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Gravitons and light cone fluctuations. II. Correlation functions
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A model of a fluctuating light cone due to a bath of gravitons is further investigated. The flight times
photons between a source and a detector may be either longer or shorter than the light propagation time
background classical spacetime, and will form a Gaussian distribution centered around the classical flight
However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive
discuss a correlation function which describes this effect. This enables us to understand more fully the o
tional significance of a fluctuating light cone. Our results may be combined with observational data on p
timing to place some constraints on the quantum state of cosmological gravitons.@S0556-2821~96!04616-4#

PACS number~s!: 04.60.2m, 04.62.1v, 97.60.Gb, 98.80.Cq
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I. INTRODUCTION

In a previous paper@1#, henceforth I, the problem of light
cone fluctuations due to gravitons was discussed. A bath
gravitons in a squeezed vacuum state, or a thermal state,
shown to produce fluctuations of the spacetime metric, wh
in turn produce light cone fluctuations.~A squeezed vacuum
state is the state in which relic gravitons from the early un
verse are expected to be found@4#.! The propagation time of
a classical light pulse@2# over a distancer is no longer
precisely r @3#, but undergoes fluctuations around a me
value of r . In I, it was shown that the mean deviation from
the classical propagation time is

Dt5
A^s1

2&
r

, ~1!

where ^s1
2& is the mean square fluctuation in the geodes

interval function. Lets(x,x8) be one-half of the squared
geodesic distance between a pair of pointsx andx8. In the
presence of a linearized metric perturbationhmn ,

s5s01s11O~hmn
2 !. ~2!

Heres05
1
2(x2x8)2 is the flat space interval function, and

s1 is the first order shift ins, which becomes a quantum
operator when the metric perturbations are quantized. T
expectation values ofs1

2 are formally divergent, sôs1
2& is

understood to be a renormalized expectation value, the
ference between the expectation value in a given state an
the Minkowski vacuum state. Note that we are assuming t
the metric fluctuations are produced solely by the bath
gravitons. More generally, quantum matter fields will exp
rience stress tensor fluctuations which will act as an ad
tional source of metric fluctuations@5,6#.

Equation~1! arises from a calculation given in I of the
expectation value of the retarded Green’s function in
squeezed vacuum state of gravitons, which yielded
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^Gret~x,x8!&5
u~ t2t8!

8p2 A p

2^s1
2&
expS 2

s0
2

2^s1
2& D . ~3!

This form is valid for the case that^s1
2&.0. Equation~3!

reveals that thed-function behavior of the classical Green’s
function,Gret, has been smeared out into a Gaussian func
tion which is peaked around the classical light cone. Thi
means that a light pulse is equally likely to traverse a dis
tance in less than the classical propagation time as it is
traverse the interval in a longer time.

In I, explicit forms of ^s1
2& were given for particular

quantum states, including a single mode squeezed vacuu
state and a thermal state in the long wavelength limit. One o
the purposes of the present paper is to generalize these c
culations, in particular to a bath of thermal gravitons in the
short wavelength limit. This will be done in Sec. II.

The primary purpose of this paper will be to calculate and
interpret the correlation function which relates the flight time
variations of a pair of successive photons. In general, such
pair of photons may have correlations which cause the e
pected difference in their flight times to be less thanDt. If
one wishes to use observational data to search for flight tim
variations due to light cone fluctuations, it is essential to
understand these correlations. In Sec. III, a general formu
for the correlation function ^Gret(x2 ,x1)Gret(x28 ,x18)&
2^Gret(x2 ,x1)&^Gret(x28 ,x18)& is obtained. In Sec. IV, this
function is used to determine when pairs of photons are co
related, and to calculate the mean variation in flight times
dt. In Sec. V, we first review the effects of classical gravity
waves upon pulse arrival times, and the bounds which puls
timing data yield upon a background of such classical wave
We then discuss the bounds which these data place up
gravitons in a squeezed vacuum state. Our results are su
marized and discussed in Sec. VI.

