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Thermal properties of an inflationary universe
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An energetic justification of a thermal component during inflation is given. The thermal component can act
as a heat reservoir which induces thermal fluctuations on the inflaton field system. We showed previously that
such thermal fluctuations could dominate quantum fluctuations in producing the initial seeds of density per-
turbations. A Langevin-like rate equation is derived from quantum field theory which describes the production
of fluctuations in the inflaton field when acted upon by a simple modeled heat reservoir. In a certain limit this
equation is shown to reduce to the standard Langevin equation, which we used to construct “warm inflation”
scenarios in previous work. A particle physics interpretation of our system-reservoir model is offered.
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[. INTRODUCTION eM'R,. Thus during inflation points on the preinflationary
patch that are stationary in the comoving frame will rapidly
According to inflationary cosmology, the large-scale move apart in terms of physical coordinates.

structure of the present day universe is essentially a kine- ldentify a pointa on the preinflationary patch. Suppose
matic outcome of exponential amplification of perturbing that before inflation instruments are placeaatvhich main-
seeds in an initially smooth univer§&—3). The differential ~ fain communication with all points within reach by light
microwave radiometefDMR) on the Cosmic Background Since p0|.n1a\_/vas.cre'ated in the big pang. As inflation begins,
Explorer(COBE) has made the first direct probe of the initial COmmunication is first lost with points farthest away from
density perturbations through detection of the temperatur@ mmediately after inflation, only points that were initially
anisotropies in the cosmic background radiatig@BR).  Very close taa will remain in communicative contact. To be
These results are consistent with the scaling spectrum give%ef'n't've.' Just bgfore inflation !et the most distant points
by the inflation model. They also reinforce previously known commumgg}mg witra be some_dr:stagycfo~ 1/H; 1I1|ereH ";’
measurements, although done by less direct methods, whiéﬂe Hubble ~constant — wit =5x10" GeV

. e SO =10 % cm=3x10 % sec. The time interval H is typi-
show that the amplitude of initial perturbations is cally referred to as ae-fold.

Sp(k) To understand the behavior of physical measures during
A(k)= o) _ 10°3-10°° (1) inflation, let the origin of cosmic tim&,=0, correspond to
p the beginning of inflation. The physical distance of a comov-

ing interval Ax at timet will then bee"'Ax. On the other
and approximately constant for all wave numbef4,5].  hand, for a light signal emitted at=0, computing along its
Here p is the energy density in the present universe andyeodesic ds’=0, it will travel a physical distance
op(k) is its rms deviation at wave numbkr (e"/H)(1—e™ ") aftern e-folds of inflation.

We can understand the underlying kinematic origin of The implication of these two relations to physical corre-
large-scale structure formation through a picture. Let udations can be understood from the following example. For a
imagine observing the universe before inflation. It is a smallignal emitted at=0, points fixed with respect to the co-
patch that is growing at light speed. The process of inflatiormoving coordinatescomoving pointy that are less than a
can be thought of as a rapid stretching of this patch in alcomoving distance (H)(1—e ) will receive this signal
directions. Comoving and physical coordinates are useful fobefore the firse-fold of inflation. However, comoving points
further description. Comoving coordinates stretch with thegreater than a comoving distancéH1from a can never re-
patch and so do not change for points that are stationary witheive the light signal within the inflation stage. Only a suf-
respect to the patch. Physical coordinates express distancisient time after inflation could such points communicate
in terms of a physical measure, such as the local speed ofith a. In terms of physical distances, one concludes that
light. A physical coordinate system is defined locally to acomoving points that are greater than a physical distance
given point on the patch. It is useful sometimes to understand/H att=0 will lose communicative contact with all dur-
global distances in terms of physical units. For definitive-ing inflation. Since nothing is special about pomto any
ness, at the onset of inflation, let the comoving coordinatesther point on the patch, on the large scale, physical dis-
coincide with the physical coordinates. If we imagine thetances at=0 that are greater thanH/will act incoherently
universe to be spherical with radil®, at the onset of infla-  all during inflation. Thus correlations larger thaH1physi-
tion, then during inflation, in comoving units, the radius re-cal units are thereafter “frozen.” This phenomenon is some-
mains the same whereas in physical units it grows asimes referred to as freeze-out or horizon crossisig

If a emits a second light signal at the end of the first
e-fold, by the end of the secoretfold this signal again will
*Present address: Department of Physics and Astronomy, Vandehave traveled a physical distanc&/id)(1—e1). However
bilt University, Nashville, TN 37235. comoving coordinates will have stretched by a faabrin
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terms of physical units. Thus only those points which are aluring inflation thermal fluctuations could dominate quan-
comoving distancee” }/H or less can receive the second tum fluctuations under certain conditions. Neither energetics
signal at sometime within the inflation stage. Expressed imor standard model dynamics precludes a thermal state dur-
physical units, the conclusion stated above from the firsing inflation. In[9] a model “warm inflation” scenario was
e-fold repeats itself for the secorefold: Comoving points considered for a self-interacting scalar field. The solution had
that are greater than a physical distande &att=1/H here- th.e de.sir.able featgre qf satisfying observafcional constraints
after will lose communicative contact with all during the with minimal specifications placed on the field theory. The
rest of inflation. Finally a signal emitted fromat the end of ~ condition for slow-roll was shifted from requirements on the
the nth e-fold can be received by comoving points within a potential to a frictional force term that coupled the inflaton to
comoving distancee "/H from a. Thus comoving points athermalized heat reservoir. By shifting to a frictionally pro-

greater than a physical distancéildtt=n/H thereafter lose duced s_Iow-roII, it also gave a local he_ating mechan_ism_.
communicative contact with during the rest of inflation. The first goal of this paper is to clarify the energetics in a

Any local energy perturbations during inflation can affectthermal |n.flat|onary environment, Second,_ we de_nve from
a region of characteristic physical lengthHlbr less. The quantu'm field theory a generalized Langevin equation fpr the
earlier a given perturbation occurs, the more elongated it WiIPCalar mflato_n f!elgl coup_led to a modeled heat_reservow Sys-
become due to inflation. As such the largest scales of energ)zm' In certain I|m|t_s, Wh".:h we state, the equation reduces to
density fluctuations in the post-inflationary universe aros € oné we “?ed ipo]. FlnaIIy,. with the_se !ngred|ents, an
from the earliest perturbations during inflation. Interpretation in terms .Of particle p_hys_lcs IS attempted: To

In the standard scenarf6], inflationary expansion is as- maintain physical clarlty, our denvatyon IS Hgmntoman
sumed to occur within a supercooled universe, in which thé)asgsti_ and 'po\erforn(;ed’&n a cu_(tjnc box with p_en?dlcf boundatry
initial energy density perturbations were produced by quan(}On itions. Appendix A provides a convenient reterence to

tum fluctuations. However, energetics does not require a gyhermal properties of free fields that are used often in the

percooled state. Furthermore, attempts based on this assunfpXt It also relates our notation to stande.\rd. form as V\./e” as
tion have shown unnatural features. ows how to take the infinite volume limit. Appendix B

For inflation, naturality has played an important role. Thisgives an alternative derivation of the Langevin equation from

is understandable since for phenomena that cannot be dhat in Sec. lll. The purpose for this is discussed in Sec. Ill.

