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One loop graviton self-energy in a locally de Sitter background
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The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply
intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting
both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the
former context we show that the self-energy obeys the appropriate Ward identity. We also show that its flat
space limit agrees with the flat space result obtained by Capper in what should be the sam¢Sffife.
2821(96)06212-1

PACS numbg(s): 04.60-—m, 98.80.Cq

[. INTRODUCTION One loop tadpoles make no contribution because they are
ultralocal whereas infrared effects derive from the causal and
We have suggested that inflation ended in the early unicoherent superposition of interactions throughout the past
verse because the quantum gravitational back reaction slowljghtcone. The first secular effect comes from the two loop
generated negative vacuum energy which eventuallgliagrams shown in Fig. 1. At the end of a very long calcu-
screened a not unnaturally small, positive cosmological conkation we obtain the following resulB,4]:
stant[1,2]. This is an attractive scenario for solving the prob- 4
lem of the cosmological constant becau&git operates in _ K 2
the far infrared whe?e general relativity can bepused reliably Her(t)= H[ 1_(5) [6 (HY) +O(Ht)} _O(KG)]’
as a quantum theory of gravitatio®) it introduces no new (1.3
light quanta which would embarrass low energy phenom-
enology, (3) it has the potential to make unique predictionswhere H=/(1/3)A is the Hubble constant at the onset of
because gravity is the only phenomenologically viable theorynflation and«’=167G is the usual loop counting parameter
which possesses the essential feature of massless quamfaperturbative quantum gravity. We have also been able to
whose self-interactions are not conformally invariant, &d  show that the”” loop contribution to the bracketed term can
the weakness of gravitational interactions makes the proced no stronger thar#(xH)?/ (Ht)”.
slow enough to account for a long period of inflation. It is not easy to compute at two loops even for scalar field
If this proposal is correct there will be far-reaching con-theories on flat space, and truth can sometimes remain well
sequences for theories of the very early universe. Scarceljidden amidst the forest of indices which characterize any
less significant, in the long run, is the fact that contact willcalculation in quantum gravity. In fact only one other two
finally have been made between observed reality and th®op result has been obtained for quantum gravity, and this
hitherto murky realm of quantum gravity. was limited to the ultraviolet divergent part of the standard,
We have recently done a calculation which establishes thi#-out effective action for zero cosmological constgsit To
validity of our scenario for at least as long as perturbatiorstudy the ultraviolet one can use asymptotic expansions in
theory remains reliable. The quantity we computed is thevhich the effects of spacetime curvature are segregated from
expectation value of the invariant element, starting from awhat is basically a calculation in flat space. The infrared does
homogeneous and isotropic, locally de Sitter, free vacuum onot allow this simplification; we had to obtain the full propa-
the manifoldT3x.7%: gators on a curved background and integrate them against the
appropriate interaction vertices over a large invariant space-
(Q]g,,(t,X)dx*dx"| Q)= —dt*+a?(t)dx-dX. (1.1)  time volume. There was an additional complication in having
to use Schwinger’s formalisfit] to obtain a true expectation
The rate of spacetime expansion is measured using the cooralue rather than an in-out matrix element. One naturally
dinate invariant effective Hubble constant:
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*Electronic address:
tsamis@iesl.forth.gr and tsamis@orphee.ploytechnique.fr FIG. 1. Two-loop contributions to the background. Gravitons
Electronic address: woodard@phys.ufl.edu reside on wavy lines and ghosts on segmented lines.
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FIG. 2. Representation of how a two loop tadpole comes from
contracting the one loop self-energy through propagators, into the ~ FIG. 3. One loop contributions to the scalar self-energy.
outer vertex.

- -~ _ —iz(2m)*8*(p+k)
wonders, therefore, about the accuracy of a result such as the  (OUITLA(p) (k) ][in)= PP+ mP+3(pd—ie’ 2.9
one we are reporting. This concern is heightened by the fact _
that so much of the relevant formalism has only recentlywhere ¢(p) is the Fourier transform:
been developed.

The possibility for dramatic checks on the consistency of ~ i
the forrgalism a%d on our proficiency in applying it is p?/o- ¢(p)EJ d*x €P*g(x). 2.2
vided by the manner in which we computed the two most
complicated diagrams,(d) and 1b). In order to economize This means that the effective action is
on the size of intermediate expressions we evaluated the 4
lower loops first and then contracted them into the two uppe b]= 1 d

'24 T (PP M3 (p2)]B(p)

propagators and the final vertex as represented diagramati- 2Z ) (2w

cally in F|g. 2.A consequence is that_we can extract the one +0(¢%) (2.33
loop graviton self-energy. This quantity can be subjected to

two powerful tests: the flat space limitl —0 with « andt 1

held fixed and the Ward identity. The Ward identity checks =5 j d*x (x)[0—m?]b(x)

our gauge fixing procedure, our solution for the ghost and V4

graviton propagators, our three-point vertices, and the auto- 1
mated reduction procedures through which we contracted — == | d*d*%h(X1)3 (X1 X0) b(Xy) + O(B3),
propagators into vertices and acted the various derivatives. In 27
addition to providing a largely complementary check on all (2.3b
these things, the flat space limit tests the overall proportion-
ality constant. where the position space self-energy is

In Sec. Il of this paper we define the self-energy, explain

how it was calculated, and give our result for it. In Sec. I o d*p D (Xo—X1): (2

we define the flat space limit, compute it for the one loop E(Xl’XZ)_J (2m)* PP TE(pY). 24
graviton self-energy, and show that it agrees with the flat

space result obtained earlier by Cappé&h In Sec. IV we It is instructive to give the one loop expansion of the

derive the Ward identity for our gauge and describe the proself-energy for a general scalar field whose classical action is
cedure used to check it. Our conclusions are discussed i ¢]. We define the position spacepoint vertex as

Sec. V.
M4 |
3(x) 8h0x)| "

(2.5

X1y...,X
Il. THE ONE LOOP SELF-ENERGY Vn(Xy n)

The self-energy of a quantum field is usually defined "Nin a local theory these vertices consist of a finite number of

momentum space. This is not convenient for our problen}he various derivatives times a product ®functions:
because the curved background prevents the free theory from

being diagonal in a Fourier basis. However, it is simple 10y, (x. | x.) =V (X;1:d1,...,9,) 8% (X1 —Xz) " -+ 84 (X1 — Xy,).
translate the usual prescription into a position space version (2.6)
which we can use. Consider an uncharged scalar &#€¢id

which has physical mass, field strengthZ, and zero Note that we allow the vertex operatyf, to depend upon
vacuum expectation value. In a flat, spacelike metric backposition. Figure 3 gives the diagrams that contribute at one
ground we would write the full propagator as loop. In our notation the result is

|
1
—iE(xi;x’z’)=—§ f d“xéd“xé%(xi,xé,xg)f d*x5d*xGi A (X5 ;X5)i A(X5;X3) Va(X] X5 X5

i
by [ [ aoavion o s+ 2.7

For a local theory we can do the integrations to obtain the form
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1 .
— = Va(X";07,0%,7 ,05)iAx(X;X") 8H(x" —X").

i
S(x';x")=— 3 Va(X';97,05,95) 1 Ao(X";X")iAg(X ;X" )Va(X"; 97,95 , g 5
2.9

The d; andd; derivatives act outward. The other derivatives 9,,=0%9,,=0%n,,+ki,,). (2.12
act on the propagator whose subscript matches their own; for
example,d; acts on the first argument R 4(x’;x"). Itis  As usual, pseudograviton indices are raised and lowered with
sometimes convenient to partially integrate the outer derivathe Lorentz metri¢, and the loop counting parameter is
tives, 9, and @, In this case they go to minus themselves <°=16mG. After some judicious partial integrations the in-
and they act on alk”’s or x”’s, respectively, in the expres- Variant part of the bare Lagrangian takes the f¢&h
sion.

