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We give the explicit expression for four-dimensional rotating charged black hole solutioNs=df (or
N=8) superstring vacua, parametrized by the ADM mass, four chdtges electric and two magnetic
charges, each arising from a differentlygauge factol; and the angular momentugas well as the asymptotic
values of four toroidal moduli of a two-torus and the dilaton-axion jielthe explicit form of the thermody-
namic entropy is parametrized in a suggestive way as a sum of the product of the “left-moving” and the
“right-moving” terms, which may have an interpretation in terms of the microscopic degrees of freedom of the
correspondingdd-brane configuration. We also give an analogous parametrization of the thermodynamic en-
tropy for the recently obtained five-dimensional rotating charged black holes parametrized by the ADM mass,
three U1) charges, and two rotational parameté@s well as the asymptotic values of one toroidal modulus
and the dilatoh [S0556-282(96)02716-§

PACS numbg(s): 04.50+h,04.20.Jb,04.70.Bw,11.25.Mj

[. INTRODUCTION classical results of the BPS-saturated states allow one to ex-
trapolate[2] the two results in the regime of each other’s
String theory has reached an exciting stage, where it hagalidity and the agreement between them has been obtained.
now become possible to address the long-standing problems Incidentally, the ‘D-brane technology” allows one to
of (quantum gravity, i.e., the microscopic origin of the black calculate the microscopic entropy of certain types of black
hole entropy and possibly the issues of the black hole inforholes whose explicitgeneral classical configurations have
mation loss for certain classical black hole solutions of ef-been constructed onla posteriori In particular, five-
fective string theory, whose charges can be identified wittdimensional (generating solutions parametrized by the
the Ramond-Ramon(RR) charges of type |l string theory. Arnowitt-Deser-Misner(ADM) mass, three U(1) charges
In this case the black hole configurations can be identifiedi13], andtwo rotational parameterl4] have been obtained
with particular D-brane configurations, whose microscopic only most recently. Their BPS-saturated lifi0], as well as
degrees can be calculated by applying th®-bBrane specific BPS-saturatef®,5] and nonextremé¢11,12 solu-
technology.’® In particular, the microscopic entropy of cer- tions with special charge assignments, have also been pro-
tain five-dimensional Bogomol'ni-Prasad-Sommerfield-vided only recently. We should, however, point out that in
(BPS saturated statif2—4] and rotating/5] as well as cer- the case of special charge assignmgateng with the sub-
tain four-dimensional BPS-saturated std#¢7] black holes  sequent rescaling of the asymptotic vakieof the scalar
of N=4 (or N=8) superstring vacua has been calculated irfield(s)], the global space-time properties of the solution re-
that mannef.In addition, the microscopic entropy for certain main the same as in the case of taking all the three charges
infinitesimal deviations from the BPS-saturated limit for different.
static[3,11] and rotating[12] five-dimensional black holes The situation for classical solutions of four-dimensional
has also been provided. A reliable microscopic calculation irblack holes ofN=4 string vacua is somewhat better. Gen-
terms of theD-brane configurations is possible only in the eral nonextreme static dyonic charged black hole solutions
coupling regime where the classical black hole description i$15,16 were given and their BPS-saturated limit was under-
not valid and vice versf2]. However, the topological argu- stood[9], prior to the realization that these solutions have an
ments[barring (unlikely) phase transitiorjsfor the micro- interpretation af-brane configurations. In particular, a dy-
scopic calculation and the protection from quantum correcenic BPS-saturated solution with four different char§&g|
tions (because of the large enough supersymmefny  turns out to have a suitable parametrization in terms of the
correspondingD-brane configuration, whose microscopic
entropy has just been calculatggi7].
“On sabbatic leave from the University of Pennsylvania. Elec- As for general nonextreme solutions, the classical solu-

tr9nic address: cvetic@sns.ias.edu tions are believed to suffer from quantum corrections and the
On leave from the University of Pennsylvania. Electronic ad-microscopic calculation of the entropy need not match the

dresses: youm@pupgg.princeton.edu; youm@sns.ias.edu classical result. However, in Ref13] the classical entropy
For a review orD-brane physics, see RéfL]. of the nonextreme, five-dimensional static black hole solu-