rectly observed, one attempts a description starting with the
most natural expectations. The importance of naturality prin- Il. ENERGETICS

ciples is to provide guidance from more familiar analogies | ot ys account for the total energy in the inflationary uni-
with the hope of gaining predictability. For inflation we can yerse. Consider a scalar inflaton field with Hamiltonian den-

understand naturality as both macroscopic and microscopig.ity defined with respect to the physical volume:
Macroscopically, we would like a description that rests with

common-day experience. Microscopically, it should be con- 1.,
sistent with the standard model of particle physics. H=5¢"+V(e). 2
Under both categories, the standard scenario has shown

unsatisfactory feature$2,3,7. Microscopically, slow-roll  First, suppose that the inflaton is the only system in the uni-
scalar field dynamics requires an ultraflat potential, althouglyerse. If during inflation the inflaton has negligible kinetic

no such potential is required otherwise for particle phenom-energy,<¢z>%0’ then the energy density during inflation

enology. Macroscopically, reheating requires globally cohery, 14 be all potential fromV( ). Such a situation could

ent radiation waves on the scale of the inflated universey . if b, were at a local extrema wheké () =0. Al-

Local incoherent heat transfer is more familiar to experiencethough the energy density remains constant in this case, the

Furthermore, a globally coherent heating process requires &, ;me of the universe in physical units would grow after
large-scale radiator, which in the standard scenario is th e-folds to U(n)NRse3n WhereU(0)~R8 is the initial
0

inflaton. This raises the question of how the random inflatoq/

! ) . L . . (]
field configuration before and during inflation attains quan-
tum coherence at the end.

We can accept that naturality principles for inflation do
not have rigorous justifications and therefore can be aban- E1(n)=V(¢)U(0)e3"=E(0)e". 3
doned or softened. However, with this, any picture of infla-
tion based on familiar analogies would require modifications. Turning to the more realistic situation in which there is
This loosens theoretical constraints which otherwise are rekinetic energy, it is conceptually helpful to first understand
quired to be consistent with only the limited data from ob-energy transfer in the classical limit for the inflaton field. The
servation. As such, predictability from theory becomes lesgjuantum mechanical problem is treated in Sec. lll. For the
definitive. Nevertheless, if that is the way nature works, therclassical limit in the expanding universe, the rate of change

lume of the universe just before inflation. In terms of total
energy E1(n)=U(n){H), it would be, aftern e-folds of
inflation,

that is the way it is. of the energy density can be expressed as
This would be an acceptable conclusion once all attempts
for a natural explanation have been examined. If we digress dH(t) 9
back to this elementary point, we can rethink the known dt =—3H¢ (V). @

ways to induce energy density perturbations. More general to
guantum fluctuations are thermal fluctuations. We showed iff in addition the inflaton field expels energy to some other
[8] that in the context of near-equilibrium thermodynamics,system, one can express this, when treating the inflaton as an
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isolated system, by adding a dissipative term to the rightThis is sufficient to satisfy the first requirement of vacuum
hand side of Eq(4). If we choose the specific form to have energy dominance. This statement can be strengthened for
the lowest time derivative and be even in the field, ).  certain solution regimes found, which were consistent with
becomes observation and haR one to two orders of magnitude less
than Eg.(10). The second requirement can be established

dH(t : . . : : )
di )=—3H¢2(t)—f dt SOT(LL) (). (5) from the observed amplitude in E(L) since[3,10]
IS (S R ()
This implies that the equation of motion for the inflaton is 10°°-10"~ p - (']52+ ‘p
HE 3P he
. . t .
¢(t)+3H¢(t)+f I'(t,t") p(t")dt’ +V'(4(1))=0. <( 5p¢(k)) _ 11
(6) Po | e

In the next section we derive a quantum operator equatiOfjere HC and HE mean horizon crossing and entry, respec-
similar to this but also include a random force term and trea{ively andk is the comoving wave number with horizon
spatial variations. Lo , crossing occurring at cosmic timesuch that/k|e"'~H.
Having inserted a dissipative term in ES), energy bal- o the left-hand sidesp from Eq. (1) has been equated to
ance implies that there must be some other system receivin 5. I [8] we found that the minimal thermodynamic re-

this energy. If the second system is sufficiently large, it WiIIquirement for a thermal scenario was— (']52 although for
act as a heat reservoir which induces fluctuations on the i h del in{9] for all > 32 In eith ' f E
flaton field. In the next section we examine a model he% € modet | or all casesp> ¢°. In either case from Eq.

reservoir system which we assume is thermalized. For th 11) we have

reservoir, we do not commit ourselves to a specific particle 5p.,(K) 5p.4(K)
physics realization. However, in Sec. IV a particle physics A ASI N I ~1073-105, (12
interpretation is offered. Furthermore, one may question the é*+ 3 p, he Pr e

assumption of thermalization for the heat reservoir. More
general would be some other statistical distribution. How-which satisfies the second requirement in Ef. Thus en-
ever, for the present work we assume that the heat reservadrgetically a thermal component can exist during inflation.
is in thermal equilibrium at some temperatufe Further
treatment of this problem would require details about the IIl. FIELD THEORY
dynamics beyond what we consider. Finally, during inflation,
the temperature also could be a function of cosmic time, but In this section a field theory derivation of the operator
we consider it fixed. equation of motion for the inflaton is given which has the
What is not an assumption and the important point toform of a Langevin-like rate equation. [8,9] such a rate
establish here is the energetic justification of the system-£quation was postulated. Below we consider a simple model
heat-reservoir decomposition. The validity of this as well asheat reservoir system which is coupled linearly to the com-
Consistency with the inflation solution requires pletely interaCting inflaton field. The total SyStem-I’eserVOir
Lagrangian is
Op (X, 1) <p (1) <py(t). (7) =Lt Ll 13

Here
where on the right-hand side the Lagrangianslagdor the

8p (X, 1) =H(B(X,1) = H(o(1)) =V’ (¢ho(1)) 5(x,1) inflaton (system, Ly for the reservoir, and., for the inter-
(8) action between system and reservoir. The inflaton’s Lagrang-
ian, Lg, can have an arbitrary potential and accounts for the
is the energy density contained in the fluctuations of theexpansion term. It has the familiar form
inflaton field

1
_ 3,43Ht| & 2 ra—Ht 2
Sd(x,1) = d(X,t) — do(1), (9) Ls= fvd xe™| S {ldod(x, )]~ [V h(x,1)]
pr(t) is the energy density in the heat reservoir, angt) is 52
the vacuum energy density, with all of these evaluated at —m°¢ (x,1)} = V(o(x,1))], (14
cosmic timet.

The first requirement, from the right inequality in E@),  where the potential can have the general expansion
is the vacuum dominance condition needed for inflation and

the second requirement, from the left inequality, is needed O
for the system-—heat-reservoir decomposition. [8] the V()= 23 RS (15
warm inflation scenarios that we found were for U

In this paper we derive the effective operator equation of

ﬂglofz_ (10) motion for the inflaton, but we do not study it any further.
Py Thus we will not address the issues of renormalization,
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which would be connected with solving this equation. Asteraction between the inflaton and the reservoir, since that

such, our formal derivation is valid whetheg represents an also involves superhorizon-scale physics. The suggestive
elementary or effective field theory. guess is that the “naive” operator equation derived below
The heat reservoir Lagrangidr is modeled as a set of for the zero mode, but without a thermalization assumption

free fields each characterized by a mass It is written as  on the superhorizon-scale modes of the reservoir, is approxi-
mately valid. We will return to this issue in the Conclusion.

