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Entropy of nonextreme charged rotating black holes in string theory
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We give the explicit expression for four-dimensional rotating charged black hole solutions ofN54 ~or
N58) superstring vacua, parametrized by the ADM mass, four charges@two electric and two magnetic
charges, each arising from a different U~1! gauge factor#, and the angular momentum~as well as the asymptotic
values of four toroidal moduli of a two-torus and the dilaton-axion field!. The explicit form of the thermody-
namic entropy is parametrized in a suggestive way as a sum of the product of the ‘‘left-moving’’ and th
‘‘right-moving’’ terms, which may have an interpretation in terms of the microscopic degrees of freedom of th
correspondingD-brane configuration. We also give an analogous parametrization of the thermodynamic e
tropy for the recently obtained five-dimensional rotating charged black holes parametrized by the ADM mas
three U~1! charges, and two rotational parameters~as well as the asymptotic values of one toroidal modulus
and the dilaton!. @S0556-2821~96!02716-6#

PACS number~s!: 04.50.1h,04.20.Jb,04.70.Bw,11.25.Mj
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I. INTRODUCTION

String theory has reached an exciting stage, where it
now become possible to address the long-standing proble
of ~quantum! gravity, i.e., the microscopic origin of the black
hole entropy and possibly the issues of the black hole inf
mation loss for certain classical black hole solutions of e
fective string theory, whose charges can be identified w
the Ramond-Ramond~RR! charges of type II string theory.
In this case the black hole configurations can be identifi
with particularD-brane configurations, whose microscop
degrees can be calculated by applying the ‘‘D-brane
technology.’’1 In particular, the microscopic entropy of cer
tain five-dimensional Bogomol’ni-Prasad-Sommerfield
~BPS! saturated static@2–4# and rotating@5# as well as cer-
tain four-dimensional BPS-saturated static@6,7# black holes
of N54 ~or N58) superstring vacua has been calculated
that manner.2 In addition, the microscopic entropy for certai
infinitesimal deviations from the BPS-saturated limit fo
static @3,11# and rotating@12# five-dimensional black holes
has also been provided. A reliable microscopic calculation
terms of theD-brane configurations is possible only in th
coupling regime where the classical black hole description
not valid and vice versa@2#. However, the topological argu-
ments @barring ~unlikely! phase transitions# for the micro-
scopic calculation and the protection from quantum corre
tions ~because of the large enough supersymmetry! for

*On sabbatic leave from the University of Pennsylvania. Ele
tronic address: cvetic@sns.ias.edu
†
On leave from the University of Pennsylvania. Electronic a

dresses: youm@pupgg.princeton.edu; youm@sns.ias.edu
1For a review onD-brane physics, see Ref.@1#.
2An earlier complementary approach to calculate the microsco

entropy of four-dimensional, BPS-saturated black holes was in
ated in Ref.@8# and further elaborated in Refs.@9,10#.
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classical results of the BPS-saturated states allow one to ex
trapolate@2# the two results in the regime of each other’s
validity and the agreement between them has been obtaine

Incidentally, the ‘‘D-brane technology’’ allows one to
calculate the microscopic entropy of certain types of black
holes whose explicit~general! classical configurations have
been constructed onlya posteriori. In particular, five-
dimensional ~generating! solutions parametrized by the
Arnowitt-Deser-Misner~ADM ! mass, three U~1! charges
@13#, and two rotational parameters@14# have been obtained
only most recently. Their BPS-saturated limit@10#, as well as
specific BPS-saturated@2,5# and nonextreme@11,12# solu-
tions with special charge assignments, have also been pro
vided only recently. We should, however, point out that in
the case of special charge assignments@along with the sub-
sequent rescaling of the asymptotic value~s! of the scalar
field~s!#, the global space-time properties of the solution re-
main the same as in the case of taking all the three charge
different.

The situation for classical solutions of four-dimensional
black holes ofN54 string vacua is somewhat better. Gen-
eral nonextreme static dyonic charged black hole solutions
@15,16# were given and their BPS-saturated limit was under-
stood@9#, prior to the realization that these solutions have an
interpretation asD-brane configurations. In particular, a dy-
onic BPS-saturated solution with four different charges@17#
turns out to have a suitable parametrization in terms of the
correspondingD-brane configuration, whose microscopic
entropy has just been calculated@6,7#.

