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One loop graviton self-energy in a locally de Sitter background
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The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply
intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting
both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the
former context we show that the self-energy obeys the appropriate Ward identity. We also show that its fla
space limit agrees with the flat space result obtained by Capper in what should be the same gauge.@S0556-
2821~96!06212-1#
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I. INTRODUCTION

We have suggested that inflation ended in the early u
verse because the quantum gravitational back reaction slo
generated negative vacuum energy which eventua
screened a not unnaturally small, positive cosmological co
stant@1,2#. This is an attractive scenario for solving the prob
lem of the cosmological constant because~1! it operates in
the far infrared where general relativity can be used reliab
as a quantum theory of gravitation,~2! it introduces no new
light quanta which would embarrass low energy pheno
enology,~3! it has the potential to make unique prediction
because gravity is the only phenomenologically viable theo
which possesses the essential feature of massless qu
whose self-interactions are not conformally invariant, and~4!
the weakness of gravitational interactions makes the proc
slow enough to account for a long period of inflation.

If this proposal is correct there will be far-reaching con
sequences for theories of the very early universe. Scarc
less significant, in the long run, is the fact that contact w
finally have been made between observed reality and
hitherto murky realm of quantum gravity.

We have recently done a calculation which establishes
validity of our scenario for at least as long as perturbati
theory remains reliable. The quantity we computed is t
expectation value of the invariant element, starting from
homogeneous and isotropic, locally de Sitter, free vacuum
the manifoldT33R:

^Vugmn~ t,xW !dxmdxnuV&52dt21a2~ t !dxW•dxW . ~1.1!

The rate of spacetime expansion is measured using the c
dinate invariant effective Hubble constant:

Heff~ t ![
1

a~ t !

da~ t !

dt
. ~1.2!
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One loop tadpoles make no contribution because they a
ultralocal whereas infrared effects derive from the causal an
coherent superposition of interactions throughout the pa
lightcone. The first secular effect comes from the two loop
diagrams shown in Fig. 1. At the end of a very long calcu
lation we obtain the following result@3,4#:

Heff~ t !5HH 12S kH

4p D 4F16 ~Ht !21O~Ht !G2O~k6!J ,
~1.3!

whereH[A(1/3)L is the Hubble constant at the onset of
inflation andk2[16pG is the usual loop counting parameter
of perturbative quantum gravity. We have also been able
show that thel loop contribution to the bracketed term can
be no stronger than2#(kH)2l (Ht) l .

It is not easy to compute at two loops even for scalar fiel
theories on flat space, and truth can sometimes remain w
hidden amidst the forest of indices which characterize an
calculation in quantum gravity. In fact only one other two
loop result has been obtained for quantum gravity, and th
was limited to the ultraviolet divergent part of the standard
in-out effective action for zero cosmological constant@5#. To
study the ultraviolet one can use asymptotic expansions
which the effects of spacetime curvature are segregated fro
what is basically a calculation in flat space. The infrared doe
not allow this simplification; we had to obtain the full propa-
gators on a curved background and integrate them against
appropriate interaction vertices over a large invariant spac
time volume. There was an additional complication in having
to use Schwinger’s formalism@6# to obtain a true expectation
value rather than an in-out matrix element. One naturall

FIG. 1. Two-loop contributions to the background. Gravitons
reside on wavy lines and ghosts on segmented lines.
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wonders, therefore, about the accuracy of a result such as
one we are reporting. This concern is heightened by the
that so much of the relevant formalism has only recen
been developed.

The possibility for dramatic checks on the consistency
the formalism and on our proficiency in applying it is pro
vided by the manner in which we computed the two mo
complicated diagrams, 1~a! and 1~b!. In order to economize
on the size of intermediate expressions we evaluated
lower loops first and then contracted them into the two up
propagators and the final vertex as represented diagram
cally in Fig. 2. A consequence is that we can extract the o
loop graviton self-energy. This quantity can be subjected
two powerful tests: the flat space limit~H→0 with k and t
held fixed! and the Ward identity. The Ward identity check
our gauge fixing procedure, our solution for the ghost a
graviton propagators, our three-point vertices, and the a
mated reduction procedures through which we contrac
propagators into vertices and acted the various derivatives
addition to providing a largely complementary check on
these things, the flat space limit tests the overall proporti
ality constant.

In Sec. II of this paper we define the self-energy, expla
how it was calculated, and give our result for it. In Sec.
we define the flat space limit, compute it for the one lo
graviton self-energy, and show that it agrees with the
space result obtained earlier by Cappen@7#. In Sec. IV we
derive the Ward identity for our gauge and describe the p
cedure used to check it. Our conclusions are discusse
Sec. V.

II. THE ONE LOOP SELF-ENERGY

The self-energy of a quantum field is usually defined
momentum space. This is not convenient for our probl
because the curved background prevents the free theory
being diagonal in a Fourier basis. However, it is simple
translate the usual prescription into a position space vers
which we can use. Consider an uncharged scalar fieldf(x)
which has physical massm, field strengthZ, and zero
vacuum expectation value. In a flat, spacelike metric ba
ground we would write the full propagator as

FIG. 2. Representation of how a two loop tadpole comes fr
contracting the one loop self-energy through propagators, into
outer vertex.
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^outuT@f̃~p!f̃~k!#u in&5
2 iZ~2p!4d4~p1k!

p21m21S~p2!2 i e
, ~2.1!

wheref̃(p) is the Fourier transform:

f̃~p![E d4x eip•xf~x!. ~2.2!

This means that the effective action is

G@f#52
1

2Z E d4p

~2p!4
f̃* ~p!@p21m21S~p2!#f̃~p!

1O~f3! ~2.3a!

5
1

2Z E d4x f~x!@h2m2#f~x!

2
1

2Z E d4x1d
4x2f~x1!S~x1 ;x2!f~x2!1O~f3!,

~2.3b!

where the position space self-energy is

S~x1 ;x2!5E d4p

~2p!4
eip•~x22x1!S~p2!. ~2.4!

It is instructive to give the one loop expansion of th
self-energy for a general scalar field whose classical action
S@f#. We define the position spacen-point vertex as

Vn~x1 ,...,xn![
dnS@f#

df~x1!•••df~xn!
U

f50

. ~2.5!

In a local theory these vertices consist of a finite number
the various derivatives times a product ofd functions:

Vn~x1 ,...,xn!5Vn~x1 ;]1 ,...,]n!d
4~x12x2!•••d

4~x12xn!.
~2.6!

Note that we allow the vertex operatorVn to depend upon
position. Figure 3 gives the diagrams that contribute at o
loop. In our notation the result is

om
the FIG. 3. One loop contributions to the scalar self-energy.
2 iS~x18 ;x29!52
1

2 E d4x28d
4x38V3~x18 ,x28 ,x38!E d4x29d

4x39iD~x28 ;x29!iD~x38 ;x39!V3~x19 ,x29 ,x39!

1
i

2 E d4x28E d4x29V4~x18 ,x28 ,x19 ,x29!iD~x28 ;x29!1••• . ~2.7!

For a local theory we can do the integrations to obtain the form
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S~x8;x9!52
i

2
V3~x8;]18 ,]28 ,]38!iD2~x8;x9!iD3~x8;x9!V3~x9;]19 ,]29 ,]39!2

1

2
V4~x8;]18 ,]28 ,]19 ,]29!iD2~x8;x9!d4~x82x9!.

~2.8!
y
g

e
.

The]18 and]19 derivatives act outward. The other derivativ
act on the propagator whose subscript matches their own
example,]38 acts on the first argument ofiD3(x8;x9). It is
sometimes convenient to partially integrate the outer der
tives, ]18 and ]19 . In this case they go to minus themselv
and they act on allx8’s or x9’s, respectively, in the expres
sion.

It is remarkable that at one loop the position space s
energy involves no integrations. This is why it exists at all
the in-out formalism for quantum general relativity in a
Sitter background. The volume factors in the interaction v
tices of this theory grow so rapidly that in-out matrix el
ments are generally infrared divergent if they contain eve
single integration@1,8#. Of course the higher loop contribu
tions do contain such integrations, so we cannot speak o
in-out self-energy beyond one loop. A related point is th
only the first term of Eq.~2.8! is nonzero forx8Þx9. The
infrared properties of the one loop self-energy are entir
controlled by the first term, Fig. 3~b!, and it is only the ana-
log of this first term that we shall study in quantum gene
relativity. Note as well that the first term of Eq.~2.8! is
completely well defined forx8 and x9 away from coinci-
dence.

The invariant Lagrangian of general relativity is

L5
1

16pG
~R22L!A2g1~counterterms!, ~2.9!

whereG is Newton’s constant andL is the cosmological
constant. Our classical background has the homogeneou
isotropic form~1.1! with scale factor:

aclass~ t !5eHt. ~2.10!

It is simplest to perform the calculation in conformally fl
coordinates, for which the invariant element of the ba
ground is

2dt21aclass
2 ~ t !dxW•dxW5V2~2du21dxW•dxW !, ~2.11a!

V[
1

Hu
5exp~Ht !. ~2.11b!

Note the temporal inversion and the fact that the onse
inflation at t50 corresponds tou5H21. Since the infinite
future is at u501, and since the spatial coordinates fa
within the region,21

2H
21,xi< 1

2H
21, the range of confor-

mal coordinates is rather small. This is why a conforma
invariant field—whose dynamics are locally the same as
flat space, except for ultraviolet regularization—cannot
duce a big infrared effect.

