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Quantitative string evolution

C. J. A. P. Martins and E. P. S. Shellafd
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,
Cambridge CB3 9EW, United Kingdom
(Received 20 February 1996

An analytic model of long string network evolution, recently developed by the authors, is presented in detail,
and modified to describe string loop evolution. By treating the average string velocity, as well as the charac-
teristic length scale, as dynamical variables, one can include the effects of frictional forces on the evolution of
the network. This generalized “one-scale” model provides a quantitative picture of the complete evolution of
a string network, including the prediction of previously unknown transient scaling regimes and a detailed
analysis of the evolution of the loop population. The evolution of all cosmologically interesting string networks
is studied in detail, and possible consequences of our results are disd&3%586-282(196)05516-4

PACS numbsdrs): 98.80.Cq, 11.2%d

I. INTRODUCTION stability of the scaling solutiofat least in the radiation era
but also showed that it neglects important physical processes
Symmetry-breaking phase transitions in the early universen small scales. In particular, simulations revealed the exist-
inevitably produce topological defects of one form or an-ence of a significant amount of small-scale structure on long
other. Cosmic strings are of particular interest in this contextstrings, with loops being predominantly produced at the
unlike some other defects, because the evolution of a stringmallest scales that can be sampled numerically. This change
network does not dramatically alter the standard cosmologyin the understanding of the mechanism of loop formation had
In fact, superheavy strings associated with a grand unificasf course important consequences, notably in the cosmic
tion phase transition provide a much-studied model for thestring scenario for galaxy and large-scale structure forma-
initial fluctuations for galaxy formation, also leaving im- tion.
prints in the cosmic microwave radiation background. But These findings triggered new efforts on the analytical side
cosmological interest in strings is not restricted to grand unito try to account for small-scale structure. Notably, Austin,
fied theory(GUT) scales, since strings could have formed atCopeland, and Kibble developed a mof] where the evo-
lower energies such as electroweak or Peccei-Quinn symmaéuition of the network is described by three different length-
try breaking with potentially important consequences, rescales, one of which aims to explicitly describe the presence
spectively, for baryogenesis or dark matterions. Before  of small-scale structure. This model also includes a very
studying the astrophysical consequences of strings, howevesimple treatment of the effects of gravitational radiation.
one must know how they are formed and how they evolveApart from confirming the predictions of the one-scale
Because of their statistical nature, the best analytic approaaiodel for the large-scale properties of the network, the main
consists of doing “string thermodynamics,” that is, describ- result of this model is the suggestion that the effects of gravi-
ing the string network by a small number of averaged quantational back-reaction are needed if this “third lengthscale”
tities. is to reach scaling. A less attractive aspect of this model is
The serious analytic study of cosmological string net-that it has to resort to an unappealingly large number of
works began one decade ago with Kibble's “one-scale” unspecified parameters. There have also been studies of the
model[1] (later modified by Bennef®]). In this work it was  evolution of the linear kink density in what is effectively a
assumed that the evolution of the long-string network could‘one-scale model context” which anticipated these results
be described using a single length scale, which is usuallypy Allen and Caldwel[6] and later by Austif7].
called the “correlation length.” One then supposes that a However, it is usually said that it is very difficult to build
scaling solution exists at late times and ends up showing that house if one starts with the roof. It is therefore restrictive to
such a solution will in fact exist and be stable subject totry to build models whose only aim is to describe an eventual
conditions on the loop production mechanisms. Note that ininear scaling regime. In particular, there is a fundamental
this model it is conceivable that a string network could domi-ingredient in the evolution of a cosmic string network that
nate the energy density of the univef&g. has been neglected until very recently, namely frictional
A step forward in the understanding of string network forces due to particle-string scattering, which are important
evolution was provided by numerical simulatiofsee, for for some time after the string-forming phase transition. It
example,[4]). In short, these confirmed the large-scale feashould be kept in mind that the period immediately after
tures of Kibble’s model, namely regarding the existence andtring formation is by no means irrelevant, e.g., for baryo-
genesis mechanisms involving cosmic strings. Furthermore,
for electroweak strings the friction-dominated epoch only
*Also at C.A.U.P.,, Rua do Campo Alegre 823, 4150 Porto,ends in the matter era, lasting almost through to the present
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of frictional forces has been recently proposed by the authorstrings and loops. There are also some preliminary compatri-

[8]. Although it should be seen as the basis for further worksons with numerical simulations. We then proceed to a de-

the model is already predictive enough to be testable in botkailed and individual analysis of the four physically relevant

numerical and laboratory experiments, if not cosmologically.cases: gauge electroweak and GUT, and global axionic and
The model is a simple generalization of the “one-scale” GUT strings are the subject of Sec. V. Finally, Sec. VI con-

model in which the average string rms velocity becomes 4&ins conclusions.

dynamical variable. At present, the model does not include Throughout this paper we will use fundamental units in

small-scale structuréalthough there are significant hints on Whichfi=c=kg=1.

how to do i) or other potentially important effects such as

loop reconnections onto the long string network. Neverthe- Il. A GENERALIZED “ONE-SCALE"” MODEL

less, it will be shown that this simple model provides the

first, fully quantitative description of the complete evolution

of a string network in the early univergsee Secs. IV and A string sweeps out a two-dimensional surfatee

V). In particular, the existence of two different transient scal-worldsheex which can be described by spacetime coordi-

ing regimes in the epoch of friction-dominated dynamics areatesx* and worldsheet coordinates®, x“=x*(c%); the

established(one of which was previously suggested by line element is then

Kibble). Also, it is apparent in this model that cosmic strings

will ne)ver dominateth)he energy density of the univetfe ’ ds*=g,, XX pdo*do"= yado®do”, (2.9)

reasons other than the statistical physics arguments of Albre- . . .
cht and Turok9]). where g, and y,, are respectively the four-dimensional

spacetime and two-dimensional string worldsheet metrics.
or the case of a gaudglobal) string, one can then derive
he Nambu(Kalb-Ramondl action from the Abelian-Higgs

A. String dynamics with friction

Cosmic string loops decay fairly quickly after their for-
mation. For this reason, their contribution to the seeding o
gravitational instabilities or cosmic microwave background .
anisotropies is thought to be subdominant relative to lon Goldstong model on the assumption that the scale of per-

strings. This fact probably explains why the evolution of the urbations along the siring is much larger than its W!dth

loop distribution has been comparatively neglected in thi)m the global case, one also mgkes use of th.e equwal_ence

literature. This gap can be filled by the model to be describe etween a real_massless. scalar field and a two-index antisym-

here. With simple modifications—the more important of Metric tensor field.One finds

them being the use of the physical loop sizeather then the

correlation lengthL—this model can also be used to study S:'“j \/__ydUZ gauge, (2.2

the evolution of the loop distribution. In particular, it will be

shown that, depending on the parameters characterizing loop 1

production and lifetimes, there is more energy density in _ — 2, = 1244

loops than in long strings. Furthermore, the mgzimum vzllue S= Mof \/_yda * 6J \/_gH dx

of the ratio of the loop and background densities occurs

;hortly after the end of t'hg'friction—q'ominated epoch, apd is +27”7f B,,do*” global, 2.3

independent of both the initial conditions and the loop size at

formation. ) ] ) ] o
Strings(and topological defects in genexadf course, are  WhereB,,, is the antisymmetric tensor fielé, , is its field

not exclusive to the early universe. They exiahd have strength, anaﬂof‘” is the worldsheet area element. Hence the

been seenin a wide variety of condensed matter contexts,Na_mbU action Is pr_oport!onal to the area swept out by the

including metal crystallization[10] liquid crystals,[11,12  String. By varying this action one obtains the following equa-

superfluid helium-313] and helium-4,[14] and supercon- tions of motion

ductivity [15]. Our generalized “one-scale” model can also

h . . . ; b D
be used to describe vortex-string evolution in condensed X" 2 # I y* X7 X}, =0 gauge, 2.4
matter contextgwith advantages over previously used ap-
proaches In particular, some well-known results can be v oai oy abur o 2T oLy
readily reproduced, and new quantitative predictions regard- X 2T T yX X = o Hoe7X"aXp  global.
ing loop production can be made. These issues are discussed (2.5

in a companion papgr6].

