfaces is at the bifurcation two-sphere of a nonchoose to fix the values of the electric potential at the infinity

degenerate Killing horizon. We then canonically quantizeand at t?ehho;lzlfr# In admgnnerl thgt W'””?e madefpreushe n
this theory, and obtain the thermodynami@gand partition terms of the falloff conditions. In Sec. lll we perform the

function by suitably continuing the Schtimger picture time canonical transformation, and in Sec. IV the constraints are
evolution operator to imaginary time and taking the trace. A€liminated and the theory is reduced to its true dynamical

crucial input is how to handle the analytic continuation at thed€drees of freedom. In Sec. V we quantize the theory and

bifurcation two-sphere. As in Ref32], we shall see that a obtain the grand partition function of the thermodynamical
continuation motivated by smoothness of Euclidean blaclgrand .car|10n|cal ekﬂsgmble.IThedtherSmodmarglcs'ln t?ﬁlgrand
hole geometries yields @rand partition function that is in canonical ensemble IS analyzed In Sec. V1. ection . out-
agreement with that obtained via path integral methods. lines the corr(_aspondmg classical, quantum-mecha_mcal, and
To implement the method used in RE82], one must be thermodynamical analyses under boundary conditions that

able to canonically quantize the Lorentzian theory in soméix the charge instead of the eI_ectric potential, and thus lead
practical fashion. In Ref[32] this was achieved by using to the thermodynamical canonlcal ensgmble. .

canonical variables that were first introduced by Kuciar The results are summarized anql discussed in Se(_:. VI
der asymptotically flat, Kruskal-like boundary conditions SO“’? faCtS_abOUt the RNAdS SOIL.’t'OnS are coll_ected in Ap-
[44]. In these variables the constraints of the vacuum theor end|x A, Fmglly, Appendix B putl_mes the classical Hamll—_
become exceedingly simple, and the classical Hamiltoniaionan analysis and the quantization of the reduced Hamil-

theory can be explicitly reduced into an unconstraine onian theory in the case where the cosmological constant

Hamiltonian theory with just one canonical pair of degrees Ofv_anishes and the asymptotically_ anti—de Sitter falloff _c_ondi-
ons are replaced by asymptotically flat falloff conditions.

freedom. We shall show that an analogous set of canonica]". h i fl ither th ition f X
variables exists for our system, and the classical Hamiltonia Ith asymptotic flatness, neither the partition function nor
e grand partition function turns out to be well defined, and

theory can again be explicitly reduced into an unconstraine ith ical bl d .
Hamiltonian theory. Under boundary conditions tailored towj reencsoevrirblr;el €ra canonical ensemble nor a grand canoni-

the grand canonical ensemble, the reduced Lorentziaf
Hamiltonian theory haswo canonical pairs of degrees of

freedom! under boundary conditions tailored to the canoni- Il. CANONICAL FORMULATION
cal ensemble, the reduced Lorentzian Hamiltonian theory has IN THE METRIC VARIABLES
just one pair of canonical degrees of freedom. Using these

iables. it will b ble t truct wum th In this section we present a Hamiltonian formulation of
variables, it will be possible 1o construct a guantum eOwspherically symmetric electrovacuum spacetimes with a
and a(grand partition function in close analogy with Ref.

[32] negative cosmological constant, with boundary conditions
o . appropriate for the exterior of a RNAdS black hole with a
It will turn out that both the canonical ensemble and the pprop

: . nondegenerate horizon. Some relevant properties of the
grand canonical ensemble for our system are well defined. IBNAdS metric are reviewed in Appendix A

particular, the_ _appropriate thermodynamical response fun_c- We consider the general spherically symmetric Arnowitt-
tions are positive. We shall also be able to give the Cond"Deser—Misner(ADM) metric

tions under which thégrand partition function is dominated
by a classical Euclidean solution. The grand canonical en- ds?= —N2dt2+ A2(dr+N'dt)2+R2dQ2, (2.1
semble exhibits a transition from a region where a classical

solution dominates to a region where no classical solutiogyhere dQ)? is the metric on the unit two-sphere, amy
dominates, in close analogy with what happens with they", A, andR are functions ot andr only. The electromag-

spherically symmetric boxed vacuum canonical ensembl@etic potential is taken to be described by the spherically
[24,29. As in Refs[24,25, one may see this as evidence for symmetric one-form

a phase transition between a black hole sector and a topo-
A=Tdr+ddt, (2.2

The conclusion of two canonical pairs of degrees of freedom fowhereI' and® are functions ot andr only. The fact that
the spherically symmetric Einstein-Maxwell system with a cosmo-this one-form is globally defined makes the electromagnetic
logical constant was previously reached, under a different set opundle trivial, and will preclude the black hole from having a
boundary conditions, in Ref45]. magnetic charge. The coordinatetakes the semi-infinite
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range[ 0,»). Unless otherwise stated, we shall assume bothvhere the super-Hamiltonian constrakhf the radial super-
the spatial metric and the spacetime metric to be nondegemomentum constrainitl, , and the Gauss law constrai6t
erate. In particularA, R, andN are taken to be positive. We are given by

shall work in natural unitsh=c=G=1.

The action of the Einstein-Maxwell theory with a negative H=—R*PgP,+3R2A(P{+P})+AT'RR’
cosmological constant is —AT2RRA'+IAIR2-IA—2/72AR?,
1
EJ d*xy—“g(YR+6/"2=F*'F,,) (2.79
H,=PgR'—AP,—TPr, (2.7
+ (boundary terms (2.3
G=-P;. (2.70

where g is the determinant of the four-dimensional metric,
WR is the four-dimensional Ricci scalar, and We have written the electric potentid in terms of the
F..=d,A,—d,A, is the electromagnetic field tensor. The quantity

cosmologlcal constant has been written-a8/ 2, where

/>0. Inserting the spherically symmetric field8.1) and O:=0-NT, (2.9
(2.2) and integrating over the two-sphere we obtain, up to
boundary terms, the action which now acts as the Lagrange multiplier associated with

the Gauss constraint in E@2.6). It would be possible to
% : proceed retainingd as the Lagrange multiplier, and the su-
%[A,R,T?N,Nr,q’]zf dtf dr(=N"HR[-A permomentum constraint would then be the same as without
0 the electromagnetic fieltsee, for example, Ref49]). How-
+(AN)'J(—R+R'N)+iA(-R ever, using® has the technical advantage that the super-
) momentum constraint2.7b generates spatial diffeomor-
+R'N)Z+ 3N IATIRY(M-')? phisms in both the gravitational and electromagnetic
oo A P variables. This fact will prove useful in Sec. lIl.
+N(ATRRA’-AT'RR The Hamiltonian equations of motion are obtained from

—IATIR 24 1A +3/72)R?)), local variations of Eq(2.6). The constraint equations are

(2.9 H=0, (2.99

The equations of motion derived from local variations of Eq. H,=0, (2.9
(2.4) are the full Einstein-Maxwell equations for the spheri-

cally symmetric fields (2.1) and (2.2). A generalized G=0, (2.90

Birkhoff's theorem can be proven using the same techniques
as in the case of a vanishing cosmological consf48i:  and the dynamical equations of motion read
every classical solution is locally either a member of the

extended RNAdS familysee Appendix A or a spacetime A=N(R?AP,—R™'Pg)+(N'A)’,  (2.103
that generalizes the Bertotti-Robinson solution to accommo- )

date a negative cosmological constpit—43,48. We shall R=-NR'P,+N'R’, (2.10p
address the boundary conditions and boundary terms that are : ~

needed to make the variational principle globally well de- I=NAR™?Pp+(NT)' +d’, (2.100

fined after passing to the Hamiltonian formulation.
The momenta conjugate to the configuration variables Pa=3:N[—R %(P3+P2)—(A~1R")2+1+3/ ?R?]
A, R, andI" are —2 ,
—A2N'RR +N'P}, (2.100
P,=—N"!R(R—R'N"), (2.5a . ,
Pr=N[AR 3(P{+Pf)—R 2P,Pg— (A" 'R")’
— -1 - ’ A ’
PR——N {A(R—R Nr)+R[A—(ANr) ]}, (25b) +3/_2AR]—(A_1N,R)’+(NrPR)/, (2106
_N-IA -1p2T ' .
A Legendre transformation gives the Hamiltonian action ¢ is easy to verify that the Poisson brackets algebra of the
_ " _ _ constraints closes, and we thus have a first class constrained
SE[A,R,F,PA,PR,PF;N,Nr’qn]:f dtf dr(P,A+PgR system[50].
0 We now wish to adopt boundary conditions that enforce
every classical solution to be an exterior region of a RNAdS

+ Prf— NH spacetime with a nondegenerate horizeae Appendix A
_ such that the constamthypersurfaces begin at the horizon
—N'H,—®G), bifurcation two-sphere at=0 and reach the asymptotically