II. CALCULATION OF Šs1
2
‹ FOR A THERMAL BATH

OF GRAVITONS

In I, ^s1
2& was calculated for a thermal bath of gravitons

in the low temperature limit. In this section, we wish to
2640 © 1996 The American Physical Society



54 2641GRAVITONS AND LIGHT CONE . . . . II. . . .
generalize this calculation to arbitrary temperature, and
particular obtain the high temperature limit. In the
transverse-trace-free gauge, the graviton two-point functi
is expressible in terms of that for a massless scalar field@7#:

^hi j ~x!hi j ~x8!&52^w~x!w~x8!&. ~4!

From this expression, and Eqs.~49! and~61! of I, we obtain

^s1
2&5

1

15
r 2E

0

r

dzE
0

r

dz8^w~x!w~x8!&, ~5!

where the integrals are to be evaluated along the unpertur
null geodesic. We take this geodesic to have a spatial ext
of r in the z direction, sox5(z,0,0,z) andx85(z8,0,0,z8).
Using the fact that the two-point function is a function o
r5ux2x8u5uz2z8u, we may change variables of integration
and write

^s1
2&5

2

15
r 2E

0

r

dr~r2r!^w~x!w~x8!&. ~6!

Note that the two-point function and the Hadamard fun
tion, G(x,x8)5 1

2^$w(x)w(x8)%&, are related by

^w~x!w~x8!&5G~x,x8!1
i

2
@Gadv~x,x8!2Gret~x,x8!#,

~7!

whereGadv(x,x8) andGret(x,x8) are the advanced and re-
tarded Green’s functions, respectively. Because the latter
proportional to delta functions of the form
d(t2t86ux2x8u), they will not contribute to the renormal-
ized thermal function, which is expressible as an image su
over imaginary time. Thus for our purposes, the two-poi
and Hadamard functions are identical. Some of the propert
and limits of the renormalized thermal two-point function
which we will denote byGRT(x,x8), are discussed in the
Appendix.

A true thermal bath has both its characteristic waveleng
lg5b, and its graviton density determined by the temper
ture,b21. We will also be interested in more general bath
with an approximately Planckian spectrum but an arbitra
amplitude. The mean squared amplitude of the metric flu
tuations is characterized by the quantity

h25
1

30
^hi j ~x!hi j ~x!&. ~8!

In the case of a thermal bath,

h25
1

180b2 , ~9!

so if we let

^w~x!w~x8!&5180b2h2GRT~x,x8!, ~10!

we obtain the two-point function for a more general bat
with a Planckian spectrum. In the following discussion, w
will often use the symbolsb andlg interchangeably. How-
in
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ever, in generalb is understood to be the inverse temperature
for a thermal bath, andlg the mean wavelength for a more
general bath.

In the short wavelength~high temperature limit!, we may
use the asymptotic form for the thermal two-point function
on the light cone, Eq.~A12!, to write

^s1
2&'

3

p
r 2lgh

2E
alg

r

dr~r2r!
1

r
. ~11!

Recall that this asymptotic form is valid only forr.alg ,
wherea@1 is a constant. Thus we have introduced a cutoff
at r5alg in the integral. This introduces an error of
O(lg

0), which is small in thelg→0 limit. Evaluation of the
integral in Eq.~11! yields

^s1
2&'

3

p
h2r 3lgF lnS rlg

D1c1G . ~12!

wherec1 is a constant of order unity.
In I, the corresponding expression was derived for the low

temperature~long wavelength! limit, where it was shown
that

^s1
2&'h2r 4, ~13!

for a general long wavelength graviton bath (lg@r ). Note
that comparison of Eqs.~12! and ~13! reveals that̂ s1

2& al-
ways grows with increasingr , but somewhat more slowly in
the large distance limit wherer.lg .