As for general nonextreme solutions, the classical solu-
tions are believed to suffer from quantum corrections and the
microscopic calculation of the entropy need not match the
classical result. However, in Ref.@13# the classical entropy
of the nonextreme, five-dimensional static black hole solu-
tions with three charges has been written in a suggestive
manner, i.e., as a product of three terms, where each of them
may have an interpretation in terms of the square root of
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54 2613ENTROPY OF NONEXTREME CHARGED ROTATING . . .
numbers ofD-brane and anti-D-brane configuration~s!. This
expression coincides with the microscopic calculations of t
entropy in special limits, but may hold@13# in general. For
four-dimensional, four-charge solutions the classical entro
is also known@18#, and when written in an analogous form i
may also have an interpretation in terms of the number of t
D-brane configurations, as announced@19# at the end of Ref.
@13#.

The purpose of this paper is to obtain the explicit form o
the thermodynamic black hole entropy for general none
treme rotating charged black hole solutions~of N54 or
N58 string vacua! in five as well as four dimensions. For
that purpose we present the explicit form of the fou
dimensional, nonextreme rotating charged black hole so
tion, parametrized by the ADM mass, four different U~1!
charges, and one rotational parameter. We present the
plicit form of the thermodynamic entropy, which is written
in a suggestive way as a sum of the ‘‘left-moving’’ and th
‘‘right-moving’’ terms, that may have an interpretation in
terms of the degrees of freedom of theD-brane configura-
tion. We shall also present an analogous expression for
classical entropy of recently constructed nonextreme fiv
dimensional solution@14# parametrized by the ADM mass,
three U~1! charges, and two rotational parameters.

The paper is organized in the following way. In Sec. II th
explicit form of the four-dimensional rotating charged solu
tion and the thermodynamic entropy with a discussion
different limits is given. In Sec. III we write down the physi-
cal parameters and present an analogous form for the entr
of the five-dimensional rotating solution. In Sec. IV we com
ment on a potential interpretation of the microscopic entrop

II. FOUR-DIMENSIONAL ROTATING SOLUTION

We shall present an explicit form of the~generating! so-
lution for the four-charge rotating black hole solution o
four-dimensionalN54 ~or N58) superstring vacua. We
choose to parametrize the generating solution in terms of
massless fields of the heterotic string compactified on a s
torus@or Neveu-Schwarz–Neveu-Schwarz~NS-NS! sector of
the type IIA string compactified onT6#. This solution has an
equivalent parametrization~because of the string-string dual-
ity! in terms of the NS-NS fields of type IIA compactified on
K33T2 or T-dualized type IIB string. Because of theT du-
ality ~or U duality! of the type IIA string, the solutions pa-
rametrized in terms of the NS-NS charges have a map o
Ramond-Ramond~RR! charges and thus an interpretation i
terms ofD-brane configurations.

A. Effective action of heterotic string on tori

For the sake of completeness, we briefly summarize t
results of the effective action of toroidally compactified he
erotic string inD dimensions, following Refs.@20,21#.

The compactification of the extra (102D) spatial coordi-
nates on a (102D) torus can be achieved by choosing th
following Abelian Kaluza-Klein ansatz for the ten-
dimensional metric

ĜMN5S eawgmn1GmnAm
~1!mAn

~1!n Am
~1!mGmn

An
~1!nGmn Gmn

D , ~1!
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where Am
(1)m (m50,1, . . . ,D21; m51, . . . ,102D) are

D-dimensional Kaluza-Klein U~1! gauge fields, w[F̂

2 1
2 lndetGmn is the D-dimensional dilaton field, and

a[2/(D22). Then, the affective action is specified by the
following massless bosonic fields: the~Einstein-frame!
graviton gmn , the dilatonew, (3622D) U~1! gauge fields
Am
i [(Am

(1)m ,Amm
(2) ,Am

(3)I) defined as Amm
(2)[B̂mm

1B̂mnAm
(1)n1 1

2 Âm
I Am

(3)I , Am
(3)I[Âm

I 2Âm
I Am

(1)m , and the fol-
lowing symmetricO(102D,262D) matrix of the scalar
fields ~moduli!:

M5S G21 2G21C 2G21aT

2CTG21 G1CTG21C1aTa CTG21aT1aT

2aG21 aG21C1a I1aG21aT
D ,
~2!

whereG[@Ĝmn#, C[@ 1
2 Âm

(I )Ân
(I )1B̂mn#, and a[@Âm

I # are
defined in terms of the internal parts of ten-dimensional
fields. Then, the effectiveD-dimensional effective action
takes the form

L5
1

16pGD
A2gFRg2

1

~D22!
gmn]mw]nw

1
1

8
gmnTr~]mML]nML !

