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Hamiltonian thermodynamics of the Reissner–Nordström–anti-de Sitter black hole
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We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric Einstein-Maxwell
spacetimes with a negative cosmological constant. We impose boundary conditions that enforce every classic
solution to be an exterior region of a Reissner–Nordstro¨m–anti-de Sitter black hole with a nondegenerate
Killing horizon, with the spacelike hypersurfaces extending from the horizon bifurcation two-sphere to the
asymptotically anti–de Sitter infinity. The constraints are simplified by a canonical transformation, which
generalizes that given by Kucharˇ in the spherically symmetric vacuum Einstein theory, and the theory is
reduced to its true dynamical degrees of freedom. After quantization, the grand partition function of a ther-
modynamical grand canonical ensemble is obtained by analytically continuing the Lorentzian time evolution
operator to imaginary time and taking the trace. A similar analysis under slightly modified boundary conditions
leads to the partition function of a thermodynamical canonical ensemble. The thermodynamics in each en
semble is analyzed, and the conditions that the~grand! partition function be dominated by a classical Euclidean
black hole solution are found. When these conditions are satisfied, we recover, in particular, the Bekenstein
Hawking entropy. The limit of a vanishing cosmological constant is briefly discussed.
@S0556-2821~96!01114-9#
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I. INTRODUCTION

Hawking’s celebrated result of black hole radiation@1#
and related developments@2–4# made it possible to conside
thermodynamical equilibrium systems involving black ho
in the manner first anticipated by Bekenstein@5,6#. At a
semiclassical, ‘‘phenomenological,’’ level, a black hole the
modynamical equilibrium system can be introduced by s
ply immersing a radiating black hole in a heat bath such t
the outgoing Hawking radiation balances the radiation t
falls in from the bath@7–11#. At a deeper level, one aspire
to construct a full thermodynamical equilibrium ensemble
starting from a quantum theory of gravity for black-hole-ty
geometries@12–17#. For reviews, see, for example, Ref
@8,16,18–20#.

At the semiclassical level, the thermodynamical equil
rium configurations involving black holes tend to be unsta
against thermal fluctuations@7,8#. The classic example is
Schwarzschild black hole in equilibrium with an asympto
cally flat heat bath, in the approximation where the ba
reaction of the radiation on the geometry is neglected:
heat capacity in this instance is2(8pT2)21, whereT is the
temperature measured at the infinity, and the fact that
heat capacity is negative indicates thermodynamical insta
ity. While such instabilities are not unexpected in se
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gravitating systems, they do pose an obstacle to construct
thermodynamical equilibrium ensembles from quantu
gravity. This is because the existence of a thermodynami
ensemble implies the positivity of certain response functio
associated with that ensemble@21#. For example, in the ca-
nonical ensemble the heat capacity is necessarily positi
consequently, a canonical ensemble of the usual kind do
not appear to exist for Schwarzschild black holes in an a
ymptotically flat space@22#.

To construct a thermodynamical ensemble appropriate
black hole geometries from a quantum theory of gravity, on
thus needs to choose the boundary conditions for the
semble in a judicious manner, motivated by the stability
the corresponding semiclassical equilibrium situations. O
possibility is to replace an asymptotic infinity by a finite
‘‘box’’ at which the local temperature is then fixed@14,23–
34#. The possibility on which we shall concentrate in thi
paper is to include a negative cosmological constant@18,35–
39#.

A negative cosmological constant makes classical bla
hole solutions asymptotically anti–de Sitter. We shall co
sider spherically symmetric spacetimes, and as the only m
ter field we include the spherically symmetric Maxwell field
All the relevant classical solutions then belong to th
Reissner–Nordstro¨m–anti-de Sitter~RNAdS! family @40–
43#. The temperature of the Hawking radiation is redshifte
to zero at the asymptotically anti–de Sitter infinity, but from
the rate at which the local Hawking temperature approach
zero one can extract a ‘‘renormalized’’ Hawking tempera
ture, and this renormalized Hawking temperature can then
taken as one fixed quantity in the thermodynamical e
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sembles@18,35,36,38#. We shall consider both the canonic
ensemble, in which the electric charge is fixed, and the gr
canonical ensemble, in which the electric potential differen
between the event horizon and the infinity is fixed.

To quantize the theory and to build the equilibrium e
sembles, we shall adapt the method introduced in Ref.@32#
in the context of spherically symmetric vacuum geometr
in the presence of a finite boundary. We shall first set u
classical Lorentzian Hamiltonian theory in which, on t
classical solutions, the right end of the spacelike hypers
faces is at the asymptotically anti–de Sitter infinity in
exterior region of a black hole spacetime, and the left end
the hypersurfaces is at the bifurcation two-sphere of a n
degenerate Killing horizon. We then canonically quant
this theory, and obtain the thermodynamical~grand! partition
function by suitably continuing the Schro¨dinger picture time
evolution operator to imaginary time and taking the trace
crucial input is how to handle the analytic continuation at
bifurcation two-sphere. As in Ref.@32#, we shall see that a
continuation motivated by smoothness of Euclidean bl
hole geometries yields a~grand! partition function that is in
agreement with that obtained via path integral methods.

To implement the method used in Ref.@32#, one must be
able to canonically quantize the Lorentzian theory in so
practical fashion. In Ref.@32# this was achieved by usin
canonical variables that were first introduced by Kucharˇ un-
der asymptotically flat, Kruskal-like boundary condition
@44#. In these variables the constraints of the vacuum the
become exceedingly simple, and the classical Hamilton
theory can be explicitly reduced into an unconstrain
Hamiltonian theory with just one canonical pair of degrees
freedom. We shall show that an analogous set of canon
variables exists for our system, and the classical Hamilton
theory can again be explicitly reduced into an unconstrai
Hamiltonian theory. Under boundary conditions tailored
the grand canonical ensemble, the reduced Lorent
Hamiltonian theory hastwo canonical pairs of degrees o
freedom;1 under boundary conditions tailored to the cano
cal ensemble, the reduced Lorentzian Hamiltonian theory
just one pair of canonical degrees of freedom. Using th
variables, it will be possible to construct a quantum the
and a~grand! partition function in close analogy with Re
@32#.

It will turn out that both the canonical ensemble and t
grand canonical ensemble for our system are well defined
particular, the appropriate thermodynamical response fu
tions are positive. We shall also be able to give the con
tions under which the~grand! partition function is dominated
by a classical Euclidean solution. The grand canonical
semble exhibits a transition from a region where a class
solution dominates to a region where no classical solu
dominates, in close analogy with what happens with
spherically symmetric boxed vacuum canonical ensem
@24,25#. As in Refs.@24,25#, one may see this as evidence f
a phase transition between a black hole sector and a t

1The conclusion of two canonical pairs of degrees of freedom
the spherically symmetric Einstein-Maxwell system with a cosm
logical constant was previously reached, under a different se
boundary conditions, in Ref.@45#.
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logically different ‘‘hot anti–de Sitter space’’ sector. In the
canonical ensemble we find evidence for this kind of a pha
transition only in the special case when the charge vanish
When the charge is nonvanishing, there occurs a differ
kind of phase transition in which the dominating contributio
to the partition function shifts from one classical solution t
another as the boundary data changes.

The rest of the paper is as follows. In Sec. II we set up
classical Hamiltonian theory under boundary conditions ta
lored to the grand canonical thermodynamical ensemb
paying special attention to the falloff conditions at the a
ymptotically anti–de Sitter infinity@46,47#. In particular, we
choose to fix the values of the electric potential at the infini
and at the horizon, in a manner that will be made precise
terms of the falloff conditions. In Sec. III we perform the
canonical transformation, and in Sec. IV the constraints a
eliminated and the theory is reduced to its true dynamic
degrees of freedom. In Sec. V we quantize the theory a
obtain the grand partition function of the thermodynamic
grand canonical ensemble. The thermodynamics in the gr
canonical ensemble is analyzed in Sec. VI. Section VII ou
lines the corresponding classical, quantum-mechanical, a
thermodynamical analyses under boundary conditions t
fix the charge instead of the electric potential, and thus le
to the thermodynamical canonical ensemble.

The results are summarized and discussed in Sec. V
Some facts about the RNAdS solutions are collected in A
pendix A. Finally, Appendix B outlines the classical Hamil
tonian analysis and the quantization of the reduced Ham
tonian theory in the case where the cosmological const
vanishes and the asymptotically anti–de Sitter falloff cond
tions are replaced by asymptotically flat falloff conditions
With asymptotic flatness, neither the partition function n
the grand partition function turns out to be well defined, an
we recover neither a canonical ensemble nor a grand can
cal ensemble.

II. CANONICAL FORMULATION
IN THE METRIC VARIABLES

In this section we present a Hamiltonian formulation o
spherically symmetric electrovacuum spacetimes with
negative cosmological constant, with boundary conditio
appropriate for the exterior of a RNAdS black hole with
nondegenerate horizon. Some relevant properties of
RNAdS metric are reviewed in Appendix A.

We consider the general spherically symmetric Arnowit
Deser-Misner~ADM ! metric

ds252N2dt21L2~dr1Nrdt!21R2dV2, ~2.1!

where dV2 is the metric on the unit two-sphere, andN,
Nr , L, andR are functions oft andr only. The electromag-
netic potential is taken to be described by the spherica
symmetric one-form

A5Gdr1Fdt, ~2.2!

whereG andF are functions oft and r only. The fact that
this one-form is globally defined makes the electromagne
bundle trivial, and will preclude the black hole from having
magnetic charge. The coordinater takes the semi-infinite

for
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range@0,̀ ). Unless otherwise stated, we shall assume bo
the spatial metric and the spacetime metric to be nondeg
erate. In particular,L, R, andN are taken to be positive. We
shall work in natural units,\5c5G51.

