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A Chern-Simons action for supergravity in odd-dimensional spacetimes is proposed. For all odd dimensions,
the local symmetry group is a nontrivial supersymmetric extension of the Poincare´ group. In 211 dimensions
the gauge group reduces to super-Poincare´, while for D55 it is super-Poincare´ with a central charge. In
general, the extension is obtained by the addition of a one-form field which transforms as an antisymmetric
fifth-rank tensor under Lorentz rotations. Since the Lagrangian is a Chern-Simons density for the supergroup,
the supersymmetry algebra closes off shell without the need of auxiliary fields.@S0556-2821~96!00314-1#
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I. INTRODUCTION

In the search for an unified theory of all interactions in
cluding gravity, higher dimensional models have becom
standard in theoretical physics. Two important examples
D510 superstrings@1# and D511 supergravity@2# which
give rise, upon dimensional reduction, to interesting effecti
models in four dimensions. In the study of higher—an
lower—dimensional models, Chern-Simons densities play
important role. Although Chern-Simons forms first appear
in the physics literature in the context of anomalies, it is no
clear that they have an intrinsic value as dynamical theor
in their own right. For example, pure gravity and extende
supergravity in three dimensions are Chern-Simons theo
for the groups SO~2,2! @3# and OSp(2up)^OSp(2uq) @4#,
respectively. Similarly, in five dimensions, supergravity ca
be written as a Chern-Simons action for the supergroup
(2,2uN) @5#. Chern-Simons forms also provide a simple d
scription for pure gravity in all odd-dimensional spacetime
@6#. The equations of motion of these theories possess bl
hole solutions@7# generalizing those found in 211 dimen-
sions@8#.

The Chern-Simons Lagrangian is constructed as follow
LetGA a basis for the Lie algebra of a given~super!groupG.
Let A5AAGA be the connection forG, and F5dA
1A`A5FAGA its curvature two-form. The Chern-Simon
LagrangianL is a (2n11)-form whose exterior derivative
~defined in 2n12 dimensions! satisfies

dL5^F`•••`F&5gA1•••An11
FA1`•••`FAn11, ~1!

wheregA1•••An11
[^GA1

, . . . ,GAn11
& is completely symmet-

ric and satisfies the invariance condition

¹gA1•••An11
50. ~2!
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@In the case of a supergroup, the invariant tensor should ha
the corresponding~anti! symmetry properties.#

For a givenn, the above condition may have no solution
Indeed, Eq.~2! imposes strong restrictions on the group. A
we shall see below, forD.3, one needs to enlarge the
bosonic sector of the theory in order to produce a supersy
metric extension of Chern-Simons gravity that contains loc
Poincare´ invariance.

It is direct to prove from Eq.~1! that, up to a total deriva-
tive, L is invariant under the gauge transformation

dlA5¹l, ~3!

where l is an arbitrary zero-form parameter and
¹l5dl1@A,l#. If dl anddh are two trasformations, with
parametersl andh, respectively, then

@dl ,dh#A5d@l,h#A. ~4!

The three-dimensional supergravity studied by Achu´carro
and Townsend@4#, as well as the five-dimensional theory
studied by Chamseddine@5#, are Chern-Simons theories in
the sense described above. Their supersymmetry transform
tions can be written in the form~3! and, therefore, the super-
symmetry algebra closes off shell without the need of auxi
iary fields.

It goes without saying that, apart from the invariance un
der Eq.~3!, the Chern-Simons action is also invariant unde
diffeomorphisms. In 211 dimensions that symmetry is not
independent from the local gauge group because, as a c
sequence of the equations of motion, the connection is l
cally flat. This means that, given two configurations that dif
fer by a diffeomorphism, there always exists a gaug
transformation that deforms one into the other. In the canon
cal formalism this is reflected by the absence of newinde-
pendentconstraints associated with diffeomorphisms.
2605 © 1996 The American Physical Society
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2606 54BAÑADOS, TRONCOSO, AND ZANELLI
In dimensions greater than three, however, the Che
Simons equations of motion do not impose the flatness c
dition and therefore the diffeomorphism invarianceis an in-
dependent symmetry giving rise to independent constra
in the canonical formalism~see@9# for more details on this
point!. For our purposes, here, it is enough to observe t
the gauge trasformations~3! form a subgroup of the whole
symmetry group.