Perturbation theory is organized most conveniently
terms of a ‘‘pseudograviton’’ field,cmn , obtained by confor-
mally rescaling the metric:
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gmn[V2g̃mn[V2~hmn1kcmn!. ~2.12!

As usual, pseudograviton indices are raised and lowered with
the Lorentz metric,1 and the loop counting parameter is
k2[16pG. After some judicious partial integrations the in-
variant part of the bare Lagrangian takes the form@9#

Linv5A2g̃g̃abg̃rsg̃mnF12 car,mcns,b2
1

2
cab,rcsm,n

1
1

4
cab,rcmn,s2

1

4
car,mcbs,nGV2

2
1

2
A2g̃g̃rsg̃mncrs,mcn

a~V2! ,a . ~2.13!

Note that each interaction term contains at least one ordinar
derivative. This occurs because the dimension three couplin
is canceled by the undifferentiated terms from the covariant
derivatives of the dimension five coupling. Such a
cancellation—for which there is no scalar field or flat space
analog—is essential for classical stability@10# against
growth of zero modes. An interesting consequence is that th
leading infrared effects cancel as well in the quantum theory
However, the two couplings do not agree at subleading or-
der, and there is still a very strong quantum effect.

Gauge fixing is accomplished through the addition of
21/2hmnFmFn where@9#

Fm[Fc m,r
r 2

1

2
c r,m

r 12c m
r ~ lnV! ,rGV. ~2.14!

The associated ghost Lagrangian is@9#

Lghost52V2v̄m,n@ g̃rm]n1g̃rn]m1g̃mn,r12g̃mn~ ln V! ,r#vr

1~V2v̄m! ,mhrsF g̃nr]s1
1

2
g̃rs,n1g̃rs~ ln V! ,nGvn.

~2.15!

The zeroth order action results in the free field expansion
@11#

cmn~u,xW !5~zero modes!1H3 (
l, kWÞ0

$Cmn~u,xW ;kW ,l!a~kW ,l!

1Cmn* ~u,xW ;kW ,l!a†~kW ,l!%. ~2.16!

The spatial polarizations consists of ‘‘A’’ modes:

1Note, however, thatg̃mn is the full matrix inverse ofg̃mn and has
the usual geometric series expansion:

g̃mn5hmn2kcmn1k2cmrcr
n2••• .
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Cmn~u,xW ;kW ,l!5
Hu

A2k
S 11

i

kuDexpF ikS u2
1

H D
1 ikW•xW Gemn~kW ,l!, ;lPA,

~2.17a!

while the space-time and purely temporal polarizations a
associated, respectively, with ‘‘B’’ and ‘‘ C’’ modes:

Cmn~u,xW ;kW ,l!5
Hu

A2k
expF ikS u2

1

H D
1 ikW•xW Gemn~kW ,l!, ;lPB,C.

~2.17b!

In Lehmann-Symanzik-Zimmermann~LSZ! reduction one
would integrate against and contract intoCmn(u,xW ;k

W ,l) to
insert and ‘‘in’’-coming graviton of momentumkW and polar-
izationl; the conjugate would be used to extract an ‘‘out’’
going graviton with the same quantum numbers. The ze
modes evolve as free particles with time dependences 1 a
u3 for the A modes, andu andu2 for the B andC modes.
Since causality decouples the zero modes shortly after
onset of inflation, they play no role in screening and we sha
not trouble with the them further.

We define u0& as the Heisenberg state annihilated b
a(kW ,l)—and the analogous ghost operators—at the onset
inflation. We can use this condition and expansion~2.16! to
express the free pseudograviton propagator as a mode s
@8#:

i @mnDrs#~x;x8![^0uT$cmn~x!crs~x8!%u0& free ~2.18a!

5H3 (
l,kWÞ0

$u~u82u!CmnCrs8*

1u~u2u8!Cmn* Crs8 %e2eikW i. ~2.18b!
re

-
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Note that the convergence factore2eikW i serves as an ultra-
violet mode cutoff. Although the resulting regularization i
very convenient for this calculation, its failure to respe
general coordinate invariance necessitates the use of no
variant counterterms. These are analogous to the pho
mass which must be added to QED when using a moment
cutoff. Just as in QED, these noninvariant counterterms
not affect long distance phenomena.

Because the propagator is only needed for small conf
mal coordinate separations,Dx[ixW82xW i and Du[u82u,
the sum over momenta is well approximated as an integ
When this is done the pseudograviton and ghost propaga
become@8#

i @mnDrs#~x;x8!

'
H2

8p2 H 2u8u

Dx22Du212i euDuu1e2
@2hm(rhs)n2hmnhrs#

2 ln@H2~Dx22Du212i euDuu1e2!#

3@2h̄m(rh̄s)n22h̄mnh̄rs#J , ~2.19a!

i @mDn#~x;x8!'
H2

8p2 H 2u8u

Dx22Du212i euDuu1e2
hmn

2 ln@H2~Dx22Du212i euDuu1e2!#h̄mnJ .
~2.19b!

Parenthesized indices are symmetrized and a bar abov
Lorentz metric or a Kroneckerd symbol means that the zero
component is projected out, e.g.,h̄mn[hmn1dm

0dn
0 . The de-

coupling between functional dependence upon spacetime
tensor indices—and the simplicity of each—greatly facil
tates calculations.

We find the cubic self-interactions by expanding expre
sion ~2.13! to third order in the pseudograviton field. Th
result iskV2 times
. Fully
metry
2
1

2u
cc ,mcmntn1

1

u
crscrs,mcmntn1

1

u
crsc ,rcsntn1

1

4
ccrs,mcmr,s2crscr

m,ncmn,s2
1

2
crscr

mncsn,m

2
1

4
cc ,rcrs

,s 1
1

2
crscrs,mcmn

,n1
1

2
crsc ,rcsm

,m1
1

2
crsc ,mcmr,s1

1

8
cc ,mc ,m2

1

2
crscrs,mc ,m2

1

4
crsc ,rc ,s

2
1

8
ccrs,mcrs,m1

1

2
crscrm,ncs

m,n1
1

4
crscmn,rcmn

,s , ~2.20!

wherec[c m
m andtn[h0n. All but the first three terms should agree with the flat space expansion whencmn is regarded as the

graviton field andV51. Of course this allows us to check them against published results@12# and they do check.2

The vertex operators will be fully symmetrized if we define them by functional differentiation as in Eq.~2.5!. This is not
efficient for computing the self-energy because only one of the vertices needs to be symmetrized on its internal lines
symmetrizing both vertex operators causes each distinct pairing to appear twice in the self-energy, which is why the sym

2Note, however, that some earlier results are given for a timelike metric, so our field is minus theirs.
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factor for this diagram is12. The large number of distinct cubic self-interaction terms~2.20! means that this is not an efficient
strategy for quantum gravity. The fully symmetrized vertex operator contains 75 separate terms@4# whereas permuting over
only the three possible choices for the outer line results in just 43 terms. One must sum over both ways of pairing the in
lines but there is still a saving of almost 50%—which is important in summing over 752 eightfold contractions of 20-index
objects.

To obtain the partially symmetrized vertex operators from a given cubic self-interaction one merely assigns the thre
any of the six possible ways and then permutes cyclicly. For example, the first term in Eq.~2.20! gives

2
1

2u
ccmcmntn→2

1

2u
ha1b1ha2b2]2

(a3tb3) ~initial assignment!

→2
1

2u
ha1b1ha2b2]2

(a3tb3)2
1

2u
ha2b2ha3b3]3

(a1tb1)2
1

2u
ha3b3hh1b1]1

(a2tb2) ~cyclic permutation!.

The various partial vertex operators are given in Table I. We consider line No. 1 to be the distinguished one, and we hav
symmetries among the remaining two fields to reduce the number of vertices whenever possible.

The ghost-antighost-pseudograviton interactions can be read off from Eq.~2.15!. There are only ten interactions and they
arekV2 times

2cmnv̄m,rvn
,r2cmnv̄r,mvn

,r2cmn,sv̄m,nvs2
2

u
cmnv̄m,nvsts1cmnv̄r

,rvm,n1
1

2
c ,sv̄r

,rvs1
1

u
cv̄r

,rvsts

1
2

u
cmnv̄rvm,ntr1

1

u
c ,sv̄rvstr1

2

u2
cv̄rvstrts . ~2.21!

There is no issue of symmetrization in finding the associated vertex operators because each of the three fields is differe
result is presented in Table II.

It is simple to write the graviton self-energy as a sum over contractions of the various vertex operators between th
internal propagators:

TABLE I. Cubic partial vertex operators with No. 1 distinguished. Each term should be multiplied by
kV2.