The action of the Einstein-Maxwell theory with a negativ
cosmological constant is

S5
1

16pE d4xA2 ~4!g~ ~4!R16l 222FmnFmn!

1~boundary terms!, ~2.3!

where(4)g is the determinant of the four-dimensional metric
(4)R is the four-dimensional Ricci scalar, and
Fmn5]mAn2]nAm is the electromagnetic field tensor. The
cosmological constant has been written as23l 22, where
l .0. Inserting the spherically symmetric fields~2.1! and
~2.2! and integrating over the two-sphere we obtain, up
boundary terms, the action

SS@L,R,G;N,Nr ,F#5E dtE
0

`

dr„2N21$R@2L̇

1~LNr !8#~2Ṙ1R8Nr !1 1
2L~2Ṙ

1R8Nr !2%1 1
2N

21L21R2~ Ġ2F8!2

1N~L22RR8L82L21RR9

2 1
2L21R821 1

2L1 3
2 l

22LR2!….

~2.4!

The equations of motion derived from local variations of Eq
~2.4! are the full Einstein-Maxwell equations for the spher
cally symmetric fields ~2.1! and ~2.2!. A generalized
Birkhoff’s theorem can be proven using the same techniqu
as in the case of a vanishing cosmological constant@48#:
every classical solution is locally either a member of th
extended RNAdS family~see Appendix A!, or a spacetime
that generalizes the Bertotti-Robinson solution to accomm
date a negative cosmological constant@41–43,48#. We shall
address the boundary conditions and boundary terms that
needed to make the variational principle globally well de
fined after passing to the Hamiltonian formulation.

The momenta conjugate to the configuration variabl
L, R, andG are

PL52N21R~Ṙ2R8Nr !, ~2.5a!

PR52N21$L~Ṙ2R8Nr !1R@L̇2~LNr !8#%, ~2.5b!

PG5N21L21R2~ Ġ2F8!. ~2.5c!

A Legendre transformation gives the Hamiltonian action

SS@L,R,G,PL ,PR ,PG ;N,N
r ,F̃#5E dtE

0

`

dr~PLL̇1PRṘ

1PGĠ2NH

2NrHr2F̃G),
~2.6!
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where the super-Hamiltonian constraintH, the radial super-
momentum constraintHr , and the Gauss law constraintG
are given by

H52R21PRPL1 1
2R

22L~PL
2 1PG

2 !1L21RR9

2L22RR8L81 1
2L21R822 1

2L2 3
2 l

22LR2,

~2.7a!

Hr5PRR82LPL8 2GPG8 , ~2.7b!

G52PG8 . ~2.7c!

We have written the electric potentialF in terms of the
quantity

F̃:5F2NrG, ~2.8!

which now acts as the Lagrange multiplier associated with
the Gauss constraint in Eq.~2.6!. It would be possible to
proceed retainingF as the Lagrange multiplier, and the su-
permomentum constraint would then be the same as without
the electromagnetic field~see, for example, Ref.@49#!. How-
ever, usingF̃ has the technical advantage that the super-
momentum constraint~2.7b! generates spatial diffeomor-
phisms in both the gravitational and electromagnetic
variables. This fact will prove useful in Sec. III.

The Hamiltonian equations of motion are obtained from
local variations of Eq.~2.6!. The constraint equations are

H50, ~2.9a!

Hr50, ~2.9b!

G50, ~2.9c!

and the dynamical equations of motion read

L̇5N~R22LPL2R21PR!1~NrL!8, ~2.10a!

Ṙ52NR21PL1NrR8, ~2.10b!

Ġ5NLR22PG1~NrG!81F̃8, ~2.10c!

ṖL5 1
2N@2R22~PL

2 1PG
2 !2~L21R8!21113l 22R2#

2L22N8RR81NrPL8 , ~2.10d!

ṖR5N@LR23~PL
2 1PG

2 !2R22PLPR2~L21R8!8

13l 22LR#2~L21N8R!81~NrPR!8, ~2.10e!

ṖG5NrPG8 . ~2.10f!

It is easy to verify that the Poisson brackets algebra of the
constraints closes, and we thus have a first class constraine
system@50#.

We now wish to adopt boundary conditions that enforce
every classical solution to be an exterior region of a RNAdS
spacetime with a nondegenerate horizon~see Appendix A!,
such that the constantt hypersurfaces begin at the horizon
bifurcation two-sphere atr50 and reach the asymptotically
anti–de Sitter infinity asr→`.
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Consider first the left end of the hypersurfaces. Atr→0,
we adopt the conditions

L~ t,r !5L0~ t !1O~r 2!, ~2.11a!

R~ t,r !5R0~ t !1R2~ t !r
21O~r 4!, ~2.11b!

PL~ t,r !5O~r 3!, ~2.11c!

PR~ t,r !5O~r !, ~2.11d!

N~ t,r !5N1~ t !r1O~r 3!, ~2.11e!

Nr~ t,r !5N1
r ~ t !r1O~r 3!, ~2.11f!

G~ t,r !5O~r !, ~2.11g!

PG~ t,r !5Q0~ t !1Q2~ t !r
21O~r 4!, ~2.11h!

F̃~ t,r !5F̃0~ t !1O~r 2!, ~2.11i!

where L0 and R0 are positive, andN1>0. Here,O(r n)
stands for a term whose magnitude atr→0 is bounded by
r n times a constant, and whosekth derivative atr→0 is
similarly bounded byr n2k times a constant for 1<k<n. It
is straightforward to verify that these falloff conditions ar
consistent with the constraintsH5Hr5G50, and that they
are preserved by the time evolution equations. The me
falloff conditions ~2.11a!–~2.11f!, which are identical to
those introduced in Ref.@32# in the context of the Schwarzs-
child black hole, guarantee that the classical solutions hav
nondegenerate horizon, and that the constantt hypersurfaces
begin atr50 at a horizon bifurcation two-sphere in a man
ner asymptotic to hypersurfaces of constant Killing time2

The coordinates become thus singular atr→0, but this sin-
gularity is quite precisely controlled. In particular, on a cla
sical solution the future unit normal to a constantt hypersur-
face defines atr→0 a future timelike unit vectorna(t) at the
bifurcation two-sphere, and the evolution of the constant
hypersurfaces boosts this vector according to

na~ t1!na~ t2!52coshS E
t1

t2
L0

21~ t !N1~ t !dtD . ~2.12!

The falloff conditions ~2.11g!–~2.11i! for the electromag-
netic field variables are motivated by our thermodynamic
goal, and they will be discussed further in Sec. V.

Consider then the right end of the hypersurfaces.
r→`, we assume that the variables have asymptotic exp
sions in integer powers of (1/r ), with the leading order be-
havior

L~ t,r !5l r212 1
2 l

3r231l~ t !l 3r241O`~r25!,

~2.13a!

2The text in Ref.@32# contains at this point a minor inaccuracy
Equations~2.6a! and ~2.6b! of Ref. @32# @our Eqs. ~2.11a! and
~2.11b!# are not sufficient to ensure that the hypersurfaces end at
horizon bifurcation two-sphere, but, for example, the set~2.6a!–
~2.6c! of Ref. @32# @our Eqs.~2.11a!–~2.11c!# is.
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R~ t,r !5r1l 2r~ t !r221O`~r23!, ~2.13b!

PL~ t,r !5O`~r22!, ~2.13c!

PR~ t,r !5O`~r24!, ~2.13d!

N~ t,r !5L21R8@Ñ1~ t !1O`~r25!#, ~2.13e!

Nr~ t,r !5O`~r22!, ~2.13f!

G~ t,r !5O`~r22!, ~2.13g!

PG~ t,r !5Q1~ t !1O`~r21!, ~2.13h!

F̃~ t,r !5F̃1~ t !1O`~r21!, ~2.13i!

where Ñ1(t).0. O`(r2n) denotes a term that falls off at
infinity as r2n, and whose derivatives with respect tor fall
off accordingly asr2n2k, k51,2, . . . . It is, again, straight-
forward to verify that these falloff conditions are consisten
with the constraints and that they are preserved by the tim
evolution equations. Comparison with Ref.@47# shows that
the metric is asymptotically anti–de Sitter, with the constan
t hypersurfaces being asymptotic to hypersurfaces of con
stant Killing time, andÑ1(t) gives the rate at which the
Killing time evolves with respect tot at the infinity. Note
that the lapse-functionN diverges at the infinity for any non-
zero value ofÑ(t). For future use, we define the quantity

M1~ t !:5l~ t !13r~ t !. ~2.14!

When the equations of motion hold,M1(t) is independent of
t, and it is equal to the mass parameter of the RNAdS metr
~A1!.

Taken together, the falloff conditions~2.11! and ~2.13!
achieve our aim. Every classical solution is an exterior re
gion of a RNAdS spacetime with a nondegenerate event h
rizon, such that the constantt hypersurfaces begin at the
horizon bifurcation two-sphere and reach the asymptoticall
anti–de Sitter infinity. In particular, the classical solutions
satisfyR2.0.3

It would be possible to replace Eqs.~2.13a! and ~2.13b!
by

L~ t,r !5l r212 1
2 l

3r231O`~r24!, ~2.15a!

R~ t,r !5r1O`~r22!, ~2.15b!

and then drop the assumption that the expansion proceeds
integer powers of (1/r ) beyond the order shown, provided
one makes more precise assumptions about what is meant
the symbol O`. Alternatively, it would be possible to
strengthen the falloff conditions to read

.

the

3The falloff conditions~2.11! are compatible with either sign of
R2 . The caseR2,0 would correspond to the bifurcation two-
sphere of an inner horizon, which is excluded from the classica
solutions only after the asymptotically anti–de Sitter falloff has
been invoked atr→`. If desired, the requirementR2.0 could, of
course, be already added to the conditions~2.11!.
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L~ t,r !5l r212 1
2 l

3r231l~ t !l 3r241O`~r242e!,

~2.16a!

