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An analytic model of long string network evolution, recently developed by the authors, is presented in detail
and modified to describe string loop evolution. By treating the average string velocity, as well as the charac
teristic length scale, as dynamical variables, one can include the effects of frictional forces on the evolution o
the network. This generalized ‘‘one-scale’’ model provides a quantitative picture of the complete evolution of
a string network, including the prediction of previously unknown transient scaling regimes and a detailed
analysis of the evolution of the loop population. The evolution of all cosmologically interesting string networks
is studied in detail, and possible consequences of our results are discussed.@S0556-2821~96!05516-6#
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I. INTRODUCTION

Symmetry-breaking phase transitions in the early univer
inevitably produce topological defects of one form or an
other. Cosmic strings are of particular interest in this conte
unlike some other defects, because the evolution of a str
network does not dramatically alter the standard cosmolog
In fact, superheavy strings associated with a grand unific
tion phase transition provide a much-studied model for th
initial fluctuations for galaxy formation, also leaving im-
prints in the cosmic microwave radiation background. Bu
cosmological interest in strings is not restricted to grand un
fied theory~GUT! scales, since strings could have formed a
lower energies such as electroweak or Peccei-Quinn symm
try breaking with potentially important consequences, r
spectively, for baryogenesis or dark matter~axions!. Before
studying the astrophysical consequences of strings, howev
one must know how they are formed and how they evolv
Because of their statistical nature, the best analytic approa
consists of doing ‘‘string thermodynamics,’’ that is, describ
ing the string network by a small number of averaged qua
tities.

The serious analytic study of cosmological string ne
works began one decade ago with Kibble’s ‘‘one-scale
model@1# ~later modified by Bennett@2#!. In this work it was
assumed that the evolution of the long-string network cou
be described using a single length scale, which is usua
called the ‘‘correlation length.’’ One then supposes that
scaling solution exists at late times and ends up showing t
such a solution will in fact exist and be stable subject
conditions on the loop production mechanisms. Note that
this model it is conceivable that a string network could dom
nate the energy density of the universe@3#.

A step forward in the understanding of string networ
evolution was provided by numerical simulations~see, for
example,@4#!. In short, these confirmed the large-scale fe
tures of Kibble’s model, namely regarding the existence a
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stability of the scaling solution~at least in the radiation era!,
but also showed that it neglects important physical process
on small scales. In particular, simulations revealed the exis
ence of a significant amount of small-scale structure on lon
strings, with loops being predominantly produced at the
smallest scales that can be sampled numerically. This chan
in the understanding of the mechanism of loop formation ha
of course important consequences, notably in the cosm
string scenario for galaxy and large-scale structure forma
tion.

These findings triggered new efforts on the analytical sid
to try to account for small-scale structure. Notably, Austin
Copeland, and Kibble developed a model@5# where the evo-
lution of the network is described by three different length-
scales, one of which aims to explicitly describe the presenc
of small-scale structure. This model also includes a ver
simple treatment of the effects of gravitational radiation
Apart from confirming the predictions of the one-scale
model for the large-scale properties of the network, the mai
result of this model is the suggestion that the effects of grav
tational back-reaction are needed if this ‘‘third lengthscale’
is to reach scaling. A less attractive aspect of this model i
that it has to resort to an unappealingly large number o
unspecified parameters. There have also been studies of
evolution of the linear kink density in what is effectively a
‘‘one-scale model context’’ which anticipated these results
by Allen and Caldwell@6# and later by Austin@7#.

However, it is usually said that it is very difficult to build
a house if one starts with the roof. It is therefore restrictive to
try to build models whose only aim is to describe an eventua
linear scaling regime. In particular, there is a fundamenta
ingredient in the evolution of a cosmic string network that
has been neglected until very recently, namely frictiona
forces due to particle-string scattering, which are importan
for some time after the string-forming phase transition. I
should be kept in mind that the period immediately afte
string formation is by no means irrelevant, e.g., for baryo
genesis mechanisms involving cosmic strings. Furthermor
for electroweak strings the friction-dominated epoch only
ends in the matter era, lasting almost through to the prese
day.

A model of string network evolution including the effects

,
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of frictional forces has been recently proposed by the auth
@8#. Although it should be seen as the basis for further wo
the model is already predictive enough to be testable in b
numerical and laboratory experiments, if not cosmological

The model is a simple generalization of the ‘‘one-scale
model in which the average string rms velocity becomes
dynamical variable. At present, the model does not inclu
small-scale structure~although there are significant hints o
how to do it! or other potentially important effects such a
loop reconnections onto the long string network. Neverth
less, it will be shown that this simple model provides th
first, fully quantitative description of the complete evolutio
of a string network in the early universe~see Secs. IV and
V!. In particular, the existence of two different transient sca
ing regimes in the epoch of friction-dominated dynamics a
established~one of which was previously suggested b
Kibble!. Also, it is apparent in this model that cosmic string
will never dominate the energy density of the universe~for
reasons other than the statistical physics arguments of Alb
cht and Turok@9#!.

Cosmic string loops decay fairly quickly after their for
mation. For this reason, their contribution to the seeding
gravitational instabilities or cosmic microwave backgroun
anisotropies is thought to be subdominant relative to lo
strings. This fact probably explains why the evolution of th
loop distribution has been comparatively neglected in t
literature. This gap can be filled by the model to be describ
here. With simple modifications—the more important o
them being the use of the physical loop sizel rather then the
correlation lengthL—this model can also be used to stud
the evolution of the loop distribution. In particular, it will be
shown that, depending on the parameters characterizing l
production and lifetimes, there is more energy density
loops than in long strings. Furthermore, the maximum val
of the ratio of the loop and background densities occu
shortly after the end of the friction-dominated epoch, and
independent of both the initial conditions and the loop size
formation.

Strings~and topological defects in general!, of course, are
not exclusive to the early universe. They exist~and have
been seen! in a wide variety of condensed matter context
including metal crystallization,@10# liquid crystals,@11,12#
superfluid helium-3@13# and helium-4,@14# and supercon-
ductivity @15#. Our generalized ‘‘one-scale’’ model can als
be used to describe vortex-string evolution in condens
matter contexts~with advantages over previously used ap
proaches!. In particular, some well-known results can b
readily reproduced, and new quantitative predictions rega
ing loop production can be made. These issues are discu
in a companion paper@16#.

The structure of this paper is as follows. In the next se
tion, after a short review of string dynamics, the evolutio
equations for the ‘‘characteristic lengthscale’’ and the ave
age velocity of the long string network and each individu
loop are derived and justified. The cases of strings aris
from the breaking of gauge and global symmetries are b
considered. The validity of these ‘‘averaged’’ evolutio
equations is then tested against simple loop solutions in S
III. Section IV contains a discussion on the importance of t
friction force in the early universe, together with the analys
of the different scaling laws in the model for both lon
ors
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strings and loops. There are also some preliminary compar
sons with numerical simulations. We then proceed to a de
tailed and individual analysis of the four physically relevant
cases: gauge electroweak and GUT, and global axionic an
GUT strings are the subject of Sec. V. Finally, Sec. VI con-
tains conclusions.

Throughout this paper we will use fundamental units in
which \5c5kB51.

II. A GENERALIZED ‘‘ONE-SCALE’’ MODEL

A. String dynamics with friction

A string sweeps out a two-dimensional surface~the
worldsheet! which can be described by spacetime coordi-
natesxm and worldsheet coordinatessa, xm5xm(sa); the
line element is then

ds25gmnx,a
m x,b

n dsadsb5gabdsadsb, ~2.1!

where gmn and gab are respectively the four-dimensional
spacetime and two-dimensional string worldsheet metrics
For the case of a gauge~global! string, one can then derive
the Nambu~Kalb-Ramond! action from the Abelian-Higgs
~Goldstone! model on the assumption that the scale of per-
turbations along the string is much larger than its widthd.
~In the global case, one also makes use of the equivalenc
between a real massless scalar field and a two-index antisym
metric tensor field.! One finds

S5mE A2gds2 gauge, ~2.2!

S5m0E A2gds21
1

6E A2gH2d4x

12phE Bmndsmn global, ~2.3!

whereBmn is the antisymmetric tensor field,Hmnl is its field
strength, anddsmn is the worldsheet area element. Hence the
Nambu action is proportional to the area swept out by the
string. By varying this action one obtains the following equa-
tions of motion

xn
,a
;a1Gtl

n gabxt
,ax,b

l 50 gauge, ~2.4!

xn
,a
;a1Gtl

n gabxt
,ax,b

l 5
2ph

m0
Htl

n eabxt
,ax,b

l global.

~2.5!

It should be noted that in the global casemo is the ‘‘bare’’
~unrenormalized! energy per unit length. However, it can be
shown that if one distinguishes between the external an
self-field contributions toH and setsHself50 the above
equations still hold withm0 replaced by the renormalized
energy per unit length, denoted bym @17#.

