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Physical states of Bianchi type IX quantum cosmologies described
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A class of exact solutions of the Wheeler-DeWitt equation for diagonal Bianchi type IX cosmologies with a
cosmological constant is derived in the metric representation. This class consists of all the “topological
solutions” which are associated with the Bianchi type IX reduction of the Chern-Simons functional in Ash-
tekar variables. The different solutions within the class arise from the topologically inequivalent choices of the
integration contours in the transformation from the Ashtekar representation to the metric representation. We
show how the saddle points of the reduced Chern-Simons functional generate a complete basis of such
integration contours and the associated solutions. Among the solutions we identify two, which, semiclassically,
satisfy the boundary conditions proposed by Vilenkin and by Hartle and Hawking, respectively. In the limit of
a vanishing cosmological constant our solutions reduce to a class found earlier in special fermion sectors of
supersymmetric Bianchi type IX model$$0556-282(96)04716-9

PACS numbgs): 98.80.Hw, 04.60.Kz, 98.80.Bp

I. INTRODUCTION (which is gleaned from the special operator ordering appear-
ing naturally if supergravity is used as a starting p¢it—

Three decades after the first exploratory steps were maded]). The Ashtekar representation is then introduced only on
[1,2] canonical quantum gravity continues as a vigorous prothe quantum level as a mathematical device, like a Laplace
gram of fundamental research. New life was breathed intdransform, to simplify the equations. In fact, the representa-
this field about a decade ago by Ashtekar’s discoyghof  tion is in_trodgced as a kind of comp!exified momentum rep-
a representation of general relativity in terms of new vari-fésentation, in which Ashtekar's variables are the complexi-
ables, which render the Hamiltonian and diffeomorphismfied canonically conjugate momenta of the inverse triad

constraints more tractable. The developments in nonpertuf£0rresponding to the Bianchi type IX three-metric. The inte-
bative canonical quantum gravity which followed this ad- 9ration contour in the complex manifold spanned by these
vance[5-§] justify a reasonable hope that a mathematicallymom.entum variables may be chosen quite f(eely within the
requirements of convergence and the vanishing of boundary

consistent quantum gravity might be attainable. Still, the PT%erms in partial integrations. Integration contours which can

gram 1S far from completed and many facets of.the theorybe deformed into each other while satisfying these require-
remain to be explored. One such facet is the relation betweel i< are topologically equivalent. However, a given solu-

the mfetrlg representapqn and Ashtekar’s reprgsentaﬂon. Thign in Ashtekar variables may admit topologically inequiva-
question is far from trivial: Ashtekar's formulation starts out |ant choices of integration contours. Such a solution in
W_it_h complexified gene_ral relativity and sgitable reality con- aoghtekar variables may then correspond to several math-
ditions on the new variables have to be imposed at the engmatically and physically distinct solutions in the metric rep-
The metric representation, on the other hand, stays within theesentation. In fact, we shall show that this happens for the
domain of the real theory all along. Thus it is not clear, Chern-Simons topological solution in the diagonal Bianchi
priori, whether there is a unique one to one relation betweegype 1X minisuperspace model. We find that five topologi-
the complexified theory and the real theory. Can, e.g., @ally inequivalent integration contours over the Ashtekar
single solution of the Wheeler-DeWitt equation in Ash- variables exist, which are organized by five distinct saddle
tekar's variables before imposing reality conditions give risepoints of the reduced Chern-Simons functional and the ac-
to several mathematically and physically distinct solutions incompanying paths of steepest ascent and descent. These find-
metric variables? ings raise the interesting question of whether similar results
In the present paper we wish to examine this question irmay also be obtained in the full theory. The answer to this
the framework of the minisuperspace model of diagonal Bi-question is not obvious, because the enlargement of the con-
anchi type IX with a nonvanishing cosmological constant. figuration space, in principle, could render integration con-
Kodama[9] and Blencowd 10] have found a simple so- tours topologically equivalent, which appear as topologically
lution of the basic constraints of quantum gravity with cos-inequivalent when projected on the minisuperspace under in-
mological term in Ashtekar’s variables in the form of an vestigation.
exponential of the Chern-Simons functional. By projectingto  While this general question transcends our minisuper-
Bianchi type IX geometries one also obtains a solution forspace framework and must be left open here, our results for
the minisuperspace modgs]. the minisuperspace model yield several new exact solutions
In the present paper we shall start from the Wheelerin metric variables with nonvanishing cosmological constant.
DeWitt equation for the minisuperspace model in the metricThese solutions turn out to be of interest in their own right.
representation and a specific choice of operator orderingo simplify their discussion we restrict ourselves to the
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physically more interesting cage>0 throughout this paper tesimal coordinate transformation§=x‘+sj§'(j)(x), which

and postpone the examination of the cas€ 0 to a future leave tensors on the three-manifold form invarif2@]. In

work [15]. We discuss the asymptotic limits of the solutionsthe Bianchi type IX case the algebra of the Killing vectors

for a—0 andA—0 and show that, at least semiclassically, yjth Ei)(X) = £,,9/ax) is chosen to be

two of them satisfy the cosmological boundary conditions

proposed by Vilenkin[16] and by Hartle and Hawking [g(i) g(, T=ein

[17,18, respectively. Furthermore, we show that it is just the PSS G0

no-boundary state which additionally fulfills a physically implying daizggijkai/\g)k for the invariant basig' [20].

well-motivated normalizability condition. Using this special basis in the following, the components of
The remainder of this paper is organized as follows. Inall tensors on the three-manifold become functions of time

Sec. Il we establish our notation, put down the Wheelert only. Let us now consider the Bianchi type IX forfh9—

DeWitt equation in the adopted operator ordering, and brieflyp4]

list the five exact solutions for vanishing cosmological con-

stant which are known from recent work on Bianchi type IX h;;(t)=e?*(e?BV), (2.3

supergravity. In Sec. lll the Ashtekar representation is intro-

duced as a Comp|exiﬁed momentum representation, and tH@r the three-metric, but with I’eStriCtion to the diagonal case.

resulting Chern-Simons solution of the Wheeler-DeWitt op-Then (3;) is a diagonal, tracelessx33-matrix, which can

erator is given. In Sec. IV that solution is transformed to theb€ parametrized as

metric representation along five topologically distinct inte- .

gration contours, which establishes a basis of five linearly (Byj)= diag B+ +\3B- 8. —\3B_,—2B). (2.4

independent solutions which are all generated by the Cher

Simons soluztion. Their asymptotic behavior fdr—0,

A—0, or Aa*—x (wherea is the scale parameter and - 330 _ K24 K. Kii—

the cosmological constants studied in Sec. V. Here, in £=2mNEHCRKEHIGKE =24), 29

addition, we establish the relation of two of these solutions tavhere the spatial integration has been carried out using

those picked out by the boundary or no-boundary conditiong 3 A\@?A\w*=2(4m)?, and >R and K;; have to be ex-

of Vilenkin, and Hartle and Hawking, respectively. In the pressed in terms of the new metric variables 3.} and

last section we draw some conclusions and indicate how ouheir time derivatives. It turns out, that is independent of

results may also be used to establish certain limiting forms ofj and N/, so the conjugate momenta satisfy the primary

Bianchi type IX models coupled to a scalar matter field withconstraints

very small mass.