It is (emarkable .that at one Ioop the pos!t|on_space sglf— Lin= /__’g‘g'a[fgpﬂ"g'ﬂv
energy involves no integrations. This is why it exists at all in
the in-out formalism for quantum general relativity in a de 1 1
Sitter background. The volume factors in the interaction ver- g o Wune— = Wan u 02
. . . . . 4 aB,p¥ puv,o 4 Tapp Bo,v
tices of this theory grow so rapidly that in-out matrix ele-
ments are generally infrared divergent if they contain even a 1
s_ingle integrat!or{l,8]. .Of course the higher loop contribu- -5 1/_§’gpo’§w¢pmﬂ,pva(92)’a, (2.13
tions do contain such integrations, so we cannot speak of an

in-out self-energy beyond one loop. A related point is thatl\I h hi . . | di
only the first term of Eq(2.8) is nonzero forx’ #x". The ote that each interaction term contains at least one ordinary

infrared properties of the one loop self-energy are entirelyf€"vative. This occurs because the dimension three coupling
controlled by the first term, Fig.(B), and it is only the ana- is canceled by the undifferentiated terms from the covariant

log of this first term that we shall study in quantum generalder'v"’lt'v(?S of the_ d|men3|c_m five cou_pllng. Such a
relativity. Note as well that the first term of E@2.8) is cancellation—for which there is no scalar field or flat space

completely well defined fox’ and x” away from coinci- analog—is essential for_classiqal stabilifyL0] ag_ainst
dence. grOV\_/th (_)f zero modes. An interesting consequence is that the
The invariant Lagrangian of general relativity is leading infrared effects c_ancel as well in the quantum t_heory.
However, the two couplings do not agree at subleading or-
der, and there is still a very strong quantum effect.

1 1
E wap,p,wua',ﬁ_ E lpaﬁ,pl//o',u,v

£=m (R—2A)y—g+(countertermg (2.9 Gauge fixing is accomplished through the addition of
m —1/2¢*F ,F, where[9]
where G is Newton's constant and is the cosmological 1
constant. Our classical background has the homogeneous and Fu=¥"u,~ 2 o ut ZwPM(InQ),p}Q. (2.14
isotropic form(1.1) with scale factor:

agasdt) =€t (2.10 The associated ghost Lagrangiarf 9%

— O2 R =~ =~ r~ p
It is simplest to perform the calculation in conformally flat Lgnost= = Q701800+ 9pudu Gunp T29,,(I0 Q) o

coordinates, for which the invariant element of the back- _ 1_ _
ground is +(sz),,u77po—[gvpa(r+ E gpv,v+gp(r(|n Q),v o”.
—dt?+aZ (t)dx- dx=Q2(—du?+dx-dx), (2.113 (2.19
1 The zeroth order action results in the free field expansion
Q= —=exp(Ht). (2.11p  [11]
Hu
Note the temporal inversion and the fact that the onset off,,(u,X)=(zero modep+H? Z {¥,.(ux; k.\)a(k,\)
inflation att=0 corresponds ta=H 1. Since the infinite A k=0
future is atu=0", and since the spatial coordinates fall +\Iffw(u,>z;lz,)\)a’r(lz,)\)}. (2.16

within the region,—3H 1<x'<1H !, the range of confor-
mal coordinates is rather small. This is why a conformallype spatial polarizations consists oA" modes:
invariant field—whose dynamics are locally the same as in
flat space, except for ultraviolet regularization—cannot in
duce a big infrared effect. N o o
Perturbation theory is organized most conveniently in Note, however, thag"” is the full matrix inverse 0§, and has
terms of a “pseudograviton” fieldy,,, obtained by confor- the usual geometric series expansion:
mally rescaling the metric: Gpuv= 7"~ kP 1YY, =
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.o Hu i ) 1 Note that the convergence facter <Kl serves as an ultra-
W (U XK N) = N 1+53 ex;{lk(u— ﬁ) violet mode cutoff. Although the resulting regularization is
very convenient for this calculation, its failure to respect
- . general coordinate invariance necessitates the use of nonin-
+ik-X| €, (KN), VNeA, variant counterterms. These are analogous to the photon

mass which must be added to QED when using a momentum
(2173  cutoff. Just as in QED, these noninvariant counterterms do

hile th . d | | polarizati not affect long distance phenomena.
while the space-time and purely temporal polarizations aré  gecqyse the propagator is only needed for small confor-

associated, respectively, withB” and “ C” modes: mal coordinate separationdx=|x'—x| and Au=u’—u,
A Hu 1 the sum over momenta is well approximated as an integral.
V(UK KN = — ex;{ik u— _) When this is done the pseudograviton and ghost propagators

e J2k H become[8]

i[awBpe](5X7)

H? [ 2u'u

+ik-X|e,,(K\), VAeB,C.

2.17 ~ -
(247 872 | AXP— AU+ 21 e AU+ €2 L27utp o)™ Tunlp]

In Lehmann-Symanzik-Zimmerman(LSZ) reduction one
would integrate against and contract inqy(g,i;k,x) to
insert and “in”-coming graviton of momenturk and polar-
ization \; the conjugate would be used to extract an “out’- x[zﬁ(pﬁ)v—zayn_pg]], (2.199
going graviton with the same quantum numbers. The zero

modes evolve as free particles with time dependences 1 and 2
u® for the A modes, andi andu® for the B andC modes. r A 106X )~ H
Since causality decouples the zero modes shortly after thé“ v 87?2
onset of inflation, they play no role in screening and we shall

—In[H2(AX?— Au?+2ie|Au|+ €?)]