The structure of this paper is as follows. In the next secdt should be noted that in the global cagg is the “bare”
tion, after a short review of string dynamics, the evolution(unrenormalizeflenergy per unit length. However, it can be
equations for the “characteristic lengthscale” and the avershown that if one distinguishes between the external and
age velocity of the long string network and each individualself-field contributions toH and setsHg;=0 the above
loop are derived and justified. The cases of strings arisingquations still hold withu, replaced by the renormalized
from the breaking of gauge and global symmetries are botenergy per unit length, denoted lpy[17].
considered. The validity of these “averaged” evolution  Still, a crucial ingredient for string evolution is missing.
equations is then tested against simple loop solutions in Se&ince strings move through a background radiation fluid,
[ll. Section IV contains a discussion on the importance of theheir motion is retarded by particle scattering. Vilenkin has
friction force in the early universe, together with the analysisshown[18] that this effect can be described by a frictional
of the different scaling laws in the model for both long force per unit length that can be written



54 QUANTITATIVE STRING EVOLUTION 2537

where the “coordinate energy per unit lengtl’is defined

\'
" 2.6 by

wherev is the string velocity and’; will be called the “fric- €= " (2.19
tion length scale;” its explicit value depends on the type of 1-x

symmetry involved. For a gauge string, the main contribu-
tion comes from Aharonov-Bohm scatteririd.9] while in
the global case it comes from Everett scattefiag]. Then
we respectively have

Ff:_

and dots and primes, respectively, denote derivatives with
respect tor and o. This form of the evolution equations
proves to be particularly useful because dissipation is natu-
rally incorporated in the decay of the coordinate energy den-
sity €, while preserving the gauge conditions.

/f:ﬁ gauge, (2.7 _ Incidentally, it has been shovx{rl?j! tha_t a global string
will behave as a superfluid vortex if it is introduced in a
homogeneous background of the form

/= ,BTSIn (TS) global, (2.9 HUK = Jppelk (2.15

whereT is the background temperature afids a numerical  (physically, this corresponds to giving it angular momen-
factor related to the number of particle species interactingum). The interaction between this background and the string
with the string(strictly speaking, its value is slightly differ- gives rise to an additional force, known as thelativistic)

ent in the two cases, but a common symbol will be used foMagnus force, and Eq2.12) becomes

simplicity). Specifically in the gauge case we have

. LIX'N 1 py
25(3) 2 +— (1—x2%)x=— o o +;;x/\m
Z b,sir(mv,), (2.9 2.16
where this sum is taken over effectively massless degrees §f1€re
freedom, v, is the phase change experienced by a particle 4
transported around the string aibg is 1 for bosons and me 27 (2.17)
3/4 for fermions. Hence Aharonov-Bohm scattering will oc- \/ﬁ

cur for particles with noninteger’s; see the paper by Alford
and Wilczek in[19] for an example of a model with such is the circulation vector; the energy equati@?13 remains
values. It should also be noted that the Everett scatteringnchanged.
formula is only valid when the particle wavelength is much
larger than the string thicknegs B. Lengthscale evolution

It is then straightforward to show that the frictional force
per unit length(2.6) can be included in the equations of
motion (2.4) and (2.5) by adding the term

We can now proceed to average the string equations of
motion to describe the large-scale evolution of the string
network. We therefore define the total string energy and the
average rms string velocity to be

1
(U”—x”’ax"'aug)7, (2.10
o E=,ua(r)f edo, (2.18
(U” being the four-velocity of the background flyidn its
right-hand side. [x2edo
Now consider string motion in an Friedmann-Robertson- (xz) fedcr . (2.19

Walker (FRW) universe with the line element

Differentiating Eq.(2.18 and using Eq(2.13 and (2.19,
we see that the total string energy dengityE/a® will obey
the evolution equatiofin terms of physical time)

ds’=a?(7)(d?—dx?); (2.11)

thenU”=(a"1,0) and choosing the gauge conditioas= 7
(i.e., identifying conformal and world sheet timesnd d b2
x-x"=0 (i.e., imposing that the string velocity be orthogonal g + ( 2H(1+v?)+ —
to the string directionthe string equations of motion with dt z
the frictional force(2.6) in the background2.11) can then be
expressed agl8,21]

p=0. (2.20

Equation(2.20) incorporates both long strings and small,
short-lived loops which havén general a low probability

1%\’ of interacting with other strings before their demise. We
2—+ /— (1—x%)x= —(—) , (2.12 shall study the evolution of the long-string network on the
f €\ €
+ ( ZE + /a ))'(26:0 (2.13 Note that reparametrizations of can be absorbed into changes
a /¢ ' of e.
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assumption that it can be characterized by a single lengttion rate(2.22) it is then easy to see that

scaleL; this can be interpreted as the interstring distance or
2

the “correlation length.” Strings larger thdn will be called dp, N v/ [/
long or “infinite;” otherwise they will be called loops. For ot 2H(1+U/)+7f Pr=9u—s W T/
Brownian long strings, we can define the “correlation (2.26

length” L in terms of the network densty.. as

whereg is a Lorentz factor accounting for the fact that loops
Po= 7. (2.21) are created with nonzero center-of-mass kinetic endugpt
L through velocity redshift However, note that this equation

Following Kibble [1], the rate of loop production from is “static,” in the sense that it does not include loop decay

long-string collisions can be estimated as follows. Conceptumechatr)usms(e.g., Y'a the emission g.f gravnatlo;:al, Gold-
ally, we divide the network into a collection of segments of SION€ boson, or electromagnetic radiation, as the case may

lengthL, each in a volumé 3. Consider another segment of be)l. tead art b . i del to d i
length ~ moving with a velocityv.,; the probability of it th ns ela t" we ? ar hy' uds_ln_g OLI”I ana y}gc mo etho escribe
encountering one of the other segments within a tifhes € evolution of each individual loop. Knowing the energy

approximately /v..t/L2. Consistently with our “one- density transferred from long strings into loops and estimat-

scale” assumption, we then assume that the probability o9 their sizes at formatiofsee below one can numerically

such an intersection creating a loop of length in the ranggeterr_n_lne the energy den_sny in I(_)ops and other relevant
/ to /+d/ will be given by a scale-invariant function quantities at all times. This formalism does not allow for

: : : loop reconnections, which are unimportant for GUT strings
W(7/L). The rate of energy loss into loops is then given by(but can be relevant for high-density electroweak or axionic
dp.. 3 vocj N\ ds
dt P W

string networks—see Sec.)Murthermore self-intersections
to loops

~ P
O == could be included by carefully defining an “effective” loop
(2.22 production size.

The physical size of a loop is simply given by
where the loop “chopping” efficiencyc is assumed to be
constant. Note that in previous analyses without frictign /=a(7) f
was assumed to be constant and absorbed into the definition /
of C.
Finally, by subtracting the loop energy loss822) from  jts time derivative can be easily calculated usif213.
Eqg. (2.20 and then using Eq(2.21), we obtain the overall However one must still subtract ener@fyence lengthlosses

edo; (2.2

loop

evolution equation for the characteristic length sdale due to radiative processes. For the case of a gauge string, this
dL 2 can be roughly estimated from the quadrupole formula
—= +v2)+ —— +Cv... :
2 =2HL(1+v2) 7 te (2.23 iE D2
. . , (—) ~G(—3) ~Gu#® (2.29
Note that with the exception of the expansion term, all terms dt rad dt

on the right-hand side are velocity dependent; this will have

important consequencésee below. (D~ /" being the loop’s quadrupole momégnAgain, note
. that loop velocity is usually assumed constavﬁ:é 1/2) and
C. Loop evolution not included in(2.28. (This is obviously correct in the

On the other hand, we can also study the evolution of thefree” regime, but it is not a good assumption in the
loop density and distribution. The traditional approach is toffiction-dominated regim¢.Then we define
definen,(/,t)d/ to be the number density of loops with

length in the rang_e/(/Jr_d/)_ at timet; the corresponding (_ — TG’ (2.29
loop energy density distribution is dt rad
p AL DA =p/n (7, )d7. 229 here according to numerical estimatB$~8x 65 (note
Note that the total loop energy density is that the original parametdr was calculated in flat space,
Wherev§= 1/2). Then the evolution equation for the physical
POEJ p (/7 0)d/, (2.25 loop size has the form
andp= p..+ po.> From our assumptions on the loop produc- d” 2\ /Ua / 6
T Po- H=(l—2v/)H/—7,f—F Guv, . (2.30

2Throughout this paper the subscripe" refers to properties of ~ Again, all but the expansion term are velocity-dependent.
the long(“infinite” ) string network. For the case of axionic strings, however, the emission of