It is the purpose of this paper to show that the abo
scheme can be extended to supergravity in all odd dim
sions, provided one chooses the bosonic Lagrangian in
appropriate way. It turns out that forD.3, the Lagrangian
for the bosonic sector is not Hilbert’s. Rather, the corre
Lagrangian is nonlinear in the curvature and yet, gives rise
first order equations for the tetrad and the spin connectio

II. GENERAL RELATIVITY AS A GAUGE THEORY

In this section we shall review some aspects of t
vielbein—or gauge—formulation of general relativity. Th
main point of this section is to display the differences b
tween gravity in odd and even dimensions.

A. Poincaré translations vs diffeomorphisms

General relativity in four and all even dimensions cann
be construed as a ‘‘truly’’ local gauge theory@10#. On the
contrary, for odd-dimensional spacetimes, gravity can
written as a Chern-Simons action for the Poincare´ group
@4,3,6#. @If the cosmological constant is present, then the r
evant group is the~anti–!de Sitter group.# The Poincare´
group has generatorsPa andJab satisfying

@Pa ,Pb#50,

@Pa ,Jbc#5habPc2hacPb ,

@Jab ,Jcd#5hacJbd2hbcJad1hbdJac2hadJbc . ~5!

We define the connection for this group:

A5eaPa1
1

2
wabJab . ~6!

Let l be an arbitrary parameter with values in the L
algebra (l5laPa1

1
2l

abJab). Under the infinitesimal gauge
transformationdA5¹l, ea andwab transform as follows:

translations: dea5Dla, dwab50, ~7!

rotations: dea5lb
aeb, dwab52Dlab, ~8!

whereD is the covariant derivative in the connectionw.
It might seem puzzling that even though the tetrad and

spin connection carry a representation of the Poincare´ group,
the Hilbert action constructed purely out of those fields,
not invariant under the Poincare´ group in four dimensions. In
fact, the action

I5E eabcdR
ab

`ec`ed ~9!
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is invariant under Eq.~8! but not under Eq.~7!. The reason is
simply that under Eq.~7! the action changes, modulo bound-
ary terms, by

dI52E eabcdR
ab

`Tcld, ~10!

which is not zero for arbitraryl.
An alternative approach, often followed in the supergrav-

ity literature, is the so-called 1.5 formalism. That is to set
Ta50 keeping only the tetrad transformation in Eq.~7!; the
variation ofwab is then calculated using the chain rule. This
procedure brings the diffeomorphism invariance into the
scene because ifTa50, the variation Eq.~7! for the tetrad is
equal—up to a rotation—to a Lie derivative with a parameter
jm5ea

mla. In sum, the Hilbert action in 311 dimensions is
invariant under Lorentz rotations and diffeomorphisms, bu
not under the local translations~7!, generated byPa .

A completely different situation is observed in 211 di-
mensions, in which case the Hilbert action is linear in the
dreibein field:

I 2115E eabcR
ab

`ec. ~11!

It is straightforward to check, using the Bianchi identity,
that the variation of Eq.~11! under Eq.~7! gives a boundary
term and hence, Eq.~7! is a symmetry of the 211 theory. As
Witten has pointed out, this simple fact has deep conse
quences@3#. Indeed, in three dimensions, one can replace the
diffeomorphism invariance by a local Poincare´ invariance
whose constraint algebra is a true Lie algebra.

One may wonder if there exists an action invariant unde
Eq. ~7! in higher dimensions. This generalization indeed ex-
ists and is given by

I 2n115E ea1•••a2n11
Ra1a2`•••`Ra2n21a2n`ea2n11 ~12!

which, clearly, can only occur in odd dimensions. The fact
that Eq.~12! can be written for odd dimensional manifolds
only is associated to the existence of Chern-Simons forms i
those dimensions.