No. Partial vertex No. Partial vertex

1 2
1
2uh

a1b1ha2b2]2
(a3tb3) 22 1

2h
a1(a2hb2)b1]2

(a3]3
b3)

2 2
1
2uh

a2b2ha3b3]3
(a1tb1) 23 1

2h
a2(a3hb3)b2]3

(a1]1
b1)

3 2
1
2uh

a3b3ha1b1]1
(a2tb2) 24 1

2h
a3(a1hb1)b3]1

(a2]2
b2)

4 1
uh

a1(a2hb2)b1]2
(a3tb3) 25 1

2]2
(a1hb1)(a3]3

b3)ha2b2

5 1
uh

a2(a3hb3)b2]3
(a1tb1) 26 1

2]3
(a2hb2)(a1]1

b1)ha3b3

6 1
uh

a3(a1hb1)b3]1
(a2tb2) 27 1

2]1
(a3hb3)(a2]2

b2)ha1b1

7 1
ut
(a3hb3)(a1]2

b1)ha2b2 28 1
2]2

(a1hb1)(a2]3
b2)ha3b3

8 1
ut
(a1hb1)(a2]3

b2)ha3b3 29 1
2]3

(a2hb2)(a3]1
b3)ha1b1

9 1
ut
(a2hb2)(a3]1

b3)ha1b1 30 1
2]1

(a3hb3)(a1]2
b1)ha2b2

10 1
4h

a1b1]3
(a2hb2)(a3]2

b3) 31 1
8h

a1b1ha2b2ha3b3]2•]3
11 1

4h
a2b2]1

(a3hb3)(a1]3
b1) 32 1

4h
a1b1ha2b2ha3b3]3•]1

12 1
4h

a3b3]2
(a1hb1)(a2]1

b2) 33 2
1
2h

a1(a2hb2)b1ha3b3]2•]3
13 2]3

(a1hb1)(a2hb2)(a3]2
b3) 34 2

1
2h

a2(a3hb3)b2ha1b1]3•]1
14 2]1

(a2hb2)(a3hb3)(a1]3
b1) 35 2

1
2h

a3(a1hb1)b3ha2b2]1•]2
15 2]2

(a3hb3)(a1hb1)(a2]1
b2) 36 2

1
4]2

(a1]3
b1)ha2b2ha3b3

16 2
1
2]3

(a2hb2)(a1hb1)(a3]2
b3) 37 2

1
2]3

(a2]1
b2)ha3b3ha1b1

17 2
1
2]1

(a3hb3)(a2hb2)(a1]3
b1) 38 2

1
8h

a1b1ha2(a3hb3)b2]2•]3
18 2

1
2]2

(a1hb1)(a3hb3)(a2]1
b2) 39 2

1
4h

a2b2ha3(a1hb1)b3]3•]1
19 2

1
4h

a1b1ha2b2]2
(a3]3

b3) 40 1
2h

a1)(a2hb2)(a3hb3)(b1]2•]3
20 2

1
4h

a2b2ha3b3]3
(a1]1

b1) 41 ha1)(a2hb2)(a3hb3)(b1]3•]1
21 2

1
4h

a3b3ha1b1]1
(a2]2

b2) 42 1
4]2

(a1]3
b1)ha2(a3hb3)b2

43 1
2]3

(a2]1
b2)ha3(a1hb1)b3
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@a1b1Sr1s1#~x8;x9!52 i (
i , j51

43

Vi
a1b1a2b2a3b3~x8;]18 ,]28 ,]38!i @a2b2

Dr2s2
#~x8;x9!i @a3b3

Dr3s3
#~x8;x9!

3$Vj
r1s1r2s2r3s3~x9;]19 ,]29 ,]39!1Vj

r1s1r3s3r2s2~x9;]19 ,]39 ,]29!%

1 i (
i , j51

10

Vi
a1b1a2a3~x8;]18 ,]28 ,]38!i @a2

Dr2
#~x8;x9!i @a3

Dr3
#~x8;x9!Vj

r1s1r3r2~x9;]19 ,]39 ,]29!.

~2.22!

TABLE II. Ghost-pseudograviton vertex operators. Each term should be multiplied bykV2.

No. Vertex operator No. Vertex operator

1 2ha2(a1hb1)a3]2•]3 6 1
2 ha1b1]2

a2]1
a3

2 2ha3(a1]2
b1)]3

a2 7 1
u ha1b1]2

a2ta3

3 2ha2(a1]2
b1)]1

a3 8 2
u ha3(a1]3

b1)ta2

4
2

2
u ha2~a1]2

b1)ta3 9 1
u ha1b1]1

a3ta2

5 ha3(a1]3
b1)]2

a2 10 (2/u2)ha1b1ta2ta3
.
-

,
-
f
-
-
t

x
n

d

Since we have not symmetrized the pseudograviton ve
operators on lines 2 and 3 it is necessary to include bot
symmetric loop@Fig. 4~a!# and an asymmetric loop@Fig.
4~b!#. The second double sum gives the ghost loop@Fig.
4~c!#. The distinction between thec3 andcv̄v vertex opera-
tors does not require a separate symbol; the different num
of indices suffices. Where each derivative acts is denoted
primes and subscripts. For example, the derivative]28 in the
first c3 vertex operator acts on the first argument of t
propagator,@a2b2

Dr2s2
#(x8;x9). The derivatives]18 and ]19

act on the left and right outer legs. In computing the two lo
tadpole we left them as free operators to act on the up
propagators when they were attached. For computing
self-energy we have of course partially integrated them to
on all thex8’s andx9’s in the expression.

The entire calculation was performed by computer us
the symbolic manipulation programMATHEMATICA @13#. The
first step was to contract each pair of vertex operators i
the internal propagators. This was done using Mertig’s pa
ageFEYNCALC @14#, and the result was written onto a file
The next step was acting the internal derivatives~]28 , ]29 ,
]38 , and]39!, the results of which were also stored for ea
pair of vertex operators. Selected vertex pairs were compu
by hand to check the procedure. At this stage the results
all vertex pairs were summed, and the total was checked
symmetry under interchanging the two external legs.

The result we obtained for the self-energy operator i
very long sum of four-index objects times scalar function
The four-index objects are constructed fromhmn,
rtex
h a

ber
by

he

op
per
the
act

ing

nto
ck-
.

ch
ted
for
for

s a
s.

xm[(x82x9)m, tm[d0
m , ]18

m and ]19
m . The scalar functions

can depend uponx2[xmxnhmn , u8, u9, x•]18 , x•]19 , t•]18 ,
t•]19 , and]18•]19 . Each term can contain at most one factor
of each of the external derivatives, either free or contracted
It can be shown that with this requirement there are 79 dis
tinct four-index objects and ten possibilities for contracted
derivatives@4#. To make the expression more manageable
prior to attaching the outer vertex and propagators, we ex
tracted the scalar coefficient of each allowed combination o
four-index object and contracted external derivative opera
tors. It is from this data that we later computed the self
energy by partially integrating the external derivatives to ac
back onx8 andx9, respectively. Since the data actually con-
tainedx8 andx9 throughx, u8, andu9, we used the rules

2]1m8 52
]

]xm 1tm
]

]u8
, ~2.23a!

2]1m9 5
]

]xm 1tm
]

]u9
. ~2.23b!

The result after this is done consists of a sum of four-inde
tensors times scalar functions. The four-index tensors ca
depend only uponhmn, xm, andtm, while the scalar functions
depend only uponx2, u8, andu9. The 21 possible four-index
objects are listed in Table III. Note that we have dispense
with the now-irrelevant line subscript 1. Note also that the
FIG. 4. One-loop contributions to the graviton
self-energy.
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TABLE III. Tensor factors in the self-energy.

No. Tensor No. Tensor No. Tensor

1 habhrs 8 xaxbhrs 15 t (axb)trts

2 ha~rhs!b 9 t (ahb)(rts) 16 tatbxrxs

3 habtrts 10 t (ahb)(rxs) 17 xaxbtrts

4 tatbhrs 11 x(ahb)(rts) 18 t (axb)t (rxs)

5 habt (rxs) 12 x(ahb)(rxs) 19 t (axb)xrxs

6 t (axb)hrs 13 tatbtrts 20 xaxbt (rxs)

7 habxrxs 14 tatbt (rxs) 21 xaxbxrxs
t

reflection symmetry relates the coefficients of pairs 3 and
5 and 6, 7 and 8, 10 and 11, 14 and 15, 16 and 17, and
and 20.

It is worth working out an example to illustrate the
method. To save space during the contractions we define
normal and log propagators as
4,
19

he

iDN[
H2

8p2

2u8u9

x21 i e
, iDL[

H2

8p2 ln@H2~x21 i e!#. ~2.24!

Now consider thei5 j541 term from the symmetric gravi-
ton loop @Fig. 4~a!#:
@a1b1S41241
r1s1 #~x8;x9!52 iV41

a1b1a2b2a3b3~x8;]18 ,]28 ,]38!i @a2b2
Dr2s2

#~x8;x9!

3 i @a3b3
Dr3s3

#~x8;x9!V41
r1s1r2s2r3s3~x9;]19 ,]29 ,]39! ~2.25a!

52 ik2V82V92]18•]38]19•]39h
a1)(a2hb2)(a3hb3)(b1hr1)(r2hs2)(r3hs3)(s1

3$ iD2N@2ha2(r2
hs2)b2

2ha2b2
hr2s2

#2 iD2L@2h̄a2(r2
h̄s2)b2

22h̄a2b2
h̄r2s2

#%

3$ iD3N@2ha3(r3
hs3)b3

2ha3b3
hr3s3

#2 iD3L@2h̄a3(r3
h̄s3)b3

22h̄a3b3
h̄r3s3

#% ~2.25b!