3Throughout this paper the subscript O refers to properties of thgravitational radiation is subdominant with respect to the
entire loop populatiory” refers to the loops with length in the range emission of axions. The above expressions will still be valid
(7, /+d7). with the replacement
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r’ 1 modification of our counting strategy: instead of integrating
I''Gu—q= 27 In/T0)’ (2.3)  over time, we now integrate over the possible loop lengths in
: the initial distribution

where 6 is the string thickness. A similar expression also

holds for global GUT strings. (D)= Po(t) pri
Now, we will assume that loop production is “monochro- @ Bpri= Po(t)
matic,” i.e., that loops formed at a timg, have an initial 3
Iength _ a (tc) Lout VAR AYAVL d/’
= 3('[) L n/(/ s C)/ ( ,tc) 0,

/(tp)=alty)L(ty). (2.32

(2.39
Notice that we are implicitly saying that the loop size at
formation depends both on the large-scale properties of thethere L. is the value of the “correlation length” at time
network (through the correlation lengttand on the small- t., L¢ &L is a cutoff length/ (/" ,t.) is the length at time
scale structure it contair(shrough the parameter). At this  t of a (primordial loop with length/” att., and the loop
stage, since the model does not include small-scale structureymber densityn, has the well-known Vachaspati-Vilenkin
we shall resort to physical arguments about radiative backiorm (see the discussion in RdR2]), normalized such that

reaction, etc., to obtain afinsatzfor @ when necessary. the initial ratio has a valu@. which in this paper we will
With this ansatz the scale-invariant loop production func-take (unless otherwise statgtb be p.=0.25.
tion w [see Eq{(2.22] becomes We can therefore numericalland, in some simple limit
L~ , cases, analyticallydetermine the loop density at all times.
4 _C 4 This generalized “one-scale” model can, therefore, provide
wl —|==68l——«al, (2.33 o .
L/ e« \L a complete description of a string network.

and the rate of energy loss into loops becomes D. Velocity evolution

dp- We now consider the evolution of the average string ve-
dt 10 loops g/’LC |_3 ' (2.34 !oc_ity v. A nonrelativistic equation can be easily obtained: it
is just Newton’s law,
with g being the Lorentz factor as above.

Hence the energy density converted into loops from time d_U: [ i
ttot+dtis Fat "R 2H+/f (249
Ve This merely states that curvature accelerates the strings while
dpo(t)=guczdt; (2.39 damping (both from friction and expansionslows them
down. On dimensional grounds, the force per unit length due
this corresponds to a fraction to curvature should bg over the curvature radiuB. The
form of the damping force can be found similarly.
dpo(t) _ ~v—°°dt (2.36 A relativistic generalization of the velocity evolution
p(t) L ' equation(2.40 can be obtained more rigorously by differen-

o ) ) tiating Eq.(2.19:
of the energy density in the form of long strings at time

Then using ouAnsatz(2.33, the corresponding number of do 1
loops produced in a volum¥ is =(1-v?)|=—v|2H+— (2.4)
dt R s
T Vw
dN(t)=g— FV(t)dt; (2.37 This is exact up to second-order terms. To obtain the damp-

ing term we have taken (x*)=(x%)2.  Writing
hence the ratio of the energy densities in what we will callX°=(1+p-a)/2 (p andp being unit left- and right-movers

“dynamic” loops and long strings at timeis along the stringand definings=—(p-q) the difference be-
tween the two is
po(t )dyn L2(t tdN(t") /(tt )
@ (tayn= pa(t) ) o4 2o 1 2 2
(D= (=4 Kp-a))—s°]. (2.42
R L2 Jta3<t ) o) /(L)
=ge LA 5(t) LA4t) a(t) v, Note that numerical simulations of string evolution indicate

thats,oq~0.14 ands ,,,~0.26, so this difference should also
(2.39 be small. As for the curvature term, we have introduéed
where t. is the moment of the network formation and via the definition of the curvature radius vector,
/Z(t,t") is the length at time: of loops produced at tim¥ . )
Furthermore, we can also find the ratio of the energy den- a(7) = ﬂ (2.43
sities in “primordial” loops and long strings with a simple R ds®’ '
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whered is a unit vector and is the physical length along the less than, but still of order unity. Of course there is also the
string [related to the coordinate lengthc by  problem thak has a slightly different definition—namely, it
ds=|x'|do=(1—x?)?edo]. The dimensionless parameter is an average over the whole network, on a scale of the

k is defined by “correlation length” L. This makes its physical interpreta-
A ) tion slightly less clear. For these reasons, when discussing
((1=x9)(x-u))=kv(1-0v%). (2.44  this regime we will start by assuming thtis a constant of

i order unity. Further justification for this assumption, and a
The parametek is related to the presence of small-scale yigcyssion of the possible use of E8.47) or other alterna-
structure on strings: on a perfectly smooth stringandX  es can be found in Sec. IV.

will bg parallel sok=1 (up to a.second—.order term as abpve Equations(2.23), (2.30, and(2.41) form the basis of our
but this need not be so for a wiggly string. On the other ha”dgeneralized “one-scale” model, which we will now proceed

k=0 for a string loop in flat spacetime—in particular, it is 15 apply in several different contexts. We note that the
easy(although. re}ther tedioligo show usjng its definition velocity-independent “one-scale” modé?.23 has proved
(2.44) that this is indeed the case for all Kibble-Turok and all g e successful in describing the large-scale properties of
Burden loops. In that sense, flat spacetime is the case hsmic string networks in numerical simulations. Any defi-

maximal small-scale structure; this is not surprising, SinC&;encies seem to be associated with the emergence of signifi-
there is no mechanism available for kink decay. In a modelant small-scale structure, that is, propagating kinks and

including small-scale structuré, would probably be a fur-  iggles on scales well below. In friction-dominated re-
ther dynamical variable. For this model, however, we shallyimes therefore, we should anticipate improved quantitative

use an ansatz interpolating between these two extreme rgyreement because of the suppression of this substructure.
gimes motivated by comparisons with microscopic evolu-

tion.
Consider a particular string loop. On large enough scales, lll. “AVERAGED” VERSUS "MICROSCOPIC
they are “frozen” in the background, being conformally EVOLUTION

stretched by expansiofnote that very large loops should | order to check the validity of our “averaged” evolu-
only form in friction-dominated regimesThen they should  tion model, and in particular our ansatz forwe will test it
have relatively little small-scale structure, and takikigl  against simple loop solutions.

should be a good assumption. On the other hand, on small" First, consider a circular loop in flat spacetime but with a
enough scales strings behave as if they were in flat spac@pnstant (noninfinite) friction length—i.e., a condensed-
time, so one requires that~0 asR—0. In particular, in the  matter-like situation. We can describe the loop trajectory
case of loops, demanding that their limiting velocity be simply by

v2=1/2 leads to the requirement theR as R—0. The

remaining point consists in noting that what is dynamically x=r(7)(sing,cosx,0), 0He[0,2m7]. (3.9
meant by “large” and “small” scales depends not on the

relative size ofR and the horizon but on the relative size of Then Egs.(2.12 and(2.13 reduce t§

R and the “damping length” defined as

r 1

1 1 i+(1-r?)|—+=|=0. 3.2
—=2H+—. (2.45 ( )/f r 32
/g /s

. . . . . . Note that the physical(“invariant”) loop radius is
With these requirements in mind, and after comparing WIthR:r/\/ﬁ'{ obeying

the “microscopic” (i.e., unaveragedevolution of some
simple solutions(to be described in the next sectjoane

arrives at the ansatz R=— 'rz; : (3.3
't
R B
k=1, 7oX (248 also the “microscopic” velocity iy = —1 and obeys
1 v
1 R R h=(1—p2)| == —
kZEZ, 745X (2.47 v=(1-v )(r /f>' 34

. . - : On the other hand, our averaged evolution equations
wherey is a numerical coefficier23] of order unity. Recall
: . . - ' (2.30 and(2.41) take the form

that the physical loop length is approximately=27R;
since we will be considering each individual loop, this ansatz — R
applies immediately in that case. =7, (3.5

For the case of the long-string networor which dt /s
L=R), the reasoning is roughly the same in the regime
whereL> /. However, the opposite regime never aritss
least, in the early univergeso there is no simple way of “Overdots denote differentiation with respect to conformal time
inferring thek behavior. The closest a network gets is in the r, rather than physical time In flat spacez=t.
linear scaling regime in the early universe, where the ratio is ®in this section, averaged quantities will be denoted by overbars.
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_ - k 1 /1
d_v: _;2) @_i (36) ) vs log R £
dt R /i) ' J

