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Physical states of Bianchi type IX quantum cosmologies described
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A class of exact solutions of the Wheeler-DeWitt equation for diagonal Bianchi type IX cosmologies with a
cosmological constant is derived in the metric representation. This class consists of all the ‘‘topologica
solutions’’ which are associated with the Bianchi type IX reduction of the Chern-Simons functional in Ash-
tekar variables. The different solutions within the class arise from the topologically inequivalent choices of th
integration contours in the transformation from the Ashtekar representation to the metric representation. W
show how the saddle points of the reduced Chern-Simons functional generate a complete basis of su
integration contours and the associated solutions. Among the solutions we identify two, which, semiclassicall
satisfy the boundary conditions proposed by Vilenkin and by Hartle and Hawking, respectively. In the limit of
a vanishing cosmological constant our solutions reduce to a class found earlier in special fermion sectors
supersymmetric Bianchi type IX models.@S0556-2821~96!04716-9#

PACS number~s!: 98.80.Hw, 04.60.Kz, 98.80.Bp
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I. INTRODUCTION

Three decades after the first exploratory steps were m
@1,2# canonical quantum gravity continues as a vigorous p
gram of fundamental research. New life was breathed in
this field about a decade ago by Ashtekar’s discovery@4# of
a representation of general relativity in terms of new va
ables, which render the Hamiltonian and diffeomorphis
constraints more tractable. The developments in nonper
bative canonical quantum gravity which followed this ad
vance@5–8# justify a reasonable hope that a mathematica
consistent quantum gravity might be attainable. Still, the pr
gram is far from completed and many facets of the theo
remain to be explored. One such facet is the relation betw
the metric representation and Ashtekar’s representation. T
question is far from trivial: Ashtekar’s formulation starts ou
with complexified general relativity and suitable reality con
ditions on the new variables have to be imposed at the e
The metric representation, on the other hand, stays within
domain of the real theory all along. Thus it is not clear,a
priori , whether there is a unique one to one relation betwe
the complexified theory and the real theory. Can, e.g.
single solution of the Wheeler-DeWitt equation in Ash
tekar’s variables before imposing reality conditions give ri
to several mathematically and physically distinct solutions
metric variables?

In the present paper we wish to examine this question
the framework of the minisuperspace model of diagonal B
anchi type IX with a nonvanishing cosmological constant.

Kodama@9# and Blencowe@10# have found a simple so-
lution of the basic constraints of quantum gravity with co
mological term in Ashtekar’s variables in the form of a
exponential of the Chern-Simons functional. By projecting
Bianchi type IX geometries one also obtains a solution f
the minisuperspace model@8#.

In the present paper we shall start from the Wheele
DeWitt equation for the minisuperspace model in the met
representation and a specific choice of operator order
542821/96/54~4!/2589~16!/$10.00
ade
ro-
to

ri-
m
tur-
-
lly
o-
ry
een
his
t
-
nd.
the

en
, a
-
se
in

in
i-

s-
n
to
or

r-
ric
ing

~which is gleaned from the special operator ordering appe
ing naturally if supergravity is used as a starting point@11–
14#!. The Ashtekar representation is then introduced only
the quantum level as a mathematical device, like a Lapla
transform, to simplify the equations. In fact, the represen
tion is introduced as a kind of complexified momentum re
resentation, in which Ashtekar’s variables are the comple
fied canonically conjugate momenta of the inverse tria
corresponding to the Bianchi type IX three-metric. The int
gration contour in the complex manifold spanned by the
momentum variables may be chosen quite freely within t
requirements of convergence and the vanishing of bound
terms in partial integrations. Integration contours which c
be deformed into each other while satisfying these requi
ments are topologically equivalent. However, a given sol
tion in Ashtekar variables may admit topologically inequiva
lent choices of integration contours. Such a solution
Ashtekar variables may then correspond to several ma
ematically and physically distinct solutions in the metric rep
resentation. In fact, we shall show that this happens for t
Chern-Simons topological solution in the diagonal Bianc
type IX minisuperspace model. We find that five topolog
cally inequivalent integration contours over the Ashtek
variables exist, which are organized by five distinct sadd
points of the reduced Chern-Simons functional and the a
companying paths of steepest ascent and descent. These
ings raise the interesting question of whether similar resu
may also be obtained in the full theory. The answer to th
question is not obvious, because the enlargement of the c
figuration space, in principle, could render integration co
tours topologically equivalent, which appear as topologica
inequivalent when projected on the minisuperspace under
vestigation.

While this general question transcends our minisupe
space framework and must be left open here, our results
the minisuperspace model yield several new exact solutio
in metric variables with nonvanishing cosmological consta
These solutions turn out to be of interest in their own righ
To simplify their discussion we restrict ourselves to th
2589 © 1996 The American Physical Society
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physically more interesting caseL.0 throughout this paper
and postpone the examination of the caseL,0 to a future
work @15#. We discuss the asymptotic limits of the solution
for \→0 andL→0 and show that, at least semiclassicall
two of them satisfy the cosmological boundary condition
proposed by Vilenkin@16# and by Hartle and Hawking
@17,18#, respectively. Furthermore, we show that it is just th
no-boundary state which additionally fulfills a physicall
well-motivated normalizability condition.

The remainder of this paper is organized as follows.
Sec. II we establish our notation, put down the Wheele
DeWitt equation in the adopted operator ordering, and brie
list the five exact solutions for vanishing cosmological co
stant which are known from recent work on Bianchi type I
supergravity. In Sec. III the Ashtekar representation is intr
duced as a complexified momentum representation, and
resulting Chern-Simons solution of the Wheeler-DeWitt o
erator is given. In Sec. IV that solution is transformed to th
metric representation along five topologically distinct inte
gration contours, which establishes a basis of five linea
independent solutions which are all generated by the Che
Simons solution. Their asymptotic behavior for\→0,
L→0, or La2→` ~wherea is the scale parameter andL
the cosmological constant! is studied in Sec. V. Here, in
addition, we establish the relation of two of these solutions
those picked out by the boundary or no-boundary conditio
of Vilenkin, and Hartle and Hawking, respectively. In th
last section we draw some conclusions and indicate how
results may also be used to establish certain limiting forms
Bianchi type IX models coupled to a scalar matter field wi
very small mass.

II. METRIC REPRESENTATION

A. Wheeler-DeWitt equation

The purpose of this section is to establish some notat
and to derive the Wheeler-DeWitt equation for the Bianc
type IX model in the metric representation in a specific fact
ordering. We start from the Einstein-Hilbert action with
cosmological constantL:

SEH@gmn#5
1

16pEMd4xA2g~R22L!, ~2.1!

where a possible boundary term has been omitted, since s
a term will not contribute to the resulting Lagrangian de
sity. In Eq. ~2.1! the action integral is taken over the four
dimensional space-time manifold of the Universe, whileg
andR are the determinant and the Ricci scalar of the fou
metric g5(gmn), respectively. Performing the ADM space
time split @1# a lapse-functionN, a shift-vectorNi , and the
three-metrichi j of the spatial slice are introduced in th
usual way@19#. Then the action Eq.~2.1! takes the form

SEH5E dtE d3x
NAh
16p

~3R2K21Ki jK
i j22L!,

~2.2!

whereh5det(hi j ),
3R is the curvature scalar of the spatia

manifold, andKi j is the extrinsic curvature tensor. The spa
tial homogeneity manifests itself in the existence of infin
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tesimal coordinate transformationsx8 i5xi1« jj ( j )
i (x), which

leave tensors on the three-manifold form invariant@20#. In
the Bianchi type IX case the algebra of the Killing vector
with jW ( i )(x)5j ( i )

j ]/]xj is chosen to be

@jW ~ i ! ,jW ~ j !#5« i jkjW ~k! ,

implying dṽ i5 1
2« i jkṽ

j`ṽk for the invariant basisṽ i @20#.
Using this special basis in the following, the components
all tensors on the three-manifold become functions of tim
t only. Let us now consider the Bianchi type IX form@19–
24#

hi j ~ t !5e2a~ t !~e2b~ t !! i j ~2.3!

for the three-metric, but with restriction to the diagonal cas
Then (b i j ) is a diagonal, traceless 333-matrix, which can
be parametrized as

~b i j !5 diag~b11A3b2 ,b12A3b2 ,22 b1!. ~2.4!