“he action Eq(2.2) yields a Lagrangian

N. _ _ ie —n-
Il. METRIC REPRESENTATION m.=—=0, 7= N (2.6)

A. Wheeler-DeWitt equation ) o . . )
i.e., they vanish identically. The preservation of the primary

The purpose of this section is to establish some notatiog,nsiraints in time leads to the secondary constraints
and to derive the Wheeler-DeWitt equation for the Bianchi

type IX model in the metric representation in a specific factor oL oL
ordering. We start from the Einstein-Hilbert action with a N OEW’
cosmological constam:

2.7

the first of which is the Hamiltonian constraint, while the

1 . ; i
Serl9,,]= _f d*xy—g(R—-2A), (2.1  second one, in the present case, is solved by takitg0.
e 9u 167 J m g Therefore the four-metric is now of the form

where a possible boundary term has been omitted, since such g=—N2(t)dt?>+ hij(t)a‘)i®25j. (2.8

a term will not contribute to the resulting Lagrangian den-

sity. In Eq. (2.1) the action integral is taken over the four- A straightforward Legendre transform yields the Hamil-
dimensional space-time manifold of the Universe, whjle tonian

andR are the determinant and the Ricci scalar of the four- _3a
metric g=(g,,), respectively. Performing the ADM space- H= Ne ,
time split[1] a lapsefunction N, a shiftvectorN', and the A8
three-metrich;; of the spatial slice are introduced in the

usual way[19]. Then the action Eq(2.1) takes the form where

Nyh ) H=—n+n" "+ 7 +e**U(B.)+3(8m)2Ae’.
Ser= | dt] d¥% —(CR—K?+K;K—2A), (2.9
167 J

(2.2 Here the momenta

whereh=det(h;;), 3R is the curvature scalar of the spatial oL or
manifold, andK;; is the extrinsic curvature tensor. The spa- Tl=—, g =— (2.10
tial homogeneity manifests itself in the existence of infini- da B



54 PHYSICAL STATES OF BIANCHI TYPE IX QUANTUM ... 25901

have been introduced, which are connected to the generah the metric representation. The nonstandard term
ized velocities as —127#® is a quantum correction to the classical “potential”
e**U(B.) and appears as a result of our choice of operator
ordering in Eq.(2.16).

L N —3a,_«a n o N —3a,.* 21
a——Ee T, ,Bi—%e T, ( . ])

] B. Solutions without cosmological constant
Furthermore, the curvature-potentidl(8.) has been de-

fined as For completeness, and because they will play some role in

the discussion of the general solutions in the case0, we
U(B.): = —6(4m)2%€2* 3R =3 (4m)2 Tr(e*f—2 e 2P). shall now present a derivation of the five known solutions of
(2.1  the Wheeler-DeWitt equation E(.17) without cosmologi-
cal constanf11-14.
The Hamiltonian constraint now simply reakls=0. An obvious, exact solution of the Wheeler-DeWitt equa-
To quantize the model, one may seek for solutions of thdion with vanishingA can be extracted from the form Eqg.
Schralinger equation|¥)=E|¥), where™ is now inter-  (2.16 immediately[11]:
preted as a self-adjoint operator over a suitably defined Hil-
bert space of wave functiongl’). The Hamiltonian con- o '=exp{
straint, which must be satisfied by the physical states, then wh:

implies a restriction to zero-energy states, yielding the o _ .
Wheeler-DeWitt equation In the classical limithi—0 one can interpref=i® as the

Euclidean action of this wave function. As known from
H|¥)=0. (2.13  Hamilton-Jacobi theory the derivatives of the action with
respect to the generalized coordinates play the role of the
The quantized version of the Hamiltonian Ef.9), whichis  generalized momenta, so the classical trajectories may be
obtained from the usual rules of canonical quantization, sufeomputed via Eq(2.11) from
fers from the well-known ambiguity in the choice of the
factor ordering. We shall resolve this ambiguity in such a de 973“@ dp. e
way that a class of simple semiclassical solutions of Eq. iNdt 247 @ iNdt 247
(2.13 (to be given in the following sectignwhose existence
and form, due to their semiclassical nature, are independelearly, becaus@ R, no real solutions to Eq2.19 exist,
of the factor ordering, becomexactsolutions. This will be  but one can introduce a new parameter of imaginary time
achieved through the following nonstandard procedure: It igl7: =iNdt and look for Euclidean solutions, corresponding
easily checked that the classical Hamiltonian &99) can be  to positive definite four-manifolds via Eq2.8). It can be

O]
7| (2.18

.. (219

written in the fornt shown that the solutions of Eq2.19 in this Euclidean re-
_ _ _ _ gime form a two-parameter family of classical Universes,
H=[i7"=® Jlim*+® J-[i7"—® Jliz "+ ] which become all asymptotically flat and isotropic in the

limit a—o, wherea:=2e“ is the average scale factor. In
fact, Eq.(2.18 is the well-known “wormhole state” of the
Bianchi type IX model.
To derive other solutions of the model without cosmologi-
O =272 Tre?h. (2.15 cal consta_nt we will first supject the Hamiltonian Eg.16
to the similarity transformation

—lim —® _Jlim +® _]+3(8m)2Ae%, (2.1

where® is defined as

Assuming now canonical commutation relations
[a,7*]=[B+,m"]=i%, the momenta in théa,S-} repre-
sentation may be expressed a&=—i#d,, 7 =—ihd.,
andH becomes

Hze*(CI)/ﬁ)H!e(IJ/fi, |\I,>=e*(<b/ﬁ)|q,l> (22@
which yields
H =4 02— 05— 2] 2h[® 0, D 0, —DP _d_]
+3 w%a’A. (2.21

H=[100= P oJ[Ady+P o] —[7d =D ,][Ad+ D 4]
—[ho_—® _J[ho_+® _]+3(8m)2Aed. (2.16

Moreover, new variables playing the role of the inverse triad

Finally, this corresponds to a Wheeler-DeWitt equation are introduced:

(B[ 92— % — 21— 12h D +e*U(B-)
+3(8m)2Ae® W (a,B. ;A)=0 (2.1

v

o= zaze-ﬁi(>0), i€{1,2,3, (2.22

whereB; are the diagonal elements of the matrg;). De-
These definitions, and the resulting factor ordering, are suggestgaoting derivatives with respect to these new variables with
by the existence of a supersymmetric extension of this form of thed; : = d/do; and rescaling the cosmological constant into
Hamiltonian[11,12,14. The factor ordering chosen here is not con- A=A A/64, one finds for the Hamiltonian in the; repre-
tained in the class considered[i5]. sentation:
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3 is to transform Eq.(2.23 to the generalized momentd;

H'=12 thl H{, where conjugate tar; by performing a suitable Fourier transforma-
1= .
tion.
N It will be crucial for all that follows that we shall choose
H{ := 0o 90— ai+ 51, eijk=1. (2.23 not a standard Fourier transforma_tion which is .c.arried Ol..lt
along the real axes, but a generalized, complexified Fourier

Two important features off’ in this representation should transformation defined &s

be mentionedH’ is a sum of three terms, producing each . R

other by cyclic permutation of the indices, and is invari- \If’((r)ZJ d*A e AW (A). (3.

ant under converting two of the; into their negatives. =
The first of these properties suggests to look for solution§_|ere we assume thatc (2