52 ik2V82V92]18•]38]19•]39$ iD2NiD3N@2ha1b1hr1s112ha1(r1hs1)b1#

1~ iD2NiD3L1 iD2LiD3N!@23ha1b1hr1s11ha1(r1hs1)b123ha1b1tr1ts1

23ta1tb1hr1s114t (a1hb1)(r1ts1)#1 iD2LiD3L@5ha1b1hr1s1

23ha1(r1hs1)b115ha1b1tr1ts115ta1tb1hr1s126t (a1hb1)(r1ts1)12ta1tb1tr1ts1#% . ~2.25c!

We now label the various tensor factors according to the scheme of Table III asT1[ha1b1hr1s1, etc., and act the inner
derivatives:

@a1b1S41241
r1s1 #~x8;x9!52 ik2V82V92]18•]38]19•]39$ iD2NiD3N@2T112T2#1~ iD2NiD3L1 iD2LiD3N!@23T11T223T323T4

14T9#1 iD2LiD3L@5T123T215T315T426T912T13#% ~2.26a!

5
2 ik2

26p4 H S 2
32x•]18x•]19

x8
1
8]18•]19

x6
1
8x•]18t•]19

u9x6
2
8t•]18x•]19

u8x6
1
4t•]18t•]19

u8u9x4
D @2T112T2#

1F S 2
16x•]18x•]19

u8u9x6
1
4]18•]19

u8u9x4
1
4x•]18t•]19

u8u92x4
2
4t•]18x•]19

u82u9x4
1
2t•]18t•]19

u82u92x2
D ln~H2x2!

1S 2
4]18•]19

u8u9x4
1
8x•]18x•]19

u8u9x6
D G @23T11T223T323T414T9#

1S 2
2]18•]19

u82u92x2
1
4x•]18x•]19

u82u92x4
D ln~H2x2!@5T123T215T315T426T912T13#J . ~2.26b!
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This is the point at which the outer vertex and propagators would be attached in computing the two loop tadpole. Howev
extract the one loop self we partially integrate the outer derivatives to act them back onx8 andx9 using Eq.~2.23!. The result
is

@a1b1S41241
r1s1 #~x8;x9!5

2 ik2

26p4 H S 192x8 1
32

u8u9x6
1

4

u82u92x4D @2T112T2#1S 2
32

u8u9x6
2

8Du2

u83u93x4
2

28

u82u92x4
1
4 ln~H2x2!

u82u92x4

1
8 ln~H2x2!

u83u93x2 D @23T11T223T323T414T9#1S 2
8Du2

u83u93x4
2

16

u82u92x4
1
8 ln~H2x2!

u83u93x2 D
3@5T123T215T315T426T912T13#J . ~2.27!
i

e

i

a

o
m

o
2

-

-

rse
-

o-
Note thatDu[u92u8 and that we have suppressed the fa
tors of i e which go withx2’s. The final results for the entire
self-energy are given in Tables IV~a! and IV~b!.

III. THE FLAT SPACE LIMIT

Consideration of the classical background~2.11! reveals
that flat space can be recovered by setting the conformal t
to

u5
1

H
2t ~3.1!

and then taking the Hubble constantH to zero@11#. Note that
in this limit the scale factorV becomes unity, as does th
ratio of products of equal numbers of conformal times. No
finally that the difference of two conformal times is just m
nus the same difference of flat space times:

x0[u82u95S 1H2t8D2S 1H2t9D5t92t8. ~3.2!

This means that our quantityx2[(x82x9)m(x82x9)nhmn
goes to the usual Lorentz invariant interval, which we sh
continue to callx2.

The preceding facts make it very simple to take the se
energy’s flat space limit. Consider, for example, the no-l
coefficient of tensor factor No. 7, which we can read fro
Table IV~a!. A simple calculation gives the limit

2
1280

x10
1
1152u8

u9x10
2
704u9

u8x10
1

8

u82x8
1

192

u92x8
2

144

u8u9x8

1
32

u8u93x6
2

24

u82u92x6
1

64

u83u9x6
→2

1280

x10
1
1152

x10

2
704

x10
52

832

x10
. ~3.3!

The logarithm terms of Table IV~b! cancel completely, and
the only nonzero contributions from the nonlog terms
Table IV~a! come from the coefficients of tensors Nos. 1,
7, 8, 12, and 21. The answer is
c-

me

te
-

ll

lf-
g

f
,

@abSflat
rs#~x8;x9!5

2 ik2

26p4 H 288x8 habhrs1
720

x8
ha(rhs)b

2
832

x10
@habxrxs1xaxbhrs#

2
3712

x10
x(ahb) (rxs)1

5376

x12
xaxbxrxsJ .

~3.4!

It is useful to recast this expression in the form of a deriva
tive operator acting on 1/x4. The key identities are

1

x8
5

1

192
]4S 1x4D , ~3.5a!

xmxn

x10
5F 1

384
]m]n]21

1

1536
hmn]4G S 1x4D , ~3.5b!

xmxnxrxs

x12
5F 1

1920
]m]n]r]s1

1

640
h (mn]r]s)]2

1
1

5120
h (mnhrs)]4G S 1x4D . ~3.5c!

Our final result for the flat space limit of the one loop self
energy is therefore

@abSflat
rs#~x8;x9!5

2 ik2

60~2p!4 H 232 habhrs]4

1
61

2
ha(rhs)b]42

23

2
@hab]r]s

1hrs]a]b#]2261] (ahb) (r]s)]2

142]a]b]r]sJ S 1x4D . ~3.6!

It remains to compare Eq.~3.6! with the flat space result
obtained for theL50 theory by Capper@7#. He defined the
graviton field as3

3Capper also used a timelike metric, he associates the inve
factors of 2p in Fourier transforms with what he calls the propaga
tors, and what he calls the self-energy is2i times what we call the
self-energy. We have translated all these conventions into our n
tation to avoid confusion.
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TABLE IV. ~a! Tensor coefficients which are free of logarithms. Multiply each term by2ik2/~26p4!
times the appropriate tensor factor from Table III to obtain the contribution to the self-energy.~b! Tensor
coefficients which contain logarithms. Multiply each term by2ik2 ln(H2x2)/~26p4! times the appropriate
tensor factor from Table III to obtain the contribution to the self-energy.

No. Coefficient

~a!

1
1056

x8
2
96u82

u92x8
2
288u8

u9x8
2
288u9

u8x8
2
96u92

u82x8
2

48

u82x6
2

64u8

u93x6
2

48

u92x6
1

132

u8u9x6

2
64u9

u83x6
2

40

u8u93x4
1

41

u82u92x4
2

40

u83u9x4

2
1808

x8
2
544u8

u9x8
2
544u9

u8x8
2

176

u82x6
1

32u8

u93x6
2

176

u92x6
1

272

u8u9x6
1

32u9

u83x6
1

24

u8u93x4
1

28

u82u92x4
1

24

u83u9x4

3 2
112

u82x6
1

32u8

u93x6
2

16

u92x6
2

640

u8u9x6
2

8

u8u93x4
2

102

u82u92x4
2

80

u83u9x4

4 2
16

u82x6
2

112

u92x6
2

640

u8u9x6
1

32u9

u83x6
2

80

u8u93x4
2

102

u82u92x4
2

8

u83u9x4

5
1344

u8x8
2
576u8

u92x8
1

928

u9x8
1

96u9

u82x8
1

64

u83x6
2

64

u93x6
1

64

u8u92x6
1

168

u82u9x6
2

24

u83u92x4

6 2
928

u8x8
2

96u8

u92x8
2
1344

u9x8
1
576u9

u82x8
1

64

u83x6
2

64

u93x6
2

168

u8u92x6
2

64

u82u9x6
1

24

u82u93x4

7 2
1280

x10
1
1152u8

u9x10
2
704u9

u8x10
1

8

u82x8
1

192

u92x8
2

144

u8u9x8
1

32

u8u93x6
2

24

u82u92x6
1

64

u83u9x6

8 2
1280

x10
2
704u8

u9x10
1
1152u9

u8x10
1

192

u82x8
1

8

u92x8
2

144

u8u9x8
1

64

u8u93x6
2

24

u82u92x6
1

32

u83u9x6

9
96

u82x6
1

96

u92x6
2

464

u8u9x6
1

56

u8u93x4
1

8

u82u92x4
1

56

u83u9x4

10
224

u8x8
2
1024

u9x8
1
128u9

u82x8
2

64

u83x6
1

64

u93x6
2

360

u8u92x6
1

120

u82u9x6
2

8

u82u93x4

11
1024

u8x8
2
128u8

u92x8
2

224

u9x8
2

64

u83x6
1

64

u93x6
2

120

u8u92x6
1

360

u82u9x6
1

8

u83u92x4

12 2
6528

x10
1
1408u8

u9x10
1
1408u9

u8x10
1

160

u82x8
1

160

u92x8
2

416

u8u9x8
2

64

u8u93x6
2

24

u82u92x6
2

64

u83u9x6

13
40

u8u93x4
1

180

u82u92x4
1

40

u83u9x4

14 2
32

u83x6
2

640

u8u92x6
2

400

u82u9x6
2

8

u82u93x4
1

8

u83u92x4

15
32

u93x6
1

400

u8u92x6
1

640

u82u9x6
2

8

u82u93x4
1

8

u83u92x4

16
240

u82x8
1

992

u8u9x8
1

32

u8u93x6
1

56

u82u92x6

17
240

u92x8
1

992

u8u9x8
1

56

u82u92x6
1

32

u83u9x6

18 2
960

u82x8
2

960

u92x8
1

96

u8u9x8
2

64

u8u93x6
1

96

u82u92x6
2

64

u83u9x6

19
3200

u9x10
1

576

u8u92x8
2

224

u82u9x8

20 2
3200

u8x10
1

224

u8u92x8
2

576

u82u9x8

21
5376

x12
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TABLE IV. ~Continued!.