The action Eq.~2.2! yields a Lagrangian

L52pNe3a~3R2K21Ki jK
i j22L!, ~2.5!

where the spatial integration has been carried out us
*ṽ1`ṽ2`ṽ352(4p)2, and 3R and Ki j have to be ex-
pressed in terms of the new metric variables$a,b6% and
their time derivatives. It turns out, thatL is independent of
Ṅ and Ṅi , so the conjugate momenta satisfy the prima
constraints

pN:5
]L
]Ṅ

[0, p i :5
]L
]Ṅi

[0; ~2.6!

i.e., they vanish identically. The preservation of the prima
constraints in time leads to the secondary constraints

]L
]N

[0[
]L
]Ni , ~2.7!

the first of which is the Hamiltonian constraint, while the
second one, in the present case, is solved by takingNi[0.
Therefore the four-metric is now of the form

g52N2~ t !dt21hi j ~ t !ṽ
i
^ ṽ j . ~2.8!

A straightforward Legendre transform yields the Hami
tonian

H5
Ne23a

48p
H,

where

H52pa21p12
1p22

1e4aU~b6!13 ~8p!2Le6a.
~2.9!

Here the momenta

pa5
]L
]ȧ

, p65
]L

]ḃ6

~2.10!
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have been introduced, which are connected to the gene
ized velocities as

ȧ52
N

24p
e23apa, ḃ65

N

24p
e23ap6. ~2.11!

Furthermore, the curvature-potentialU(b6) has been de-
fined as

U~b6!:526 ~4p!2e2a 3R53 ~4p!2 Tr~e4b22 e22b!.
~2.12!

The Hamiltonian constraint now simply readsH[0.
To quantize the model, one may seek for solutions of

Schrödinger equationHuC&5EuC&, whereH is now inter-
preted as a self-adjoint operator over a suitably defined H
bert space of wave functionsuC&. The Hamiltonian con-
straint, which must be satisfied by the physical states, t
implies a restriction to zero-energy states, yielding t
Wheeler-DeWitt equation

HuC&50. ~2.13!

The quantized version of the Hamiltonian Eq.~2.9!, which is
obtained from the usual rules of canonical quantization, s
fers from the well-known ambiguity in the choice of th
factor ordering. We shall resolve this ambiguity in such
way that a class of simple semiclassical solutions of E
~2.13! ~to be given in the following section!, whose existence
and form, due to their semiclassical nature, are independ
of the factor ordering, becomeexactsolutions. This will be
achieved through the following nonstandard procedure: I
easily checked that the classical Hamiltonian Eq.~2.9! can be
written in the form1

H5@ ipa2F ,a#@ ipa1F ,a#2@ ip12F ,1#@ ip11F ,1#

2@ ip22F ,2#@ ip21F ,2#13 ~8p!2Le6a, ~2.14!

whereF is defined as

F:52pe2a Tre2b. ~2.15!

Assuming now canonical commutation relation
@a,pa#5@b6 ,p6#5 i\, the momenta in the$a,b6% repre-
sentation may be expressed aspa52 i\]a ,p

652 i\]6 ,
andH becomes

H5@\]a2F ,a#@\]a1F ,a#2@\]12F ,1#@\]11F ,1#

2@\]22F ,2#@\]21F ,2#13 ~8p!2Le6a. ~2.16!

Finally, this corresponds to a Wheeler-DeWitt equation

$\2@]a
22]1

2 2]2
2 #212\F1e4aU~b6!

13 ~8p!2Le6a%C~a,b6 ;L!50 ~2.17!

1These definitions, and the resulting factor ordering, are sugge
by the existence of a supersymmetric extension of this form of
Hamiltonian@11,12,14#. The factor ordering chosen here is not co
tained in the class considered in@25#.
ral-

the

il-

hen
he

uf-
e
a
q.

ent

t is

s

in the metric representation. The nonstandard term
212\F is a quantum correction to the classical ‘‘potential’’
e4aU(b6) and appears as a result of our choice of operato
ordering in Eq.~2.16!.

B. Solutions without cosmological constant

For completeness, and because they will play some role
the discussion of the general solutions in the caseLÞ0, we
shall now present a derivation of the five known solutions o
the Wheeler-DeWitt equation Eq.~2.17! without cosmologi-
cal constant@11–14#.

An obvious, exact solution of the Wheeler-DeWitt equa
tion with vanishingL can be extracted from the form Eq.
~2.16! immediately@11#:

CWH
0 :5expF2

F

\ G . ~2.18!

In the classical limit\→0 one can interpretS5 iF as the
Euclidean action of this wave function. As known from
Hamilton-Jacobi theory the derivatives of the action with
respect to the generalized coordinates play the role of th
generalized momenta, so the classical trajectories may
computed via Eq.~2.11! from

da

iNdt
52

e23a

24p
F ,a,

db6

iNdt
5
e23a

24p
F ,6 . ~2.19!

Clearly, becauseFeR, no real solutions to Eq.~2.19! exist,
but one can introduce a new parameter of imaginary tim
dt:5 iNdt and look for Euclidean solutions, corresponding
to positive definite four-manifolds via Eq.~2.8!. It can be
shown that the solutions of Eq.~2.19! in this Euclidean re-
gime form a two-parameter family of classical Universes
which become all asymptotically flat and isotropic in the
limit a→`, wherea:52 ea is the average scale factor. In
fact, Eq.~2.18! is the well-known ‘‘wormhole state’’ of the
Bianchi type IX model.

To derive other solutions of the model without cosmologi-
cal constant we will first subject the Hamiltonian Eq.~2.16!
to the similarity transformation

H5e2~F/\!H8eF/\, uC&5e2~F/\!uC8& ~2.20!

which yields

H85\2@]a
22]1

2 2]2
2 #22 \@F ,a]a2F ,1]12F ,2]2#

13p2a6L. ~2.21!

Moreover, new variables playing the role of the inverse tria
are introduced:

s i :5
p

\
a2e2b i~>0!, i e$1,2,3%, ~2.22!

whereb i are the diagonal elements of the matrix (b i j ). De-
noting derivatives with respect to these new variables wit
] i :5]/]s i and rescaling the cosmological constant into
l5\L/6p, one finds for the Hamiltonian in thes i repre-
sentation:

sted
the
n-
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H8512\2(
i51

3

Hi8 , where

Hi8 :5s jskF] j]k2] i1
l

2
s i G , « i jk51. ~2.23!

Two important features ofH8 in this representation should
be mentioned:H8 is a sum of three terms, producing eac
other by cyclic permutation of the indices, andH8 is invari-
ant under converting two of thes i into their negatives.

The first of these properties suggests to look for solutio
by solving the reduced equation

s1s2@]1]22]3#C850 ~2.24!

with a s i-symmetric functionC8. The simplest solution to
this ansatz turns out to be

CNB80 :5exp@s11s21s3#, ~2.25!

which by multiplication with the wormhole state gives a se
ond solution, the ‘‘Hartle-Hawking state’’@12–14#. This
name can be justified by discussing the equations for
classical trajectories analogous to Eq.~2.19!. There it turns
out that each member of the two-parameter family of so
tions describes a regular~and isotropic! Universe in the limit
a→0, i.e., in this senseCNB

0 satisfies the ‘‘no-boundary’’
proposal.

