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Gravitons and light cone fluctuations. Il. Correlation functions
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A model of a fluctuating light cone due to a bath of gravitons is further investigated. The flight times of
photons between a source and a detector may be either longer or shorter than the light propagation time in the
background classical spacetime, and will form a Gaussian distribution centered around the classical flight time.
However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and
discuss a correlation function which describes this effect. This enables us to understand more fully the opera-
tional significance of a fluctuating light cone. Our results may be combined with observational data on pulsar
timing to place some constraints on the quantum state of cosmological grayB®a&6-282196)04616-4
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. INTRODUCTION o(t—t') ™ p( o

<Gret(xaxl)>: 2 2 EXp — 52y
In a previous papdrl], henceforth I, the problem of light 8 202) 2(02)

cone fluctuations due to gravitons was discussed. A bath 6fpis form is valid for the case thdiz?)>0. Equation(3)
gravitons in a squeezed vacuum state, or a thermal state, Waseals that the-function behavior of the classical Green’s
shown to produce fluctuations of the spacetime metric, which,tion. G ., has been smeared out into a Gaussian func-
. . . 1 rets
in turn produce light cone fluctuationgA squeezed vacuum jon which is peaked around the classical light cone. This
state is the state in which relic gravitons from t_he e_arly UNi-means that a light pulse is equally likely to traverse a dis-
verse are expected to be foupd.) The propagation time of 5nce in less than the classical propagation time as it is to
a classical light puls¢2?] over a distance is no longer averse the interval in a longer time.
preciselyr [3], put undergoes fluctuations arou.nd. amean |, | explicit forms Of<o€> were given for particular
value ofr. In I, it was shown that the mean deviation from quantum states, including a single mode squeezed vacuum

). 3

the classical propagation time is state and a thermal state in the long wavelength limit. One of
the purposes of the present paper is to generalize these cal-
(o) culations, in particular to a bath of thermal gravitons in the
At= , (1) short wavelength limit. This will be done in Sec. Il.

r
The primary purpose of this paper will be to calculate and

~ o _interpret the correlation function which relates the flight time
where (o7) is the mean square fluctuation in the geodesigariations of a pair of successive photons. In general, such a
interval function. Leto(x,x") be one-half of the squared paijr of photons may have correlations which cause the ex-
geodesic distance between a pair of poxtandx’. In the  pected difference in their flight times to be less thsn If

presence of a linearized metric perturbattoy), , one wishes to use observational data to search for flight time
variations due to light cone fluctuations, it is essential to
o=yt o+ O(hfw)- (2)  understand these correlations. In Sec. Ill, a general formula

for the correlation function (Ge(Xs,X1)GredX5,X1))
—(GreX2,X1) }{(Gre(X5,X1)) is obtained. In Sec. 1V, this
function is used to determine when pairs of photons are cor-
related, and to calculate the mean variation in flight times,
. In Sec. V, we first review the effects of classical gravity
aves upon pulse arrival times, and the bounds which pulsar
fiming data yield upon a background of such classical waves.
e then discuss the bounds which these data place upon
ravitons in a squeezed vacuum state. Our results are sum-
arized and discussed in Sec. VI.

Here op=3(x—x")? is the flat space interval function, and
o, is the first order shift ino, which becomes a quantum
operator when the metric perturbations are quantized. Th
expectation values of2 are formally divergent, séo3) is
understood to be a renormalized expectation value, the di
ference between the expectation value in a given state and
the Minkowski vacuum state. Note that we are assuming th
the metric fluctuations are produced solely by the bath o
gravitons. More generally, quantum matter fields will expe-
r_ience stress tensor_fluctuatiops which will act as an addi- || caLcuLATION OF (a?) FOR A THERMAL BATH
tional source of metric fluctuatiori$,6]. OF GRAVITONS

Equation(1) arises from a calculation given in | of the
expectation value of the retarded Green’s function in a In |, (o) was calculated for a thermal bath of gravitons
squeezed vacuum state of gravitons, which yielded in the low temperature limit. In this section, we wish to
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generalize this calculation to arbitrary temperature, and irever, in genergB is understood to be the inverse temperature
particular obtain the high temperature Ilimit. In the for a thermal bath, analy the mean wavelength for a more
transverse-trace-free gauge, the graviton two-point functiogeneral bath.