2
1

12
e22awgmm8gnn8grr8HmnrHm8n8r8

2
1

4
e2awgmm8gnn8F mn

i ~LML ! i jF m8n8
j G , ~3!

where g[detgmn , Rg is the Ricci scalar ofgmn , and
Fmn
i 5]mAn

i 2]nAm
i are the U~1! 3622D gauge field strengths.

TheD-dimensional effective action~3! is invariant under
theO(102D,262D) transformations (T duality! @20,21#:

M→VMVT, Am
i →V i jAm

j , gmn→gmn ,

w→w, Bmn→Bmn , ~4!

whereV is anO(102D,262D)-invariant matrix, i.e., with
the property

VTLV5L, L5S 0 I 102D 0

I 102D 0 0

0 0 I 262D

D , ~5!

whereI n denotes then3n identity matrix.
In particular, forD54 the field strength of the one-form

field is self-dual and the corresponding equations of motion
and Bianchi identities are invariant under the SL(2,R) trans-
formations (S duality! @21#:

S→
aS1b

cS1d
, M→M , gmn→gmn ,

F mn
i →~cC1d!F mn

i 1ce22w~ML ! i j F̃ mn
j , ~6!
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where F̃ imn5 (1/2A2g) «mnrsF rs
i and a,b,c,dPR sat-

isfy ad2bc51. Here, S[C1 ie2w is a complex scalar
field.3

At the quantum level, the parameters of bothT- and
S-duality transformations become integer valued, cor
sponding to the exact symmetry of the perturbative str
theory and the conjectured nonperturbative symmetry
string theory, respectively.

B. Explicit solution

In order to obtain the explicit form of rotating charge
solution, we employ the solution-generating technique,
performing symmetry transformations on a known solutio
In particular, we perform four SO~1,1!, O~8,24! boosts@15#
on the four-dimensional Kerr solution, specified by the AD
massm and the rotational parameterl ~angular momentum
per unit mass!.4 Here, O~8,24! is a symmetry of the effective
three-dimensional action for stationary solutions of tor
dally compactified heterotic string@22#. The four boosts
de1 ,de2, dp1, and dp2 induce two electricQ2

(1),(2) and two
magnetic chargesP1

(1),(2) of U~1! gauge fieldsAm2
(1),(2) and

Am1
(1),(2) , respectively. The solution obtained in this manner

specified by the ADM mass,four U~1! charges, and one ro
tational parameter.5 In addition, one can subsequently resca
re-
ing
of

d
by
n.

M
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the asymptotic values of the dilaton-axion field and the fo
toroidal moduli of two torus, i.e., the scalar fields that var
with spatial direction.

Thus, the starting point is the four-dimensional Kerr so
lution

ds252
r 21 l 2cos2u22mr

r 21 l 2cos2u
dt21

r 21 l 2cos2u

r 21 l 222mr
dr2

1~r 21 l 2cos2u!du21
sin2u

r 21 l 2cos2u

3@~r 21 l 2!~r 21 l 2cos2u!12ml2rsin2u#df2

2
4mlrsin2u

r 21 l 2cos2u
dtdf, ~7!

wherem is its ADM mass andl is the rotational parameter.
The explicit sequence of the four boost transformations
well as technical details of relating the fields of the effectiv
three-dimensional action and the four-dimensional fields a
detailed in Ref.@15# ~see also Ref.@14#!.

The final expression of the nonextreme dyonic rotatin
black hole solution in terms of the~nontrivial! four-
dimensional bosonic fields is of the form6
.

eneral
general
ysis
g115
~r12msinh2dp2!~r12msinh2de2!1 l 2cos2u

~r12msinh2dp1!~r12msinh2de2!1 l 2cos2u
,

g125
2mlcosu~sinhdp1coshdp2sinhdqe1coshde22coshdp1sinhdp2coshde1sinhde2!

~r12msinh2dp1!~r12msinh2de2!1 l 2cos2u
,

g225
~r12msinh2dp1!~r12msinh2de1!1 l 2cos2u

~r12msinh2dp1!~r12msinh2de2!1 l 2cos2u
,

B1252
2mlcosu~sinhdp1coshdp2coshde1sinhde22coshdp1sinhdp2sinhde1coshde2!

~r12msinh2dp1!~r12msinh2de2!1 l 2cos2u
,

ew5
~r12msinh2dp1!~r12msinh2dp2!1 l 2cos2u

D1/2 ,

3C is the axion which is equivalent to the two-form fieldBmn through the duality transformationHmnr52(e2w/A2g)«mnrs]sC.
4Within toroidally compactified heterotic string the approach to obtain charged solutions from the neutral one was spelled out in Ref@23#.

