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A Chern-Simons action for supergravity in odd-dimensional spacetimes is proposed. For all odd dimensions,
the local symmetry group is a nontrivial supersymmetric extension of the Poigaaup. In 2+ 1 dimensions
the gauge group reduces to super-Poincarile for D=5 it is super-Poincaravith a central charge. In
general, the extension is obtained by the addition of a one-form field which transforms as an antisymmetric
fifth-rank tensor under Lorentz rotations. Since the Lagrangian is a Chern-Simons density for the supergroup,
the supersymmetry algebra closes off shell without the need of auxiliary f{@6556-282(196)00314-]

PACS numbds): 04.50+h, 04.65+e, 11.10.Kk

I. INTRODUCTION [In the case of a supergroup, the invariant tensor should have
the correspondinganti) symmetry properties.

In the search for an unified theory of all interactions in-  For a givenn, the above condition may have no solution.
cluding gravity, higher dimensional models have becomdndeed, Eq(2) imposes strong restrictions on the group. As
standard in theoretical physics. Two important examples areve shall see below, foD>3, one needs to enlarge the
D =10 superstringgl] and D=11 supergravity{2] which  bosonic sector of the theory in order to produce a supersym-
give rise, upon dimensional reduction, to interesting effectivemetric extension of Chern-Simons gravity that contains local
models in four dimensions. In the study of higher—andPoincareinvariance.
lower—dimensional models, Chern-Simons densities play an It is direct to prove from Eq(1) that, up to a total deriva-
important role. Although Chern-Simons forms first appearedive, L is invariant under the gauge transformation
in the physics literature in the context of anomalies, it is now
clear that they have an intrinsic value as dynamical theories 5HA=V\, 3
in their own right. For example, pure gravity and extended
supergravity in three dimensions are Chern-Simons theorieghere N is an arbitrary zero-form parameter and
for the groups S,2) [3] and OSp(2p)®0Sp(dq) [4], VA=d\+[A\N]. If 6, and 5, are two trasformations, with
respectively. Similarly, in five dimensions, supergravity canparameters. and 5, respectively, then
be written as a Chern-Simons action for the supergroup SU
(2,2N) [5]. Chern-Simons forms also provide a simple de- [S\.8,]A= 8, A (4)
scription for pure gravity in all odd-dimensional spacetimes
[6]. The equations of motion of these theories possess black The three-dimensional supergravity studied by Azdmo
hole solutions[7] generalizing those found in+2L dimen-  and Townsend4], as well as the five-dimensional theory
sions|[8]. studied by Chamseddine], are Chern-Simons theories in

The Chern-Simons Lagrangian is constructed as followsthe sense described above. Their supersymmetry transforma-
Let G, a basis for the Lie algebra of a givésupejgroupG.  tions can be written in the forr(8) and, therefore, the super-
Let A=A%G, be the connection forG, and F=dA  symmetry algebra closes off shell without the need of auxil-
+AA=FAG, its curvature two-form. The Chern-Simons iary fields.

LagrangianL is a (2n+1)-form whose exterior derivative It goes without saying that, apart from the invariance un-
(defined in 21+ 2 dimensiong satisfies der Eq.(3), the Chern-Simons action is also invariant under
diffeomorphisms. In 21 dimensions that symmetry is not

dL=(F.---.F)=ga....n  FAL... FAne, (1)  independent from the local gauge group because, as a con-

ot sequence of the equations of motion, the connection is lo-
cally flat. This means that, given two configurations that dif-
fer by a diffeomorphism, there always exists a gauge
transformation that deforms one into the other. In the canoni-
cal formalism this is reflected by the absence of rinde-

VgAl' : 'An+1:0' 2) pendentconstraints associated with diffeomorphisms.

n

wheregAl.A.AnHE(GAl, ce 'GAn+l> is completely symmet-
ric and satisfies the invariance condition
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2606 BANADOS, TRONCOSO, AND ZANELLI 54