R~ t,r !5r1O`~r222e!, ~2.16b!

where 0,e<1, with similar changes in the rest of Eqs
~2.13!. This would be analogous to the falloff condition
adopted for the asymptotically flat Schwarzschild case
Ref. @44#, in that the value of the mass~2.14! could then be
read solely from the expansion~2.16a! of L. One might also
consider writing the theory in terms of a lapse function th
has been rescaled by the factorL21R8: by Eq. ~2.13e!, the
falloff of the new lapse atr→` would then be independen
of the canonical variables. For concreteness, we shall adh
to the theory as written above.

We can now write an action principle compatible with ou
falloff conditions. Consider the total action

S@L,R,G,PL ,PR ,PG ;N,N
r ,F̃#

5SS@L,R,G,PL ,PR ,PG ;N,N
r ,F̃#

1S]S@L,R,Q0 ,Q1 ;N,F̃0 ,F̃1#, ~2.17!

where the boundary action is

S]S@L,R,Q0 ,Q1 ;N,F̃0 ,F̃1#5E dt~ 1
2R0

2N1L0
212Ñ1M1

1F̃0Q02F̃1Q1!. ~2.18!

The total action~2.17! is clearly well defined under our
boundary conditions. Its variation contains a volume ter
proportional to the equations of motion, boundary term
from the initial and final hypersurfaces proportional todL,
dR, anddG, and boundary terms fromr50 andr5` given
by

E dt@ 1
2R0

2d~N1L0
21!2M1dÑ11Q0dF̃02Q1dF̃1#.

~2.19!

The variation thus gives the desired classical equations
motion provided we fix, in addition to the initial and fina
values ofL, R, and G, also the quantitiesN1L0

21 , Ñ1 ,
F̃0 , andF̃1 . On a classical solution all these quantities ha
a clear geometrical interpretation.N1L0

21 gives via Eq.
~2.12! the evolution of the unit normal to the constantt hy-
persurface at the bifurcation two-sphere, andÑ1 gives the
evolution of the Killing time at the infinity.F̃0 andF̃1 de-
scribe the electromagnetic gauge in a way that will becom
more transparent in Sec. IV. Note from Eq.~2.11i! that when
a classical solution is written in coordinates that are regu
at the bifurcation two-sphere, the electromagnetic poten
will be regular at the bifurcation two-sphere only ifF̃050.

III. CANONICAL TRANSFORMATION

In this section we perform a canonical transformatio
which generalizes that given in Ref.@44# for the spherically
symmetric vacuum Einstein theory. Following Ref.@44#, we
first examine how the variables appearing in the action~2.17!
.
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carry the information about the geometry of the classica
solution ~A1!. We then use this information as a guide for
finding the canonical transformation.

A. Reconstruction

Under our boundary conditions, every classical solution i
an exterior region of a RNAdS spacetime with a nondegen
erate Killing horizon~see Appendix A!. We now assume that
we are given the canonical data (L,R,G,PL ,PR ,PG) on a
spacelike hypersurface embedded in such a RNAdS spac
time. We wish to recover from the canonical data the mas
and charge parameters of the spacetime, the informatio
about the embedding of the hypersurface in the spacetim
and the information about the electromagnetic gauge.

Consider first the charge. The equations of motion impl
thatPG is independent of botht and r . It is easily seen that
in the curvature coordinates~A1!, the value ofPG is just the
chargeQ. As PG is unchanged by the gauge transformation
generated by the constraints, it follows that in any gauge

Q5PG. ~3.1!

Consider then the mass. The reconstruction of the fun
tion F appearing in the metric~A1a! proceeds exactly as in
Ref. @44#, with the result

F5SR8

L D 22S PL

R D 2. ~3.2!

From Eqs.~A1b! and~3.1!, we find for the mass the expres-
sion

M5
R

2 SR2

l 2 111
PG
2

R2 2F D , ~3.3!

whereF is understood to be given by Eq.~3.2!.
Consider then the embedding. By repeating the steps

Ref. @44#, we obtain

2T85R21F21LPL, ~3.4!

which determines the embedding up to an overall additiv
constant inT. To determine the value of the additive con-
stant, one needs to know the value ofT at one point on the
hypersurface.

Consider finally the electromagnetic gauge. By Eq.~A2!,
there exists a functionj(t,r ) such that

A5R21QdT1dj5~R21QT81j8!dr1~R21QṪ1 j̇ !dt.
~3.5!

From Eqs.~2.2!, ~3.1!, and~3.4! we then obtain

j85G1R22F21LPLPG, ~3.6!

which determines the value ofj on the hypersurface up to an
additive constant.

B. Transformation

We have seen that when the equations of motion hold, th
quantities defined by Eqs.~3.1!–~3.4! have a transparent geo-
metrical meaning. We now promote these equations int
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definitions of functions on the phase space, valid even wh
the equations of motion do not hold. Our aim is to comple
the set of functions into a set that constitutes a canonic
chart.

We shall from now on assume that the quantityR2 in Eq.
~2.11b! is positive. As noted in Sec. II, this is always the cas
for our classical solutions.

The functionsM ~3.3! andQ ~3.1! Poisson commute with
each other. The function2T8 ~3.4! Poisson commutes with
Q and is canonically conjugate toM . This suggests looking
for a canonical transformation such thatM andQ become
two new coordinates, and2T8 becomes the momentum con
jugate toM . As in the Schwarzschild case@44#, the function
R:5R Poisson commutes withM , Q, and2T8, and pro-
vides, therefore, a candidate for a new canonical coordina
The crucial issue then is whether one can find momenta co
jugate toQ andR such that the transformation is canonica

A necessary condition for the prospective new momen
arises from the observation that the super-momentum co
straint ~2.7b! generates spatial diffeomorphisms in all th
variables. SinceM , Q, andR are spatial scalars, the expres
sion for Hr in the new variables must be
PMM 81PQQ81PRR8. Equating this with Eq.~2.7b! and
substituting forM and PM52T8 their expressions from
Eqs. ~3.3! and ~3.4! gives only one equation for the two
unknownsPQ andPR , but the structure of the equation as
linear combination ofR8 andPG8 suggests setting the coeffi-
cients ofR8 andPG8 individually to 0. These considerations
suggest the transformation

M :5 1
2R~R2l 22111PG

2R222F !, ~3.7a!

PM :5R21F21LPL , ~3.7b!

R:5R, ~3.7c!

PR :5PR2 1
2R

21LPL2 1
2R

21F21LPL

2R21L22F21@~LPL!8~RR8!2~LPL!~RR8!8#

1 1
2R

21F21LPL~PG
2R2223R3l 22!, ~3.7d!

Q:5PG , ~3.7e!

PQ :52G2R22F21LPLPG , ~3.7f!

whereF is given by Eq.~3.2!. The analogy between the pairs
(M ,PM) and (Q,PQ) becomes manifest by observing from
Eq. ~3.6! that on a classical solution,PQ carries the informa-
tion about the electromagnetic gauge viaPQ52j8.

It is now straightforward to demonstrate that the transfo
mation~3.7! is indeed canonical. We begin with the identity

PLdL1PRdR1PGdG2PMdM2PRdR2PQdQ

5S 1
2RdRlnU RR81LPL

RR82LPL
U D 8

1dS GPG1LPL1 1
2RR8lnU RR82LPL

RR81LPL
U D , ~3.8!
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and integrate both sides with respect tor from r50 to
r5`. The first term on the right-hand side~RHS! gives
substitution terms fromr50 to r5` that vanish by virtue of
our falloff conditions, and we obtain

E
0

`

dr~PLdL1PRdR1PGdG!2E
0

`

~PMdM1PRdR

1PQdQ!5dv@L,R,G,PL ,PG#, ~3.9!

where

v@L,R,G,PL ,PG#5E
0

`

drS GPG1LPL

1 1
2 RR8lnU RR82LPL

RR81LRL
U D . ~3.10!

The functionalv@L,R,G,PL ,PG# is well defined by virtue
of the falloff conditions. Equations~3.9! and ~3.10! show
that the Liouville forms of the old and new variables differ
only by an exact form, and the transformation is thus canoni-
cal.

The new variables have well-defined falloff properties at
r50 andr→`. At r50, Eqs.~2.11! imply

F~ t,r !54R2
2L0

22r 21O~r 4! ~3.11!

and

M ~ t,r !5M0~ t !1M2~ t !r
21O~r 4!, ~3.12a!

R~ t,r !5R0~ t !1R2~ t !r
21O~r 4!, ~3.12b!

Q~ t,r !5Q0~ t !1Q2~ t !r
21O~r 4!, ~3.12c!

PM~ t,r !5O~r !, ~3.12d!

PR~ t,r !5O~r !, ~3.12e!

PQ~ t,r !5O~r !, ~3.12f!

where

M05
1
2 R0~R0

2l 22111Q0
2R0

22!, ~3.13a!

M25
1
2 R2~3R0

2l 22112Q0
2R0

2224R0R2L0
22!

1Q0Q2R0
21 . ~3.13b!

At r→`, Eqs.~2.13! imply

M ~ t,r !5M1~ t !1O`~r21!, ~3.14a!

R~ t,r !5r1l 2r~ t !r221O`~r23!, ~3.14b!

Q~ t,r !5Q1~ t !1O~r21!, ~3.14c!

PM~ t,r !5O`~r26!, ~3.14d!

PR~ t,r !5O`~r24!, ~3.14e!