; ; is a smooth, three dimensional
by solving the reduced equation

manifold with the following propertiesii) The integrand of
_ r_ Eq. (3.1) and its first and second derivatives with respect to
d1d,—d3]¥'=0 2.2
710219192~ 5] (229 A; vanish at the bordesX of X; (ii) % is completely con-

with a o;-symmetric function®’. The simplest solution to tained within a domain wher#’ (4) is a holomorphic func-

this ansatz turns out to be tion of A4;. Assuming these properties Bf it is possible to
o converto; andg; to the new variables: It turns out that they
Vg =exgoyt+oytos], (2259 obey exactly the classical conversion rules
which by multiplication with the wormhole state gives a sec- d— A, Ui—>—3i , (3.2

ond solution, the “Hartle-Hawking state’[12—14. This

name can be justified by discussing the equations for th@here for brevityd, : = d/3.A;, i.e., the form of the Fourier-

classical trajectories analogous to Eg.19. There it turns  transformed equation is independent of the choic& afnd
out that each member of the tWO—paI’ameter fam”y of SOlu-Unaffected by our Comp|exiﬁcation procedure_

tions describes a I’egulémnd iSOtI’Opiﬂ: Universe in the limit The transformed equation E(223) now reads

a—0, i.e., in this sense¥?{; satisfies the “no-boundary”

proposal. - - 3
Three further solutions to the Wheeler-DeWitt equation H'W'=0, where H':zl H{,

occur just because of the second property of¢heepresen-

tation of H': namely[14], N
\Ifilo::eXF{Ui_O'j_O'k], Sijkzl' (22@ HI ' ajak[AJAk AI 2(9'}’ (33)

These “asymmetric solutions” create classical Universesvhich we will refer to as the Wheeler-DeWitt equation in the

which turn out to be asymptotically three dimensional: In theAshtekar representation.

limit a—< the ith dimension is curved to zero, while the

remaining manifold becomes an asymtotically flat, spatially B. Solution with cosmological constant

two dimensional wormhole.

We shall add a few remarks on these states concerningo
their normalizability. An investigation of the five wave func-
tions reveals that'),, and the three asymmetric solutions
\Pio are bounded functions on minisuperspace, whereas
\IfﬁB is unboundedin fact, it grows superexponentially for
a—+o, when 8. is kept fixed and small In the limit ~ = = ~|=,

a— —o, i.e., considering vanishing scale factors, all five HiW :&j&k{AJ‘Ak—Ai_E‘;i v'=0. 3.4

solutions approach unity, and thus a normalization integral

over the full{a,B+} space diverges in any case. However, Furthermore, one may even try to solve

the four bounded solution®y,,, and ¥° may at least be

called normalizable on Dirac’8 function, i.e.,normalizable

in the distribution senselntroducing a suitable integration

weight they will even become normalizable in the usual

sense. for each set ofi,j,k} ={1,2,3} simultaneously. This require-
ment gives the unique solution

An exact solution of the Wheeler-DeWitt equation with
nvanishing cosmological constant can now be easily con-
structed: As in Sec. Il B we try to make vanish each term of
the Hamiltonian of Eq(3.3) seperately, i.e., we seek for a
solution obeying the three equations

v'=0 (3.5

A A A= 5

I1l. ASHTEKAR REPRESENTATION 1
A. Wheeler-DeWitt equation in Ashtekar's variables V' (A)= exr{x(2 A Ay Azs— A 2)} : (3.6

The transformation of the Wheeler-DeWitt equation
(2.17 into the Ashtekar representatif®6,27] has been well
prepared during the last section by introducing the new triad Since we are dealing with complex valued quantitiesanyway,
variableso; via Eq.(2.22. All that remains to be done now the standard ' has been absorbed in these new variables.
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This solution is even known for the general spatially inho-

mogeneous case, where the exponent is given by the Chern- Ta - 0e ki AT AASO, ep=1 (4.9
Simons functional9,10]. In [27] the semiclassical content of !
the wave function Eq(3.6) was analyzed within the Ash-
tekar representation. Here we shall be interested, instead,
its transformation to the metric representation.[8] the
transformation back to metric variables was also attempted,

YﬁhiCh in the casec; # k,= A3# = 1 may be rewritten in the
orm

but there a suitable integration contour was only found in the A=t Az As, (4.9
caseA <0.2 In the following, we shall make use of the free-

dom in the choice of contours in the generalized Fourier Ay(1— A3) = kp+ K1 A3, (4.6)
transformation(3.1) to derive several differensolutions in

the metric representation which are all generated from Eq. (Ag— k3) (1= A2)2= (k1+ K3 A3) (Kot k1 Az). (4.7)

(3.6) by the choice of topologically inequivalent contours.

The third equation(4.7) is of fifth order and so yields five
IV. TRANSFORMATION TO THE METRIC different solutions, which correspond to five different saddle
REPRESENTATION points via Eqs(4.6) and(4.5).

One may show that also in the remaining case 5, EQ.
(4.4 has five different solutions witbd; components still

By definition, the generalized Fourier transform E8.1)  obeying Eq(4.7). The fact that there always exist five saddle
of Eq. (3.6) represents an exact solution of the Wheeler-points of the integrand’s exponent will be shown to result in
DeWitt operator Eq.(2.23 in the o; representation: Each a five dimensional space of solutions E4.1).
wave function of the form For concreteness, let us assume a special representation of

sucessive integrations

A. General form of the transformation

- 2 .. -
\P'(U):JECPA GX%K(A'K_ %AZ‘FA]_.Az.Ag) ;

- 2 ..
\If’(o)=f dA f dA f dA exp{—F(A,K)
(4.1 I3 : Ia(Ag) ’ I'1(Az,A3) ' A

where2, is chosen to imply a sulfficiently large falloff for the :f dAsf dA, exp{l(zAZK2+2A3K3—A§—A§)}
integrand oy, is a solution for the Bianchi type IX model Iy T'y(Ag) A
with cosmological constant. In E¢4.1) new variables

1
xf dA, ex;{X[AerZAl(KlJrAzAg)]},
Kii= }\oy=1 AaZe A (4.2 fde A
4.8
have been introduced. We will show that there esisteral . -
which one may show to be of no restriction to the general

manlfo_lds 2 _satlsfymg the co_ndltlons(l) and (i), COITe~ ~ ase. The one dimensional Gaussidn integral just has a
sponding todifferent solutions in the metric representation, _. .
single saddle point located at

so obviously, due to the existence of several topologically
inequivalent contours, the generalized Fourier transformation
is not unique. It will turn out that for the space of exact
solutions defined via Ed4.1) the number and location of the )
sorbed in a proportionality sign<” in the following, there
NI R T is only one nontrivial value this integral can take: Since the
FlAk)i=A k=3 A" A1 Ay As, (4.3 integrand has to vanish at the endsIaf each integration
curve can be deformed into the curve of steepest descent,
will play an essential role. While for the asymptotic form of which in the new coordinate
the solutions obtained from Ed4.1) by the saddle-point
method the importance of the saddle points is obvious and Al=A;— (k1+ Ay Az) (4.10
well known[28,29, their importance for thexactsolutions
is a surprise, which arises because of the freedom in thﬁjrns out to be simply the real axis. So thg integration
choice of the integration contours. These saddle points arﬁelds
determined by the equations

A1:K1+A2A3. (49)

+oo 1
f d.A ex;{—[—A12+(K1+A2A3)2]}

3More precisely, in the notation ¢®] we consider here thel~ ® A
representation withh >0, while in Sec. V of 9] the integration has 1
been evaluated onl}/ for thel* represgntation With\.>0, which =\ eXF{X(Kl"' AZAS)Z}’ (4.1
corresponds to thel™ representation with <0. We will comment
on the solutions in thed® representation in a future papgts],
where we treat the case<O. and Eq.(4.8) is turned into
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- 1 ) 2
\P’(O')OC d.Ag ex X(Kl+2A3K3_'A3)
I3
1 2 2
X dA, exg —[—A5(1—A3)
T(Ag) A

+2A2(K2+ KlAg)] . (412

0.2

The A, integral is again of Gaussian form with just one o1

saddle point
0

Kot k1 Az
=— 4.1
S (413
To keep this saddle point away from infinity, one has to
exclude the pointsd;==*1 from the integration path;.
With this prescription and using the new coordinate

FIG. 1. The caustic in minisuperspace foe0.