III. THE CORRELATION FUNCTION

In this section, we wish to derive and interpret an expres-
sion for the correlation function:

C~x2 ,x1 ;x28 ,x18![^Gret~x2 ,x1!Gret~x28 ,x18!&2^Gret~x2 ,x1!&

3^Gret~x28 ,x18!&. ~14!

Our starting point is the Fourier representation of the re-
tarded Green’s function:

Gret~x2 ,x1!5
u~ t22t1!

8p2 E
2`

`

daeias0eias1. ~15!

We may follow a procedure analogous to that used in I to
obtain ^Gret(x2 ,x1)& to find

^Gret~x2 ,x1!Gret~x28 ,x18!&5
u~ t22t1!u~ t282t18!

128p3AB
expS 2

A

2BD ,
~16!

where

A5s0
2^s18

2&1s08
2^s1

2&22s0s08^s1s18&, ~17!

and

B5^s1
2&^s18

2&2^s1s18&
2. ~18!
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Heres0 ands1 refer to the pair of points (x2 ,x1), whereas
s08 and s18 refer to (x28 ,x18). Equation~16! is valid only if
B.0.

Let us consider the limit in whicĥs1s18& is small, so that

A's0
2^s18

2&1s08
2^s1

2&, ~19!

and

B'^s1
2&^s18

2&. ~20!

In this limit, ^Gret(x2 ,x1)Gret(x28 ,x18)&'
^Gret(x2 ,x1)&^Gret(x28 ,x18)& and hence we have
C(x2 ,x1 ;x28 ,x18)'0. Thus, successive pulses are uncorre
lated and the expected variation in their flight times is give
by Eq. ~1!.

More generally,C(x2 ,x1 ;x28 ,x18)Þ0, and a pair of suc-
cessive pulses will be correlated. In this case, the expec
variation in their flight times is not given by Eq.~1!, but is
expected to be smaller. Recall that the functio
^Gret(x2 ,x1)Gret(x28 ,x18)& is the mean value of the product of
the field atx2 due to ad function source atx1 with the field
at x28 due to ad function source atx18 . In the absence of
metric fluctuations, this quantity is nonzero only when th
propagation times are equal, that is, whent22t15t282t18 . In
the presence of metric fluctuations, this function is a Gaus
ian peaked at the point wheret22t15t282t18 , and with a
width which characterizes the expected deviation in prop
gation times. This behavior will be illustrated by specific
examples in the following section.

IV. VARIATION IN PHOTON FLIGHT TIMES

In this section, we wish to consider the situation illus
trated in Fig. 1, where a photon is emitted att5t1 and de-
tected att5t2 and then a second photon is emitted att5t18

FIG. 1. A photon is emitted at point 1 and detected at point 2.
second photon is emitted at point 18 and detected at point 28. In the
absence of metric fluctuations, a photon propagates on the class
light cone, illustrated by the dashed lines. Metric fluctuations cau
the photon to move on a stochastic trajectory with a propagati
time which may either be larger or smaller than the classical flig
time. The mean trajectory for a fixed flight time is illustrated by th
solid lines.
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and detected att5t28 . Let t05t182t1, the difference in emis-
sion times. The effects of metric fluctuations will in general
cause the propagation times,t22t1 andt282t18 , to differ both
from the classical propagation time,r , and from one another.
Let Dt be the expected deviation from the classical time for
either photon:

Dt5A^~ t22t12r !2&5A^~ t282t182r !2&5
A^s1

2&
r

.

~21!

Let dt be the expected variation in the propagation times of
successive photons:

dt5A^~ t22t12t281t18!2&. ~22!