In dimensions greater than three, however, the Chernis invariant under Eq8) but not under Eq(7). The reason is
Simons equations of motion do not impose the flatness corsimply that under Eq(.7) the action changes, modulo bound-
dition and therefore the diffeomorphism invariarisean in-  ary terms, by
dependent symmetry giving rise to independent constraints
in the canonical formalisngsee[9] for more details on this
point). For our purposes, here, it is enough to observe that ol =2f €abcdRP2 TN, (10
the gauge trasformation8) form a subgroup of the whole
symmetry group. o )

It is the purpose of this paper to show that the aboveVhich is not zero for arbitrary. _
scheme can be extended to supergravity in all odd dimen- An alternative approach, often followed in the supergrav-
sions, provided one chooses the bosonic Lagrangian in afy literature, is the so-called 1.5 formalism. That is to set
appropriate way. It turns out that f@>3, the Lagrangian T -0 keeping only the tetrad transformation in E@); the
for the bosonic sector is not Hilbert's. Rather, the correctvariation ofw?" is then calculated using the chain rule. This
Lagrangian is nonlinear in the curvature and yet, gives rise tprocedure brings the diffeomorphism invariance into the

first order equations for the tetrad and the spin connection.SCene because =0, the variation Eq(7) for the tetrad is
equal—up to a rotation—to a Lie derivative with a parameter

EF=el\? In sum, the Hilbert action in 81 dimensions is
invariant under Lorentz rotations and diffeomorphisms, but

In this section we shall review some aspects of thenot under the local translatior{g), generated by, .
vielbein—or gauge—formulation of general relativity. The A completely different situation is observed int2 di-
main point of this section is to display the differences be-mensions, in which case the Hilbert action is linear in the
tween gravity in odd and even dimensions. dreibein field:

Il. GENERAL RELATIVITY AS A GAUGE THEORY

A. Poincare translations vs diffeomorphisms ab ¢
S . . l241= | €apcR™1€ (11
General relativity in four and all even dimensions cannot

be construed as a “truly” local gauge theof$0]. On the

contrary, for odd-dimensional spacetimes, gravity can be It is straightforward to check, using the Bianchi identity,
written as a Chern-Simons action for the Poincgreup that the variation of Eq(11) under Eq.(7) gives a boundary
[4,3,6]. [If the cosmological constant is present, then the relterm and hence, E@7) is a symmetry of the 21 theory. As
evant group is thelanti9de Sitter groug. The Poincare Witten has pointed out, this simple fact has deep conse-

group has generatoi®, andJ,, satisfying quence$3]. Indeed, in three dimensions, one can replace the
diffeomorphism invariance by a local Poincairesariance
[Pa,Pp]=0, whose constraint algebra is a true Lie algebra.
One may wonder if there exists an action invariant under
[Pa,dbcl= 7a6Pc— 7acPb s Eq. (7) in higher dimensions. This generalization indeed ex-

ists and is given by
[Jab:Jdcal = Macdbd— MbcdadT Mbadac— MadIbe - )

We define the connection for this group: |2n+1=f €a, - ay,, R 20 R%n-1%n %01 (12)
1 . . . .
A=e?P,+ EwabJab. (6)  which, clearly, can only occur in odd dimensions. The fact

that Eq.(12) can be written for odd dimensional manifolds
only is associated to the existence of Chern-Simons forms in
those dimensions.

The key property of Eq(12) is that it is linear in the
vielbein field rather than being linear in the curvature, as
would be the case for the Hilbert action. This fact makes Eq.

Let A be an arbitrary parameter with values in the Lie
algebra § =\2P,+ I\22J,,). Under the infinitesimal gauge
transformationSA=V\, e andw?® transform as follows:

translations: 9e®=D\?%  ow**=0, (7 (12) invariant under the transformation E7), up to a
boundary term. In spite of being nonlinear in the curvature,
rotations: se*=\je®, owe=—-DN®,  (8) this action yields first order differential equations for all the
fields. This is not surprising as E(.2) is a particular case of
whereD is the covariant derivative in the connectian a Lovelock action[11]. I,,.; describes a Chern-Simons