2u'u
AXZ—AUZ+2ie|Aul+ €2 Tmr

not trouble with the them further. —IN[H2(AX2— Au2+ 2i | Au|+ €2) T, -
We define |0) as the Heisenberg state annihilated by e
a(k,\)—and the analogous ghost operators—at the onset of (2.199

inflation. We can use this condition and expansi2rif to
express the free pseudograviton propagator as a mode suParenthesized indices are symmetrized and a bar above a

[8]: Lorentz metric or a Kronecke# symbol mea;oséghat the zero
. N , component is projected out, e.g,,,=7,,16,0,. The de-
L] O6X) = (01 T{ 0 () P (X )} O)ree (2183 (oupling between functional depe;rleenlée upon spacetime and
tensor indices—and the simplicity of each—greatly facili-
=H3 > {6’ —nw, v tates calculations.
A k#0 We find the cubic self-interactions by expanding expres-
- sion (2.13 to third order in the pseudograviton field. The
+O(u—u)Wr W re ekl (2.18D  result iskQ? times

1 1 1 1 1
- Z l//l//,,ulvzlﬂytv—’_ G ‘/Ip(rllfp(r,,ul//#ytv—i_ G l/’p(r'r//’pl/’(rvtv_’_ Z Ir/”//pa'#{rlf,up,o’_ l/,po-l/,pﬂyvl/fp,v,u'_ E l//po.l:bp’uyl/f(rv,,u
1 o 1 o v 1 o 1 o 1 1 o 1 o
- Z l;bl//,plsz ,(r+ E W’ l/’p(r,,u‘//“ ,1/+ z l//p l;b,plr//(r/.cuu—i_ E lr//P lr/l”ulzb,up,(r—i_ g l;blr/f'ulr/l,,u._ E lsz wp(r,;.cl/f#_ Z lr/lp w,plr/j,(r
1 o 1 T v 1 o v
- g 'ﬂlﬂp ’watr,,u_F E lpp Wp,u,vwa'”' + Z l//p lp/}.v,plpﬂ o (220

wherey=y*, andt,=n,. All but the first three terms should agree with the flat space expansion gjyeés regarded as the
graviton field and)=1. Of course this allows us to check them against published rddi@}sand they do check.

The vertex operators will be fully symmetrized if we define them by functional differentiation as itREpy. This is not
efficient for computing the self-energy because only one of the vertices needs to be symmetrized on its internal lines. Fully
symmetrizing both vertex operators causes each distinct pairing to appear twice in the self-energy, which is why the symmetry

°Note, however, that some earlier results are given for a timelike metric, so our field is minus theirs.
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TABLE I. Cubic partial vertex operators with No. 1 distinguished. Each term should be multiplied by

«02.
No. Partial vertex No. Partial vertex
1 — LpBryeabog(eass) 22 LInealea by
2 _ 2—1unﬂz/32 77“3ﬂ3(;ga1tﬂ1) 23 %7]&2(&3 nﬁs)ﬁz(ygwl(;fl)
3 — L yes peabr gl 24 Lol ppBag(*25
4 ﬁnﬂl(ﬂz 7752)51(9(2“3tﬁg) 25 %8(;1 nﬁl)(“3(9§3) 7]“252
5 %Inaz(ag nﬂ3)ﬁzlggﬂltﬁl) 26 %(9(3“2 nBZ)(alﬁ’fl) n*3Ps
6 ﬁna3(‘117751),333§0‘2t,32) 27 %0;“3 7]B3)(“2(9§2) 7/“131
7 ﬁt(ﬂs 7IB3)(“1(9§1) n2h2 28 %(9(2“1 nﬁl)(azﬁgz) 7?3Ps
8 L(ay 77;;Q(azaé?z) e 29 %(;(Saz nﬁz)(“:so'lffi) 7P
9 Itlaz 7]/32)(03(953) peb1 30 %{9(10[3 1]53)(011(951) n2P2
10 %,,alﬁwgaz 7732)(“3(953) 31 Epe1PiyePapabag,. g,
11 %nﬂzﬁzg(l% 7]53)(&1,951) 32 FnabiyeaPagsbsgy. o,
12 1 pasBsy\ 1 B1)(az gP2 33 — N 2pPIP1pY3R3g, .
1 paBag(1 P (azyP) " lezyfPinshag,. oy
13 _(9:(3’)‘17]!31)@27]52)(&3,953) 34 - %7)“2(“37733)3277a131(93~ d1
14 _ a(lﬂznﬁz)(% 77/33)(%351) 35 — %77“3(“17]ﬁ1)/331]0‘2/62,91. 9y
15 _ 3(2“3 7][33)(“1 7751)(“2552) 36 — 711(9(2“133/‘31) 7]‘1232 7]01333
16 _ %02‘)‘2 77132)(‘711 7’51)(“3653) 37 _ %a(sazaffz) 7]&333 7]01131
17 _ %ﬁ(la37753)(a2 nﬁz)(alagl) 38 _ %7’0451 pe@aphabay,. 3
18 _ %(7(2a177ﬁ1)(a3 7’53)(a2(yfz) 39 _ %nazﬂz 7]063(0!17][31),33&3- dq
19 _ %1770(13177&2%3(2030”53) 40 %nal)(az ﬂﬁz)(a377ﬁ3)(ﬁ1192' d3
20 _ ‘_117]“2‘;277&3133(9;%(9?1) a1 ,7‘11)(a2 nﬂz)(as 7733)(3153. 91
21 _ %nagﬁa ,70(1131[9(1”2[952) 42 %a(zﬂlggl) 7]012(&377133)52
43 %(7(3“2(752) 7]EY3(041 77131)53

factor for this diagram ig. The large number of distinct cubic self-interaction ter@£20 means that this is not an efficient
strategy for quantum gravity. The fully symmetrized vertex operator contains 75 separat¢4emhereas permuting over
only the three possible choices for the outer line results in just 43 terms. One must sum over both ways of pairing the internal
lines but there is still a saving of almost 50%—which is important in summing oveeigihitfold contractions of 20-index
objects.

To obtain the partially symmetrized vertex operators from a given cubic self-interaction one merely assigns the three legs
any of the six possible ways and then permutes cyclicly. For example, the first term {@.2g.gives

~ g Yt 5 n*1P1y*2P29,"3th3)  (initial assignment

1 1 1
7% ne1P1yeBag *aha) — 50 n°2P2paPag ek — om n°3Panmhiy\ 2B (cyclic permutation

The various partial vertex operators are given in Table |. We consider line No. 1 to be the distinguished one, and we have used
symmetries among the remaining two fields to reduce the number of vertices whenever possible.

The ghost-antighost-pseudograviton interactions can be read off frorf2B&). There are only ten interactions and they
are k02 times

2 1 1
— 0P’ =i, 0" "~ i, ;oMo m V0™ " 0%t ot 0P ot + > ¥ 0P 07+ m yo?P ,wt,
1 2
+ G ¢#Va’a)""’tp+ a lﬂvgijatpﬁ' JZ tpﬂ’w"tptg. (221)

There is no issue of symmetrization in finding the associated vertex operators because each of the three fields is different. The
result is presented in Table II.

It is simple to write the graviton self-energy as a sum over contractions of the various vertex operators between the two
internal propagators:
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TABLE Il. Ghost-pseudograviton vertex operators. Each term should be multipliedBy

No. Vertex operator No. Vertex operator
1 — ,7“2(&17]/311:?(92. 93 6 % na1ﬁlg§23i3
az(a Q. a Ao v
2 -7 3E 1,9%1),932 7 ZG 7 1B1,9/232§ 3
3 _ 77012 011(921 013 8 Ul 77013(011(931 12
4 _ ﬁ 7]a2(a1(9231)ta3 9 u ﬂalﬂlalataz
B1) 4 2\ ayBiparta
5 naS(alﬁgl 322 10 (2,{1 )77 1P1t¥2t 3
43
[P m(xix") = =i 2 VR0 50 Ly, e, )X X L (XX
ij=

X{V]Pl”l/’20'2p3o'3(x”;(7;{ ,(gg ’(9’3() +VJP1‘71P3‘73PZ‘72(X//;(9{ ,(9;; ,ag)}
10

+iij21 Vi‘”131“2“3(x’;(91,(?é,&é)i[azApz](x’;x”)i[asApa](x’;x”)Vf1”1p3"2(x”;(7'1’ ,05,3%).