3 ant L ) Chit ) It is worth noting that in certain limits the thermal infla-
LRin fvd xe 5{[‘70%()('0] —[e" TV pi(x )] tion problem reduces to the standard Langevin problem, al-
though this limit did not prove useful in the warm inflation
— u? (X1} (16)  scenarios we considered [if]]. This limit is given in Appen-

dix B as well as the derivation of the Langevin equation in
Each reservoir field is coupled linearly to the inflaton with athis limit.
coupling constanty; through the interaction Lagrangian Our first goal is to derive the effective equation of motion
for the inflaton with the reservoir field variables eliminated.
The equation is valid for a time intervhht|<H 1. We will
— . 3ya3Ht ! . . i
L= Z @ fvd xe™ i (X, D) (X, 1) (17 gerive the equation for an arbitrary comoving mode of the
inflaton field and for themth time intervalt,, to t, 1, with
Note that the coupling constants;} carry engineering di- M arbitrary, wheré,=mAt andt,=0 is fixed as the starting
mension 2. time of inflation. A complete solution for the inflaton’s evo-
The derivation given below treats the energy transfer pelution can be obtained by piecewise construction over all

tween the system and reservoir. However, the modeled redme intervals. The formal derivation is not different for
ervoir in Eq.(16) does not have internal interactions. Fur- Physical wave numbers that are subhorizon or superhorizon

thermore, energy transfer between the inflaton and th&cale, alth_ough, as statgd above, the approximations leading
reservoir is not fully treated. To understand the latter twol© the derivation are valid only for the former. o
points, note that our problem has a difference from standard !N S0lving the equations of motion for the reservoir fields,
problems in Langevin dynamics. The reservoir acts as a largd!"®€ approximations are made in tmgh time interval for
system on the fluctuations of the inflaton field, which is a@very m. First, the redshifting facztgr of a given comoving
standard situation for applying Langevin dynamics. How-Wave numbek; is held fixed ate™*"'m. Second, at the be-
ever, the difference is that the vacuum energy of the inflatonginning of every t!me |nter\_/al, the state of the reservoir field
and particularly through the zero mode, acts as a energgPerators is readjusted. Finally the uncoupleq modes_ of '_the
source for maintaining the energy density of the reservoirf€Servoir fields are assumed to obey a canonical distribution
which otherwise would diminish due to inflationary expan- With respect to their physical frequency
sion. This introduces two complications. The first concerns i CoHt 2. 2
thermalization for the reservoir. In a standard Langevin prob- wn =€ MKt i (18)
lem, it is assumed that the system will weakly interact with
the subsystems of the reservoir. There can be many sulbtere timet has been demoted into the subscript to signify
systems so that the total effect of the reservoir on the systemhat it is treated as an adiabatic parameter as far as the wave
can be strong. However each subsystem of the reservoir isumber is concerned.
affected only weakly by the system. In such a circumstance The first approximation is made to simplify the calcula-
the issue of maintaining an initially thermalized state for thetion so that it can be solved analytically. It can be dropped if
reservoir is not acute. As such, internal reservoir interactionsne is willing to apply more sophisticated methods of solu-
are not crucial to know. In our problem we can accept thation. The latter two approximations are physically motivated.
the couplingse; in Eq. (17) are small(although the deriva- They are by-hand treatments of the interactions among the
tion below holds for arbitrary;’s). The question of concern reservoir fields. Details about the second approximation are
is, for whatever vacuum energy that is transferred into theiven within the derivation when relevant. The third approxi-
reservoir, can it thermalize on a time scale shorter thamation implements our thermalization assumption for the
1/H? Even if our modeled reservoir had internal interactionsyeservoir. In the derivation we are careful to separate these
to prove thermalization from first principles dynamics wouldtwo approximations. The second is made at the operator
be complicatedsome attempts in one-dimensional modelslevel. The third is a statement about the state. For it, we are
are given in[11)). first assuming that the description of the reservoir is statisti-
In our treatment we assume that thermalization occurs andal and second that the particular distribution is canonical. In
make appropriate by-hand adjustments. These are detailed the next section we argue that the reservoir state is created
the derivation, when relevant. In the next section we willfrom quantum decay processes, in which case a statistical
return to the elementary question of thermalization againdescription is inherently required. The assumption of being a
Alongside with this problem is the second complication,canonical distribution seems the most obvious first guess.
which is in regards to energy transfer from the inflaton The final equation of motion for the inflaton will be sto-
vacuum to the reservoir. Our derivation accounts for onlychastic since the reservoir state is specified by a statistical
subhorizon-scale physics. As such it treats the fluctuationdistribution. The final equation of motion for the inflaton
induced on the modes of the inflaton field by the reservoirsuperficially will appear nonconservative since the reservoir
while the modes are subhorizon scddg,sics™>H. However,  fields are going to be eliminated. Under certain conditions
our derivation is not justified for treating the zero mode in-placed on the reservoir Hamiltonian, we derive the Langevin



54 THERMAL PROPERTIES OF AN INFLATIONARY UNIVERSE 2523

equation used if9]. This limit is examined and we verify lution when coupled to a thermal bath in de Sitter space.

the fluctuation-dissipation theorem in its standard f¢irg. However, the authors did not completely examine the dissi-
The derivation below follows well-known methods from pative properties of such a system. As such they apparently

nonequilibrium statistical mechanics which have been remissed the connection to warm-inflation-type scenarios,

fined over the yearEl3—-16. A primary motivation for this  which for us is the starting motivation to the present formal

ongoing effort has been to understand the universal propeexercise.

ties of the Langevin equation and to obtain a possible expla- We perform our derivation in a cube for the three spatial

nation from first principle$13,17. This believed universal- directions, which is centered at the origin with sides at

ity is one reason for us to start our study of stochasticxL/2 in each direction. The Fourier expansion of a generic

dynamics for thermal scenarios with the Langevin equationfield is, from Eqs.(A9),

Our derivation below follows closest {d3] and the model

for the heat reservoir follow$16]. We have made some 1 o

modifications to these works, which were for quantum- X(Xit):F; x(kp e, (19

mechanical models, in order that we can treat a quantum

field and account for the expansion term. In Appendix By nare throughout this paper we use the notatip

there is an alternative derivation which obtains the rate equa=,_ /| with n=(n,,n,,n,) and

- . - - B . . . H ’ X yr»'z

tion in certain limits for an arbitrary reservoir Hamiltonian.
Before proceeding, let us review the literature that is re- o o o

lated to the present work. Applications in cosmology using >S=3> > > | (20)

Langevin dynamics have been dong¢ 18,19, although both N ng=—® ny=—o n=—»

our methods and motivation differ from these works. Studies

of finite temperature field theory in Robertson-Walker uni-The argument of the coordinat&)(and the momentumki

verses have been done [@0]. Finally a calculation with space fields is always given to distinguish the two.

similar objectives to ours in this paper is giver[#1]. There The system-reservoir Lagrangian in terms of the Fourier

a path integral derivation is presented of the inflaton’s evomodes as defined in E(L9) is Ly=Lg+Lg+L,, where

eSHt 1 . .
Ls=T7 | 32 [e(kn D (—kn )= (€72 KT+ m?) G(kn, D) p(—Kn D] =V (21)
e3Ht 1 ) )
Le=T3 2 20 5L(kn O 71(—kn, D)= (€7 KG+ 1) ik, O 71— D], (22
and
e3Ht
Li=— T2 2 (ke ) (ko 1), (23
with
o1
Ve=L3 f ExV($)= 2 s 2 bk bk DK, = =KD, (24)
The conjugate momentum to any scalar figlk,, ,t) is
JL e3Ht )
WX(kn,t)=m—?x(—kn,t)- (25