It might seem puzzling that even though the tetrad and théheory of ISOD—1,1), obtained by contraction of SO
spin connection carry a representation of the Poingesep, (D —1,2), and possesses solutions with conical singularities
the Hilbert action constructed purely out of those fields, is[7] analogous to those found in+2 dimensions without
not invariant under the Poincageoup in four dimensions. In  cosmological constanl2]. It should be mentioned here that
fact, the action the action(12) has a propagating torsidi 3] and therefore,

the 1.5 formalism is not applicable in this case. The main
sz .. RAb.eC, o ) g_oal of this paper is to describe the supersymmetric exten-
abed™ "=/ sion of the actiorn(12).
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B. Super-Poincarevs supergravity in terms of diffeomorphisms; the commutator of two super-

Supergravity is often referred to as the square root ofymmetry transformatipns gives a local translation, which is
general relativity{14] much in the same spirit as the Dirac a symmetry of the "_"Ct'on as We"'_ .
equation is the square root of the Klein-Gordon equation, !N Other words, in 21 dimensions one can consider a
This is justified by the fact that the commutator of two su-{uly first order formalism in which the spin connection
persymmetry transformations gives a general change of C&[ansfornjs independently of the welbem and the gravitino,
ordinates plus a rotation and another supersymmetry tranddSt @s dictated by group theory. In particular, under super-
formation. A concrete example is the usud=1 local ~SYMMetry, one can set

supersymmetry transformatioh$5] b
ows =0 (16)

1
5ei=§sl“aww thch, together with Eq(13), is a symmetry of the 21
action.
The simplicity of the 2-1 theory can be explicitly exhib-

oy,=D ,e. (13 ited. The action readst, 16|

Here,# ande are Majorana smorsﬂs the Majorana con- o
jugate @)a=CaBs“ satisfyingel'®»=—yI'%, andD,, is |:f (€apR20ES— DY), (17)
the covariant derivative in the spin connection. It is then

?t:ﬁggtf?‘rwﬁﬁ to fr?nvi trhat r:ze conL::e;Lor tof[rtv;o trarls'Wherew is a two-component Majorana spingSee Appen-
ormations parameters and » acts on the tetrad as dix for a summary of conventions.

1 This action is invariant under Lorentz rotations
[6,,6,]e2==D ,(eI'?p). (14
e 27 SwaP=—D)\3,  se?=)\1e?,

The transformatiori13) follows from the super-Poincara- 1
gebra when one considers the vielbein and the gravitino as _Zyab

g . o= N"Tap, (18)
the compensating fields for local translatios,Y and super- 4
symmetry transformationsy), respectively. It is not surpris- o, )
ing therefore that the right-hand sid@HS) of Eq. (14) is a  Poincaretranslations
local translation—acting on the tetrad—with parameter ab a a
\e=LeTy. Sw=0, 5e?=DN% Sy=0, (19

The trouble with supergravity in-81 dimensions is that

the actionis notinvariant under local translations. Neverthe-
less, transformatioril4) is still a symmetry of the action 1
provided the transformation of the spin connection preserves owab=0, se?==el3y, Sy=De. (20)
the torsion equatiom?=3yI"2.¢ (1.5 formalism. On the 2

surface defined by the torsion equation, the RHS of (& !
can be rewritten ;’S d (4 The fieldse?, w3®, and ¢ transform as components of a

o connection for the super-Poincageoup and therefore the
D, (el%n)=L€5+ EWp, z—§”llfvra¢#- (15 supersymmetry algebra implied by Eg4.9)-(20) is the
super-Poincarekie algebra. The invariance of the acti@tv)
The first term in the RHS of Eq15) represents a diffeomor- under the super-Poincaggoup should come as no surprise
phism with parameteg#=¢cI'#5 (F“eizl“a), the second because it is the Chern-Simons action for the connection
term is a rotation with parameté‘wy , , and the third term  A=e?P,+ W], +Qy, whose generators are,, Jap,
is a supersymmetry transformation with parametef*“i,, . andQ?. Indeed, the actiol17) can be written a$4]
Equation(15) shows that, as far as the tetrad is concerned,
the algebra of supersymmetry transformations closes. But the
fact that we have used the torsion equation implies that the
connection is no longer an independent variable. On the con-
trary, its variation is given in terms afe® and ¢, and it  where the angular brackets stand for a properly normalized
differs from the form dictated by group theory. As a conse-trace on the algebra, with (J,,,Pc)=¢€a. and
quence, the local supersymmetry algebra acting on the grayQ,,,Qg)=—iC gz are the only nonvanishing tracé€,,; is
itino closes only on shell and auxiliary fields are required forthe charge conjugation matrix.
its closure off shell.
A completely different situation is observed in the case of ||, £\vE-DIMENSIONAL POINCARE ~ SUPERGRAVITY