> Kot KiAs . . .
Ay=ApN1-A3— N (4.14  curin the one dimensional representatidriL8, too, and we
3 have still all freedom to choose a specific solution.
the integration is again easily carried out along the real axis, FOr @ discussion of the location of the saddle points we
with the result shall now restrict ourselves to the case-0. Then it turns
out that three of them are always real, which we will denote
by

V() K3+ 2 Agk3— A

dAz ’{1
r3\/1—A§ A

+ k1 Az)?
+(K2 K123)

1_./43

z.<-1, —-1=z,<0, zz=1 (4.19

in the following. The other two solutions may also be real or
conjugate complex depending on the values of the real posi-

1( Ki 2 tive variablesx;. The two corresponding regions in the

—_ + —_ I I ni I i -
-4, 1v A, space(which is the minisuperspace with fixetl) are sepa

j dA; l{
=| —— exX
Fs\/l_v‘lg A rated by acausticwhich is characterized by the existence of
a marginal saddle point off(z, E). We will refer to the first
+2A3K3—A§) } (4.19 part of the minisuperspace, where all five saddle points ap-
pear real in thez plane, as the “Euclidean regime” and

Here further variables.. : = (k= x,)/y2 have been intro- denote the two additional real saddle pointé by

duced. Let us now define the new exponent as

Oz, <z,=1, (4.20
A
f(z k)= T 15,7 22Ks~ i (4.1 whereas in the “Lorentzian regime” there exist two complex
saddle points labeled according to the signature of their
thenW’ is easily expressed as imaginary parts as
Imzy; <0< Imz; >0. (4.21

- dz 1 -
v (U)Mfrﬁ ex%xf(Z,K) . (417)
The caustic defined above will play an important role for

Furthermore, a new coordinatie= arcsirz will prove useful, some particular solutions which get their dominant integral
yielding the representation contribution at the corresponding marginal saddle point; for
Fig. 1 it has been computed numerically in the 3..} space
(herex=%Aa?; see below If on the other hand solutions
are considered which receive contributions from several dis-
tinct saddle points, it should be clear that the caustic is of no
where now the pointa= = 7/2 (and all 27-periodic repeti- significance to them. However, such solutions will turn out
tions) have to be excluded from the new integration patht  to be of little physical interest anyway.

is possible to show that all saddle pointsfadre determined

by the equation4.7) when Aj; is replaced byz and thez

solutions are translated to tlieplane afterwards. So the five  “The naming of the indices introduced here will be justified later
saddle points of the original integral representafiér) oc-  in the discussion of the asymptotic behavior of the solutions.

, (4.18

- 1 -
‘P’(a)ocfcdu exp{xf(sinu,x)
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. . .
Euclidean regime Lorentzian regime : 3
'
) '
2 2f 4N 1
h Y 1 >
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FIG. 2. Saddle points and curves of steepest descent.

Knowing the saddle points df, one may now calculate
the curves of steepest descent for the two different regimes
by solving the equations

Imf(sinu(7))= Imf (sinu,), oel—,+,Vil,0,3} FIG. 3. Basis set of integration paths.

(4.22

S 1 .
The result of a numerical approach to this problem is given Vel@)=Tun Ng()\)jcgdu exr{)\ f(sinu, <)
in Fig. 2. In the stripdReu|< /2 all solutions of Eq(4.22 (4.24
are presented. The dashed curves reach ®owith respect
to Ref and are given just for completeness. It is remarkablevhere/N,()\) is a normalization factor that usually is defined
that there exist paths running into the singularities atvia (¥,|¥,)=1. Here(-|-) denotes the scalar product of
As;==1, corresponding ta=*+1 andu=+ /2, in such a the underlying Hilbert space which we do not know explic-
manner that Re tends to—co. This results in additional itly. But even if we knew it, an analytical treatment of this
possibilities to create integration contours obeying the rehormalization procedure would certainly not be tractable.
quirements of the generalized Fourier transformation. That is why we adopt another convention and normalize the

wave functions by the condition

B. Basis of linearly independent solutions v (a=0)=1 (4.25
e = :

With the knowledge of the curves of steepest descent now
a basis of linearly independent solutio®1) may be de- which implies that¥, becomes independent of for
fined by choosing the integration paths shown in Fig. 3. Thea—0. This requirement gives analytically soluble normaliza-
same paths can be chosen in the Euclidean and in the Lorenten integrals, yielding
zian domain. It is easily seen that all curves enéssgential

singularities of the integrand of E¢4.18 in such directions 2iek r—0 2jelM
that the integrand andll its z derivatives vanish. This guar- Ni=N_=No=N3=— W " ,
antees that oLk VAT

~ _ 2et
. oe{—,+,Vil,0,3} M= 22T 1K g )
4.23

- 1 -
‘Pé(o)ocf du exp{—f(sinu,x)
Co A

01— (i —(IN)
are indeed solutions of the Wheeler-DeWitt equation in the XNO%

o representation. Furthermorany path satisfying the falloff VAT

condition can be deformed into a superposition of the curves

defined in Fig. 3; consequently one may express each wawehere K, and 1, are the McDonald’s and the modified

function in terms of the corresponding solutiqds23. Thus  Bessel function with index 0, respectively. The asymptotic

the above mentioned basis property of E423 is proven.  behavior of N, in the limit \—0 will be useful in the next
For concreteness, let us write section.

1
, with M=oy (4.26
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There are other solutions of the Wheeler-DeWitt equatiorwhich are symmetric under permutations of thg, are suit-
which will turn out to be rather interesting, and which of able to perform the generalized Fourier transformation in the
course can be expressed in terms of the basis solutiomepresentation Ed4.1), successive integrations analogous to
(4.24): By choosing another order of integrations in E4,.8) Egs. (4.89—-(4.19 reveal that¥, and ¥; are symmetric

the wave functionsl', , defined by under permutations of the; .
_ Finally, by examining the integrand’s symmetries under
Wi(k1,62,63):=W3( K2, K3, K1) and complex conjugationy¥', turns out to be a real wave func-
tion for pe{—,+,0,1,2,3 , whereasV; is complex-valued
WaK1,K2,K3):=V3(K3,K1,K7) (4.27) in general. v
apparently solve the Wheeler-DeWitt equation, and the
asymptotic behavior in Sec. V will show that the relations V. ASYMPTOTIC RESULTS
In this section we will discuss the asymptotic behavior of
v, , =Ky, v, , <«k,, . : . .
P,={ = P,={ = the solutions to the Wheeler-DeWitt equation with nonvan-
VY_, ki1Ska, VY_, k1=K, ishing cosmological constant derived above. This will be