Three further solutions to the Wheeler-DeWitt equati
occur just because of the second property of thes i represen-
tation ofH8: namely@14#,

C i8
0 :5exp@s i2s j2sk#, « i jk51. ~2.26!

These ‘‘asymmetric solutions’’ create classical Univers
which turn out to be asymptotically three dimensional: In t
limit a→` the i th dimension is curved to zero, while th
remaining manifold becomes an asymtotically flat, spatia
two dimensional wormhole.

We shall add a few remarks on these states concern
their normalizability. An investigation of the five wave func
tions reveals thatCWH

0 and the three asymmetric solution
C i

0 are bounded functions on minisuperspace, where
CNB

0 is unbounded~in fact, it grows superexponentially fo
a→1`, when b6 is kept fixed and small!. In the limit
a→2`, i.e., considering vanishing scale factors, all fiv
solutions approach unity, and thus a normalization integ
over the full $a,b6% space diverges in any case. Howeve
the four bounded solutionsCWH

0 and C i
0 may at least be

called normalizable on Dirac’sd function, i.e.,normalizable
in the distribution sense. Introducing a suitable integration
weight they will even become normalizable in the usu
sense.

III. ASHTEKAR REPRESENTATION

A. Wheeler-DeWitt equation in Ashtekar’s variables

The transformation of the Wheeler-DeWitt equatio
~2.17! into the Ashtekar representation@26,27# has been well
prepared during the last section by introducing the new tr
variabless i via Eq. ~2.22!. All that remains to be done now
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is to transform Eq.~2.23! to the generalized momentaAi
conjugate tos i by performing a suitable Fourier transforma-
tion.

It will be crucial for all that follows that we shall choose
not a standard Fourier transformation which is carried ou
along the real axes, but a generalized, complexified Fouri
transformation defined as2

C8~sW !5E
S
d3A esW •AW C̃8~AW !. ~3.1!

Here we assume thatS, C3 is a smooth, three dimensional
manifold with the following properties:~i! The integrand of
Eq. ~3.1! and its first and second derivatives with respect to
Ai vanish at the border]S of S; ~ii ! S is completely con-
tained within a domain whereC̃8(AW ) is a holomorphic func-
tion of Ai . Assuming these properties ofS it is possible to
converts i and] i to the new variables: It turns out that they
obey exactly the classical conversion rules

] i→Ai , s i→2 ]̃ i , ~3.2!

where for brevity]̃ i :5]/]Ai , i.e., the form of the Fourier-
transformed equation is independent of the choice ofS and
unaffected by our complexification procedure.

The transformed equation Eq.~2.23! now reads

H̃8C̃850, where H̃85(
i51

3

H̃ i8,

H̃ i8 :5 ]̃ j ]̃kFAjAk2Ai2
l

2
]̃ i G , ~3.3!

which we will refer to as the Wheeler-DeWitt equation in the
Ashtekar representation.

B. Solution with cosmological constant

An exact solution of the Wheeler-DeWitt equation with
nonvanishing cosmological constant can now be easily co
structed: As in Sec. II B we try to make vanish each term o
the Hamiltonian of Eq.~3.3! seperately, i.e., we seek for a
solution obeying the three equations

H̃ i8C̃85 ]̃ j ]̃kFAjAk2Ai2
l

2
]̃ i GC̃850. ~3.4!

Furthermore, one may even try to solve

FAjAk2Ai2
l

2
]̃ i GC̃850 ~3.5!

for each set of$ i , j ,k%5$1,2,3% simultaneously. This require-
ment gives the unique solution

C̃8~AW !5expF1l ~2A1A2A32AW 2!G . ~3.6!

2Since we are dealing with complex valued quantitiesAi anyway,
the standard ‘‘i ’ ’ has been absorbed in these new variables.
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This solution is even known for the general spatially inho
mogeneous case, where the exponent is given by the Che
Simons functional@9,10#. In @27# the semiclassical content of
the wave function Eq.~3.6! was analyzed within the Ash-
tekar representation. Here we shall be interested, instead
its transformation to the metric representation. In@9# the
transformation back to metric variables was also attempte
but there a suitable integration contour was only found in th
caseL,0.3 In the following, we shall make use of the free
dom in the choice of contours in the generalized Fouri
transformation~3.1! to deriveseveral differentsolutions in
the metric representation which are all generated from E
~3.6! by the choice of topologically inequivalent contours.

IV. TRANSFORMATION TO THE METRIC
REPRESENTATION

A. General form of the transformation

By definition, the generalized Fourier transform Eq.~3.1!
of Eq. ~3.6! represents an exact solution of the Wheele
DeWitt operator Eq.~2.23! in the s i representation: Each
wave function of the form

C8~sW !5E
S
d3A expF2l ~AW •kW 2 1

2AW 21A1A2A3!G ,
~4.1!

whereS is chosen to imply a sufficiently large falloff for the
integrand on]S, is a solution for the Bianchi type IX model
with cosmological constant. In Eq.~4.1! new variables

k i :5
1
2 ls i5

1
12 La2e2b i ~4.2!

have been introduced. We will show that there existseveral
manifolds S satisfying the conditions~i! and ~ii !, corre-
sponding todifferent solutions in the metric representation
so obviously, due to the existence of several topologica
inequivalent contours, the generalized Fourier transformati
is not unique. It will turn out that for the space of exac
solutions defined via Eq.~4.1! the number and location of the
saddle points of the integrand’s exponent,

F~AW ,kW !:5AW •kW 2 1
2 AW 21A1A2A3 , ~4.3!

will play an essential role. While for the asymptotic form o
the solutions obtained from Eq.~4.1! by the saddle-point
method the importance of the saddle points is obvious a
well known @28,29#, their importance for theexactsolutions
is a surprise, which arises because of the freedom in t
choice of the integration contours. These saddle points a
determined by the equations

3More precisely, in the notation of@9# we consider here theA2

representation withl.0, while in Sec. V of@9# the integration has
been evaluated only for theA1 representation withl.0, which
corresponds to theA2 representation withl,0. We will comment
on the solutions in theA1 representation in a future paper@15#,
where we treat the casel,0.
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]Ai
50⇔k i2Ai1AjAk50, « i jk51 ~4.4!

which in the casek1Þk2⇒A3Þ61 may be rewritten in the
form

A15k11A2A3 , ~4.5!

A2~12A3
2!5k21k1A3 , ~4.6!

~A32k3!~12A3
2!25~k11k2A3!~k21k1A3!. ~4.7!

The third equation~4.7! is of fifth order and so yields five
different solutions, which correspond to five different saddle
points via Eqs.~4.6! and ~4.5!.

One may show that also in the remaining casek15k2 Eq.
~4.4! has five different solutions withA3 components still
obeying Eq.~4.7!. The fact that there always exist five saddle
points of the integrand’s exponent will be shown to result in
a five dimensional space of solutions Eq.~4.1!.

For concreteness, let us assume a special representation
sucessive integrations

C8~sW !5E
G3

dA3E
G2~A3!

dA2E
G1~A2 ,A3!

dA1 expF2l F~AW ,kW !G
5E

G3

dA3E
G2~A3!

dA2 expF1l ~2A2k212A3k32A2
22A3

2!G
3E

G1~A2 ,A3!

dA1 expF1l @2A1
212A1~k11A2A3!#G ,

~4.8!

which one may show to be of no restriction to the general
case. The one dimensional GaussianA1 integral just has a
single saddle point located at

A15k11A2A3 . ~4.9!

Up to a factor that may depend onl, but that will be ab-
sorbed in a proportionality sign ‘‘} ’’ in the following, there
is only one nontrivial value this integral can take: Since the
integrand has to vanish at the ends ofG1 each integration
curve can be deformed into the curve of steepest descen
which in the new coordinate

A185A12~k11A2A3! ~4.10!

turns out to be simply the real axis. So theA1 integration
yields

E
2`

1`

dA18 expF1l @2A18
21~k11A2A3!