Still, a crucial ingredient for string evolution is missing.
Since strings move through a background radiation fluid
their motion is retarded by particle scattering. Vilenkin has
shown @18# that this effect can be described by a frictional
force per unit length that can be written
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Ff52
m

l f

v

A12v2
, ~2.6!

wherev is the string velocity andl f will be called the ‘‘fric-
tion length scale;’’ its explicit value depends on the type
symmetry involved. For a gauge string, the main contrib
tion comes from Aharonov-Bohm scattering,@19# while in
the global case it comes from Everett scattering@20#. Then
we respectively have

l f5
m

bT3
gauge, ~2.7!

l f5
m

bT3
ln2~Td! global, ~2.8!

whereT is the background temperature andb is a numerical
factor related to the number of particle species interact
with the string~strictly speaking, its value is slightly differ-
ent in the two cases, but a common symbol will be used
simplicity!. Specifically in the gauge case we have

b5
2z~3!

p2 (
a

basin
2~pna!, ~2.9!

where this sum is taken over effectively massless degree
freedom,na is the phase change experienced by a part
transported around the string andba is 1 for bosons and
3/4 for fermions. Hence Aharonov-Bohm scattering will o
cur for particles with nonintegern8s; see the paper by Alford
and Wilczek in@19# for an example of a model with suc
values. It should also be noted that the Everett scatte
formula is only valid when the particle wavelength is mu
larger than the string thicknessd.

It is then straightforward to show that the frictional forc
per unit length~2.6! can be included in the equations o
motion ~2.4! and ~2.5! by adding the term

~Un2x,a
n xs,aUs!

1

l f
, ~2.10!

(Un being the four-velocity of the background fluid! on its
right-hand side.

Now consider string motion in an Friedmann-Robertso
Walker ~FRW! universe with the line element

ds25a2~t!~dt22dx2!; ~2.11!

thenUn5(a21,0) and choosing the gauge conditionss5t
~i.e., identifying conformal and world sheet times! and
ẋ•x850 ~i.e., imposing that the string velocity be orthogon
to the string direction! the string equations of motion with
the frictional force~2.6! in the background~2.11! can then be
expressed as@18,21#

ẍ1S 2ȧa1
a

l f
D ~12 ẋ2!ẋ5

1

e S x8e D 8
, ~2.12!

ė1S 2ȧa1
a

l f
D ẋ2e50, ~2.13!
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where the ‘‘coordinate energy per unit length’’e is defined
by

e25
x82

12 ẋ2
, ~2.14!

and dots and primes, respectively, denote derivatives w
respect tot and1 s. This form of the evolution equations
proves to be particularly useful because dissipation is nat
rally incorporated in the decay of the coordinate energy de
sity e, while preserving the gauge conditions.

Incidentally, it has been shown@17# that a global string
will behave as a superfluid vortex if it is introduced in a
homogeneous background of the form

Hext
i jk5Arhe

i jk ~2.15!

~physically, this corresponds to giving it angular momen
tum!. The interaction between this background and the strin
gives rise to an additional force, known as the~relativistic!
Magnus force, and Eq.~2.12! becomes

ẍ1S 2ȧa1
a

l f
D ~12 ẋ2!ẋ5

1

e S x8e D 8
1
1

e

rh
m
ẋ`m,

~2.16!

where

m5
4ph

Arh
x8 ~2.17!

is the circulation vector; the energy equation~2.13! remains
unchanged.

B. Lengthscale evolution

We can now proceed to average the string equations
motion to describe the large-scale evolution of the strin
network. We therefore define the total string energy and th
average rms string velocity to be

E5ma~t!E eds, ~2.18!

v2[^ẋ2&5
* ẋ2eds

*eds
. ~2.19!

Differentiating Eq.~2.18! and using Eq.~2.13! and ~2.19!,
we see that the total string energy densityr}E/a3 will obey
the evolution equation~in terms of physical timet)

dr

dt
1S 2H~11v2!1

v2

l f
D r50. ~2.20!

Equation~2.20! incorporates both long strings and small
short-lived loops which have~in general! a low probability
of interacting with other strings before their demise. W
shall study the evolution of the long-string network on th

1Note that reparametrizations ofs can be absorbed into changes
of e.
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assumption that it can be characterized by a single len
scaleL; this can be interpreted as the interstring distance
the ‘‘correlation length.’’ Strings larger thanL will be called
long or ‘‘infinite;’’ otherwise they will be called loops. For
Brownian long strings, we can define the ‘‘correlatio
length’’ L in terms of the network density2 r` as

r`[
m

L2
. ~2.21!

Following Kibble @1#, the rate of loop production from
long-string collisions can be estimated as follows. Concep
ally, we divide the network into a collection of segments
lengthL, each in a volumeL3. Consider another segment o
length l moving with a velocityv` ; the probability of it
encountering one of the other segments within a timedt is
approximately l v`dt/L2. Consistently with our ‘‘one-
scale’’ assumption, we then assume that the probability
such an intersection creating a loop of length in the ran
l to l 1dl will be given by a scale-invariant function
w(l /L). The rate of energy loss into loops is then given b

S dr`

dt D
to loops

5r`

v`

L E wS lL D lL dl

L
[ c̃v`

r`

L
,

~2.22!

where the loop ‘‘chopping’’ efficiencyc̃ is assumed to be
constant. Note that in previous analyses without frictionv`

was assumed to be constant and absorbed into the defin
of c̃.

Finally, by subtracting the loop energy losses~2.22! from
Eq. ~2.20! and then using Eq.~2.21!, we obtain the overall
evolution equation for the characteristic length scaleL:

2
dL

dt
52HL~11v`

2 !1
Lv`

2

l f
1 c̃v` . ~2.23!

Note that with the exception of the expansion term, all term
on the right-hand side are velocity dependent; this will ha
important consequences~see below!.

C. Loop evolution

On the other hand, we can also study the evolution of t
loop density and distribution. The traditional approach is
definenl (l ,t)dl to be the number density of loops with
length in the range (l ,l 1dl ) at time t; the corresponding
loop energy density distribution is

r l ~ l ,t !dl 5ml nl ~ l ,t !dl . ~2.24!

Note that the total loop energy density is

r0[E r l ~ l ,t !dl , ~2.25!

andr5r`1r0.
3 From our assumptions on the loop produc

2Throughout this paper the subscript ‘‘` ’’ refers to properties of
the long~‘‘infinite’’ ! string network.
3Throughout this paper the subscript 0 refers to properties of

entire loop population;l refers to the loops with length in the rang
(l ,l 1dl ).
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tion rate~2.22! it is then easy to see that

dr l
dt

1S 2H~11v l
2 !1

v l
2

l f
D r l 5gm

v`l

L5
wS lL D ,

~2.26!

whereg is a Lorentz factor accounting for the fact that loop
are created with nonzero center-of-mass kinetic energy~lost
through velocity redshift!. However, note that this equation
is ‘‘static,’’ in the sense that it does not include loop deca
mechanisms~e.g., via the emission of gravitational, Gold-
stone boson, or electromagnetic radiation, as the case m
be!.

Instead, we start by using our analytic model to describ
the evolution of each individual loop. Knowing the energy
density transferred from long strings into loops and estima
ing their sizes at formation~see below!, one can numerically
determine the energy density in loops and other releva
quantities at all times. This formalism does not allow fo
loop reconnections, which are unimportant for GUT string
~but can be relevant for high-density electroweak or axion
string networks—see Sec. V!; furthermore self-intersections
could be included by carefully defining an ‘‘effective’’ loop
production size.

The physical size of a loop is simply given by

l 5a~t!E
loop

eds; ~2.27!

its time derivative can be easily calculated using~2.13!.
However one must still subtract energy~hence length! losses
due to radiative processes. For the case of a gauge string,
can be roughly estimated from the quadrupole formula

S dEdt D
rad

;GS d3Ddt3 D 2;Gm2v6 ~2.28!

(D;ml 3 being the loop’s quadrupole moment!. Again, note
that loop velocity is usually assumed constant (v0

251/2) and
not included in ~2.28!. ~This is obviously correct in the
‘‘free’’ regime, but it is not a good assumption in the
friction-dominated regime.! Then we define

S dldt D
rad

[2G8Gmv6, ~2.29!

where according to numerical estimatesG8;8365 ~note
that the original parameterG was calculated in flat space,
wherev0

251/2). Then the evolution equation for the physica
loop size has the form

dl

dt
5~122v l

2 !Hl 2
l v l

2

l f
2G8Gmv l

6 . ~2.30!