2+1 gravity. Although the above discussion applies to this
case[4], there is an alternative route which leads more di- We turn now to the supersymmetric version of the action
rectly to supergravity. The key feature ofr2 supergravity (12) in higher dimensions. To illustrate the ideas we start
is that—unlike 3+1 supergravity—the actiois invariant un-  with the five-dimensional case which already contains the
der local Poincardransformations. This means that in the main ingredients. The general case will be indicated in the
2+1 theory it is not necessary to express the RHS of(E4).  next section.

and supersymmetry transformations

| = f (AdA+3AAA), (21)
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A. The action transformations gives local translati@). Indeed, ifé, and
The analogue of the actiofL7) in five dimensions has 5, are supersymmetry transformations with parameters
three pieces: and 7, we have
lssusy=lc+ 1o+ 1y, (22) [8,,8,]*=—iD(eln—nl%),
where | ¢ is the purely gravitational terml,, is a second [58,5,7]wab= 0,
bosonic term needed by supersymmetry, bpd the fermi- o
onic term. The explicit formulas are [6..,6,]lb=d(en—ne),
1 =
IGZEJ eabcdeabARCdAef1 [55 !577]1711 0. (26)

The symmetries of the actiof22) are generated by the
local super-Poincargenerators,, J,,, Q% Q,, plus the
Abelian generatoK, responsible for the nonzero transforma-
tion of b in Eq. (24). These generators form an extension of

lb: f Rab/\RabAb,

- ab (T o the super-Poincaralgebra whose only nonvanishir{gnti)
l,= f RA(YT D+ Dyl g ). (23 commutator is
Here, the gravitino field is a Dirac spinor one-form, anes {Qan_B}: —i(I'®)§P,+ 55K, 27

a one-form Lorentz pseudoscalar. The forml pis dictated

by the transformation ofg and 1, under supersymmetry. plus the Poincaralgebra. The commutators &, Q¢, and
[See section V for an alternative way to see this through th@a with the Lorentz generators can be read off from their
integrability conditions of the classical equations of motjon. ansor character.

Since we are interested in the geometrical aspects of this Nte thatk commutes with all the generators in the alge-
theory only, we have set all the coupling constants equal 5 and therefore, it is as a central charge in the super-
1. The Lorentz covariant derivellti\mb in the spinorial repre-  poincarealgebra. This is, however, a peculiarity of five di-
sentation is given b ¢r=dy+ ;w5 ¢p. We work with  mensions. For other odd dimensions, the generktds a

Df"&‘: spinors in order tﬁ. %voidlthe qi{ne”Sion?}I.dEpe”ﬁen%ompletely antisymmetric tensor of fifth rank, which has a
of Majorana spinors which only exist—on a Minkwoskian o ;
signature—in dimensions 2,3,4 mod8. All the main results Oinonvanlshlng commutator with the Lorentz generator.

this paper carry through for Majorana spinors when they ex-

ist. The Dirac conjugate is defined gs=y'Ty and in the B. Chern-Simons formulation
action, ¢ and ¢ are varied independentlySee AppendiX. The fact that the symmetries of the acti@?®) close with-
In addition to local Lorentz rotations, the above action isout the need of any auxiliary fields strongly suggest that Eq.
invariant under the Abelian translations: (22) may be written as a Chern-Simons action for the super-
group. In this section we prove that this is indeed the case.
oe®=D\?, Consider a connectiof for the superalgebra found in the
last section:
Mab: O,
1 — —
— o Zab a_ a
Sb=dp, A=e?P,+ S W JaptbK+¢,Q%— Qv . (28
oyY=0, (24)  The super-curvatur&=dA+A.A is then found by direct

application of Eqs(5) and (27):
where\? is a O-form Lorentz vector angd is a 0-form Lor-
entz pseudoscalar. The invariance of E2f) under Eq.(24)