PQ~ t,r !5O`~r22!, ~3.14f!
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whereM1(t) is given by Eq.~2.14!.
The canonical transformation~3.7! becomes singular

whenF50. Under our boundary conditions the classical s
lutions haveF.0 for r.0. At the limit r→0, F approaches
zero according to Eq.~3.11!, but Eqs.~3.7! have still a well-
defined limit obeying Eqs.~3.12!. Our canonical transforma-
tion is, therefore, well defined and differentiable near t
classical solutions, and similarly, the inverse transformati
is well defined and differentiable near the classical solutio
From now on we shall assume that we are always in a nei
borhood of the classical solutions such thatF.0 holds for
r.0.

C. Action

It is possible to write an action in the new variables b
simply re-expressing the constraints~2.7! in terms of the new
coordinates and momenta. A more transparent action can
found if we exercise the freedom to redefine the Lagran
multipliers.

The constraint terms in the bulk action~2.6! take the form

NH1NrHr1F̃G5NMM 81NRPR1NQQ8, ~3.15!

where

NM52NF21L21R81NrR21F21LPL , ~3.16a!

NR52NR21PL1NrR8, ~3.16b!

NQ5NR21F21L21R8PG2Nr~G1R22F21LPLPG!2F̃.
~3.16c!

When viewed as a linear transformation from (N,Nr ,F̃) to
(NM,NR,NQ), Eqs. ~3.16! are nonsingular forr.0. This
suggests that we could take the constraint terms in the n
bulk action to be those on the RHS of Eq.~3.15!, with
NM, NR, andNQ as independent Lagrange multipliers. A
r→`, this would be satisfactory: Eqs.~3.16! imply the
asymptotic behavior

NM~ t,r !52Ñ1~ t !1O`~r25!, ~3.17a!

NR~ t,r !5O`~r22!, ~3.17b!

NQ~ t,r !52F̃1~ t !1O`~r21!, ~3.17c!

and one could then fixÑ1(t) and F̃1(t) as in Sec. II after
adding the boundary action

2E dt~Ñ1M11F̃1Q1!. ~3.18!

However, atr50 we have

NM~ t,r !52 1
2 N1L0R2

211O~r 2!, ~3.19a!

NR~ t,r !5O~r 2!, ~3.19b!

NQ~ t,r !52F̃0~ t !1 1
2 N1L0Q0R2

21R0
211O~r 2!,

~3.19c!
-
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which says that fixingNM andNQ at r50 to values that are
independent of the canonical variables is not equivalent t
fixing N1L0

21 and F̃0 to values that are independent of the
canonical variables. We, therefore, need to redefineNM and
NQ nearr50, without affecting their behavior atr→`.

To proceed, we make two assumptions. First, we assum
M0.M crit(Q0), where the functionM crit is defined in Ap-
pendix A. Second, we regard Eq.~3.13a! as definingR0 in
terms ofM0 andQ0 asR05Rhor(M0 ,Q0), where the func-
tion Rhor is defined in Appendix A. As discussed in Appen-
dix A, these assumptions are always true for our classic
solutions, and they, therefore, merely tighten the neighbo
hood of the classical solutions in whch the field variable
may take values. For future use, we note that these assum
tions imply 3R0

2l 22112Q0
2R0

22.0, and the variation of
R0 takes the form

dR052~3R0
2l 22112Q0

2R0
22!21~dM02R0

21Q0dQ0!.

~3.20!

Define now the quantitiesÑ and ÑQ by

NM52ÑM@~12g!12gR0~3R0
2l 22112Q0

2R0
22!21#,

~3.21a!

NQ52ÑMgQ0~3R0
2l 22112Q0

2R0
22!212ÑQ, ~3.21b!

whereg(r ) is a smooth decreasing function that vanishes a
r→` asO`(r25), and approaches the value 1 atr→0 as
g(r )511O(r 2). Equations~3.21! then define a nonsingular
linear transformation from (NM,NR) to (ÑM,ÑQ). The as-
ymptotic behavior atr→` is

ÑM~ t,r !5Ñ1~ t !1O`~r25!, ~3.22a!

ÑQ~ t,r !5F̃1~ t !1O`~r21!, ~3.22b!

and the asymptotic behavior atr50 is

ÑM~ t,r !5Ñ0
M~ t !1O~r 2!, ~3.23a!

ÑQ~ t,r !5F̃0~ t !1O~r 2!, ~3.23b!

where

Ñ0
M5 1

4 N1L0R0
21R2

21~3R0
2l 22112Q0

2R0
22!.

~3.24!

When the constraintsM 850 andQ850 hold, Eqs.~3.12a!,
~3.12c!, and~3.13b! show that

Ñ0
M 5

Q850
M850

N1L0
21 . ~3.25!

Thus, when the constraints hold, fixingÑM and ÑQ at r50
is equivalent to fixingN1L0

21 andF̃0 . We, therefore, adopt
ÑM, NR, and ÑQ as a set of new independent Lagrange
multipliers.

The bulk action takes the form
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SS@M ,R,Q,PM ,PR ,PQ ;Ñ
M,NR,ÑQ#

5E dtE
0

`

dr$~PMṀ

1PRṘ1PQQ̇1ÑQQ82NRPR1ÑM@~12g!M 8

12g~3R0
2l 22112Q0

2R0
22!21~R0M 82Q0Q8!#%.

~3.26!

The total action is taken to be

S@M ,R,Q,PM ,PR ,PQ ;Ñ
M,NR,ÑQ#

5SS@M ,R,Q,PM ,PR ,PQ ;Ñ
M,NR,ÑQ#

1S]S@M0 ,M1 ,Q0 ,Q1 ;Ñ1 ,F̃0 ,F̃1#, ~3.27!

where

S]S@M0 ,M1 ,Q0 ,Q1 ;Ñ1 ,F̃0 ,F̃1#

5E dt~ 1
2R0

2Ñ0
M2Ñ1M11F̃0Q02F̃1Q1!. ~3.28!

The quantities to be varied independently areM , R, Q,
PM , PR , PQ , Ñ

M, NR, and ÑQ, and the boundary condi-
tions for the new Lagrange multipliers are given by Eq
~3.17b!, ~3.19b!, ~3.22!, and~3.23!. The volume term in the
variation of Eq.~3.27! is proportional to the equations o
motion

Ṁ50, ~3.29a!

Ṙ5NR, ~3.29b!

Q̇50, ~3.29c!

ṖM5~NM !8, ~3.29d!

ṖR50, ~3.29e!

ṖQ5~NQ!8, ~3.29f!

M 850, ~3.29g!

PR50, ~3.29h!

Q850, ~3.29i!

whereNM andNQ are now understood to be defined by Eq
~3.21!. The boundary terms in the variation consist of term
proportional todM , dR, and dQ on the initial and final
hypersurfaces, and terms fromr50 andr5` given by

E dt~ 1
2R0

2dÑ0
M2M1dÑ11Q0dF̃02Q1dF̃1!.

~3.30!

To arrive at Eq.~3.30!, Eq. ~3.20! has been used. The actio
~3.27! thus yields the equations of motion~3.29! provided
that we fix, in addition to the initial and final values of th
new canonical coordinates, also the quantitiesÑ0

M , Ñ1 ,
s.

.
s

F̃0 , andF̃1 . Because of Eq.~3.25!, these fixed quantities at
the right and left ends have precisely the same interpretat
in terms of the geometry of the classical solutions as t
fixed quantities in the action~2.17!.

IV. HAMILTONIAN REDUCTION

In this section we shall reduce the action~3.27! to the true
dynamical degrees of freedom by solving the constraints.

The constraints~3.29g! and ~3.29i! imply thatM andQ
are independent ofr . We can, therefore, write

M ~ t,r !5m~ t !, ~4.1a!

Q~ t,r !5q~ t !. ~4.1b!

Substituting these and the constraint~3.29h! back into Eq.
~3.27! yields the true Hamiltonian action

S@m,q,pm ,pq ;Ñ0
M ,Ñ1 ,F̃1 ,F̃0#5E dt~pmṁ1pqq̇2h!,

~4.2!

where

pm5E
0

`

drPM , ~4.3a!

pq5E
0

`

drPQ . ~4.3b!

The reduced Hamiltonianh in Eq. ~4.2! is

h52 1
2Rh

2Ñ0
M1Ñ1m1~F̃12F̃0!q, ~4.4!

whereRh :5Rhor(m,q). The assumptions made in the prev
ous section imply

m.M crit~q!, ~4.5!

andh is, therefore, well defined. Note thath is, in general,
explicitly time dependent through the prescribed functio
Ñ0
M(t), Ñ1(t), F̃1(t), andF̃0(t).
The variational principle associated with the reduced a

tion ~4.2! fixes the initial and final values of the coordinate
m andq. The equations of motion are

ṁ50, ~4.6a!

q̇50, ~4.6b!

ṗm52Rh~3Rh
2l 22112q2R h

22!21Ñ0
M2Ñ1 , ~4.6c!

ṗq522q~3Rh
2l 22112q2R h

22!21Ñ0
M1F̃02F̃1 .

~4.6d!

Equations~4.6a! and ~4.6b! are readily understood in terms
of the statement that on a classical solutionm and q are,
respectively, equal to the mass and charge parameters of
RNAdS solution. To understand Eq.~4.6c!, recall from Sec.
III that on a classical solutionPM52T8, whereT is the
Killing time. From Eq. ~4.3a! we see thatpm5T02T1 ,
whereT0 andT1 are, respectively, the values ofT at the left
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and right ends of the constantt hypersurface. As the constan
t hypersurface evolves in the RNAdS spacetime, the first a
second term on the RHS of Eq.~4.6c! are, respectively, equal
to Ṫ0 and2Ṫ1 . The interpretation of Eq.~4.6d! is analo-
gous. On a classical solution we havepq5j02j1 , where
j is the function that specifies the electromagnetic gauge
Eq. ~3.5!. The first two terms on the RHS of Eq.~4.6d! give
j̇0 , and the last term gives2 j̇1 .