(4.28 done by evaluating the integral representatidr24 in the
hold in the limit Aa2— . Since Eq.(4.24 is abasiswith ~ IMits #—0 andA—0, where Eq(4.24) tums out to assume

nonvanishing¥, in this limit, it follows that Eq.(4.28 must the form of a saddle point integral. Consequently, the asymp-

hold in general. This claim is proven by considering a gen-totlcally leading term of such an integral,

eral expansion in terms of the basis states, with coefficients A—0 27N

depending om\, but not ona, where one makes use of the szef(z)’x ~ /= 2 el &/, (5.9

limit a—o at fixed A #0. ¢ s
With the solutions¥; and¥,, now the sum

will be of particular interes{28,29. Here z; denotes that
_ saddle point of which provides the only contribution to the
Wt Wt W=+t (429 integral in the limit\ — 0, and the sign of the square root has
turns out to be a solution as well, which sgmmetricwith to be adjusted to the direction in which this saddle point is
respect to arbitrary permutations of tke. If in addition one  passed through. In the following/” will denote the prin-
uses the fact that the manifolds cipal value of the square root.
The application of Eq(5.1) to the general representation
S.i={Ae(®|AjeRe™ (™ jel12,3}, (430  (4.29 yields

1 _ 1 67
exp{xf(smu)} exﬁ{ﬁ(_q)’L—A_f(z))
Vi(F"(2(Z2=1)+1'(2)2)

1d2 '
-3 Wf(SII’U) =2y

u=u

A—0
W y(a,B) ~ Wiy Ny (7R

oel—,+, Vil,3}. (5.2

SinceA =% A/6, this formula includes both, the limit—0 andA —0. That the curves defined in Fig. 3 give indeed the
saddle point contributions mentioned in Ef.2) can be extracted from Fig. 2 by analyzing the topological propertidsimof
detail. The asymptotic expansi@B.2) also holds forV, as long as just the Euclidean regime is considered. In the Lorentzian
caseall saddle points can be passed throughChyand may therefore contribute, so in dependence on the variabéexl
B~ one has to choose the highest saddle point to employdE#).

The result(5.2) now suggests the definitions

6 i A—0 i
Spi=id— Tmf(zg), Ag:=[3 (F"(2o)(Z5—1)+1'(25)29)] 2=V, ~ ok N, A, exp{%se}. (5.3

In the limit #— 0 the exponens can then be interpreted directly as the action of the wave funétiprto a constant term,
which may arise fromV,), while A plays the role of Gaussian fluctuations around the saddle pginConsidering the limit
A—0, these interpretations hold no longer; h&eand A may just be called the phase and amplitude function¥of
respectively.

Unfortunately, Eq.(4.7) determining the saddle points is of fifth order, so analytical expressions for the roots are not
available. This is why we shall first restrict ourselves to the isotropic gase0, where Eq(4.7) can be solved explicitly,
yielding
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(0) 1
Zy,  KSg

29=-1, 2V=1+«, ZN=3-Vi—-«, i+Vi—«k= L0 b where k:= & Aa’. (5.4
Vil K= 7

With these preparations we shall now turn to a detailed dispand z,;, for small 8., and insert this expansion in the
cussion of the specific solutions. expression foiS,; . One finally obtain%

A. Vilenkin state 3+ 1- 1a?A

Sui =S\l +36mia’ —— (B2 + B2)+0(B2).

L (0) i . (5.10
If the saddle point{)) is inserted into Eq(5.3) one ob-
tains the action This action yields, for the classical trajectories in imaginary
time in leading order of3.. (with k=:Aa?),

1. Semiclassical limiti—0

i

S&?R=3T[1—<1— §a0)%?] (5.9

da B2+B2 [ (k+3)2-10
E~—\/1—4K+4 2 — -3

for the isotropic case. Choosing the lapse functibal, the (5.1)
only nontrivial equation for the classical trajectories reads
dg. 23+V1-4«k

~— 5.12
da 1 oSy N dr a 2+« B (
a——% Ja =—1 1—§aA (5.6)
where we have assumed< ;. Since the prefactor g.. in
and is easily integrated to give Eq. (5.12 is positive definite, the anisotropy decreases with

decreasingr, while Eq. (5.1]) then tells us thaf tends to
a,. Consequently, a flat, cylindrical four-geometry

3
a(t)=aqcosha, 't), where a0:=\/;, t>0.

ds?=dr?+a3d0?=0 (5.13
(5.7

is approached in this limit witta, playing the role of the
Reinserting this classical de Sitter solution into Efi6) and  cylinder radius.
remembering that 4/ " denotes the principal value of the With increasingr the pointa=0 is approached and the
square root reveals that, as mentioned, &q46) is solved  anisotropy grows rapidly so that the validity of Eq5.11)
only with the restriction tat>0, i.e., collapsing Universes and (5.12 breaks down. Therefora=0 is not a regular

are not described by ; . point of the Euclidean space-time manifold any more, and
Metrics with a<<ay can be obtained by solving the Eu- the no-boundary proposal i®t satisfied for¥ .
clidean version of Eq(5.6) with dr=idt, yielding A discussion of a Lorentzian version of E(%.11) and

(5.12 reveals that classical de Sitter-like Universes are de-
T agT scribed, which grow exponentially in tintewhile the anisot-
a(7)=a¢sin(@, "1, —H-=T<apm. (5.8)  ropy decreases monotonou§liowever, in generaB. does
not tend to zero, but approaches a finite value.
In any caseW¥; describes arexpandingUniverse, i.e.,
guantum mechanically speakinB,; supports a current in
minisuperspace which is directed to the positwvaxis. Thus

The restriction of ther variable appears for the same reason
as discussed above for E(p.7). Denoting the line element
of the unit three-sphere by(), the four-metric correspond-
ing to Eq.(5.8) reads

SA corresponding expression &, , which is here obtained as a
limit of the exact result, was first derived by Del Campo and Vilen-
(5.9 kin, using the WKB method23]. These authors didot discuss the
consequences for the semiclassical trajectories generated by this
It describes exactly a four-half-sphere with radags which  action.
in the limit 7' — /2 may be extended to the de Sitter solu- ©in the Lorentzian regime the action calculated from &g3) has
tion (5.7). Furthermore, the poira=0<7'= is a regular a nonvanishing reaind imaginary part for3.+0, so here the
point of the manifold, i.e. Wy, satisfies the no-boundary definition of classical trajectories is natpriori clear. Since we are
proposalin the isotropic case interested in pseudo Riemannian four-geometries, and because Re
It is interesting to see whether these properties remaiis,; dominates Irs,; for large scale parametem anyway, we
true when anisotropic corrections are considered. The calcihoose theeal part of S, to discuss the Lorentzian classical tra-
lation of such corrections is straightforward: One has to exjectories.

ds?=a3(d7'?+sirP7'dQ?), with 7':=a,'r.
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this wave function satisfies the condition proposed/dgn- A
kin and so is identified as theilenkin stateof the Bianchi Svn=i‘1)—iﬁz(0§+ o5+ 05)+0(A?),
type IX model with cosmological constant.
)\2
Avi=1+ §(a§+a§+o§)+O(A3). (5.15
2. The limit A—0
In contrast to the limiti—0, in the case\ —0 the loca-  Using Eq.(5.3) and the asymptotic behavior &f, in accor-
tion of the saddle points themselves dependsiomia the  dance with Eq(4.26), one finds, for the wave function,
variablesk; . Nevertheless, the expansi@f.2) remains ap- N ‘ N
plicable as long as just the leading term is considered, and Wi ~ Nyyak Ay e PS8 (5.1
happily now theA corrections of the saddle points can be . o
calculated taking account of the full influence of anisotropy.Thus in the limit A—0 the wormhole state of the. =0
The first terms read model is approached.
Zyi= L o+ L o1a N2+ O(ND), (5.14 3. The limit se=c2
Writing the wave functionsV', defined in Eq.(4.24) in
and the phase and amplitude functions are calculated to behe alternative form