Notice the similarity between the two approaches. Loops J/

with size much larger than the friction lengih; will be
overdamped, with the velocity being approximately given by

/i
v~ —. (3.7

r 0.1

In this case the two sets of evolution equations actually
coincide—hence justifying ouk=1 ansatz for largdR. As

the loop gains velocity and R become significantly differ-

ent and this equivalence ceases to be valid. WRé&ecomes

much smaller thary’s, the loop still loses energy due to
friction, but this is no longer effective in damping its
motion—the loop now begins to oscillate relativistically. In  ¢.01
particular, over one “period’v oscillates between 0 and 1
(ignoring nonlinear effects ned&=0 due to the finite string ~2 -1 0 1 2
width). But we know that the averaged velocity should be

v?=1/2 (in the small-scale limjt this is the physical reason ¢ 1. Two possibleAnsazefor the parametek defined in Eq.

why we neeck to be a “phenomenological” variable. As we (3 44 specifically for strings in a condensed-matter context as a

mentioned previously, this requirement fixes the behavioufnction of the rescaled loop radi® /. For the case of string

of k on small scales to be as shown in EB.47). The re-  |gops, the behavior at large and small scales has a physical justifi-

maining question is then how to match the two regimes.  cation (see text; numerical matching was improved for circular
First of all, we need a clear idea of whéand wherg¢the |oops by altering the transition point frog= \/2 (dashed curveto

transition occurs. A good guess would be the moment of thg ~0.57 (solid curvé. However, theAnsatzcorresponding to the

“first collapse,” i.e., the moment when we first have=1. dashed curve might be relevant for long stririgee Sec. IY. The

In fact, this turns out to be a well-defined event. As was firstogarithm is to base 10.

pointed out by Garriga and Sakellariad®28] [and can be

easily seen by analytical or numerical study of the equation In passing, it is worth pointing out that one can also easily

of motion (3.2)], circular loops with initial radius much calculate the loop lifetimg23]. In the relativistic regime, the

larger than the friction length always reagkr 1 for the first R evolution equation can be written

time when

R —_—— —
(Z) = Xc=0.569. (3.9 T (3.1
col

Note thatr;>/ is the physically relevant case for string SO We can immediately estimate that the loop will disappear
dynamics in condensed matter conteftiscall that the dy- N @ timetgec~2/¢ after its first collapse.

namics in that case is always friction-domingtedliso note The case of the circular loof8.1) in the expanding uni-
that because of friction, all loops will rapidly beconial-  Verse is analogous, with the constant friction length being
mos} circular. replaced by a time-dependent damping ler(@th5); also the

After numerically comparing the averaged and micro-invariant loop radius is noviR=ar/1—r= Hence the mi-
scopic evolution equations, we find that the simplest possicroscopic evolution equations now take the form
bility (shown in Fig. 1},

) r 1
R F+(1-r2) a——+—|=0, (3.12

k=1, —>xc, (3.9 fa T

2
dv N
- 1R R< (3.10 g - 1-v9) AL (3.13
T2/ X '

. . dR R
provides excellent agreement for thse circular lodpse E:HR—M?. (3.19

Z d

Figs. 2 and 3 In particular, this turns out to be significantly
better than assuming smooth@nd slowey transitions be-
tween the two regimes. As can be readily seen, this ansafdeglecting the gravitational radiation terfwhose form has
provides a very good fit, considering the lack of parameterdeen established elsewhgréhe averaged evolution equa-
available. tions are
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(d)

1.65 1.7 1.75 1.8

FIG. 2. Comparing the “microscopic’(solid lineg and “averaged”(dashedl evolution equations for a circular loop in a condensed-
matter context. Length and time are in units/f, and the time axis is with a logarithmic scale. Plax depicts the log of thérescaled
radius, while(b) depicts the loop velocity(c) and(d) are close-ups ofa) and (b), respectively.
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80
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(d)

65
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FIG. 3. Comparing the “microscopic’(solid lineg and “averaged”(dashed evolution equations for a circular loop in a condensed-
matter context. Length and time are in units/gf, and the time axis is with a linear scale. P(aX depicts the log of thérescaled radius,
while (b) depicts the loop velocityc) and(d) are close-ups ofa) and (b), respectively.
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FIG. 4. The ansatz for parametefor gauge GUT string loops,

as a function of loop radius and time after the formation of the

string network(see Sec. Y. The logarithm is to base 10.

dR — R
E?:(l—ZFﬁHR—ng, (3.15
dv k(R) v)
_— 2 —— — —
T v = 7] (3.19

Corresponding to this change, we simply modify to
/4 in our ansatz fok, which becomes Eq2.47 (see Figs.
4 and 5. However, the numerical value of the ratioRfand
/4 when the loop first collapseg, is now slightly smaller:

(3.17
(3.18

x=0.431 radiation,

x=0.380 matter.

FIG. 5. TheAnsatzfor parametek for gauge electroweak string

loops(compare with Fig. # Note that these unitg~22.1, friction

ceases to dominate the dynamicd at-25.8, and the present time

is t,~28.5. The logarithm is to base 10.

2543

Numerically we find that a slightly larger valug~0.5 pro-
vides the best fit in both cases. It is also interesting to note
that while the radiation-era evolution is rather insensitive to
the value ofy (in the rangey~0.3-0.6 say; the matter-era
evolution exhibits a stronger dependence.

Figures 6 and 7 depict the evolution of a loop with initial
radiusR;=10Qt; in the radiation {j=t;) and matter (=t
eras—see Sec. |V. Again, the loops are initially overcriti-
cally damped, the approximate velocity being

/s
U~ E (3.19)

The effect of damping is essentially twofold. Firstly, it de-
lays the moment when the loop first collapses. While its
velocity is nonrelativistic, there is no loss of length through
velocity redshift[see Eq.(3.19], and so the physical loop
radius can grow to a size much larger than the initial radius.
As it picks up speed, however, it starts losing more energy.
As we mentioned above, the first collapse still occurs for
R~/4; in the relativistic regime, the loop loses energy at
each oscillation as before.

Finally, when friction has switched offind the period of
oscillation is much shorter than the expansion y#te loop
starts to oscillate with constant physical amplitupsee
(3.19]. Notice that due to the additional effect of friction
this energy loss is much larger in the radiation era. In our
case, in the radiation era the “final” physical radius is al-
most equal to the initial radius, whereas in the matter era it is
more than one order of magnitude larger. When this final
stage is reached, gravitational radiation or other preferred
decay channels cause the loop to shrink further.

Having thus established, in simple but physically relevant
cases, the validity of our generalized “one-scale model,”
and in particular of the ansatz far we now proceed to apply
it to the study of cosmic string evolution; the study of string
evolution in condensed matter contexts is left for a compan-
ion paper[16].

IV. GENERAL SCALING RESULTS
A. Introduction

In the early universe the friction lengthscale increases
with time, so friction will only be important at early times
[23]; however, the meaning of “early” is, as we will see,
model-dependent. Again I€f; be the temperature of the
string-forming phase transition; the corresponding time of
formation is

_IMn 4.1
tc—?Tg, 4.7
wheref is given by
f=4 77/\/'> ” 4.2
=am 4_5 ] ( . )

and is the number of effectively massless degrees of free-
dom in the model(e.g., N=106.75 for a minimal GUT
model, but it can be as high as“fr particular extensions
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(a) (c)
\ 1
80 0.8
‘ i
|
60 0.6
|
20 0.4
0.2
20
T 2 3 4 5 6 7 1 2 3 4 5 6 7
(b)
0
-3
-6
0 1 2 3 4 5 6 7 3 4

FIG. 6. Comparing the “microscopic'(solid) and “averaged”(dashedl evolution equations for the physical radi(, the log of the
radius relative to the horizofb), and velocity(c) of a circular gauge GUT loop formed &t t. with radiusR=10t.; (d) is a closeup ofa).
Time is in orders of magnitude from the moment of loop formation. Radiative mechanisms are not included.

of it). Then in the case of a gauge symmetry breaking the w=T2 gauge, (4.8
friction lengthscale can be written
L
1 372 =T2 (—) lobal 4
/1=%m radiation, 4.3 p=Tcln| 5|  global. 4.9
C
31321 2 Definingt, as the time at which the two damping terms
/i=|2] = —— matter, 44 N Egs.(2.12 and(2.13 have equal magnitude we find
4) 0 (tetey
t*
and for the case of a global symmetry T 6° gauge, (4.10
132 (L 6 te) ]2 = 4
el - ¢ iati t L
‘=78 t_mln(ﬁ) '”(x t) radiation, (4.5 > —166? In=| |In[=-2 global, (4.11)
c te 6 At
3132 1 t2 L 8 t.t¥3) 12 . T, - o
o el inl = nl £ e matter provided this is still in the radiation era; otherwise, in the
T 4] 46 (tt? |\ S ERE ' matter era we obtain
(4.6 t 4\V2 [t \12
* eq
The constan® is a measure of the importance of the friction I = 5) 9(E> gauge, (4.12
term in the evolution equations; its value is
112 112 -1
1/2 tl— f E] E
B[t =4 0 In
0=—\|—| . (4.7 te 3 te o
J e