is expressible in terms of that for a massless scalar figltd In the short wavelengtthigh temperature limjt we may
. use the asymptotic form for the thermal two-point function
(hij )N (x"))=2(e(X) p(X")). (4 on the light cone, Eq(A12), to write

From this expression, and Eq49) and(61) of I, we obtain , 3 r 1
(0’1>%—r2)\gh2f dp(r—p)—. (11
T ang p

1 r r
(of)= Efzf de dz'(e(x) e(x")), (5 _ _ o
0 0 Recall that this asymptotic form is valid only far>aky,
wherea>1 is a constant. Thus we have introduced a cutoff
p=alg in the integral. This introduces an error of
'6()\8), which is small in thex g— 0 limit. Evaluation of the
integral in Eq.(11) yields

where the integrals are to be evaluated along the unperturb

null geodesic. We take this geodesic to have a spatial exte

of r in the z direction, sox=(z,0,0z) andx’'=(z’,0,0z").

Using the fact that the two-point function is a function of

p=|x—x'|=|z—2'|, we may change variables of integration 3

and write <U§>~ —h2r3)\g
a

+cqf. (12

i
n_
g

2 r
(oB)= 1—5r2J dp(r—p){e(x)e(x")). (6)  wherec, is a constant of order unity.
0 In I, the corresponding expression was derived for the low

. . temperature(long wavelength limit, where it was shown
Note that the two-point function and the Hadamard func—,[hatp ellong gtn

tion, G(x,x") = 3{{e(x) ¢(x")}), are related by

i (o8)~h?r4, (13
X)e(X"))=G(X,X")+ [ Gag X, X" ) — Gl X, X" ) ],

(e e(x)=G( ) 2[ ad )~ Grel )] for a general long wavelength graviton bathy,&r). Note

™) that comparison of Eqg12) and (13) reveals tha(cr@ al-

, , _ ways grows with increasing, but somewhat more slowly in
where G, 4/(x,X") and G(X,x') are the advanced and re the large distance limit whene>\ .

tarded Green’s functions, respectively. Because the latter are
proportional to delta functions of the form
S(t—t'+|x—x']), they will not contribute to the renormal- IIl. THE CORRELATION FUNCTION
ized thermal function, which is expressible as an image sum |, this section, we wish to derive and interpret an expres-
over imaginary time. Thus for our purposes, the two-pointgjon for the correlation function:
and Hadamard functions are identical. Some of the properties
anq limits of the renormalized thermal tvyo-pomt funcnon, C(X,X11X},X,) =( Gyt X2, %) Gref Xp . X4)) — ( Gred X2,X1) )
which we will denote byGg(x,x"), are discussed in the
Appendix. X{(Gre X5,X1))- (14

A true thermal bath has both its characteristic wavelength,
Ag= B, and its graviton density determined by the tempera-Our starting point is the Fourier representation of the re-
ture, B8~ 1. We will also be interested in more general bathstarded Green’s function:
with an approximately Planckian spectrum but an arbitrary

amplitude. The mean squared amplitude of the metric fluc- O(t,—ty) (= o
tuations is characterized by the quantity GreXa X)) = —5 7| dae®0e®m (19
hz:i<h,_(x)hij(x)>. (8) We may follow a procedure analogous to that used in | to
30" obtain (G e(X»,X;)) to find
In the case of a thermal bath, o 0(t,—t,) O(ty—t)) A
1 <Gret(x2aX1)Gret(X2vX1)>: 128773\/E _E )
hZZW, 9 (16)
so if we let where
(@(X)@(x")) =180 B2h2Ggr(x,x'), (10) A=o5(012)+ o o)) —2000(oi0r),  (17)

we obtain the two-point function for a more general bathand
with a Planckian spectrum. In the following discussion, we 2 12 '
will often use the symbolg andA g interchangeably. How- B=(o1){(01%)—(o10)". (18
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and detected dt=t; . Letty=t; —t,, the difference in emis-
sion times. The effects of metric fluctuations will in general
cause the propagation timés;—t, andt;—t;, to differ both
from the classical propagation time,and from one another.
Let At be the expected deviation from the classical time for
either photon:

r

At=\((t,—t;— )%= ((t;—t;—1)?)=
(21)