2An earlier complementary approach to calculate the microscopitions with three charges has been written in a suggestive
entropy of four-dimensional, BPS-saturated black holes was initimanner, i.e., as a product of three terms, where each of them
ated in Ref[8] and further elaborated in Ref®,10]. may have an interpretation in terms of the square root of
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numbers ofD-brane and antd-brane configuratiofs). This  where A("™ (1=0,1,...P-1; m=1,...,10-D) are
expression coincides with the microscopic calculations of thgy.dimensional Kaluza-Klein (1) gauge fields, o=
entropy in s_pemal limits, but may ho[c13] n gene_ral. For 3IndeG,,, is the D-dimensional dilaton field, and
four-dimensional, four-charge solutions the classical entropy _° : Lo o
is also knowr[18], and when written in an analogous form it a= 2/(.D_2)' Then, the affe_ctlv_e act.lon IS _spec_lfled by the
may also have an interpretation in terms of the number of théolloyvmg masslesg boso;uc fields: théEmstem-frgmée
D-brane configurations, as announ¢#@] at the end of Ref. griaV|ton(gnﬂ1V, (tge (j(g;alltone , (36-2D) U(1) ganae fields
[13]. A&E(Aﬂ ’A,u,[n’A,u ) deflnedA as A n=B.m

The purpose of this paper is to obtain the explicit form of + B A"+ 3 ALAD! A=Al — Al A(D™ "and the fol-
the thermodynamic black hole entropy for general nonexiowing symmetric O(10—D,26—D) matrix of the scalar
treme rotating charged black hole solution®f N=4 or fields (moduli):
N=8 string vacuain five as well as four dimensions. For
that purpose we present the explicit form of the four- Gt -G7'C -G 'a'
dimensional, nonextreme rotating charged black hole solus\, | —cTg-! Gg+c'c lc+a’a C'G 1]aT+a'
tion, parametrized by the ADM mass, four differently 1 1 T
charges, and one rotational parameter. We present the ex- —aG aG "C+a I+aG "a
plicit form of the thermodynamic entropy, which is written 2
in a suggestive way as a sum of the “left-moving” and the - ~y - ~
“right-moving” terms, that may have an interpretation in where G=[Gpn], CE[%A%)AS)“LBF““]’ and aE[A,Im] are
terms of the degrees of freedom of tBebrane configura- Qeflned in terms of thg mter_nal pgrts of ten-_dlmens_lonal
tion. We shall also present an analogous expression for iHields. Then, the effectived-dimensional effective action
classical entropy of recently constructed nonextreme fivel@kes the form
dimensional solutiof14] parametrized by the ADM mass, 1 1
three U1) charges, and two rotational parameters. S = gm

The paper is organized in the following way. In Sec. Il the 167TGD\/_g R (D-2)° uedve
explicit form of the four-dimensional rotating charged solu- 1
tion and the thermodynamic entropy with a discussion of + 294" Tr(9,MLJ,ML)
different limits is given. In Sec. lll we write down the physi- 8
cal parameters and present an analogous form for the entropy 1
of the five-dimensional rotating solution. In Sec. IV we com- — e 2aegui' g g H L H L
ment on a potential interpretation of the microscopic entropy. 12

1 _ |
_ T .-a ’ ’ i - j
Il. FOUR-DIMENSIONAL ROTATING SOLUTION 7€ 99T F L (MLGE L ()

We shall present an explicit form of tHgenerating so- where g=de,,,, R, is the Ricci scalar ofg,,, and

lution for the four-charge rotating black hole solution of - i i 362D .
four-dimensionalN=4 (or N=8) superstring vacua. We FN_T_;&/[‘DA&_ ‘9”“4# ar? t?fe UJ_l) _ gauge f|€|d_ streng(;hs.
choose to parametrize the generating solution in terms of th<?1 eD-dimensional effective aptm(ﬁ) IS '”.V""”a”t un. er
massless fields of the heterotic string compactified on a sixt— €0(10-D,26-D) transformations T duality) [20,21]:
torus[or Neveu-Schwarz—Neveu-SchwaNS-NS sector of
the type IIA string compactified om®]. This solution has an
equivalent parametrizatioiibecause of the string-string dual-
ity) in terms of the NS-NS fields of type IIA compactified on
K_3><T2 or T-dualized type IIB string. Because of tedu-  \yhere) is anO(10— D,26— D)-invariant matrix, i.e., with
ality (or U duality) of the type IIA string, the solutions pa- o property

rametrized in terms of the NS-NS charges have a map onto

Ramond-Ramon@RR) charges and thus an interpretation in 0
terms ofD-brane configurations.