When the propagation of the two photons is uncorrelated
dt5Dt. We expect this to be the case when the difference in
emission times,t0, is sufficiently long. More generally, the
photons may be correlated, in which casedt,Dt. Various
special cases will be discussed in the following subsections
We will need to calculatês1s18&, which is given by an
expression analogous to Eq.~5!:

^s1s18&5
1

15
r 2E

0

r

dzE
0

r

dz8^w~x!w~x8!&, ~23!

where thez integration is taken along the mean path of the
first photon, and thez8 integration is taken along that of the
second photon. Here we will assume thatDt!r , so the
slopes,v andv8, of the two mean paths are approximately
unity. Thus the two-point function in Eq.~23! will be as-
sumed to be evaluated atr5ux2x8u5uz2z8u and
t5ut2t8u5uz2z82t0u.

A. Large t0

Let us first consider the limit in whicht0 is large com-
pared to eitherr or lg , and hence the integration in Eq.~23!
is over points for whicht't0@r and t@lg . In this limit,
the two-point function becomes approximately@see Eq.
~A9!#

^w~x!w~x8!&'
45lg

2h2

p2t2
. ~24!

Thus, we find

^s1s18&'3 lg
2h2

~Dt !4

p2t0
2 . ~25!

In this limit, ^s1s18&!^s1
2&, and we obtain the uncorrelated

case. In the long graviton wavelength~low temperature!
limit, ^s1

2& is given by Eq.~13! and we have

dt'Dt5hr. ~26!

In the short graviton wavelength~high temperature! limit,
^s1

2& is given by Eq.~12! and

dt'Dt5hA3

p
rlgAlnS rb D1c1 . ~27!
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B. Long graviton wavelengths

In the limit in whichlg is large compared to bothr and to
t0, we use the low temperature approximation to the therm
two-point function, Eq.~A7!. Substituting this approximate
form into Eq.~6! yields

^s1
2&'h2r 4F12

2p2r 2

45lg
2 G . ~28!

Similarly, we obtain

^s1s18&'^s1
2&2h2

p2r 4t0
2

5 lg
2 , ~29!

and hence combining these two results, we obtain

B'2h4
p2r 8t0

2

5 lg
6 . ~30!

In the calculation ofB, it was possible to approximate the
slopes of the photon trajectories as being unity. In order
obtain nonvanishing expressions fors0 and s08 , we must
consider the deviation of these slopes,v andv8, from unity.
To leading order inuv21u and uv821u, we have

s0
2'~12v !2r 4,

s08
2'~12v8!2r 4,

s0s08'~12v !~12v8!r 4. ~31!

For the calculation ofA, we use only the approximation in
which

^s1
2&'^s18

2&'^s1s18&'h2r 4. ~32!

Then we obtain

A'h2r 8~v2v8!2. ~33!

The magnitude of the argument of the exponential in E
~16! becomes

C5
A

2B
'
5 b2~v2v8!2

4p2h2t0
2 . ~34!

In this case,̂ s1s18& is not negligible, and hence the two
photons are correlated. The mean variation in the flight tim
is given bydt5dvr , wheredv is the value ofuv2v8u for
which C51. Thus

dt'
2p

A5
S t0lg

Dhr. ~35!

From Eqs.~1! and ~13!, we see that

Dt'hr ~36!

and hence thatdt!Dt, i.e., the photons are highly corre-
lated.
al

to

q.

es

C. Large separations

In this section, we will consider the case where the sepa
ration r is larger than either the graviton wavelengthlg or
the temporal separation between the pulses,t0. The integra-
tions in Eq.~23! now involve pairs of points with timelike,
spacelike, and null separations, as illustrated in Fig. 2. Thi
is in contrast to the situation in Sec. IV A, where the inte-
grations are entirely over pairs of timelike separated points
We will assume thatr@lg . Thus we may use the high tem-
perature form of the thermal two-point function, which is
given by Eq.~A9! for timelike separations, and Eq.~A10! for
spacelike separations. Recall that the former form is valid
only for t2r.b5lg . Thus the timelike separated points
will yield a contribution to ^s1s18& which is of O(lnlg).
However, the spacelike separated points yield a contributio
which is ofO(lg

21), and hence is dominant in the smalllg

limit. Inserting Eq.~A10! into Eq. ~23!, and integrating over
spacelike separated points, yields

^s1s18&'
3

p
h2lgr

2E
0

r

dzE
0

z2t0
dz8

1

r

5
3

p
h2lgr

3F lnS rt0D2 1G . ~37!