Let 6t be the expected variation in the propagation times of
successive photons:

St=\((t,—ty—th+17)?). (22)

When the propagation of the two photons is uncorrelated,

FIG. 1. A photon is emitted at point 1 and detected at point 2. Adt=At. We expect this to be the case when the difference in
second photon is emitted at point &nd detected at point'2Inthe  emission timest,, is sufficiently long. More generally, the
absence of metric fluctuations, a photon propagates on the classiqg\hotons may be correlated, in which case<At. Various
light cone, illustrated by the dashed lines. Metric fluctuations causgpecial cases will be discussed in the following subsections.
the photon to move on a stochastic trajectory with a propagationye will need to calculatd oy o}), which is given by an
time which may either be larger or smaller than the classical ﬂightexpression analogous to E@):
time. The mean trajectory for a fixed flight time is illustrated by the
solid lines.

1 r r
(o100)= Erzf dzf dZ(p(x)e(x")), (23
Here oy and o, refer to the pair of pointsx,,X;), whereas 0 0
oo and oy refer to (;,x;). Equation(16) is valid only if  \here thez integration is taken along the mean path of the
B>0. ) o ) ) first photon, and the’ integration is taken along that of the
2, 2 12, 2 slopes,v andv’, of the two mean paths are approximately

A=oo{or%)+oe*{(o), (19 unity. Thus the two-point function in Eq23) will be as-

and sumed to be evaluated ap=|x—x'|=|z—Z2'| and
r=t—t'|=|z—2'—1g|.
B~(a5)(01%). (20)

A. Large t,

n this limit, (Gre(X2,X1) GrelXz X))~ Let us first consider the limit in whichy, is large com-

<Gfe‘(X2’Xl,)><,Gfe‘(X2’X1)> and _hence we  have pared to either or A4, and hence the integration in EQ3)
C(X2,X1:;X5,X1)~0. Thus, successive pulses are uncorre-

AR . : .~ "~lis over points for whichr~t,>p and r>\4. In this limit,
lated and the expected variation in their flight times is giveny o two-point function becomes approximatdigee Eq
by Eq.(1). '

A9
More generally,C(X,,X1;X5,X;)#0, and a pair of suc- (A9)]
cessive pulses will be correlated. In this case, the expected 45 )\Sh2
variation in their flight times is not given by Eql), but is (e(X)(x"))~ 22 (24)

expected to be smaller. Recall that the function
(Gref(X2,X1)GrefX5,X1)) is the mean value of the product of Thus, we find
the field atx, due to aé function source ax; with the field

at x; due to aé function source ak;. In the absence of

metric fluctuations, this quantity is nonzero only when the

propagation times are equal, that is, whert,=t;—t;. In

the presence of metric fluctuations, this function is a Gaussn this limit, (o,0;)<(0?), and we obtain the uncorrelated
ian peaked at the point whetg—t;=t,—t;, and with a case. In the long graviton wavelengttow temperaturg
width which characterizes the expected deviation in propakimit, (a3) is given by Eq.(13) and we have

gation times. This behavior will be illustrated by specific

examples in the following section. ot~At=hr. (26)

) (Ap)*
<0_lUl>~3)\éh27TTtg. (25)

V. VARIATION IN PHOTON FLIGHT TIMES In the short graviton wavelengtthigh temperatunelimit,
' (o?) is given by Eq.(12) and
In this section, we wish to consider the situation illus-

trated in Fig. 1, where a photon is emittedtatt, and de- &%Atzh\/ir)\ \/In(i
tected att=t, and then a second photon is emitted at ; a9 B

+cq . (27
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B. Long graviton wavelengths

In the limit in which\ ¢ is large compared to bothand to
to, we use the low temperature approximation to the thermal >
two-point function, Eq.(A7). Substituting this approximate
form into Eq.(6) yields
2 7or?
2 2,4 (t.z) 2
~hr® 1— . 2
(o) r { 45)\5 (28
R Z=Z-1
Similarly, we obtain L
2,42 1 (t.z)
/ 2 2T t%
(o101)~(o)—h Z (29 to
5§
1

and hence combining these two results, we obtain

2,.8¢2
B~ 2h? TG (30) FIG. 2. The domain of integration in E¢R3) is illustrated for
56 - the case that>t,. For a given point{,z) on the first trajectory, a