M—)QMQT, Alﬂ_)Q”Afuy g,uv_)g/.LV’

¢—¢, B,,—B,, (4)

lop O
QLO=L, L=| liop 0 o 1, (5

A. Effective action of heterotic string on tori 0 0 l26-p

For the sake of completeness, we briefly summarize thevherel , denotes thea X n identity matrix.
results of the effective action of toroidally compactified het-  In particular, forD=4 the field strength of the one-form
erotic string inD dimensions, following Refd.20,21]. field is self-dual and the corresponding equations of motion

The compactification of the extra (3MD) spatial coordi- and Bianchi identities are invariant under the SRRtrans-
nates on a (18 D) torus can be achieved by choosing theformations € duality) [21]:
following Abelian Kaluza-Klein ansatz for the ten-
dimensional metric s aS+b MM, g g

— ———, — , »y— .
. [0, GnAL A ADGH, eord C

GMN: ’ (1)
A "G Gmn

Fl,—(cO+d)F! +ce (ML) Fl,, (6
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where Firv= (1/2y—g) e*"P° F ipo’ and a,b,c,deR sat- the asymptotic values of the dilaton-axion field and the four

isfy ad—bc=1. Here,S=¥+ie ¢ is a complex scalar toroidal moduli of two torus, i.e., the scalar fields that vary
field with spatial direction.
At the quantum level, the parameters of both and Thus, the starting point is the four-dimensional Kerr so-

S-duality transformations become integer valued, corredution

sponding to the exact symmetry of the perturbative strin
P 9 y y P 9 r2+12co€6—-2mr ) r2+12co<6

theory and the conjectured nonperturbative symmetry of 42— _ —— —— dr?
string theory, respectively. r°+I1%cos'o r2+12—2mr
B. Explicit solution +(r2+1%co20)do%+ sin’ ¢
R P - . (r cos 6) r2+1%co6
In order to obtain the explicit form of rotating charged o o i , ,
solution, we employ the solution-generating technique, by X[(r?+1%)(r?+1%cos 6) + 2ml*rsir? 0]d ¢

performing symmetry transformations on a known solution. amirsir2e
In particular, we perform four SQ,1)C O(8,24) boostg15] - tde,
on the four-dimensional Kerr solution, specified by the ADM r*+1%cos’6
massm and the rotational parametér{angular momentum

per unit mas)sf‘ Here, 18,24 is a symmetry of the effective \yharem is its ADM mass and is the rotational parameter.
three-dimensional action for stationary solutions of toroi-the explicit sequence of the four boost transformations as
dally compactified heterotic string22]. Thf fzour boosts el as technical details of relating the fields of the effective
Se1:8e2 Sp1, @nd 8y, induce two electriaQs” ® and two  three-dimensional action and the four-dimensional fields are
magnetic charge®{""®) of U(1) gauge fieldsA()® and  detailed in Ref[15] (see also Ref[14]).

AL) @ respectively. The solution obtained in this manneris  The final expression of the nonextreme dyonic rotating
specified by the ADM masgopur U(1) charges, and one ro- black hole solution in terms of thd&nontrivial) four-
tational parametetIn addition, one can subsequently rescaledimensional bosonic fields is of the fotm

)

(1 +2msini? 8,,) (1 + 2msink? 8ey) + 12cos 6
9= (r+2msint?8,,) (r + 2msint? §,) +1°cos 9’

~2m Icos(sinhé,1CoShY,SiNhSe1COShe, — COSHY ;3 SINNG,,COShSe; SINNd,,)
912= (1 + 2msint?a,,) (1 + 2msint? ) + 12cog 6 '

_ (r+2msink?8,1)(r +2msini? 5g;) +1%cos 0
92277 % 2msini? 8,) (1 +2msintf 8gy) +17cos'6’

_ 2mlcosy(sinhsy,;€oshs,CoShSe; SiNhSe; — COSHYy,1 SINMGp,SINhSe; COSMYe)
2= (r+2msint? 8,,) (r + 2msint? 5,) +12coS ’

_ (r+2msink? ;1) (r +2msink? ,) +12cos'g

e’ AL )

3 is the axion which is equivalent to the two-form fiely,, through the duality transformatiad*** = —(€?¢1J—q)e" "9, V.