~b!

1 2
32

u82x6
1

16u8

u93x6
2

32

u92x6
1

32

u8u9x6
1

16u9

u83x6
1

8

u8u93x4
1

24

u82u92x4
1

8

u83u9x4
1

12

u83u93x2

2

2
384

x8
1
192u8

u9x8
1
192u9

u8x8
1

112

u82x6
2

32u8

u93x6
1

112

u92x6
2

128

u8u9x6
2

32u9

u83x6
2

8

u8u93x4
2

36

u82u92x4

2
8

u83u9x4
2

4

u83u93x2

3
32

u82x6
1

8

u8u93x4
2

20

u82u92x4
1

48

u83u9x4
2

4

u83u93x2

4
32

u92x6
1

48

u8u93x4
2

20

u82u92x4
1

8

u83u9x4
2

4

u83u93x2

5 2
192

u8x8
1

192

u9x8
2

32

u83x6
1

32

u93x6
2

16

u8u92x6
2

16

u82u9x6
1

24

u83u92x4

6 2
192

u8x8
1

192

u9x8
2

32

u83x6
1

32

u93x6
1

16

u8u92x6
1

16

u82u9x6
2

24

u82u93x4

7 2
16

u8u93x6
2

16

u82u92x6
2

32

u83u9x6

8 2
32

u8u93x6
2

16

u82u92x6
2

16

u83u9x6

9
64

u82x6
1

64

u92x6
2

64

u8u9x6
2

24

u8u93x4
2

32

u82u92x4
2

24

u83u9x4
2

8

u83u93x2

10
384

u8x8
2

192

u9x8
2
192u9

u82x8
1

32

u83x6
2

64

u93x6
1

64

u8u92x6
1

8

u82u93x4

11
192

u8x8
1
192u8

u92x8
2

384

u9x8
1

64

u83x6
2

32

u93x6
2

64

u82u9x6
2

8

u83u92x4

12
3072

x10
2
1536u8

u9x10
2
1536u9

u8x10
2

288

u82x8
2

288

u92x8
1

384

u8u9x8
1

32

u8u93x6
1

80

u82u92x6
1

32

u83u9x6

13 2
16

u8u93x4
1

80

u82u92x4
2

16

u83u9x4

14
128

u8u92x6
2

192

u82u9x6
1

8

u82u93x4
2

8

u83u92x4

15
192

u8u92x6
2

128

u82u9x6
1

8

u82u93x4
2

8

u83u92x4

16
192

u82x8
2

384

u8u9x8
2

32

u8u93x6
2

16

u82u92x6

17
192

u92x8
2

384

u8u9x8
2

16

u82u92x6
2

32

u83u9x6

18
192

u82x8
1

192

u92x8
2

1152

u8u9x8
1

32

u8u93x6
1

32

u83u9x6

19
1536

u8x10
2

1536

u9x10
2

288

u8u92x8
1

96

u82u9x8

20
1536

u8x10
2

1536

u9x10
2

96

u8u92x8
1

288

u82u9x8

21 0
ton
Eqs.
gmn5hmn1&kfmn ~3.7!

and he used a general gauge-fixing term of the form

LB52~afmr
,r1bf ,m!hmn~afns

,s1bf ,n!. ~3.8!
Comparison with our gauge-fixing term~2.14! implies that
our flat space limit should agree with his result fora51 and
b521

2. These are certainly the values for which his gravi
and ghost propagators agree with the flat space limits of
~2.19a! and ~2.19b!, respectively.
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Of course Capper worked in momentum space, using
mensional regularization inD spacetime dimensions to de
fine the divergent loop integral. To compare with Eq.~3.6!
we first Fourier transform to position space and then evalu
the result—which is well defined forx2Þ0—atD54:

@abSCapper
rs #~x8;x9!5 lim

D→4

i

~2p!D
E dDp

~2p!D
eip•x Tabrs~p2!.

~3.9!

Cappers’s result forTabrs(p2) has the form

Tabrs~p2!5k2$T1~D !papbprps1T2~D !habhrsp4

12T3~D !ha(rhs)bp41T4~D !

3@habprps1papbhrs#p2

14T5~D !p(ahb) (rps)p2%I ~p2!. ~3.10!

Although Capper’s published paper@7# quotes only the pole
terms, he was kind enough to communicate the general re
to us some time ago@15#. The coefficient functions are

T1~D !5
9

16
D42

21

16
D32

9

8
D2, ~3.11a!

T2~D !5
1

D22 S 916 D52
39

16
D42

25

8
D3

1
123

8
D21

33

4
D28D , ~3.11b!
di-
-

ate

sult

T3~D !52T5~D !5
1

D22 S 14 D41
17

16
D3

2
97

16
D22

17

8
D14D , ~3.11c!

T4~D !5
1

D22 S 2
9

16
D51

43

16
D41

15

8
D3

2
119

8
D22

25

4
D18D , ~3.11d!

and Capper defines his ‘‘basic integral’’ as

I ~p2![
1

4~D221!
E dDk

@k22 i e#@~p2k!22 i e#
. ~3.12!

The familiar relation

1

k22 i e
5
iG~D22/2!

4pD/2 E dDy
e2 ik•y

@y21 i e#D/221 ~3.13!

allows us to reexpress Capper’s basic integral in the form

I ~p2!52

FGSD22

2 D G2
262D~D221!

E dDy
e2 ip•y

@y21 i e#D22 . ~3.14!

Substitution into Eq.~3.9! reveals complete agreement with
our answer~3.6!:
@abSCapper
rs #~x8;x9!5 lim

D→4

2 ik2FGSD22

2 D G2
26pD~D221!

$T1~D !]a]b]r]s1T2~D !habhrs]412T3~D !ha(rhs)b]4

1T4~D !@hab]r]s1]a]bhrs#]214T5~D !] (ahb) (r]s)]2%S 1

x21 i e D D22

~3.15a!

5
2 ik2

60~2p!4 H 42]a]b]r]s1
23

2
habhrs]41

61

2
ha(rhs)b]42

23

2
@hab]r]s1]a]bhrs#]2

261] (ahb) (r]s)]2J S 1

x21 i e D 2. ~3.15b!
-

e

-

IV. THE WARD IDENTITY

The result of the previous section is reassuring becau
our reduction procedure is the same for all terms. By chec
ing the flat space limit we have, therefore, partially checke
even terms which vanish in this limit. However, it is con
ceivable that an error might also vanish in the flat spa
limit, and it is important to note that the dominant infrare
terms which are of greatest interest to us also go to zero
this limit. So an independent check which is intrinsic to th
curved background would be highly desirable. Such a che
is provided by the Ward identity. Since this is a consequen
se
k-
d
-
ce
d
in
e
ck
ce

of the theory’s gauge invariance—as reflected in the Becchi
Rouet-Stora~BRS! symmetry of the gauge fixed action—it
can be checked on the curved background without taking th
flat space limit.

The gauge-fixed action is invariant under the BRS trans
formation

dBRScmn5F2g̃r(m]n)1g̃mn,r1
2

u
g̃mntrGvrdz, ~4.1a!

dBRSv̄
m52V21Fmdz, ~4.1b!
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dBRSvm5kvm,nvndz, ~4.1c!

wheredz is an anticommutingC-number constant. An impor-
tant consequence is that the BRS transformation of
gauge-fixing functionFm is proportional to the antighost
equation of motion:

dBRSFm~x!5V21
dSGF

dv̄m~x!
dz. ~4.2!

The various Slavnov-Taylor identities follow from the BRS
invariance of the functional formalism. One makes a chan
of variables that is a BRS transformation and then colle
the variation terms. Since a functional integral is independ
of the dummy variable of integration, the sum of the vari
tions must vanish. Since the action and the measure fa
are BRS invariant, the variations derive entirely from th
operator whose in-out matrix element is being computed.

We do not want to compute another Green’s function
we seek an operator whose BRS variation involves only t
pseudograviton two-point function. The desired object tur
out to be the product of the conformally rescaled antigho
field and the gauge-fixing function. Its BRS variation is

dBRS@V~x8!v̄m~x8!Fn~x9!#

52FFm~x8!Fn~x9!1V~x8!v̄m~x8!

3V21~x9!
dSGF

dv̄n~x9!Gdz. ~4.3!

The functional integral of the second term is ad function:

E @dc#@dv̄#@dv#v̄m~x8!
dSGF

dv̄n~x9!
exp@ iSGF@c,v̄,v##

52 i E @dc#@dv̄#@dv#v̄m~x8!
d

dv̄n~x9!

3exp@ iSGF@c,v̄,v## ~4.4a!

52 ihmnd4~x82x9!. ~4.4b!

If we write the gauge-fixing function as an operator acting o
the pseudograviton field,

Fm~x!5V~x!Fdm
r]s2

1

2
]mhrs1

2

u
du

rtsGcrs~x!