’ point (t',z’) on the second trajectory may be spacelike separated

In the calculation 0B, it was possible to approximate the (dashed lingor timelike separategsolid ling) from the first point.
slopes of the photon trajectories as being unity. In order td'he boundary case of null separation occurg’atz—t,. In the
obtain nonvanishing expressions fog, and oy, we must high tempgratyre Iimitr,>./3, the spacelike portion yields the domi-
consider the deviation of these slopesandy’, from unity. ~ "ant contribution to the integral.

To leading order ifv—1| and|v’ —1|, we have .
C. Large separations
a§~(1—v)2r4, In this section, we will consider the case where the sepa-
rationr is larger than either the graviton wavelength or
o?~(1—v")%r4, the temporal separation between the pulsgsThe integra-
tions in Eq.(23) now involve pairs of points with timelike,
oo~ (1—v)(1—v")r. (32) spacelike, and null separations, as illustrated in Fig. 2. This
is in contrast to the situation in Sec. IV A, where the inte-
For the calculation ofA, we use only the approximation in grations are entirely over pairs of timelike separated points.
which We will assume that>\ 4. Thus we may use the high tem-
perature form of the thermal two-point function, which is
(0D)y=~(a}?)~(o,07)~h?r?, (32)  given by Eqg.(A9) for timelike separations, and EGA10) for
spacelike separations. Recall that the former form is valid
Then we obtain only for 7—p>pB=N\4. Thus the timelike separated points
will yield a contribution to(o;07) which is of O(InAy).
A~hZr8(u—uv')2 (33 However, the spacelike separated points yield a contribution
. o which is ofO(\4 ), and hence is dominant in the sma|j
The magnitude of the argument of the exponential in EQjimit |nserting Eq.(A10) into Eq.(23), and integrating over
(16) becomes spacelike separated points, yields

A 5B%v—v')? 3 r -ty 1
o A _S5Fw-v)? @4 o= 2hinge (e[t
2B 4 7222 (oq07) 7Th Agr Odz . dz B

In this casef{o,07) is not negligible, and hence the two 3 0 o [T
photons are correlated. The mean variation in the flight times = —h"Agriin to) 1. (37
is given by ét=évr, where dv is the value oflv —v’| for
which C=1. Thus Compare this result with E412) for (%) in ther >\ limit.
We see that
2 to
G x_g) i (39 (100> In(r/to) -

(o) 0o}?) In(r/\g)
From Egs.(1) and(13), we see that
Thus far, we have not specified the relative magnitudes of
At=hr (36)  A\gandt,. Let us first consider the casg<t,. In this limit,
the ratio in Eq.(38) slowly approaches zero. Thus, in this
and hence thatt<At, i.e., the photons are highly corre- case, the two photons become uncorrelated. Because of the
lated. slow rate at which this ratio vanishes, we might describe this
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case as one in which the events are weakly uncorrelated, and H(t,z)=hcogk,z— ot+ 6). (41)
the variation in the flight times is approximately given by Eq.
(27). [Note that the amplituddy, of the classical wave may differ

The remaining possibility is the case whexg>t,. The  from the amplitude defined in Ed8) by small numerical
ratio in Eq.(38) is now larger than unity, and henBe<0. In  factors which we will ignord.Here we are assuming that the
this case, the derivation of the correlation function given inphotons propagate along the lireey=0, and that the grav-
Sec. Il breaks down, and our results are inconclusive. ity wave travels in some other direction, so tha# w. Our

result forAT now becomes

V. EFFECTS OF COSMOLOGICAL GRAVITONS

h
In principle, the results of the previous sections could be AT= s——F—{siN(k,— w)r — wtg+ &]—sin(d— wty)
; ! - : 2(w—k,)
used to search for relic cosmological gravitons. It is expected
that there may exist a bath of gravitons at the present time —sin (k,— w)r + 8]+ siné}. (42

which was created in the early universe. For example, if the

universe evolved from a state of thermal equilibrium at theif neither t, nor r is small compared tog, the quantity