127 k2 [ sinu+cosi2y/358_] 1{sinu\? sinu
0 —28 28
Vo=V NQLgdu exr{ A ( 020 e %P+ + e*h+

K
another possibility to approximate a saddle point integral occurs, namely thedimfAa?—o. This includes the cases
A—o and, in particulara—oo.
An asymptotic expansion of the saddle points is again possible without any restriction for the anisotropy variables, but the
result is rather lengthy. So we turn at once to the expressionS,foandA; obtained in this limit:

: (5.19

K

6w i
Svi :T[ — 43+ i Tre = S e¥)+ S[7— Tre# Tre 2P+ Tre®#]p +O(x~12), (5.18
A= e @l 4 L g +0(k (") (5.19
Vil \/E 2 \/; . .

Surprisingly, the contribution®, which usually arises from the wormhole state and would be expected to give a term of
O(k) in Eq. (5.18 has completely disappeared.
To shorten the final expression fity; , let us now expand for small mean anisotrgpy=\/82+ 32 :

K 7 3\ V4 5\ —(32 i 3
Wy ~ i ~ |35 1+ -/ +(3+128%)
B0 (S—W)—Zi | (3_77) A 2 avA
ol ZA) S TO A
—(3alhA)(68)2 ll\/E 3,8 .9 5 )_I_7T
Xe exp{h 3 a+A(2 36 B7) 7| (5.20
|
From this result it is clear that¥,;|? is bounded for As a general result the Vilenkin state becomes concen-

a—o. Furthermore, a saddle-point expansion fbr- at  trated aboui3.=0 in the limit k—o0, but with a nonvan-
fixed a reveals thatV; is square integrable ovgs.. , and  ishing Gaussian width
because it is bounded fer— —< [cf. Eq.(4.25] ¥\, is an

overall bounded function in minisuperspace and therefore

normalizable in the distribution sen&e. A 71 [AA
P~ 8Ver

3 (5.29

"This entails the possibility to use Marolf's methfgD] for intro- ~ To give an idea of the behavior of the exact analytical solu-
ducing a scalar product to define a Hilbert space of physical state$ion we have computed the real and imaginary part of the
which contains?,; , presumably as a ground state. wave function numerically in dependence arand A, as-
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FIG. 5. The initial value distribution generated by the Vilenkin
state.

tional sense, since on the caustie- — in the same limit.
However, it implies thatW,,; |2 is not square integrable with
respect to the3.. variables.

In subsection C we will define a new state as a superpo-
sition of ¥; and ¥y, in such a way that this undesirable
property of the initial value distribution is removed.

B. Asymmetric states

1. Semiclassical limiti—0

In the isotropic cas@.. =0 the actions of the wave func-
FIG. 4. The Vilenkin state. tions V. andW¥; are easily calculated as the corresponding
saddle-point contributions in accordance with Eg4):
sumingB.. =0 and picking units withi =278 The result is
shown in Fig. 4. The conspicious oscillations, which start on 6 i
the caustioc= 3= Aa®=3, indicate that the initial Euclidean 8(19): SEO)ZT
action has turned Lorentzian, corresponding to a pseudo-
Riemannian classical Universe. Far—0 the Gauss func-  opyiously these actions are purely Euclidean for genaral
tion of the wormhole state is recovered, whereas our normalynq A | and this statement remains true if anisotropic correc-
ization condition(4.23 is responsible for the form of the ions are considered. An additional discussion of the limit
graph a@a=0. ) . k—o will show that the asymmetric solutions themselves
In addition, the value of¥y;|; on the caustichas been  are indeed of no physical relevance, nevertheless, an exami-
computed for Fig. 5 in dependence on the anisotropy varipation of the casé — 0 will be worthwhile.
ablesg.. at fixed values\ = 3, #=27r. Since all the Lorent-
zian trajectories end at the caustic, we follow Hawking and 2. The limit A—0
suggest to interpref¥|? as the distribution of the initial As in the Vilenkin case, in the limith—0 asymptotic
values for a classical evolution of the Universe. For theexpressions for the saddlé poirts and z; are available
Vilenkin wave function the distribution is nicely concen- taking full account of anisotrony. The resalts read
trated aboup. =0, but there are directions of th@. plane aking by
in which |W; |2 takes afinite value for B—o. Moreover, N
one may show that in these directions a tube with finite z.=—1*—|o,— 0,/ +O(\?),
height andwidth is approached. This is not in contradiction 4
to the normalizability of the wave function in the distribu-

2 4

a

+
1+5| 7o

2ag

(5.22

23=1+%(0'1+0'2)+O()\2), (5.23

8This unusual choice of is due to the use of differently scaled
variables in the numerical work and is of course of little signifi- and using them, the calculation of the phase and amplitude
cance to the figure. functions is straightforward, yielding



2600

6
S.=i Tw+d)+ﬁ(a31|0'1—a'2|) +O(A),
|67
and
i N )
At=§ 1_Z(Ug+|01_02|) +0O(A9),
i
Ag=7|1+ 1(03—01—02) +0(A%). (5.2

Thus one obtains for the wave functions in the limhit-0

lim ¥, =W, exqd — o3+ |o1— 0],
A—0

lim W,=W0,, exfos— 01— 0,]=V3,
A—0

(5.2

where, in addition, the asymptotic behavidr26) of the nor-

malization factors has been taken into account. Obviousl

the solutions¥ . are not differentiable atr;=0>, i.e., in
particular at3_=0, but if they are replaced b¥ , , via Eq.
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KHOGZ‘/W)\\PO 1 K1K2
37 RKo(w) WHK—S{ 73]
1 K1K
xex;{x(fé—z ,1(32) (5.29

Sincef(z,E) is invariant under the permutatiof < x5, the
corresponding results for the case< x, can now easily be
obtained by exchanging the; indices %-2 in the Egs.
(5.27—(5.29. The asymmetric state, and ¥, defined in
Eq. (4.27) then have to be constructed frofn. by using Eq.
(4.28. Consequently, the asymptotic behavior of
WV, ,ie€{1,2,3, may be written in the closed form

_K:xz‘/ﬂ-)‘q,o i _ZKij
b Ko(u) ™ WHk; P

1
X ex N

We should mention that these solutions diverge badly in the

limit k— o, namely IikeeAa4, so they are surely not normal-
izable in minisuperspace for any sensible choice of the scalar
product. That is why we reject them as candidates for the
)physical quantum state of the Universe, and we are left with
a just two dimensional, physical space of solutions spanned
by ¥ vy and Wy,

(5.30

KiK
2 i"k
Ki_2 Ki )

, where 8ijk:1'

(4.28), solutions with nice analytical properties are obtained.

These are related tV; by permutations of thes; (or
equivalently thex;) as mentioned in Eq4.27).