~4.5a!

[Fm
rs~x!crs~x!, ~4.5b!

then the Ward identity can be expressed as

Fm
ab~x8!Fn

rs~x9!^outuT@cab~x8!crs~x9!#u in&

5 ihmnd4~x82x9!. ~4.6!

One of the first things we did after obtaining the pseud
graviton and ghost propagators was to verify a somew
more general version of Eq.~4.6! at tree order@11#. Work at
higher orders is embarrassed by the severe infrared div
gences of the in-out formalism, which typically prevent m
he

ge
ts
nt
-
tor
e

o
he
s
st

n

o-
at

er-
-

trix elements from existing if they involve even one integra
tion over an interaction vertex@8#. Of course the one loop
correction to the in-out two-point function is just the doubl
integral of the one loop self-energy against two extern
propagators. If we can amputate the external propagators,
one loop self-energy which remains will suffer no infrare
divergences because it involves no integrated interaction v
tices. However, we cannot amputate the external propaga
in Eq. ~4.6! so simply on account of the gauge-fixing opera
tors Fm

rs . These do not commute with the pseudogravito
kinetic operator—they don’t even possess the requisite nu
ber of free indices to do so. What we must do instead is
reflect the gauge fixing operators through the external prop
gators and then amputate the differentscalar propagators
which reside on distinct tensor factors.

Two scalar propagators are of interest. The first is that
a massless, minimally coupled scalar:

iDA~x8;x9!5
H2

8p2 H 2u8u9

x21 i e
2 ln@H2~x21 i e!#J .

~4.7a!

It corresponds to theA modes of Eq.~2.17a!, which can
harbor physical graviton polarizations. The other scal
propagator is that of a massless, conformally coupled sca

iDB~x8;x9!5
H2

8p2

2u8u9

x21 i e
. ~4.7b!

It corresponds to theB andC modes of Eq.~2.17b!, which
represent constrained and pure gauge degrees or freedo4

The corresponding scalar kinetic operators are, respective

DA5V2S ]21
2

u
]0D , ~4.8a!

DB5V2]2. ~4.8b!

We can express the pseudograviton propagator as simple
sor factors times the two scalar propagators@9#:

i @abDrs#~x8;x9!5 iDA~x8;x9!@abTrs
A #1 iDB~x8;x9!

3$@abTrs
B #1@abTrs

C #%, ~4.9a!

@abTrs
A #52h̄a(rh̄s)b22h̄abh̄rs , ~4.9b!

@abTrs
B #524t (ah̄b)(rts) , ~4.9c!

@abTrs
C #5~ tatb1h̄ab!~ trts1h̄rs!, ~4.9d!

where we remind the reader thattm[hm0 and h̄mn

[hmn1tmtn .
The tensortm and our barring convention permit us to

express a free derivative as purely spatial and temporal
rivatives:

4A modes can also be unphysical. In 311 dimensions there are six
A modes, of which only two are physical, threeB modes, and a
singleC mode. The distinction betweenB andC propagators be-
comes apparent in higher dimensions@9,11#.
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]m5 ]̄m2tm]0 . ~4.10!

Spatial derivatives reflect through the scalar propagators
same way they do in flat space:

]̄m8 iDA~x8;x9!52 ]̄m9 iDA~x8;x9!, ~4.11a!

]̄m8 iDB~x8;x9!52 ]̄m9 iDB~x8;x9!. ~4.11b!

The reflection identities for temporal derivatives follow from
the mode expansions of the various propagators@11#:
the

]08iDA~x8;x9!52S ]092
2

u9D iDB~x8;x9!, ~4.12a!

S ]082
2

u8D iDB~x8;x9!52]09iDA~x8;x9!, ~4.12b!

S ]082
1

u8D iDB~x8;x9!52S ]092
1

u9D iDB~x8;x9!.

~4.12c!

We reflect the gauge-fixing operator through an externa
propagator by first contracting into the tensor factors an
then exploiting the scalar reflection identities:
V821Fm
ab~x8!i @abDrs#~x8;x9!52@h̄m(r]̄s)8 2tmh̄rs]08# iDA~x8;x9!12F2tmt (r]̄s)8 2h̄m(rts)S ]082

2

u8D
12tm~ trts1h̄rs!S ]082

1

u8D G iDB~x8;x9! ~4.13a!

52@2h̄m(r]̄s)9 1h̄m(rts)]09# iDA~x8;x9!12tmF t (r]̄s)9 1h̄rsS ]092
2

u9D
2~ trts1h̄rs!S ]092

1

u9D G iDB~x8;x9! ~4.13b!

522h̄m(r]s)9 iDA~x8;x9!12tmF t (r]s)9 2
1

u9
hrsG iDB~x8;x9!. ~4.13c!
rs
We can therefore amputate the external propagator by ac
the scalar operatorDA when the free indexm is spatial, and
by actingDB whenm is temporal.

The preceding analysis allows us to pass from Eq.~4.6! to
the following identity on the one loop self-energy:

S hma]b82tmhab

1

u8D S hnr]s92tnhrs

1

u9D @abSrs#~x8;x9!

50. ~4.14!

Though our derivation was carried out in 311 dimensions it
is worth remarking that the result is valid for any dimensio
To check it in 311 dimensions we first contract and com
mute the two tensor-differential operators through the 21 t
sors of Table III. The result is a linear combination of fiv
two-index tensors,

hmn , tmtn , tmxn , xmtn , xmxn , ~4.15!

times various scalar differential operators which act on
appropriate scalar functions of Tables IV~a! and IV~b!. Since
the coefficient of each tensor must vanish separately we
tain five identities, although those fortmxn andxmtn follow
from each other by the diagram’s invariance under int
change of the external legs. The various differential ope
tors have been tabulated at the end of this section, accor
ting

n.
-
en-
e

the

ob-

er-
ra-
ding

to the number of the coefficient function upon which they
act. Needless to say, the identity is obeyed.

It is worth working out an example of the process through
which the two tensor differential operators in Eq.~4.14! are
contracted and commuted through the various tensor facto
which make up the self-energy. We have chosen for this
purpose tensor No. 21 on Table III. Sincexm5(x82x9)m we
easily commute derivatives through the tensor factor:

S hma]b82tmhab

1

u8D S hnr]s92tnhrs

1

u9D xaxbxrxs

5]r8]s9xmxnx
rxs2

1

u8
]r9tmxnx

rx22
1

u9
]r8xmtnx

rx2

2
1

u8u9
tmtnx

4 ~4.16a!

5xmxn@xrxs]r8]s927xr]r817xs]s9242#

1
tmxn

u8
@2x2xr]r917x2#1

xmtn
u9

@2x2xr]r827x2#

1tmtn
x4

u8u9
. ~4.16b!
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The coefficient oftmtn at the end of Eq.~4.16b! is already
recognizable as No. 21 on Table V~b!, and the coefficient of
hmn is clearly zero, in agreement with No. 21 on Table V~a!.
For the rest we recall that the derivatives can be simplifie
when the functions they act depend uponx8m and x9m only
throughxm, u8, andu9:

]m8→]m2tm
]

]u8
, ~4.17a!

]m9→2]m2tm
]

]u9
. ~4.17b!

Since the coefficient functions of Tables IV~a! and IV~b!
actually depend uponxm only throughx2 a further reduction
can eventually be made:

]m→2xm

]

]x2
. ~4.18!

The coefficients oftmxn andxmtn in Eq. ~4.16b! are, there-
fore,

1

u8
@2x2xr]r917x2#5

1

u8 F2x4 ]

]x2
1~ t•x!x2

]

]u9
17x2G ,

~4.19a!

1

u9
@2x2xr]r827x2#5

1

u9 F22x4
]

]x2
1~ t•x!x2

]

]u8
27x2G .
~4.19b!

Upon noting thatt•x5u92u8, we recognize Eqs.~4.19a!
and ~4.19b! as No. 21 in Tables V~c! and V~d! respectively.
We can also write

xrxs]r8]s95xrxsF]r2tr
]

]u8GF22xs

]

]x2
2ts

]

]u9G
~4.20a!

524x4
]2

]x4
22x2

]

]x2
22~ t•x! S ]

]u9

2
]

]u8D x2 ]

]x2
1~ t•x!2

]

]u8

]

]u9
. ~4.20b!

Combining with the other terms in the coefficient ofxmxn in
Eq. ~4.16b! then results in No. 21 of Table V~e!.

Note that Capper’s flat space Ward identity@7#

hm(a]b)8 hn(r]s)9 @abSCapper
rs #~x8;x9!50 ~4.21!

involves only hmn and xmxn . Since the associated scala
functions are justx2 to the power fixed by dimensional
analysis, Capper gets only two scalar relations, each
which is independent ofx:

T1~D !1T2~D !1T3~D !12T4~D !13T5~D !50,
~4.22a!

T3~D !1T5~D !50. ~4.22b!

@See Eqs.~3.10! and ~3.11! for theTi(D).# The presence of
tm gives us two more distinct tensors, and the four scal
d

r

of

ar

relations which result can involve a bewildering number o
distinct products ofx2, u8, u9, and ln[H2x2].