-2

X global. (4.13

8 teq 1/3 tc 4/3
Note that as we mentioned previous)y,is not exactly the Inlf(ﬂ) (E) ]
same in the gauge and global cases. Also, (B®) is valid
almost immediately aftet, (so we will begin studying the String dynamics is friction dominated frotp until t, , after
evolution of the network &t ~t.), but Eq.(4.5) is only valid  which motion will become relativistic or “free.” A simple
for t/t.>6/\. The string energy per unit length can again beheuristic argumentsee, for example[24]) due to Kibble
written suggests that in the damped phase the correlation length will
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327 w0 60L(3
350 r ! TGMg(’;_b); fr(“ )w($0'75)' 4.19
\ I
300 \ i _ i
In fact, by analyzing the evolution equatio(®.23 and
250 (2.41) one can show that for all physically reasonable values
200 of ¢ andk these bounds hold for all subsequent times. Con-
sequently, cosmic strings can never dominate the universe. It
150 can analogously be shown that this is also true in the case of
100 a global symmetry, although the required algebra is slightly
50 more complicated. Note that this is an entirely differmd
independentargument to the Albrecht-TuroQ] statistical
3 i : 5 physics argument—in a sense, it is a “thermodynamical”
argument.
(b) As for the initial velocity, it can be estimated by a very
simple(and rough argument. The friction lengthscale can be
0 approximately interpreted as the distance that a piece of
string can travel before it is stopped by the friction force.
Then by comparing the energy contained in strings in a vol-
umeL? and the work done by the friction force in stopping
3 them we obtain
v
,u_p%l_?, (4.18
/',
60 5 ) 3 P and substitution of’s yields
. - o . . L to| 12
FIG. 7. Comparing the “microscopic(solid) and “averaged Ui<_) N(f_P') _ (4.19
(dashed evolution equations for the physical radi@@ and the log t/, te

of the radius relative to the horizafio) of a circular gauge GUT

loop formed att=t.q with radiusR=10t.,. Time is in orders of ~As expected, highly-curved strings will have high velocities
magnitude from the moment of loop formation. Radiative mecha-and conversely strings in low-density networks will have
nisms are not included. small velocities.

scale ad «t>* it is worth noting that this argument is rather B. Long-string scaling laws
similar to the ones used in condensed-matter contexts.
We now address the problem of initial conditions. Start-
ing with the correlation length, by causality this must obvi-
ously be smaller than the horizon; but on the other hand, ignd . T .
must be greater than the friction length scale since friction idegimes, which we now describe in detail. Two of these re-

initially dominating the dynamics. We will therefore assumediMes are transient, occurring in the friction-dominated ep-

Analysis of the evolution equations for the correlation
length and velocity of the long string network Ed2.23
nd (2.41) reveals the existence of three types of scaling

followina 241 that och. In this situation strings should have very little s_mall-

( g [24) scale structure, and we should have 1. In analogy with
/o<L<t. 4.14 our discussion for string loops in Sec. I, we should also find
Cfm e ' that the string velocity in the radiation era is

For simplicity, we now concentrate on the gauge case, and /g

defineL=L/t.. Then Eq.(4.14 can be written v (4.20
6-1<L;<1; (4.19  which is in fact the casésee below. The third is the well-

known linear scaling regime.
these two extreme limits could correspond to a rapid second- Recall thatt, [defined in Eq.(4.1)] denotes the time of
order phase transitiorL.{~ 6~1) or a slow first-order transi-  string formation; on the other hand,will denote the time at
tion (L;~1). Now, the parameteg8 in Eq.(2.9) can be writ-  Which the relevant period of evolution starts.

ten . )
1. Stretching regime

27(3)
g 2

This is a transient regime that occurs in the beginning of
—No, 4.16 J ginning

the friction-dominated phase, provided the initial string den-
sity is sufficiently low. Withts=t; we get

(where O<w<1) and using the definitions of and f, one {12
finds that the initial ratio of the string and background den- L=Ls(—) , (4.21)
sities obeys ts
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t form of our loop production ansat2.32), explicitly separat-
0=, 9auge (4.22  ing the effects of largéthroughL) and small-scale structure
(through the parameter).
¢ Nt)12 L The Lxt>* scaling law was previously suggested by
v=— In(— —) In- global. (4.23  Kibble. However, note that the above relations only hold in
OLs 61 the radiation era. In the corresponding regime in the matter
The reason why this regime arises is physically obvious®® for very light strings, we have the scaling laws
If we start with a small string density, the correlation length Loct¥2 ol (4.29

will be close to the horizon, and much larger than the damp-

ing length. Hence long strings are fairly straight and have

very little small-scale structure. This is therefore analogous o . ) ) o

to the situation in condensed matter—the strings have very This is the well-known “final” scaling regime—it is al-

small velocities and are “frozen,” being conformally Ways the er_1d.p0|nt of cosmological string evqupon, arising

stretched by the expansion. when the friction lengthscale becomes subdominant V’!Ith re-
Mathematically, theloct*2 law comes immediately from SPect to the Hubble length. Assuming thatas well asc)

the fact that the friction, loop production and redshift terms@re constant in each regime, we find the scaling laws

in the evolution equation foL are all velocity dependent, ~ _

and can therefore %e neglected when compz?r/ed tE)) expansion. L=[k(k+C)]"4 radiation, (4.30

Note, however, that unlike the condensed matter case there is

3. Linear regime

o o ' o 9K (K +Cy) 12
no additional logarithmic correction to thext*“ law in the L:[— t matter, (4.31)
case of a global string network. Finally, and although this is 8
not cosmologically relevant, it should be pointed out that the 2
corresponding regime in the matter era would be ki L
v= — radiation, (4.32
Loct28 poctd3 (4.24) (ke +C)
K 1/2
2. Kibble regime 0= m~ matter. (4.33
This is a transient regime that also occurs in the friction- 2(km*Cm)

dominated epockfollowing the stretching regime when such

a regime exists In this case the scaling laws are Now, the simplest way to proceed is to look for the values

of € andk that match the simulations:

L [2(1+0) ] £\ ~

t_ = ( 30 ) (t—) gauge, (425 Cr%0.24, kr%018, (434)

Cc Cc
L 20148 5 [ o Cm~0.17, kp~0.49. (4.35
E:[ 36 (E) '”(6 Q)("ﬁ) global, Hence, according to our interpretation of this model, it pre-

(4.26 dicts a larger loop production rate and more small-scale
structure in the radiation er@ecall that more small-scale

3 172 t va structure corresponds to a smalkgr—which is exactly what
= po (t_) gauge, (4.27  is seen in numerical simulatiorig]. This shows that our
6(1+c) c interpretation ok as being related to the presence of small-
2 1a 12 scale structure is at least qualitatively correct. Notice that the
B 3 t At L scaling parameters are much less sensitive to variations in
| 20(147%) E) In(gﬂ) ( I global. T than those of previous analytic models; this will be rel-

(4.29  evant below.
Furthermore, we can get some feeling for the validity of

This is a high-density regime, arising when the correlationour ansat£2.47) for k by finding out which values we obtain
length L is close to the friction length—either because it with the known values of the ratias=L/t in the radiation
started that way or because it becomes so during a period @nhd matter eras[4]. In the first case we have
Lect¥2 evolution (recall that in the radiation era the friction ¢;~0.28k;~0.19 in excellent agreement with E¢.34. In
length grows as’;t3?). the matter era the scaling value {f~0.535 also gives good