2#G
5Alp expF1l ~k11A2A3!

2G , ~4.11!

and Eq.~4.8! is turned into
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C8~sW !}E
G3

dA3 expF1l ~k1
212A3k32A3

2!G
3E

G2~A3!
dA2 expF1l @2A2

2~12A3
2!

12A2~k21k1A3!#G . ~4.12!

The A2 integral is again of Gaussian form with just on
saddle point

A25
k21k1A3

12A3
2 . ~4.13!

To keep this saddle point away from infinity, one has
exclude the pointsA3561 from the integration pathG3.
With this prescription and using the new coordinate

A285A2A12A3
22

k21k1A3

A12A3
2

~4.14!

the integration is again easily carried out along the real a
with the result

C8~sW !}E
G3

dA3

A12A3
2
expF1l S k1

212A3k32A3
2

1
~k21k1A3!

2

12A3
2 D G

5E
G3

dA3

A12A3
2
expF1l S k1

2

12A3
1

k2
2

11A3

12A3k32A3
2D G . ~4.15!

Here further variablesk6 :5(k16k2)/A2 have been intro-
duced. Let us now define the new exponent as

f ~z,kW !:5
k1
2

12z
1

k2
2

11z
12 zk32z2; ~4.16!

thenC8 is easily expressed as

C8~sW !}E
G

dz

A12z2
expF1l f ~z,kW !G . ~4.17!

Furthermore, a new coordinateu5 arcsinz will prove useful,
yielding the representation

C8~sW !}E
C
du expF1l f ~sinu,kW !G , ~4.18!

where now the pointsu56p/2 ~and all 2p-periodic repeti-
tions! have to be excluded from the new integration pathC. It
is possible to show that all saddle points off are determined
by the equation~4.7! whenA3 is replaced byz and thez
solutions are translated to theu plane afterwards. So the five
saddle points of the original integral representation~4.1! oc-
o

is

cur in the one dimensional representation~4.18!, too, and we
have still all freedom to choose a specific solution.

For a discussion of the location of the saddle points we
shall now restrict ourselves to the caseL.0. Then it turns
out that three of them are always real, which we will denote
by

z2<21, 21<z1,0, z3>1 ~4.19!

in the following. The other two solutions may also be real or
conjugate complex depending on the values of the real pos
tive variablesk j . The two corresponding regions in thekW
space~which is the minisuperspace with fixedL) are sepa-
rated by acausticwhich is characterized by the existence of
amarginal saddle point off (z,kW ). We will refer to the first
part of the minisuperspace, where all five saddle points ap
pear real in thez plane, as the ‘‘Euclidean regime’’ and
denote the two additional real saddle points by4

0<zVil<z0<1, ~4.20!

whereas in the ‘‘Lorentzian regime’’ there exist two complex
saddle points labeled according to the signature of the
imaginary parts as

ImzVil,0⇔ImzVil* .0. ~4.21!

The caustic defined above will play an important role for
some particular solutions which get their dominant integra
contribution at the corresponding marginal saddle point; fo
Fig. 1 it has been computed numerically in the$k,b6% space
~herek5 1

12La2; see below!. If on the other hand solutions
are considered which receive contributions from several dis
tinct saddle points, it should be clear that the caustic is of n
significance to them. However, such solutions will turn out
to be of little physical interest anyway.

4The naming of the indices introduced here will be justified later
in the discussion of the asymptotic behavior of the solutions.

FIG. 1. The caustic in minisuperspace forL.0.
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Knowing the saddle points off , one may now calculate
the curves of steepest descent for the two different regim
by solving the equations

Imf „sinu~t!…5Imf ~sinu%!, %e$2,1,Vil,0,3%.
~4.22!

The result of a numerical approach to this problem is giv
in Fig. 2. In the stripeuReuu<p/2 all solutions of Eq.~4.22!
are presented. The dashed curves reach to1` with respect
to Re f and are given just for completeness. It is remarka
that there exist paths running into the singularities
A3561, corresponding toz561 andu56p/2, in such a
manner that Ref tends to2`. This results in additional
possibilities to create integration contours obeying the
quirements of the generalized Fourier transformation.

B. Basis of linearly independent solutions

With the knowledge of the curves of steepest descent n
a basis of linearly independent solutions~4.1! may be de-
fined by choosing the integration paths shown in Fig. 3. T
same paths can be chosen in the Euclidean and in the Lo
zian domain. It is easily seen that all curves end atessential
singularities of the integrand of Eq.~4.18! in such directions
that the integrand andall its z derivatives vanish. This guar
antees that

C%8 ~sW !}E
C %

du expF1l f ~sinu,kW !G , %e$2,1,Vil,0,3%

~4.23!

are indeed solutions of the Wheeler-DeWitt equation in
sW representation. Furthermore,anypath satisfying the falloff
condition can be deformed into a superposition of the cur
defined in Fig. 3; consequently one may express each w
function in terms of the corresponding solutions~4.23!. Thus
the above mentioned basis property of Eq.~4.23! is proven.

For concreteness, let us write

FIG. 2. Saddle points and curves of steepest descent.
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C%~sW !5CWH
0 N%~l!E

C %

du expF1l f ~sinu,kW !G ,
~4.24!

whereN%(l) is a normalization factor that usually is defined
via ^C%uC%&51. Here^•u•& denotes the scalar product of
the underlying Hilbert space which we do not know explic-
itly. But even if we knew it, an analytical treatment of this
normalization procedure would certainly not be tractable.
That is why we adopt another convention and normalize the
wave functions by the condition

C%~a50![1, ~4.25!

which implies thatC% becomes independent ofL for
a→0. This requirement gives analytically soluble normaliza-
tion integrals, yielding

N15N25N05N352
2iem

K0~m! ;
l→0

2
2ie1/l

Alp
,

NVil5
2em

2pI 0~m!1 iK 0~m!

;
l→0 12~ i /2!e2~1/l!

Alp
, with m:5

1
2l , ~4.26!

where K0 and I 0 are the McDonald’s and the modified
Bessel function with index 0, respectively. The asymptotic
behavior ofN% in the limit l→0 will be useful in the next
section.

FIG. 3. Basis set of integration paths.
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There are other solutions of the Wheeler-DeWitt equati
which will turn out to be rather interesting, and which o
course can be expressed in terms of the basis soluti
~4.24!: By choosing another order of integrations in Eq.~4.8!
the wave functionsC1,2 defined by

C1~k1 ,k2 ,k3!:5C3~k2 ,k3 ,k1! and

C2~k1 ,k2 ,k3!:5C3~k3 ,k1 ,k2! ~4.27!

apparently solve the Wheeler-DeWitt equation, and t
asymptotic behavior in Sec. V will show that the relations

C15H C1 , k1>k2 ,

C2 , k1<k2 ,
C25H C1 , k1<k2 ,

C2 , k1>k2 ,
~4.28!

hold in the limitLa2→`. Since Eq.~4.24! is a basiswith
nonvanishingC% in this limit, it follows that Eq.~4.28! must
hold in general. This claim is proven by considering a ge
eral expansion in terms of the basis states, with coefficie
depending onL, but not ona, where one makes use of th
limit a→` at fixedLÞ0.

With the solutionsC1 andC2, now the sum

C11C21C3[C11C21C3 ~4.29!

turns out to be a solution as well, which issymmetricwith
respect to arbitrary permutations of thek j . If in addition one
uses the fact that the manifolds

S6 :5$AW eC3uAjeRe
6 i ~p/6!, j e$1,2,3%%, ~4.30!
on
f
ons

he

n-
nts
e

which are symmetric under permutations of theAj , are suit-
able to perform the generalized Fourier transformation in the
representation Eq.~4.1!, successive integrations analogous to
Eqs. ~4.8!–~4.15! reveal thatC0 and CVil are symmetric
under permutations of thek j .