(2.22

Since we have not symmetrized the pseudograviton vertex*=(x’'—x")*, t*=8f, 4;* and 37*. The scalar functions
operators on lines 2 and 3 it is necessary to include both gan depend upONZEXMXV,]W, u’, u”, x-ay, x-dy, t-a;,
symmetric loop[Fig. 4@] and an asymmetric loopFig.  t.47 andg)- 4. Each term can contain at most one factor
4(b)]. The ;eponpl double sum gives th_e ghost 10B.  of each of the external derivatives, either free or contracted.
4(c)]. The distinction between the? andyww vertex opera- |t can be shown that with this requirement there are 79 dis-
tors does not require a separate symbol; the different numbegct four-index objects and ten possibilities for contracted
of indices suffices. Where each derivative acts is denoted bderivatives[4]_ To make the expression more manageable,
primes and subscripts. For example, the derivaiiiyén the  prior to attaching the outer vertex and propagators, we ex-
first y? vertex operator acts on the first argument of thetracted the scalar coefficient of each allowed combination of
propagator[ . s,A, -, 1(x';x"). The derivativess; andd;  four-index object and contracted external derivative opera-
act on the left and right outer legs. In computing the two looptors. It is from this data that we later computed the self-
tadpole we left them as free operators to act on the uppegnergy by partially integrating the external derivatives to act
propagators when they were attached. For computing thback onx’ andx”, respectively. Since the data actually con-
self-energy we have of course partially integrated them to adainedx’ andx” throughx, u’, andu”, we used the rules
on all thex’s andx™'s in the expression.

The entire calculation was performed by computer using P P
the symbolic manipulation prograrRmTHEMATICA [13]. The - 5#: -+t — (2.233

first step was to contract each pair of vertex operators into 2

the internal propagators. This was done using Mertig's pack-

ageFEYNCALC [14], and the result was written onto a file. P

The next step was acting the internal derivatives, 5, —(9,1’,FWHM TR (2.23b

d3, andd3), the results of which were also stored for each

pair of vertex operators. Selected vertex pairs were computed

by hand to check the procedure. At this stage the results foFhe result after this is done consists of a sum of four-index

all vertex pairs were summed, and the total was checked fdensors times scalar functions. The four-index tensors can

symmetry under interchanging the two external legs. depend only upomy**, x*, andt*, while the scalar functions
The result we obtained for the self-energy operator is alepend only upom?, u’, andu”. The 21 possible four-index

very long sum of four-index objects times scalar functions.objects are listed in Table 1ll. Note that we have dispensed

The four-index objects are constructed fromy*”,  with the now-irrelevant line subscript 1. Note also that the

2,,,,," 1 FIG. 4. One-loop contributions to the graviton
. self-energy.

@ ® ©
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TABLE lll. Tensor factors in the self-energy.

No. Tensor No. Tensor No. Tensor
1 ‘Yjaﬁﬂpo— 8 Xaxﬁnoo’ 15 t(axﬁ)tPtU
2 77!1(9,,’0),3 9 t(anﬁ)(PtU) 16 tetByPxo
3 7Pt 10 (e P (x) 17 x*xPtet”
4 tatBﬂpU 11 X(anB)(th) 18 tlayBt(py o)
5 naﬂt(ljxo') 12 X(a’)’]'B)(pXU) 19 t(axﬁ)xpxu
6 t(exP) o 13 tutPtrte 20 x*xPt(Px?)
7 7°BxPx” 14 tutPtlrxa) 21 XOXPXPXT
reflection symmetry relates the coefficients of pairs 3 and 4, H2 2u'u” H?2

5and 6, 7 and 8, 10 and 11, 14 and 15, 16 and 17, and I&N= g7 -7~ (A =g IN[H*(x*+ie)].  (2.24
and 20 87 X“+ie 8w

It is worth working out an example to illustrate the
method. To save space during the contractions we define tidow consider the =j =41 term from the symmetric gravi-
normal and log propagators as ton loop[Fig. 4a)]:

[alﬁlzz}zhl](xr;xn): _ivf&ﬁlazﬁza3ﬂa(xl;ai '&é '&é)i[azﬂzApzvz](X,;x”)

Xilayp,A o (X XV 277X 0 05,0 (2.253

=—j KZQ'ZQ’Qo"i_ 9%y - 7]011)(&27],32)(&3nﬁs)(ﬁl77P1)(P27702)(P37703)(01
X {I A2N[2 7]a2(p2 7]0'2),82_ 7]012,82 77/320'2] —i A2L[2 7]a2(p2 7]0'2),82_ 2 7]012,82 npzo'z]}

X {I A3N|:2 77a3(p3 770'3)ﬁ3_ 77a3,33 77p30'3] —i A3L[2%3(p3a'3)ﬂ3_ 2E3[337p30'3]} (zzsb

=—j KZQrZQHZai. 3537 - (})g{iAZNiAaN[Znalﬁl PPLo1+ 2 palP1 oD Br]
+(iApNi Ag +i A1 Agy)[ — 37 1FLpPro1+ pralbrp) P13 peabitpitmy

—3tathryP1o1+ 4t(“17]'81)(p1t”1)] +iA, i A5 [5n1Pryr1o1

—3plP1yo1)B1y 5 pa1BtP1t o1 Bt ethryr1o1— Gtl@1fD (P10 2ta1tﬁ1tplt01]} . (2.250

We now label the various tensor factors according to the scheme of Table Tj=ag“f1*1°1, etc., and act the inner
derivatives:

[alﬁlzﬁif]"‘l](xr ;X”) = - | KZQIZQHZai' l?éO')f{ (9%{' AZNi ASN[2T1+ 2T2] + (| A2Ni A3L+ | AZLiASN)[ - 3T1+T2_ 3T3_ 3T4

+4Tg]+iAs 1A [5T1—3T,+5T3+5T,—6To+2T43]} (2.26a

—ik? ([ 3x-aix-d 8- 8x-t-d 8t-ax-d, At-oit-d,
=567\~ B + NG + 0'xE 0'xE + U [2T1+2T,]

16 a)x-d)  4d,-3 4Ax-9it-d) At-aix-d) 2t-ait-d)

22
ron n2.,4 12,1 12 "2X2>In(H X)

+ + + - +
u'u”x8 u'u"x* T u'u"x u?u’x* " u'éu

491-97 8X-d1x-d]
- u/u/lx4 + quHXG

[_ 3T1+ T2_ 3T3_ 3T4+4T9]

291-97  4x-91x- 9]

TR + 02U

+

)In(Hzxz)[5T1—3T2+ 5T3+5T,—6Tg+ 2T13]] . (2.26b
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This is the point at which the outer vertex and propagators would be attached in computing the two loop tadpole. However, to
extract the one loop self we partially integrate the outer derivatives to act them bac¢kaadx” using Eq.(2.23. The result
is

[*2P1s /78 1(X;X") = __GI Kj [(_1982+ ,33 5T r24uz 4)[2T1+ 2T+ — 75— ,83A/l/132 7 /22?2 7+ : I,nz(H,:Xi)
2°m X u'u’x®  u’“u”’ex u'u’x® u’Pu”°x* u’“u’“x u’'“u”x
8 In(H?x?) 8AU? 16 8 In(H?x?)
u73u113x2 [_3T1+T2_3T3_3T4+4T9]+ - u/3ur/3x4_ u72u112X4 + u/3u//3x2

X[5Ty—3To+5T5+5T,—6To+2Tqal |- (2.27

Note thatAu=u"—u’ and that we have suppressed the fac- —ik? (288 720

tors ofi e which go withx?s. The final results for the entire [ “P2fg](X";x")= 267 | %8 7P+ —g n* Py
) . T | X X

self-energy are given in Tables (& and IV(b).