Although friction still dominates the dynamics, the higher agreement with the simulations, sinck,=0.50 with
string curvature(and consequently higher velocityneans y= \/2 (the dashed line ansatz in Fig. Note, however, that
that the network is now chopping off a considerable amountatter era correspondence is upset if we use }tked.57
of energy into loops—in fact, proportionally more than in the ansatz modified to match collapsing circular loops. Never-
final, linear regime. However, note that there is still notheless, these results indicate that the anga#), originally
small-scale structurg.e., we still havek~1). Therefore this justified for string loops, is probably extensible to the long
shows that small-scale structure is not the only determiningtring network, although the poing where the transition
factor for loop production—the long-string densitye., L) between the constant and linear regimes takes place should
is just as important. This is the reason why we chose thée studied in greater detail. If this is indeed the case, then it
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appears that this simple model goes a long way towards sollinear regime. For simplicity we will neglect the loops exist-
ing the “matching” problem at the matter-radiation ing at the start of this regimé=t;. Since loops are much
transition—previously, a significant failing of the “one- smaller than the horizon, we can approximately neglect the
scale” model. effect of expansion; furthermore, we can also assume that the
Of course, these results are a manifestation of the fact thadop velocity is close to the terminal velocity, ~1/\/2, so
we require additional degrees of freedom to incorporatehat we approximatd™’v®~1I". These two simplifying as-
small-scale structure satisfactorilgee, for example, Ref. sumptions mean that our calculation will be a slight under-
[5]), but perhaps there are fewer required than at first anticiestimate of the true loop density. The loop decay function in
pated. this case is

C. Loop scaling laws i

J(tt)=/"-TGu(t—t"), t'<stst'+——o
We already know how to determine theelative) loop dtinh m ) I'Gu

density at all times; we simply have to evaluate (4.39

to.(t) a¥(t’) /(L") |

. . /(t,t')=0 otherwise, (4.39
 L7(t) a’(t) a(t)

e(t)=gcLA(t)

a3(ty) (Lo with the initial loop length being
+ Lz(t)a3—(t)f n (/" t.)/ (/" to)d/’,
Le £ =agdt, (4.40

(4.39

where /(t,t') is the length at time of loops produced at

time t', /(/',t;) is the length at time of a (primordial

loop with length/” att. andn, is the Vachaspati-Vilenkin

loop number density distribution. If necessary, we can als

analyze the distributions of loop lengths, etc.—although this

will not be done in this paper. There is still, however, one

point to be discussed—we must propose/farsatzfor the

parametera, which should be related to the presence of

string small-scale structure. where
We know on physical grounds that~1 in the friction

dominated epoch, since strings are nonrelativistic and any

wiggles are quickly erased; this conclusion is also supported f(t)=ts, t<-,

gualitatively by observing the actual evolution of networks 3

in quenched liquid crystalsl2]. On the other hand, all stud-

ies of radiative backreaction lead us to expecto be a t

constant(significantly less than uniyin the linear scaling f()=§t, t=

regime. For example, in the case of a gauge GUT string

network numerical simulations [4] show that

agur<5x10"3 (note that our definition of: differs from ~ and

that in the numerical simulation papers—where it is defined

as/It). We will, therefore, use the simple Ansatz 1 asd
—=1+—=——.
3 I'Gu

and we used =L/t. Note that the coefficienf Gy will be
altered if the preferred loop decay channel is not gravita-
tional radiation, but Goldstone bosons or electromagnetic ra-
(()jiation. With these assumptions, Hg.36 reduces to

gov., , [t Z(t,t") a%(t’)
aSJZ ft t/4 aS(t)

e(t)= dt’, (4.47

(4.42

(4.43

(4.49
_ ltagd/t,

a(t)= m, (4.37)

The path of integration for all times is schematically rep-

resented in Fig. 8. The integral can be therefore conveniently

Wher.easc is the constant scaling value. Note that this is s'uchs' lit into two cases, the transition point corresponding to the
that in the transition between the damped and free regim oment of the decay of the loops formedtat Then one
the physical loop length at formation’& «l) is constant. finds the late-time solutions

In this simple way we can ‘“phenomenologically” account
for the build-up of small-scale structure as seen in the nu-

merical simulationg4]. In particular, for the case of GUT po() _ gcv.. n —-1/2_
strings, this build-up takes about 4 orders of magnitude in pa(t) ascgz[Z(gasc FGu)e Y
time, in agreement with a result obtained by Allen and Cald- 2 _ap -
well and by Austin[6] by estimates of the evolution of the —5Gu(§ °“=1)] radiation, (4.49
linear kink density in a “one-scale” model context.
Although Eq.(4.36 cannot be evaluated analytically in po(t)  gCv. 1
general due to the complicated behavior of the integrands (D) —asgz[(é“astFFGM)'né

(and in particular of the” factors, it is possible(under some
simplifying assumptionsto obtain an analytic solution in the —TGu(é 1-1)] matter. (4.49
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FIG. 8. The interval int’ giving a nonzero loop length contri-
bution to the loop density integral E¢1.42) for different timest.

Again, this can be confirmed numericalfgee Sec. ¥

Figure 9 depicts a typical situation; after an initial build-up
while no loops have decayed, we reach a constant ratio. NOi&. |inear scaling regime

C. J. A. P. MARTINS AND E. P. S. SHELLARD 54

log p vs log a

_3-
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

FIG. 10. Expected ratios of the loop and long string densities in
in the radiatioisolid) and matter

that Egs.(4.49 and(4.46 should be testable against numeri- (yasheyl eras for gauge GUT strings, in terms of the small-scale

cal simulations. With the values ofandk quoted above and
assuming thairg.=10"3 and 'Gu=65%x10"° this model
predicts the scaling density ratios to be

Z)Z—((tt))ZO.SQ radiation, (4.47
ZZEtt)):O'lg matter. (4.48

0.6 p vs log t/tg

0.5

0.4

0.3

L Y

0.1 //’//

0.5 1 1.5 2

FIG. 9. Analytical estimate of the evolution of the ratio of the

structure parametet,. and withT'Gp=65x 10 . The logarithm
is to base 10.

Notice that it is possibléat least in principleto measure
both a and the ratio of the densities from numerical simula-
tions (I' can also be estimated in this waylence the pre-
diction of this model for the density ratio in the scaling re-
gime Eqgs.(4.45 and (4.46 and even the approach to it can
be tested numerically. Figure 10 shows the predicted ratios
for gauge GUT strings in the radiation and matter eras, at
fixed 'Gu for all possible values of (the upper limit is
inferred from numerical simulations, the lower limit assumed
on physical grounds Note that if loops are large enough at
formation, then in the radiation era their scaling density can
be dominant(by a factor of up to two—but recall that this
analytic calculation underestimates the loop density the
matter era, the energy density in loops can be at most 35% of
that in long strings.

Finally, let us just briefly mention two other helpful quan-
tities in characterizing the evolution of a cosmic string net-
work. The first is the fraction of the energy density in long
strings at a timg which is converted into loops within the
next Hubble time; this is given by

T vy

fH:gﬁT’ (4.49

and the limiting values for GUT strings in the radiation and
matter eras are respectively

fy~0.81 radiation era, f;~0.18 matter era.

(4.50

loop and long string energy densities in the linear scaling regime,

for a,=10"% and'Gu=65x10", in the radiation(solid) and

matter(dashedl eras. Time is in orders of magnitude from the start The second is the number of loops chopped off by the long

of the regime. The logarithm is to base 10.

string network per Hubble volume per Hubble time, given by
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TABLE I. Some relevant scales for the evolution of the four = TABLE Il. Initial conditions on the ratio of the length scale to
cosmologically interesting string networks. the horizon, [/t);, to be used in the figures and discussion below.

Properties Gauge EW Global Ax. Global GUT Gauge GUT Case Gauge EW Global Ax. Global GUT Gauge GUT

T./GeV 1¢ 10%0 10" 10 Solid 10t 0.9 0.9 0.9

Gu 103 108 1078 10°© Dashed 104 5x10 2 0.2 0.2

A Irrelevant 0.2 0.2 Irrelevant  Dotted 108 1073 0.02 0.05

0 2Xx10'° 1x10° 1x10° 29

te/tpy 4x10% 3x10' 3x10° 3x10*

t /1. 1 60 60 1 cally, some relevant quantities in each case are listed in
t, It, 7% 1075 2% 10° 351 855 Table I. The initial conditions taken for the correlation length

(expressed in terms of the ratigt) are summarized in Table

Il. Note that the initial condition on velocity is not

T v, independent—segt.19 in Sec. IV.

nzgz Hi (4.5 There is another parameter that we must estimate, namely
the typical loop size at formation in the linear scaling regime,

ag.- As we have seen in the above discussion, this is crucial

in determining the ratio of the energy densities in loops and

long strings. We will assume that,.~Gu.

with asymptotic values

n~2.2x10° radiation era, n~4.5X10° matter era.