Again, all but the expansion term are velocity-dependent.
For the case of axionic strings, however, the emission

gravitational radiation is subdominant with respect to th
emission of axions. The above expressions will still be vali
with the replacement

the
e
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G8Gm→q[
G8

2p

1

ln~ l /d!
, ~2.31!

where d is the string thickness. A similar expression als
holds for global GUT strings.

Now, we will assume that loop production is ‘‘monochro
matic,’’ i.e., that loops formed at a timetp have an initial
length

l ~ tp!5a~ tp!L~ tp!. ~2.32!

Notice that we are implicitly saying that the loop size a
formation depends both on the large-scale properties of
network ~through the correlation length! and on the small-
scale structure it contains~through the parametera). At this
stage, since the model does not include small-scale struct
we shall resort to physical arguments about radiative ba
reaction, etc., to obtain anAnsatzfor a when necessary.

With this ansatz the scale-invariant loop production fun
tion w @see Eq.~2.22!# becomes

wS lL D5
c̃

a
dS lL 2a D , ~2.33!

and the rate of energy loss into loops becomes

S dr`

dt D
to loops

5gm c̃
v`

L3
, ~2.34!

with g being the Lorentz factor as above.
Hence the energy density converted into loops from tim

t to t1dt is

dro~ t !5gm c̃
v`

L3
dt; ~2.35!

this corresponds to a fraction

dro~ t !

r`~ t !
5gc̃

v`

L
dt ~2.36!

of the energy density in the form of long strings at timet.
Then using ourAnsatz~2.33!, the corresponding number o
loops produced in a volumeV is

dN~ t !5g
c̃

a

v`

L4
V~ t !dt; ~2.37!

hence the ratio of the energy densities in what we will ca
‘‘dynamic’’ loops and long strings at timet is

%~ t !dyn[
r0~ t !dyn
r`~ t !

5gL2~ t !E
tc

t dN~ t8!l ~ t,t8!

V

5gc̃ L2~ t !E
tc

t a3~ t8!

a3~ t !

v`~ t8!

L4~ t8!

l ~ t,t8!

a~ t8!
dt8,

~2.38!

where tc is the moment of the network formation an
l (t,t8) is the length at timet of loops produced at timet8.

Furthermore, we can also find the ratio of the energy de
sities in ‘‘primordial’’ loops and long strings with a simple
o

-

t
the

re,
k-

c-

e
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n-

modification of our counting strategy: instead of integrating
over time, we now integrate over the possible loop lengths in
the initial distribution

%~ t !pri[
r0~ t !pri
r`~ t !

5L2~ t !
a3~ tc!

a3~ t ! ELc
Lcut

nl ~ l 8,tc!l ~ l 8,tc!dl 8,

~2.39!

whereLc is the value of the ‘‘correlation length’’ at time
tc , Lcut@Lc is a cutoff length,l (l 8,tc) is the length at time
t of a ~primordial! loop with lengthl 8 at tc , and the loop
number densitynl has the well-known Vachaspati-Vilenkin
form ~see the discussion in Ref.@22#!, normalized such that
the initial ratio has a value%c which in this paper we will
take ~unless otherwise stated! to be%c50.25.

We can therefore numerically~and, in some simple limit
cases, analytically! determine the loop density at all times.
This generalized ‘‘one-scale’’ model can, therefore, provide
a complete description of a string network.

D. Velocity evolution

We now consider the evolution of the average string ve-
locity v. A nonrelativistic equation can be easily obtained: it
is just Newton’s law,

m
dv
dt

5
m

R
2mvS 2H1

1

l f
D . ~2.40!

This merely states that curvature accelerates the strings whi
damping ~both from friction and expansion! slows them
down. On dimensional grounds, the force per unit length due
to curvature should bem over the curvature radiusR. The
form of the damping force can be found similarly.

A relativistic generalization of the velocity evolution
equation~2.40! can be obtained more rigorously by differen-
tiating Eq.~2.19!:

dv
dt

5~12v2!F kR2vS 2H1
1

l f
D G . ~2.41!

This is exact up to second-order terms. To obtain the damp
ing term we have taken ^ẋ4&5^ẋ2&2. Writing
ẋ25(11p•q)/2 (p andp being unit left- and right-movers
along the string! and defining§[2^p•q& the difference be-
tween the two is

^ẋ4&2^ẋ2&25
1

4
@^~p•q!2&2§2#. ~2.42!

Note that numerical simulations of string evolution indicate
that § rad;0.14 and§mat;0.26, so this difference should also
be small. As for the curvature term, we have introducedR
via the definition of the curvature radius vector,

a~t!

R
û5

d2x

ds2
, ~2.43!
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whereû is a unit vector ands is the physical length along the
string @related to the coordinate lengths by
ds5ux8uds5(12 ẋ2)1/2eds#. The dimensionless paramete
k is defined by

^~12 ẋ2!~ ẋ•û!&[kv~12v2!. ~2.44!

The parameterk is related to the presence of small-sca
structure on strings: on a perfectly smooth string,û and ẋ
will be parallel sok51 ~up to a second-order term as above!,
but this need not be so for a wiggly string. On the other han
k50 for a string loop in flat spacetime—in particular, it i
easy ~although rather tedious! to show using its definition
~2.44! that this is indeed the case for all Kibble-Turok and a
Burden loops. In that sense, flat spacetime is the case
maximal small-scale structure; this is not surprising, sin
there is no mechanism available for kink decay. In a mod
including small-scale structure,k would probably be a fur-
ther dynamical variable. For this model, however, we sh
use an ansatz interpolating between these two extreme
gimes motivated by comparisons with microscopic evol
tion.

Consider a particular string loop. On large enough scal
they are ‘‘frozen’’ in the background, being conformall
stretched by expansion~note that very large loops should
only form in friction-dominated regimes!. Then they should
have relatively little small-scale structure, and takingk'1
should be a good assumption. On the other hand, on sm
enough scales strings behave as if they were in flat spa
time, so one requires thatk→0 asR→0. In particular, in the
case of loops, demanding that their limiting velocity b
v l
251/2 leads to the requirement thatk}R as R→0. The

remaining point consists in noting that what is dynamical
meant by ‘‘large’’ and ‘‘small’’ scales depends not on th
relative size ofR and the horizon but on the relative size o
R and the ‘‘damping length’’ defined as

1

l d
[2H1

1

l f
. ~2.45!

With these requirements in mind, and after comparing w
the ‘‘microscopic’’ ~i.e., unaveraged! evolution of some
simple solutions~to be described in the next section! one
arrives at the ansatz

k51,
R

l d
.x, ~2.46!

k5
1

A2
R

l d
,

R

l d
,x, ~2.47!

wherex is a numerical coefficient@23# of order unity. Recall
that the physical loop length is approximatelyl 52pR;
since we will be considering each individual loop, this ansa
applies immediately in that case.

For the case of the long-string network~for which
L5R), the reasoning is roughly the same in the regim
whereL@l d . However, the opposite regime never arises~at
least, in the early universe!, so there is no simple way of
inferring thek behavior. The closest a network gets is in th
linear scaling regime in the early universe, where the ratio
r
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less than, but still of order unity. Of course there is also th
problem thatk has a slightly different definition—namely, it
is an average over the whole network, on a scale of th
‘‘correlation length’’ L. This makes its physical interpreta-
tion slightly less clear. For these reasons, when discussi
this regime we will start by assuming thatk is a constant of
order unity. Further justification for this assumption, and
discussion of the possible use of Eq.~2.47! or other alterna-
tives can be found in Sec. IV.

Equations~2.23!, ~2.30!, and~2.41! form the basis of our
generalized ‘‘one-scale’’ model, which we will now proceed
to apply in several different contexts. We note that th
velocity-independent ‘‘one-scale’’ model~2.23! has proved
to be successful in describing the large-scale properties
cosmic string networks in numerical simulations. Any defi
ciencies seem to be associated with the emergence of sign
cant small-scale structure, that is, propagating kinks an
wiggles on scales well belowL. In friction-dominated re-
gimes, therefore, we should anticipate improved quantitativ
agreement because of the suppression of this substructur

III. ‘‘AVERAGED’’ VERSUS ‘‘MICROSCOPIC’’
EVOLUTION

In order to check the validity of our ‘‘averaged’’ evolu-
tion model, and in particular our ansatz fork, we will test it
against simple loop solutions.

First, consider a circular loop in flat spacetime but with
constant ~noninfinite! friction length—i.e., a condensed-
matter-like situation. We can describe the loop trajector
simply by

x5r ~t!~sinu,cosu,0!, uP@0,2p#. ~3.1!

Then Eqs.~2.12! and ~2.13! reduce to4

r̈1~12 ṙ 2!S ṙ

l f
1
1

r D50. ~3.2!