Finally, by examining the integrand’s symmetries under
complex conjugation,C% turns out to be a real wave func-
tion for %e$2,1,0,1,2,3% , whereasCVil is complex-valued
in general.

V. ASYMPTOTIC RESULTS

In this section we will discuss the asymptotic behavior of
the solutions to the Wheeler-DeWitt equation with nonvan-
ishing cosmological constant derived above. This will be
done by evaluating the integral representation~4.24! in the
limits \→0 andL→0, where Eq.~4.24! turns out to assume
the form of a saddle point integral. Consequently, the asymp-
totically leading term of such an integral,

E
C
dzef ~z!/l ;

l→0
6A2

2pl

f 9~zs!
ef ~zs!/l, ~5.1!

will be of particular interest@28,29#. Here zs denotes that
saddle point off which provides the only contribution to the
integral in the limitl→0, and the sign of the square root has
to be adjusted to the direction in which this saddle point is
passed through. In the following ‘‘A ’’ will denote the prin-
cipal value of the square root.

The application of Eq.~5.1! to the general representation
~4.24! yields
ot
C%~a,b6! ;
l→0

CWH
0 N%~l!Apl F expF1l f ~sinu!G

A2
1
2

d2

du2
f ~sinu!

G
u5u%

5N%~l!Apl F expF1\ S 2F1
6p
L f ~z! D G

A 1
2
„f 9~z!~z221!1 f 8~z!z…

G
z5z%

,

%e$2,1, Vil,3%. ~5.2!

Sincel5\L/6p, this formula includes both, the limit\→0 andL→0. That the curves defined in Fig. 3 give indeed the
saddle point contributions mentioned in Eq.~5.2! can be extracted from Fig. 2 by analyzing the topological properties off in
detail. The asymptotic expansion~5.2! also holds forC0, as long as just the Euclidean regime is considered. In the Lorentzian
caseall saddle points can be passed through byC0 and may therefore contribute, so in dependence on the variablesa and
b6 one has to choose the highest saddle point to employ Eq.~5.2!.

The result~5.2! now suggests the definitions

S% :5 iF2
6p i

L
f ~z%!, A% :5@ 1

2 „f 9~z%!~z%
221!1 f 8~z%!z%…#

21/2⇒C% ;
l→0

Apl N% A% expF i\ S%G . ~5.3!

In the limit \→0 the exponentS can then be interpreted directly as the action of the wave function~up to a constant term,
which may arise fromN%), while A plays the role of Gaussian fluctuations around the saddle pointz% . Considering the limit
L→0, these interpretations hold no longer; hereS and A may just be called the phase and amplitude function ofC,
respectively.

Unfortunately, Eq.~4.7! determining the saddle points is of fifth order, so analytical expressions for the roots are n
available. This is why we shall first restrict ourselves to the isotropic caseb650, where Eq.~4.7! can be solved explicitly,
yielding
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z6
~0!521, z3

~0!511k, zVil
~0!5 1

22A 1
42k, 1

21A 1
42k5H z0~0! , k< 1

4

zVil
~0!* , k> 1

4

, where k:5 1
12 La2. ~5.4!
d

s

l

-

is

e

With these preparations we shall now turn to a detailed
cussion of the specific solutions.

A. Vilenkin state

1. Semiclassical limit\˜0

If the saddle pointzVil
(0) is inserted into Eq.~5.3! one ob-

tains the action

SVil
~0!5

3 ip

L
@12~12 1

3 a
2L!3/2# ~5.5!

for the isotropic case. Choosing the lapse functionN[1, the
only nontrivial equation for the classical trajectories read

da

dt
52

1

3ap

]SVil
~0!

]a
52 iA12 1

3 a
2L ~5.6!

and is easily integrated to give

a~ t !5a0cosh~a0
21t !, where a0 :5A3

L
, t.0.

~5.7!

Reinserting this classical de Sitter solution into Eq.~5.6! and
remembering that ‘‘A ’’ denotes the principal value of the
square root reveals that, as mentioned, Eq.~5.6! is solved
only with the restriction tot.0, i.e., collapsing Universe
are not described byCVil .

Metrics with a,a0 can be obtained by solving the Eu
clidean version of Eq.~5.6! with dt5 idt, yielding

a~t!5a0sin~a0
21t!,

a0p

2
<t,a0p. ~5.8!

The restriction of thet variable appears for the same reas
as discussed above for Eq.~5.7!. Denoting the line elemen
of the unit three-sphere bydV, the four-metric correspond
ing to Eq.~5.8! reads

ds25a0
2~dt821sin2t8dV2!, with t8:5a0

21t.
~5.9!

It describes exactly a four-half-sphere with radiusa0, which
in the limit t8→p/2 may be extended to the de Sitter so
tion ~5.7!. Furthermore, the pointa50⇔t85p is a regular
point of the manifold, i.e.,CVil satisfies the no-boundar
proposalin the isotropic case.

It is interesting to see whether these properties rem
true when anisotropic corrections are considered. The ca
lation of such corrections is straightforward: One has to
is-

s

-

on
t
-

u-

y

ain
lcu-
ex-

pand zVil for small b6 , and insert this expansion in the
expression forSVil . One finally obtains5

SVil5SVil
~0!136p ia2

31A 12 1
3 a

2L

241a2L
~b1

2 1b2
2 !1O~b6

3 !.

~5.10!

This action yields, for the classical trajectories in imaginary
time in leading order ofb6 ~with k5 1

12La2),

da

dt
'2A124k14

b1
21b2

2

~k12!2 F ~k13!2210

A124k
23 G ,

~5.11!

db6

dt
'
2

a

31A124k

21k
b6 , ~5.12!

where we have assumedk, 1
4. Since the prefactor ofb6 in

Eq. ~5.12! is positive definite, the anisotropy decreases with
decreasingt, while Eq. ~5.11! then tells us thata tends to
a0. Consequently, a flat, cylindrical four-geometry

ds25dt21a0
2dV2>0 ~5.13!

is approached in this limit witha0 playing the role of the
cylinder radius.

With increasingt the pointa50 is approached and the
anisotropy grows rapidly so that the validity of Eqs.~5.11!
and ~5.12! breaks down. Thereforea50 is not a regular
point of the Euclidean space-time manifold any more, and
the no-boundary proposal isnot satisfied forCVil .

A discussion of a Lorentzian version of Eqs.~5.11! and
~5.12! reveals that classical de Sitter-like Universes are de
scribed, which grow exponentially in timet while the anisot-
ropy decreases monotonously.6 However, in generalb6 does
not tend to zero, but approaches a finite value.

In any caseCVil describes anexpandingUniverse, i.e.,
quantum mechanically speakingCVil supports a current in
minisuperspace which is directed to the positivea axis. Thus

5A corresponding expression forSVil , which is here obtained as a
limit of the exact result, was first derived by Del Campo and Vilen-
kin, using the WKB method@23#. These authors didnot discuss the
consequences for the semiclassical trajectories generated by th
action.
6In the Lorentzian regime the action calculated from Eq.~5.3! has

a nonvanishing realand imaginary part forb6Þ0, so here the
definition of classical trajectories is nota priori clear. Since we are
interested in pseudo Riemannian four-geometries, and because R
SVil dominates ImSVil for large scale parametersa anyway, we
choose thereal part of SVil to discuss the Lorentzian classical tra-
jectories.
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this wave function satisfies the condition proposed byVilen-
kin and so is identified as theVilenkin stateof the Bianchi
type IX model with cosmological constant.