(4.52
B. Electroweak and axionic strings
These quantities should also be measurable in numerical \ye start by noting that for electroweak and axionic

simulations. strings we cannot meaningfully treat the case of very high
string density(that is, the case whelle is initially close to
V. THE COSMOLOGICALLY RELEVANT NETWORKS the friction lengthscale This is because in this case loop

reconnections onto the string network may have a significant

effect. In all other situations the effect of such reconnections
We can now discuss the four cosmologically interestingcan be neglected.

cases: gauge electroweak and GUT, and global axionic and For gauge electroweak stringsee Figs. 11 and 12he

GUT strings. To summarize the cases to be studied numerepoch of friction-dominated dynamics ends well into the

A. Introduction

(a) (c)
0
1.4
-2
12T 4
P -6
. 7
; 0 15 teg *to 32 -8 /
0.8 -10}f /
-12
0.6 14

5 10 15 teq *to 32

(@
-16.,

-18F N
IPYIEVAN
-22
-24

-26

-28

5 10 15 teq *tg 32 30

5 10 15 teg *to 32

FIG. 11. The complete evolution of an electroweak gauge long-string network. Plots successively represent the exponents of the
power-law dependence t&f (a) andv (b), logv (c), and the log of the ratio of the long string and background dengifle§ he horizontal
axis is labeled in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.



2550 C. J. A. P. MARTINS AND E. P. S. SHELLARD 54

In the opposite regime for high initial densities, the initial
velocity is much larger, so loop formation is important right
from the start and the Kibble regime begins immediately.
Note that the first few orders of magnitude in time after the
formation of an electroweak string network are the relevant
period for baryogenesis mechanisms; we therefore believe
that these results can shed some new light in this area.

As we approacht., the network scaling switches again
to a different regime, though now rather more slowly. This
would be the matter-era analogous of the Kibble regite (
«t32 poct?), except that it is not particularly distinct given
that the friction-dominated dynamics ends and the network
teqg *to 32 evolves towards the final linear scaling regime. As we have
already pointed out, the long-string network reaches the lin-
ear scaling regime about today. Nevertheless, it is still build-
ing up small-scale structure and, if oinsatzs valid, it will
keep on doing so for another 20 orders of magnitude in time
if gravitational radiation is the dominant decay mechanism
(electromagnetic losses would intervene first for supercon-
ducting strings

It should be noted that although string dynamics is
friction-dominated untilt,, the same is not true for the cor-
responding term in the evolution equation forEq. (2.23
(this is of course due to the? dependence of that tejrin
fact the expansion term in E@2.23 is always dominant,
although in the Kibble regime the friction and loop produc-
o ] tion terms are of the same order of magnitude. Also note
_FIG. 12. Characteristics _of loop production by_ elect_row_eakthat, as we said before, the loop formation term is propor-
strings: log plots qf the fraction of the energy density going 'ntotionally more important in the Kibble regime than in the
e e . T o e i ee” scaing regime—in act, thelinearlog plt of he

P ' ratio of the friction and expansion terms in E@.23 is

in orders of magnitude in time from the moment of string forma-. ~.” . . .
tion, and initial conditions are specified in Table II; we have taken”ﬁ'd'StmgU'Shable("’m"jlrt from the scale of the y axirom

»\,10’31 dFG »\,10730_ F|g 11(a) ) ] . ]
s an H Axionic and GUT strings reach the final scaling regime

) . well beforete,, so we will separately consider the approach
matter era. One of the most important results on this paper igy scaling in each case and then the transition between the
that the early-time evolution of the network depends crudinear scaling regimes in the radiation and matter eras.
cially on the initial string density. Note that among other  Figures 13 and 14 depict the approach to scaling of an
things this depends on the order of the phase transition atxionic string network. The discussion is analogous to the
which the strings form. If this density is low, strings have one for the early evolutionary stages of electroweak strings,
very small velocities and according to our previous discusexcept for the different orders of magnitude involved. The
sion the network starts evolving in the stretching regimeother difference is of course that the additional logarithmic
which can last up to ten orders of magnitude in time. In thisdependencies affect all the transient scaling laws with the
regime, the energy transfer into loops is negligible; this carexception ofLect¥2 Note that in all cases the effect of the
be seen in Fig. 1®), where initially less than one loop is logarithms is to increase the exponent of the power-law de-
produced per Hubble time. pendencies. The stretching regime can now last up to five

As the string velocity increases, energy losses to loofPrders of magnitude in time.
production become more and more important and eventually
the network “switches” rather quickly to the Kibble regime. C. Global and gauge GUT strings

Here, the fraction of the energy density in long strings thatis  The approach to scaling for a global GUT string network
transferred into loops per Hubble time is in fact larger thanis shown in Fig. 15; as we mentioned previously, in this case
unity. Of course there is nothing unphysical about this, sincéoop reconnections onto the network are not important and
the string network also gains energy during the time intervahence the cases plotted are representative of all physically
in question due to stretching—most of which is immediatelymeaningful initial conditions. In this case the period of
converted into loops. Note that in this regime, although thefriction-dominated evolution is much shorter, and so the
fraction of transferred energy is constant, the number ostretching and Kibble regimes, although still clearly distin-
loops produced per Hubble volume per Hubble time de-guishable, are not very definite. Again, the effect of the loga-
creases: this is because the correlation length is “catchingthmic corrections for global strings is to increase the
up” with the horizon, so larger and larger loop®lative to  power-law dependencies. It takes a global GUT string net-
the horizon are produced, given our assumption that duringwork about six orders of magnitude in time to reach the
the friction-dominated epoch~1. scaling regime.

5 10 15 teq *to 32
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FIG. 13. The approach to scaling for an axionic long-string network. Plots successively represent the exponents of the power-law
dependence of anduv, v itself, and the ratio of the long string and background densities. The horizontal axis is labeled in orders of
magnitude in time from the moment of string formation, dndand (d) are log plots; initial conditions are specified in Table II.

Now, let us concentrate on the more interesting case Oftrings IS0 un=0.74[see Fig. 17c)]; recall that our analyti-
gauge GUT strings for which the approach to the linear recal estimate wa®.s~0.59. This 20% discrepancy is ex-
gime is shown in Figs. 16 and 17. Here the epoch wherplained by the fact that in the analytic estimate we have
friction dominates the dynamics lasts less than three ordetgssumed that loops always have=1/y2, while numeri-
of magnitude in time, and the linear regime is reached abowa|ly we assume that their initial velocity is that of the long
six orders of magnitude after string formation. Hence thestring network at the moment of formation. Furthermore,
linear scaling regime is approached faster than previouslyhile with our simplifying assumptions one finds that in the
estimated and, more importantly, strings become relativisti¢agjation-era scaling regime loops decay at a time
at a very early epoch. Consequently, energy losses to looR§, 518 after formation, the exact result is
are relevant at all timesee Fig. 1. One should also notice tgecay= 6.2 . For comparison, note that the original “one-
the similarity between the plots of the exponent of thescale” model predicte ¢~ 2.36, a considerable overesti-

power-law dependence of the length scalglabeled(a in  mate.
However, the maximum value o is 9,,~23.5 and it

16] and of the fraction of the energy density in the form of
long strings converted into loops per Hubble tiftebeled  occurs before the linear scaling regime is reached, at a time
(a) in 17]. This is evidence of the fact that loop formation is t,~10°%.. At this time the ratio of the loop and back-

the crucial mechanism for cosmological string network evo-ground densities also reaches its maximum,
lution. It should be emphasized that with our ansatz dor
as~10"3 andI'Gu~65x 10 ° it takes about 4 orders of
magnitude in time for to evolve froma=1 to a= a4, and
during this time the physical size of the loops formed
changes by less than a factor of 3. This is in agreement with

Note that although less loops are produced in the friction-

both simulationg4] and previous analytical estimatgs.
For the given parameters in the radiation era linear scalinglominated regime, they are bigger than the ones in the linear

regime, the ratio of the energy densities in loops and longegime (since a~1) and hence live much longer. Conse-