V. QUANTUM THEORY AND THE GRAND PARTITION
FUNCTION

We shall now quantize the reduced Hamiltonian theory
Sec. IV. Our aim is to construct the time evolution operato
in the Hamiltonian quantum theory, and then to obtain
grand partition function via an analytic continuation of thi
operator.

A. Quantization

As is well known, the quantization of a given classica
Hamiltonian theory requires input@51–53#, and the questions
of physically appropriate input for a quantum black hole re
main largely open. For the purposes of the present paper
shall be content to define the quantum theory in essence
fiat, following Refs.@32,44#. Our main physical conclusions
will emerge from the semiclassical regime of the theory, an
at this level one may reasonably hope the details of the qu
tization not to be crucial.

We regardm andq as configuration variables, satisfying
the inequality ~4.5!. The wave functions are of the form
c(m,q), and the inner product is taken to be

~c,x!5E
A
mdmdqc̄x, ~5.1!

whereA,R2 is the domain~4.5! andm(m,q) is a smooth
positive weight factor. The Hilbert space is thu
H:5L2(A;mdmdq). We assume thatm is a slowly varying
function, in a sense to be made more precise later, but o
erwise it will remain arbitrary.

The Hamiltonian operatorĥ(t) is taken to act as pointwise
multiplication by the function h(m,q;t) ~4.4!:
c(m,q)°h(m,q;t)c(m,q). ĥ(t) is an unbounded essen-
tially self-adjoint operator@54#, and the corresponding uni-
tary time evolution operator inH is

K̂~ t2 ;t1!5expF2 i E
t1

t2
dt8ĥ~ t8!G . ~5.2!

K̂(t2 ;t1) acts inH by pointwise multiplication by the func-
tion

K~m,q;T,J1 ,J0 ,Q!5exp@2 imT2 iq~J12J0!

1 1
2 iRh

2Q#, ~5.3!

where

T:5E
t1

t2
dtÑ1~ t !, ~5.4a!
t
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J1 :5E
t1

t2
dtF̃1~ t !, ~5.4b!

J0 :5E
t1

t2
dtF̃0~ t !, ~5.4c!

Q:5E
t1

t2
dtÑ0

M~ t !. ~5.4d!

K̂(t2 ;t1), therefore, depends ont1 and t2 only through the
quantities on the left-hand side of Eqs.~5.4!, and we may
write K̂(t2 ;t1) as K̂(T,J1 ,J0 ,Q). The composition law,
K̂(t3 ;t2)K̂(t2 ;t1)5K̂(t3 ;t1), amounts to independent addi-
tion in each of the four parameters inK̂(T,J1 ,J0 ,Q), and
we may regard these four parameters as independent evo
tion parameters specified by the boundary conditions.T is the
Killing time elapsed at the infinity, andQ is the boost pa-
rameter elapsed at the bifurcation two-sphere.J1 andJ0
can be computed from the line integral of the electromag
netic potential~2.2! along the timelike curve of constantr
and constant angular variables as this curve approaches,
spectively, the infinity and the bifurcation two-sphere.

B. Grand partition function

We shall now construct a grand partition function by con
tinuing the time evolution operator to imaginary time and
taking the trace. We begin by discussing the boundary co
ditions for the relevant thermodynamical ensemble.

The envisaged semiclassical thermodynamical situatio
consists of a charged spherically symmetric black hole in a
asymptotically anti–de Sitter space, in thermal equilibrium
with a bath of Hawking radiation. If the back reaction from
the radiation is neglected, the geometry is described by t
RNAdS metric~A1!. Assuming that the local temperature is
given in the usual manner in terms of the surface gravity an
the redshift factor@18,35#, we see that the local temperature
is F21/2b21, whereF is given by Eq.~A1b! and

b:54pR0~3l
22R0

2112Q2R0
22!21. ~5.5!

At the infinity the local temperature vanishes a
b21l R21@11O`(l 2R22)#, andb21 can thus be extracted
from the asymptotic behavior as the coefficient of the leadin
order terml R21. We shall follow Refs.@18,35# and regard
b21 as a renormalized temperature at infinity.

The electromagnetic variable with thermodynamic inter
est for us is the electric potential difference between the h
rizon and the infinity, in the curvature coordinates~A1! and
in an electromagnetic gauge that makesA invariant under the
Killing time translations. We denote this quantity byf.
From Eq. ~A2! it is seen that on a classical solution
f5QR0

21 .
We shall consider a thermodynamical ensemble in whic

the fixed quantities areb andf. This data can be interpreted
as that for a grand canonical ensemble, withf being analo-
gous to the chemical potential@7,8,26#. Our aim is to obtain
a grand partition functionZ(b,f) by continuing the time
evolution operator of the Lorentzian Hamiltonian theory to
imaginary time and taking the trace.
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The continuation ofT is straightforward: comparing the
definition of b to the falloff of N in Eq. ~2.13! and to the
definition ~5.4a!, we are led to setT52 ib. For the continu-
ation ofQ we chooseQ522p i , motivated by the regular-
ity of the classical Euclidean solutions as in Ref.@32#. We
mentioned at the end of Sec. II that the regularity of th
electromagnetic potential at the bifurcation two-sphere of t
Lorentzian solutions requiresF̃050; similarly, requiring
regularity of the electromagnetic potential at the horizon
the classical Euclidean solutions now leads us to
J050. Finally, recall thatJ1 gives the constantr line in-
tegral of the electromagnetic potential~2.2! at the infinity.
Comparing this to the definition off, we set
J152Tf5 ibf. We are thus led to propose for the gran
partition function the expression

Z~b,f!5Tr@K̂~2 ib,ibf,0,22p i !#. ~5.6!

As it stands, the trace in Eq.~5.6! is divergent, but one can
argue as in Refs.@32,34# that a suitable regularization and
renormalization yields the result

Zren~b,f!5NE
A
mdmdqexp@2b~m2qf!1pRh

2#,

~5.7!

where we have substituted forK the explicit expression
~5.3!. The normalization factorN may depend onl , but we
shall assume that it does not depend onb or onf.

Provided the weight factorm is slowly varying compared
with the exponential in Eq.~5.7!, it is easy to verify, using
the definition ofRh given after Eq.~4.4!, that the integral in
Eq. ~5.7! is convergent. Equation~5.7! thus yields a well-
defined grand partition function. Comparing with ordinar
pressure-volume-temperature systems@21#, f is now indeed
seen to be analogous to the chemical potential, and the qu
titiesm andq are, respectively, analogous to the energy a
the particle number. We shall examine the thermodynami
properties of this grand partition function in the next sectio

VI. THERMODYNAMICS IN THE GRAND CANONICAL
ENSEMBLE

It is useful to change the integration variables in Eq.~5.7!
from the pair (m,q) to the pair (Rh ,q). From Eq.~A6! we
obtain

m5 1
2Rh~Rh

2l 22111q2Rh
22!, ~6.1!

and the grand partition function takes the form

Zren~b,f!5NE
A8

m̃dRhdqexp~2I * !, ~6.2!

where

I * ~Rh ,q!:5 1
2bRh~Rh

2l 22111q2Rh
22!2bfq2pRh

2.
~6.3!

One may viewI * as an effective action or as a reduce
action @24–26#. The integration domainA8 is given by the
inequalities
e
he

of
et

d

y
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0<Rh , ~6.4a!

q2<Rh
2~113Rh

2l 22!, ~6.4b!

and the weight factorm̃ is obtained fromm by including the
Jacobianu](m,q)/](Rh ,q)u. Note that because of Eq.~6.4b!,
I * remains finite asRh→0.

As m̃ is assumed to be slowly varying, we can estimat
Zren(b,f) by the saddle point approximation to Eq.~6.2!.
For this, we need to find the critical points ofI * in the
interior of A8.

Whenf2,12 4
3p

2l 2b22, I * has no critical point. When
12 4

3p
2l 2b22,f2,1, the two critical points ofI * are at

Rh5Rh
6 :5

2pl 2

3b S 16A11
3b2~f221!

4p2l 2 D , ~6.5a!

q5q6:5fRh
6. ~6.5b!

The lower signs do not give a local extremum, but the uppe
signs give a local minimum. In the limiting case 1
2 4

3p
2l 2b225f2, the only critical point is (Rh

1 ,q1), but it
is not a local extremum. Finally, whenf2>1, the only criti-
cal point is (Rh

1 ,q1), and it is a local minimum. Whenever
the critical points exist, the value ofI * at these points can be
written as

I * ~Rh
6 ,q6!5

p~Rh
6!2@12f22~Rh

6!2l 22#

12f213~Rh
6!2l 22 . ~6.6!

As I * grows without bound in the noncompact directions
in A8, the global minimum can be found by examiningI * at
the critical points and on the boundary ofA8. When
f2.12p2l 2b22, the global minimum is at the critical
point (Rh

1 ,q1), and I * (Rh
1 ,q1) is negative. When

f2,12p2l 2b22, the global minimum is atRh505q,
where I * vanishes. In the limiting casef2512p2l 2b22,
I * vanishes at (R h

1 ,q1) and atRh505q, but is positive
everywhere else.

We thus see that forf2.12p2l 2b22, Zren can be ap-
proximated as

Zren~b,f!'Pexp@2I * ~Rh
1 ,q1!#, ~6.7!

whereP is a slowly varying prefactor. The approximation
becomes presumably progressively better with increasin
uI * (R h

1 ,q1)u. For f2,12p2l 2b22, the dominant contri-
bution toZren comes from the vicinity ofRh505q, and the
behavior ofZren depends more sensitively on the weight fac-
tor m̃.