“Within toroidally compactified heterotic string the approach to obtain charged solutions from the neutral one was spelled of23h Ref.
This method was used to obtain, e.g., general rotating, electrically charged solutions in four dimg2@jiohigher dimensional general
electrically charged static solutiof24], and rotating solutionéwith one rotational paramebe25], as well as the general four-dimensional
static dyonic solution$17,1€. Related techniques were recently used to obtain a class of five-dimensional ctratgédg solutions
[11,12,17.

5A subset of T- and S-duality transformations, i.e[SO(6)x SO22)]/[SO4)x SO(20)]C O(6,22) and W1)CSL(2R) transformations,
respectively, which do not affect the four-dimensional space-time, provides 51 additional charge parameters, which allow for a general
solution specified by 28 electric and 28 magnetic charges subject to one constraint. Thus, the generating solution for the most general
charged rotating solution should be specifiedilsg charge parameters. In part, because of the technical difficulties we postpone the analysis
in this case.

The four-dimensional Newton’s constant is taken toGf§ *= 3 and we follow the convention of, e.g., RgR6], for the definitions of
the ADM mass, charges, dipole moments, and angular momenta.
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r2—2mr+1%cog6 dr?
_Alr2 _ 2 2
dsZ=A n AP+ 5 +d6

sirfé _ _ _ _
+ T{(r +2msint? 8,) (1 +2msint? 8,,) (r + 2msink? 5 ) (r +2msint? 5ey)
] aml
+12(1+cog0)r>+W-+2ml?rsirf 6} dp?— T{(cosr‘b‘plcosmpzcosmelcosmez

—sinhdy,;SiNhdp,SINhSe; SINhSeo) 1 + 2msinh<‘5plsinhﬁpzsinhéelsinhéiez}sin2 odtde |, (8)
where
A= (r+2msint? 8,y (r +2msint? §,) (r + 2mMsink? 5y ) (r + 2msint? 8e) + (21%r2+ W) cos'6),

W=2mI%(sintf §p; + SiNtF 85+ SINKF Sy + SINKF S¢) 1 +4mM?1%(2C0SKS 1 COShS,,COShS COSHSe;
X SiNh3,,1SINNS)2SINNSe; SINKSep — 2SINHF 851 SINKE 3,5, SINKE Sgg SINKF S — SINKP 5 SINKF Sy SINFE S
— SINKP 81 SINIP Sy SINKE Sy — SINKE 8,51 SINKE 8,,5SINE Sy — SINKE 8,51 SINME 558N 8y ) + 1 “cOF 6. (9)

The axion fielda also varies with spatial coordinates, but its expression turns out to be cumbersome.

The ADM mass, 1) chargeQ$M (2 P{1() "and the angular momentudy can be expressed in termsrof | and four
boosts in the following way:

M = 4m(cosH 8¢; + cost 8g, + costt 5,1 + cosi 5,,) — 8m,
QLY=4mcoshs;sinhds;,  Qb2)=4mcoshs,,sinhs,,,

P{Y=4mcoshs,;sinhd,;,  P{? =4mcosh,,sinhd,;,
J=8Im(coshd; coshde,coshdy,;coshs,, — sinhde; SiINhSe,sinhdy SiNhdy,) . (10

The electric dipole moment®{"? and the magnetic dipole momenis'? of the above solution can also be obtained by
considering the asymptotic behavior of the solutions near spatial infinity:

DM = — 4Im(SiNhS; SiNhGe,COSHS,1 SINNS,, — COSITe, COShY,SINNG,y; COSIY,),
D{? = — 4Im(SiNNS; SiNhSe,SiNNS, 1 COShS,, — COSISe1 COSheaCOSNS,; SINNG ),
w5 =4Im(sinhd,;SinhS,,,CoShSe; SIS, — COShS,,1 COShS,,,SiNhd,; COSIYy),

p$? = 4Im(Sinh,,1SiNhS,,,SiNNe; COShY e, — COSTY,, 1 COSHY,,COSHB, SINMS,,). (12)