(2.6 anti—de Sitter infinity ag— .
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Consider first the left end of the hypersurfaces.rAtO0, R(t,r)=r+/2p(t)r 2+ 0(r3), (2,139
we adopt the conditions

A(t,r)=Aq(t)+O(r?), (2113 PA(t,r)=07(r"?), (2.13¢9

R(t,1)=Ry(t) +Ry()r2+0(r%),  (2.11b PR(t,r)=0"(r"%), (2130

P (t,1)=0(r), (2.110 N(t,r)=A"'R[N.()+0"(r"®],  (2.13¢

PR(t,1)=0(r), (2119 N'(t,r)=0%(r"?), (213

N(t,r) =Ny (t)r +O(r?), (2.119 L(t,r)=0%(r7?), (2.139

N'(t,r) =N (t)r +O(r3), (2.119 Pr(t,r)=Q () +0*(r 1), (2.13H

L(t,r)=0(r), (2.119 D(t,r) =D, (1)+0"(r ), (2.13)

) 4 whereN_(t)>0. O*(r ") denotes a term that falls off at
Pr(t,r)=Qo(t) +Qa(t)r*+0(r"), (211D infinity asr ", and whose derivatives with respectrtdall
~ ~ off accordingly ag "%, k=1,2,.... Itis, again, straight-
D(t,r)=Dy(t)+0O(r?), (2.11)  forward to verify that these falloff conditions are consistent
N with the constraints and that they are preserved by the time
where Ao and R, are positive, andN;=0. Here,O(r")  eyolution equations. Comparison with Rg47] shows that
stands for a term whose magnituderat 0 is bounded by  the metric is asymptotically anti—de Sitter, with the constant
r" times a constant, nzirlld_whodaEh derivative atr—0 is  t hypersurfaces being_asymptotic to hypersurfaces of con-
similarly bounded by ™" times a constant for $k<=n. It gn¢ Killing time, andN ., (1) gives the rate at which the
is straightforward to verify that these falloff conditions are Killing time evolves with respect to at the infinity. Note

consistent with the constraints=H,=G=0, and that they {5+ the Japse-functioN diverges at the infinity for any non-
are preserved by the time evolution equations. The met”%ero value oﬂ(t) For future use. we define the quantit
falloff conditions (2.119—(2.11f), which are identical to ' k a y
those introduced in Ref32] in the context of the Schwarzs- M, (1): =N\ (t)+3p(t). (2.14

child black hole, guarantee that the classical solutions have a

nondegenerate horizon, and that the condténypersurfaces \when the equations of motion hollt, . (t) is independent of
begin atr=0 at a horizon bifurcation two-sphere in a man-t, and it is equal to the mass parameter of the RNAdS metric
ner asymptotic to hypersurfaces of constant Killing tifne. (A1).

The coordinates become thus singular at0, but this sin- Taken together, the falloff condition@.11) and (2.13
gularity is quite precisely controlled. In particular, on a clas-achieve our aim. Every classical solution is an exterior re-
sical solution the future unit normal to a constatiypersur- gion of a RNAdS Spacetime with a nondegenerate event ho-
face defines at—0 a future timelike unit vecton®(t) atthe  rizon, such that the constanthypersurfaces begin at the
bifurcation two-sphere, and the evolution of the constant horizon bifurcation two-sphere and reach the asymptotically

hypersurfaces boosts this vector according to anti—de Sitter infinity. In particular, the classical solutions
t satisfyR,>0.3
na(tl)na(t2)=—cosr( f 2A51(t)N1(t)dt). (2.12 by It would be possible to replace EgR.133 and (2.13b
ty
The falloff conditions(2.119—(2.11) for the electromag- At,N)=/r"1=3/3 3+ 0%(r %), (2.153
netic field variables are motivated by our thermodynamical
goal, and they will be discussed further in Sec. V. R(t,r)=r+0%(r?), (2.15h

Consider then the right end of the hypersurfaces. At . _ .
r—co, we assume that the variables have asymptotic expargnd then drop the assumption that the expansion proceeds in
sions in integer powers of (), with the leading order be- integer powers of (1) beyond the order shown, provided

havior one makes more precise assumptions about what is meant by
the symbol O”. Alternatively, it would be possible to
At =/r"1=3/3r 34N (1) Br 4+ 0"(r 79, strengthen the falloff conditions to read
(2.133

3The falloff conditions(2.11) are compatible with either sign of
2The text in Ref[32] contains at this point a minor inaccuracy. R,. The caseR,<0 would correspond to the bifurcation two-
Equations(2.69 and (2.6b of Ref. [32] [our Egs.(2.113 and sphere of an inner horizon, which is excluded from the classical
(2.11h] are not sufficient to ensure that the hypersurfaces end at theolutions only after the asymptotically anti—de Sitter falloff has
horizon bifurcation two-sphere, but, for example, the 63— been invoked at—co. If desired, the requireme®,>0 could, of
(2.60 of Ref.[32] [our Egs.(2.113—(2.110] is. course, be already added to the conditiGh41).
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A=/t =33 34 0()Br 4+ 0%(r 479, carry the information about the geometry of the classical
(2.163 solution (A1). We then use this information as a guide for
' finding the canonical transformation.
R(t,r)=r+0%(r 279, (2.16b
A. Reconstruction
where 0<e=<1, with similar changes in the rest of Egs. . _ .
(2.13. This would be analogous to the falloff conditions Under our boundary conditions, every classical solution is
adopted for the asymptotically flat Schwarzschild case ir?n exterior region of a RNAdS spacetime with a nondegen-
Ref. [44], in that the value of the magg.14) could then be €rate Killing horizon(see Appendix A We now assume that

read solely from the expansid@.16d of A. One might also W€ are given the canonical data R,I',P, ,Pg,Pr) on a
consider writing the theory in terms of a lapse function thatSPacelike hypersurface embedded in such a RNAdS space-
has been rescaled by the factor 1R’: by Eq. (2.139, the  tMe. We wish to recover from the canonical data the mass

falloff of the new lapse at— would then be independent and charge parameters of the spacetime, the information

of the canonical variables. For concreteness, we shall adhef0ut the embedding of the hypersurface in the spacetime,
to the theory as written above. and the information about the electromagnetic gauge.

We can now write an action principle compatible with our  COnsider first the charge. The equations of motion imply
falloff conditions. Consider the total action that Py is independent of both andr. It is easily seen that
in the curvature coordinatéé\l1), the value ofPr is just the

SA,RT,P,,Pg,Pr:N,N",®] chargeQ. As Py is unchanged by the gauge transformations
_ generated by the constraints, it follows that in any gauge
=S[A,RT,P,,Pr,Pr;N,N", @
Sil A PR PrINN ] op:. -
+S;5[AR,Qq,Q4 ;N,®y,®, ], 2.1 . )
sl Qo.Qx 0:P+] @17 Consider then the mass. The reconstruction of the func-
where the boundary action is tion F appearing in the metricAla) proceeds exactly as in
Ref.[44], with the result
5(72[A,R,Q0,Q+;N,ao,ah]:fdt(%RgNlAgl—ﬁ+M+ RIZ (Py2

+PeQo— P, Q). (218 .
From Egs.(Alb) and(3.1), we find for the mass the expres-

The total action(2.17) is clearly well defined under our sion
boundary conditions. Its variation contains a volume term
proportional to the equations of motion, boundary terms
from the initial and final hypersurfaces proportionalda,
SR, andél', and boundary terms from=0 andr = given
by whereF is understood to be given by E(B.2).

Consider then the embedding. By repeating the steps in
Ref. [44], we obtain

M=§

R? P?
7+1+$—F , (3.3

fdt[%R%5<NlAal)—M+5ﬁ++Q05€>o—Q+5Ef>+].
(2.19 —T'=RF APy, (3.9

The variation thus gives the desired classical equations ovhich determines the embedding up to an overall additive
motion provided we fix, in addition to the initial and final constant inT. To determine the value of the additive con-

values of A, R, andT, also the quantitie$\I1Agl, N+, stant, one needs to know the valueToft one point on the
~ ~ hypersurface.

®y, andd, . On a classical solution all these quantities have Consi : .