~ 1 —~ — —
_rA _Ta T pab a__ @
follows directly from the Bianchi identity. The actiq@2) is F=FTGA=T"Pat 2 R™apt PR+ D,Q"=Q.D Y

also invariant under supersymmetry transformations: (29
oe?=—i(ely—yl%), Here, T =T2—iyl'%.y and F:=db+ y.; T2 is the tor-
ab sion two-form, andR?® is the two-form Lorentz curvature.
ow*"=0, We recall that a Chern-Simons Lagrangian in five dimen-
— sionsLs;gysy is defined by the relation
Sb=ey— e,
gascF FB FC=dLg/susy, (30
Sy=Dse. (25)

where the trilinear forngagc=(Ga,Gg,Gc¢) is an invariant

The proof of the invariance of Eq22) under Eq.(25) is  tensor of the Lie algebra with generato@,. Different

straightforward. An important test of the consistency of Eg.choices of the invariant tensayagc give different five-
(25) is the fact that the commutator of two supersymmetrydimensional Lagrangianss,sysy-
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To prove that Eq(22) is a Chern-Simons action we need i — a6 — b
to find an invariant tensor such thiag,ssyis equal, up to a |¢:§f Rapc (4D g+ Dyl @ ). (37)
total derivative, to the Lagrangian in ER2). This tensor

indeed exists and is given by Each term in the actiofB4) is independently invariant under

local Lorentz transformations. The complete action is invari-

{Jab:Jca:Pe) = €avcde: ant under the Abelian translations

(JabJed  K) = Dacpd— Mad Moo 5e2=D\?, Swab=0, sbabcde= Dpabcde,

<Qa'JavaB>:_2(Fab)g- (31 Sy=0, (39

It is straightforward to prove that, up to a total derivative and
an overall factor, the 5-forrh 55y associated to the above
tensor is equal to the supersymmetric Lagrangian in(£2).

From the above result it is now evident that the action is
invariant under supersymmetry transformations up to a total
derivative. All the symmetry transformations of the action
can now be collected together in the fordd=V\ where
V is the covariant derivative of the supergroup ands a The proof of the invariance of Eq34) under supersym-
zero-form Lie algebra-valued vector in the adjoint represen-

tation. From this formula it is also evident that the algebra of!n etry transformations is straightforward. One starts by vary-

supersymmetry transformations closes as dictated by grouﬁiati?g fermionic part. Up to a boundary term one easily

theory:

and supersymmetry transformations
se?=—i(sT%y—yl'%), oW =0,
sbPede= —j (g%~ Hc), oy=De, (39

whereD represents the Lorentz covariant derivative.

i I
[0\ 6,]A= 6, A (32 sl 4,=1—2f Rabe Rae (4229 e—c.c).  (40)

The Chern-Simons actiof22) can be obtained from the ac-

tion found in[5] by an appropriate Wigner-Inonu contrac- Using the formula(A4) of Appendix, we find that Eq(40)
tion. The closure of the supersymmetry algebra, howevehas a term proportional to a fifth-rank Dirac matiix®°?®
was not mentioned if5]. In the next section we prove that plus a term proportional to a Dirac matri3. It is direct to
the above scheme is not exclusive of the three- and fivesee that the first term is canceled by the variatioh,ofrhile
dimensional theories but it can be extended to any oddthe second term is canceled by the variation ©f

dimensional spacetime. As in the lower dimensional caseP €& 3,5), the commu-
tator of two supersymmetry transformations gives a local
IV. THE GENERAL CASE Abelian translatior(38). Thus, the supersymmetric extension