The solution corresponds effectively to the six-dimensionarescaling transformations changes the four-dimensional
target-space background with the four toroidal moduli ofspace-time, only the physical interpretation of the charge pa-
two-torus (T?) and the dilaton-axion field varying with the rameters in Eq(10) changes. We will primarily stick to the

spatial directions. _ . representation with the canonical choices of the asymptotic
In the above expressions the asymptotic values of fouyg|yes of the scalar fields.

moduli of T? are taken to have canonical values

O0110=0220.=1, B12,=012,.=0, but can be rescalddlong

with the physical charggsy an arbitrary @2,2) constant

matrix [cf., Eq. (4)]. Also, the canonical choice of the as- ’On the other hand, a judicial choice of different asymptotic val-
ymptotic value of the dilaton-axion fieldp.,=V¥ ., =0, can  ues of scalar fields is usef(dee, e.g., Ref$11,12) for calculating
be rescaledalong with the physical chargeby an arbitrary  reliably the microscopic entropy for the infinitesimal deviations
SL(2,R) constant matri{cf. Eg. (6)]. Note, none of these from the BPS-saturated limits.
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The solution(8) has the inner _ and the outer . hori- 4 4
m?| [] coshsi+[] sinh5i)
=1 =1

zons at S=167
4 4
L —me T2, 12 +m\/m2—lz( i];[l coshSi—iI:[l smh&i”
4 4

— 2 .
provided m=|l|. In this case the solution has the global =16m m <|H1 CoshSi+i]:[l Slnh5i)
space-time of the Kerr-Newman black hole, i.e., the rotating . . , "
charged black hole of the Maxwell-Einstein gravity, with the (11 b5 T sinhs. | — 32 13
ring singularity at r=min{Q",Q%®, P P and Hymi Ll cosoi— 11 sinho , (13

0= ml2. When 0e1= 2= 0p1= 62, ie.,
QM=Q@P=pPP=p, all the toroidal moduli and the wherem,| are again the ADM mass and the angular momen-
axion-dilaton field are constant, and thus the solutiothe ~ tum per unit mass of the Kerr solutioV) and 6, 3 4
Kerr-Newman solutiof. = de102p1p2 are the four boosts specifying the four charges
The extreme solution, i.e., the case when the inner and thel0). In the second line the entropy is cast in terms of the
outer horizons coincide, is reached when-|I|*. In this ~angular momentund of the charged solution.
case, the global space-time is that of extreme Kerr-Newman Even though one expects the thermodynamic entropy to
solution. be cast in a form which is a square root of an expression
The BPS-saturated limit, i.e., when the configuration satu{which depends on charges and angular momeptitnean
rates the Bogomol'ni bound for the ADM mass, is reachedde written in a form(13) which is asumof two terms, i.e.,
whenm—0, while the chargeQ$"® andP{"? and the the sum of the “left-moving” and the “right-moving” con-
angular momenturd are kept finite. For the charges to be tributions. Each term isymmetridn terms of the four boost
constant, the bOOStS 81 erp1po—, While keeping parametergand, thus, in terms of the four phargeé)n the
me2Jetezpipz constant. In order fod to remainnonzero the other hand, Eq(13) bgars an asymmetry_wnh respect to the
rotational parameter has to remaimonzero Thus, the BPS ~&ngular momentum, i.e., only thight-movingterm contains
saturated charged solution with the nonzero angular momer?® angular momentum, which acts to reduce the right-
tum J has a naked singularifysince the constraint=|l| is MoVving contribution to the entropy. _
not satisfied. Thus, the existence of the naked singularities in When the angular momentum is zerd<(0, i.e.,1=0),
the case of rotating BPS-saturated solution persists even e entropy is of the forn18]

the case of four nonzero charg8s. 4
Thus, the only regular BPS-saturated solution is in this _ 2
' . 2 S=32mm || coshy;, 14
case the static solutiofwith zero angular momentud=0, 4 i=1 ' 14

i.e.,1—0). Its global space-time is that of extreme Reissner-

Nordstran black holes. which is a generalization of the static five-dimensional result
with three charge§l3] to the static four-dimensional result
with four charges.