The wave functionsV;,ie{1,2,3; are now easily recog- on of W, andW
nized asasymmetricstates, which approximate the corre- ;

sponding solutions‘ﬁlfi0 of the A=0 model whenA tends to
zero.

3. The limit k—x

Let us first consider the case > «,, where the saddle
points can be expanded as

22
K3( K= K3)
+—

Z_=—— v +0(k™?),
2 2
Ky  K3(Kk5— K1) B
Z+:——+—4+O(K 2),
K1 Kl

(5.27

_ K1K2 -1
Z3—K3+—Kz—+O(K ).
3

The asymptotic behavior of the solutiods. and ¥ 5 then
turns out to be

k= 2 [T\ 1 K2 1K
e SN P
Ko(w) K12 K3,
1 K2V1K3
Xexp{x Kiz— W) (528)

and

C. The no-boundary state

In this section we will show that there exists a superposi-
i such that this wave function is normal-
izable in minisuperspacand square integrable on the caus-
tic. Moreover, this uniquely determined solution will turn out
to satisfy the no-boundary condition proposed by Hartle and
Hawking[17,18) (at least in the sense that the classical Uni-
verses described by this wave function are regular at
a=0).° One may construct this solution by normalizing the
Vilenkin state to approach unity in the limp@, — +o at
B_=0 on the caustic. If one then considers the difference of
this new Vilenkin solution and its conjugate complex solu-
tion, the obtained distribution on the caustic is obviously
square integrable with respect . (for further explanation

of this construction, cf. Fig. )5 Finally, we shall choose the
still unspecified overall normalization factor as usual in ac-
cordance to our convention EGt.25. The solution defined
by this procedure turns out to be

(5.31)

1 -
Ve =Y, Im(NNBJ duexp{—f(sinu,x)
Cvil A

%A qualitative discussion of a no-boundary state for the aniso-
tropic Bianchi IX metrics was first given if21] and, more explic-
itly, including a numerical plot for the wave function in the semi-
classical limit, in[22]. An expansion for small anisotropy has
already been given if31]. However, the results obtained there are
very lengthy and hard to interpret. For a discussion of the semiclas-
sical trajectories generated by the no-boundary state in Ashtekar’s
variables, see ald®7].
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where r-01 (3
Y~ = v —T,]. (5.36
Jol¥) =i Ko(v) " 2(121 J °)
Ms=2e"g —2mlo(@)Ko(v)’

ol) Jo(v) =2l o( ) Ko() This representation displays nicely the individual saddle
point contributions in the Euclidean regime and will prove

_ i .: f 53 useful for the following discussions.

T (5.32

1. Semiclassical limith—0

Here the special integrals Since fori—0 the saddle poing, always provides the

2 dominating contribution in comparison with. andz;, the
Jo(v):= dx exg — vsin’x], relation (5.36) implies
0
i—0
Ko(v):= f dx exp — vcostix] (5.33 Ne 200
0

and all that remains to be considered is an expansion of

h b introduced which. i tent b V¥ in the limit 4—0.
%ve deen intro u<|:_e (;N |cd_,f_0dcher allnfex etni'8 may D€ €ON- "Ysing once more the expansidh.2), the action of the
sidered as generalized modified Bessel functions. solution W, is calculated to be

It is clear from its construction tha¥ g is integrable on
the caustic, normalizable in minisuperspace in the distribu- 377 a\2\32
tion sensgas¥;) and we shall show below that it satisfies Sé°)= - T[ 1—( —(—) ) } (5.39
the no-boundary condition fdt— 0. FurthermoreW¥ g ob-
viously is a real-valued wave function. The behavior of thejy ipe isotropic case, where also the normalization factor
no-boundary state fok— can be immediately extracted A7 has been taken into accoufih contrast to defintion
from the asymptotics of the Vilenkin stat8.20. Inthisway (53], The expression is easily recognized as the negative
an asymptotic description of g in the Lorentzian regime is - vjlenkin action(5.5). Consequently the classical trajectories
available, so we will restrict ourselves to the Euclidean re4ng spacetime metrics are the same as in the Vilenkin case
gime throughout the following. To discuss the limits=0  yp to a reversal of ther direction and, as there, the no-
and A—0 we shall first expand the normalization factor houndary condition is satisfied in the isotropic case.

Nyg for small \. Saddle-point expansions g and K, in But let us now consider the influence of anisotropy: Then
the corresponding limiv—oe finally yield for the leading the action is of the form

term in the asymptotic series
3—\ 1-3%a’A

Qo

- Ny —_ 0 102 2 2 3
Tt YV 3y S TR (B A+ OB,
2N (5.39

where we have also used E@.26). Obviously the normal-  implying (with k= Aa%)
ization factorsNyg and A, have the same asymptotic behav-

- e Han i da 2+ B2 +3)2-10
ior in the limit A — 0, where¥ g may be written in the form —~M—4'B+ ,32 3+(K ) ,
dr (k+2) 1-4k
r01 o 1 . (5.40
Vs ~ E\IfWHNOJ  duex Kf(smu,x) .
CvilOCy; (5.39 dB. 2 S—M 54
dr a 2+« B (547

If one now chooses the integration path&®C, & C;06C,, _ } ) _

which is equivalent t&,; ©CY, the final expression for the for the Euclidean, classical trajectories. As the prefactor of

asymptotic behavior in the limx—0 becomes B+ in Eq. (5.41) is positive definite, the poinB.=0 is
attractive for decreasing, i.e., in this7 direction 8 tends to
zero. Then in Eq(5.40 the B.. term may be neglected, and

10similar normalization integrals occur in the calculation/df; thf scale factor will reaca=0 at afinite value of 7, say

and N in Eq. (4.26), but with squaredtrigonometric functions in 7=0. The asymptotic form of Eqs5.40 and (5.41) for

the exponent. Such integrals lead to the modified Bessel function§— 0 Simply reads

o andK,, that alternatively may be expressed as hypergeometric dar—o dg. ~—02

functions of the,F; type. As a generalization, the integrals Eq. a1 g9 ~a (5.42

(5.33 may be written in terms of generalized hypergeometric func-

tions of the,F, type, but the integrak’y requires logarithmic con-  and theB. equation can be integrated to give

tributions (asK,) which, as far as we know, have no special name

in the ,F, case. That is why we prefer to deal with the integral d —02da d ) —0
representations themselves. a;ln,Bi T adr dr Ina® < B. = a% (543
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FIG. 7. The initial value distribution generated by the no-

FIG. 6. The no-boundary state. boundary state.
Consequently, the classical Universes become exactly isotro- 1/ 3
pic in reachinga=0, and there look the same as in the case lim ‘I’NBZE( > \If?—\lfﬁB) (5.48
B-=0. Therefore also Universes anisotropi@at0 remain A—0 =1

regular as tends to zero. S& g is indeed a solution of the

Wheeler-DeWitt equation which satisfies the no-boundarfye can see tha .. doesnot approach the no-boundary
proposal semiclassically and its name is justified, after all. stateW?. of the A,\;BO model whenA tends to zero even
If Egs. (5.40 and (5.41) are considered with increasing thoughNbBoth wave functiongs many othejssatisfy the no-