2. The limit L˜0

In contrast to the limit\→0, in the caseL→0 the loca-
tion of the saddle points themselves depends onL via the
variablesk j . Nevertheless, the expansion~5.2! remains ap-
plicable as long as just the leading term is considered,
happily now theL corrections of the saddle points can b
calculated taking account of the full influence of anisotrop
The first terms read

zVil5
1
2 s3l1 1

4 s1s2l
21O~l3!, ~5.14!

and the phase and amplitude functions are calculated to
and
e
y.

be

SVil5 iF2 i\
l

4
~s1

21s2
21s3

2!1O~L2!,

AVil511
l2

8
~s1

21s2
21s3

2!1O~L3!. ~5.15!

Using Eq.~5.3! and the asymptotic behavior ofN% in accor-
dance with Eq.~4.26!, one finds, for the wave function,

CVil ;
l→0
NVilApl AVil e

~ i /\! SVil →
l→0

CWH
0 . ~5.16!

Thus in the limitL→0 the wormhole state of theL50
model is approached.

3. The limit k˜`

Writing the wave functionsC% defined in Eq.~4.24! in
the alternative form
ut the

of
C%5CWH
0 N%E

C%
du expF12pk2

\L S sinu1cosh@2A3b2#

cos2u
e22b12

1

2 S sinuk D 21 sinu

k
e2b1D G , ~5.17!

another possibility to approximate a saddle point integral occurs, namely the limitk5 1
12La2→`. This includes the cases

L→` and, in particular,a→`.
An asymptotic expansion of the saddle points is again possible without any restriction for the anisotropy variables, b

result is rather lengthy. So we turn at once to the expressions forSVil andAVil obtained in this limit:

SVil5
6p

L H 24Ak 31Ak Tr~e22b2 1
2 e

4b!1
i

2
@72 Tre2b Tre22b1 Tre6b#J 1O~k2~1/2!!, ~5.18!

AVil5
1

A2
eip/4k2~3/4!H 11

i

2

1

Ak
Tre2bJ 1O~k2~7/4!!. ~5.19!

Surprisingly, the contributioniF, which usually arises from the wormhole state and would be expected to give a term
O(k) in Eq. ~5.18! has completely disappeared.

To shorten the final expression forCVil , let us now expand for small mean anisotropyb:5Ab1
21b2

2 :

CVil ;
b→0

k→` A\

K0S 3p

\L
D22ipI 0S 3p

\L
D S 3

L
D 1/4S a

2
D 2~3/2!H 11

i
a
A3

L
~3112b2!J

3e
2~3p/\L!~6b!2

expFp i
\
AL

3
S 2a31

a
L

~ 9
2 236b2! D2

ip
4

G . ~5.20!
o

-
From this result it is clear thatuCVil u2 is bounded for
a→`. Furthermore, a saddle-point expansion forb→` at
fixed a reveals thatCVil is square integrable overb6 , and
because it is bounded fora→2` @cf. Eq. ~4.25!# CVil is an
overall bounded function in minisuperspace and theref
normalizable in the distribution sense.7

7This entails the possibility to use Marolf’s method@30# for intro-
ducing a scalar product to define a Hilbert space of physical sta
which containsCVil , presumably as a ground state.
re

As a general result the Vilenkin state becomes concen
trated aboutb650 in the limit k→`, but with a nonvan-
ishing Gaussian width

Db ;
k→` 1

6
A\L

6p
. ~5.21!

To give an idea of the behavior of the exact analytical solu-
tion we have computed the real and imaginary part of the
wave function numerically in dependence ona andL, as-

tes,
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sumingb650 and picking units with\52p.8 The result is
shown in Fig. 4. The conspicious oscillations, which start
the caustick5 1

4⇔La253, indicate that the initial Euclidean
action has turned Lorentzian, corresponding to a pseu
Riemannian classical Universe. ForL→0 the Gauss func-
tion of the wormhole state is recovered, whereas our norm
ization condition~4.25! is responsible for the form of the
graph ata50.

In addition, the value ofuCVil uc
2 on the caustichas been

computed for Fig. 5 in dependence on the anisotropy v
ablesb6 at fixed valuesL53, \52p. Since all the Lorent-
zian trajectories end at the caustic, we follow Hawking a
suggest to interpretuCuc

2 as the distribution of the initial
values for a classical evolution of the Universe. For t
Vilenkin wave function the distribution is nicely concen
trated aboutb650, but there are directions of theb6 plane
in which uCVil uc

2 takes afinite value for b→`. Moreover,
one may show that in these directions a tube with fin
height andwidth is approached. This is not in contradictio
to the normalizability of the wave function in the distribu

8This unusual choice of\ is due to the use of differently scale
variables in the numerical work and is of course of little signi
cance to the figure.

FIG. 4. The Vilenkin state.
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tional sense, since on the caustica→2` in the same limit.
However, it implies thatuCVil uc

2 is not square integrable with
respect to theb6 variables.

In subsection C we will define a new state as a superpo
sition of CVil andCVil* in such a way that this undesirable
property of the initial value distribution is removed.

B. Asymmetric states

1. Semiclassical limit\˜0

In the isotropic caseb650 the actions of the wave func-
tionsC6 andC3 are easily calculated as the corresponding
saddle-point contributions in accordance with Eq.~5.4!:

S6
~0!5S3

~0!5
6p i

L F115S a

2 a0
D 22S a

2 a0
D 4G . ~5.22!

Obviously these actions are purely Euclidean for generala
andL, and this statement remains true if anisotropic correc
tions are considered. An additional discussion of the limit
k→` will show that the asymmetric solutions themselves
are indeed of no physical relevance, nevertheless, an exam
nation of the caseL→0 will be worthwhile.

2. The limit L˜0

As in the Vilenkin case, in the limitL→0 asymptotic
expressions for the saddle pointsz6 and z3 are available
taking full account of anisotropy. The results read

z65216
l

4
us12s2u1O~l2!,

z3511
l

4
~s11s2!1O~l2!, ~5.23!

and using them, the calculation of the phase and amplitud
functions is straightforward, yielding

d
fi-

FIG. 5. The initial value distribution generated by the Vilenkin
state.
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S65 i F6p

L
1F1\~s37us12s2u!G1O~L!,

S35 i F6p

L
1F2\~s32s12s2!G1O~L!, ~5.24!

and

A65
i

2 F12
l

4
~s37us12s2u!G1O~L2!,

A35
i

2 F11
l

4
~s32s12s2!G1O~L2!. ~5.25!

Thus one obtains for the wave functions in the limitL→0

lim
L→0

C65CWH
0 exp@2s36us12s2u#,

lim
L→0

C35CWH
0 exp@s32s12s2#5C3

0 , ~5.26!

where, in addition, the asymptotic behavior~4.26! of the nor-
malization factors has been taken into account. Obviou
the solutionsC6 are not differentiable ats15s2, i.e., in
particular atb250, but if they are replaced byC1,2 via Eq.
~4.28!, solutions with nice analytical properties are obtaine
These are related toC3 by permutations of thes j ~or
equivalently thek j ) as mentioned in Eq.~4.27!.

The wave functionsC i ,i e$1,2,3% are now easily recog-
nized asasymmetricstates, which approximate the corre
sponding solutionsC i

0 of theL50 model whenL tends to
zero.

3. The limit k˜`

Let us first consider the casek1.k2, where the saddle
points can be expanded as

z252
k1

k2
1

k3~k1
22k2

2!

k2
4 1O~k22!,

z152
k2

k1
1

k3~k2
22k1

2!

k1
4 1O~k22!,

z35k31
k1k2

k3
2 1O~k21!. ~5.27!

The asymptotic behavior of the solutionsC6 andC3 then
turns out to be

C6 ;
k→` 2 Apl

K0~m! CWH
0 1

k1,2 H 122
k2,1k3

k1,2
3 J

3expF1l S k1,2
2 22

k2,1k3

k1,2 D G ~5.28!

and
sly

d.

-

C3 ;
k→` 2 Apl

K0~m! CWH
0 1

k3 H 122
k1k2

k3
3 J

3expF1l S k3
222

k1k2

k3 D G . ~5.29!