C. Entropy of the four-dimensional rotating solution In the (regulay BPS-saturated limitrp—0, | —0, while

The thermodynami¢Bekenstein-Hawkingentropy is of me?ete2pip2 are kept constahtas well as the extreme limit
the form S=(1/4Gy) A, where A is the surface area, M—IIl", the “right-moving” term in Eq.(13) is zero; how-

_ —— ; - ever, in terms of physical parameteicharges and angular
A=Jdod¢ g“wg""”":”’ determined at the outer horizon momentun), the entropy is different in each case. In the

r, =m+m?—12. In the case of E¢(8) we were able to cast BPS-saturated limit
the thermodynamic entropy in the form

4
S=32mm?[ ] coshs;=2a[PPPQIMQR Y2, (15
8The case withs,, = 6,,=0 is a generating solution of a general =1
electrically charged rotating solution of RéR3]. The case with

Se1= 31, Dea=yp. 16, Q=P QP=PP  was recently while, in the extreme limit,

constructed in Ref.27]. 2 4
%The conformal two-dimensionar model, whose target space S=167m? H cosh$~+1_[ sinhs:
corresponds to dyonic rotating BPS-saturated solutions, also yields i=1 ] '

solutions with naked singularitig28].

OThis fact was also known for the case of four-dimensional, elec- = 277[32+ P(11>P(12)Q(21>Q(22)]1/2_ (16)
trically charged solution$25], whose static BPS-saturated subset
has the null horizon. On the other hand, in five dimensions, thé
charged solution with three nonzero charges has a regular BPS-t!in Ref.[18], the expression for the entropy has a typographical
saturated limit with the nonzero angular moment[BL0,17. In error, i.e., the square root is missing. Also, instead of in terms of
six dimensions, the electrically charged, BPS-saturated, rotating sdsoosts, the expression is given in terms of physical charges and the
lution is also regulaf25]. nonextremality parametg®=2m.
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Note that in the case when the right-moving contribution iSADM mass, three charges, and two rotational parameters.
absent, both expressiofss) and(16) are independent of the These solutions were obtaindd4] by performing three
asymptotic values of the moduli and the dilaton coupling andSO(1,1)C O(8,24) boosts, on the five-dimensionéteutra)
have a straightforward generalization to the manife§ly  rotating solution parametrized by the massand two rotat-
andT-duality invariant form{9]. Namely, when expressed in ing parameters; andl,. The three boosts,; ,ds, and &,
terms of the conserved guantized electrlc and magnetlgpecncy respectlvely the two electric char@‘f” Q(Z) of
heterofic string the surface area can be written as two-form A(z)l gauge f|elds assomated with the f|rst compac-
S= 2 P+ {(TLNETLA) — (aTL B2 1V/2. 1 tified d|rect|en and the ch_arge ie., the.electnc charge ef
ml {(@La(FLA) = (a'LA)7] (17 the vector field, whose field strength is dual to the field
strengthH ,,, of the five-dimensional two-form fiel&,,,
For the sake of completeness, we quote the régdltfor
a space-time metric of the solution

Ill. ENTROPY OF THE FIVE-DIMENSIONAL
ROTATING SOLUTION

In this section we write explicitly the entropy for five-
dimensional rotating charged black holes specified by the

|
(r2+Ifco§0+I%sinze)(r2+lico§0+I%sinzf)—Zm)dt2+ r?
N (r2+1D(r2+15) -2

dSé 1/3

4mc05263|r126

5dr?+d6?
mr

[141{(r?+12cog 6+15sir?6) — 2m(Sint? 8o; SINPE Sgp + SINKE 8eSINIF 81 + SIN 8eSiNtP 5) }

+2m{(12+13) cosh,; coshS,CoshSiNhS,; SINhS,SiNhS, — 21 11 ,SINKE S, SINKP SepSiNtE 8} 1d bd o

4m$¥0

[(r2+15cog 0+ 13sir? ) (1,c0shS,; coShS,c0Shs,— | ,SiNhS,; SiNhde,sinhd,)

_ _ _ amcosd ., -
+ 2ml,sinhdy; sinhdg,sinhd,Jd pdt— T[(r +1cog0+15sir? )

X (1,€08h51C0S,CoS.— | 1SiNhSg; SINhde,SINKS,) + 2mi; Sinhdg; SiNhde,Sinhd | dyd t