Converting to the Hamiltoniakl ;= 7T¢¢+ i, n;—Lt, we obtain

1 e3Ht 3Ht
Hs=20 5 e U3my(Kn )7y —kn, D)+ 3 (67 2K+ m2) (ko D b(—kn 1) |+ T3 Ve, (26)
1 3Ht
He=2 2 5 e M3, (ko ), (=Ko, )+ 3 (67 20+ ) milkn D m(—kn 1) |, 27
andH,=—L,. Our notation is that all Hamiltonians have some specifying subscript, which then leaves the Hubble constant to

beH.
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To quantize the theory the postulated equal time commutation relaf@@R’s) are given in Eqs(A2) and (All). The
operator equations of motion from; are

d(kn =i[Hr, (kD)1= L3m,(ky 1), (28)
. 3Ht ) 5\/

olkn ) =ITHT, my(kn 0]= = 37| (&G M) bk )+ 5oy — +2 ai7i(Kn, 1) |, (29)
57i(kn ,t):e_sHth’]T”i(kn,t), (30)

and

e3Ht
7y, (kn )= = T [(€7 2kt 1) 7(Kn O + i (K D). (31)
The resulting second order field equations are

Bk 0+ 8H (ko )+ [ 2T+ mP] bk O+ o= kn o+ 2 aimitkn =0 (32

and
7i(Kn,t) +3H (kg ) +[€7 2K+ 1] i (Ko 1) + @i (K 1) = 0. (33

We now implement our second approximation discussed earlier. At the beginning of every time intemwal readjust the
state of the reservoir fields as

7i(Kn tmitme1) = 70 (Kn,Otm), (34)

wheren;(k,,t;t,,—1) and 77i0(kn ,t;t,,) are the solutions of Eq33) at timet, respectively, with and without the coupling term
to ¢ and with the frequencw'n(t) held fixed at, respectively,,_; andt,,. Formally this operation can be viewed as a set of
impulsive forces that act on the reservoir. The first purpose of these adjustments is to add sufficient energy so that the
reservoir's energy density with respect to physical volume remains constant. Second, these adjustments are an external
treatment of interactions within the reservoir. They shift each field back to its free field stateDabut with its physical
frequency decreased by a little. This operation is in preparation for the thermalization assumption we will make below on the
reservoir's state. The first purpose given above acts as a constraint on the inflaton’s evolution. Consistency with the inflaton’s
equation of motion for a particular model was demonstrate@jnThe discretized treatment simplifies the calculation. One
expects the actual dynamics to be smooth and continuous.

The solution for the oscillator fieldy; for the time interval t,,t. 1] is

—3H(t—t,) .
77i(knvt;tm):77i0(knvt_tm;tm) Q|2 d’(knat)_gﬁ(knvtm)ex%Tm) an(tm)(t_tm)
n(ty)
, . 3H
_e—3H(t—tm)/2f dt’ Cog)n(t (t_tr)e3H(t —tm)/Z( (ﬁ(kn,t,)‘f'?(ﬁ(kn,t/))}, (35)

where

. 9H?

n(H)= \/e_ZHtk2+ M~ (36)
and

77|(knatvtm) g 32 37

1 3H
i (kn,O)COQn(t (t)+ ( 2 77|(kn!0)+|-37T (kn,O))Sann(t )(t)

n(

is the solution for the free reservoir fields with the time-dependent physical frequencil 8.cpf the comoving mode held
fixed att,,. As in Eq.(18), the subscript(t) in Eq. (36) refers to the physical wave number of the comoving mkget
cosmic timet. Substituting Eq(35) into Eqg. (32), we obtain, fort,,<t<t; 1,



54 THERMAL PROPERTIES OF AN INFLATIONARY UNIVERSE 2525

. . 2 rt .
(Ko 1) +3H (K, ) +e7 3 ‘mVZZ ( ) : dt’ e “tmZcod)y | (t—t") d(kn,t')+ (e 2k +m?) (Kp 1)
n(ty) m

S

2
{¢(knm>—-¢<kn¢noe3”“ﬂvmcoﬂlhaﬂt—tm>

m)
3H t ' OVe(¢)
_ Y A-3H(t-tpR 1 A3H(t — i _ .
2 € J;mdt e Cog—)’ (I)(t t )d)(kn!t ) 5¢(_kn,t) ﬂ(knat,tm)a (38)
where
mnmmmz—Zamﬂnm—%nm. (39

Up to this point, no statistical assumption has been made. Following our earlier discussion, we now assume that the free
reservoir fields are canonically distributed. The statistical mechanics for the reservoir system based on our above approxima-
tions is the same within eadifold as in flat space. For this Appendix A has been provided as a useful reference. As a
clarification, no approximation has been made in treating the inflaton system. For the reservoir fields froxiEdor
t<t,t’<tpy.1, we have

L3 .
<<7]|(kn:t tmit m)77|(k/ t'— m;tm>>T:?e73H(tth 2t|m)lzé)‘n,—n’

1
(—_[CO&)n(t (t—t’ )+COSwn(t T+t —=2ty)]
2 n(t)

1 9H2 i i ’ i ’
29,(2 —_40)'( )+wn(tm) [co&»n(tm)(t—t )—co&‘wn(tm)(tﬂ =2t ]
n(t n(t
3H Onit,) i
+ ZQ' )wn(t )smwn(t y(t+t'=2ty,) | cot >T Q, smwn(t (t=t") |
m m

(40)

Equation(38) with the assumptior{40) is the general rate equation and the main result of this section. For use later, the
symmetric correlation function of the force operator is

Sr(ky 1tat,;tm)5%<<7](kn Ltm) 7(— Kt 5t + p(— Kyt tn) (K, rt;tm)>>T
L3

=— St 22 2 [cosp, \(t—t') +Coswy (t+t'—2ty)]
4 ! n(tm
1 9H? : .
—t cosw! t—t')—cosw! t+t' —2t

o e e
+ 3 (t+t' —2t,,) |cot “nti (41)
————sinw - co .

Qn(tm)wn(tm) n(t> m 2T

We next derive a limiting form of Eq(38). Consider a large number of oscillator fields that are represented by a
continuous distribution as

> —>J’ duN(u), (42

where N(u) is the spectral weight function. Assume thii(x) is nonzero only in the intervaj,<up<<p, with
A,=u,—w and the corresponding definitiahff(tm)z Ve ki + ui—9H?/4— \Je MK+ uf— 9H?/4. Also assume that

a(p)
Qn(t )

2r

o

N(u) (43
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is a constant over the interval . If A®, \>H, then, for 1A, \<t<1/H,
12 n(tm) n(tm)

2

a(pm)
CO@#(tm)tZZF 51/Ai12(tm)(t). (44)

M
Qn(tm)

f:dMN(M)

The subscript on the right-hand side is to indicate thatthenction is smeared over a time intervahf(tm) Inserting Eq(44)
into Eq. (38) we obtain

2TA, 3TH

B(kn O+ (BHET) (k1) +| &2+ mP = =2 == (ko 0+ 57— —
+20e M2 (i, t) 51/Af}(t )(t_tm): 7' (Ko, titm), 49
where
n'(kn,t;th—fdMNm)a(mO(kn,t;tm;m- (49