Note that the physical~‘‘invariant’’ ! loop radius is
R5r /A12 ṙ 2, obeying

Ṙ52 ṙ 2
R

l f
; ~3.3!

also the ‘‘microscopic’’ velocity isv52 ṙ and obeys

v̇5~12v2!S 1r 2
v
l f

D . ~3.4!

On the other hand, our averaged evolution equation
~2.30! and ~2.41! take the form5

dR̄

dt
52 v̄2

R̄

l f
, ~3.5!

4Overdots denote differentiation with respect to conformal tim
t, rather than physical timet. In flat space,t5t.
5In this section, averaged quantities will be denoted by overbar



o

-

t
t

i

h

t

r

g

a

fi-

54 2541QUANTITATIVE STRING EVOLUTION
dv̄
dt

5~12 v̄2!S k~R̄!

R̄
2
v̄
l f

D . ~3.6!

Notice the similarity between the two approaches. Lo
with size much larger than the friction lengthl f will be
overdamped, with the velocity being approximately given

v;
l f

r
. ~3.7!

In this case the two sets of evolution equations actu
coincide—hence justifying ourk51 ansatz for largeR. As
the loop gains velocityr andR become significantly differ
ent and this equivalence ceases to be valid. WhenR becomes
much smaller thanl f , the loop still loses energy due
friction, but this is no longer effective in damping i
motion—the loop now begins to oscillate relativistically.
particular, over one ‘‘period’’v oscillates between 0 and
~ignoring nonlinear effects nearR50 due to the finite string
width!. But we know that the averaged velocity should
v̄251/2 ~in the small-scale limit!; this is the physical reaso
why we needk to be a ‘‘phenomenological’’ variable. As w
mentioned previously, this requirement fixes the behav
of k on small scales to be as shown in Eq.~2.47!. The re-
maining question is then how to match the two regimes.

First of all, we need a clear idea of when~and where! the
transition occurs. A good guess would be the moment of
‘‘first collapse,’’ i.e., the moment when we first havev51.
In fact, this turns out to be a well-defined event. As was fi
pointed out by Garriga and Sakellariadou@23# @and can be
easily seen by analytical or numerical study of the equa
of motion ~3.2!#, circular loops with initial radius muc
larger than the friction length always reachv51 for the first
time when

S R
l f

D
col

5xc.0.569. ~3.8!

Note that r i@l f is the physically relevant case for strin
dynamics in condensed matter contexts~recall that the dy-
namics in that case is always friction-dominated!. Also note
that because of friction, all loops will rapidly become~al-
most! circular.

After numerically comparing the averaged and mic
scopic evolution equations, we find that the simplest po
bility ~shown in Fig. 1!,

k51,
R

l f
.xc , ~3.9!

k5
1

A2
R

l f
,

R

l f
,xc , ~3.10!

provides excellent agreement for thse circular loops~see
Figs. 2 and 3!. In particular, this turns out to be significant
better than assuming smoother~and slower! transitions be-
tween the two regimes. As can be readily seen, this an
provides a very good fit, considering the lack of parame
available.
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In passing, it is worth pointing out that one can also easily
calculate the loop lifetime@23#. In the relativistic regime, the
R̄ evolution equation can be written

dR̄

dt
52

R̄

2l f
, ~3.11!

so we can immediately estimate that the loop will disappea
in a time tdec;2l f after its first collapse.

The case of the circular loop~3.1! in the expanding uni-
verse is analogous, with the constant friction length bein
replaced by a time-dependent damping length~2.45!; also the
invariant loop radius is nowR5ar/A12 ṙ 2. Hence the mi-
croscopic evolution equations now take the form

r̈1~12 ṙ 2!S a ṙ

l d
1
1

r D50, ~3.12!

dv
dt

5~12v2!S 1r 2
v
l d

D , ~3.13!

dR

dt
5HR2v2

R

l d
. ~3.14!

Neglecting the gravitational radiation term~whose form has
been established elsewhere!, the averaged evolution equa-
tions are

FIG. 1. Two possibleAnsätzefor the parameterk defined in Eq.
~2.44!, specifically for strings in a condensed-matter context as
function of the rescaled loop radiusR/l f . For the case of string
loops, the behavior at large and small scales has a physical justi
cation ~see text!; numerical matching was improved for circular
loops by altering the transition point fromx5A2 ~dashed curve! to
x;0.57 ~solid curve!. However, theAnsatzcorresponding to the
dashed curve might be relevant for long strings~see Sec. IV!. The
logarithm is to base 10.
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FIG. 2. Comparing the ‘‘microscopic’’~solid lines! and ‘‘averaged’’~dashed! evolution equations for a circular loop in a condensed
matter context. Length and time are in units ofl f , and the time axis is with a logarithmic scale. Plot~a! depicts the log of the~rescaled!
radius, while~b! depicts the loop velocity.~c! and ~d! are close-ups of~a! and ~b!, respectively.

FIG. 3. Comparing the ‘‘microscopic’’~solid lines! and ‘‘averaged’’~dashed! evolution equations for a circular loop in a condensed
matter context. Length and time are in units ofl f , and the time axis is with a linear scale. Plot~a! depicts the log of the~rescaled! radius,
while ~b! depicts the loop velocity.~c! and ~d! are close-ups of~a! and ~b!, respectively.



te
to

l

i-

-
ts
h

s.
y.
or
t

ur
l-
is
al
ed

nt
,’’

g
n-

es

,

of

e-

54 2543QUANTITATIVE STRING EVOLUTION
dR̄

dt
5~122v̄2!HR̄2 v̄2

R̄

l f
, ~3.15!

dv̄
dt

5~12 v̄2!S k~R̄!

R̄
2
v̄
l d

D . ~3.16!

Corresponding to this change, we simply modifyl f to
l d in our ansatz fork, which becomes Eq.~2.47! ~see Figs.
4 and 5!. However, the numerical value of the ratio ofR and
l d when the loop first collapses,x, is now slightly smaller:

x50.431 radiation, ~3.17!

x50.380 matter. ~3.18!

FIG. 4. The ansatz for parameterk for gauge GUT string loops
as a function of loop radius and time after the formation of
string network~see Sec. V!. The logarithm is to base 10.

FIG. 5. TheAnsatzfor parameterk for gauge electroweak string
loops~compare with Fig. 4!. Note that these unitsteq;22.1, friction
ceases to dominate the dynamics att*;25.8, and the present tim
is to;28.5. The logarithm is to base 10.
Numerically we find that a slightly larger value,x;0.5 pro-
vides the best fit in both cases. It is also interesting to no
that while the radiation-era evolution is rather insensitive
the value ofx ~in the rangex;0.3–0.6 say!, the matter-era
evolution exhibits a stronger dependence.

Figures 6 and 7 depict the evolution of a loop with initia
radiusRi510t i in the radiation (t i5tc) and matter (t i5teq)
eras—see Sec. IV. Again, the loops are initially overcrit
cally damped, the approximate velocity being

v;
l d

R
. ~3.19!

The effect of damping is essentially twofold. Firstly, it de
lays the moment when the loop first collapses. While i
velocity is nonrelativistic, there is no loss of length throug
velocity redshift@see Eq.~3.15!#, and so the physical loop
radius can grow to a size much larger than the initial radiu
As it picks up speed, however, it starts losing more energ
As we mentioned above, the first collapse still occurs f
R;l d ; in the relativistic regime, the loop loses energy a
each oscillation as before.

Finally, when friction has switched off~and the period of
oscillation is much shorter than the expansion rate! the loop
starts to oscillate with constant physical amplitude@see
~3.15!#. Notice that due to the additional effect of friction
this energy loss is much larger in the radiation era. In o
case, in the radiation era the ‘‘final’’ physical radius is a
most equal to the initial radius, whereas in the matter era it
more than one order of magnitude larger. When this fin
stage is reached, gravitational radiation or other preferr
decay channels cause the loop to shrink further.

Having thus established, in simple but physically releva
cases, the validity of our generalized ‘‘one-scale model
and in particular of the ansatz fork, we now proceed to apply
it to the study of cosmic string evolution; the study of strin
evolution in condensed matter contexts is left for a compa
ion paper@16#.