5|n20 2 H 2 2 H 2 2ai 2 H 2 2ai
+T[(r +2msink? 8.+ 19) (r2+ 2msint? 84, + 1 7c0L 6+ 15sir? ) (r 2+ 2msint? 8, + 1 5c0< 0+ 1 5sir? 6)
+2msir? 6{(13cost 6, — 1 3sint? 6,,) (r2+12c0S 6+ 13 sin? 6) + 4ml; | ,c0ShS,; COShSe,COShSINhS,; SiNhS,,Sinhs,

— 2msintf ¢, SiNt? 8¢y (12c0SH 8, + 15sintt 8,) — 2mI3sint? 5,(SiNKP 8o, + sint? 8¢p) } ]d 2+ %ie[(rhr 2msint? 8,

+12)(r2+ 2msint? 8o; + 1 5c0L 0+ 1 58irP 0) (r 2+ 2msint? 5, + 12c0S 6+ 15sir? 0) + 2mco 0{ (1 5costt 8, — I 3sint? 5,.)

X(r2+15cog 0+ 13sir? 9) + 4ml,| ,coshS,, COSh,,COShSINNS ., SINhS,SINhS, — 2MSint? 8, SiNt S, (1 25iNHE 5,

+12c0sH 8,) — 2mI2sint? 4(Sint? 8gq + sintP 8,) Y d 972 |, (18)
where

A= (r2+ 2msint? g, + 12c020+ 125ir20) (1 2+ 2msint? 5o+ 12c02 0+ 12sirP0) (r 2+ 2msint? 8, + 1 2coL 6+ 1 2sir?6).
(19

The ADM massM, U(1) chargesQ’s and the angular moment# s are given in terms of the three boost parameters
Oe1e20 and the three parametems|,l, of the neutral rotating solution s

12The five-dimensional Newton’s constant is taken toGfg °= /4.
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M = 2m(cosHt 8, + costt o, + COSIF 5,) — 3m,
Q'Y =2mcoshs,;sinhss;, Q2 =2mcoshs,sinhds,, Q= 2mcoshs,sinhd,,
J 4 =4m(l1C0Sh9¢1COShH,COShS, — | 55NN SINhSe,SiNNS, ),
J,=4m(l,c08h5¢; coshSe,cosh, —11SINhdg, SiNhGe,SINNS,) - (20
Note the solution is effectively the six-dimensional solution with the toroidal modyjuand the dilaton fieldp varying with

the spatial coordinatd4d.7].
The solution has the inner_ and the outer . horizons at

N| -

r2=m- 12— 2132 2\(13=13)%+ 4m(m—12-13), (21)

provided an=(|14|+|1,])2.
We write  explicity the classical entropy S=(1/4Gy\)A, where A is the surface area
A=/[d 0d¢>d¢\/gw(g¢¢gw— gi¢)|r:r+, determined at the outer horizon . The entropy can be written in the form

3 3
S=4’n’{ m{2m—(|1—I2)2}1’2< IT coshs, + ] sinhs,
=1 =1

3 3
+m{2m—(|1+lz)2}1’2( I1 coshks,— 1 sinh5i>
i=1 i=1

3 3 2 1 1/2
1T sinhs | — = 2
il:[l coshs; .Hl smhﬁ,) T6Jst ) } }

(22

=4

3 3 2 4 12
2m3| [] coshs,+[] sinhs, - —=(Js=3)?% +i2md
=1 =1 16

where 61 » 7= Se1 600 @ndm, |, , are the ADM mass and the case, the right-moving contribution disappears. Interestingly,
two rotational parameters of the five-dimensional rotatingin the extreme limifthe inner and outer horizor{21) coin-
(neutra) solution, respectively. In the second line, the en-ciding], which corresponds to the choicen2- (I, +1,)?, the
tropy is cast in terms of boostspecifying the three charges  right-moving contributions again disappear; however, the ac-
and the two angular momeng, , of the charged solution. tual value of the entropy in terms of the physical parameters
Again, the classical entropy can be cH&t. (22)] as asum IS different from the BPS-saturated limit. _
of two terms, i.e., the sum of the “left-moving” and the ~ FOr zero angular momentum, the entropy formula again