The key property of Eq.~12! is that it is linear in the
vielbein field rather than being linear in the curvature, as
would be the case for the Hilbert action. This fact makes Eq
~12! invariant under the transformation Eq.~7!, up to a
boundary term. In spite of being nonlinear in the curvature
this action yields first order differential equations for all the
fields. This is not surprising as Eq.~12! is a particular case of
a Lovelock action@11#. I 2n11 describes a Chern-Simons
theory of ISO(D21,1), obtained by contraction of SO
(D21,2), and possesses solutions with conical singularitie
@7# analogous to those found in 211 dimensions without
cosmological constant@12#. It should be mentioned here that
the action~12! has a propagating torsion@13# and therefore,
the 1.5 formalism is not applicable in this case. The main
goal of this paper is to describe the supersymmetric exten
sion of the action~12!.
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B. Super-Poincarévs supergravity

Supergravity is often referred to as the square root
general relativity@14# much in the same spirit as the Dira
equation is the square root of the Klein-Gordon equatio
This is justified by the fact that the commutator of two su
persymmetry transformations gives a general change of
ordinates plus a rotation and another supersymmetry tra
formation. A concrete example is the usualN51 local
supersymmetry transformations@15#

dem
a5

1

2
«̄Gacm ,

dcm5Dm«. ~13!

Here,c and« are Majorana spinors;«̄ is the Majorana con-
jugate («̄)a5Cab

«a satisfying «̄Gah52h̄Ga«, andDm is
the covariant derivative in the spin connection. It is the
straightforward to prove that the commutator of two tran
formations with parameters« andh acts on the tetrad as

@d« ,dh#em
a5

1

2
Dm~ «̄Gah!. ~14!

The transformation~13! follows from the super-Poincare´ al-
gebra when one considers the vielbein and the gravitino
the compensating fields for local translations (Pa) and super-
symmetry transformations (Q), respectively. It is not surpris-
ing therefore that the right-hand side~RHS! of Eq. ~14! is a
local translation—acting on the tetrad—with paramet
la5 1

2«̄Gah.
The trouble with supergravity in 311 dimensions is that

the actionis not invariant under local translations. Neverthe
less, transformation~14! is still a symmetry of the action
provided the transformation of the spin connection preserv
the torsion equationTa5 1

2c̄Ga
`c ~1.5 formalism!. On the

surface defined by the torsion equation, the RHS of Eq.~14!
can be rewritten as

Dm~ «̄Gah!5Ljem
a1jnwbn

a em
b2jncnGacm . ~15!

The first term in the RHS of Eq.~15! represents a diffeomor-
phism with parameterjm5 «̄Gmh (Gmem

a5Ga), the second
term is a rotation with parameterjmwbm

a , and the third term
is a supersymmetry transformation with parameter2jmcm .
Equation~15! shows that, as far as the tetrad is concerne
the algebra of supersymmetry transformations closes. But
fact that we have used the torsion equation implies that
connection is no longer an independent variable. On the c
trary, its variation is given in terms ofdea and dc, and it
differs from the form dictated by group theory. As a cons
quence, the local supersymmetry algebra acting on the gr
itino closes only on shell and auxiliary fields are required f
its closure off shell.

A completely different situation is observed in the case
211 gravity. Although the above discussion applies to th
case@4#, there is an alternative route which leads more d
rectly to supergravity. The key feature of 211 supergravity
is that—unlike 311 supergravity—the actionis invariant un-
der local Poincare´ transformations. This means that in th
211 theory it is not necessary to express the RHS of Eq.~14!
of
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in terms of diffeomorphisms; the commutator of two super-
symmetry transformations gives a local translation, which is
a symmetry of the action as well.

In other words, in 211 dimensions one can consider a
truly first order formalism in which the spin connection
transforms independently of the vielbein and the gravitino,
just as dictated by group theory. In particular, under super-
symmetry, one can set

dwm
ab50 ~16!

which, together with Eq.~13!, is a symmetry of the 211
action.

The simplicity of the 211 theory can be explicitly exhib-
ited. The action reads@4,16#

I5E ~eabcR
ab

`ec2c̄`Dc!, ~17!

wherec is a two-component Majorana spinor.@See Appen-
dix for a summary of conventions.#

This action is invariant under Lorentz rotations

dvab52Dlab, dea5lb
aea,

dc5
1

4
labGabc, ~18!

Poincare´ translations

dwab50, dea5Dla, dc50, ~19!

and supersymmetry transformations

dwab50, dea5
1

2
«̄Gac, dc5D«. ~20!