! . . B . onsider finally the electromagnetic gauge. By E&R),
a clear geometrical interpretatioM; Ao~ gives via EQ. o0 o icie a functiod(t,r) such that
(2.12 the evolution of the unit normal to the constartty-
persurface at the bifurcation two-sphere, awd gives the A=R1QdT+ d§=(R*1QT’+§’)dr+(R*1QT+ S)dt.
evolution of the Killing time at the infinity®, and®, de- (3.5
scribe the electromagnetic gauge in a way that will become .
more transparent in Sec. IV. Note from E8.11) that when ~ From Egs.(2.2), (3.1), and(3.4) we then obtain
a classical solution is written in coordinates that are regular , o
at the bifurcation two-sphere, the electromagnetic potgntial ¢ =T+R*FIAP,Pr, (36

will be regular at the bifurcation two-sphere only®=0.  \hijch determines the value gfon the hypersurface up to an
additive constant.
11l. CANONICAL TRANSFORMATION

. . : : B. Transformation
In this section we perform a canonical transformation,

which generalizes that given in R¢fi4] for the spherically We have seen that when the equations of motion hold, the
symmetric vacuum Einstein theory. Following Ref4], we  quantities defined by Eq§3.1)—(3.4) have a transparent geo-
first examine how the variables appearing in the act®h?) metrical meaning. We now promote these equations into
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definitions of functions on the phase space, valid even wheand integrate both sides with respect rtofrom r=0 to

the equations of motion do not hold. Our aim is to completer =, The first term on the right-hand sid®RHS) gives

the set of functions into a set that constitutes a canonicadubstitution terms from=0 tor =< that vanish by virtue of
chart. our falloff conditions, and we obtain

We shall from now on assume that the quanRlyin Eq.
(2.11D is positive. As noted in Sec. ll, this is always the case
for our classical solutions.

The functiondM (3.3) andQ (3.1) Poisson commute with
each other. The functior T’ (3.4) Poisson commutes with +Pqdg)=dw[A,R,I',P,,Pr], (3.9
Q and is canonically conjugate td. This suggests looking
for a canonical transformation such thgt and Q become
two new coordinates, and T’ becomes the momentum con- w
jugate toM. As in the Schwarzschild ca$é4], the function  w[A,R,T",P, :Pr]:j dr(FPFJrAPA
R:=R Poisson commutes witM, Q, and—T’, and pro- 0
vides, therefore, a candidate for a new canonical coordinate.

The crucial issue then is whether one can find momenta con- + 2RRIn
jugate toQ andR such that the transformation is canonical.

.A necessary condmon_ for the prospective new momental.he functionalw[ A,R,T,P, ,P;] is well defined by virtue
arises from the observation that the super-momentum con- S .
straint (2.7b generates spatial diffeomorphisms in all the of the falloff conditions. Equation$3.9) and (3‘.1@ show
variables. Sincé, Q, andR are spatial scalars, the expres- that the Liouville forms of the old and new ve}rlables d|ffer.

. : e : ’ only by an exact form, and the transformation is thus canoni-
sion for H, in the new variables must be

, , , . L cal.
PuM'+PqQ"+PgR". Equatmg,th|s with Eq.(2_.7b) and The new variables have well-defined falloff properties at
substituting forM and Py, =—T' their expressions from r=0 andr—oo. At r=0, Egs.(2.11) imply
Egs. (3.3 and (3.4 gives only one equation for the two ' ' o
annownsPQ aqd Pgr, but the ,structure of thg equation as a F(t,r)=4R2A52r2+0(r% (3.12
linear combination oR’ and P suggests setting the coeffi-
cients ofR" and Py individually to 0. These considerations and
suggest the transformation

fdr(PA5A+PR5R+PF5r)—f (P oM+ PrSR
0 0

where

RR —AP,
RR + AR,

). (3.10

M (t,r)=Mq(t)+My(t)r2+0(r?), (3.123

M:=3R(R?*/ ?+1+P;R 2-F), 3.79
R(t,r)=Ry(t)+Ry(t)r2+0(r%), (3.12b
_p-1c-1
Pui=RTF APy, 3.7H QLN =Qo()+Qu(Dr2+0(rY),  (3.129
R:=R, (3.70 Pu(t,r)=0(r), (3.129
Pri=Pr—iRIAP,— iR IFIAP, Pr(t,r)=0(r), (3.12¢9
—R A TZF (AP, (RR)—(AP,)(RR)'] Po(t,r)=0(r), (3.121
+3RTIFTIAP,(PFRT?-3R%/7?), (370  where

Q:=P;, (3.78 Mo=3Ro(R3/ 2+ 1+ Q3R, 9, (3.133

M,= 2 Ry(3R%/ 2+ 1—-Q2R; >~ 4RyR,A 5 2

PQ::_I‘_RizFilAPAPI‘, (370 27 2 2( 0 QO 0 0fv2420 )

+QoQ2Ry . (3.13b
whereF is given by Eq(3.2). The analogy between the pairs )
(M,Py) and @,Pg) becomes manifest by observing from At r—o, Egs.(2.13 imply
Eq. (3.6 that on a classical solutiof,, carries the informa- _ w1
tion about the electromagnetic gauge #ig=—¢'. M(tr)=M.(H)+0"(r), (3.143
It is now straightforward to demonstrate that the transfor-

— /2 -2 ©r.—3
mation(3.7) is indeed canonical. We begin with the identity RLA)=r+/p(Or =+ 0%(r™>), (3140

Q(t,N)=Q (tH)+0O(r 1), (3.140
P\ SA+PgSR+PoT — Py 6M — PrdR—Po5Q *
o ‘RR,H\PA ) Pu(t,r)=0%(r"°%), (3.14d
=\ = n ,—
? RR—AP, Pr(t,r)=0"(r %), (3.149

RR —AP,

o RR AP,

I'Pr+AP,+3RRINn

), (3.9 Po(t,r)=0%(r"32), (3.14
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whereM (1) is given by Eq.(2.14).
The canonical transformatiori3.7) becomes singular
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which says that fixind\™ andN® atr=0 to values that are
independent of the canonical variables is not equivalent to

whenF =0. Under our boundary conditions the classical so-fixing N;A,* and &30 to values that are independent of the

lutions havel>0 for r>0. At the limitr—0, F approaches
zero according to Eq3.11), but Egs.(3.7) have still a well-
defined limit obeying Eq9.3.12. Our canonical transforma-

canonical variables. We, therefore, need to redefieand
NQ nearr =0, without affecting their behavior at— .
To proceed, we make two assumptions. First, we assume

tion is, therefore, well defined and differentiable near them ,>M_,(Q,), where the functiorM,, is defined in Ap-

classical solutions, and similarly, the inverse transformatiorpendix A. Second, we regard E¢(B.133 as definingR, in
is well defined and differentiable near the classical solutionsterms ofM, and Qq asRy=Ry,o(Mg,Qo), Where the func-

From now on we shall assume that we are always in a neighjon R, is defined in Appendix A. As discussed in Appen-

borhood of the classical solutions such tkat0 holds for
r>0.

C. Action

It is possible to write an action in the new variables by

simply re-expressing the constraiigs7) in terms of the new

coordinates and momenta. A more transparent action can be
found if we exercise the freedom to redefine the Lagrange

multipliers.
The constraint terms in the bulk acti¢?.6) take the form

NH+N'H, +PG=NMM'+NRPr+N?Q’, (3.15
where
NM=—-NF A IR"+N'R"¥F1AP,, (3.163

NR=—NR P, +N'R’, (3.16b

Ne=NR 1F 1A ~IR'P.—N(F+R 2F AP, P)— ®.
(3.169

When viewed as a linear transformation from,(\lr,&)) to
(NM NRNQ), Egs. (3.16 are nonsingular for>0. This

dix A, these assumptions are always true for our classical
solutions, and they, therefore, merely tighten the neighbor-
hood of the classical solutions in whch the field variables
may take values. For future use, we note that these assump-
tions imply 3R3/2+1—QZR,%>0, and the variation of

R, takes the form

SRy=2(3R5/ %+ 1-Q4Ry*) " H(8Mo— Ry "Q08Qy).
(3.20
Define now the quantitieN andN? by

NM'=—NM[(1-g)+2gRy(3R5/ "2 +1-Q§R; %) 11,
(3.21a9
NQ=2NMgQ,(3R%/2+1-Q2ZR;2) 1~ N©, (3.219
whereg(r) is a smooth decreasing function that vanishes at
r—o asO*(r~°), and approaches the value 1rat-0 as
g(r)=1+0(r?). Equationg3.21) then define a nonsingular

linear transformation fromNM,NR) to (NM,N9). The as-
ymptotic behavior at — is

suggests that we could take the constraint terms in the new

bulk action to be those on the RHS of E.15, with
NM. NR, andN? as independent Lagrange multipliers. At
r—oo, this would be satisfactory: Eq$3.16 imply the
asymptotic behavior

NM(t,r)=—N,(t)+0*(r ), (3.17a
NR(t,r)=0%(r?), (3.17n
NO(t,r)=—d, (t)+0*(r 1), (3.179

and one could then fiﬁ+(t) andzfu(t) as in Sec. Il after
adding the boundary action

—f dt(N. M, +D,Q,). (3.18

However, atr =0 we have
NM(t,r)=—2N;AR, 1+ 0O(r?), (3.193
NR(t,r)=0(r?), (3.19b

NO(t,r)=— Do(t) + 5 Ny AoQoR; Ry 1+0(r?),
(3.190

NM(t,r)=N, (t)+0%(r 9, (3.223
NQ(t,r)=d, (t)+0™(r 1), (3.22

and the asymptotic behavior a0 is
NM(t,r)=NM(t)+0(r?), (3.233
NO(t,r)=dy(t)+O(r?), (3.23h

where
NN =1 N;ARy 'Ry (3R, 2+ 1- Q2R 2).