Compare this result with Eq.~12! for ^s1
2& in ther@lg limit.

We see that

^s1s18&
2

^s1
2&^s18

2&
'

ln~r /t0!

ln~r /lg!
. ~38!

Thus far, we have not specified the relative magnitudes o
lg andt0. Let us first consider the caselg!t0. In this limit,
the ratio in Eq.~38! slowly approaches zero. Thus, in this
case, the two photons become uncorrelated. Because of t
slow rate at which this ratio vanishes, we might describe this

FIG. 2. The domain of integration in Eq.~23! is illustrated for
the case thatr.t0. For a given point (t,z) on the first trajectory, a
point (t8,z8) on the second trajectory may be spacelike separate
~dashed line! or timelike separated~solid line! from the first point.
The boundary case of null separation occurs atz85z2t0. In the
high temperature limit,r@b, the spacelike portion yields the domi-
nant contribution to the integral.
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case as one in which the events are weakly uncorrelated,
the variation in the flight times is approximately given by Eq
~27!.

The remaining possibility is the case wherelg.t0. The
ratio in Eq.~38! is now larger than unity, and henceB,0. In
this case, the derivation of the correlation function given
Sec. III breaks down, and our results are inconclusive.

V. EFFECTS OF COSMOLOGICAL GRAVITONS

In principle, the results of the previous sections could b
used to search for relic cosmological gravitons. It is expect
that there may exist a bath of gravitons at the present tim
which was created in the early universe. For example, if t
universe evolved from a state of thermal equilibrium at th
Planck epoch without inflation, one would expect that the
should now be a thermal bath of gravitons at a temperatu
of approximately 3K. On the other hand, inflation would
tend to wipe out such a bath, but could create more gravito
at the end of inflation. Inflation at an energy scale of th
order of 1015 GeV might produce a bath withlg'104 cm
andh'10236 @1,8#. The effects of either of these baths upo
the propagation time of photons is far too small to be dete
able, however.

We can take a different approach in which we conjectu
that some unknown process may have generated a m
larger bath of gravitons, and seek observational bounds
such a bath. The timing data from pulsars provides one su
set of bounds. These data have in fact been used in rec
years to place limits on a background of classical gravi
waves@9–12#. Thus, in the next subsection, we will briefly
review the effect of a classical gravity wave upon the ob
served arrival times of pulses.

A. Classical gravity waves and photon flight times

Consider a classical metric perturbation,hi j , in the
transverse-tracefree~TT! gauge. If one photon is emitted at
t50 and a second att5t0, the difference in their flight times
over a spatial distancer is @see Ref.@9# and Eq.~46! in I#

DT52
1

2E0
r

@H~ t01z,z!2H~z,z!#dz, ~39!

whereH5H(t,z)5hi j n
inj , andni is the unit three-vector in

the direction of the photons’ propagation. Let us assume th
both the source and the detector are initially at rest wi
respect to our coordinate system, so their four-velocities a
um5d t

m . From the geodesic equation

dum

dt
52Gab

m uaub50. ~40!

The second step follows from the fact thatG tt
m50 in the TT

gauge. Thus to linear order, the metric perturbation does n
change the four-velocities of either the source or the detect
and henceDT is not only a coordinate time difference, bu
also the proper time difference in photon arrival times due
the gravity wave.

In order to give simple estimates of the magnitude o
DT in various limits, let us take an explicit form forH:
nd
.

n

e
ed
e
e
e
re
re
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e
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or,
t
to

f

H~ t,z!5hcos~kzz2vt1d!. ~41!