This method was used to obtain, e.g., general rotating, electrically charged solutions in four dimensions@23#, higher dimensional general
electrically charged static solutions@24#, and rotating solutions~with one rotational parameter! @25#, as well as the general four-dimensional
static dyonic solutions@17,16#. Related techniques were recently used to obtain a class of five-dimensional charged~rotating! solutions
@11,12,17#.
5A subset ofT- and S-duality transformations, i.e.,@SO~6!3SO~22!#/@SO~4!3SO~20!#,O(6,22) and U~1!,SL(2,R) transformations,

respectively, which do not affect the four-dimensional space-time, provides 51 additional charge parameters, which allow for a g
solution specified by 28 electric and 28 magnetic charges subject to one constraint. Thus, the generating solution for the most
charged rotating solution should be specified byfivecharge parameters. In part, because of the technical difficulties we postpone the anal
in this case.
6The four-dimensional Newton’s constant is taken to beGN

D545
1
8 and we follow the convention of, e.g., Ref.@26#, for the definitions of

the ADM mass, charges, dipole moments, and angular momenta.
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dsE
25D1/2F2

r 222mr1 l 2cos2u

D
dt21

dr2

r 222mr1 l 2
1du2

1
sin2u

D
$~r12msinh2dp1!~r12msinh2dp2!~r12msinh2de1!~r12msinh2de2!

1 l 2~11cos2u!r 21W12ml2rsin2u%df22
4ml

D
$~coshdp1coshdp2coshde1coshde2

2sinhdp1sinhdp2sinhde1sinhde2!r12msinhdp1sinhdp2sinhde1sinhde2%sin
2udtdf G , ~8!

where

D[~r12msinh2dp1!~r12msinh2dp2!~r12msinh2de1!~r12msinh2de2!1~2l 2r 21W!cos2u,

W[2ml2~sinh2dp11sinh2dp21sinh2de11sinh2de2!r14m2l 2~2coshdp1coshdp2coshde1coshde2

3sinhdp1sinhdp2sinhde1sinhde222sinh2dp1sinh
2dp2sinh

2de1sinh
2de22sinh2dp2sinh

2de1sinh
2de2

2sinh2dp1sinh
2de1sinh

2de22sinh2dp1sinh
2dp2sinh

2de22sinh2dp1sinh
2dp2sinh

2de1!1 l 4cos2u. ~9!

The axion fielda also varies with spatial coordinates, but its expression turns out to be cumbersome.
The ADM mass, U~1! chargesQ2

(1),(2),P1
(1),(2) , and the angular momentumJ, can be expressed in terms ofm, l and four

boosts in the following way:

M54m~cosh2de11cosh2de21cosh2dp11cosh2dp2!28m,

Q2
~1!54mcoshde1sinhde1 , Q2

~2!54mcoshde2sinhde2 ,

P1
~1!54mcoshdp1sinhdp1 , P1

~2!54mcoshdp2sinhdp2 ,

J58lm~coshde1coshde2coshdp1coshdp22sinhde1sinhde2sinhdp1sinhdp2!. ~10!

The electric dipole momentsD1
(1,2) and the magnetic dipole momentsm2

(1,2) of the above solution can also be obtained b
considering the asymptotic behavior of the solutions near spatial infinity:

D1
~1!524lm~sinhde1sinhde2coshdp1sinhdp22coshde1coshde2sinhdp1coshdp2!,

D1
~2!524lm~sinhde1sinhde2sinhdp1coshdp22coshde1coshde2coshdp1sinhdp2!,

m2
~1!54lm~sinhdp1sinhdp2coshde1sinhde22coshdp1coshdp2sinhde1coshde2!,

m2
~2!54lm~sinhdp1sinhdp2sinhde1coshde22coshdp1coshdp2coshde1sinhde2!. ~11!
e

e

s

al
a-

tic

l-
The solution corresponds effectively to the six-dimensio
target-space background with the four toroidal moduli
two-torus (T2) and the dilaton-axion field varying with th
spatial directions.