V. DISCUSSION

We have computed one loop graviton self-energy in
locally de Sitter background and using the integral approx
mations~2.19a! and~2.19b! for the pseudograviton and ghost
propagators. The result consists of 21 independent tenso
given in Table III, times the coefficient functions of Tables
IV ~a! and IV~b!. Not the least of our conclusions is that the
result is almost certainly correct, within the integral approxi
mation. It is difficult to doubt this as one witnesses the can
cellation of one after another of the hundreds of distinc
functional and tensor terms in the Ward identity. Agreemen
with Capper’s flat space result@7# shows that we have even
got the sign and the normalization right.

A subtle and interesting point is that the forms~2.19a! and
~2.19b! used for the pseudograviton and ghost propagato
are only approximations to the exact mode expansions whic
one obtains onT33R @8#. The integral approximations be-
come exact in the flat space limit, so it is obvious why the
flat space limit of our result should agree with Capper’s
work. The fascinating thing is that the Ward identity is also
obeyed, exactly and without any need for taking the fla
space limit. We saw this as well when checking a somewh
more general Ward identity at tree order@11#. The reason for
it seems to be that the integral approximations do invert th
pseudograviton and ghost kinetic operators, so they diffe
from the true propagators only by real, analytic terms whic
depend upon the choice of vacuum. There can only be mi
ing with these vacuum dependent terms if the Ward identit
involves integrations which can reach the initial or final
states. But the one loop identity we checked involves n
integrations at all.

Although the one loop self-energy is worthy of study in
its own right, our interest derives from its role as an impor
tant constituent in the two loop tadpole from which we have
lately inferred the quantum gravitational back reaction on
inflation @4#. Of course the one loop self-energy cannot com
pletely verify the two loop tadpole, but it does establish the
correctness of certain features of the basic formalism. Fo
example, our gauge fixing procedure is shown to be consi
tent, and thec3 and thecv̄v vertex operators are checked.
The result also demonstrates the validity of our tensor con
traction routines, and the procedures whereby derivative o
erators from the vertices are acted on propagators. Since t
same vertices and reduction procedures were used throug
out the two loop work, many features of the larger calcula
tion are checked as well. For example, the diagrams in Fi
1~a! and 1~b! are obtained by contracting the one loop self-
energy, through two pseudograviton propagators, into thec3

vertex operator, as illustrated in Fig. 2. No new vertices o
propagators appear, and the same procedures were used
perform the contractions and to act the derivatives. Thes
comments apply as well to the outer ghost loop of Fig. 1~c!
and to everything but the four-point vertex operator in the
4-3 diagram of Fig. 1~d!. One point the current work does
not check is the procedures for integrating over free interac
tion vertices. Of course the integrals have been checked e
tensively in other ways@4#, but not by the one loop self-
energy.
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TABLE V. Act each operator on the corresponding coefficient function in Tables IV~a! and IV~b!, and then sum the results to check the
Ward identity.~a! Operator coefficients ofhmn . ~b! Operator coefficients oftmtn . ~c! Operator coefficients oftmxn . ~d! Operator coefficients
of xmtn . ~e! Operator coefficients ofxmxn .

No. Operator

~a!

1 22
]

]x2

2 2
1

2

]

]u8

]

]u9
25

]

]x2
2~u92u8!S ]

]u9
2

]

]u9D ]

]x2
22x2

]2

]x4

3 0
4 0

5
1

2

]

]u9
2~u92u8!

]

]x2

6 2
1

2

]

]u8
2~u92u8!

]

]x2

7 252~u92u8!
]

]u9
22x2

]

]x2

8 251~u92u8!
]

]u8
22x2

]

]x2

9
1

4

]

]u8

]

]u9
1
1

2

]

]x2
1
1

2
~u92u8!S ]

]u9
2

]

]u8D ]

]x2
2~u92u8!2

]2

]x4

10 2
5

4

]

]u8
1
1

4

]

]u9
2
1

4
~u92u8!

]

]u8

]

]u9
2
7

2
~u92u8!

]

]x2
2
1

2
~u92u8!2

]

]u9

]

]x2
2
1

2
x2

]

]u8

]

]x2
2~u92u8!x2

]2

]x4

11 2
1

4

]

]u8
1
5

4

]

]u9
2
1

4
~u92u8!

]

]u8

]

]u9
2
7

2
~u92u8!

]

]x2
1
1

2
~u92u8!2

]

]u8

]

]x2
1
1

2
x2

]

]u9

]

]x2
2 ~u92u8!x2

]2

]x4

12 282
3

2
~u92u8!S ]

]u9
2

]

]u8D1
1

4
~u92u8!2

]

]u8

]

]u9
2
13

2
x2

]

]x2
2
1

2
~u92u8!S ]

]u9
2

]

]u8D x2 ]

]x2
2x4

]2

]x4

13–21 0

~b!

1
]

]u8

]

]u9
1

4

u8

]

]u9
1

4

u9

]

]u9
1

16

u8u9

2
1

2

]

]u8

]

]u9
1

1

u8

]

]u9
1

1

u9

]

]u8
1

4

u8u9

3 2
]

]u8

]

]u9
210

]

]x2
2

4

u8

]

]u9
12~u92u8!

]

]u8

]

]x2
2

1

u9

]

]u8
1

4

u8u9
18

u9

u8

]

]x2

4 2
]

]u8

]

]u9
210

]

]x2
2

1

u8

]

]8
22~u92u8!

]

]u9

]

]x2
2

4

u9

]

]u8
2

4

u8u9
18

u8

u9

]

]x2

5
7

2

]

]u8
2
5

2

]

]u9
1
14

u8
1
1

2
~u92u8!

]

]u8

]

]u9
2

5

u9
2
u8

u9

]

]u8
12

u9

u8

]

]u9
1x2

]

]u8

]

]x2
14

x2

u8

]

]x2

6
5

2

]

]u8
2
7

2

]

]u9
1

5

u8
1
1

2
~u92u8!

]

]u8

]

]u9
2
14

u9
22

u8

u9

]

]u8
1
u9

u8

]

]u9
2x2

]

]u9

]

]x2
24

x2

u9

]

]x2

7
x2

u9

]

]u8
14

x2

u8u9

8
x2

u8

]

]u9
14

x2

u8u9

9 2
3

4

]

]u8

]

]u9
27

]

]x2
2

1

u8

]

]u9
2~u92u8!S ]

]u9
2

]

]u8D ]

]x2
2

1

u9

]

]u8
2

1

u8u9
12

u8

u9

]

]x2
12

u9

u8

]

]x2
2x2

]2

]x4

10
7

4

]

]u8
2
5

4

]

]u9
1

7

2u8
1
1

4
~u92u8!

]

]u8

]

]u9
2

7

2u9
2
1

2

u8

u9

]

]u8
1
1

2

u9

u8

]

]u9
1
1

2
x2

]

]u8

]

]x2
1
x2

u8

]

]x2
2
x2

u9

]

]x2
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TABLE V. ~Continued!.

No. Operator

11
5

4

]

]u8
2
7

4

]

]u9
1

7

2u8
1
1

4
~u92u8!

]

]u8

]

]u9
2

7

2u9
2
1

2

u8

u9

]

]u8
1
1

2

u9

u8

]

]u9
2
1

2
x2

]

]u9

]

]x2
1
x2

u8

]

]x2
2
x2

u9

]

]x2

12
x2

u8u9

13
]

]u8

]

]u9
16

]

]x2
1

1

u8

]

]u9
12~u92u8!S ]

]u9
2

]

]u8D ]

]x2
24~u92u8!2

]2

]x4
1

1

u9

]

]u8
1

1

u8u9
22

u8

u9

]

]x2
22

u9

u8

]

]x2

14 2
7

2

]

]u8
1
3

2

]

]u9
2

7

2u8
2
1

2
~u92u8!

]

]u9

]

]u9
112u8

]

]x2
2~u92u8!2

]

]u9

]

]x2
1

2

u9
1
u8

u9

]

]u8
22

u82

u9

]

]x2
210u9

]

]x2

2
1

2

u9

u8

]

]u9
2x2

]

]u8

]

]x2
2
x2

u8

]

]x2
22~u92u8!x2

]2

]x4

15 2
3

2

]

]u8
1
7

2

]

]u9
2

2

u8
2
1

2
~u92u8!

]

]u8

]

]u9
110u8

]

]x2
1~u92u8!2

]

]u8

]

]x2
1

7

2u9
1
1

2

u8

u9

]

]u8
112u9

]

]x2
2
u9

u8

]

]u9

12
u92

u8

]

]x2
1x2

]

]u9

]

]x2
22~u92u8!x2

]2

]x4
1
x2

u9

]

]x2

16 272~u92u8!
]

]u9
12

u8

u9
24x2

]

]x2
2
x2

u9

]

]u8
2

x2

u8u9
12

u8

u9
x2

]

]x2

17 271~u92u8!
]

]u8
12

u9

u8
24x2

]

]x2
2
x2

u8

]

]u9
2

x2

u8u9
12

u9

u8
x2

]

]x2

18 2162
5

2
u8

]

]u8
12u8

]

]u9
1
1

4
~u92u8!2

]

]u8

]

]u9
14

u8

u9
1
1

2

u82

u9

]

]u8
12u9

]

]u8
2
5

2
u9

]

]u9
14

u9

u8
1
1

2

u92

u8

]

]u9

2
17

2
x2

]

]x2
2
1

2
~u92u8!S ]

]u9
2

]

]u8D x2 ]

]x2
1
u8

u9
x2

]

]x2
1
u9

u8
x2

]

]x2
2x4

]2

]x4

19
1

2

u92u8

u9
x2

]

]u8
2
9

2

x2

u9
1
x2

u8
2
x4

u9

]

]x2

20
1

2

u92u8

u8
x2

]

]u9
1
9

2

x2

u8
2
x2

u9
1
x4

u8

]

]x2

21
x4

u8u9

~c!