@) ~1.2x10°2, (5.1)
Po/
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(a) can match all results the from numerical simulatiphkand
p— _ our own analytical estimatdsee Sec. IV Cwith an error of
/ less than 10%. This is a significant achievement given the
fact that in previous analytic models the discrepancies were
/ typically of order 100%.
/ Note that this is a much slower and smoother process than
1 previously estimated, extending for about eight orders of
/ magnitude in time. This is the reason why Bennett and
Bouchet,[4] having studied this transition with a series of
numerical simulations covering a range of five orders of
-6 magnitude in time, do not see the scaling parameters “going
flat.” In fact, one can say that the string network never
leaves the scaling regime—the exponent of the power-law
(b) dependence df is never more than ten percent away from
1ol the scaling value. It is also interesting to observe that the
] string velocity increases just aftey,, before it decreases to
~ the matter-era scaling vallisee Fig. 18)]; this is due to the
oA comparatively rapid change in the expansion rate.
/ As for the matter era ratio of the energy densities in loops
/ and long strings, we get the numerical reg)f,,~0.27[see
Fig. 20c)], while our analytical estimate was,;—~0.19. The
5 10 15 20 discrepancy has now increased to 30%, which is of course
expected since the long string velocity is now smalles
v,=1/\/2 is a poorer approximationin this case, the origi-
nal “one-scale” model severely underestimates this ratio,
predictingg ,,s~0.01. Finally, note the effect of the logarith-
FIG. 14. Loop production during the approach to scaling of anMiC corrections for global strings in the evolution of the ratio
axionic string network. The horizontal axis is labeled in orders of0f the long string and background energy densitsese Fig.
magnitude in time from the moment of string formation, and plotsl9)-
represent the log of the fraction of the energy in long strings con- TO conclude, it should be emphasized that this quantita-
verted into loops per Hubble tim@) and the log of the number of tive picture of GUT string evolution can lead to important
loops created per Hubble volume per Hubble tithe We have  modifications in the structure formation scenarios involving
takenag~q [see Eq(2.3D)]. cosmic strings.

-5

quently, 0 4y, always increases in the friction-dominated ep- Vi NCLUSION
och. Interestingly, we find that the above numerical results - CONCLUSIONS

are independent of both the initial conditions and the |00p In this paper we have presented a detailed account of a
size at formation (which att,, is already less than unity  recently-developed generalized “one-scale” model of string
This epoch will therefore be important for mechanisms sucthetwork evolution[8,16] where a characteristic lengthscale
as string-induced electroweak baryogenesis. (the “correlation length” or average interstring distance in
Furthermore, we have numerically investigated the depente case of long strings, the physical loop length in the case
dence of these results on the string m,asé'he result is that of |00p9 and the average Ve|ocity are the dynamica| vari-

the maximum values of the above ratios are ables.
s 1 The immediate benefit of this generalization is that one is
Maxg~2x10"“(Gu) (52 thus able to properly describe string motion in friction-
dominated contexts. As a consequence, this simple model is
Po| 12 the first complete and fully quantitative study of the evolu-
Max(pb 1Gp)™ 5.3 tion of a string network and the corresponding loop popula-

tion in both condensed mattésee[16]) and cosmological

Hence, as we decrease the string mass there is proportionabpntexts.
more energy density in loops than in long strings, but the Notably, we established the validity of Kibble's scaling
total string density decreases with respect to the backgrouridw for intermediate and light energy scale cosmic strings;
density. Note that this completes the demonstration of théurthermore, if the initial string density is sufficiently low,
statement that cosmic strings can never dominate the energlyere can also be an earlier period during which the strings
density of the universe. We shall discuss this in greater detadre conformally stretched. However, despite the relative
in a future publication. growth in the string energyging/ py, in the damped epoch,

Finally, we discuss the transition between the radiationve showed that strings can never dominate the energy den-
and matter era linear scaling regim@ege Figs. 18—-20Us-  sity of the universe. The model also predicts that electroweak
ing our ansatzes fdt and «, and assuming a smooth change strings are only approaching the linear scaling regime today,
of T (although this is strictly not necessary given the rela-whereas GUT strings reach this scaling regime faster than
tively weak dependence of the scaling propertiescprwe  previously estimated. Finally, we have shown that the tran-
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FIG. 15. The approach to scaling of a global GUT string network. Plots successively represent the exponents of the power-law
dependence df (a) andv (b), v itself (c), and the log of the ratio of the long string and background dengitiesThe horizontal axis is
labeled in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.

FIG. 16. The approach to scaling of a gauge GUT string network. Plots successively represent the exponents of the power-law depen-

dence ofL. (a) andv (b), v itself (c), and the log of the ratio of the long string and background dengitieS he horizontal axis is labeled
in orders of magnitude in time from the moment of string formation, and initial conditions are specified in Table II.
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FIG. 17. Evolution of the loop population for a gauge GUT string network. Plots successively represent the fraction of the energy in long
strings converted into loops per Hubble i@, the number of loops created per Hubble volume per Hubble tirpend the log of the ratio
of loop and long string densitigg). Note that(a,b were obtained from our analytical estimatage Sec. IV Cwhile (c) is the (exac)
numerical solution of Eq4.41). The horizontal axis is labeled in orders of magnitude in time from the moment of string formation, and we
have takenuy~10 % andI"Gu~65x 1075,

sition between the radiation and matter era linear scalinglominated epoch of string evolution also calls for a re-
regimes is a very slow process. examination of the vorton problerh25] and of string-
Application of the model to string loops has also led toinduced baryogenesif26]. It should also be possible to
the determination of the evolution of the density and othembtain more accurate estimates of the contribution of axions
relevant properties of the loop population. We can use thiso dark matter, and, of course, our results on the radiation-
model to determine the loop density and other relevant propmatter transition for GUT strings can affect structure forma-
erties at all times. We have found that for typical values oftion scenarios. We hope to tackle some of these problems in
the parameters characterizing loop production and decathe very near future.
there is more energy density in loops than in long strings.  We have also pointed out that the study of the evolution
These results can significantly affect some cosmologicabf cosmic string networks has been an effort involving both
string scenarios. The insight gained on the friction-analytic and numerical work. Our results concerning the

(a) (c)
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-4 -2 2 4 6 -4 -2 2 4 6
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FIG. 18. Evolution of GUT long-string networkboth gauge and globain the transition between the radiation and matter linear scaling
regimes. Plots respectively represent the exponent of the power-law dependén ehdv (b), the ratioL/t (c), and velocity(d). The
horizontal axis is labeled in terms of the logarithm of the scale fdetith a(t.)=1]; it spans the period between 1’<9teq and lé(’teq.
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FIG. 19. Evolution of the ratio of long string and background
densities for globala) and gauggb) GUT string networks in the 0.\<
transition between the radiation and matter eras. The horizontal axis
is labeled in terms of the logarithm of the scale facfarith
a(tey =17; it spans the period between 18t and 16%,.

friction-dominated epoch of string evolution make it clear
that a numerical study of this epoch is long overdue, not least 2 -2 X 4 __6
becausdas was pointed out by VilenkifiL8]) including the

f_rictional force is simplicity itself: it amounts to a redefini- 5 20, Evolution of loop characteristics for gauge GUT string
tion of the Hubble parameter, as can be seen from @952 networks in the transition between the radiation and matter eras.
and(2.13. There is also a need for a more careful study ofpiots represent the fraction of the energy density in long string
the loop population. We have made several predictions reconverted into loops per Hubble tinge), the log of the number of
garding the scaling ratios of the loop and long string densitoops produced per Hubble volume per Hubble titbg and the
ties as a function of parameters characterizing the loop pro-atio of the energy densities in loops and long striigs The
duction and decay; these should be testable(dightly horizontal axis is labeled in terms of the logarithm of the scale
modified existing numerical simulations. factor [with a(te) =1]; it spanis3 the period betweepe"f(?teq and
Apart from the effect of reconnections back onto the Ionglomteq; we have takenrs~10"" andI'Gu~65x10".
string network, which is non-negligible in some cases, the
outstanding remaining problem is that of the small-scale
structure seen in the simulatiofd]. We believe that the
parametek, defined in Eq(2.44), will ultimately provide a
phenomenological means of introducing small-scale struc- We are grateful for the hospitality of the Isaac Newton
ture effects in this model. Some steps in that direction havénstitute where some of these problems were raised during
already been taken in this essay—in particular, a possibléhe Topological Defectsvorkshop. C.M. is funded by JNICT
solution for the famous “matching” problem of Kibble’'s (Portugal under “Programa PRAXIS XXI” (Grant No.
one-scale model has already become apparent. In particuldRAXIS XXI/BD/3321/99. E.P.S. is funded by PPARC and
it seems likely that we can relateto the effective(“renor-  we both acknowledge the support of PPARC and the
malized”) string energy per unit length, which is numeri- EPSRC, in particular the Cambridge Relativity rolling grant
cally seen to provide a good description of small-scale struccGR/H71550 and a Computational Science Initiative grant
ture. These important issues are presently being consideredGR/H67652.
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