In the above expressions the asymptotic values of f
moduli of T2 are taken to have canonical valu
g11`5g22`51, B12`5g12`50, but can be rescaled~along
with the physical charges! by an arbitrary O~2,2! constant
matrix @cf., Eq. ~4!#. Also, the canonical choice of the a
ymptotic value of the dilaton-axion field,w`5C`50, can
be rescaled~along with the physical charges! by an arbitrary
SL~2,R! constant matrix@cf. Eq. ~6!#. Note, none of these
nal
of

our
s

-

rescaling transformations changes the four-dimension
space-time, only the physical interpretation of the charge p
rameters in Eq.~10! changes. We will primarily stick to the
representation with the canonical choices of the asympto
values of the scalar fields.7

7On the other hand, a judicial choice of different asymptotic va
ues of scalar fields is useful~see, e.g., Refs.@11,12#! for calculating
reliably the microscopic entropy for the infinitesimal deviations
from the BPS-saturated limits.
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The solution~8! has the innerr2 and the outerr1 hori-
zons at

r65m6Am22 l 2, ~12!

providedm>u l u. In this case the solution has the glob
space-time of the Kerr-Newman black hole, i.e., the rota
charged black hole of the Maxwell-Einstein gravity, with t
ring singularity at r5min$Q2

(1) ,Q2
(2) ,P1

(1) ,P1
(2)% and

u5 p/2. When de15de25dp15dp2, i.e.,
Q2
(1)5Q2

(2)5P1
(1)5P1

(2) , all the toroidal moduli and th
axion-dilaton field are constant, and thus the solutionis the
Kerr-Newman solution.8

The extreme solution, i.e., the case when the inner and
outer horizons coincide, is reached whenm→u l u1. In this
case, the global space-time is that of extreme Kerr-New
solution.

The BPS-saturated limit, i.e., when the configuration s
rates the Bogomol’ni bound for the ADM mass, is reach
whenm→0, while the chargesQ2

(1),(2) andP1
(1),(2) , and the

angular momentumJ are kept finite. For the charges to
constant, the boostsde1,e2,p1,p2→`, while keeping
me2de1,e2,p1,p2 constant. In order forJ to remainnonzero, the
rotational parameterl has to remainnonzero. Thus, the BPS
saturated charged solution with the nonzero angular mom
tum J has a naked singularity,9 since the constraintm>u l u is
not satisfied. Thus, the existence of the naked singularitie
the case of rotating BPS-saturated solution persists eve
the case of four nonzero charges.10

Thus, the only regular BPS-saturated solution is in
case the static solution~with zero angular momentumJ50,
i.e., l→0). Its global space-time is that of extreme Reissn
Nordström black holes.

C. Entropy of the four-dimensional rotating solution

The thermodynamic~Bekenstein-Hawking! entropy is of
the form S5 (1/4GN) A, where A is the surface area
A5*dudfAguugffur5r1

, determined at the outer horizo

r15m1Am22 l 2. In the case of Eq.~8! we were able to cas
the thermodynamic entropy in the form

8The case withdp15dp250 is a generating solution of a gene
electrically charged rotating solution of Ref.@23#. The case with
de15dp1, de25dp2, i.e., Q2

(1)5P1
(1) , Q2

(2)5P1
(2) , was recently

constructed in Ref.@27#.
9The conformal two-dimensionals model, whose target spac

corresponds to dyonic rotating BPS-saturated solutions, also y
solutions with naked singularities@28#.
10This fact was also known for the case of four-dimensional, e

trically charged solutions@25#, whose static BPS-saturated sub
has the null horizon. On the other hand, in five dimensions,
charged solution with three nonzero charges has a regular
saturated limit with the nonzero angular momentum@5,10,17#. In
six dimensions, the electrically charged, BPS-saturated, rotatin
lution is also regular@25#.
al
ting
he

e

the

man

atu-
ed

be

en-

s in
n in

this

er-

,
n

t

S516pFm2S )
i51

4

coshd i1)
i51

4

sinhd i D
1mAm22 l 2S )

i51

4

coshd i2)
i51

4

sinhd i D G
516pFm2S )

i51

4

coshd i1)
i51

4

sinhd i D
1Hm4S )

i51

4

coshd i2)
i51

4

sinhd i D 22J2J 1/2G , ~13!

wherem,l are again the ADM mass and the angular momen
tum per unit mass of the Kerr solution~7! and d1,2,3,4
[de1,e2,p1,p2 are the four boosts specifying the four charges
~10!. In the second line the entropy is cast in terms of th
angular momentumJ of the charged solution.

Even though one expects the thermodynamic entropy
be cast in a form which is a square root of an expressio
~which depends on charges and angular momentum!, it can
be written in a form~13! which is asumof two terms, i.e.,
the sum of the ‘‘left-moving’’ and the ‘‘right-moving’’ con-
tributions. Each term issymmetricin terms of the four boost
parameters~and, thus, in terms of the four charges!. On the
other hand, Eq.~13! bears an asymmetry with respect to the
angular momentum, i.e., only theright-movingterm contains
the angular momentum, which acts to reduce the righ
moving contribution to the entropy.