Since f (z,kW ) is invariant under the permutationk1↔k2, the
corresponding results for the casek1,k2 can now easily be
obtained by exchanging thek j indices 1↔2 in the Eqs.
~5.27!–~5.29!. The asymmetric statesC1 andC2 defined in
Eq. ~4.27! then have to be constructed fromC6 by using Eq.
~4.28!. Consequently, the asymptotic behavior o
C i ,i e$1,2,3%, may be written in the closed form

C i ;
k→` 2 Apl

K0~m! CWH
0 1

k i H 122
k jkk

k i
3 J

3expF1l S k i
222

k jkk

k i D G , where « i jk51. ~5.30!

We should mention that these solutions diverge badly in t
limit k→`, namely likeeLa4, so they are surely not normal-
izable in minisuperspace for any sensible choice of the sca
product. That is why we reject them as candidates for t
physical quantum state of the Universe, and we are left w
a just two dimensional, physical space of solutions spann
by C Vil andCVil*

C. The no-boundary state

In this section we will show that there exists a superpos
tion ofCVil andCVil* such that this wave function is normal-
izable in minisuperspaceand square integrable on the caus
tic. Moreover, this uniquely determined solution will turn ou
to satisfy the no-boundary condition proposed by Hartle a
Hawking @17,18# ~at least in the sense that the classical Un
verses described by this wave function are regular
a50).9 One may construct this solution by normalizing th
Vilenkin state to approach unity in the limitb1→1` at
b250 on the caustic. If one then considers the difference
this new Vilenkin solution and its conjugate complex solu
tion, the obtained distribution on the caustic is obvious
square integrable with respect tob6 ~for further explanation
of this construction, cf. Fig. 5!. Finally, we shall choose the
still unspecified overall normalization factor as usual in a
cordance to our convention Eq.~4.25!. The solution defined
by this procedure turns out to be

CNB :5CWH
0 ImSNNBE

CVil
duexpF1l f ~sinu,kW !G D ,

~5.31!

9A qualitative discussion of a no-boundary state for the anis
tropic Bianchi IX metrics was first given in@21# and, more explic-
itly, including a numerical plot for the wave function in the semi
classical limit, in @22#. An expansion for small anisotropy has
already been given in@31#. However, the results obtained there ar
very lengthy and hard to interpret. For a discussion of the semicl
sical trajectories generated by the no-boundary state in Ashteka
variables, see also@27#.



f

e

54 2601PHYSICAL STATES OF BIANCHI TYPE IX QUANTUM . . .
where

NNB52 em
J0~n!2 iK0~n!

K0~m!J0~n!22pI 0~m!K0~n!
,

m5
1

2 l
, n:5

4

l
. ~5.32!

Here the special integrals

J0~n!:5E
0

p/2

dx exp@2nsin4x#,

K0~n!:5E
0

`

dx exp@2ncosh4x# ~5.33!

have been introduced which, to a certain extent, may be c
sidered as generalized modified Bessel functions.10

It is clear from its construction thatCNB is integrable on
the caustic, normalizable in minisuperspace in the distrib
tion sense~asCVil ) and we shall show below that it satisfie
the no-boundary condition for\→0. Furthermore,CNB ob-
viously is a real-valued wave function. The behavior of th
no-boundary state fork→` can be immediately extracted
from the asymptotics of the Vilenkin state~5.20!. In this way
an asymptotic description ofCNB in the Lorentzian regime is
available, so we will restrict ourselves to the Euclidean r
gime throughout the following. To discuss the limits\→0
and l→0 we shall first expand the normalization facto
NNB for small l. Saddle-point expansions ofJ0 andK0 in
the corresponding limitn→` finally yield for the leading
term in the asymptotic series

NNB ;
l→0 2 e1/l

Apl
;

l→0
iN0 , ~5.34!

where we have also used Eq.~4.26!. Obviously the normal-
ization factorsNNB andN0 have the same asymptotic behav
ior in the limit l→0, whereC NB may be written in the form

CNB ;
l→0 1

2
C WH

0 N0E
CVil*CVil*

du expF1l f ~sinu,kW !G .
~5.35!

If one now chooses the integration pathC2 %C1 %C3*C0,
which is equivalent toCVil*CVil* the final expression for the
asymptotic behavior in the limitl→0 becomes

10Similar normalization integrals occur in the calculation ofNVil

andN0 in Eq. ~4.26!, but with squaredtrigonometric functions in
the exponent. Such integrals lead to the modified Bessel functi
I 0 andK0, that alternatively may be expressed as hypergeome
functions of the1F1 type. As a generalization, the integrals Eq
~5.33! may be written in terms of generalized hypergeometric fun
tions of the2F2 type, but the integralK0 requires logarithmic con-
tributions~asK0) which, as far as we know, have no special nam
in the 2F2 case. That is why we prefer to deal with the integr
representations themselves.
on-

u-
s

e

e-

r

-

CNB ;
l→0 1

2 S (
j51

3

C j2C0D . ~5.36!

This representation displays nicely the individual saddle
point contributions in the Euclidean regime and will prove
useful for the following discussions.

1. Semiclassical limit\˜0

Since for\→0 the saddle pointz0 always provides the
dominating contribution in comparison withz6 and z3, the
relation ~5.36! implies

CNB ;
\→0

2 1
2 C0 , ~5.37!

and all that remains to be considered is an expansion o
C0 in the limit \→0.

Using once more the expansion~5.2!, the action of the
solutionC0 is calculated to be

S0
~0!52

3p i

L F12S 12S aa0D
2D 3/2G ~5.38!

in the isotropic case, where also the normalization factor
N0 has been taken into account@in contrast to defintion
~5.3!#. The expression is easily recognized as the negative
Vilenkin action~5.5!. Consequently the classical trajectories
and spacetime metrics are the same as in the Vilenkin cas
up to a reversal of thet direction and, as there, the no-
boundary condition is satisfied in the isotropic case.

But let us now consider the influence of anisotropy: Then
the action is of the form

S05S0
~0!136p ia2

32A 12 1
3a

2L

241a2L
~b1

2 1b2
2 !1O~b6

3 !,

~5.39!

implying ~with k5 1
12La2)

da

dt
'A124k24

b1
21b2

2

~k12!2 F31
~k13!2210

A124k
G ,

~5.40!

db6

dt
'
2

a

32A124k

21k
b6 ~5.41!

for the Euclidean, classical trajectories. As the prefactor of
b6 in Eq. ~5.41! is positive definite, the pointb650 is
attractive for decreasingt, i.e., in thist directionb tends to
zero. Then in Eq.~5.40! theb6 term may be neglected, and
the scale factor will reacha50 at afinite value of t, say
t50. The asymptotic form of Eqs.~5.40! and ~5.41! for
t→0 simply reads

da
dt ;

t→0
1,

db6

dt ;
t→0 2

a ~5.42!

and theb6 equation can be integrated to give

d
dt lnb6 ;

t→0 2
a
da
dt 5

d
dt lna2 ⇔ b6 }

t→0
a2. ~5.43!
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Consequently, the classical Universes become exactly iso
pic in reachinga50, and there look the same as in the ca
b6[0. Therefore also Universes anisotropic ata.0 remain
regular asa tends to zero. SoCNB is indeed a solution of the
Wheeler-DeWitt equation which satisfies the no-bound
proposal semiclassically and its name is justified, after a

If Eqs. ~5.40! and ~5.41! are considered with increasin
t, the anisotropy grows exponentially as in the Vilenk
case, and the validity of these equations breaks down.
nally, the trajectories approach the caustic, and tunne
processes to Lorentzian space-time become more and m
probable.