832 af T ay BP0
_W[W XPXT 4+ XUXP P 7]
Ill. THE FLAT SPACE LIMIT 3712 .8 o) 37 s
Consideration of the classical backgrouf®ill) reveals o X XA o XOXPXIXT
that flat space can be recovered by setting the conformal time (3.4
to '
It is useful to recast this expression in the form of a deriva-
1 tive operator acting on £#. The key identities are
u=——t 3.1
H 33 1 1 /1 35
@~ 1027\ (359

and then taking the Hubble constaito zero[11]. Note that

in this limit the scale factof) becomes unity, as does the X" 41 wval[ L 3.55
ratio of products of equal numbers of conformal times. Note x0 — @ﬁ 99"+ 1536 7 J XA (3.5b
finally that the difference of two conformal times is just mi-
nus the same difference of flat space times: XHXYXPXT 1 1 ( )2
= LAV aP o & —— (kv gp 5o
x22 10207 77 g 00
1 1 1 1
O/ "= | 47| | g | —¢r_yr v o
X'=u’'—u (H t) (H t) t"—t'. (3.2 +ﬁn(#« np),;4(F)_ (3.50

Our final result for the flat space limit of the one loop self-

This means that our quantity®=(x’'—x")*(x'=x")"7,, energy is therefore

goes to the usual Lorentz invariant interval, which we shall
continue to callk

P2
The preceding facts make it very simple to take the self-  [*A329](x’;x")= Lél { E’ RLE
energy’s flat space limit. Consider, for example, the no-log 60(27) 2
coefficient of tensor factor No. 7, which we can read from 61 wlp. )B4 23 B ap 10
Table IV(a). A simple calculation gives the limit o TP = o [n*hPa

+ ﬂpfraaaﬁ] 9?— 61(9(a7]ﬁ) (pg9) 52

1280 1154 704u” 8 192 144 1
_ %10 + U"x 10 - U’ x10 + U’ 2x8 + ur/ZXS_ u'u”x8 +42aaé,ﬁé,pao-) (F) (3.6)
+ — 3,,23 =— ,22?2 5+ ,361}, s—— 121%0+ 11122 It remains to compare E@3.6) with the flat space result
UTUPEXE UrrueEXe U X X obtained for theA=0 theory by Cappef7]. He defined the
704 832 graviton field a3
v s (R 3.3

X

SCapper also used a timelike metric, he associates the inverse
The logarithm terms of Table 1) cancel completely, and factors of 27 in Fourier transforms with what he calls the propaga-
the only nonzero contributions from the nonlog terms oftors, and what he calls the self-energy-is times what we call the
Table IV(a) come from the coefficients of tensors Nos. 1, 2,self-energy. We have translated all these conventions into our no-
7, 8, 12, and 21. The answer is tation to avoid confusion.
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TABLE IV. (a) Tensor coefficients which are free of logarithms. Multiply each term-tix%/(287%
times the appropriate tensor factor from Table Ill to obtain the contribution to the self-eribygyensor
coefficients which contain logarithms. Multiply each term by«? In(H2x?)/(287% times the appropriate
tensor factor from Table 1ll to obtain the contribution to the self-energy.

No. Coefficient
(€Y
1056 96u’? 288’ 28a&” 96u"> 48  64u’ 48 132
1 ETUBE UE T UE UARE UBE U 08 T uu®
64u” 40 41 40
T AT T T AT
5 18087 544.!'7 544u”7 176 N 32u’ B 176 N 272 N 3" N 24 N 28 N 24
XEUxE U uAE U uAE T uux®  uxE T uuXE T w X u ke
3 3 112 N 32u’ 16 640 8 102 80
u?x8 U8 w8 u'u’x® u'u"x* u'u"x* uBux?
4 3 16 112 640 N 32u” 80 102 8
u'?® ux® uu'x®  u3xE uumx* uAux* uBux?
5 %*E%JFg* 9621'1”8Jr 6346* 6346Jr 64; s+ :2L68 5 3242 7
u’'x®  u”’°x u’x®  u’ex® o u'x® u”x®  u'u"ox®  u'eu”x®  u’Cu”ex
6 3 928 96u’ l344+ 57au” 64 64 168 64 N 24
u'x® U8 u'x® T uAxE T uxE umxE uwux® ulux® uumixt
7 3 1280+ 115"  704u” N 8 N 192 B 144 N 32 24 N 64
x0T uxP o ux T wAxE T uAxE u'u'x®  u'ux® u'u"x8 T u’Bu’x®
8 3 12807 704u’ N 11524" N 192 N 8 B 144 N 64 B 24 N 32
KO WX T x0T wAE T urAE uu'xE T uuBxE uZu'xC T uBurxE
9 96 N 96 464 N 56 N N 56
u?x8 "8 u'u"x®  uuxt T uu"x* T uturx?
224 1024 128" 64 64 360 120 8
10 18 " 8+ 12,8 13 6+ n3y,6 ron2 6+ 12, 11y,6 12, 13,4
u'x® u'x® A w8 U uu™x® T uAu"x® uPu"3x
11 %*E%*gg* 6346+ 6346* 1236+ f6os+ 382 7
u’'x®  u”"x® u"x® u’cx® u”x® u'u”"x® u’eu"'x®  u’°u”°x
6528 140&’ 1408)" 160 160 416 64 24 64
12 Sl 1o e v 7oos ' Ry 1o i M s S M s S s - R 72 S Ty S S BT
X u”x u’x u?x® U8 u'u'x® u'u"x® u'?u"®  u’3u’x
13 40 N 180 N 40
u'u"x* " uuxt T utuxt
14 - r3326* /Gfg 5 jO’(I) 5 ,28~3 7+ ,38"2 7
u3x® u'u"x® u'2u"x® uAu"x* T utu"x
15 32 N 400 N 640 8 N 8
u”x® " u'ux8 T u2u"x®  uZu"x* T utuxd
16 240 N 992 N 32 N 56
u'?®  u'u"x®  u'u"x8 T uu"?x®
17 240 N 992 N 56 N 32
u”x® u'u"x®  u'?u"8 " u3u’x®
18 3 960 960 N 96 64 N 96 64
ux® ux®  uu'x® u'u"xE T ulumx® u'Bu’x®
19 3200+ 576 224
u"x® " u'u"x® u'?u’x®
20 _3200+ 224 3 576
u'xX " uu"x® u'Pu’x®
21 5376

X12
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TABLE IV. (Continued.