When the angular momentum is zero (J50, i.e., l50),
the entropy is of the form@18#11

S532pm2)
i51

4

coshd i , ~14!

which is a generalization of the static five-dimensional resu
with three charges@13# to the static four-dimensional result
with four charges.

In the ~regular! BPS-saturated limit (m→0, l→0, while
me2de1,e2,p1,p2 are kept constant!, as well as the extreme limit
m→u l u1, the ‘‘right-moving’’ term in Eq.~13! is zero; how-
ever, in terms of physical parameters~charges and angular
momentum!, the entropy is different in each case. In the
BPS-saturated limit,

S532pm2)
i51

4

coshd i52p@P1
~1!P1

~2!Q2
~1!Q2

~2!#1/2, ~15!

while, in the extreme limit,

S516pm2S )
i51

4

coshd i1)
i51

4

sinhd i D
52p@J21P1

~1!P1
~2!Q2

~1!Q2
~2!#1/2. ~16!

ral

e
ields

lec-
set
the
BPS-

g so-

11In Ref. @18#, the expression for the entropy has a typographica
error, i.e., the square root is missing. Also, instead of in terms o
boosts, the expression is given in terms of physical charges and t
nonextremality parameterb[2m.
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Note that in the case when the right-moving contribution
absent, both expressions~15! and~16! are independent of the
asymptotic values of the moduli and the dilaton coupling a
have a straightforward generalization to the manifestlyS-
andT-duality invariant form@9#. Namely, when expressed in
terms of the conserved quantized electric and magne
charge lattice vectorsaW ,bW PL6,22 ~of toroidally compactified
heterotic string!, the surface area can be written as

S52p@J21$~aWTLaW !~bWTLbW !2~aWTLbW !2%#1/2. ~17!

III. ENTROPY OF THE FIVE-DIMENSIONAL
ROTATING SOLUTION

In this section we write explicitly the entropy for five-
dimensional rotating charged black holes specified by t
is

nd

tic

ADM mass, three charges, and two rotational paramete
These solutions were obtained@14# by performing three
SO~1,1!,O~8,24! boosts, on the five-dimensional~neutral!
rotating solution parametrized by the massm and two rotat-
ing parametersl 1 and l 2. The three boostsde1 ,de2, andde
specify, respectively, the two electric chargesQ1

(1) ,Q1
(2) of

the two U~1! gauge fields, i.e., the Kaluza-KleinAm 1
(1) and the

two-formAm 1
(2) gauge fields associated with the first compac

tified direction, and the chargeQ, i.e., the electric charge of
the vector field, whose field strength is dual to the fiel
strengthHmnr of the five-dimensional two-form fieldBmn .

For the sake of completeness, we quote the result@14# for
a space-time metric of the solution
rs
dsE
25D̄1/3F2

~r 21 l 1
2cos2u1 l 2

2sin2u!~r 21 l 1
2cos2u1 l 2

2sin2u22m!

D̄
dt21

r 2

~r 21 l 1
2!~r 21 l 2

2!22mr2
dr21du2

1
4mcos2usin2u

D̄
@ l 1l 2$~r

21 l 1
2cos2u1 l 2

2sin2u!22m~sinh2de1sinh
2de21sinh2desinh

2de11sinh2desinh
2de2!%

12m$~ l 1
21 l 2

2!coshde1coshde2coshdesinhde1sinhde2sinhde22l 1l 2sinh
2de1sinh

2de2sinh
2de%#dfdc

2
4msin2u

D̄
@~r 21 l 1

2cos2u1 l 2
2sin2u!~ l 1coshde1coshde2coshde2 l 2sinhde1sinhde2sinhde!

12ml2sinhde1sinhde2sinhde#dfdt2
4mcos2u

D̄
@~r 21 l 1

2cos2u1 l 2
2sin2u!

3~ l 2coshde1coshde2coshde2 l 1sinhde1sinhde2sinhde!12ml1sinhde1sinhde2sinhde#dcdt

1
sin2u

D̄
@~r 212msinh2de1 l 1

2!~r 212msinh2de11 l 1
2cos2u1 l 2

2sin2u!~r 212msinh2de21 l 1
2cos2u1 l 2

2sin2u!