@Note that the amplitude,h, of the classical wave may differ
from the amplitude defined in Eq.~8! by small numerical
factors which we will ignore.# Here we are assuming that the
photons propagate along the linex5y50, and that the grav-
ity wave travels in some other direction, so thatkzÞv. Our
result forDT now becomes

DT5
h

2~v2kz!
$sin@~kz2v!r2vt01d#2sin~d2vt0!

2sin@~kz2v!r1d#1sind%. ~42!

If neither t0 nor r is small compared tolg , the quantity
within braces in the above expression is of order unity, so

DT

t0
'h

lg

t0
. ~43!

If t0!lg in Eq. ~42!, then

DT'
ht0v

2~v2kz!
$cosd2cos@~kz2v!r1d#%, ~44!

and, hence,

DT

t0
'h. ~45!

Similarly, if r!lg in Eq. ~42!, then

DT'
1

2
hr@cosd2cos~d2vt0!#, ~46!

and hence

DT

t0
'h

r

t0
. ~47!

Finally, if t0!lg and r!lg , then Eq.~42! becomes

DT'2
1

2
hrt0sind, ~48!

and

DT

t0
'h

r

lg
. ~49!

Our results for the various cases, as well as the results
previous sections forDt anddt, are summarized in Table I.

Note thatDT anddt are approximately equal in the limit
of long wavelengths,lg@r . As a matter of principle, the two
quantities are quite different:dt arises from quantum fluc-
tuations of the light cone, whereasDT is calculated in a fixed
classical spacetime with a precisely defined light cone. Th
is reflected in the fact that whenlg!r , the short wavelength
limit, dt grows with increasingr , whereasDT does not.



t
-

s

e
e

l

s

,

54 2645GRAVITONS AND LIGHT CONE . . . . II. . . .
B. Bounds on graviton baths

Pulsars can be exceptionally stable astronomical cloc
Timing data from a number of stable pulsars have been ga
ered over the past decade@11,12# which places an upper
bound on bothDT/t0 and dt/t0 of the order of 10214 with
t0' 10 yr. These data may be used to place limits upon t
present-day energy density in both classical gravity wav
and in nonclassical gravitons. This energy density is

rg5
1

2
^hi j ,th,t

i j &'60p2
h2

lg
2 , ~50!

where we have used Eq.~8! in the second step. This relation
may be written as

h'1.5310227S lg

1cmDA rg
10230g/cm3 . ~51!

Typical pulsar distances are of orde
r'1 kpc'331021 cm. If we consider the case
lg,10 yr'1019 cm, then we have thatr@t0@lg . In this
case, from Eq.~43!, we obtain a bound on the energy densit
in classical gravity waves of

rg,5310243
g

cm3S 1019 cmlg
D 4. ~52!

If, for example,lg50.14 yr, we haverg,10236 g/cm3, in
agreement with the more careful analysis of Strinebringet al.
@11#.

The corresponding bound upon gravitons in a squeez
vacuum state is somewhat more stringent. For the ca
r@t0@lg ,

dt

t0
'A r

lg

DT

t0
. ~53!

For gravitons, we obtain

rg,10245
g

cm3S 1019 cmlg
D 3. ~54!

TABLE I. Summary of results forDT, Dt, anddt.

DT

t0

Dt

t0

dt
t0

lg@r@t0 h
r

lg
h
r

lg

correlated

lg@t0@r
h
r

t0
t0@lg@r

h
r

t0
h
r

t0

t0@r@lg h
lg

t0
h
Arlg

t0

uncorrelated

r@t0@lg
h
Arlg

t0
r@lg@t0 h ??
ks.
th-

he
es

r

y

ed
se

In the long wavelength case,lg@r , we have
DT/t0'dt/t0'hr/lg . The resulting bound on both classical
gravity waves and gravitons is

rg,4310248
g

cm3 , ~55!

and is independent oflg , as long aslg@1 kpc.