(b)

1 B 32 N 16u’ 32 N 32 N 16u” N 8 N 24 N N 12
u?x8 "8 w8 T u'u’x® w38 T uu"ix*  uu ™t uBux*t T utuex?
384 1924 194 112 32’ 112 128 3" 8 36
) TR TTTE T TURE RS T UBE w0 wu aea A
8 4
TGN
3 32 N 8 20 N 48 4
u'?x® " u'umx* uAuxE T utu'x*t u'tuex?
4 32 N 48 3 20 N 8 B 4
u"x8® " uuxt uurA T uBu'xt uBu"K2
5 _E+ 192 32 N 32 16 16 N 24
u'x® u'x® ux® ux® uu"xE ulu’x® T uSurxA
6 3 192+ 1927 32 N 32 N 16 N 16 3 24
wx® U ucxE T uE T uuAE T u ke uAuixA
7 3 16 16 32
u'u"x% u’?u"x® u’su”x®
8 3 32 B 16 B 16
u'u"x® u'?u"x® u'su"x®
9 64 N 64 64 24 32 24 8
u'?x® " u"x8 u'u"x® uu"x* ulu"™x* uSu'x* u’Bu”ex?
10 3847 1927 192,1"+ 32 3 64 N 64 N 8
ux® ux® uAE T uAE uxE T uwuAE T uunXA
192 194" 384 64 32 64 8
11 =8t Z2s— st T3 73,6 12,11y 6 13, 12,4
u'x® w8 u'x®  u3x® Uk u'u"x® u'u"%x
12 2._127 15361.;'7 1536110"7 2?88 2?88Jr 3848+ 323 - 2802 . 332 .
X u’x u’x u’sx® u”x®  u'u"x®  u'u”x®  u’eu"x®  u’u’x
16 80 16
13 U T wArRE T wraKd
14 128 7 192 N 8 B 8
u'u"x® uu’x®  uux* uSu"x
15 192 128 N 8 8
u'u"?x8 u'?u"x®  uu"x* u’tuxA
16 192 B 384 7 32 3 16
u8 u'u"x® uux® uPu"x8
17 192 384 16 32
u”x® u'u"x® u'?u"x® u’Su”x®
18 192 N 192 3 1152 N 32 N 32
u'2® U8 uu'x® uu"x®  u’Su"x8
1536 1536 288 96
19 110 10 [ 1,12 8+ 12,,11y8
u'x® u'x¥® u'u"x®  u'?u"x
1536 1536 96 288
20 1410 [ 1yd10 12 8+ 12,18
u'x u'x¥® u'u"x® " u'?u”x
21 0
U= Nuvt V2K, (3.7 Comparison with our gauge-fixing terf2.14) implies that
our flat space limit should agree with his result for1 and
and he used a general gauge-fixing term of the form B=—3. These are certainly the values for which his graviton
and ghost propagators agree with the flat space limits of Egs.
Lg=—(adp" ,+Bd*)n,(ad” ,+B¢d"). (3.8  (2.193 and(2.19b, respectively.
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Of course Capper worked in momentum space, using di- 2 17
mensional regularization i® spacetime dimensions to de- Ts(D)=-Ts(D)=5— (Z D™+ 75D
fine the divergent loop integral. To compare with E8.6)
we first Fourier transform to position space and then evaluate 97 , 17
the result—which is well defined for*#0—at D =4: —16P g DH4 (3.110
i d°p
B3 G0 )= lim o [ e o), 1 ( 9 , 43,15
[ Cappe;I( ) D*)4(27T)D (27T)D (p ) T4(D):D_2 _1_6D5+1_6D4+§D3
(3.9
) 119 25
Cappers’s result fol “#*7(p?) has the form ~ 5 D?— 7 D+8], (3.110
Taﬁpo 2:2TDaBp0'+TD aB, pond
(P9 = AAT2(D)P"p"p"p 2(D) 7" n™p and Capper defines his “basic integral” as
+2T5(D) 77 Pp*+Ty(D) .
1 dk
X[ 7*Pprp7+ppfy"1p? I(p2)554(D2——1).[ [ ieipwz e 12

+4T5(D)pl*7? Pp?p?i(p?).  (3.10

Although Capper’s published paplef] quotes only the pole

The familiar relation

terms, he was kind enough to communicate the general result 1 _iI(b-2/2 iky (213
to us some time agfil5]. The coefficient functions are k°—ie 472 Y yZ+iep? 1 &
9 21 9 , . .
T,D)=— D*- =~ D3- = D?, (3.113 allows us to reexpress Capper’s basic integral in the form
16 16 8
r D—-2\]?
D)= = [ 2 ps- 2 e 2 2L 2 o, "7
2( )_D—Z 16 16 8 I(p )__267D(D2_1) fd ym. (3.14)
123, 33 Lo .
+=p2y Zp_gl, (3.11H Substitution mtg Eq(3.9 reveals complete agreement with
8 4 our answei(3.6):
|
D—-2\]?
_i"zH 2 ”

[*P2ppel (X" X") = lim {T1(D)3*9P3° 37+ To(D) P nP7 "+ 2T3(D) n*P 7B 5*

b4 2°m°(D?-1)

D-2

+T4(D)[ 5*P9P57 + PP 7] 9%+ 4T5(D) 9@ ) (P59) 92} (3.153

X°+ie

)
—ik 23 61 23
= agBgpgo+ = paByppoghy —— palp pBgAd_ “T 1 paBgp g0 gagh ppo g2
60(277)4(426'&(9& 27]77& 5 17 d 2[77 P97+ %" p7]d
2
—615(@ B (p50) 52 1
|
IV. THE WARD IDENTITY of the theory’s gauge invariance—as reflected in the Becchi-

The result of the previous section is reassuring becausRouet_StordBRS) symmetry of the gauge fixed action—it

. . €an be checked on the curved background without taking the
our reduction procedure is the same for all terms. By checkﬂat space limit

ing the flat space limit we have, therefore, partially checked 114 gauge-fixed action is invariant under the BRS trans-
even terms which vanish in this limit. However, it is con- ¢5rmation

ceivable that an error might also vanish in the flat space

limit, and it is important to note that the dominant infrared 2

terms which are of greatest interest to us also go to zero in Serstur= 2§p(uav)+§wp+ _’g'wtp w8, (4.13

this limit. So an independent check which is intrinsic to the T

curved background would be highly desirable. Such a check

is provided by the Ward identity. Since this is a consequence Sgrew™=— O IF#8¢, (4.1b
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SR, = KW, ,0" 8, (4.10 trix elements from existing if they involve even one integra-
tion over an interaction vertep8]. Of course the one loop
whered( is an anticommuting.-number constant. An impor- correction to the in-out two-point function is just the double
tant consequence is that the BRS transformation of théntegral of the one loop self-energy against two external
gauge-fixing functionF, is proportional to the antighost propagators. If we can amputate the external propagators, the

equation of motion: one loop self-energy which remains will suffer no infrared
divergences because it involves no integrated interaction ver-
SeraF () =01 9Scr S¢. 4.2) _tices. However,_we cannot amputate the externgl propagators

m Sw™(x) in Eq. (4.6) so simply on account of the gauge-fixing opera-

. ) - tors 77. These do not commute with the pseudograviton
The various Slavnov-Taylor identities follow from the BRS inetic operator—they don’t even possess the requisite num-

invariance of the functional formalism. One makes a chang@g, of free indices to do so. What we must do instead is to
of variables that is a BRS transformation and then collectsgfiect the gauge fixing operators through the external propa-

the variation terms. Since a functional integral is independengators and then amputate the differestialar propagators
of the dummy variable of integration, the sum of the varia-yhich reside on distinct tensor factors.

tions must vanish. Since the action and the measure factor Ty scalar propagators are of interest. The first is that of
are BRS invariant, the variations derive entirely from they massless, minimally coupled scalar:
operator whose in-out matrix element is being computed.