(3.24

When the constrainty!’=0 andQ’ =0 hold, Egs.(3.123,
(3.129, and(3.13b show that

Q'=0
M!

- 0
Ny = NjAQL

(3.2
Thus, when the constraints hoId,ﬂ_fixirﬁ‘d\’I andNQ atr=0

is equivalent to fixing\llAgl and®,. We, therefore, adopt

N™, NR, and NQ as a set of new independent Lagrange
multipliers.
The bulk action takes the form
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Ss[M,R,Q,Py ,Pr.Pq NM NR NQ] d,, andd, . Because of Eq3.25), these fixed quantities at
. the right and left ends have precisely the same interpretation
:J dtf dr{(PMM in terms of the geometry of the classical solutions as the
0 fixed quantities in the actio(R.17).
+PRR+PoQ+N°Q" —N"Pr+N"[(1-g)M’ IV. HAMILTONIAN REDUCTION
+29(3R5/ 2+ 1-QfR; %) "H(RoM' —QoQ") ]} In this section we shall reduce the acti@?27) to the true

(3.26 dynamical degrees of freedom by solving the constraints.
The constraint$3.299 and (3.29j) imply thatM and Q

The total action is taken to be are independent af. We can, therefore, write
SIM,R,Q,Py,Pr,Po;N",NR NO] M(t,r)=m(t), (4.1a
:SE[MaRanPM1PR1PQ1NM1NR1NQ] Q(t,r):q(t) (41b)

+55[Mg,M;,Q0,Q4 ;N, &0, ®.], (327 Substituting these and the constrai8t29h back into Eq.

(3.27) yields the true Hamiltonian action
where

S5 [Mo.M 1 Q0.0 N o, .1 S[m,q,pm,pq;ﬁg”,ﬁ+,<'I3+,<f>o]=f dt(pm+pga—h),
(4.2
:fdt(%RgNg"—N+M++<I>0Qo—<l>+Q+)- (828 \yhere

The quantities to be varied independently &fe R, Q, _f drp (4.39
Pm, Pr, Po, N™, NR, andN@, and the boundary condi- Pm= ], M> '
tions for the new Lagrange multipliers are given by Egs.
(3.17b, (3.19h, (3.22, and(3.23. The volume term in the o
variation of Eq.(3.27) is proportional to the equations of p f drPq (4.3
motion
. The reduced Hamiltoniah in Eq. (4.2) is
M=0, (3.293 o o
: h=—1RINg + N, m+(®, — dy)q, (4.4)
R=NR, (3.29b
] whereRy,: =Ry,(m,q). The assumptions made in the previ-
Q=0, (3.290 ous section imply
Py=(NM)’, (3.299 m>M¢i(q), (4.5
: andh is, therefore, well defined. Note thhtis, in general,
Pr=0, (3.299 epr|C|tIy time dependent through the prescribed functions
Bo= (N9, 320y NO(D, No(1), Dy (1), anddy(t).

The variational principle associated with the reduced ac-
P tion (4.2) fixes the initial and final values of the coordinates
M’'=0, (3.299 X ;
m andg. The equations of motion are

Pr=0, (3.29H =0, (4.63

Q'=0, (3.29) 4o, @6
whereNM andNQ are now understood to be defined by Egs. ) 2 s oM~
(3.21). The boundary terms in the variation consist of terms Pm=2Ry(3Ry/ " “+1-0g°R},") "Ny —N,, (4.60
proportional to M, SR, and 6Q on the initial and final _ . -
hypersurfaces, and terms frars0 andr =% given by Pq= —2q(3R3/ 2+ 1-q’R},%) " INg + Dp— D, .

(4.60
f dt(3RGING =M SN, + QoD — Q. 5P, ). Equations(4.6a and (4.6b) are readily understood in terms

(3.30 of the statement that on a classical solutionand q are,
respectively, equal to the mass and charge parameters of the
To arrive at Eq(3.30, Eq.(3.20 has been used. The action RNAdS solution. To understand Et.69, recall from Sec.
(3.27) thus yields the equations of motidB.29 provided Il that on a classical solutiolPy,=—T’', whereT is the
that we fix, in addition to the initial and final values of the Killing time. From Eq. (4.338 we see thal]om To— T4,
new canonical coordinates, also the quantltlég N +, whereTy, andT, are, respectively, the values ©fat the left
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and right ends of the constanhypersurface. As the constant th  ~
t hypersurface evolves in the RNAdS spacetime, the first and 4= ft dtd. (1), (5.4b
second term on the RHS of E@.60 are, respectively, equal !

to To and — T, . The interpretation of Eq4.6d is analo-

01|

t ~
gous. On a classical solution we hapg=§,— &, where Eo:zf 2dt(I)o(t), (5.49
¢ is the function that specifies the electromagnetic gauge via t1
Eq. (3.5). The first two terms on the RHS of E(#.60 give t
&y, and the last term gives ¢, . 0= 2dtf\]3"(t). (5.40)

ty
V. QUANTUM THEORY AND THE GRAND PARTITION ~
EFUNCTION K(tz;t_l_), therefore, depends_dq andt, only through the
guantities on the left-hand side of Eq$.4), and we may
We shall now quantize the reduced Hamiltonian theory ofyrite K(t,;t,) asK(Z,Z, ,E,,0). The composition law,

Sec. IV. Our aim is to construct the time evolution Operatory ¢ -t VK (t,:t,) =K(ts:ty), amounts to independent addi-

in the Hamiltonian quantum theory, and then to obtain a. " . S

grand partition function via an analytic continuation of thisatlon in each of the four parameters WT’:f =0,0), and

operator. we may regard thesg _four parameters as mdept_anc_ient evolu-
tion parameters specified by the boundary conditi@ris.the

Killing time elapsed at the infinity, an® is the boost pa-

rameter elapsed at the bifurcation two-sphefe. and =,

As is well known, the quantization of a given classical can be computed from the line integral of the electromag-

Hamiltonian theory requires inp{H1-53, and the questions netic potential(2.2) along the timelike curve of constant

of physically appropriate input for a quantum black hole re-and constant angular variables as this curve approaches, re-

main largely open. For the purposes of the present paper wapectively, the infinity and the bifurcation two-sphere.

shall be content to define the quantum theory in essence by

fiat, following Refs.[32,44). Our main physical conclusions B. Grand partition function

will emerge from the semiclassical regime of the theory, and

at this level one may reasonably hope the details of the quan: We S’[Tla” tr_10w conTt;gct a gran;j p<’:tlrt|§|on fl.mCt'o?. by conc;
tization not to be crucial inuing the time evolution operator to imaginary time an

We regardm and(q as configuration variables, satisfying taking the trace. We begin by discussing the boundary con-

the inequality (4.5. The wave functions are of the form d'“ﬂ]‘s . the relgvant t_h;armpd;llnt?]mlcal ;nsemblel. ituati
#(m.q), and the inner product is taken to be e envisaged semiclassical thermodynamical situation

consists of a charged spherically symmetric black hole in an
_ asymptotically anti—de Sitter space, in thermal equilibrium
(%X):f ndmdqgyry, (5.)  with a bath of Hawking radiation. If the back reaction from
A the radiation is neglected, the geometry is described by the
where ACR? is the domain(4.5) and u(m.q) is a smooth F\’_NAd_S metric(Al). Assuming that the local temperature is
positive weight factor. The Hilbert space is thus givenin the usual manner in terms of the surface gravity and
AT - . the redshift factof 18,35, we see that the local temperature
H:=L*(A;udmdq). We assume that is a slowly varying .~ 35,1 o
function, in a sense to be made more precise later, but oth® F~"°6"", whereF is given by Eq.(Alb) and
erwise it WI||. remam arbitrary. . o B: =4WR0(3/’2R§+1—Q2R52)’1. (5.5
The Hamiltonian operatdi(t) is taken to act as pointwise
multiplication by the function h(m,q;t) (4.4: At the infinity the local temperature vanishes as
#(m,q)—h(m,q;t)(m,q). h(t) is an unbounded essen- B~*/R [ 1+0*(/?R"?)], andB~* can thus be extracted
tially self-adjoint operatof54], and the corresponding uni- from the asymptotic behavior as the coefficient of the leading
tary time evolution operator ift{ is order term/R™ 1. We shall follow Refs[18,35 and regard
B! as a renormalized temperature at infinity.
The electromagnetic variable with thermodynamic inter-
est for us is the electric potential difference between the ho-
rizon and the infinity, in the curvature coordinafésl) and