In the limit of zero expansiori =0, we obtain, from Eq(45),

. 2I'A ov
¢<kn,t>+r¢(kn,t>+(kﬁ+mz— W")¢<kn,t>+muwkn,tm>5m;»(tm)(t—tm>=né(kn,w, (47

where 774(k,, ,t) is as in Eq.(45) but with H=0 in Eq.(37). Aside from the last term on the left-hand side, which is nonzero
only for a very short time interval &/,,, this is the standard form of the Langevin equation and the type we u$8dl Iin the
limit T—c we find, from Eq.(41) and Eq.(44),

2{(mo(Kn 1) 70( —Kn t") + 70( = Kn t") 70(Kn D)) 7= 2L T T S(t 1), (48)

which verifies the fluctuation-dissipation theor¢h@]. direct interpretation the explicit reservoir Hamiltoni&h7)
in our simple model has.
To address these issues, we first make three general ob-
IV. INTERPRETATION servations. First, the zero mode of the inflaton is evolving
quasistatically during its roll down the potential. Second,
In the last section we obtained the generalized Langeviguantum processes will occur within microphysical scales,
equation(38), which induces fluctuations on the inflaton asand so for physical distances and cosmic time less than
well as frictionally damps its motion. To obtain this equa- 1/H at anye-fold of inflation. The third observation is based
tion, we had to introduce a heat reservoir of light particleson our analysis if9]. There we found that the energy den-
that interacted with the inflaton. [®9] one form of rate equa- sity of the heat reservoir was close to the grand unified
tion (38), namely, Eq.(47), was shown to be numerically theory (GUT) scale Mg, In particular the temperature
successful for inflaton dynamics. This evidence provides sufrange of the thermal scenarios we considered that were con-
ficient motivation to seek an interpretation of the heat resersistent with observation wak~ (0.01-0.03M gyr. This im-
voir in the context of particle physics. The heat reservoir ofplies for a single light species a corresponding energy den-
the last section is a toy model. Here we want to think gensSity in the range
erally about a second system of light particles which acts as
a random force on the inflaton. pr~(1078=10"®)Mgyr. (49
For the dynamics described in the last section to be real-
izable in the real world, in particular two properties are For Mg =10 GeV=1.782<10"° g and for the lower
needed for the reservoir. First, there must be some mech&ound onp, this means
nism available during inflation to produce the reservoir par-
ticles. Second, these particles must interact rapidly on thep =10"8Mg ;=102 GeV*=10% glenP~ 10" cutron star
scale of the expansion timeH/ In Sec. Ill we assumed that
they could thermalize. This stringent of a condition is not ~10°% i colision (50)
needed for Eq(38) to describe stochastic evolution of the
inflaton. Nevertheless, we keep with our thermalization aswhere pqutron star@Nd PHi collision @€ the energy densities for,
sumption and will see how close we can come. In addition taespectively, a neutron star and an upper bound estimate for
these two properties, a less important point of interest is whea heavy-ion collision. For our present purpose, we make the
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general observation that the energy density of the heat resewhich for relativistic rocks implies a collision frequency
voir is large on the scale of the largest probed energy densiw,ocs= 1/ 1ocks-
ties. We assume that the elastic cross section is independent of
The first observation above provides suitable conditiongnergy. Up to logarithmic corrections, this corresponds to
for particle creation from quantum decay of the inflaton simi-Regge asymptotic behavior from single Pomeron exchange
lar to pair production in a strong quasistatic electric field.with slope one(for a review please s€@2] and references
This gives a mechanism for producing the particles in théh?reiﬁ- For a conservative lower bound to elastip scat-
heat reservoir. An outcome is that the description of the restering at high energy, we use,=10 GeV 2. The energy of
ervoir's state must be inherently statistical. a typical light particle at temperatuieis E~T. Taklng the
: : o - Eq(50 =10°2 GeV* which corre-
Having made a particle association for the heat reservoifoWer bound from EQ(50) procks
for completeness of our model in Sec. I1l, we make an inter-SPONds 0 =0.0IMgyr, we find
pretation ofHy in Eq. (27). The most direct statement is that
Hg, with an appropriate spectral weight function E4pR), is

a general representation of scalar quasiparticle excitations i is known that most of the elastic cross sectiog) is in-
the noninteracting limit. On the other hand, thinking in termscreasingly in the forward direction with increasing energy.
of elementary fields, if we apply dimensional counting to accounting for this, we take the average momentum transfer
H, in Eq. (17) we find that the reservoir fields;(x,t) carry  to be [t|=0.025 Ge\?. Let us assume statistical indepen-
engineering dimension 3. This suggests that in our simplelence between collisions for a typical light particle. Then
model each reservoir field represents a fermion-antifermionyithin one e-fold, the root-mean-square energy that the par-
pair (i.e., qq, ee etc), which interacts with the inflaton ticle transfers will be about an order of magnitude greater
through a Yukawa couplingd then has the interpretation than its total energy and it samples all angular directions in
of an effective free field Hamiltonian for paired states. In  phase space. Optimistically the range for E8p) could be
QCD these would be the simplest color singlet states conincreased by a factor $0by using the upper bound on
structible from quarks. Beyond these “kinematic” state- procks in EQ. (49) and increasingre by over a factor of 10.
ments, we can not say more at present. Almost nothing ighis range presents a case that some sort of GUT plasma
known about matter at the energy densities of ). We  could thermalize within ae-fold at GUT-scale energy den-
therefore must leave unanswered to what extéptin Eq.  sities.
(27) and the spectral weight function in E¢.3) approximate
a heat reservoir system which can be derived from a realistic V. MECHANICAL ANALOGUE
particle physics Lagrangian. _ . )
Returning from this digression, next we will examine [N Sec. lll we derived a quantum Langevin equation, but
what expectation there is for thermalization in the reservoirWe can think of it as a classical Langevin equation. For this
For this let us review the situation up to now. Equati@g) ~ We can make a picture Qf the dynamics for a chssmaI infla-
contains the dynamics that governs energy transfer betwedfn field ¢°(x,t). We define the order parameter in the clas-
the reservoir and the inflaton. The full internal dynamics ofSical system as
the inflaton system in isolation is also treated. Thus (B6) 3
is valid for an arbitrary scalar inflaton potential and for res- ¢°(t)5j d_X¢c(X t) (53
ervoir fields that do not interact directly with each other. We vV T
discussed in Sec. Il that in the rapid expansion environment
during inflation the internal interactions of an actual reser-and it will sometimes be denoted a@s. For the classical
voir system are essential for distributing any influx of en-theory we will make a mechanical model and then associate
ergy. Having established above that the state of the reservairwith the classical field. We will work in the infinite volume
is inherently statistical, knowledge of internal reservoir dy-limit where correspondence between the classical and quan-
namics is in particular important for addressing the questionum fields can be stated more simply.
of thermalization. In the last section we got around the prob- Let us first recall some details about the inflaton Hamil-
lem by assuming that thermalization occurs and then madtnian. In thermal scenarios the symmetry breaking potential
suitable adjustments to our equations. V(@) can be of the standard double-well type without an
To check the assumption of thermalization is a difficult ultraflat region as demonstrated [i8]. The relevant magni-
problem even if one is given more dynamical details aboutudes which define the potential are the same as in the stan-
the reservoir. However, based on the second and third obseattard scenario. Thus the vacuum eneW)NMéUTi the
vations above we can get an idea of the scales involved iminima of the wells are ab~*Mgyr, and the curvature
the problem. For this let us consider an unjustifiable classicait the minima areV"(¢m)~M3Z,r. Inflation begins when
model of light hard rocks of average enerBy center-of-  the inflaton tunnels out of the metastable minimapat0 to
mass two-body elastic cross sectienand at a energy den- g< ¢.<¢,.. We will define this moment as the origin of
Sity procks Of order of Eq.(50). The mean free path in this cosmic timet. Our classical analogy begins &t 0.
system Is With these preliminary remarks, let us state our classical
analogue model. We picture the classical scalar field as com-
posed of heavy particles of makk,= V" (#n). They sitin
E (51) a cubic lattice arrangement with massléasharmonic if pre-
Prock ferred springs connecting them. Kinetic energy is associated

wrocks= 10°° GeV~10°H. (52)

| rocks™
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with the particle masses and their motional energy. Potential VI. CONCLUSION
energy is associated with the energy in the massless springs.