IV. GENERAL SCALING RESULTS

A. Introduction

In the early universe the friction lengthscale increas
with time, so friction will only be important at early times
@23#; however, the meaning of ‘‘early’’ is, as we will see
model-dependent. Again letTc be the temperature of the
string-forming phase transition; the corresponding time
formation is

tc5
1

f

mPl

Tc
2 , ~4.1!

where f is given by

f54pS pN
45 D 1/2, ~4.2!

andN is the number of effectively massless degrees of fre
dom in the model~e.g., N5106.75 for a minimal GUT
model, but it can be as high as 104 for particular extensions

,
the

e
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FIG. 6. Comparing the ‘‘microscopic’’~solid! and ‘‘averaged’’~dashed! evolution equations for the physical radius~a!, the log of the
radius relative to the horizon~b!, and velocity~c! of a circular gauge GUT loop formed att5tc with radiusR510tc ; ~d! is a closeup of~a!.
Time is in orders of magnitude from the moment of loop formation. Radiative mechanisms are not included.
ll
of it!. Then in the case of a gauge symmetry breaking
friction lengthscale can be written

l f5
1

u

t3/2

tc
1/2 radiation, ~4.3!

l f5S 34D
3/21

u

t2

~ tcteq!
1/2 matter, ~4.4!

and for the case of a global symmetry

l f5
1

4u

t3/2

tc
1/2lnS Ld D F lnS 6l tc

t D G
2

radiation, ~4.5!

l f5S 34D
3/2 1

4u

t2

~ tcteq!
1/2lnS Ld D F lnS 8l tcteq

1/3

t4/3 D G2 matter.

~4.6!

The constantu is a measure of the importance of the frictio
term in the evolution equations; its value is

u5
b

Af
S tctPlD

1/2

. ~4.7!

Note that as we mentioned previously,b is not exactly the
same in the gauge and global cases. Also, Eq.~4.3! is valid
almost immediately aftertc ~so we will begin studying the
evolution of the network att i'tc), but Eq.~4.5! is only valid
for t/tc.6/l. The string energy per unit length can again
written
the

n

be

m5Tc
2 gauge, ~4.8!

m5Tc
2lnS Ld D global. ~4.9!

Defining t* as the time at which the two damping terms
in Eqs.~2.12! and ~2.13! have equal magnitude we find

t*
tc

5u2 gauge, ~4.10!

t*
tc

516u2S lnLd D 22F lnS 6l tc
t!

D G24

global, ~4.11!

provided this is still in the radiation era; otherwise, in the
matter era we obtain

t*
tc

5S 43D
1/2

uS teqtc D
1/2

gauge, ~4.12!

t*
tc

54S 43D
1/2

uS teqtc D
1/2S lnLd D 21

3F lnH 8l S teqtc D
1/3S tct!D

4/3J G22

global. ~4.13!

String dynamics is friction dominated fromtc until t* , after
which motion will become relativistic or ‘‘free.’’ A simple
heuristic argument~see, for example,@24#! due to Kibble
suggests that in the damped phase the correlation length wi



-
It
f

f

-

f

54 2545QUANTITATIVE STRING EVOLUTION
scale asL}t5/4; it is worth noting that this argument is rathe
similar to the ones used in condensed-matter contexts.

We now address the problem of initial conditions. Sta
ing with the correlation length, by causality this must ob
ously be smaller than the horizon; but on the other hand
must be greater than the friction length scale since frictio
initially dominating the dynamics. We will therefore assum
~following @24#! that

l f i,Li,t i . ~4.14!

For simplicity, we now concentrate on the gauge case,
defineL̃[L/tc . Then Eq.~4.14! can be written

u21,L̃ i,1; ~4.15!

these two extreme limits could correspond to a rapid seco
order phase transition (L̃ i;u21) or a slow first-order transi-
tion (L̃ i;1). Now, the parameterb in Eq. ~2.9! can be writ-
ten

b5
2z~3!

p2 Nv, ~4.16!

~where 0<v,1) and using the definitions ofu and f , one
finds that the initial ratio of the string and background de
sities obeys

FIG. 7. Comparing the ‘‘microscopic’’~solid! and ‘‘averaged’’
~dashed! evolution equations for the physical radius~a! and the log
of the radius relative to the horizon~b! of a circular gauge GUT
loop formed att5teq with radiusR510teq. Time is in orders of
magnitude from the moment of loop formation. Radiative mec
nisms are not included.
r
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32p

3
Gm<S r`

rb
D
i

<
60z~3!

p4 v~<0.75!. ~4.17!

In fact, by analyzing the evolution equations~2.23! and
~2.41! one can show that for all physically reasonable values
of c̃ andk these bounds hold for all subsequent times. Con
sequently, cosmic strings can never dominate the universe.
can analogously be shown that this is also true in the case o
a global symmetry, although the required algebra is slightly
more complicated. Note that this is an entirely different~and
independent! argument to the Albrecht-Turok@9# statistical
physics argument—in a sense, it is a ‘‘thermodynamical’’
argument.

As for the initial velocity, it can be estimated by a very
simple~and rough! argument. The friction lengthscale can be
approximately interpreted as the distance that a piece o
string can travel before it is stopped by the friction force.
Then by comparing the energy contained in strings in a vol
umeL3 and the work done by the friction force in stopping
them we obtain

mLi;
mv i
l f i

L i
2 , ~4.18!

and substitution ofl f yields

v i S Lt D
i

;S f tPltc D
1/2

. ~4.19!

As expected, highly-curved strings will have high velocities
and conversely strings in low-density networks will have
small velocities.

B. Long-string scaling laws

Analysis of the evolution equations for the correlation
length and velocity of the long string network Eqs.~2.23!
and ~2.41! reveals the existence of three types of scaling
regimes, which we now describe in detail. Two of these re-
gimes are transient, occurring in the friction-dominated ep-
och. In this situation strings should have very little small-
scale structure, and we should havek51. In analogy with
our discussion for string loops in Sec. III, we should also find
that the string velocity in the radiation era is

v}
l d

L
, ~4.20!

which is in fact the case~see below!. The third is the well-
known linear scaling regime.

Recall thattc @defined in Eq.~4.1!# denotes the time of
string formation; on the other hand,ts will denote the time at
which the relevant period of evolution starts.

1. Stretching regime

This is a transient regime that occurs in the beginning o
the friction-dominated phase, provided the initial string den-
sity is sufficiently low. Withts5tc we get

L5LsS ttsD
1/2

, ~4.21!

ha-
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v5
t

uLs
gauge, ~4.22!

v5
t

uLs
F lnS l

6

t

ts
D G2lnLd global. ~4.23!

The reason why this regime arises is physically obvio
If we start with a small string density, the correlation leng
will be close to the horizon, and much larger than the dam
ing length. Hence long strings are fairly straight and ha
very little small-scale structure. This is therefore analogo
to the situation in condensed matter—the strings have v
small velocities and are ‘‘frozen,’’ being conformall
stretched by the expansion.

Mathematically, theL}t1/2 law comes immediately from
the fact that the friction, loop production and redshift term
in the evolution equation forL are all velocity dependent
and can therefore be neglected when compared to expan
Note, however, that unlike the condensed matter case the
no additional logarithmic correction to theL}t1/2 law in the
case of a global string network. Finally, and although this
not cosmologically relevant, it should be pointed out that
corresponding regime in the matter era would be

L}t2/3, v}t4/3. ~4.24!

2. Kibble regime

This is a transient regime that also occurs in the frictio
dominated epoch~following the stretching regime when suc
a regime exists!. In this case the scaling laws are

L

tc
5F2~11 c̃!

3u G1/2S ttcD
5/4

gauge, ~4.25!

L

tc
5F2~11 c̃!

3u G1/2S ttcD
5/4

lnS l

6

t

tc
D S lnLd D 1/2 global,

~4.26!

v5F 3

u~11 c̃!
G 1/2S ttcD

1/4

gauge, ~4.27!

v5F 3

2u~11 c̃!
G 1/2S ttcD

1/4

lnS l

6

t

tc
D S lnLd D 1/2 global.

~4.28!

This is a high-density regime, arising when the correlat
length L is close to the friction length—either because
started that way or because it becomes so during a perio
L}t1/2 evolution ~recall that in the radiation era the frictio
length grows asl f}t

3/2).
Although friction still dominates the dynamics, the high

string curvature~and consequently higher velocity! means
that the network is now chopping off a considerable amo
of energy into loops—in fact, proportionally more than in t
final, linear regime. However, note that there is still
small-scale structure~i.e., we still havek'1). Therefore this
shows that small-scale structure is not the only determin
factor for loop production—the long-string density~i.e., L)
is just as important. This is the reason why we chose
us.
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form of our loop production ansatz~2.32!, explicitly separat-
ing the effects of large~throughL) and small-scale structure
~through the parametera).

The L}t5/4 scaling law was previously suggested by
Kibble. However, note that the above relations only hold i
the radiation era. In the corresponding regime in the matt
era for very light strings, we have the scaling laws

L}t3/2, v}t1/2. ~4.29!

3. Linear regime

This is the well-known ‘‘final’’ scaling regime—it is al-
ways the end point of cosmological string evolution, arisin
when the friction lengthscale becomes subdominant with r
spect to the Hubble length. Assuming thatk ~as well asc̃)
are constant in each regime, we find the scaling laws

L5@kr~kr1 c̃r !#
1/2t radiation, ~4.30!

L5F9km~km1 c̃m!