VI. SUMMARY AND DISCUSSION

In this paper, we have obtained a result for the mean
squared fluctuations of the geodesic interval function,^s1

2&,
in the case of a thermal bath at high temperature. This resul
can also be used to discuss graviton baths with an approxi
mately Planckian spectrum, but with an arbitrary amplitude.
We have found a general expression for the correlation func-
tion, Eq. ~16!. This correlation function was used to deter-
mine when a pair of photon trajectories is uncorrelated, so
that the mean variation in successive photon flight times,
dt, is essentially equal toDt, the mean deviation from the
classical flight time. When the trajectories are in fact corre-
lated, this function also enables us to compute expression
for dt. Application of these results to pulsar timing data
seems to lead to some nontrivial bounds upon the allowed
amplitudes of baths of long wavelength gravitons. Although
the baths of gravitons in a squeezed vacuum state that on
might expect to have been created in the early universe ar
unobservable by this means, these arguments limit such
gravitons created by unknown mechanisms. This presumably
places some restrictions upon the initial quantum state of the
universe.
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APPENDIX

Here we summarize some of the properties of the therma
two-point function in coordinate space. The renormalized
thermal two-point function, i.e., the finite temperature func-
tion minus the vacuum contribution, is equal to the Had-
amard function, as discussed in Sec. II, and is expressible a
an image sum:

GRT~x,x8!5
1

4p2 (
n52`

`

8
1

r22~t1 inb!2
, ~A1!

wherer5ux2x8u andt5ut2t8u, and the prime on the sum-
mation indicates that then50 term is omitted. This sum may
be evaluated by means of the Poisson summation formula
which states that

(
n52`

`

f ~n!5 (
n52`

`

f̂ ~n!, ~A2!

where f̂ (n)5*2`
` e22p inxf (x)dx is the Fourier transform of

f .
In our case,f (x)5(4p2)21@r22(t1 inb)2#21. If t.r,

then f̂ (n)50 for n>0, and
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f̂ ~n!5
1

4prb
@e2p~t1r!n/b2e2p~t2r!n/b#, ~A3!

for n,0. Similarly, if t,r, then

f̂ ~n!5
1

4prb
e2p~t2r!n/b, ~A4!

for n>0, and

f̂ ~n!5
1

4prb
e2p~t1r!n/b, ~A5!

for n,0. We may now evaluateGRT. In both thet.r and
t,r cases, we find the same result:

GRT~x,x8!5
1

4p2 H p

br F 1

e2p~t1r!/b21
2

1

e2p~t2r!/b21G
1

1

t22r2 J . ~A6!

In the low temperature limit,b→`, GRT has the asymp-
totic form

GRT~x,x8!;
1

12b2 S 12p2
r213t2

15b2 D1O~b26!. ~A7!

In the high temperature limit,b→0, for non-null separated
points (rÞt), GRT has the asymptotic form
GRT~x,x8!;
1

4p2 H 2
p

br@e2p~t2r!/b21#
1

1

t22r2 J .
~A8!

For timelike separations, (t.r), this yields

GRT~x,x8!;
1

4p2~t22r2!
. ~A9!

Similarly, for spacelike separations, (t,r), we have

GRT~x,x8!;
1

4pbr
1O~b0!. ~A10!

The form ofGRT on the light cone is obtained from Eq.~A6!
by taking the limitt→r:

GRT~x,x8!→
1

4p2 H p

br F 1

e4pr/b21
1
1

2G2
1

r2 J .
~A11!

As required,GRT is finite on the light cone. Let us now take
the high temperature limit of this light cone form to obtain

GRT~x,x8!;
1

8pbr
1O~b0!. ~A12!

Comparison of Eqs.~A10! and ~A12! reveals that the high
temperature limit ofGRT is discontinuous on the light cone.
-
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