The order parametep®(t) is interpreted to be related to the . ) : . .
b 8t (1) P scribes the dynamics of the inflaton’s comoving modes while

number densit t) of articles. To obtain a precise ) . .
() ¢ P P they are subhorizon size. For the zero mode, 8§ is

relationship we will equate the order parameter with the S . . .
vacuum expectation value of the quantum Heisenberg scaldperefore unjustified, since it does not treat superhorizon-

In Sec. lll we obtained the rate equati¢®8) which de-

field att=0 as scale physics. What one needs is an equation that describes
the transfer of potential energy from the inflaton’s vacuum
d3x during its roll down to the potential minima. In our model,
¢°(0)= lim <O f — ¢(x,0) > (54 the energy is transferred not only into the inflaton’s kinetic
Voo vV energy, but also into the fields of the reservoir.

In a local patch and for a short time interval, E§8)
We will assume that the vacuum is a coherent state of zergiould be valid for all modes which are definad hocwith
momentum particles. Using the number density operator  respect to the patch. A network of such patches could be
constructed to cover the inflating universe for some chosen
1 + cosmic time interval. In each patch the respective Langevin
Vg @nan (59 equation could be solved with solutions matched at the
boundaries. To compute the initial subhorizon-scale energy
density perturbations, recall that they are determined by the
subhorizon-scale modes. Therefore this computation could
be done from the solution of the Langevin equation from any
one patch. For the zero mode, there are two points of inter-
est. First, we want to know the global energy loss by the
inflaton. Because of the lack of coherence between patches,

In Eq. (55), {( )—lim means evaluate the operator matrix el- the expectation value of the inflatqorder parametgmeed
ement in finite volume and then take the linitso. In our  Not be the same in different patches. Different local regions

classical model we define the order parameter at all time witl®f the universe could then be in different stages of inflation,
this relation, depending on the local order parameter. For computing the
total change in vacuum energy, one could sum the result
> from the independent patches. However, turning to the sec-
oo Ng(t) . ) :
)=\ ———. (57) ond point, for inflation to solve the smoothness problem, one
My requires the order parameter to be approximately globally
homogeneous. One may argue that the local conditions in all
If one prefers, this can be regarded as an unmotivated defpatches would be similar, so that the order parameter should
nition, which relates the classical mechanical model with ounot differ by too much in different patches. To verify this
classical field model. would require further investigation within specific models. In
The initial conditions at=0 are the order parameter is at particular, to meet observational constraints, one wants to
#°(0)= ¢;, the masses are at rest with number density giverknow the degree of homogeneity of the order parameter
by Eq.(57), and the springs are elongated such that the cubiwithin an inflating region for a duration of at least 70
symmetry is maintained but the fundamental cell is biggere-folds. All statements so far apply equally well to scenarios
When the system is released a breathing mode commencésased on both quantum and thermal fluctuations. There is
in which the fundamental cell contracts to a minima and therone difference. Thermal scenarios do not require the quan-
expands back to its original size &0 and so on. Corre- tum state of the inflaton’s zero mode to be coherent over the

.. N .
n=lim V:< y— lim

V—oo V—oo

we arrive at

2n4(0)
C0)=\/——— 56
0=\, (56)

spondingly, the number density oscillates. entire inflationary patch. This is required in the standard sce-
To this system, we will add many light particles of nario for reheating.
massm,<M, that are thermalized at temperatufe This The derivation in Sec. Il is formally valid for a funda-

system forms the heat reservoir. Theparticles randomly mental or effective inflaton Lagrangidr in Eq. (14). Given

will impart momentum on theb particles. This will perturb  an initial fundamental Lagrangian for the inflaton, one antici-
the breathing mode of th¢ particles as well as excite trans- pates that to formulate a consistent stochastic process, it will
verse modes on theé lattice. The system so described is require high frequency interactions of the inflaton with itself
similar to that for Brownian motion, except that now there and with other fields to be treated first and appear in the form
are several Brownian particles and they also have an inteef an effective Lagrangiahg in Eq. (14). We have not de-
action among themselves. With minor changes, one can urveloped in this paper any methods for obtaining the appro-
derstand the rest of the statistical mechanics for our systempriate effective Lagrangian one should use If@r.

from Brownian motion. Slow-roll motion in our classical In [9] we assumed near-equilibrium dynamics applied ev-
model corresponds to overdamping, in which the fundamenerywhere. We therefore used the finite temperature effective
tal cell slowly contracts to equilibrium with no oscillations. potential in Lg. However, nonequilibrium considerations
In the process the potential energy in #esystem is trans- such as done if23] for flat space may be important to take
ferred to the heat reservoir. One can also expand this pictui@to account and develop further for the inflationary era of
to include inflationary expansion angparticle creation, but expanding space. Generally for a scalar inflaton field coupled
we will leave that for the reader’s thoughts. to gauge fields, such as in GUT theories, one should expect
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guantum corrections from self-coupling and quantum plus

thermal corrections from coupling to the gauge fields to give H =J d3x3{ w5 (6,1 + [ Vx(x,1) ]2+ m?x%(x,0)} + C,

a modified potential irLg. Since the relevant temperature Vi (A1)
scale for slow-roll dynamics is of order or less than the in-
flaton mass, one does not expect thermal corrections frofyhereC is a constant that later will be set so that the lowest

the inflaton’s self-coupling to be substantial. energy state is at zero. The fields satisfy the equal time ca-
To summarize, in this paper we showed that the presencgonical commutation relationiCCR’s)

of a sizable thermal component during inflation is energeti-

cally allowed. Following our hypothesis i8], we treated [x(x,t),x(x',1)]=0,

the thermal component as a heat reservoir, which interacted

with the inflaton in the manner of Langevin dynamics. We [7,(x,1), 7 (X",1)]=0,

demonstrated in Sec. Il that the Langevin equation postu-

lated in[8] could be derived from quantum field theory. In [ (%t), x(X",)]= =i 8 (x=x"). (A2)

[9] we showed that such a dynamical arrangement, for the ] o .
specific case of a double-well scalar potential, was numeri] he fields have the expansion in terms of the creation and
cally successful in describing observational data withou@nnihilation operators
fine-tuning the coupling constant. -

One of the improvements suggested by our calculations in
[9] was to have a time-dependent temperature that smoothly
varied by a factor 2—3 over the course of the roll-down pe-

1 1 .
xX=73 X [ae'(knx— o)
L - 2w,

Ny Ny N=

riod. Not only was this numerically preferable, but it seems +alef'(k"'xf“’“t)],

that thermodynamics does not restrict some variation in the

temperature just before to just after inflation. As such the =i - wn Kexe ot
general dynamical equations during inflation should be able T (X0 = 7 > ~ 7[ane( nXent)