8 G1/2t matter, ~4.31!

v5F kr

~kr1 c̃r !
G 1/2 radiation, ~4.32!

v5F km

2~km1 c̃m!
G 1/2 matter. ~4.33!

Now, the simplest way to proceed is to look for the value
of c̃ andk that match the simulations:

c̃r'0.24, kr'0.18, ~4.34!

c̃m'0.17, km'0.49. ~4.35!

Hence, according to our interpretation of this model, it pre
dicts a larger loop production rate and more small-sca
structure in the radiation era~recall that more small-scale
structure corresponds to a smallerk)—which is exactly what
is seen in numerical simulations@4#. This shows that our
interpretation ofk as being related to the presence of smal
scale structure is at least qualitatively correct. Notice that th
scaling parameters are much less sensitive to variations
c̃ than those of previous analytic models; this will be rel
evant below.

Furthermore, we can get some feeling for the validity o
our ansatz~2.47! for k by finding out which values we obtain
with the known values of the ratiosz5L/t in the radiation
and matter eras @4#. In the first case we have
z r;0.28,kr;0.19 in excellent agreement with Eq.~4.34!. In
the matter era the scaling value ofzm;0.535 also gives good
agreement with the simulations, sincekm50.50 with
x5A2 ~the dashed line ansatz in Fig. 1!. Note, however, that
matter era correspondence is upset if we use thex50.57
ansatz modified to match collapsing circular loops. Neve
theless, these results indicate that the ansatz~2.47!, originally
justified for string loops, is probably extensible to the long
string network, although the pointx where the transition
between the constant and linear regimes takes place sho
be studied in greater detail. If this is indeed the case, then
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appears that this simple model goes a long way towards s
ing the ‘‘matching’’ problem at the matter-radiatio
transition—previously, a significant failing of the ‘‘one
scale’’ model.

Of course, these results are a manifestation of the fact
we require additional degrees of freedom to incorpor
small-scale structure satisfactorily~see, for example, Ref
@5#!, but perhaps there are fewer required than at first an
pated.

C. Loop scaling laws

We already know how to determine the~relative! loop
density at all times; we simply have to evaluate

%~ t !5gc̃L2~ t !E
tc

t v`~ t8!

L4~ t8!

a3~ t8!

a3~ t !

l ~ t,t8!

a~ t8!
dt8

1L2~ t !
a3~ tc!

a3~ t ! ELc
Lcut

nl ~ l 8,tc!l ~ l 8,tc!dl 8,

~4.36!

where l (t,t8) is the length at timet of loops produced at
time t8, l (l 8,tc) is the length at timet of a ~primordial!
loop with lengthl 8 at tc andnl is the Vachaspati-Vilenkin
loop number density distribution. If necessary, we can a
analyze the distributions of loop lengths, etc.—although t
will not be done in this paper. There is still, however, o
point to be discussed—we must propose anAnsatzfor the
parametera, which should be related to the presence
string small-scale structure.

We know on physical grounds thata;1 in the friction
dominated epoch, since strings are nonrelativistic and
wiggles are quickly erased; this conclusion is also suppor
qualitatively by observing the actual evolution of networ
in quenched liquid crystals@12#. On the other hand, all stud
ies of radiative backreaction lead us to expecta to be a
constant~significantly less than unity! in the linear scaling
regime. For example, in the case of a gauge GUT str
network numerical simulations @4# show that
aGUT,531023 ~note that our definition ofa differs from
that in the numerical simulation papers—where it is defin
as l /t). We will, therefore, use the simple Ansatz

a~ t !5
11asct/t*
11t/t*

, ~4.37!

whereasc is the constant scaling value. Note that this is su
that in the transition between the damped and free regim
the physical loop length at formation (l 5aL) is constant.
In this simple way we can ‘‘phenomenologically’’ accoun
for the build-up of small-scale structure as seen in the
merical simulations@4#. In particular, for the case of GUT
strings, this build-up takes about 4 orders of magnitude
time, in agreement with a result obtained by Allen and Ca
well and by Austin@6# by estimates of the evolution of th
linear kink density in a ‘‘one-scale’’ model context.

Although Eq. ~4.36! cannot be evaluated analytically i
general due to the complicated behavior of the integra
~and in particular of thel factors!, it is possible~under some
simplifying assumptions! to obtain an analytic solution in the
olv-
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linear regime. For simplicity we will neglect the loops exist-
ing at the start of this regime,t5ts . Since loops are much
smaller than the horizon, we can approximately neglect the
effect of expansion; furthermore, we can also assume that th
loop velocity is close to the terminal velocity,v l ;1/A2, so
that we approximateG8v6;G. These two simplifying as-
sumptions mean that our calculation will be a slight under-
estimate of the true loop density. The loop decay function in
this case is

l ~ t,t8!5l 82GGm~ t2t8!, t8<t<t81
l 8

GGm
~4.38!

l ~ t,t8!50 otherwise, ~4.39!

with the initial loop length being

l 85asczt8, ~4.40!

and we usedz5L/t. Note that the coefficientGGm will be
altered if the preferred loop decay channel is not gravita-
tional radiation, but Goldstone bosons or electromagnetic ra-
diation. With these assumptions, Eq.~4.36! reduces to

%~ t !5
gc̃v`

ascz
2 t

2E
f ~ t !

t l ~ t,t8!

t84
a3~ t8!

a3~ t !
dt8, ~4.41!

where

f ~ t !5ts , t<
ts
j
, ~4.42!

f ~ t !5jt, t>
ts
j
, ~4.43!

and

1

j
511

ascz

GGm
. ~4.44!

The path of integration for all times is schematically rep-
resented in Fig. 8. The integral can be therefore conveniently
split into two cases, the transition point corresponding to the
moment of the decay of the loops formed atts . Then one
finds the late-time solutions

r0~ t !

r`~ t !
5
gc̃v`

ascz
2 @2~zasc1GGm!~j21/221!

2 2
3GGm~j23/221!# radiation, ~4.45!

r0~ t !

r`~ t !
5
gc̃v`

ascz
2 @~zasc1GGm!lnj21

2GGm~j2121!# matter. ~4.46!
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Again, this can be confirmed numerically~see Sec. V!.
Figure 9 depicts a typical situation; after an initial build-u
while no loops have decayed, we reach a constant ratio. N
that Eqs.~4.45! and~4.46! should be testable against numeri
cal simulations. With the values ofc̃ andk quoted above and
assuming thatasc51023 and GGm56531026 this model
predicts the scaling density ratios to be

r0~ t !

r`~ t !
50.59 radiation, ~4.47!

r0~ t !

r`~ t !
50.19 matter. ~4.48!

FIG. 8. The interval int8 giving a nonzero loop length contri-
bution to the loop density integral Eq.~4.41! for different timest.

FIG. 9. Analytical estimate of the evolution of the ratio of the
loop and long string energy densities in the linear scaling regim
for asc51023 and GGm56531026, in the radiation~solid! and
matter~dashed! eras. Time is in orders of magnitude from the sta
of the regime. The logarithm is to base 10.
p
ote
-

Notice that it is possible~at least in principle! to measure
botha and the ratio of the densities from numerical simula-
tions (G can also be estimated in this way!. Hence the pre-
diction of this model for the density ratio in the scaling re-
gime Eqs.~4.45! and ~4.46! and even the approach to it can
be tested numerically. Figure 10 shows the predicted ratio
for gauge GUT strings in the radiation and matter eras, a
fixed GGm for all possible values ofasc ~the upper limit is
inferred from numerical simulations, the lower limit assumed
on physical grounds!. Note that if loops are large enough at
formation, then in the radiation era their scaling density can
be dominant~by a factor of up to two—but recall that this
analytic calculation underestimates the loop density!. In the
matter era, the energy density in loops can be at most 35% o
that in long strings.

Finally, let us just briefly mention two other helpful quan-
tities in characterizing the evolution of a cosmic string net-
work. The first is the fraction of the energy density in long
strings at a timet which is converted into loops within the
next Hubble time; this is given by

f H5g
c̃

H

v`

L
, ~4.49!

and the limiting values for GUT strings in the radiation and
matter eras are respectively

f H;0.81 radiation era, f H;0.18 matter era.
~4.50!

The second is the number of loops chopped off by the long
string network per Hubble volume per Hubble time, given by

e,

rt

FIG. 10. Expected ratios of the loop and long string densities in
the linear scaling regime, in the radiation~solid! and matter
~dashed! eras for gauge GUT strings, in terms of the small-scale
structure parameterasc and withGGm56531026. The logarithm
is to base 10.
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n5g
c̃

a

v`

H4L4
, ~4.51!

with asymptotic values

n;2.23105 radiation era, n;4.53103 matter era.
~4.52!

These quantities should also be measurable in numer
simulations.