These results forZren are consistent with what one would
expect just from the existence of~Lorentzian! black hole
solutions under fixingf and the renormalized inverse Hawk-
ing temperatureb ~5.5!. It can be verified that such solutions
exist precisely at the critical points ofI * : the values ofm
and q at these critical points are just the mass and charg
parameters of the black hole. Further, the value ofI * at a
critical point is simply the Euclidean action of the corre-
sponding Euclideanized black hole solution. When a uniqu
classical solution exists, it dominates the grand partitio
function; when two distinct classical solutions exist, the
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grand partition function is dominated either by the larg
mass classical solution or by none of the classical solutio
The situation is thus remarkably similar to that found in t
absence of a cosmological constant when the boundary
ditions are set on a finite size box@26#.

Let us now consider the thermodynamical predictio
from Z ren. Recall that the thermal expectation values of t
energy and charge in the grand canonical ensemble are g
by

^E&5S 2
]

]b
1b21f

]

]f D ~ lnZren!, ~6.8a!

^Q&5b21
]~ lnZren!

]f
. ~6.8b!

WhenZren is dominated by the critical point (Rh
1 ,q1), we

find

^E&'m1, ~6.9a!

^Q&'q1, ~6.9b!

wherem1 is obtained from (Rh
1 ,q1) through Eq.~6.1!. That

is, the thermal expectation values of the energy and
charge are simply the mass and charge parameters o
dominant classical solution. In particular, there is no ad
tional contribution to the mass from the gravitational bindi
energy associated with the thermal energy, or from the e
trostatic binding energy associated with the charge. Such
ditional, finite-size contributions were found to be present
the finite-size ensembles of Refs.@14,24,26,34#.

It is easily seen that (]m1/]b),0. This means that when
the approximation~6.9a! is good, the~constantf) heat ca-
pacity, Cf52b2(]^E&/]b), is positive. In the regime
~6.9a!, the system is thus stable under thermal fluctuations
the energy. Note that as (]m2/]b).0, a grand partition
function dominated by the lower mass classical solut
would be thermodynamically unstable@25#. This is analo-
gous to what happens in the absence of a cosmological
stant under the boxed boundary conditions considered
Refs.@14,24,26#.

It is also easily seen that (]q1/]f).0. This shows that
when the approximation ~6.9b! is good, we have
(]^Q&/]f).0, and the system is stable under thermal flu
tuations in the charge. More generally, one can show dire
from the expressions ~6.2!, ~6.3!, and ~6.8b! that
(]^Q&/]f).0 holds always, even when the approximatio
~6.9b! is not good.

The entropy in the grand canonical ensemble is given

S5S 12b
]

]b D ~ lnZren!. ~6.10!

When the approximation ~6.7! is good, we have
S'p(Rh

1)2, which means that the entropy is one quarter
the horizon area. This is the anticipated Bekenstein-Hawk
result.

Finally, whenZren is not dominated by a critical point, the
thermodynamical predictions become much more sensi
to the choice of the weight factorm̃. As in Refs.@24–26,34#,
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one can view the transition in the qualitative behavior of
Zren as evidence for a phase transition between a black hol
sector and a topologically different sector of the theory; in
the case at hand, the second sector might be referred to
‘‘hot anti–de Sitter space.’’ On classical grounds one might
have expected this transition to occur nearf2'1
2 4

3p
2l 2b22, where the classical solutions disappear. How-

ever, we saw that the transition in fact occurs near
f2'12p2l 2b22, where the two classical solutions still ex-
ist. This is highly similar to what happens in four dimensions
under boxed boundary conditions without a cosmologica
constant@24,26#, but subtly different from what happens in
two dimensions with Witten’s dilatonic black hole@34#.

VII. THE CANONICAL ENSEMBLE

We have seen that the Hamiltonian formulation of Secs
II–IV led into a thermodynamical grand canonical ensemble
where the fixed quantities are the renormalized inverse tem
peratureb at infinity and the electric potential differencef
between the horizon and the infinity. From the thermody-
namical viewpoint, another natural ensemble for the charge
black hole in asymptotically anti–de Sitter space is the ca
nonical ensemble, where one allows fluctuations inf but
fixes instead the chargeq. In this section we shall outline the
recovery of the canonical ensemble from a Lorentzian
Hamiltonian analysis, and briefly discuss the thermodynami
cal properties of the black hole in this ensemble.

As a starting point, we modify the boundary conditions of
the Hamiltonian theory of Sec. II by leavingF̃0(t) and
F̃1(t) unspecified but fixingQ0(t) andQ1(t) to be pre-
scribed functions oft. The action is obtained from Eqs.
~2.17! and ~2.18! by omitting the terms
*dt(F̃0Q02F̃1Q1) from Eq. ~2.18!. Clearly, classical so-
lutions exist only whenQ0(t) andQ1(t) are chosen inde-
pendent oft and are equal. We shall from now on assume
that the boundary data is chosen in this manner.

One way to proceed is simply to push through the canoni
cal transformation of Sec. III, noting that the new boundary
conditions merely result into minor modifications. It is only
when one subsequently performs a Hamiltonian reduction
along the lines of Sec. IV that the new boundary conditions
give rise to important differences. First, the boundary data
for Q0(t) andQ1(t) imply that the quantityq(t) defined by
Eq. ~4.1b! is a t-independent constant whose value is com-
pletely determined by the boundary conditions. Therefore
the Liouville term*dtpqq̇ drops entirely out of the action
~4.2!. Second, because of the terms that were omitted from
the boundary action~2.18!, the term (F̃12F̃0)q drops out
of the reduced Hamiltonian~4.4!. This means that in the
reduced Hamiltonian theoryq has become an external pa-
rameter specified by the boundary conditions: it is not varied
in the action, and does not have a conjugate momentum. Th
new reduced action reads

SC@m,pm ;Ñ0
M ,Ñ1 ;q#5E dt~pmṁ2hC!, ~7.1!

where

hC52 1
2Rh

2Ñ0
M1Ñ1m. ~7.2!
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Here,Rh :5Rhor(m,q) as before, and the assumptions ma
in the canonical transformation again imply that Eq.~4.5!
holds.

An alternative way to proceed under the new bound
data is to partially reduce the action already in the variab
of Sec. II by solving the constraint~2.9c!. One uses the con
straint ~2.9c! and the equation of motion~2.10f! to set
PG(t,r ) equal to the constant specified in the boundary da
and substitutes this back in the action. The Liouville te
*0

`drPGĠ then becomes a total time derivative and can
dropped. One thus obtains an action that no longer invol
G or F̃, involvesPG only as a prescribed constant, and co
rectly yields the equations of motion for the remaining va
ables. One can now perform a canonical transformation fr
the variables (L,R,PL ,PR) to the new variables
(M ,R,PM ,PR), defined as in Sec. III except thatPG5Q is
now regarded as a fixed external parameter. Finally, one
reduce the action by solving the constraints as in Sec.
The result is again the action given by Eqs.~7.1! and ~7.2!.

Quantization of the reduced Hamiltonian theory procee
as in Sec. V. For the renormalized trace of the analytica
continued time evolution operator, we obtain

Zren~b,q!5E
Rcrit~q!

`

m5 dRhexp~2I C* !, ~7.3!

where the functionRcrit is defined by Eq.~A4! in Appendix
A, the weight factorm5 is a positive function ofRh ~and
possiblyq), and

I C* ~Rh!:5
1
2bRh~Rh

2l 22111q2Rh
22!2pRh

2. ~7.4!

Under the assumption thatm5 is slowly varying, the domi-
nant contribution toZren can be estimated by saddle poi
methods. The casesq50 and qÞ0 merit each a separat
analysis.

Consider first the special caseq50. The lower limit of the
integral in Eq.~7.3! is then atRh50. The critical point struc-
ture of I C* is identical to that ofI * ~7.4! for f50, and the
locations of the critical points and the values of the action
these points can simply be read off from Sec. VI by setti
f50.

Consider from now on the generic caseqÞ0. I C* has one
negative critical point, and from one to three positive critic
points. The negative critical point is unphysical, but all t
positive critical points lie in the physical domai
Rh.R crit(q). As I C* is decreasing atRh5Rcrit(q) and tends
to infinity as Rh→`, the global minimum ofI C* in the
domainRh.Rcrit(q) is at a critical point. We can, therefore
concentrate on the positive critical points.

When b2> 3
2p

2l 2, I C* has only one positive critica
point. Whenb2, 3

2p
2l 2, the number of positive critical

points is determined by the status of the double inequalit

~123s!~11s!

36~12s!2
<q2l 22<

~113s!~12s!

36~11s!2
, ~7.5!

where

s:5A12
2b2

3p2l 2. ~7.6!
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When Eq. ~7.5! does not hold, there is only one positive
critical point. When Eq.~7.5! holds as a genuine inequality,
there are three positive critical points, and saturating the in
equalities gives limiting cases where two of the three posi
tive critical points merge.@Note that ifb2< 4

3p
2l 2, the left-

most expression in Eq.~7.5! is nonpositive, and the left hand
side inequality is then necessarily genuinely satisfied.# Now,
when only one positive critical point exists, this critical point
is the global minimum. On the other hand, when three posi
tive critical points exist, they constitute a local maximum
between two local minima, and the global minimum can be
at either of the local minima depending on the values of the
parameters. For example, when the right hand side inequalit
in Eq. ~7.5! is close to being saturated, the global minimum
is at the local minimum with the larger value ofRh .