“right-moving” contributions. rearranges itself as a single tefas]:
The form of the entropy, as a sum of the two terms, has
been derived in the case of infinitesimal deviations from the 3
BPS-saturated limit in Ref12], and its microscopic degrees S=8\/§7Tm3/2iH1 coshs; (23

of freedom were identified with the left- and the right-

moving gontrlbutllons_of th@-brgne world-volume Hllbert being fully symmetric under permutations of charges. In this

space with), g=3(J4+J,) identified as the lefttor right) 556 the microscopic entropy can be calculated in certain

moving charges of the @), g (N=4) superconformal |inits but it was pointed ouf13] that its validity as a mi-

(world-sheex algebra. croscopic entropy may be true in general and that each
Interestingly, even for a general nonextreme solution, thg“gressed”) boost & [e %] may be interpreted as a square

classical entropy(22) retains the form as a sum of twWo oot of the number of the correspondir-brane (anti-

pieces, one containing the “left-moving” and another onep_prang configurations.

the “right—mpving” contributions, thus suggegting that even A more general expression for the entrai@®) has a sug-

for a generic nonextreme case the expression may have gestive form indicating that the relevant charge degrees of

microscopic interpretation in terms of degrees arising fromfreedom should be identified with the left- and right-moving

two (left-moving and right-movingnoninteractingD-brane  (p-prane world-volumgsectors, which appear in combina-
world-volume sectors. Note also, that each terrsyismetric tionsI13_,coshs +IT2_;sinhs, respectively.

under the permutation of the three boost parameters and thus =

under the permutation of the three charge assignments.
The (regula) BPS-saturated limit, i.e., the limit where the

ADM mass saturates the Bogomol'ni bound, is reacHet]

by taking m—0, I;,-0, and g ere—*, While Q;, We obtained the explicit forms of the classical entropy for
= me’ere2, Q= 3 me’, andl, ,/m*Y2 are kept finite. In this the four- and five-dimensional rotating charged black hole

IV. COMMENTS ON THE D-BRANE INTERPRETATION
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solutions with four charges and one rotational parameter, antherefore, the states are identified under thi&) supercon-
three charges and two rotational parameters, respectivelformal currents only.
These solutions can be viewed as “generating” solutions for  Since the structure of the classical entrdfi@) [or (22)]
black holes oN=4 (or N=8) string vacua. suggests a full symmetry among the folor the threg
Even though we chose to parametrize the classical solleharges, it may be preferable to identify ttiatersecting
tions in terms of fields of the toroidally compactified het- D-brane configuration of foufor threq different types of
erotic sting(or equivalently, in terms of the NS-NS sector D branes[29] whose world-volume excitations would ac-
fields of the toroidally compactified type IIA stingthese ~count for the different charge degrees of freedom in a sym-
solutions map, because of string-string dualiiyU duality), metric way.” In particular, the four—d|men.3|onal static gen-
onto configurations with RR charges of type I1A string com- €rating solution oN=4 (or N=8) superstring vacua can be
pactified onK3X T2 (or RR charges of type IIA string com- |nter.prete({29] (in terms of t.he type(IlI)A stringas an inter-
pactified onT®). Thus, they have an interpretation in terms ofse(g)tmg B)—brane c?zr)]flguratlon 0fQz" zero branes, and
the (intersecting D-brane configuration. Q22 'Zpl , :;md El four branes wrapping around3,
Interestingly, even though nonextreme classical solution$tX T, andS;xT [oer wrapping arount(i45627), (6789, and
may receive quantum corrections, for both four-dimensionaf4589 directions ofT"], respectively. Here5; , are the two
and the five-dimensional solutions, the classical entropie§ycles ofK3. Calculations of the microscopic entropy for

(13) and (22) are given as sums of the “left-moving” and such_ intersecting -brane configurations may lead to a sym-
the “right-moving” contributions, which is suggestive of a metric treatment of the charge degrees of freedom, as well as

microscopic interpretation in terms of two contributions aris-{C & Possible understanding of the sepasateninteracting

ing from the (noninteracting left-moving and right-moving contribution of the left-moving and right-movingworld-
sectors of the(intersecting D-brane world-volume Hilbert volume degrees of freedom.
spaces.

There is an interesting parallel between the structures of
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