R(tz;tl) acts inH by pointwise multiplication by the func- in an electromagnetic gauge that makemvariant under the

A. Quantization

k(tz;tl)=exp{—i tzdt’ﬁ(t’)} (5.2

ty

tion Killing time translations. We denote this quantity hj.
From Eqg. (A2) it is seen that on a classical solution
KM, TE, ,Eo,0)=exd —imT—iq(E, —Eo) »=QR;*.
112 We shall consider a thermodynamical ensemble in which
+3iR; O], (5.3

the fixed quantities ar@ and¢. This data can be interpreted

as that for a grand canonical ensemble, witlbeing analo-

gous to the chemical potentigd,8,2¢. Our aim is to obtain

o a grand partition functionZ(8,¢) by continuing the time

T:j dtN_ (1), (5.4a evolution operator of the Lorentzian Hamiltonian theory to
51 imaginary time and taking the trace.

where
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The continuation of7 is straightforward: comparing the 0<R;, (6.4a

definition of B to the falloff of N in Eq. (2.13 and to the

definition (5.4a, we are led to seT= —i 8. For the continu- g°< Rﬁ(1+3Rﬁ/*2), (6.4b

ation of ® we choose® = —24i, motivated by the regular- _

ity of the classical Euclidean solutions as in Rgd2]. We  and the weight factop is obtained fromu by including the
mentioned at the end of Sec. Il that the regularity of theJacobiarjd(m,q)/d(Ry,q)|. Note that because of E¢5.4b),
electromagnetic potential at the bifurcation two-sphere of the, remains finite af,—0.

Lorentzian solutions require®,=0; similarly, requiring As u is assumed to be slowly varying, we can estimate
regularity of the electromagnetic potential at the horizon ofZred8,¢) by the saddle point approximation to E@.2).

the classical Euclidean solutions now leads us to sefor this, we need to find the critical points of in the
E=0. Finally, recall that= . gives the constant line in-  interior of A”.

tegral of the electromagnetic potenti@.2) at the infinity. Whenp?<1-3m2/?B~2, I, has no critical point. When

Comparing this to the definition of¢, we set — 3w/ ?B2< $?< 1, the two critical points of , are at
E.=—T¢=iB¢. We are thus led to propose for the grand ,
partition function the expression R—R*:= 2m/? 1514 3B%(¢°—1) (6.53
X AT I 4m?/? 0
Z(B,¢)=TrHK(=iB,iB¢,0,—2mi)]. (5.6 ) )
g=9":=¢R;. (6.5b

As it stands, the trace in E¢5.6) is divergent, but one can
argue as in Refd.32,34] that a suitable regularization and The lower signs do not give a local extremum, but the upper

renormalization yields the result

Zrer{ﬂa¢):NJAMdmdleF{—IB(m—q¢)+ WRﬁ],
(5.7

where we have substituted fdt the explicit expression
(5.3). The normalization factah” may depend o, but we
shall assume that it does not depend@or on ¢.

Provided the weight factg is slowly varying compared
with the exponential in Eq(5.7), it is easy to verify, using
the definition ofR,, given after Eq.(4.4), that the integral in
Eqg. (5.7) is convergent. Equatiofb.7) thus yields a well-

signs give a local minimum. In the limiting case 1
—3m2/2 B~ 2= ¢?, the only critical pointis Ry, ,q™), but it

is not a local extremum. Finally, whap?=1, the only criti-
cal pointis R ,q"), and it is a local minimum. Whenever
the critical points exist, the value bf at these points can be
written as

. . mR)1-¢*—(R)*/ 7]
L (Ry,07)= l—¢2+3(Rﬁ)2/72

(6.6

As |, grows without bound in the noncompact directions
in A’, the global minimum can be found by examinihgat
the critical points and on the boundary &'. When

defined grand partition function. Comparing with ordinary 42~ 1 72,25-2  the global minimum is at the critical

pressure-volume-temperature systd2iH, ¢ is now indeed

point (Ry,q%), and I,(R;,q") is negative. When

seen to be analogous to the chemical potential, and the quape_q_ 72,23-2 the global minimum is aR,=0=gq
titiesm andq are, respectively, analogous to the energy anqynere|. vanishes. In the limiting cas@2=1— m2/232
* . / y

the particle number. We shall examine the thermodynamicgl | 4nishes at R’.q") and atR,=0=gq, but is positive
* ’ 1

properties of this grand partition function in the next section

VI. THERMODYNAMICS IN THE GRAND CANONICAL
ENSEMBLE

It is useful to change the integration variables in Eq7)
from the pair (n,q) to the pair Ry,q). From Eq.(A6) we
obtain

m=3Ry(Re/ 2+ 1+0°R;, ), (6.1
and the grand partition function takes the form
Zed .9 =N| FdRoe-1,), (62

where

. (Rn,Q):=3BRy(RE/ 2+ 1+q°R;, %) — Bpq— 7R},
(6.3

‘everywhere else.

We thus see that fop?>1—w2/?B72, Z,., can be ap-
proximated as

Zren(,B’qS)%Pqu_l*(R;7q+)], (6.7

where P is a slowly varying prefactor. The approximation
becomes presumably progressively better with increasing
I1.(R},,a%)|. For ¢?<1—m2/2B"2, the dominant contri-
bution to Z,., comes from the vicinity oR,=0=(, and the
behavior ofZ,., depends more sensitively on the weight fac-
tor w.

These results fog,., are consistent with what one would
expect just from the existence @Lorentzian black hole
solutions under fixings and the renormalized inverse Hawk-
ing temperatured (5.5). It can be verified that such solutions
exist precisely at the critical points of : the values ofm
and g at these critical points are just the mass and charge
parameters of the black hole. Further, the valud ofat a
critical point is simply the Euclidean action of the corre-

One may viewl, as an effective action or as a reducedsponding Euclideanized black hole solution. When a unique

action[24—26. The integration domai®\’ is given by the
inequalities

classical solution exists, it dominates the grand partition
function; when two distinct classical solutions exist, the
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grand partition function is dominated either by the largerone can view the transition in the qualitative behavior of
mass classical solution or by none of the classical solutionsz,,, as evidence for a phase transition between a black hole
The situation is thus remarkably similar to that found in thesector and a topologically different sector of the theory; in
absence of a cosmological constant when the boundary cotthe case at hand, the second sector might be referred to as
ditions are set on a finite size bQ6]. “hot anti—de Sitter space.” On classical grounds one might
Let us now consider the thermodynamical predictionshave expected this transition to occur neaf’~1

from Z .. Recall that the thermal expectation values of the— 472/23~2, where the classical solutions disappear. How-
energy and charge in the grand canonical ensemble are givewver, we saw that the transition in fact occurs near
by $?~1—w2/?B 2, where the two classical solutions still ex-

ist. This is highly similar to what happens in four dimensions

_ 4 1, 9 under boxed boundary conditions without a cosmological
(B)=| - ﬁ+'8 ¢ﬁ (INZrer), (6.89 constant 24,26, but subtly different from what happens in
two dimensions with Witten’s dilatonic black ho[&4].
_19(InZ )
(Q=p"—5 (6.8b VII. THE CANONICAL ENSEMBLE

We have seen that the Hamiltonian formulation of Secs.

. . " . 4
When 2., is dominated by the critical pointR; ,q"), we II-1V led into a thermodynamical grand canonical ensemble

find where the fixed quantities are the renormalized inverse tem-
(E)~m*, (6.93 peratureB at infinity and the electric potential differeneg
between the horizon and the infinity. From the thermody-
(Q)~q", (6.9b namical viewpoint, another natural ensemble for the charged