V. THE COSMOLOGICALLY RELEVANT NETWORKS

A. Introduction

We can now discuss the four cosmologically interestin
cases: gauge electroweak and GUT, and global axionic
GUT strings. To summarize the cases to be studied num

TABLE I. Some relevant scales for the evolution of the fou
cosmologically interesting string networks.

Properties Gauge EW Global Ax. Global GUT Gauge GU

Tc/GeV 102 1010 1015 1016

Gm 10234 10218 1028 1026

l Irrelevant 0.2 0.2 Irrelevant
u 231015 13108 13103 29
tc /tPl 431032 331016 33106 33104

t i /tc 1 60 60 1
t! /tc 731025 23108 351 855
ical

g
and
eri-

cally, some relevant quantities in each case are listed
Table I. The initial conditions taken for the correlation length
~expressed in terms of the ratioL/t) are summarized in Table
II. Note that the initial condition on velocity is not
independent—see~4.19! in Sec. IV.

There is another parameter that we must estimate, name
the typical loop size at formation in the linear scaling regime
asc. As we have seen in the above discussion, this is cruci
in determining the ratio of the energy densities in loops an
long strings. We will assume thatasc;Gm.

B. Electroweak and axionic strings

We start by noting that for electroweak and axionic
strings we cannot meaningfully treat the case of very hig
string density~that is, the case whereL is initially close to
the friction lengthscale!. This is because in this case loop
reconnections onto the string network may have a significan
effect. In all other situations the effect of such reconnection
can be neglected.

For gauge electroweak strings~see Figs. 11 and 12! the
epoch of friction-dominated dynamics ends well into the

TABLE II. Initial conditions on the ratio of the length scale to
the horizon, (L/t) i , to be used in the figures and discussion below

Case Gauge EW Global Ax. Global GUT Gauge GUT

Solid 1021 0.9 0.9 0.9
Dashed 1024 531022 0.2 0.2
Dotted 1028 1023 0.02 0.05

r

T

of the
FIG. 11. The complete evolution of an electroweak gauge long-string network. Plots successively represent the exponents
power-law dependence ofL ~a! andv ~b!, log v ~c!, and the log of the ratio of the long string and background densities~d!. The horizontal
axis is labeled in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.
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matter era. One of the most important results on this pape
that the early-time evolution of the network depends c
cially on the initial string density. Note that among oth
things this depends on the order of the phase transitio
which the strings form. If this density is low, strings ha
very small velocities and according to our previous disc
sion the network starts evolving in the stretching regim
which can last up to ten orders of magnitude in time. In t
regime, the energy transfer into loops is negligible; this c
be seen in Fig. 12~b!, where initially less than one loop i
produced per Hubble time.

As the string velocity increases, energy losses to lo
production become more and more important and eventu
the network ‘‘switches’’ rather quickly to the Kibble regime
Here, the fraction of the energy density in long strings tha
transferred into loops per Hubble time is in fact larger th
unity. Of course there is nothing unphysical about this, si
the string network also gains energy during the time inter
in question due to stretching—most of which is immediat
converted into loops. Note that in this regime, although
fraction of transferred energy is constant, the number
loops produced per Hubble volume per Hubble time
creases: this is because the correlation length is ‘‘catch
up’’ with the horizon, so larger and larger loops~relative to
the horizon! are produced, given our assumption that dur
the friction-dominated epocha'1.

FIG. 12. Characteristics of loop production by electrowe
strings: log plots of the fraction of the energy density going in
loops per Hubble time~a! and of the number of loops produced p
Hubble volume per Hubble time~b!. The horizontal axis is labeled
in orders of magnitude in time from the moment of string form
tion, and initial conditions are specified in Table II; we have tak
asc;10231 andGGm;10230.
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In the opposite regime for high initial densities, the initial
velocity is much larger, so loop formation is important right
from the start and the Kibble regime begins immediately.
Note that the first few orders of magnitude in time after the
formation of an electroweak string network are the relevan
period for baryogenesis mechanisms; we therefore believ
that these results can shed some new light in this area.

As we approachteq, the network scaling switches again
to a different regime, though now rather more slowly. This
would be the matter-era analogous of the Kibble regime (L
}t3/2, v}t1/2), except that it is not particularly distinct given
that the friction-dominated dynamics ends and the network
evolves towards the final linear scaling regime. As we have
already pointed out, the long-string network reaches the lin
ear scaling regime about today. Nevertheless, it is still build
ing up small-scale structure and, if ourAnsatzis valid, it will
keep on doing so for another 20 orders of magnitude in time
if gravitational radiation is the dominant decay mechanism
~electromagnetic losses would intervene first for supercon
ducting strings!.

It should be noted that although string dynamics is
friction-dominated untilt!, the same is not true for the cor-
responding term in the evolution equation forL Eq. ~2.23!
~this is of course due to thev2 dependence of that term!. In
fact the expansion term in Eq.~2.23! is always dominant,
although in the Kibble regime the friction and loop produc-
tion terms are of the same order of magnitude. Also note
that, as we said before, the loop formation term is propor
tionally more important in the Kibble regime than in the
‘‘free’’ scaling regime—in fact, the~linear-log! plot of the
ratio of the friction and expansion terms in Eq.~2.23! is
indistinguishable~apart from the scale of the y axis! from
Fig. 11~a!.

Axionic and GUT strings reach the final scaling regime
well beforeteq, so we will separately consider the approach
to scaling in each case and then the transition between th
linear scaling regimes in the radiation and matter eras.

Figures 13 and 14 depict the approach to scaling of an
axionic string network. The discussion is analogous to the
one for the early evolutionary stages of electroweak strings
except for the different orders of magnitude involved. The
other difference is of course that the additional logarithmic
dependencies affect all the transient scaling laws with the
exception ofL}t1/2. Note that in all cases the effect of the
logarithms is to increase the exponent of the power-law de
pendencies. The stretching regime can now last up to fiv
orders of magnitude in time.

C. Global and gauge GUT strings

The approach to scaling for a global GUT string network
is shown in Fig. 15; as we mentioned previously, in this case
loop reconnections onto the network are not important and
hence the cases plotted are representative of all physical
meaningful initial conditions. In this case the period of
friction-dominated evolution is much shorter, and so the
stretching and Kibble regimes, although still clearly distin-
guishable, are not very definite. Again, the effect of the loga
rithmic corrections for global strings is to increase the
power-law dependencies. It takes a global GUT string net
work about six orders of magnitude in time to reach the
scaling regime.
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FIG. 13. The approach to scaling for an axionic long-string network. Plots successively represent the exponents of the powe
dependence ofL and v, v itself, and the ratio of the long string and background densities. The horizontal axis is labeled in orders
magnitude in time from the moment of string formation, and~c! and ~d! are log plots; initial conditions are specified in Table II.
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Now, let us concentrate on the more interesting case
gauge GUT strings for which the approach to the linear
gime is shown in Figs. 16 and 17. Here the epoch wh
friction dominates the dynamics lasts less than three ord
of magnitude in time, and the linear regime is reached ab
six orders of magnitude after string formation. Hence t
linear scaling regime is approached faster than previou
estimated and, more importantly, strings become relativis
at a very early epoch. Consequently, energy losses to lo
are relevant at all times~see Fig. 17!. One should also notice
the similarity between the plots of the exponent of th
power-law dependence of the length scaleL @labeled~a! in
16# and of the fraction of the energy density in the form o
long strings converted into loops per Hubble time@labeled
~a! in 17#. This is evidence of the fact that loop formation i
the crucial mechanism for cosmological string network ev
lution. It should be emphasized that with our ansatz fora,
asc;1023 andGGm;6531026 it takes about 4 orders of
magnitude in time fora to evolve froma51 toa5asc, and
during this time the physical size of the loops forme
changes by less than a factor of 3. This is in agreement w
both simulations@4# and previous analytical estimates@6#.

For the given parameters in the radiation era linear scal
regime, the ratio of the energy densities in loops and lo
of
re-
en
ers
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strings is%num'0.74@see Fig. 17~c!#; recall that our analyti-
cal estimate was%est;0.59. This 20% discrepancy is ex-
plained by the fact that in the analytic estimate we have
assumed that loops always havev l 51/A2, while numeri-
cally we assume that their initial velocity is that of the long
string network at the moment of formation. Furthermore,
while with our simplifying assumptions one finds that in the
radiation-era scaling regime loops decay at a time
tdecay;5.18t f after formation, the exact result is
tdecay'6.22t f . For comparison, note that the original ‘‘one-
scale’’ model predicts%one;2.36, a considerable overesti-
mate.

However, the maximum value of% is %m;23.5 and it
occurs before the linear scaling regime is reached, at a tim
tm;105.4tc . At this time the ratio of the loop and back-
ground densities also reaches its maximum,

S ro
rb

D
tm

;1.231022. ~5.1!