.. . Ny ,Ny ,N,=—
to accommodate such a variation, although specific models Xy

may make specific predictions. —a;efi(kn‘xf‘”nt)], (A3)
In [9] the reservoir was defined by its thermodynamic

properties, but was not given a dynamical representationvhere

Thus we had no underlying mechanism that could explain

temperature variations. In Sec. lll our model supplies an ex- 2mn

planation. However, it is clear from our treatment there that Kn=—"" (A4)
it was an arbitrary decision to hold the reservoir's energy

density constant with respect to physical volume all through- n=(n,,ny,n,), (A5)
out inflation. Just as well within the same dynamical frame-

work, it could increase or decrease and in different time pe- wn= K2+, (AB)
riods do either. However, this is as far as the model in its

present form can go. On the plus side, the model goes faind, from Eq.(A2),

enough to dynamically explain a time-dependent reservoir

energy density. However, the model is not sufficiently con- [a, ,an,]:[a,ﬁ,a:,]:o, (A7)
strained to do better than this. The options to improve this

situation are to determine a further constraint from either [anaa;f]zénn’- (A8)

formal means or phenomenological motivation.
We define the Fourier transform of the fields as
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From Eq.(A2) one can verify that the Fourier space modes
APPENDIX A: STATISTICAL MECHANICS of the fields satisfy the equal time CCR’s

OF FREE FIELDS
- . . X [X(kn,t),)((kn/,t)]:o,
Some statistical mechanical properties of free fields,

which are often used in the text, are given here. We consider [7 (K1), 7 (Ko, 1)]=0,

a free field Hamiltonian defined in a box of volurig cen-

tered at the origin with sides atL/2 in all three spatial [7(Kn 1), X(—Knr ) ]= =0 8. (A11)
directions. We give results in the discrete form\ip for

finite but largeL and then in the infinite volume lim¥., , The expansion of the Fourier modes in terms of the creation-

whereL— . The free field Hamiltonian which we study is annihilation operators is
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L3/2

K. t)= —
x(Kpq 1) \/Z—wn

[anef iopt 4 at nei wnt] ,

i Wn —iwpt T Liopt
TrX(kn,t)=E377 7[ane n‘—al e“n']. (Al2)

The constantC in Eq. (Al) is to be defined as

1
C=—=> o,. (A13)
27

Two equivalent forms of the Hamiltoniad in Eq. (Al) are
given below. Writing

H=§n: Hn=§n} Hi .

(A14)

ARJUN BERERA

t =) sine, (t—t'
co Esmwn(— )

+icos‘wn(t—t’)}.

1
((x(kn D)y (kp,t))r= Sn-n'5

From the last relation note that

([ (Kn ), x(Kp 1) 1)) 1= =18, —nrCOSWL(t—t').
(A20)

The total ensemble-averaged energy of the thermalized
system is

where, in terms of the creation-annihilation operators in Eg.

(A8),

H,=wnala, (A15)

and, in terms of the Fourier-modes in E412),

L3
Hkn: 77Tx(kn ,t)WX(_kn 1t)

1 2 2
+F(kn+m Ix(Kn ) x(—Kp,t). (Al6)

The partition function,Z=Tr(e H'T), evaluated in the
creation-annihilation basis, is a produtt11,,Z,,, where

Zn=Tr(e_Hn/T): m (Al?)

The two-point thermal correlation function for the
creation-annihilation operators is

—H./T,T — t _ 1
Z_nTr(e n anan’)=<<anan’>>T_5nn’m-

((anan))r={((alal ))r=0 (A18)

and for the Fourier-modes is
1 —HI/IT ot
ZTr(e X(knvt)X(kn't )

=((x(kn,t)x(kp,t" )7
L3

= On, - 2w
n

wp, ,
cot >T Coswy(t—t")

—isinwn(t—t’)} (A19)

((mmy(Kn )y (K t)))r

Wn

cot T

w
=5n,_n,2—|_n3 )cosun(t—t’)—isinwn(t—t’)

Uy (T)=2, Uy (T), (A21)
where
US (M=on(@la)r=gmn—g.  (A22)

Let us examine the infinite volume limit. The creation and
annihilation operators must be rescaled as

3/2

a, (A23)

L
c(k»z(E

and similarly forag. Substituting Eq(A23) into Eq. (A3)
and identifying

(2%7)3:(211“)3 —dik, (A24)
Lo
we get the continuum form
d3k o
X(X,t)ZJW[C(k)G'(k”‘X okt
+cT(k)e  tkn-x— @t (A25)

and similarly forr,(x,t). For the momentum space Fourier
transforms of the fields in the infinite volume lim\; must
be replaced by, in Egs.(A9) and(A10) and 7, (k,t) must
be defined without the factor 3. The Hamiltonians in the
forms Eq.(A15) and Eq.(A16) in V., are, respectively,

H:f d*kwcT(k)c(k)

d3k
= | @me SLmk D m (=K,
+(k2+m?) x(k,t) x(—k,1)]. (A26)
The energy density iV, is obtained as
Uy, (T)

Lo

From Egs.(A21) and (A22) we find
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T —f LI A28 b(kn 1) +3H (K 2(t) (K o
u(T)= Zaf e =1 (A28) é(Kn,t) +3Hp(Kp 1) + () &( n,t)+m
The familiar formula for the energy density of electromag- +aQ(k,,t)=0. (B8)

netic radiation is twice this, due to two polarization states for

the photon, and witm=0, so thatw; = [k]. We derive the effective equation of motion for a given

comoving mode of the inflaton. In the parametric regime, Eq.
APPENDIX B: ALTERNATIVE DERIVATION (B1), the time interval I <At<1/H is sufficient to study
OF THE RATE EQUATION the relaxational dynamics of the inflaton. Thus we can drop

For a system with a nearly harmonic potential, such aéhe second term in EqB8) above and assume that the co-

i i —2Ht, _—|m
within one well of a double-well potential, one can derive theMOVINg Wave numbek,, is constant aé Kn=kn , where

Langevin equation with a general reservoir Hamiltonidg ~ Kn IS the initial value in the time intervain of interest.
in the regime Dropping the superscriph, the resulting second order equa-
tion of motion is

H<l' <o, (B1)
whereH is the Hubble constant; is the dissipative constant, (K, D)+ wld(K, )+ OVe +aQ(k,,t)=0,
and w is the frequency of the system with no anharmonic " op(—kp,t)
terms in the potential. We perform the derivation in this ap- (B9)

pendix. It follows the method of14]. As in Sec. lll, it is
done in a cube for the three spatial directions, which is cengnere
tered at the origin with sides atL/2 in each direction.