black hole in asymptotically anti—de Sitter space is the ca-
wherem* is obtained from R ,q*) through Eq/(6.1). That nonicgl ensemble, where one alloyvs quctuations¢_irbut
is, the thermal expectation values of the energy and th&ixes instead the charge _Inthls section we shall outline th(_e
charge are simply the mass and charge parameters of thgcovery of the canonical ensemble from a Lorentzian
dominant classical solution. In particular, there is no addi-Hamiltonian analysis, and briefly discuss the thermodynami-
tional contribution to the mass from the gravitational binding@! Properties of the black hole in this ensemble.
energy associated with the thermal energy, or from the elec- AS @ starting point, we modify the boundary conditions of
trostatic binding energy associated with the charge. Such adbe Hamiltonian theory of Sec. Il by leaving,(t) and
ditional, finite-size contributions were found to be present ind®, (t) unspecified but fixingQq(t) and Q. (t) to be pre-
the finite-size ensembles of Refd4,24,26,34 scribed functions oft. The action is obtained from Egs.
It is easily seen thatjm*/9B)<0. This means thatwhen (2.17) and (2.1 by omitting the terms
the approximatior(6.93 is good, the(constants) heat ca-  [dt(®,Q,— P, Q. ) from Eqg. (2.18. Clearly, classical so-
pacity, C,=—B%(%(E)/dp), is positive. In the regime |utions exist only wherQo(t) and Q. (t) are chosen inde-
(6.9a, the system is thus stable under thermal fluctuations ipendent oft and are equal. We shall from now on assume
the energy. Note that asofhi/9B8)>0, a grand partition that the boundary data is chosen in this manner.
function dominated by the lower mass classical solution One way to proceed is simply to push through the canoni-
would be thermodynamically unstabl@5]. This is analo- cal transformation of Sec. Ill, noting that the new boundary
gous to what happens in the absence of a cosmological cogonditions merely result into minor modifications. It is only
stant under the boxed boundary conditions considered iwhen one subsequently performs a Hamiltonian reduction
Refs.[14,24,28. along the lines of Sec. IV that the new boundary conditions
It is also easily seen that§*/d¢)>0. This shows that give rise to important differences. First, the boundary data
when the approximation (6.9 is good, we have for Qu(t) andQ, (t) imply that the quantity(t) defined by
((Q)/9¢)>0, and the system is stable under thermal fluc-Eq. (4.1b is at-independent constant whose value is com-
tuations in the charge. More generally, one can show directlpletely determined by the boundary conditions. Therefore,
from the expressions(6.2, (6.3, and (6.8 that the Liouville term fdtp,q drops entirely out of the action
(9(Q)/d¢)>0 holds always, even when the approximation(4.2). Second, because of the terms_that were omitted from
(6.9b is not good. the boundary actiori2.18), the term (@, — ®,)q drops out
The entropy in the grand canonical ensemble is given by the reduced Hamiltoniari4.4). This means that in the
reduced Hamiltonian theorg has become an external pa-
rameter specified by the boundary conditions: it is not varied
(INZ.ep). (6.10 . ) .
in the action, and does not have a conjugate momentum. The
new reduced action reads

d
B

When the approximation(6.7) is good, we have
S~m(R{)?, which means that the entropy is one quarter of -~ .
the horizon area. This is the anticipated Bekenstein-Hawking Sc[m.pm:No .N-:q]= | di(pmm—hc), (7.1
result.
Finally, whenZ,.,is not dominated by a critical point, the Where
thermodynamical predictions become much more sensitive L= =
to the choice of the weight factgr. As in Refs[24—26,34, he=—3RiNg + N, m. (7.2

s=<1—3
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Here,R,: =Rno(m,q) as before, and the assumptions madeWhen Eq.(7.5 does not hold, there is only one positive
in the canonical transformation again imply that E4.5 critical point. When Eq(7.5) holds as a genuine inequality,
holds. there are three positive critical points, and saturating the in-
An alternative way to proceed under the new boundanequalities gives limiting cases where two of the three posi-
data is to partially reduce the action already in the variablesive critical points mergefNote that if 32< 27w?/?, the left-
of Sec. Il by solving the constraiig2.9¢. One uses the con- most expression in Eq7.5) is nonpositive, and the left hand
straint (2.99 and the equation of motiori2.10f) to set side inequality is then necessarily genuinely satisfibldw,
Pr(t,r) equal to the constant specified in the boundary datawhen only one positive critical point exists, this critical point
and substitutes this back in the action. The Liouville termis the global minimum. On the other hand, when three posi-
JodrPrI" then becomes a total time derivative and can bdive critical points exist, they constitute a local maximum
dropped. One thus obtains an action that no longer involveBetween two local minima, and the global minimum can be
T or (5, involves Py only as a prescribed constant, and cor-at either of the local minima dependlng on the \{alugs of th_e
rectly yields the equations of motion for the remaining vari-Parameters. For example, when the right hand side inequality
ables. One can now perform a canonical transformation froni! E- (7.9 is close to being saturated, the global minimum
the variables A,R,P,,Pr) to the new variables IS at the I_qcal minimum with the Iz_:trger value Bf,. .
(M,R,Py ,Pg), defined as in Sec. Il except thBy=Q is The critical points can be examined further by parametriz-
now regarded as a fixed external parameter. Finally, one cdf9 8 andq as

reduce the action by solving the constraints as in Sec. IV. (U—0)[3(U2+0v2)+1]

The result is again the action given by E¢&.1) and(7.2). 4w/ B 1= — , (7.78
Quantization of the reduced Hamiltonian theory proceeds u+v—uv
as in Sec. V. For the renormalized trace of the analytically 2 2
continued time evolution operator, we obtain 2= u '; (3l2“’+1) (7.7b
utv—uv ’
Zren(ﬁvq):f . AdRuexp(—lc, ), (7.3 where the parameters andv satisfy 0<v<u. The nega-
crit!

tive, unphysical critical point is then aR,=-—/v, and

where the functiorRy; is defined by Eq(A4) in Appendix Rp=/"u gives a positive critical poirﬂ.The condition that
A, the weight factorfi is a positive function ofR,, (and  ©Nly one positive critical point exists reads

possiblyq), and a(u)<v, (7.9

e (R):= 2 BRA(Ry 2+ 14+ 0°R, %)~ 7Ri. (7.9 wherea(u) is the unique solution to the equation
Under the assumption thdt is slowly varying, the domi- 0=9ua’— (6u2+1)a?+u(9u2+2)a—u? (7.9
nant contribution toZ,, can be estimated by saddle point
methods. The case3=0 andq#0 merit each a separate in the interval 6<a<u. In this case the parametrization
analysis. (7.7) is unique. When the inequality in E¢7.8) is reversed
Consider first the special cage=0. The lower limit of the  and three positive critical points exist, the parametrization
integral in Eq.(7.3) is then atR,,= 0. The critical point struc- (7.7) can be made unique by imposing the conditions
ture of I -, is identical to that ofl, (7.4) for ¢=0, and the
locations of the critical points and the values of the action at 1

these points can simply be read off from Sec. VI by setting u<ﬁ’ (7.103
¢=0.

Consider from now on the generic cag&0. |-, has one J(1+6u%)(1-3u?)— (1-3u?)
negative critical point, and from one to three positive critical v< (7.10n

points. The negative critical point is unphysical, but all the Su ’

positive critical points lie in the physical domain
Ry>Rgi(q). Aslc, is decreasing aR,,=R;(q) and tends
to infinity as R,,—, the global minimum ofl., in the
domainRy>R¢it(q) is at a critical point. We can, therefore,  0=3(u2+y2—up)(R,//)%— (u—v)(3uv+1)(R,//)
concentrate on the positive critical points.

When g2=272/2, 1., has only one positive critical +uv(3uv +1). (7.19
point. When B?<372/2, the number of positive critical

points is determined by the status of the double inequality The global minimum is at the largésmalley local minimum
when the inequality

which make R,=/u the local maximum. The two local
minima are then at the roots of the quadratic equation

(1-3s)(1+5s) 2 -2 (1+3s)(1—59)

_— < = - - _ 2 2_ 2
36(1-9)? <q*/ 361197 (7.5 0<12(6uv—1)(Uu+v°—uv)

+(u—0)2(Buv+1)[3(u2+v?)+1] (7.12

s=/1— 2B (7.6) “We thank Bernard Whiting for suggesting this type of parametri-
=\ 2,2 . :
37/ zation.

where
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is satisfied(reversegl ity, Cq=—B%((E)/dp), follows from the fact that the
It is of some interest to examine the behavior of the criti-dominant critical point is a minimum ofc, [24,25. The
cal goi’?ts in the limitg*~0 with fixed 8. When %  positivity of C, follows more generally, even when the
>3 /2 the above discussion shows that for sufficientlysaddle point approximation does not hold, by direct manipu-
small g° there exists only one positive critical point, and in |ations from the expressiof7.3) and the assumption that
the limit g?—0 this critical point approaches zero as is positive.
. 5 s When the saddle point approximation is good, we have
Ry=|al[1+27B *|a|+O(q°/9)]. (713 for the entropy the Bekenstein-Hawking result,

—-T1— - 2
When g2< 47272, on the other hand, there exist three posi—S [1=B(9B) (INZrer) = 7(Ry)"

tive critical points for sufficiently smalilg®. In the limit
q?>—0, the smallest positive critical point again approaches 0 VIll. CONCLUSIONS AND DISCUSSION
as Eq.(7.13, whereas the two larger ones approach the two

critical points of the cas@=0. In the limiting cases? In this paper we have investigated the Hamiltonian dy-