1 2
]

]u8

]

]x2
1

8

u8

]

]x2

2 2
]

]u9

]

]x2
1

2

u8

]

]x2

3 0

4 22
]

]u8

]

]x2
2

2

u8

]

]x2
24~u92u8!

]2

]x4

5 2
1

2

]

]u8

]

]u9
25

]

]x2
2

2

u8

]

]u9
1~u92u8!

]

]u8

]

]x2
14

u9

u8

]

]x2

6 29
]

]x2
1~u92u8!

]

]u8

]

]x2
1
u9

u8

]

]x2
22x2

]2

]x4

7 25S ]

]u9
2

]

]u8D1
20

u8
1~u92u8!

]

]u8

]

]u9
14

u9

u8

]

]u9
12x2

]

]u8

]

]x2
18

x2

u8

]

]x2

8
2

u8
12

x2

u8

]

]x2

9
1

2

]

]u9

]

]x2
2~u92u8!

]2

]x4

10 2
1

2

]

]u8

]

]u9
2
15

2

]

]x2
2
1

2

1

u8

]

]u9
1
1

2
~u92u8!

]

]u8

]

]x2
2
3

2
~u92u8!

]

]u9

]

]x2
1
u9

u8

]

]x2
22x2

]2

]x4
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11 2
3

2

]

]x2
2
1

2

1

u8

]

]u9
1
u9

u8

]

]x2

12
1

2

]

]u8
2
5

2

]

]u9
1

5

u8
1
1

4
~u92u8!

]

]u8

]

]u9
1
u9

u8

]

]u9
2
1

2
x2

]

]u9

]

]x2
12

x2

u8

]

]x2

13 0

14
1

2

]

]u8

]

]u9
12

]

]x2
1
1

2

1

u8

]

]u9
1
1

2
~u92u8!S ]

]u9
2

]

]u8D ]

]x2
22~u92u8!2

]2

]x4
2
u9

u8

]

]x2

15 0

16

25
]

]u8
12

]

]u9
2

5

u8
2~u92u8!

]

]u8

]

]u9
214~u92u8!

]

]x2
22~u92u8!2

]

]u9

]

]x2
2
u9

u8

]

]u9
22x2

]

]u8

]

]x2

22
x2

u8

]

]x2
24~u92u8!x2

]2

]x4

17 0

18 2
1

2

]

]u8
12

]

]u9
2
1

2

1

u8
2
1

4
~u92u8!

]

]u8

]

]u9
1
11

2
u8

]

]x2
1
1

2
~u92u8!2

]

]u8

]

]x2
2
13

2
u9

]

]x2
2
1

2

u9

u8

]

]u9
1
u92

u8

]

]x2

1
1

2
x2

]

]u9

]

]x2
2~u92u8!x2

]2

]x4

19 22413~u92u8!
]

]u8
1
9

2
u8

]

]u9
1
1

2
~u92u8!2

]

]u8

]

]u9
2
11

2
u9

]

]u9
16

u9

u8
1
u92

u8

]

]u9
216x2

]

]x2

2~u92u8!S ]

]u9
2

]

]u8D x2 ]

]x2
12

u9

u8
x2

]

]x2
22x4

]2

]x4

20 241
1

2
~u92u8!

]

]u8
1
u9

u8
22x2

]

]x2
2
1

2

x2

u8

]

]u9
1
u9

u8
x2

]

]x2

21 2x2
]

]u9
1

7

u8
x21

u9

u8
x2

]

]u9
12

x4

u8

]

]x2

~d!

1 22
]

]u9

]

]x2
2

8

u9

]

]x2

2
]

]u8

]

]x2
2

2

u9

]

]x2

3 2
]

]u9

]

]x2
24~u92u8!

]2

]x4
1

2

u9

]

]x2

4 0

5 29
]

]x2
2~u92u8!

]

]u9

]

]x2
12

u8

u9

]

]x2
22x2

]2

]x4

6 2
1

2

]

u8

]

]u9
25

]

]x2
2~u92u8!

]

]u9

]

]x2
2

2

u9

]

]u8
14

u8

u9

]

]x2

7 2
2

u9
22

x2

u9

]

]x2

8 25S ]

]u9
2

]

]u8D1~u92u8!
]

]u8

]

]u9
2
20

u9
24

u8

u9

]

]u8
22x2

]

]u9

]

]x2
28

x2

u9

]

]x2

9 2
1

2

]

]u8

]

]x2
2~u92u8!

]2

]x4

10 2
3

2

]

]x2
2
1

2

1

u9

]

]u8
1
u8

u9

]

]x2

11 2
1

2

]

]u8

]

]u9
2
15

2

]

]x2
1
3

2
~u92u9!

]

]u8

]

]x2
2
1

2
~u92u8!

]

]u9

]

]x2
2
1

2

1

u9

]

]u8
1
u8

u9

]

]x2
22x2

]2

]x4
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No. Operator

12
5

2

]

]u8
2
1

2

]

]u9
1
1

4
~u92u8!

]

]u8

]

]u9
2

5

u9
2
u8

u9

]

]u8
1
1

2
x2

]

]u8

]

]x2
22

x2

u9

]

]x2

13 0
14 0

15
1

2

]

]u8

]

]u9
12

]

]x2
1~u92u8!S ]

]u9
2

]

]u8D ]

]x2
22~u92u8!2

]2

]x4
1
1

2

1

u9

]

]u8
2
u8

u9

]

]x2

16 0

17 22
]

]u8
15

]

]u9
2~u92u8!

]

]u8

]

]u9
214~u92u8!

]

]x2
12~u92u8!2

]

]u8

]

]x2
1

5

u9
1
u8

u9

]

]u8

12x2
]

]u9

]

]x2
24~u92u8!x2

]2

]x4
12

x2

u9

]

]x2

18 22
]

]u8
1
1

2

]

]u9
2
1

4
~u92u8!

]

]u8

]

]u9
1
13

2
u8

]

]x2
2
1

2
~u92u8!2

]

]u9

]

]x2
1
1

2

1

u9
1
1

2

u8

u9

]

]u8
2
u82

u9

]

]x2
2
11

2
u9

]

]x2

2
1

2
x2

]

]u8

]

]x2
2~u92u8!x2

]2

]x4

19 242
1

2
~u92u8!

]

]u9
1
u8

u9
22x2

]

]x2
2
1

2

x2

u9

]

]u8
1
u8

u9
x2

]

]x2

20 2242
11

2
u8

]

]u8
23~u92u8!

]

]u9
1
1

2
~u92u8!2

]

]u8

]

]u9
16

u8

u9
1
u82

u9

]

]u8
1
9

2
u9

]

]u8
216x2

]

]x2

2~u92u8!S ]

]u9
2

]

]u8D x2 ]

]x2
12

u8

u9
x2

]

]x2
22x4

]2

]x4

21 x2
]

]u8
27

x2

u9
2
u8

u9
x2

]

]u8
22

x4

u9

]

]x2

~e!

1 24
]2

]x4

2 22
]2

]x4

3 0
4 0

5
]

]u9

]

]x2
22~u92u8!

]2

]x4

6 2
]

]u8

]

]x2
22~u92u8!

]2

]x4

7 214
]

]x2
22~u92u8!

]

]u9

]

]x2
24x2

]2

]x4

8 214
]

]x2
12~u92u8!

]

]u8

]

]x2
24x2

]2

]x4

9 0

10 2
1

2

]

]u8

]

]x2
2~u92u8!

]2

]x4

11
1

2

]

]u9

]

]x2
2~u92u8!

]2

]x4

12 2
1

4

]

]u8

]

]u9
211

]

]x2
2~u92u8!S ]

]u9
2

]

]u8D ]

]x2
23x2

]2

]x4

13 0
14 0
15 0
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16 0
17 0

18
1

4

]

]u8

]

]u9
1
1

2

]

]x2
1
1

2
~u92u8!S ]

]u9
2

]

]u8D ]

]x2
2~u92u8!2

]2

]x4

19 23
]

]u8
1
1

2

]

]u9
2
1

2
~u92u8!

]

]u8

]

]u9
28~u92u8!

]

]x2
2~u92u8!2

]

]u9

]

]x2
2x2

]

]u8

]

]x2
22~u92u8!x2

]2

]x4

20 2
1

2

]

]u8
13

]

]u9
2
1

2
~u92u8!

]

]u8

]

]u9
28~u92u8!

]

]x2
1~u92u8!2

]

]u8

]

]x2
1

]

]u9
x2

]

]x2
22~u92u8!x2

]2

]x4

21 24227~u92u8!S ]

]u9
2

]

]u8D1~u92u8!2
]

]u8

]

]u9
230x2

]

]x2
22~u92u8!S ]

]u9
2

]

]u8D x2 ]

]x2
24x4

]2

]x4
.
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