12msin2u$~ l 1
2cosh2dm2 l 2

2sinh2dm!~r 21 l 1
2cos2u1 l 2

2 sin2u!14ml1l 2coshde1coshde2coshdesinhde1sinhde2sinhde

22msinh2de1sinh
2de2~ l 1

2cosh2de1 l 2
2sinh2de!22ml2

2sinh2de~sinh
2de11sinh2de2!%#df21

cos2u

D̄
@~r 212msinh2de

1 l 2
2!~r 212msinh2de11 l 1

2cos2u1 l 2
2sin2u!~r 212msinh2de21 l 1

2cos2u1 l 2
2sin2u!12mcos2u$~ l 2

2cosh2de2 l 1
2sinh2de!

3~r 21 l 1
2cos2u1 l 2

2sin2u!14ml1l 2coshde1coshde2coshdesinhde1sinhde2sinhde22msinh2de1sinh
2de2~ l 1

2sinh2de

1 l 2
2cosh2de!22ml1

2sinh2de~sinh
2de11sinh2de2!%#dc2G , ~18!

where

D̄[~r 212msinh2de11 l 1
2cos2u1 l 2

2sin2u!~r 212msinh2de21 l 1
2cos2u1 l 2

2sin2u!~r 212msinh2de1 l 1
2cos2u1 l 2

2sin2u!.
~19!

The ADM massM , U~1! chargesQ’s and the angular momentaJ8s are given in terms of the three boost paramete
de1,e2,e and the three parametersm,l 1 ,l 2 of the neutral rotating solution as12

12The five-dimensional Newton’s constant is taken to beGN
D555p/4.
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M52m~cosh2de11cosh2de21cosh2de!23m,

Q1
~1!52mcoshde1sinhde1 , Q1

~2!52mcoshde2sinhde2 , Q52mcoshdesinhde ,

Jf54m~ l 1coshde1coshde2coshde2 l 2sinhde1sinhde2sinhde!,

Jc54m~ l 2coshde1coshde2coshde2 l 1sinhde1sinhde2sinhde!. ~20!

Note the solution is effectively the six-dimensional solution with the toroidal modulusg11 and the dilaton fieldw varying with
the spatial coordinates@17#.

The solution has the innerr2 and the outerr1 horizons at

r6
2 5m2

1

2
l 1
22

1

2
l 2
26

1

2
A~ l 1

22 l 2
2!214m~m2 l 1

22 l 2
2!, ~21!

provided 2m>(u l 1u1u l 2u)2.
We write explicitly the classical entropy S5(1/4GN)A, where A is the surface area

A5*dudfdcAguu(gffgcc2gfc
2 )ur5r1

, determined at the outer horizonr1 . The entropy can be written in the form

S54pFm$2m2~ l 12 l 2!
2%1/2S )

i51

3

coshd i1)
i51

3

sinhd i D 1m$2m2~ l 11 l 2!
2%1/2S )

i51

3

coshd i2)
i51

3

sinhd i D G
54pF H 2m3S )

i51

3

coshd i1)
i51

3

sinhd i D 22 1

16
~Jf2Jc!2J 1/21H 2m3S )

i51

3

coshd i2)
i51

3

sinhd i D 22 1

16
~Jf1Jc!2J 1/2G ,

~22!
n

h

t

whered1,2,3[de1,e2,e andm, l 1,2 are the ADM mass and the
two rotational parameters of the five-dimensional rotatin
~neutral! solution, respectively. In the second line, the e
tropy is cast in terms of boosts~specifying the three charges!
and the two angular momentaJc,f of the charged solution.
Again, the classical entropy can be cast@Eq. ~22!# as asum
of two terms, i.e., the sum of the ‘‘left-moving’’ and the
‘‘right-moving’’ contributions.

The form of the entropy, as a sum of the two terms, h
been derived in the case of infinitesimal deviations from t
BPS-saturated limit in Ref.@12#, and its microscopic degrees
of freedom were identified with the left- and the right
moving contributions of theD-brane world-volume Hilbert
space withJL,R[ 1

2 (Jf7Jc) identified as the left-~or right-!
moving charges of the U~1! L,R (N54) superconformal
~world-sheet! algebra.

Interestingly, even for a general nonextreme solution, t
classical entropy~22! retains the form as a sum of two
pieces, one containing the ‘‘left-moving’’ and another on
the ‘‘right-moving’’ contributions, thus suggesting that eve
for a generic nonextreme case the expression may hav
microscopic interpretation in terms of degrees arising fro
two ~left-moving and right-moving! noninteractingD-brane
world-volume sectors. Note also, that each term issymmetric
under the permutation of the three boost parameters and
under the permutation of the three charge assignments.