Note that although less loops are produced in the friction
dominated regime, they are bigger than the ones in the linea
regime ~sincea;1) and hence live much longer. Conse-
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2552 54C. J. A. P. MARTINS AND E. P. S. SHELLARD
quently,%dyn always increases in the friction-dominated ep
och. Interestingly, we find that the above numerical result
are independent of both the initial conditions and the loo
size at formationa ~which at tm is already less than unity!.
This epoch will therefore be important for mechanisms suc
as string-induced electroweak baryogenesis.

Furthermore, we have numerically investigated the depe
dence of these results on the string massm. The result is that
the maximum values of the above ratios are

Max%;231022~Gm!21/2, ~5.2!

MaxS ro
rb

D;10~Gm!1/2. ~5.3!

Hence, as we decrease the string mass there is proportiona
more energy density in loops than in long strings, but th
total string density decreases with respect to the backgrou
density. Note that this completes the demonstration of th
statement that cosmic strings can never dominate the ener
density of the universe. We shall discuss this in greater deta
in a future publication.

Finally, we discuss the transition between the radiatio
and matter era linear scaling regimes~see Figs. 18–20!. Us-
ing our ansatzes fork anda, and assuming a smooth change
of c̃ ~although this is strictly not necessary given the rela
tively weak dependence of the scaling properties onc̃) we

FIG. 14. Loop production during the approach to scaling of a
axionic string network. The horizontal axis is labeled in orders o
magnitude in time from the moment of string formation, and plots
represent the log of the fraction of the energy in long strings con
verted into loops per Hubble time~a! and the log of the number of
loops created per Hubble volume per Hubble time~b!. We have
takenasc;q @see Eq.~2.31!#.
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can match all results the from numerical simulations@4# and
our own analytical estimates~see Sec. IV C! with an error of
less than 10%. This is a significant achievement given th
fact that in previous analytic models the discrepancies we
typically of order 100%.

Note that this is a much slower and smoother process th
previously estimated, extending for about eight orders o
magnitude in time. This is the reason why Bennett an
Bouchet,@4# having studied this transition with a series o
numerical simulations covering a range of five orders o
magnitude in time, do not see the scaling parameters ‘‘goin
flat.’’ In fact, one can say that the string network neve
leaves the scaling regime—the exponent of the power-la
dependence ofL is never more than ten percent away from
the scaling value. It is also interesting to observe that th
string velocity increases just afterteq, before it decreases to
the matter-era scaling value@see Fig. 18~d!#; this is due to the
comparatively rapid change in the expansion rate.

As for the matter era ratio of the energy densities in loop
and long strings, we get the numerical result%num'0.27@see
Fig. 20~c!#, while our analytical estimate was%est;0.19. The
discrepancy has now increased to 30%, which is of cour
expected since the long string velocity is now smaller~so
v l 51/A2 is a poorer approximation!. In this case, the origi-
nal ‘‘one-scale’’ model severely underestimates this ratio
predicting%one;0.01. Finally, note the effect of the logarith-
mic corrections for global strings in the evolution of the ratio
of the long string and background energy densities~see Fig.
19!.

To conclude, it should be emphasized that this quantit
tive picture of GUT string evolution can lead to importan
modifications in the structure formation scenarios involvin
cosmic strings.

VI. CONCLUSIONS

In this paper we have presented a detailed account o
recently-developed generalized ‘‘one-scale’’ model of strin
network evolution@8,16# where a characteristic lengthscale
~the ‘‘correlation length’’ or average interstring distance in
the case of long strings, the physical loop length in the ca
of loops! and the average velocity are the dynamical var
ables.

The immediate benefit of this generalization is that one
thus able to properly describe string motion in friction
dominated contexts. As a consequence, this simple mode
the first complete and fully quantitative study of the evolu
tion of a string network and the corresponding loop popula
tion in both condensed matter~see@16#! and cosmological
contexts.

Notably, we established the validity of Kibble’s scaling
law for intermediate and light energy scale cosmic string
furthermore, if the initial string density is sufficiently low,
there can also be an earlier period during which the strin
are conformally stretched. However, despite the relativ
growth in the string energyrstring/rb in the damped epoch,
we showed that strings can never dominate the energy de
sity of the universe. The model also predicts that electrowe
strings are only approaching the linear scaling regime toda
whereas GUT strings reach this scaling regime faster th
previously estimated. Finally, we have shown that the tra

n
f
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FIG. 15. The approach to scaling of a global GUT string network. Plots successively represent the exponents of the power-
dependence ofL ~a! andv ~b!, v itself ~c!, and the log of the ratio of the long string and background densities~d!. The horizontal axis is
labeled in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.

FIG. 16. The approach to scaling of a gauge GUT string network. Plots successively represent the exponents of the power-law de
dence ofL ~a! andv ~b!, v itself ~c!, and the log of the ratio of the long string and background densities~d!. The horizontal axis is labeled
in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.
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FIG. 17. Evolution of the loop population for a gauge GUT string network. Plots successively represent the fraction of the energy
strings converted into loops per Hubble time~a!, the number of loops created per Hubble volume per Hubble time~b!, and the log of the ratio
of loop and long string densities~c!. Note that~a,b! were obtained from our analytical estimates~see Sec. IV C! while ~c! is the ~exact!
numerical solution of Eq.~4.41!. The horizontal axis is labeled in orders of magnitude in time from the moment of string formation, an
have takenasc;1023 andGGm;6531026.
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sition between the radiation and matter era linear sca
regimes is a very slow process.

Application of the model to string loops has also led
the determination of the evolution of the density and oth
relevant properties of the loop population. We can use
model to determine the loop density and other relevant pr
erties at all times. We have found that for typical values
the parameters characterizing loop production and de
there is more energy density in loops than in long strings

These results can significantly affect some cosmolog
string scenarios. The insight gained on the frictio
ing
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dominated epoch of string evolution also calls for a r
examination of the vorton problem@25# and of string-
induced baryogenesis@26#. It should also be possible to
obtain more accurate estimates of the contribution of axio
to dark matter, and, of course, our results on the radiatio
matter transition for GUT strings can affect structure form
tion scenarios. We hope to tackle some of these problems
the very near future.

We have also pointed out that the study of the evolutio
of cosmic string networks has been an effort involving bo
analytic and numerical work. Our results concerning th
FIG. 18. Evolution of GUT long-string networks~both gauge and global! in the transition between the radiation and matter linear scaling
regimes. Plots respectively represent the exponent of the power-law dependence ofL ~a! andv ~b!, the ratioL/t ~c!, and velocity~d!. The
horizontal axis is labeled in terms of the logarithm of the scale factor@with a(teq)51#; it spans the period between 10210teq and 1010teq.
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friction-dominated epoch of string evolution make it cle
that a numerical study of this epoch is long overdue, not le
because~as was pointed out by Vilenkin@18#! including the
frictional force is simplicity itself: it amounts to a redefin
tion of the Hubble parameter, as can be seen from Eqs.~2.12!
and ~2.13!. There is also a need for a more careful study
the loop population. We have made several predictions
garding the scaling ratios of the loop and long string den
ties as a function of parameters characterizing the loop p
duction and decay; these should be testable by~slightly
modified! existing numerical simulations.

Apart from the effect of reconnections back onto the lo
string network, which is non-negligible in some cases,
outstanding remaining problem is that of the small-sc
structure seen in the simulations@4#. We believe that the
parameterk, defined in Eq.~2.44!, will ultimately provide a
phenomenological means of introducing small-scale str
ture effects in this model. Some steps in that direction h
already been taken in this essay—in particular, a poss
solution for the famous ‘‘matching’’ problem of Kibble’s
one-scale model has already become apparent. In partic
it seems likely that we can relatek to the effective~‘‘renor-
malized’’! string energy per unit lengthm̃, which is numeri-
cally seen to provide a good description of small-scale str
ture. These important issues are presently being conside

FIG. 19. Evolution of the ratio of long string and backgroun
densities for global~a! and gauge~b! GUT string networks in the
transition between the radiation and matter eras. The horizontal
is labeled in terms of the logarithm of the scale factor@with
a(teq)51#; it spans the period between 10210teq and 1010teq.
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FIG. 20. Evolution of loop characteristics for gauge GUT string
networks in the transition between the radiation and matter eras.
Plots represent the fraction of the energy density in long string
converted into loops per Hubble time~a!, the log of the number of
loops produced per Hubble volume per Hubble time~b!, and the
ratio of the energy densities in loops and long strings~c!. The
horizontal axis is labeled in terms of the logarithm of the scale
factor @with a(teq)51#; it spans the period between 10210teq and
1010teq; we have takenasc;1023 andGGm;6531026.
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