The fieldsea, wab, andc transform as components of a
connection for the super-Poincare´ group and therefore the
supersymmetry algebra implied by Eqs.~18!–~20! is the
super-Poincare´ Lie algebra. The invariance of the action~17!
under the super-Poincare´ group should come as no surprise
because it is the Chern-Simons action for the connection
A5eaPa1

1
2w

abJab1Q̄c, whose generators arePa , Jab,
andQa. Indeed, the action~17! can be written as@4#

I5E ^A`dA1 2
3A`A`A&, ~21!

where the angular brackets stand for a properly normalized
trace on the algebra, with ^Jab ,Pc&5eabc and
^Qa ,Qb&52 iCab are the only nonvanishing traces.@Cab is
the charge conjugation matrix.#

III. FIVE-DIMENSIONAL POINCARE ´ SUPERGRAVITY

We turn now to the supersymmetric version of the action
~12! in higher dimensions. To illustrate the ideas we start
with the five-dimensional case which already contains the
main ingredients. The general case will be indicated in the
next section.
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A. The action

The analogue of the action~17! in five dimensions has
three pieces:

I 5/SUSY5I G1I b1I c , ~22!

where I G is the purely gravitational term,I b is a second
bosonic term needed by supersymmetry, andI c is the fermi-
onic term. The explicit formulas are

I G5
1

2E eabcd fR
ab

`Rcd
`ef ,

I b5E Rab
`Rab`b,

I c52E Rab
`~ c̄Gab`Dc1Dc̄Gab`c!. ~23!

Here, the gravitino field is a Dirac spinor one-form, andb is
a one-form Lorentz pseudoscalar. The form ofI b is dictated
by the transformation ofI G and I c under supersymmetry.
@See section V for an alternative way to see this through
integrability conditions of the classical equations of motion#

Since we are interested in the geometrical aspects of
theory only, we have set all the coupling constants equa
1. The Lorentz covariant derivativeD in the spinorial repre-
sentation is given byDc5dc1 1

4w
abGab`c. We work with

Dirac spinors in order to avoid the dimensional dependen
of Majorana spinors which only exist—on a Minkwoskia
signature—in dimensions 2,3,4 mod8. All the main results
this paper carry through for Majorana spinors when they e
ist. The Dirac conjugate is defined asc̄5c†G0 and in the

action,c and c̄ are varied independently.@See Appendix.#
In addition to local Lorentz rotations, the above action

invariant under the Abelian translations:

dea5Dla,

dwab50,

db5dr,

dc50, ~24!

wherela is a 0-form Lorentz vector andr is a 0-form Lor-
entz pseudoscalar. The invariance of Eq.~22! under Eq.~24!
follows directly from the Bianchi identity. The action~22! is
also invariant under supersymmetry transformations:

dea52 i ~ «̄Gac2c̄Ga«!,

dwab50,

db5 «̄c2c̄«,

dc5D«. ~25!

The proof of the invariance of Eq.~22! under Eq.~25! is
straightforward. An important test of the consistency of E
~25! is the fact that the commutator of two supersymmet
the
.
this
l to

ce
n
of
x-

is

q.
ry

transformations gives local translation~24!. Indeed, ifd« and
dh are supersymmetry transformations with parameters«
andh, we have

@d« ,dh#ea52 iD ~ «̄Gah2h̄Ga«!,

@d« ,dh#wab50,

@d« ,dh#b5d~ «̄h2h̄«!,

@d« ,dh#c50. ~26!

The symmetries of the action~22! are generated by the
local super-Poincare´ generatorsPa , Jab , Q

a, Q̄a , plus the
Abelian generatorK, responsible for the nonzero transforma-
tion of b in Eq. ~24!. These generators form an extension of
the super-Poincare´ algebra whose only nonvanishing~anti!
commutator is

$Qa,Q̄b%52 i ~Ga!b
aPa1db

aK, ~27!

plus the Poincare´ algebra. The commutators ofK, Qa, and
Q̄a with the Lorentz generators can be read off from thei
tensor character.

Note thatK commutes with all the generators in the alge-
bra and therefore, it is as a central charge in the supe
Poincare´ algebra. This is, however, a peculiarity of five di-
mensions. For other odd dimensions, the generatorK is a
completely antisymmetric tensor of fifth rank, which has a
nonvanishing commutator with the Lorentz generator.

B. Chern-Simons formulation

The fact that the symmetries of the action~22! close with-
out the need of any auxiliary fields strongly suggest that Eq
~22! may be written as a Chern-Simons action for the supe
group. In this section we prove that this is indeed the case

Consider a connectionA for the superalgebra found in the
last section:

A5eaPa1
1

2
wabJab1bK1c̄aQ

a2Q̄aca. ~28!