The ~regular! BPS-saturated limit, i.e., the limit where the
ADM mass saturates the Bogomol’ni bound, is reached@14#
by taking m→0, l 1,2→0, and de1,e2,e→`, while Q1,2

5 1
2 mede1,e2, Q5 1

2 med, andl 1,2/m
1/2 are kept finite. In this
g
-

as
e

-

he

e
n
e a
m

hus

case, the right-moving contribution disappears. Interestingly,
in the extreme limit@the inner and outer horizons~21! coin-
ciding#, which corresponds to the choice 2m→( l 11 l 2)

2, the
right-moving contributions again disappear; however, the ac-
tual value of the entropy in terms of the physical parameters
is different from the BPS-saturated limit.

For zero angular momentum, the entropy formula again
rearranges itself as a single term@13#:

S58A2pm3/2)
i51

3

coshd i , ~23!

being fully symmetric under permutations of charges. In this
case, the microscopic entropy can be calculated in certain
limits, but it was pointed out@13# that its validity as a mi-
croscopic entropy may be true in general and that each
~‘‘dressed’’! boost ed i @e2d i# may be interpreted as a square
root of the number of the correspondingD-brane ~anti-
D-brane! configurations.

A more general expression for the entropy~22! has a sug-
gestive form indicating that the relevant charge degrees of
freedom should be identified with the left- and right-moving
(D-brane world-volume! sectors, which appear in combina-
tions) i51

3 coshdi6)i51
3 sinhdi , respectively.

IV. COMMENTS ON THE D-BRANE INTERPRETATION

We obtained the explicit forms of the classical entropy for
the four- and five-dimensional rotating charged black hole
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solutions with four charges and one rotational parameter,
three charges and two rotational parameters, respectiv
These solutions can be viewed as ‘‘generating’’ solutions
black holes ofN54 ~or N58) string vacua.

Even though we chose to parametrize the classical s
tions in terms of fields of the toroidally compactified he
erotic sting~or equivalently, in terms of the NS-NS sect
fields of the toroidally compactified type IIA sting!, these
solutions map, because of string-string duality~orU duality!,
onto configurations with RR charges of type IIA string com
pactified onK33T2 ~or RR charges of type IIA string com
pactified onT6!. Thus, they have an interpretation in terms
the ~intersecting! D-brane configuration.

Interestingly, even though nonextreme classical soluti
may receive quantum corrections, for both four-dimensio
and the five-dimensional solutions, the classical entrop
~13! and ~22! are given as sums of the ‘‘left-moving’’ an
the ‘‘right-moving’’ contributions, which is suggestive of
microscopic interpretation in terms of two contributions ar
ing from the~noninteracting! left-moving and right-moving
sectors of the~intersecting! D-brane world-volume Hilbert
spaces.

There is an interesting parallel between the structure
the entropy of the four-dimensional~13! and the five-
dimensional~22! solutions. The effect of the fourth charge
four dimensions is an additional factor~in the products! as-
sociated with the fourth boost~i.e., the fourth charge!. In
either case, the expression is fully symmetric under perm
tations of boosts~charges!. On the other hand, in going from
five to four dimensions, the left-moving angular momentu
disappears, while the right-moving angular momentum eff
tively remains nonzero, as if the limitJc→Jf is taken. From
the microscopic point of view, this suggests that in the c
of rotating four-dimensional configurations, theD-brane
world volume ~world sheet! is specified by the (N52) su-
perconformal algebra of the right-moving sector only, a
and
ely.
for

olu-
t-
or

-
-
of

ons
nal
ies
d
a
is-

s of

in

u-

m
ec-

ase

nd,

therefore, the states are identified under the U~1!R supercon-
formal currents only.

Since the structure of the classical entropy~13! @or ~22!#
suggests a full symmetry among the four~or the three!
charges, it may be preferable to identify the~intersecting!
D-brane configuration of four~or three! different types of
D branes@29# whose world-volume excitations would ac-
count for the different charge degrees of freedom in a sym
metric way.13 In particular, the four-dimensional static gen-
erating solution ofN54 ~or N58! superstring vacua can be
interpreted@29# ~in terms of the type IIA string! as an inter-
secting D-brane configuration ofQ2

(1) zero branes, and
Q2
(2) , P1

(1) , and P1
(2) four branes wrapping aroundK3,

S1
23T2, andS2

23T2 @or wrapping around~4567!, ~6789!, and
~4589! directions ofT6#, respectively. Here,S1, 2

2 are the two
cycles ofK3. Calculations of the microscopic entropy for
such intersectingD-brane configurations may lead to a sym
metric treatment of the charge degrees of freedom, as well
to a possible understanding of the separate~noninteracting!
contribution of the left-moving and right-moving~world-
volume! degrees of freedom.
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