_ ' ~ of the Poincarealgebra that leaves the action invariant has
In this section we show how the results of the previousgeneratorsz =[P, ,J.p.Kabcde: Q% Q,]. The only nonva-
sections are generalized to any odd-dimensional manifold. IRishing (antjcommutator is
order to simplify the notation we introduce the symbol
Rapc defined by {Q*Qpt=—I(T P~ (T 9K pger (4D
c= 182, ..., ,Ra-48p-3, L —
Rapc’ = €abcay --ap 3R R (33 plus the Poincaralgebra. The commutators €1, Q, and
K with the Poincargyenerators can be read from their tenso-
{Gal character.
The actionl 5, 1;susy is also a Chern-Simons action. The
connection now is

Just as in the five-dimensional case, the supersymmetr
action in dimension 8+ 1 has three terms:

lon+ususy=letlptly, (34)
H “ 1A H H 1 _ —_
where the bosonic “geometric” terrty is given by A=e?P,+ E\/\/ab\]abjL b2PCIK apedeT P Q%— Quth®,
(42)
IG: f RabC\Rab/\eC. (35)

and the Lagrangian is defined bl .- - - \F)=dL,,,; where
lp is a second bosonic term involving a fifth-rank one-formthe invariant 0+ 1) multilinear form(- - -) is defined by

field babcde
<‘Jala2 . JanzanlpaD> T€a...ay

I:—EJR Ry b2bcde (36)
b 6 abc Mde .

aja, + + -vYfghabced a;...ap_zabc’/[fg][de]»
(J 18, JigK e> - —126 . b_3abc?
(Note that this term vanishes in three dimensions and in five

dimensionsb3°®®® is a Lorentz pseudoscalaFinally, the —
fermionic part is <QJala2 .- -JaD_4aD_3Q>:2| 1—‘al...aD_g (43
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(the remaining brackets are zgrd@his completes the con- while in the important example of eleven dimensions the
struction of the (2+ 1)-dimensional Chern-Simons action supergroup is OSp(32) [18]. As the spacetime dimension

for supergravity. increases, one faces a growing multiplicity of choices for the
invariant tensor. To illustrate this issue, consider the problem
V. INTEGRABILITY OF THE EQUATIONS OF MOTION of classifying all the invariants that can be constructed out of

) o the Lorentz curvature in a given dimensiph9]. In four
A remarkable feature of supersymmetric theories, in gengimensions we only have

eral, and supergravity, in particular, is the fact that the inte-
grability conditions for the fermionic field equations are the €anedR2RY, RAD.R,, (48)
bosonic equations. The study of the integrability conditions
of the fermionic equation in our model sheds some light o
the role of the bosonic fielt2°c¢

In the notation introduced in Sec. 1V, the fermionic field ab ped pef pgh ab cd
equations are EabcdefgIR ~R*“AR®AR y R Rab/\R /\Rcd,

"while in eight dimensions we have

Rabcrabc\D lﬂz 0, (44) Rab\RbCARCdARda . (49)
and similarly for the Dirac conjugate spinor. Taking the co-Of course, all the above scalars define Chern-Simons
variant derivative of Eq(44) we find the integrability con- Lagrangians in dimension three and seven, respectively. A
dition similar proliferation of scalars appears in supergravity. A
good candidate for the right theory could be a linear combi-
Rape R T#T 4 46=0. (45  nation of all possible invariants such that, under an appropri-
] ) o ] ated Wigner-Inonu contraction, it reduces to the Poincare
This equation should be satisfied for agy Using elemen-  ineories studied here.
tary p_roperties of the Dir_ac_matrices we obtain the following  The particular case of eleven dimensions seems to be par-
equations for the bosonic fields: ticularly suited to admit an anti—de Sitter Chern-Simons for-
R.. .RATC—Q (46) mulation. As shown 18], the super anti—de Sitter group is
abe’ : OSp(321). A natural basis for the Lie algebra of Sp(32) is
Rype Ryo2P0de= 0 47 given by the Dirac matriceB, ,I",p, I apcges @Nd this basis is
abc™d ' easily extended to span the superalgebra of OSp(32