7, the anisotropy grows exponentially as in the Vilenkin L . . :
case, and the validity of these equations breaks down. Fllgoundary condition semiclassically fbr—0. The difference

nally, the trajectories approach the caustic, and tunnelinComes from our additional requirements thiag for A+ 0
Y, | > app . ' $e normalizable in the distributional sense with respect to all
processes to Lorentzian space-time become more and m

robable Ofree variable$«, 8.} andbe square integrable with respect
P ' to B. on the causti¢! The normalizability of ¥'yg for
a—o, like that of '\, , is directly related to the fact that,
semiclassically, these states describe a Lorentzian Universe
To discuss the limitA—O of the no-boundary state in that limit. For example, had we defined the no-boundary
Vg We will again make use of the relation E§.36. Since  state simply by¥, this would have given an acceptable limit
W, —W? for A—0 is known from before fore{1,2,3, only W35 for A—0, but for A#0 the semiclassical limit o,
the behavior o’ in Eq. (5.36 remains to be discussed. An gives, besides a Lorentzian, also Euclidean contributions. As
expansion of#", for small A is straightforward and we just a consequence, this alternative “no-boundary state” would
give the final results: contain components, which describe additional Euclidean
Universes fora— o0, and make the wave function diverge in
Y this limit. Furthermore, it is easily checked thlg, is a wave
zo=1=7 (o1 03)+0(\?), (5.449  function which isnot square integrable on the caustic.
Figure 6 shows a numerical plot of the no-boundary state
in the{a,A} plane analogous to Fig. 4. To allow a clear view

2. The limit A—0

_ |6 the plot has been bounded to valuesfg lying in the
SO_I[THD flostoptog)| +O(A), (549 interval [ —5,+5]. Like in the Vilenkin case, rapid oscilla-
tions start in the Lorentzian regime, and cleaflyz—1 as
i N a—0. In view of the strong increase of the amplitude with
Ao=§ 1+ Z(al+ oyt 03)|+O(A?), (5.46 a at small A, one might worry about normalizability in

minisuperspace. However, in connection with Eg31) the
asymptotic result for the Vilenkin stat.20 guarantees that

lim Wo=U0, exdo,+o,+03]=P0. (5.47)

A—0

The property of normalizability in minisuperspace opens again

Obviously the no-boundary staf2.25 of the A=0 modelis  the possibility to define a scalar product for physical states as in
approached by¥,. From Eq.(5.36 it now follows, using [30], and to consider the no-boundary state as a ground state in the
Egs.(5.26 and(5.47), resulting Hilbert space.
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W5 falls off asa™(®2 for eachA if sufficiently large scale describes expanding and collapsing Universes simulta-

factors are considered. neously, while¥ ; just describes the expanding phase, and
Finally, Fig. 7 shows the resulting initial value distribu- thus is not invariant under time reversal.

tion |Wg|2 for the classical evolution of the Universe. As  In summary one might prefer the no-boundary solution

announced abové¥ s|? rapidly approaches zero with in- V¥ \g asthe quantum state _of the Universe. However, we

creasingg in all directions of thes. plane, thus represent- should stress the fact that it is not the no-boundary idea itself

ing an integrable probability distribution. The figure showsWhich picks out uniquely this solution among the five solu-
that the quantum stat¥,g implies anisotropic classical tions described by the Chern-Simons functional, but several

Universe in the Lorentzian regime, apart from possible quanadditional, p.hysically well-motivatgd integrability conditions
tum fluctuations aboys. =0. have to be |mposed_ on the solution to gets. Then, the
- resulting wave functions foundto satisfy the no-boundary
proposalin the semiclassical limif.—0.
Finally, it may be of interest to consider the application of
the results obtained here to a model with a massive, scalar
The central purpose of this paper was to derive exact somatter field** We want to show in brief that th& solutions
lutions of the Wheeler-DeWitt equation with cosmological found above are directly applicable to this model in the limit
constant by employing a generalized Fourier transformatiom—0.
to the Chern-Simons solution E.6). As a result we found A massive Klein-Gordon field) gives a contribution
five linearly independent states, which approach the five
known A =0 states wher\ tends to zero. However, fok 1
#0, there is just a two dimensional subspace which appears Sy.{g,,,.¢]=— 8_f d*x \/—_g(g“”¢,u¢,,,+ m?¢?)
to be physically relevant in the sense that the states are nor- mIM
malizable wave functions in minisuperspace and allow a (6.2)
classical Universe with pseudo-Riemannian geometry. W . . . .
were able to construct a basis of this subspace in form of th(%e0 the action(2.1) and finally yields an additive term
solutions¥; and¥ g, which, semiclassically, satisfy the
boundary conditions proposed by Vilenkin and Hartle and Hma=3[ — #7205+ m2a®m? ¢?] (6.2
Hawking, respectively. Moreover, with the additional re-
quirement of integrability on the caustic, just one solutionin the Hamiltonian(2.16). If now the field amplitudeg is
remains, namely the no-boundary stdtg;. We may add a rescaled with the mass, n:=me¢, H,4 is converted to
few remarks comparing the two physically interesting solu-
tions ¥z and\lf\," . . . . ' H =3[ — 72m252 + m2ab 2], 6.3
If the Euclidean geometries are considered, which arise 7
from_ the semiclassica_l traject(_)ries in_ the_EucIio!ean do_mairtomparing with Eq(2.21) it is easily seen that in the limit
of minisuperspace by introducing an imaginary time variabléy, .o this term corresponds exactly to the contribution
dr=idt, the two solutions behave very differently: While a \ynich arises from a cosmological constant 2. Thus one

Universe described by the no-boundary state becomes isotrgpains the asymiotic solution for the Bianchi type IX model
pic and remains regular in approachiag0, the Vilenkin  \yith a massive. scalar field

trajectories diverge in somg-. directions fora—0, i.e., the
corresponding Euclidean four-geometry behaves singular for 0
small scale parameters. V(a,Bs, ;M) ~ ¥(a,Bs i A=mid?d) (6.4)

If one considers the Euclidean approach to the caustic B B
then all trajectories generated by the Vilenkin state reach thgt fixed A=m?#?, which, by further expansion about
caustic in the isotropic poink= 3, 8. =0, whereas the no- m=0, may be extended to small, but nonvanishing masses of
boundary trajectories run to infinite anisotropy. the field.

The creation of a classical Universe with pseudo- As an interesting project for future consideration we leave
Riemannian geometry happens by a tunneling procesge application of the generalized Fourier transformation to
through this caustic. The tunneling probability is given as thehe general form of the Chern-Simons functiof@/10]. It
value of [W|Z on the caustic and thus is a function Bf  would be interesting to determine whether again a Vilenkin
only (A taken as fixefl The results for these distributions, and a no-boundary state are obtained as topologically in-
which rule the initial values for the classical evolution of the equivalent functional integrals from the Chern-Simons solu-
Universe, are shown in Fig. 5 and Fig. 7 and predict both anions. Work in this direction is in progress.
isotropic Universe as the most probable classical Universe
among all alternatives. However, just the no-boundary distri- ACKNOWLEDGMENTS
bution is sharply concentrated abg8t =0 and integrable
with respect to the anisotropy variables, whereas the Vilen- Support of this work by the Deutsche Forschungsgemein-
kin distribution is broader andot integrable(even though schaft through the Sonderforschungsbereich “Unordnung
bounded. und grof3e Fluktuationen” is gratefully acknowledged.

In the Lorentzian regime both wave functions describe a
de Sitter-like Universe, which becomes more and more iso=—
tropic asa tends to infinity. As a difference¥ g always 12For solutions to the isotropic model sg&3,16—-18.

VI. CONCLUSION
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