The critical points can be examined further by parametriz-
ing b andq as

4pl b215
~u2v !@3~u21v2!11#

u21v22uv
, ~7.7a!

q2l 225
u2v2~3uv11!

u21v22uv
, ~7.7b!

where the parametersu and v satisfy 0,v,u. The nega-
tive, unphysical critical point is then atRh52l v, and
Rh5l u gives a positive critical point.4 The condition that
only one positive critical point exists reads

a~u!,v, ~7.8!

wherea(u) is the unique solution to the equation

059ua32~6u211!a21u~9u212!a2u2 ~7.9!

in the interval 0,a,u. In this case the parametrization
~7.7! is unique. When the inequality in Eq.~7.8! is reversed
and three positive critical points exist, the parametrization
~7.7! can be made unique by imposing the conditions

u,
1

A3
, ~7.10a!

v,
A~116u2!~123u2!2~123u2!

9u
, ~7.10b!

which makeRh5l u the local maximum. The two local
minima are then at the roots of the quadratic equation

053~u21v22uv !~Rh /l !22~u2v !~3uv11!~Rh /l !

1uv~3uv11!. ~7.11!

The global minimum is at the larger~smaller! local minimum
when the inequality

0,12~6uv21!~u21v22uv !2

1~u2v !2~3uv11!@3~u21v2!11# ~7.12!

4We thank Bernard Whiting for suggesting this type of parametri-
zation.
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is satisfied~reversed!.
It is of some interest to examine the behavior of the cri

cal points in the limit q2→0 with fixed b. When b2

. 4
3p

2l 2, the above discussion shows that for sufficient
small q2 there exists only one positive critical point, and i
the limit q2→0 this critical point approaches zero as

Rh5uqu@112pb21uqu1O~q2l 22!#. ~7.13!

Whenb2, 4
3p

2l 2, on the other hand, there exist three pos
tive critical points for sufficiently smallq2. In the limit
q2→0, the smallest positive critical point again approaches
as Eq.~7.13!, whereas the two larger ones approach the tw
critical points of the caseq50. In the limiting caseb2

5 4
3p

2l 2, the smallest of the three positive critical point
once again approaches zero as Eq.~7.13!, and the two larger
ones merge into aq50 critical point that is not a local ex-
tremum. The limiting behavior is thus smooth, in spite of th
changing number of critical points.

At any critical point, the value of the action can be writte
as

I C*
c 52

pRh
2~Rh

2l 222123q2Rh
22!

3Rh
2l 22112q2Rh

22 . ~7.14!

In the limit q→0, this agrees with the expression given
Ref. @35#.

We thus see that for generic values of the paramete
Zren(b,q) can be approximated by exp@2IC*

min#, where I C*
min

stands for the value ofI C* at the critical point that is the
global minimum. As in Sec. VI, this is consistent with wha
one would have expected just from the existence of~Lorent-
zian! black hole solutions under fixing the charge and th
renormalized inverse Hawking temperature: such solutio
exist precisely at the critical points ofI C* , and the values of
m andq at these critical points are just the mass and cha
parameters of the black hole. One may view the shifting
the global minimum ofI C* from one local minimum to the
other as a thermodynamical phase transition.

We end this section with some brief remarks on the the
modynamics in the canonical ensemble. Recall that the f
mulas for the thermal expectation values for the energy a
the electric potential read

^E&52
]~ lnZren!

]b
, ~7.15a!

^f&52b21
]~ lnZren!

]q
. ~7.15b!

When a critical point ofI C* dominates, we obtain

^E&'m, ~7.16a!

^f&'
q

Rh
. ~7.16b!

These are, respectively, just the mass and the electric po
tial difference between the horizon and the infinity for th
dominating classical solution. When the approximatio
~7.16a! is good, the positivity of the~constantq) heat capac-
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ity, Cq52b2(]^E&/]b), follows from the fact that the
dominant critical point is a minimum ofI C* @24,25#. The
positivity of Cq follows more generally, even when the
saddle point approximation does not hold, by direct manipu
lations from the expression~7.3! and the assumption thatm5
is positive.

When the saddle point approximation is good, we hav
for the entropy the Bekenstein-Hawking result,
S5@12b(]/]b)#(lnZren)'p(Rh)

2.

VIII. CONCLUSIONS AND DISCUSSION

In this paper we have investigated the Hamiltonian dy
namics and thermodynamics of spherically symmetri
Einstein-Maxwell theory with a negative cosmological con-
stant. We first set up a classical Lorentzian Hamiltonia
theory in which the right end of the spacelike hypersurface
is at the asymptotically anti–de Sitter infinity in an exterior
region of a RNAdS black hole spacetime, and the left end o
the hypersurfaces is at the bifurcation two-sphere of a non
degenerate Killing horizon. We then simplified the con-
straints by a canonical transformation, and we explicitly re
duced the theory into an unconstrained Hamiltonian theor
with two canonical pairs of degrees of freedom. The reduce
theory was quantized by Hamiltonian methods, and a gran
partition function for a thermodynamical grand canonical en
semble was obtained by analytically continuing the Schro¨-
dinger picture time evolution operator to imaginary time and
taking the trace. The analytic continuation at the bifurcatio
two-sphere was done in a way motivated by the smoothne
of Euclidean black hole geometries as in Ref.@32#. A similar
analysis with minor modifications to the boundary conditions
led to a partition function for a thermodynamical canonica
ensemble. Both the canonical ensemble and the grand c
nonical ensemble turned out to be well defined, and we we
able to find the conditions under which the~grand! partition
function is dominated by a classical Euclidean solution.

Both thermodynamical ensembles exhibited a phase tra
sition. In the grand canonical ensemble the transition occu
when the grand partition function ceases to be dominated b
any classical Euclidean black hole solution, in close analog
with what happens in the spherically symmetric vacuum ca
nonical ensemble with a finite boundary@14,24,25#. In the
canonical ensemble this kind of a phase transition can occ
only in the limit of a vanishing charge, whereas for nonvan
ishing charge there occurs a phase transition in which th
dominating contribution to the partition function shifts from
one classical Euclidean solution to another as the bounda
data changes. In either ensemble, whenever the~grand! par-
tition function is dominated by a classical solution, one re
covers for the entropy the Bekenstein-Hawking value of on
quarter of the horizon area.

The classical canonical transformation of Sec. III is a rela
tively straightforward generalization of the transformation
that was found by Kucharˇ in the spherically symmetric
vacuum Einstein theory under Kruskal-like boundary condi
tions @44#. When the classical equations of motion hold, ou
new canonical coordinatesM andQ are simply the mass and
charge parameters of the RNAdS solution. By~generalized!
Birkhoff’s theorem, the spacetime is uniquely characterize
by these two parameters and the cosmological constant. T
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conjugate momenta,PM and PQ , carry the information
about the embedding of the spacelike hypersurface in
spacetime and the electromagnetic gauge. Upon elimina
of the constraints, we saw in Sec. IV thatPM andPQ each
gives rise to one unconstrained momentum in the redu
Hamiltonian theory. These reduced momenta are global c
structs with no local geometrical meaning, and they are
sociated with the anchoring of the spacelike hypersurface
the infinity and at the bifurcation two-sphere. The electr
magnetic pair (Q,PQ) is quite closely analogous to th
gravitational pair (M ,PM). The third canonical pair,
(R,PR), is entirely gauge, and it completely disappea
when the constraints are eliminated.

Although we have here discussed the canonical trans
mation only under boundary conditions motivated by o
thermodynamical goal, it would appear possible to use ar
ments similar to those in Refs.@44,55# to adapt this canonica
transformation to boundary conditions under which t
spacelike hypersurfaces extend from a left-hand side asy
totically anti–de Sitter region to a right-hand side asympto
cally anti–de Sitter region, crossing the event horizons
arbitrary ways. The form~3.15! taken by the constraints the
suggests that, after introducing electromagnetic variab
analogous to the reparametrization clockst6 of Ref. @44#, it
is possible to perform a canonical transformation that se
ratesQ into the charge densityQ8 and the charge at the~say!
left-hand side infinity, in analogy with the transformatio
that in Ref.@44# separatesM into the mass densityM 8 and
the mass at the left-hand side infinity. Also, it appears p
sible to take the limit where the cosmological constant va
ishes and the asymptotically anti–de Sitter regions are
placed by asymptotically flat regions.5 It would further be
possible to consider boundary conditions of the kind put f
ward in Ref.@57#. We have not investigated these issues in
systematic fashion; however, we shall outline in Appendix
how our canonical transformation can be adapted to the li
of a vanishing cosmological constant, under boundary c
ditions that still keep the left end of the hypersurfaces at
bifurcation two-sphere of a nondegenerate Killing horiz
but replace the asymptotically anti–de Sitter falloff cond
tions at the right end by asymptotically flat falloff condition
In this case, each classical solution is the exterior region
nonextremal Reissner-Nordstro¨m black hole.

The thermodynamical results of Secs. VI and VII sho
that the stabilizing effect of the negative cosmological co
stant is highly similar to the stabilizing effect of a finit
‘‘box’’ with fixed surface area and fixed local temperatu
@14,24–26,34#. One important difference is, however, that
the asymptotically anti-de Sitter case various thermal exp
tation values are more directly related to the parameters
the dominant classical solutions. In the grand canonical
semble, Eqs.~6.9! show that the thermal expectation valu
of energy and charge are simply the mass and charge pa
eters of the dominant classical solution: there is no additio

5Before the work reported in this paper was begun, we were
formed by Karel Kucharˇ that he had generalized the canonic
transformation of Ref.@44# to the spherically symmetric Einstein
Maxwell system without a cosmological constant@56#. We thank
Karel Kucharˇ for correspondence on this point.
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contribution to the mass from the gravitational binding en
ergy associated with the thermal energy, or from the electro
static binding energy associated with the charge. Such add
tional, finite-size contributions were found to be present in
the finite-size ensembles considered in Refs.@14,24,26,34#.
In the canonical ensemble, the situation is similar with th
thermal expectation values of the energy and the electric p
tential ~7.16!.