=4m2/2, the smallest of the three positive critical points E?lgltglsn &r;()j(wgllf trk::: %?gnﬁiﬂc; ng;atsi\?gecr:)(;?rlglo;/crglm Ceot:]lc
once again approaches zero as , and the two larger “iey . - . o
9 bp &q3 9 stant. We first set up a classical Lorentzian Hamiltonian

e emica Pl et s ot local e heor in ich th rghtend f the spacelke hypersurtaces
changing number of critical points. ' is at the asymptotically anti—de Sltter infinity in an exterior

At any critical point, the value of the action can be written '[r?glz;;;riuﬁfgégfiglgﬁhloﬁ fzfggt?grr]ng\’/ ig‘;;g?eleof; ano?]f_
as degenerate Killing horizon. We then simplified the con-

WRﬁ(Rﬁ/ﬁz_ 1-3¢2R;, 2) straints by a cano_nical transformatiqn, and we explicitly re-
- (7.14  duced the theory into an unconstrained Hamiltonian theory
with two canonical pairs of degrees of freedom. The reduced
theory was quantized by Hamiltonian methods, and a grand
partition function for a thermodynamical grand canonical en-
semble was obtained by analytically continuing the Sehro

, i min Ringer picture time evolution operator to imaginary time and

Zier(B,0) can be approximated by explc,’], wherelc,  taking the trace. The analytic continuation at the bifurcation
stands for the value dfc, at the critical point that is the two-sphere was done in a way motivated by the smoothness
global minimum. As in Seq. VI, this is congistent with what ¢ Eyclidean black hole geometries as in R8EJ. A similar
one would have expected just from the existenceLofent-  gna1ysis with minor modifications to the boundary conditions
zian) black hole solutions under fixing the charge and thejeq o a partition function for a thermodynamical canonical
renormalized inverse Hawking temperature: such solutiongnsemble. Both the canonical ensemble and the grand ca-
exist precisely at the critical points of, , and the values of  ngpjcal ensemble turned out to be well defined, and we were
m andq at these critical points are just the mass and charggpie to find the conditions under which thgrand partition
parameters of the black hole. One may view the shifting offynction is dominated by a classical Euclidean solution.
the global minimum ofl ¢, from one local minimum to the  Both thermodynamical ensembles exhibited a phase tran-
other as a thermodynamical phase transition. sition. In the grand canonical ensemble the transition occurs

We end this section with some brief remarks on the theryhen the grand partition function ceases to be dominated by
modynamics in the canonical ensemble. Recall that the forany classical Euclidean black hole solution, in close analogy
mulas for'the ther_mal expectation values for the energy angiith what happens in the spherically symmetric vacuum ca-
the electric potential read nonical ensemble with a finite boundafy4,24,25. In the
canonical ensemble this kind of a phase transition can occur

18, = = =
o 3Ry T2+1-0°R;*

In the limit g— 0, this agrees with the expression given in
Ref.[35].
We thus see that for generic values of the parameter

(E)=— w (7.153 only in the limit of a vanishing charge, whereas for nonvan-
B ishing charge there occurs a phase transition in which the
dominating contribution to the partition function shifts from
1 9(InZygp) _ one classical Euclidean solution to another as the boundary
(6)=—8 aq (7.158 data changes. In either ensemble, whenevefdhend par-
tition function is dominated by a classical solution, one re-
When a critical point of o, dominates, we obtain covers for the entropy the Bekenstein-Hawking value of one
quarter of the horizon area.
(Ey~m, (7.169 The classical canonical transformation of Sec. Il is a rela-

tively straightforward generalization of the transformation
<¢>~i (7.168 that was found by Kuchain the spherically symmetric
Ry’ : vacuum Einstein theory under Kruskal-like boundary condi-
tions[44]. When the classical equations of mation hold, our
These are, respectively, just the mass and the electric potenew canonical coordinatdd andQ are simply the mass and
tial difference between the horizon and the infinity for thecharge parameters of the RNAdS solution. @gneralized
dominating classical solution. When the approximationBirkhoff's theorem, the spacetime is uniquely characterized
(7.169 is good, the positivity of théconstanig) heat capac- by these two parameters and the cosmological constant. The
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conjugate momentaPy and Pq, carry the information contribution to the mass from the gravitational binding en-
about the embedding of the spacelike hypersurface in thergy associated with the thermal energy, or from the electro-
spacetime and the electromagnetic gauge. Upon eliminatiogtatic binding energy associated with the charge. Such addi-
of the constraints, we saw in Sec. IV thRf, and P each tional, finite-size contributions were found to be present in
gives rise to one unconstrained momentum in the reduceth® finite-size ensembles considered in Rgfsl,24,26,34
Hamiltonian theory. These reduced momenta are global corD the canonical ensemble, the situation is similar with the
structs with no local geometrical meaning, and they are ast_her.rnal expectation values of the energy and the electric po-
sociated with the anchoring of the spacelike hypersurfaces &gntial (7.16. _ _

the infinity and at the bifurcation two-sphere. The electro- | N€ stabilizing effect of the negative cosmological con-
magnetic pair Q,Po) is quite closely analogous to the stant becomes fully apparent when one attempts to repeat the

gravitational pair ¥,Py). The third canonical pair, analysis with_a vanish_ing cosmolqgi_cz_al constant, replacing
the asymptotically anti—de Sitter infinity by an asymptoti-

R,PRr), is entirely gauge, and it completely disappears P . . L .
\(/vhenRihe constrair{tsgaregeliminated. pietely PP cally flat infinity. We shall outline this analysis in Appendix

Although we have here discussed the canonical transforﬁ' Wlh"e. therr? IS nohdlfﬁculty :cn hquantlzllng t|r|1e redgcedd
mation only under boundary conditions motivated by Our_amltonllar) theory, the trace of the anaytlcg y continue
thermodynamical goal, it would appear possible to use argut-'me evolution operator turns out to remain divergent even

ments similar to those in Refé44,55 to adapt this canonical after a reno.rmalization of the kind performed in Secs. VB
transformation to boundary conditions under which the@d VII. Neither the canonical ensemble nor the grand ca-

spacelike hypersurfaces extend from a left-hand side asyrmr)1_on|cal ensemble exists. For the canonical ensemble this

totically anti—de Sitter region to a right-hand side asymptoti-Chom:lusmr_1 might bed §urpbr|isinkghinl view of the O_bSﬁl’V;:':lltiOI’l
cally anti—de Sitter region, crossing the event horizons i at a _Relssner-Nor_ st black hole In asymptotically Tat
arbitrary ways. The forni3.15 taken by the constraints then space is stable against Hawking evaporation when one fixes

suggests that, after introducing electromagnetic variable§'® charge and the temperature at the infinity, provided the
analogous to the reparametrization clocksof Ref.[44], it mass and charge parameters of the hole satisfy the inequality

2 32 . ;
is possible to perform a canonical transformation that sep g°>3m” [7]. However, as we shall see in Appendix B, the

ratesQ into the charge densit®’ and the charge at thsay) ocal stability of a classical solution is not sufficient to guar-
left-hand side infinity, in analogy with the transformation antee the existence of a full thermodynamical ensemble.

that in Ref.[44] separated into the mass densitil’ and H Filrg'ally, Vc\j’.e .recall th(;"thf"fls c}he physicalhtempergturse_ of
the mass at the left-hand side infinity. Also, it appears pos: awking radiation Is redshiited to zero at the anti-de Sitter

sible to take the limit where the cosmological constant van—inﬁnity’ we followed Refs[18,35,3§ and defined a renor-

ishes and the asymptotically anti—de Sitter regions are rghalized temperature at infinity in terms of the rate at which
placed by asymptotically flat regiofist would further be the local Hawking temperature approaches zero. This defini-

possible to consider boundary conditions of the kind put for-lon led to physically reasonable conclu§|ons; in particular,
we recovered from the thermodynamical ensembles the

ward in Ref.[57]. We have not investigated these issues in . )
systematic fashion; however, we shall outline in Appendix %:fli(reli?i(sjtﬁlzé:'af\’g I\(/ilr:a?/erref)l:alt;gug] de tgliibggﬁhigtfrl(;%.r The

how our canonical transformation can be adapted to the limi ; 3 i .
and one might wish to replace it by something that can be

of a vanishing cosmological constant, under boundary con®. . . A
g g Y iven a more immediate physical justificatidivhat would

ditions that still keep the left end of the hypersurfaces at th ded is a b d di heth .
bifurcation two-sphere of a nondegenerate Killing horizon € needed IS a ettgr'urj ersta_n Ing as to whether asymptoti-
but replace the asymptotically anti—de Sitter falloff condi- cally anti—de Sitter infinity can in some sense be regarded as

a physically realizable system, rather than just as a math-

i he righ ically flat falloff itions.
tions at the right end by asymptotically flat falloff conditions gmatically elegant set of boundary conditions.

