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Thermal properties of an inflationary universe
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An energetic justification of a thermal component during inflation is given. The thermal component can a
as a heat reservoir which induces thermal fluctuations on the inflaton field system. We showed previously
such thermal fluctuations could dominate quantum fluctuations in producing the initial seeds of density p
turbations. A Langevin-like rate equation is derived from quantum field theory which describes the producti
of fluctuations in the inflaton field when acted upon by a simple modeled heat reservoir. In a certain limit th
equation is shown to reduce to the standard Langevin equation, which we used to construct ‘‘warm inflatio
scenarios in previous work. A particle physics interpretation of our system-reservoir model is offere
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I. INTRODUCTION

According to inflationary cosmology, the large-sca
structure of the present day universe is essentially a k
matic outcome of exponential amplification of perturbi
seeds in an initially smooth universe@1–3#. The differential
microwave radiometer~DMR! on the Cosmic Background
Explorer~COBE! has made the first direct probe of the initi
density perturbations through detection of the tempera
anisotropies in the cosmic background radiation~CBR!.
These results are consistent with the scaling spectrum g
by the inflation model. They also reinforce previously know
measurements, although done by less direct methods, w
show that the amplitude of initial perturbations is

D~k![
dr~k!

r
5102321025 ~1!

and approximately constant for all wave numberk @4,5#.
Here r is the energy density in the present universe a
dr(k) is its rms deviation at wave numberk.

We can understand the underlying kinematic origin
large-scale structure formation through a picture. Let
imagine observing the universe before inflation. It is a sm
patch that is growing at light speed. The process of inflat
can be thought of as a rapid stretching of this patch in
directions. Comoving and physical coordinates are useful
further description. Comoving coordinates stretch with
patch and so do not change for points that are stationary
respect to the patch. Physical coordinates express dista
in terms of a physical measure, such as the local spee
light. A physical coordinate system is defined locally to
given point on the patch. It is useful sometimes to underst
global distances in terms of physical units. For definitiv
ness, at the onset of inflation, let the comoving coordina
coincide with the physical coordinates. If we imagine t
universe to be spherical with radiusR0 at the onset of infla-
tion, then during inflation, in comoving units, the radius r
mains the same whereas in physical units it grows

*Present address: Department of Physics and Astronomy, Van
bilt University, Nashville, TN 37235.
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eHtR0. Thus during inflation points on the preinflationary
patch that are stationary in the comoving frame will rapidl
move apart in terms of physical coordinates.

Identify a pointa on the preinflationary patch. Suppose
that before inflation instruments are placed ata, which main-
tain communication with all points within reach by light
since pointawas created in the big bang. As inflation begins
communication is first lost with points farthest away from
a. Immediately after inflation, only points that were initially
very close toa will remain in communicative contact. To be
definitive, just before inflation let the most distant points
communicating witha be some distanceL0;1/H. HereH is
the Hubble constant with 1/H55310211 GeV21

510223 cm53310235 sec. The time interval 1/H is typi-
cally referred to as ane-fold.

To understand the behavior of physical measures duri
inflation, let the origin of cosmic time,t50, correspond to
the beginning of inflation. The physical distance of a comov
ing intervalDx at time t will then beeHtDx . On the other
hand, for a light signal emitted att50, computing along its
geodesic ds250, it will travel a physical distance
(en/H)(12e2n) aftern e-folds of inflation.

The implication of these two relations to physical corre
lations can be understood from the following example. For
signal emitted att50, points fixed with respect to the co-
moving coordinates~comoving points! that are less than a
comoving distance (1/H)(12e21) will receive this signal
before the firste-fold of inflation. However, comoving points
greater than a comoving distance 1/H from a can never re-
ceive the light signal within the inflation stage. Only a suf
ficient time after inflation could such points communicat
with a. In terms of physical distances, one concludes th
comoving points that are greater than a physical distan
1/H at t50 will lose communicative contact witha all dur-
ing inflation. Since nothing is special about pointa to any
other point on the patch, on the large scale, physical di
tances att50 that are greater than 1/H will act incoherently
all during inflation. Thus correlations larger than 1/H physi-
cal units are thereafter ‘‘frozen.’’ This phenomenon is some
times referred to as freeze-out or horizon crossing@3#.