The stabilizing effect of the negative cosmological con
stant becomes fully apparent when one attempts to repeat t
analysis with a vanishing cosmological constant, replacin
the asymptotically anti–de Sitter infinity by an asymptoti-
cally flat infinity. We shall outline this analysis in Appendix
B. While there is no difficulty in quantizing the reduced
Hamiltonian theory, the trace of the analytically continued
time evolution operator turns out to remain divergent eve
after a renormalization of the kind performed in Secs. V B
and VII. Neither the canonical ensemble nor the grand ca
nonical ensemble exists. For the canonical ensemble th
conclusion might be surprising in view of the observation
that a Reissner-Nordstro¨m black hole in asymptotically flat
space is stable against Hawking evaporation when one fix
the charge and the temperature at the infinity, provided th
mass and charge parameters of the hole satisfy the inequa
q2. 3

4m
2 @7#. However, as we shall see in Appendix B, the

local stability of a classical solution is not sufficient to guar-
antee the existence of a full thermodynamical ensemble.

Finally, we recall that as the physical temperature o
Hawking radiation is redshifted to zero at the anti–de Sitte
infinity, we followed Refs.@18,35,36# and defined a renor-
malized temperature at infinity in terms of the rate at which
the local Hawking temperature approaches zero. This defin
tion led to physically reasonable conclusions; in particular
we recovered from the thermodynamical ensembles th
Bekenstein-Hawking result for the black hole entropy. The
definition can however be argued to have anad hocflavor,
and one might wish to replace it by something that can b
given a more immediate physical justification.6 What would
be needed is a better understanding as to whether asympto
cally anti–de Sitter infinity can in some sense be regarded
a physically realizable system, rather than just as a mat
ematically elegant set of boundary conditions.

Note added in proof.After this work was completed, we
became aware of Refs.@58–60#, which discuss the Dirac
quantization of four-dimensional spherically symmetric
Einstein-Maxwell geometries and related dilatonic theories
The work in these references has close technical similaritie
to our work.
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APPENDIX A: REISSNER –NORDSTRÖM –ANTI-de
SITTER BLACK HOLE

In this appendix we recall some relevant properties of
Reissner–Nordstro¨m–anti-de Sitter~RNAdS! metric. We
concentrate on the case where a nondegenerate event ho
exists, and on the region exterior to this horizon.

In the curvature coordinates (T,R), the RNAdS metric is
given by

ds252FdT21F21dR21R2dV2, ~A1a!

wheredV2 is the metric on the unit two-sphere and

F:5
R2

l 2 112
2M

R
1
Q2

R2 . ~A1b!

T andR are called, respectively, the Killing time and th
curvature radius. The parameterl is positive, and we take
the parametersM andQ to be real. Together with the elec
tromagnetic potential

A5
Q

R
dT, ~A2!

the metric~A1! is a solution to the Einstein-Maxwell equa
tions with the cosmological constant23l 22 @40,43#. The
parametersM and Q are referred to, respectively, as th
mass and the~electric! charge. The caseQ50 yields the
Schwarzschild–anti-de Sitter metric, and the ca
Q5M50 yields the metric on~the universal covering spac
of! anti–de Sitter space@61#.

The metric~A1! has an asymptotically anti–de Sitter in
finity atR→` for all values of the parameters@47#. We wish
to restrict the parameters so that the metric describes
exterior of a black hole with a nondegenerate horizon. T
happens when the quartic polynomialR2F(R) has a simple
positive rootR5R0 , such thatF is positive forR.R0 . The
necessary and sufficient condition isM.M crit(Q), where

M crit~Q!:5
l

3A6
~A1112~Q/l !212!

3~A1112~Q/l !221!1/2. ~A3!

Note thatM is then necessarily positive.R0 can now be
determined uniquely as the functionRhor(M ,Q) of M and
Q: for Q50, Rhor(M ,Q) is defined as the unique positiv
solution to the equationF50; for QÞ0, Rhor(M ,Q) is de-
fined as the larger of the two positive solutions. In eith
case, ifQ is considered fixed,Rhor(M ,Q) is a monotonically
increasing function of M that takes the values
Rcrit(Q),Rhor(M ,Q),` asM crit(Q),M,`, where
d
ting
the
nt

the

rizon

e

-

-

e

se
e

-

the
his

e

er

Rcrit~Q!:5
l

A6
~A1112~Q/l !221!1/2. ~A4!

The metric can thus be uniquely parametrized byQ and
R0 . The only restriction for these parameters is

R0.Rcrit~Q!, ~A5!

and the mass is then given by

M5
R0

2 S R0
2

l 2 111
Q2

R0
2 D . ~A6!

With R0,R,`, the metric~A1a! covers the region from
the horizon to the asymptotically anti–de Sitter infinity. The
Penrose diagram can be found in Refs.@37,62#.

APPENDIX B: REISSNER-NORDSTRÖM BLACK HOLE IN
ASYMPTOTICALLY FLAT SPACE

In the main text we took the cosmological constant to be
strictly negative. In this appendix we shall outline the corre-
sponding classical and quantum-mechanical analyses in th
case where the cosmological constant vanishes. In the not
tion of the main text this means taking the limitl →`. The
classical solutions are then not asymptotically anti–de Sitte
but asymptotically flat, and the falloff conditions atr→`
must be modified to reflect this fact.

In the variables of Sec. II, we retain the falloff conditions
~2.11! at r→0, but at r→` we introduce the new falloff
conditions

L~ t,r !511M1~ t !r211O`~r212e!, ~B1a!

R~ t,r !5r1O`~r2e!, ~B1b!

PL~ t,r !5O`~r2e!, ~B1c!

PR~ t,r !5O`~r212e!, ~B1d!

N~ t,r !5N1~ t !1O`~r2e!, ~B1e!

Nr~ t,r !5O`~r2e!, ~B1f!

G~ t,r !5O`~r212e!, ~B1g!

PG~ t,r !5Q1~ t !1O`~r2e!, ~B1h!

F̃~ t,r !5F̃1~ t !1O`~r2e!, ~B1i!

where 0,e<1. For the metric quantities these conditions
are precisely those used in Ref.@44#, ensuring asymptotic
flatness. These conditions make the bulk action~2.6! well
defined, and they are preserved under the time evolution
Adding the boundary action

E dt~ 1
2R0

2N1L0
212N1M11F̃0Q02F̃1Q1! ~B2!

yields an action for a variational principle in whichN1 ,
N1L0

21 , F̃1 , and F̃0 are prescribed functions oft. Drop-
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ping the last two terms in Eq.~B2! yields an action for a
variational principle in whichF̃1 and F̃0 are free butQ1

andQ0 are prescribed.
The canonical transformation of the main text can now

adapted to the present boundary conditions by simply tak
the limit l →`. A new action can be constructed as in Se
III C, the new falloff conditions only giving rise to minor
technical modifications to the redefinition of the Lagrang
multipliers. In the theory that prescribesF̃1 andF̃0 , elimi-
nation of the constraints along the lines of Sec. IV yields t
reduced action

S@m,q,pm ,pq ;Ñ0
M ,N1 ,F̃1 ,F̃0#5E dt~pmṁ1pqq̇2h!,

~B3!

where the reduced Hamiltonian is given by

h52 1
2Rh

2Ñ0
M1N1m1~F̃12F̃0!q ~B4!

with Rh :5m1Am22q2. The range of the variables is
0,m, q2,m2. In the theory that prescribesQ1 andQ0 ,
one proceeds as in Sec. VII to obtain the reduced action

SC@m,pm ;Ñ0
M ,N1 ;q#5E dt~pmṁ2hC!, ~B5!

whereq is now regarded as an external parameter and

hC52 1
2Rh

2Ñ0
M1N1m. ~B6!

Quantization of the two reduced theories proceeds as
the main text. For the renormalized trace of the analytica
continued time evolution operator, we obtain formally

Zren~b,f!5NE
Rh.uqu

m̃dRhdqexp~2I * !, ~B7a!
e
ng
c.

e

e

in
ly

Zren~b,q!5E
uqu

`

m5 dRhexp~2I C* !, ~B7b!

where I * and I C* are, respectively, given by dropping the
term proportional tol 22 from Eqs.~6.3! and~7.4!. b is now
interpreted as the inverse Hawking temperature at the infin
ity, with no renormalization. However, both integrals in Eqs
~B7! are divergent because of the behavior ofI * and I C* at
largeRh . Thus, neither the canonical ensemble nor the gran
canonical ensemble exists under the asymptotically fla
boundary conditions. In this respect, the inclusion of the
charge has, therefore, not made a qualitative difference fro
the asymptotically flat vacuum case@32#.

The critical points ofI * and I C* give again the~Lorent-
zian! classical solutions that have the inverse Hawking tem
peratureb at infinity and the prescribed value of, respec-
tively, f or q. The condition thatI * possesses critical pointsis ufu,1: when this condition is satisfied there exists exactly
one critical point, but this critical point is not a local extre-
mum. This reproduces the observations made by Davies
Refs. @7,8# about charged black hole equilibria with fixed
f, and reflects, in particular, the fact that a semiclassica
charged black hole under these boundary conditions is n
stable against Hawking evaporation.

The condition that I C* possesses critical points is
b/uqu>6pA3, and when the inequality is genuine, there ex
ist two critical points. The critical point with the smaller
~larger! value ofRh is a local minimum~maximum, respec-
tively!. The local minimum satisfiesq2. 3

4m
2, and corre-

sponds to the classical solution that Davies@7# showed to be
stable against Hawking evaporation under these bounda
conditions ~see also Refs.@63–65#!. While the thermody-
namical stability of this semiclassical solution is reflected in
its being a local minimum of ourI C* @25#, the divergence of
the integral in Eq.~B7b! demonstrates that this local stability
is not sufficient to guarantee the existence of a full thermo
dynamical canonical ensemble.
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