Planck epoch without inflation, one would expect that therayithin braces in the above expression is of order unity, so

should now be a thermal bath of gravitons at a temperature

of approximately ¥. On the other hand, inflation would AT g

tend to wipe out such a bath, but could create more gravitons —~ht (43

at the end of inflation. Inflation at an energy scale of the 0 0

order of 17(156 GeV might produce a bath withg=10"cm ¢ te<\q in Eq. (42), then

andh~10"°°[1,8]. The effects of either of these baths upon

the propagation time of photons is far too small to be detect- htow

able, however. AT~ ———{cos5—cog (k,—w)r+41}, (44
We can take a different approach in which we conjecture 2(0—ky)

that some unknown process may have generated a much

larger bath of gravitons, and seek observational bounds ofi"d: hence,

such a bath. The timing data from pulsars provides one such

set of bounds. These data have in fact been used in recent Zh (45)

years to place limits on a background of classical gravity to

waves[9-12]. Thus, in the next subsection, we will briefly

review the effect of a classical gravity wave upon the ob-Similarly, if r<A4 in Eqg. (42), then

served arrival times of pulses.

1
A. Classical gravity waves and photon flight times AT~ Ehr[coﬁ— cod 5= wlo)], (46)
Consider a classical metric perturbatioh;;, in the dh
transverse-tracefre@ T) gauge. If one photon is emitted at and hence
t=0 and a second at=t, the difference in their flight times AT
over a spatial distanceis [see Ref[9] and Eq.(46) in |] —th (47)
t to’
1 (r 0 0
AT=- EJ'O[H(IOJFZ’Z)_H(Z’Z)]dZ' (39 Finally, if ty<\4 andr<\,, then Eq.(42) becomes
whereH=H(t,z)=h;;n'n}, andn' is the unit three-vector in 1 .
the direction of the photons’ propagation. Let us assume that AT 2 hrigsing, (48)
both the source and the detector are initially at rest with
respect to our coordinate system, so their four-velocities arand
u#=g*. From the geodesic equation
ull h ' (49
du# FTLEE
— = THueuf=0. (40) o Ag
dr

Our results for the various cases, as well as the results of
The second step follows from the fact tigf=0 in the TT  previous sections foAt and 6t, are summarized in Table I.
gauge. Thus to linear order, the metric perturbation does not Note thatAT and 6t are approximately equal in the limit
change the four-velocities of either the source or the detectonf long wavelengths >r. As a matter of principle, the two
and henceAT is not only a coordinate time difference, but quantities are quite differen®t arises from quantum fluc-
also the proper time difference in photon arrival times due tduations of the light cone, wheread' is calculated in a fixed
the gravity wave. classical spacetime with a precisely defined light cone. This
In order to give simple estimates of the magnitude ofis reflected in the fact that whex,<r, the short wavelength
AT in various limits, let us take an explicit form fdi: limit, 6t grows with increasing, whereasAT does not.
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TABLE I. Summary of results foAT, At, and ét. In the long wavelength case\g>r, we have
AT/t~ dtltg~hr/\4. The resulting bound on both classical
AT At ot gravity waves and gravitons is
to to to
pg<4x 10*48%3 , (55
Ng>T>tg N . correlated ¢
N>t Ag o g and is independent of, as long as\;>1 kpc.
to VI. SUMMARY AND DISCUSSION
to> A>T r r . :
ht_ ht_ In this paper, we have obtained a result for the mean
0 0 squared fluctuations of the geodesic interval functiarg),
in the case of a thermal bath at high temperature. This result
to>r>Ag Ag hm uncorrelated  can also be used to discuss graviton baths with an approxi-
to to mately Planckian spectrum, but with an arbitrary amplitude.
r>to>Xg h‘/r_)‘g We have found a general expression for the correlation func-
to tion, Eq. (16). This correlation function was used to deter-
r>\g>to h ?? mine when a pair of photon trajectories is uncorrelated, so
that the mean variation in successive photon flight times,

. St, is essentially equal tat, the mean deviation from the
B. Bounds on graviton baths classical flight time. When the trajectories are in fact corre-