The Hamiltonian we examine is

wn=Vk2+m?. (B10)

HT:H3+HR+H|, (BZ)

whereHg is the system Hamiltonian given for the inflaton This can be obtained from the first order equations in Egs.
field in Eq. (26), Hg is the Hamiltonian for the reservoir (B5) and(B6) by the replacement
system when it is uncoupled to the scalar field system, and

e M2, g~ 2Htmy2 (B11)
H=a f dPxe™Q(x,1) b(x. 1), (83)
\

in w,(t) in Eq. (B6) and by settingd =0 everywhere else.
where ) (x,t) is a Hermitian operator made of any field or ~ Doing this, the solution to Eq$B5) and(B6) are, respec-
composite fields of the reservoir system that couples to thévely,
scalar field. For our derivation, we do not need specific de-
tails aboutHg. It may well represent a strongly interacting a [t
system with respect td)(x,t). Expressed in momentum d(Kp,t)=do(kp,t)— —f dt’ Q(k,,t")sinw,(t—t")
space, Eq(B3) is @nJo

e3Ht —iftdt' V()
wnJo

=2 af(kn (ko b). (B4) Sg(—ky ) nent—t), (BL2)

Postulating the standard equal time CCR’s of E¢) .
and(Al1l), the equations of motion for the inflaton are (K, t) = mo(Ky,t) — ﬁf dt’ Q(k, ,t')cosw,(t—t')
. wnJo
b(kq,t)=i[Hr,d(kq,t) =€ " L3my(ky 1), (B5) 1t SN()
—w—nfodt WCOS}L}“(I—I ), (B13)

7g(Kn D) =i[H,74(Kq,1)] Kn,t")
3Ht F
=1 wi(t) (K, t)+ Sh(—K.t) where ¢, and m, are the solutions of EqgB5) and (B6)
n: . _ _ . . .
with Ve=0 anda=0. Again for notational convenience we
denote the physical momentum simply ky. The associ-
+ald(ky, 1), (B6) ated comoving mode can be computed at timgefrom Eq.
(B11).
where The inflaton(system can be treated as a small perturba-
tion onQ (k,,t); however, full account must be taken of the
wn(t)=+e Mk +m?, (B7)  heat reservoir’s effect on the inflaton. Thus we will account

for the lowest order effect of the system on the reservoir
This implies the second order equation of motion coordinateQ) (k, ,t), which gives
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. ) i t
Q(kn,t)=e"H‘Q(kn,0)e'H‘=QO(kn,t)+F[Qo(kn,t)Z fdt'¢(kn,,t')ﬂo(—kn,,t')
n’ 0

- ftdt/d’(kn’rt_t/)ﬂ()(_kn t=1)Q0(kp ,t)] : (B14)
n Jo

where
QO(knnt):e_iHRtQ(knio)eiHRt (B1Y)

is the time development d® in the uncoupled reservoir.
Substituting this into the second term on the right-hand side of BtR), this term becomes

t t
if dt'Q(kn,t')sinwn(t—t')zif dt’ Qo(ky ' )sinen(t—t' )+ L(Ky 1), (B16)
WnJo WnJo

where

Iaz t ! H ! t/ " 1 ! n
L(kn )= — 52, fodt sinw,(t—t >fo dt'[ (Ko t") Qo(Kn 1) Qo —Kpr,t")
n n’

(O]
= (Kn, t' =t") Qo(—Kpr,t" = t") Qo(ky ") ]. (B17)

We now take the statistical expectation value of E8R) with respect to the free states of the heat reservoir, which are
assumed to obey a canonical distribution. The matrix elemen®yk,,t) between stat€a| and |b) of the uncoupled
reservoir system are written as

(alQq(ky DY =[Q2°(K, 1) +i Q2K 1) ]e wa!, (B19)
where
w§b= “’S_ wE, (B19)

with wE being the energy of thath state of the uncoupled reservoir. Hermeticity @f implies thathbZQFa and
0=—0P2 We assume that the diagonal matrix elements are zero:

022=0. (B20)

This is equivalent to assuming that there is no time-independent force exerted by the heat reservoir on the system. The only
nontrivial term for which the statistical expectation value needs to be evaluated (BHjy). The expectation value of the first
term on the right-hand side of EB16) is zero due to Eq(B20). However, we must retain this term in its operator form since
we will also want products of it in the final rate equation when evaluating correlation functions.
For L(k,,t) in Eq. (B16), upon statistical averaging we get

1 R
N2 (alLky Dlaye e T=LR(ky )+ LE(ky. ), (B21)
where
b 2a? R t ) t’ . R )
L2(ky )= ——m>, e 9Ty, fdt'smwn(t—t')f dt’sinwR,(t" —t") ¢(kn t") Q2 (a,b,kn Kn), (B22)
wnNL ab n' 0 0
c 2a2 R t . t/ R 5
LS(ky,t)=— 5>, e valTy fdt'smwn(t—t')f dt"cosnR(t" —t") (ko ") Q%(a,b,ky k) (B23)
wnNL ab n’ 0 0
with

N=S e« (B24)
a

Q3 (a,b,ky Ky ) =02 (k) QP — K, ) — Q2 (k) QP(— k), (B25)
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and
O2(a,b,kn,kn ) =0Q2(k,) QP (— k) + Q2%(k,) QP (— k). (B26)

The energy levels in the heat reservoir are assumed to be closely spaced so that we can replace the summation over the
states by an integration as

S~ [ oot [ pofaef. (827)
ab 0 0
We perform the above energy integration with the variables
R R
w,+w
W= oR=wl-of, (828)

so that

0 ) o 0 0 )
fo dwgfo dol= fo deLR/ZdwEJrf_mdwﬁf_wR/ZdwEEf daﬁf daf?. (B29)

Equations(B22) and (B23) then become, respectively,

—2a? _ [T i T R B T A i
L$(kn’t)=wnNL3§ fdwﬁfdwip w5+7)p((oR—7 e (‘”++“’J2)/TQZD wE-f—?,wE—?,kn,kn,
t [ cog B+ wy)(72)siBR —w,)(72) cogBR —w,)(72)siBR + w,)(7/2)
Xf dr o - o oKy, t—17),
0 w_—w, w_+wy,
(B30)
c —20? ~R | 4=R [ =R @t ~R @t @ +aR T2 | ~R @t ~R A
LT(kn,t)ng% de_de+p w++7 P w+—7 e + - QC w++7,w+—7,kn,kn,
t R T R T 1 1
X | dr sif@= + w,)5sin(e” —w,)5| —f = oKy t—17). (B31
0 2 2 w_—w, w_+tw,
Define
B'(w,kn,kn,)zf do’p(e’+0)p(0 )Xo+ 0,0k, ke @', (B32)
0

wherel=C or |=D. We assume' is a smooth function with | =C,D. Substituting this into Eq(B12) we obtain the
with respect tow. Identifying this term in Eqs(B30) and  equation of motion

(B31) we observe that due to the oscillatory factor the main
contribution to thes® integral is from@® = + w,,. Evaluat-

R

. , o -
ing thew™ integration under this approximation, we obtain b(kn, ) T wpd(ky ’t)+§; Lo ¢(Knri1)

D D t ’ ’ ’ 2 c —5\/ =
L2(kn )=, an,fodt d(knr,t")cosw,(t—t"), (B33 ton2 Iy d(ke )+ 5h(—k. t)—n(kn,t),
n’ n ’
(B36)
t
C _ C ’ '\ i 4!
LT(knJ)_% an/fodt P(kn t)sinwy(t—t'), (B34) where 7(k,,t)=—aQy(k,,t). Hereafter we will assume

that the uncoupled reservoir system is translationally invari-
ant so that

2 o ((Qo(kn D Qo(Knr 1))
(1me DB on ko ko), (B39 = 60 ((Qo(kn D Q( —kn D)) (BID

where

rl o e
" NL3
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The statistical properties aof(k, ,t) are

(n(kn,))r=0, (B39)
<<77(knvt)77(kn’vt’)>>T
. wnFE,nI-3 iP , Wy,
_5n,—n’T W"’Wﬁ(t_t )COU’(EH.
(B39)

The first property follows from Eq(B20). The second fol-
lows from Egs.(B25), (B26), (B32), and(B35) and using
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* iwt:i_P
dwe=—+ 78(1). (B40)
0

In the high temperature limit, EqB39) becomes
(kD 7(—Kn 1)) 70— 2L°T7 Tt =), (B4D)

which agrees with Eq(48).
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