In this case, each classical solution is the exterior region of ; .
9 Note added in proofAfter this work was completed, we

nonextremal Reissner-Nordstnoblack hole. : . i
The thermodynamical results of Secs. VI and VII showbec"m1e aware of Ref§58—6q, which dIS'CUSS the D|rac.
guantization of four-dimensional spherically symmetric

that the stabilizing effect of the negative cosmological con-* : . ; ; .
g g g Einstein-Maxwell geometries and related dilatonic theories.

stant is highly similar to the stabilizing effect of a finite h Kin th : h | technical similariti
“box” with fixed surface area and fixed local temperature o guv;lc\)/\zorlly ese reterences has close technical simiianties

[14,24—26,34 One important difference is, however, that in
the asymptotically anti-de Sitter case various thermal expec-
tation values are more directly related to the parameters of
the dominant classical solutions. In the grand canonical en- We would like to thank Dieter Brill, David Brown, John
semble, Egs(6.9) show that the thermal expectation valuesFriedman, Domenico Giulini, Bei-Lok Hu, Werner Israel,
of energy and charge are simply the mass and charge param-
eters of the dominant classical solution: there is no additionat——
®An interesting possibility might be tassumethe Bekenstein-
Hawking entropy and then to derive the appropriate renormalized

SBefore the work reported in this paper was begun, we were intemperaturd38]. However, it does not appear clear how to adopt
formed by Karel Kucharthat he had generalized the canonical this as a starting point in a theory where the Bekenstein-Hawking
transformation of Ref[44] to the spherically symmetric Einstein- result is expected to be only an approximate one, in the domain
Maxwell system without a cosmological constdf6]. We thank  where the(grand partition function is dominated by a classical
Karel Kucharfor correspondence on this point. Euclidean solution.
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Ry. The only restriction for these parameters is

APPENDIX A: REISSNER ~NORDSTROM ~ANTI-de Ro>Rei(Q), (A5)
SITTER BLACK HOLE

. . . and the mass is then given by
In this appendix we recall some relevant properties of the

Reissner—Nordstro—anti-de Sitter(RNAdS) metric. We Ro [ R2 Q2
concentrate on the case where a nondegenerate event horizon M= 7(72 +1+ R7) . (AB6)
0

exists, and on the region exterior to this horizon.
In the curvature coordinated (R), the RNAdS metric is

. With Ry<R< 0, the metric(Ala) covers the region from
given by

the horizon to the asymptotically anti—de Sitter infinity. The
Penrose diagram can be found in R¢f%7,62.

ds*=—FdT?+F~'dR*+ R*dQ?, (Ala) J w62
APPENDIX B: REISSNER-NORDSTROM BLACK HOLE IN

2 . . .
whered()< is the metric on the unit two-sphere and ASYMPTOTICALLY ELAT SPACE

R? 2M Q2 In the main text we took the cosmological constant to be
atl-fjmtre (Alb)  strictly negative. In this appendix we shall outline the corre-
sponding classical and quantum-mechanical analyses in the
case where the cosmological constant vanishes. In the nota-
tion of the main text this means taking the limit—c. The
classical solutions are then not asymptotically anti—de Sitter
but asymptotically flat, and the falloff conditions gt~
must be modified to reflect this fact.

In the variables of Sec. Il, we retain the falloff conditions

F.=

T and R are called, respectively, the Killing time and the
curvature radius. The parametéris positive, and we take

the parameter andQ to be real. Together with the elec-
tromagnetic potential

A= ng (A2) (2.11) at r—0, but atr—o we introduce the new falloff
R conditions
the metric(Al) is a solution to the Einstein-Maxwell equa- AGD=1+M (Or 1 +0™(r 179, (Bla)
tions with the cosmological constart3/ 2 [40,43. The .
parametersM and Q are referred to, respectively, as the R(t,r)=r+0"(r ), (B1b)
mass and thdelectrig charge. The cas@=0 yields the o e
Schwarzschild—anti-de  Sitter metric, and the case Pa(t,r)=07"(r9), (B1o
Q=M=0 yields the metric orithe universal covering space o —1—e
of) anti—de Sitter spacks1]. Pr(t,r)=07(r ), (B1d)
The metric(Al) has an asymptotically anti—de Sitter in- . e
finity at R— o for all values of the parametef47]. We wish N(t,r) =N, (O)+0"(r ), (Ble)
to restrict the parameters so that the metric describes the ; e
exterior of a black hole with a nondegenerate horizon. This N(t,r)=0"(r"°), (B1f)
happens when the quartic polynomRdF(R) has a simple .1
positive rootR=R,, such thaf is positive forR>R,. The Itr)=07(r—""9, (Blg
> .

necessary and sufficient conditionNs>M .:(Q), where PL(t.r)= Q. (1) +O0%(r9). (B1h

Mon(Q): = ﬁwmm B(t.) =B, (1)+0°(r ), (B1)

where 0<e<1. For the metric quantities these conditions
X (V1+120Q//)2-1)*2 (A3)  are precisely those used in R¢#4], ensuring asymptotic

flatness. These conditions make the bulk acti@r) well
Note thatM is then necessarily positivdR, can now be defined, and they are preserved under the time evolution.
determined uniquely as the functid®,,(M,Q) of M and  Adding the boundary action
Q: for Q=0, Ryo(M,Q) is defined as the unique positive
solution to the equatiofr=0; for Q#0, Ryo{(M,Q) is de-
fined as the larger of the two positive solutions. In either
case, ifQ is considered fixedR,,(M,Q) is a monotonically
increasing function of M that takes the values Yields an action for a variational principle in whidi, ,
Reit( Q) <Rpod M, Q) <0 asMii(Q) <M <o, where N;Agt, @, , and®, are prescribed functions af Drop-

| RN N M 48000~ .0, (B2
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ping the last two terms in E¢B?2) yields an action for a

variational principle in whichd, and &, are free butQ,
and Qg are prescribed.
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Zed B.0= | ;ﬁdRhexp(—lc*), (B7b)

The canonical transformation of the main text can now bewherel, andl., are, respectively, given by dropping the
adapted to the present boundary conditions by simply takingerm proportional to” 2 from Eqgs.(6.3) and(7.4). 8 is now
the limit /— . A new action can be constructed as in Sec.interpreted as the inverse Hawking temperature at the infin-
Il C, the new falloff conditions only giving rise to minor ity, with no renormalization. However, both integrals in Egs.
technical modifications to the redefinition of the Lagrange(B7) are divergent because of the behaviol pfandic, at

multipliers. In the theory that prescribéus+ and®,, elimi-

nation of the constraints along the lines of Sec. IV yields th

reduced action

SIM, 4, PPNy N, @ ,5o]=J dt(pum+paa—h),
(B3)

where the reduced Hamiltonian is given by

h=—2RZNY+ N, m+ (D, — dy)q (B4)

with R,:=m+m?—qg?. The range of the variables is

0<m, g><m?. In the theory that prescribe®_ and Q,

one proceeds as in Sec. VIl to obtain the reduced action

Sc[m,pm;ﬁé”,N+;q]=f dt(ppm—hc),  (BS)
whereq is now regarded as an external parameter and

he=— ARZNM+ N, m. (B6)

largeR,;,. Thus, neither the canonical ensemble nor the grand
canonical ensemble exists under the asymptotically flat

eboundary conditions. In this respect, the inclusion of the

charge has, therefore, not made a qualitative difference from
the asymptotically flat vacuum cafg2].

The critical points ofl, andl, give again theLorent-
zian) classical solutions that have the inverse Hawking tem-
peratureB at infinity and the prescribed value of, respec-
tively, ¢ or q. The condition that, possesses critical points
is | ¢| < 1: when this condition is satisfied there exists exactly
one critical point, but this critical point is not a local extre-
mum. This reproduces the observations made by Davies in
Refs.[7,8] about charged black hole equilibria with fixed
¢, and reflects, in particular, the fact that a semiclassical
charged black hole under these boundary conditions is not
stable against Hawking evaporation.

The condition thatl., possesses critical points is
,3/|q|>67r\/§, and when the inequality is genuine, there ex-
ist two critical points. The critical point with the smaller
(largep value ofRy, is a local minimum(maximum, respec-
tively). The local minimum satisfieg?>2m?, and corre-
sponds to the classical solution that DaViggshowed to be
stable against Hawking evaporation under these boundary

Quantization of the two reduced theories proceeds as iBongitions (see also Refs[63—65). While the thermody-
the main text. For the renormalized trace of the analytically,amical stability of this semiclassical solution is reflected in

continued time evolution operator, we obtain formally

zren<ﬂ,¢>=NfR>|q72dthqexrx—l*>. (B74)

its being a local minimum of our., [25], the divergence of
the integral in Eq(B7b) demonstrates that this local stability
is not sufficient to guarantee the existence of a full thermo-
dynamical canonical ensemble.
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