Pulsars can be exceptionally stable astronomical clockd@ted, this function also enables us to compute expressions
Timing data from a number of stable pulsars have been gatto" ot- Application of these resuilts to pulsar timing data

ered over the past decadl,12 which places an upper seems to lead to some nontrivial bounds upon the allowed
bound on bothAT/t, and &/tc; of the order of 10 with amplitudes of baths of long wavelength gravitons. Although

to~ 10 yr. These data may be used to place limits upon th he baths of gravitons in a squeezed vacuum state that one

I ) . ight expect to have been created in the early universe are
pregent—day energy den_sny In b(.)th classical gravity waveg,spservable by this means, these arguments limit such
and in nonclassical gravitons. This energy density is '

gravitons created by unknown mechanisms. This presumably
1 B 2 places some restrictions upon the initial guantum state of the
Pg:§<hij thl,D*GO WZF' (50) universe.
' g
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A
h~1.5% 10—27< g
lcm

Typical pulsar distances are of order APPENDIX
r~1kpc=3x10?cm. If we consider the case
Ag<10 yr~10' cm, then we have that>to>\y. In this
case, from Eq(43), we obtain a bound on the energy density
in classical gravity waves of

Here we summarize some of the properties of the thermal
two-point function in coordinate space. The renormalized
thermal two-point function, i.e., the finite temperature func-
tion minus the vacuum contribution, is equal to the Had-

109 cm) 4 amard function, as discussed in Sec. Il, and is expressible as
09 ( )

(52 an image sum:

Pg<5X10"
g cel Ag i}
— 36 . 1 , 1
If, for example,\y=0.14 yr, we havepy<10 glen?, in Gri(X,X")=— 2 —_—, (A1)
agreement with the more careful analysis of Strinebengl. 4mn=Za pt=(7+ing)
[11]. herep=|x—x’| andr=|t—t’|, and the prime on the sum-

The corresponding bound upon gravitons in a squeeze

, h . For th ation indicates that the= 0 term is omitted. This sum may
vacuum state Is somewhat more stringent. For the casg, o auated by means of the Poisson summation formula,

r>to>Ng, which states that

ot r AT 53 ” N

tp Vigto 2 fm= X fn), (A2)
For gravitons, we obtain wheref(n)= [ e 2™"f(x)dx is the Fourier transform of

f.
9 3 . _
pg<1045%]3( 10* cm) _ (54) In our casef(x)=(47%) Y p*~(r+inB)*] L If m>p,
¢ Ag thenf(n)=0 for n=0, and
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f(n) _ 4WPB[6277(7'+p)n/,8_eZ'n’(T—p)n/B], (A3)
for n<0. Similarly, if 7<<p, then
f(n)= Wezw”"’)“’ﬁ, (A4)
for n=0, and
f(n)= e, (A5)

for n<0. We may now evaluat&gy. In both ther>p and
T<p cases, we find the same result:

1{77
Bple

Lt
TZ_pZ .

1 1

Grr(X,x") = e2m(TtpIB_1  @2n(rpIB_q

(AB)

In the low temperature limit3—«, Gzt has the asymp-

totic form
24372
Pl
158

+0(B7%). (A7)

Gry(x,x")~

1
1282
In the high temperature limi{3— 0, for non-null separated
points (p# 7), Ggt has the asymptotic form

L. H. FORD AND N. F. SVAITER

T 1
")~ - +
GRT(X!X ) 4_2 IBP[eZﬂ'(Tfp)/ﬂ_l] Tz_pz
(A8)
For timelike separations, & p), this yields
G ! ! A9
RT(X,X") pp T (A9)

Similarly, for spacelike separationsr<p), we have

+0(B9). (A10)

Grr(X,X")~ ———

4mBp

The form of Ggy on the light cone is obtained from EGA\6)
by taking the limit7— p:

1 1 1
GRT(XX)—> [IBp W-FE—? .

(A11)

As required,Gry is finite on the light cone. Let us now take
the high temperature limit of this light cone form to obtain

8mBp

Comparison of EqstA10) and (A12) reveals that the high
temperature limit oiGgy is discontinuous on the light cone.

Grr(X,x")~ +0(8%). (A12)
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