We do not want to compute another Green'’s function so ) H2 ( 2u'u” 2 o
we seek an operator whose BRS variation involves only the  18a(X":X")=g—3 ) “7 =~ IN[H* (X" +ie)] ;.
pseudograviton two-point function. The desired object turns (4.7a
out to be the product of the conformally rescaled antighost
field and the gauge-fixing function. Its BRS variation is It corresponds to théd modes of Eq.(2.173, which can
o harbor physical graviton polarizations. The other scalar
9srd QX" )@, (X" )F,(X")] propagator is that of a massless, conformally coupled scalar:
_ ' p N H? 2u'u”
= F#(X )FV(X )+Q(X )wM(X ) iAB(X’;X”):Wm' (47b)
X Q" Y(x") %} S¢. (4.3 It corresponds to th& andC modes of Eq(2.170, which
dw”(X") represent constrained and pure gauge degrees or frébdom.

The functional integral of the second term idunction: The corresponding scalar kinetic operators are, respectively,

2
— ., OSgr : — D =92(52+—a ) 4.8
J [dy][do][dw]w,(X") 070 exd iSgH ¢, w,w]] A g %o (4.89
_ _ ) Dg=025%. (4.8b
=—|f [dy][do][do]o,(x )m _ .
w We can express the pseudograviton propagator as simple ten-
XexdiSed ¢, @, »]] (4.49  sor factors times the two scalar propagaf@k
= a) (ap Ll X =N X g Th, I HTAB(X iX')
B C
If we write the gauge-fixing function as an operator acting on X{lapTpol tlapTpolts (4.99
the pseudograviton field, - _
[a/BTﬁg]zzna(pno’)B_Znaﬁnpa'! (49b)
1 2
Fu(x)=Q(x)| 8,007 5 3, 7"+ U 5u”t"} Ppo(X) [apTon]= =4t np)pto) - (4.99
(4.59 c _ _
[aBTpo]:(tatﬂ+ naﬂ)(tpta+ 77pa')1 (49@
=F L7 ) ,0(X), (4.5b) ' -
where we remind the reader that,=7, and 7,,
then the Ward identity can be expressed as =79, Tt
wByor o ) i The tensort,, and our barring convention permit us to
F P FLTXNOU T ¢rap(X") ¢h,0(X")1]iN) express a free derivative as purely spatial and temporal de-
i 7,58 —X"). 4.6 rivatives:

One of the first things we did after obtaining the pseudo-
graviton and ghost propagators was to verify a somewhat“a modes can also be unphysical. It B dimensions there are six
more general version of E@¢4.6) at tree ordef11]. Work at A modes, of which only two are physical, thréemodes, and a
higher orders is embarrassed by the severe infrared divesingleC mode. The distinction betwed® and C propagators be-
gences of the in-out formalism, which typically prevent ma-comes apparent in higher dimensid@s11].
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9,=0,—1,dp. (4.10

2
A AAX ;X" = —((96— m) iAg(x’;x"), (4.12a

Spatial derivatives reflect through the scalar propagators the 5

same way they do in flat space: ((90 >|AB(X X")= — JAAX X", (4.12D
FLIANX X == LI AA(XX"), (4.113 1 1

(8(’,—T)iAB(x’;x”)=—(ag )IAB(X iX").

a_l’LiAB(x’ X" = —a_;;iAB(x’ :X"). (4.11b (4.129

We reflect the gauge-fixing operator through an external
The reflection identities for temporal derivatives follow from propagator by first contracting into the tensor factors and
the mode expansions of the various propagdftbts: then exploiting the scalar reflection identities:

Q"lfzﬁ(x’)i [apl ol (X" ;X" = 2[%(pa;)—tﬂ7pgaé]i Ap(X";X")+2

— 2
—tutpde)— ”M(ptcr)( do— T)

o 1 H 1oyt

+2t,(t,t+ n,w)(ﬁo— T) iAg(x';x") (4.133

” 2

—2[ 77#(‘0(70_)4‘ 7’/.1,(;) U)&O]IAA(X X )+2t t(pﬁg)-i- 77[)0' (90 m

oV 4 1 ; Py
_(tpt0'+ np(r) 50‘? IAB(X X") (413b
- /"o v " 1 H 1M

—ZnM(pﬁU)lAA(x X" +2t, t(pag)—m Npe|1Ag(X"5X"). (4.1309

We can therefore amputate the external propagator by acting the number of the coefficient function upon which they
the scalar operatdd , when the free indey is spatial, and act. Needless to say, the identity is obeyed.

by actingDg when u is temporal. It is worth working out an example of the process through
The preceding analysis allows us to pass from#d) to  which the two tensor differential operators in £4.14) are
the following identity on the one loop self-energy: contracted and commuted through the various tensor factors

which make up the self-energy. We have chosen for this

, , afis oo , purpose tensor No. 21 on Table Ill. Sinct=(x"—x")* we
Nuadp™ tuTlap u’ Nupdo™ o po u’ [“FZPIIX"X") easily commute derivatives through the tensor factor:
=0. (4.14)
— . . . . . L — " B
Though our derivation was carried out if2 dimensions it Nuadp™Lulap u’)( Nopdo~ toTpo G [ XXOXEXT

is worth remarking that the result is valid for any dimension.
To check it in 3+1 dimensions we first contract and com- 1 1

mute the two tensor-differential operators through the 21 ten- ~ ~— = Fpd XX XX = o ﬂpt#xyxpx U apxﬂtvxpx
sors of Table Ill. The result is a linear combination of five
two-index tensors,

o 4
AT t,t,x (4.16a

Nuvs Lubuy UX0,0 Xt XX, (4.15
times various scalar differential operators which act on the =X, X, [XPX70, = TXP I, + 7x0a:; —42]
appropriate scalar functions of Tables(&and IV(b). Since
the coefficient of each tensor must vanish separately we ob- t,X o 2 o 2
tain five identities, although those fogx, andx,t, follow g [ IptTX ]+ [ X*x 9y = 7X7]
from each other by the diagram’s invariance under inter- 4
change of the external legs. The various differential opera- ttt X (4.16h

tors have been tabulated at the end of this section, according Bty
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The coefficient oft ,t, at the end of Eq(4.16D is already
recognizable as No. 21 on Tablgh), and the coefficient of
7" is clearly zero, in agreement with No. 21 on Tabl@aV

For the rest we recall that the derivatives can be simplified

when the functions they act depend updrt and x"* only
throughx*, u’, andu”:

3 —d,~t (4173

“ou'’

ET (4.179H

07;;—> —d,~1,
Since the coefficient functions of Tables (& and 1\V(b)
actually depend upor* only throughx? a further reduction
can eventually be made:

2 (4.18

07#—>2X#

The coefficients ot ,x, andx,t, in Eq. (4.16b are, there-
fore,

P 7x2} ,

(4.193

[ d
2x4 a—Jr(t-x)x2

1 20p . 1
T[_X XPd,+Tx ]_T 2

1 o ,n 1
m[—x XPd,—Tx ]=m

[ d d

—oyh (1 3)x2 —— 7x2]|.