The super-curvatureF5dA1A`A is then found by direct
application of Eqs.~5! and ~27!:

F5FAGA5T̃aPa1
1

2
RabJab1F̃K1Dc̄aQ

a2Q̄aDca.

~29!

Here, T̃a:5Ta2 i c̄Ga
`c and F̃:5db1c̄`c; Ta is the tor-

sion two-form, andRab is the two-form Lorentz curvature.
We recall that a Chern-Simons Lagrangian in five dimen

sionsL5/SUSY is defined by the relation

gABCF
A

`FB
`FC5dL5/SUSY, ~30!

where the trilinear formgABC[^GA ,GB ,GC& is an invariant
tensor of the Lie algebra with generatorsGA . Different
choices of the invariant tensorgABC give different five-
dimensional LagrangiansL5/SUSY.
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To prove that Eq.~22! is a Chern-Simons action we nee
to find an invariant tensor such thatL5/SUSY is equal, up to a
total derivative, to the Lagrangian in Eq.~22!. This tensor
indeed exists and is given by

^Jab ,Jcd ,Pe&5eabcde,

^Jab ,Jcd ,K&5hachbd2hadhbc,

^Qa,Jab ,Q̄b&522~Gab!b
a . ~31!

It is straightforward to prove that, up to a total derivative a
an overall factor, the 5-formL5/SUSYassociated to the abov
tensor is equal to the supersymmetric Lagrangian in Eq.~22!.

From the above result it is now evident that the action
invariant under supersymmetry transformations up to a to
derivative. All the symmetry transformations of the actio
can now be collected together in the formdA5¹l where
¹ is the covariant derivative of the supergroup andl is a
zero-form Lie algebra-valued vector in the adjoint repres
tation. From this formula it is also evident that the algebra
supersymmetry transformations closes as dictated by gr
theory:

@dl ,dh#A5d@l,h#A. ~32!

The Chern-Simons action~22! can be obtained from the ac
tion found in @5# by an appropriate Wigner-Inonu contrac
tion. The closure of the supersymmetry algebra, howev
was not mentioned in@5#. In the next section we prove tha
the above scheme is not exclusive of the three- and fi
dimensional theories but it can be extended to any o
dimensional spacetime.

IV. THE GENERAL CASE

In this section we show how the results of the previo
sections are generalized to any odd-dimensional manifold
order to simplify the notation we introduce the symb
Rabc defined by

Rabc :5eabca1•••aD23
Ra1a2`•••`RaD24aD23. ~33!

Just as in the five-dimensional case, the supersymme
action in dimension 2n11 has three terms:

I 2n11/SUSY5I G1I b1I c , ~34!

where the bosonic ‘‘geometric’’ termI G is given by

I G5E Rabc̀ R
ab

`ec. ~35!

I b is a second bosonic term involving a fifth-rank one-for
field babcde:

I b52
1

6E Rabc̀ Rdè b
abcde. ~36!

~Note that this term vanishes in three dimensions and in
dimensionsbabcde is a Lorentz pseudoscalar.! Finally, the
fermionic part is
d

nd
e
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five

I c5
i

3E Rabc̀ ~ c̄Gabc
`Dc1Dc̄Gabc

`c!. ~37!

Each term in the action~34! is independently invariant under
local Lorentz transformations. The complete action is invari
ant under the Abelian translations

dea5Dla, dwab50, dbabcde5Drabcde,

dc50, ~38!

and supersymmetry transformations

dea52 i ~ «̄Gac2c̄Ga«!, dwab50,

dbabcde52 i ~ «̄Gabcdec2 H.c.!, dc5D«, ~39!

whereD represents the Lorentz covariant derivative.
The proof of the invariance of Eq.~34! under supersym-

metry transformations is straightforward. One starts by vary
ing the fermionic part. Up to a boundary term one easily
obtains

dI c5
i

12E Rabc̀ Rdè ~ c̄$Gabc,Gde%e2c.c.!. ~40!

Using the formula~A4! of Appendix, we find that Eq.~40!
has a term proportional to a fifth-rank Dirac matrixGabcde

plus a term proportional to a Dirac matrixGa. It is direct to
see that the first term is canceled by the variation ofI b while
the second term is canceled by the variation ofI G .