Equation(46) is the equation of motion for the vielbein field, Thus, the supergroup OSp(33 naturally accommodates
while Eq.(47) is the equation of motion for thie field. Had  the field content of the Poincaféhern-Simons supergravity
we not includedb, supersymmetry would not have been considered here. One could expect, therefore, that a Chern-
achieved and the integrability conditions would not haveSimons Lagrangian for the supergroup OSp{32n eleven
been satisfied.This does not rule out a Lagrangian without dimensions should reduce to the supersymmetric action Eq.
the b field. However, the fermionic equations for such a (34 upon contraction. For example, it is easy to check that

theory would impose additional equations on the bosonidhe superalgebra presented in Sec. IV can be obtained from
fields] OSp(321) by a Wigner-Inonu contraction:

VI. COMMENTS AND PROSPECTS Ga—A lPa’
We have shown in this paper that the successful methods Gab— Jab.
used in three dimensions to construct supersymetric exten-
sions of general relativity can be generalized to any odd-
dimensional spacetime. We have restricted ourselves, how-
ever, to Poincaresupergravity. The full anti-de Sitter o = (UDAa
extension remains an open probletm five dimensions, a Q—A Q“. (50)
Chern-Simons action for anti—de Sitter supergravity has been
known for some timd5]. That action reduces to the action At the level of the Lagrangian, however, the problem is more
considered here after a proper contraction is performed. complicated. Because of the ambiguity in the choice of the
There are good reasons to seek a full anti—de Sittefnvariant tensors and the large number of terms in the super
Chern-Simons formulation of supergravity. First, the bosonicanti—de Sitter Chern-Simons action, it is a nontrivial problem
Lagrangian in the Poinca@ase does not contain the Hilbert to find an expression such that, under contraction, it reduces
term thus making the contact with four-dimensional theoried© the action considered in this pag@o].

-1
Gabcde~ N "Kapedes

rather obscuré6]. Second, the Poincarieory in odd di- Finally, we mention that the—Poincaresupersymmetric
mensions does not possess black hole solutions while thehern-Simons actions found in this paper are not the only
anti—de Sitter theory dodd]. possibilities. In dimensions greater than 5, the fermionic La-

In principle, a Chern-Simons anti—de Sitter supergravitydrangian accepts other Poincameariant terms that give rise
can be constructed from the knowledge of the associatetp Other supergravities. For example, in eleven dimensions
supergroup and an invariant tensor offinding the invari- one can add to the fermionic Lagrangian the term
ant tensor, however, may prove to be a nontrivial Yask _
five dimensions, the relevant supergroup is SU®),217] [R3R,,]% 4D . (51
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This term, however, requires extra bosonic fields to respediOVAGAS, BUSINESS DESIGN ASS., and XEROX-
supersymmetry. This is easily seen by studying the integrachile) is also acknowledged.
bility conditions generated by E@51). One finds the equa-

tion over the bosonic fields: APPENDIX: GAMMA MATRICES

The Clifford algebra inD=2n+1 dimensions with
Minkowskian signature can be generated by a set of
Thus, consistency requires an extra bosonic term in the Le&"x 2" matrices; the unil and D matricesI'?, satisfying
grangian of the forniR®.R.4]2:R?".c,p, which involves the  {T'2T°}=272%, where a,b,...,=1,2,...,20+1 and
one-formc,,. Varying this term with respect to,, gives nab=diag(—,+,- --,+). In this signatureFL=FoFMF0.

Eqg. (52). Thus, the integrability condition is satisfied and the It is always possible to find a representationéf matri-
action is supersymmetric. A complete classification of allces in which
possible fermionic Lagrangians for a given dimension and

their corresponding supersymmetry algebras is beyond the

scope of this work. We would like to point out, however, that

the method outlined here seems to provide a simple way toe definel’®.---2p as the totally antisymmetric product of
generate extensions of the super-Poinagebra involving  gamma matrices,

extra bosonic fields.

[R3,R,,]2 R%=0. (52

=T ..IP=(—i)"*d, (A1)
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