2. The limit L˜0

To discuss the limitL→0 of the no-boundary state
CNB we will again make use of the relation Eq.~5.36!. Since
C i→C i

0 for L→0 is known from before fori e$1,2,3%, only
the behavior ofC0 in Eq. ~5.36! remains to be discussed. A
expansion ofC0 for smallL is straightforward and we jus
give the final results:

z0512
l

4
~s11s2!1O~l2!, ~5.44!

S05 i F6p

L
1F2\~s11s21s3!G1O~L!, ~5.45!

A05
i

2 F11
l

4
~s11s21s3!G1O~L2!, ~5.46!

lim
L→0

C05CWH
0 exp@s11s21s3#5CNB

0 . ~5.47!

Obviously the no-boundary state~2.25! of theL50 model is
approached byC0. From Eq.~5.36! it now follows, using
Eqs.~5.26! and ~5.47!,

FIG. 6. The no-boundary state.
tro-
se

ary
ll.
g
in
Fi-
ling
ore

n
t

lim
L→0

CNB5
1

2 S (
j51

3

C j
02CNB

0 D . ~5.48!

We can see thatCNB doesnot approach the no-boundary
stateCNB

0 of the L50 model whenL tends to zero even
though both wave functions~as many others! satisfy the no-
boundary condition semiclassically for\→0. The difference
comes from our additional requirements thatCNB for LÞ0
be normalizable in the distributional sense with respect to all
three variables$a,b6% andbe square integrable with respect
to b6 on the caustic.11 The normalizability ofCNB for
a→`, like that ofCVil , is directly related to the fact that,
semiclassically, these states describe a Lorentzian Univers
in that limit. For example, had we defined the no-boundary
state simply byC0 this would have given an acceptable limit
CNB

0 for L→0, but forLÞ0 the semiclassical limit ofC0

gives, besides a Lorentzian, also Euclidean contributions. As
a consequence, this alternative ‘‘no-boundary state’’ would
contain components, which describe additional Euclidean
Universes fora→`, and make the wave function diverge in
this limit. Furthermore, it is easily checked thatC0 is a wave
function which isnot square integrable on the caustic.

Figure 6 shows a numerical plot of the no-boundary state
in the$a,L% plane analogous to Fig. 4. To allow a clear view
the plot has been bounded to values ofCNB lying in the
interval @25,15#. Like in the Vilenkin case, rapid oscilla-
tions start in the Lorentzian regime, and clearlyCNB→1 as
a→0. In view of the strong increase of the amplitude with
a at small L, one might worry about normalizability in
minisuperspace. However, in connection with Eq.~5.31! the
asymptotic result for the Vilenkin state~5.20! guarantees that

11The property of normalizability in minisuperspace opens again
the possibility to define a scalar product for physical states as in
@30#, and to consider the no-boundary state as a ground state in th
resulting Hilbert space.

FIG. 7. The initial value distribution generated by the no-
boundary state.
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CNB falls off asa
2(3/2) for eachL if sufficiently large scale

factors are considered.
Finally, Fig. 7 shows the resulting initial value distribu

tion uCNBuc
2 for the classical evolution of the Universe. A

announced above,uCNBuc
2 rapidly approaches zero with in

creasingb in all directions of theb6 plane, thus represent
ing an integrable probability distribution. The figure show
that the quantum stateCNB implies an isotropic classical
Universe in the Lorentzian regime, apart from possible qu
tum fluctuations aboutb650.

VI. CONCLUSION

The central purpose of this paper was to derive exact
lutions of the Wheeler-DeWitt equation with cosmologic
constant by employing a generalized Fourier transformat
to the Chern-Simons solution Eq.~3.6!. As a result we found
five linearly independent states, which approach the fi
knownL50 states whenL tends to zero. However, forL
Þ0, there is just a two dimensional subspace which appe
to be physically relevant in the sense that the states are
malizable wave functions in minisuperspace and allow
classical Universe with pseudo-Riemannian geometry.
were able to construct a basis of this subspace in form of
solutionsCVil andCNB , which, semiclassically, satisfy the
boundary conditions proposed by Vilenkin and Hartle a
Hawking, respectively. Moreover, with the additional r
quirement of integrability on the caustic, just one soluti
remains, namely the no-boundary stateCNB . We may add a
few remarks comparing the two physically interesting so
tionsCNB andCVil .

If the Euclidean geometries are considered, which a
from the semiclassical trajectories in the Euclidean dom
of minisuperspace by introducing an imaginary time varia
dt5 idt, the two solutions behave very differently: While
Universe described by the no-boundary state becomes iso
pic and remains regular in approachinga50, the Vilenkin
trajectories diverge in someb6 directions fora→0, i.e., the
corresponding Euclidean four-geometry behaves singular
small scale parameters.

If one considers the Euclidean approach to the cau
then all trajectories generated by the Vilenkin state reach
caustic in the isotropic pointk5 1

4,b650, whereas the no-
boundary trajectories run to infinite anisotropy.

The creation of a classical Universe with pseud
Riemannian geometry happens by a tunneling proc
through this caustic. The tunneling probability is given as t
value of uCuc

2 on the caustic and thus is a function ofb6

only (L taken as fixed!. The results for these distributions
which rule the initial values for the classical evolution of th
Universe, are shown in Fig. 5 and Fig. 7 and predict both
isotropic Universe as the most probable classical Unive
among all alternatives. However, just the no-boundary dis
bution is sharply concentrated aboutb650 and integrable
with respect to the anisotropy variables, whereas the Vil
kin distribution is broader andnot integrable~even though
bounded!.

In the Lorentzian regime both wave functions describe
de Sitter-like Universe, which becomes more and more i
tropic asa tends to infinity. As a difference,CNB always
-
s
-
-
s

an-

so-
al
ion

ve

ars
nor-
a

We
the

nd
e-
on

lu-

rise
ain
ble
a
tro-

for

stic
the

o-
ess
he

,
e
an
rse
tri-

en-

a
so-

describes expanding and collapsing Universes simulta
neously, whileC Vil just describes the expanding phase, an
thus is not invariant under time reversal.

In summary one might prefer the no-boundary solution
C NB as the quantum state of the Universe. However, we
should stress the fact that it is not the no-boundary idea itse
which picks out uniquely this solution among the five solu-
tions described by the Chern-Simons functional, but sever
additional, physically well-motivated integrability conditions
have to be imposed on the solution to getCNB . Then, the
resulting wave functionis found to satisfy the no-boundary
proposalin the semiclassical limit\→0.

Finally, it may be of interest to consider the application o
the results obtained here to a model with a massive, sca
matter field.12 We want to show in brief that theL solutions
found above are directly applicable to this model in the limi
m→0.

A massive Klein-Gordon fieldf gives a contribution

Smat@gmn ,f#52
1

8pEMd4xA2g~gmnf ,mf ,n1m2f2!

~6.1!

to the action~2.1! and finally yields an additive term

Hmat53 @2\2]f
21p2a6m2f2# ~6.2!

in the Hamiltonian~2.16!. If now the field amplitudef is
rescaled with the massm, h:5mf, Hmat is converted to

Hmat53 @2\2m2]h
21p2a6h2#. ~6.3!

Comparing with Eq.~2.21! it is easily seen that in the limit
m→0 this term corresponds exactly to the contribution
which arises from a cosmological constantL5h2. Thus one
obtains the asymtotic solution for the Bianchi type IX mode
with a massive, scalar field

C~a,b6 ,f;m! ;
m→0

C~a,b6 ;L5m2f2! ~6.4!

at fixed L5m2f2, which, by further expansion about
m50, may be extended to small, but nonvanishing masses
the field.

As an interesting project for future consideration we leav
the application of the generalized Fourier transformation t
the general form of the Chern-Simons functional@9,10#. It
would be interesting to determine whether again a Vilenkin
and a no-boundary state are obtained as topologically i
equivalent functional integrals from the Chern-Simons solu
tions. Work in this direction is in progress.
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