As in the lower dimensional cases (D53,5), the commu-
tator of two supersymmetry transformations gives a loca
Abelian translation~38!. Thus, the supersymmetric extension
of the Poincare´ algebra that leaves the action invariant has
generatorsGA5@Pa ,Jab ,Kabcde,Q

a,Q̄a#. The only nonva-
nishing ~anti!commutator is

$Qa,Q̄b%52 i ~Ga!b
aPa2 i ~Gabcde!b

aKabcde, ~41!

plus the Poincare´ algebra. The commutators ofQ, Q̄, and
K with the Poincare´ generators can be read from their tenso
rial character.

The actionI 2n11/SUSY is also a Chern-Simons action. The
connection now is

A5eaPa1
1

2
wabJab1babcdeKabcde1c̄aQ

a2Q̄aca,

~42!

and the Lagrangian is defined by^F`•••`F&5dL2n11 where
the invariant (n11) multilinear form^•••& is defined by

^Ja1a2 . . . JaD22aD21
PaD

&5ea1 . . .aD,

^Ja1a2 . . . JfgKabcde&52
1

12
ea1 . . .aD23abc

h@ f g#@de# ,

^QJa1a2 . . . JaD24aD23
Q̄&52i nGa1 . . .aD23

~43!
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2610 54BAÑADOS, TRONCOSO, AND ZANELLI
~the remaining brackets are zero!. This completes the con
struction of the (2n11)-dimensional Chern-Simons actio
for supergravity.

V. INTEGRABILITY OF THE EQUATIONS OF MOTION

A remarkable feature of supersymmetric theories, in g
eral, and supergravity, in particular, is the fact that the in
grability conditions for the fermionic field equations are th
bosonic equations. The study of the integrability conditio
of the fermionic equation in our model sheds some light
the role of the bosonic fieldbabcde.

In the notation introduced in Sec. IV, the fermionic fie
equations are

RabcG
abc

`Dc50, ~44!

and similarly for the Dirac conjugate spinor. Taking the c
variant derivative of Eq.~44! we find the integrability con-
dition

Rabc̀ R
deGabcGdè c50. ~45!

This equation should be satisfied for anyc. Using elemen-
tary properties of the Dirac matrices we obtain the followi
equations for the bosonic fields:

Rabc̀ R
abGc50, ~46!

Rabc̀ RdeG
abcde50. ~47!

Equation~46! is the equation of motion for the vielbein field
while Eq. ~47! is the equation of motion for theb field. Had
we not includedb, supersymmetry would not have bee
achieved and the integrability conditions would not ha
been satisfied.@This does not rule out a Lagrangian witho
the b field. However, the fermionic equations for such
theory would impose additional equations on the boso
fields.#

VI. COMMENTS AND PROSPECTS

We have shown in this paper that the successful meth
used in three dimensions to construct supersymetric ex
sions of general relativity can be generalized to any o
dimensional spacetime. We have restricted ourselves, h
ever, to Poincare´ supergravity. The full anti-de Sitte
extension remains an open problem.~In five dimensions, a
Chern-Simons action for anti–de Sitter supergravity has b
known for some time@5#. That action reduces to the actio
considered here after a proper contraction is performed.!

There are good reasons to seek a full anti–de Si
Chern-Simons formulation of supergravity. First, the boso
Lagrangian in the Poincare´ case does not contain the Hilbe
term thus making the contact with four-dimensional theor
rather obscure@6#. Second, the Poincare´ theory in odd di-
mensions does not possess black hole solutions while
anti–de Sitter theory does@7#.

In principle, a Chern-Simons anti–de Sitter supergrav
can be constructed from the knowledge of the associa
supergroup and an invariant tensor only~finding the invari-
ant tensor, however, may prove to be a nontrivial task!. In
five dimensions, the relevant supergroup is SU(2,2u1) @17#
-
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while in the important example of eleven dimensions th
supergroup is OSp(32u1) @18#. As the spacetime dimension
increases, one faces a growing multiplicity of choices for th
invariant tensor. To illustrate this issue, consider the proble
of classifying all the invariants that can be constructed out
the Lorentz curvature in a given dimension@19#. In four
dimensions we only have

eabcdR
ab

`Rcd, Rab
`Rab , ~48!

while in eight dimensions we have

eabcde fghR
ab

`Rcd
`Ref

`Rgh, Rab
`Rab`Rcd

`Rcd ,

Rab
`Rbc`Rcd

`Rda . ~49!