_ 2X o (t-x)x P 7x
(4.19H

Upon noting thatt-x=u"—u’, we recognize Eqs4.193

and(4.19h as No. 21 in Tables §) and \Md) respectively.
We can also write

d

ax?

d
“lGu

(4.203

PxT 9" 9" =xPx| 9 — —
XPX73,0,=xXPX% d,~t, 2X,

Jd
au’

2

d o2 J ot J
&X4 X 5X2 ( 'X) au”

—4x*

2

e (4.200

+(t-x

J 2
au’ | au’ au"
Combining with the other terms in the coefficientgfx,, in
Eq. (4.160 then results in No. 21 of Table(&).
Note that Capper’s flat space Ward idenfiB}

po
Cappe!

(4.21

involves only »,, and x,x,. Since the associated scalar
functions are justx’ to the power fixed by dimensional
analysis, Capper gets only two scalar relations, each
which is independent of:

nu(aaé)ﬂv(pag)[aﬁz (XI;X”):O

T,(D)+Ty(D)+T(D)+2T4(D)+3Ts(D)=0,
(4.223
T4(D)+Ts(D)=0. (4.22b

[See Eqs(3.10 and (3.1 for the T;(D).] The presence of
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relations which result can involve a bewildering number of
distinct products ok?, u’, u”, and InH?x?].

V. DISCUSSION

We have computed one loop graviton self-energy in a
locally de Sitter background and using the integral approxi-
mations(2.193 and(2.19h for the pseudograviton and ghost
propagators. The result consists of 21 independent tensors,
given in Table lll, times the coefficient functions of Tables
IV (a) and IV(b). Not the least of our conclusions is that the
result is almost certainly correct, within the integral approxi-
mation. It is difficult to doubt this as one witnesses the can-
cellation of one after another of the hundreds of distinct
functional and tensor terms in the Ward identity. Agreement
with Capper’s flat space result] shows that we have even
got the sign and the normalization right.

A subtle and interesting point is that the forf@2s199 and
(2.19b used for the pseudograviton and ghost propagators
are only approximations to the exact mode expansions which
one obtains o 3x .7 [8]. The integral approximations be-
come exact in the flat space limit, so it is obvious why the
flat space limit of our result should agree with Capper’s
work. The fascinating thing is that the Ward identity is also
obeyed, exactly and without any need for taking the flat
space limit. We saw this as well when checking a somewhat
more general Ward identity at tree ordéd]. The reason for
it seems to be that the integral approximations do invert the
pseudograviton and ghost kinetic operators, so they differ
from the true propagators only by real, analytic terms which
depend upon the choice of vacuum. There can only be mix-
ing with these vacuum dependent terms if the Ward identity
involves integrations which can reach the initial or final
states. But the one loop identity we checked involves no
integrations at all.

Although the one loop self-energy is worthy of study in
its own right, our interest derives from its role as an impor-
tant constituent in the two loop tadpole from which we have
lately inferred the quantum gravitational back reaction on
inflation[4]. Of course the one loop self-energy cannot com-
pletely verify the two loop tadpole, but it does establish the
correctness of certain features of the basic formalism. For
example, our gauge fixing procedure is shown to be consis-
tent, and the)® and theyww vertex operators are checked.
The result also demonstrates the validity of our tensor con-
traction routines, and the procedures whereby derivative op-
erators from the vertices are acted on propagators. Since the
same vertices and reduction procedures were used through-
out the two loop work, many features of the larger calcula-
tion are checked as well. For example, the diagrams in Fig.
1(a) and Xb) are obtained by contracting the one loop self-
energy, through two pseudograviton propagators, intajthe

O;ﬁertex operator, as illustrated in Fig. 2. No new vertices or

ropagators appear, and the same procedures were used to

perform the contractions and to act the derivatives. These
comments apply as well to the outer ghost loop of Fig) 1

and to everything but the four-point vertex operator in the
4-3 diagram of Fig. (d). One point the current work does

not check is the procedures for integrating over free interac-
tion vertices. Of course the integrals have been checked ex-
tensively in other way$4], but not by the one loop self-

t* gives us two more distinct tensors, and the four scalaenergy.
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TABLE V. Act each operator on the corresponding coefficient function in Tablés) dhd IV(b), and then sum the results to check the
Ward identity.(a) Operator coefficients of,, . (b) Operator coefficients di,t, . (c) Operator coefficients df,x, . (d) Operator coefficients
of x,t, . (e) Operator coefficients of ,x, .

No. Operator
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TABLE V. (Continued.
No. Operator
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TABLE V. (Continued.

Operator

39 119 U 4

_+__
20¢ 2u U axt

19 59 5 1 99 Uad 1,039 _x 4
s 2 tutaV w2 w R T e
0
19 9 119 1 . (o a)\ 0 A VR
2awaw aet awaw T (W )(W_W) a2 2D oE T e
0
—si+2i—i—(u"—u’ ii—14(u"—u')i—z(u"—u')zii—u—"i—zxZii
au’ " “ou” au’ au” X2 au” ax> u’ au” au’ x>
NG N
—ZTW—‘]-(U —u )X W
0
19 g 11 1 9 ¢ 11 9 L 9 9 18 9 1u 9 u?g
2o PPar 2w aWT W srart Y e WY e 2V e zvaw T
1,9 N, P
+§x WW—(U —u’)x el
—24+3(u”—u’)i+gu’i+£(u”—u’)2ii—£[u”i+6u—” u —16x2i
au’ 2" qu" 2 gu" gu” 2 au" U’ " ou” x>
. g\, d " W P
*(U —u )(W au,)X Kz ZFX W*ZX m
1,9 w9 1x2 a9 W o,
T W) S T e v T K e
g 7 , U 4 x* 9
=Xt X X +2 5
Ju u u Ju u’ ox
(d)
9 9 8 9
T ax? U ox?
9 9 2 9
au’ axZ U’ ax?
d L, P20
ZWW_‘]-(U —U)W-me
0
a g v a3
_gm_(u —U)WW'FZFW—ZX W
19 4 P 9 9 2 9 U 9
2w Cad WY sra waw TAu e
2 X% 9
R
g a\ 9 d 20 u a _,9 9 _x 9
‘S(W‘W)““ "W v v e B ae
1 9 &2
o W) A
39 11 9 U 9
T2 20 0
19 9 159 3 9 9 1 9 d 11 4 u 4 , &
w2z W s s W rae v T ad X e




2638 N. C. TSAMIS AND R. P. WOODARD

TABLE V. (Continued.

No. Operator
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TABLE V. (Continued.

No. Operator
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