Of course, all the above scalars define Chern-Simo
Lagrangians in dimension three and seven, respectively.
similar proliferation of scalars appears in supergravity. A
good candidate for the right theory could be a linear comb
nation of all possible invariants such that, under an approp
ated Wigner-Inonu contraction, it reduces to the Poinca´
theories studied here.

The particular case of eleven dimensions seems to be p
ticularly suited to admit an anti–de Sitter Chern-Simons fo
mulation. As shown in@18#, the super anti–de Sitter group is
OSp(32u1). A natural basis for the Lie algebra of Sp(32) is
given by the Dirac matricesGa ,Gab ,Gabcde, and this basis is
easily extended to span the superalgebra of OSp(32u1).
Thus, the supergroup OSp(32u1) naturally accommodates
the field content of the Poincare´ Chern-Simons supergravity
considered here. One could expect, therefore, that a Che
Simons Lagrangian for the supergroup OSp(32u1) in eleven
dimensions should reduce to the supersymmetric action E
~34! upon contraction. For example, it is easy to check th
the superalgebra presented in Sec. IV can be obtained fr
OSp(32u1) by a Wigner-Inonu contraction:

Ga→l21Pa ,

Gab→Jab ,

Gabcde→l21Kabcde,

Qa→l2 ~1/2!Qa. ~50!

At the level of the Lagrangian, however, the problem is mor
complicated. Because of the ambiguity in the choice of th
invariant tensors and the large number of terms in the sup
anti–de Sitter Chern-Simons action, it is a nontrivial problem
to find an expression such that, under contraction, it reduc
to the action considered in this paper@20#.

Finally, we mention that the—Poincare´—supersymmetric
Chern-Simons actions found in this paper are not the on
possibilities. In dimensions greater than 5, the fermionic La
grangian accepts other Poincare´-invariant terms that give rise
to other supergravities. For example, in eleven dimensio
one can add to the fermionic Lagrangian the term

@Rab
`Rab#

2
`c̄`Dc. ~51!
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This term, however, requires extra bosonic fields to resp
supersymmetry. This is easily seen by studying the integ
bility conditions generated by Eq.~51!. One finds the equa-
tion over the bosonic fields:

@Rab
`Rab#

2
`Rcd50. ~52!

Thus, consistency requires an extra bosonic term in the
grangian of the form@Rcd

`Rcd#
2

`Rab
`cab which involves the

one-formcab . Varying this term with respect tocab gives
Eq. ~52!. Thus, the integrability condition is satisfied and th
action is supersymmetric. A complete classification of
possible fermionic Lagrangians for a given dimension a
their corresponding supersymmetry algebras is beyond
scope of this work. We would like to point out, however, th
the method outlined here seems to provide a simple wa
generate extensions of the super-Poincare´ algebra involving
extra bosonic fields.
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APPENDIX: GAMMA MATRICES

The Clifford algebra inD52n11 dimensions with
Minkowskian signature can be generated by a set of
2n32n matrices; the unitI andD matricesGa, satisfying
$Ga,Gb%52habI , where a,b, . . . ,51,2, . . . ,2n11 and
hab5diag(2,1,•••,1). In this signature,Gm

†5G0GmG0 .
It is always possible to find a representation ofGa matri-

ces in which

G:5G1G2
•••GD5~2 i !n11I . ~A1!

We defineGa1 . . .ap as the totally antisymmetric product of
gamma matrices,

Ga1 . . .ap5
1

p!(s sgn~s!Gas~1! . . .Gas~p! . ~A2!

Two useful formulas implicitly used in the text are

Ga1 . . .aD23
52

~2 i !n11

3!
ea1 . . .aD23abc

Gabc ~A3!

1

2
$Gabc,Gde%5Gabcde2@h@ab#@de#Gc1perm~abc!#,

~A4!

whereh@ab#@de#5hadhbe2haehbd.
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@4# A. Achúcarro and P. K. Townsend, Phys. Lett. B180, 89

~1986!.
@5# A. H. Chamseddine, Nucl. Phys.B346, 213 ~1990!.
@6# A. H. Chamseddine, Phys. Lett. B233, 291 ~1989!.
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