If a emits a second light signal at the end of the firs
e-fold, by the end of the seconde-fold this signal again will
have traveled a physical distance (e/H)(12e21). However
comoving coordinates will have stretched by a factore2 in

der-
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2520 54ARJUN BERERA
terms of physical units. Thus only those points which are
comoving distancee21/H or less can receive the secon
signal at sometime within the inflation stage. Expressed
physical units, the conclusion stated above from the fi
e-fold repeats itself for the seconde-fold: Comoving points
that are greater than a physical distance 1/H at t51/H here-
after will lose communicative contact witha all during the
rest of inflation. Finally a signal emitted froma at the end of
the nth e-fold can be received by comoving points within
comoving distancee2n/H from a. Thus comoving points
greater than a physical distance 1/H at t5n/H thereafter lose
communicative contact witha during the rest of inflation.

Any local energy perturbations during inflation can affe
a region of characteristic physical length 1/H or less. The
earlier a given perturbation occurs, the more elongated it w
become due to inflation. As such the largest scales of ene
density fluctuations in the post-inflationary universe aro
from the earliest perturbations during inflation.

In the standard scenario@6#, inflationary expansion is as-
sumed to occur within a supercooled universe, in which t
initial energy density perturbations were produced by qua
tum fluctuations. However, energetics does not require a
percooled state. Furthermore, attempts based on this assu
tion have shown unnatural features.

For inflation, naturality has played an important role. Th
is understandable since for phenomena that cannot be
rectly observed, one attempts a description starting with
most natural expectations. The importance of naturality pr
ciples is to provide guidance from more familiar analogie
with the hope of gaining predictability. For inflation we ca
understand naturality as both macroscopic and microsco
Macroscopically, we would like a description that rests wi
common-day experience. Microscopically, it should be co
sistent with the standard model of particle physics.

Under both categories, the standard scenario has sh
unsatisfactory features@2,3,7#. Microscopically, slow-roll
scalar field dynamics requires an ultraflat potential, althou
no such potential is required otherwise for particle pheno
enology. Macroscopically, reheating requires globally cohe
ent radiation waves on the scale of the inflated univer
Local incoherent heat transfer is more familiar to experien
Furthermore, a globally coherent heating process require
large-scale radiator, which in the standard scenario is
inflaton. This raises the question of how the random inflat
field configuration before and during inflation attains qua
tum coherence at the end.

We can accept that naturality principles for inflation d
not have rigorous justifications and therefore can be ab
doned or softened. However, with this, any picture of infl
tion based on familiar analogies would require modification
This loosens theoretical constraints which otherwise are
quired to be consistent with only the limited data from ob
servation. As such, predictability from theory becomes le
definitive. Nevertheless, if that is the way nature works, th
that is the way it is.

This would be an acceptable conclusion once all attem
for a natural explanation have been examined. If we digre
back to this elementary point, we can rethink the know
ways to induce energy density perturbations. More genera
quantum fluctuations are thermal fluctuations. We showed
@8# that in the context of near-equilibrium thermodynamic
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during inflation thermal fluctuations could dominate qua
tum fluctuations under certain conditions. Neither energe
nor standard model dynamics precludes a thermal state
ing inflation. In @9# a model ‘‘warm inflation’’ scenario was
considered for a self-interacting scalar field. The solution h
the desirable feature of satisfying observational constra
with minimal specifications placed on the field theory. T
condition for slow-roll was shifted from requirements on th
potential to a frictional force term that coupled the inflaton
a thermalized heat reservoir. By shifting to a frictionally pr
duced slow-roll, it also gave a local heating mechanism.

The first goal of this paper is to clarify the energetics in
thermal inflationary environment. Second, we derive fro
quantum field theory a generalized Langevin equation for
scalar inflaton field coupled to a modeled heat reservoir s
tem. In certain limits, which we state, the equation reduces
the one we used in@9#. Finally, with these ingredients, an
interpretation in terms of particle physics is attempted.
maintain physical clarity, our derivation is Hamiltonia
based and performed in a cubic box with periodic bound
conditions. Appendix A provides a convenient reference
thermal properties of free fields that are used often in
text. It also relates our notation to standard form as well
shows how to take the infinite volume limit. Appendix B
gives an alternative derivation of the Langevin equation fro
that in Sec. III. The purpose for this is discussed in Sec.

II. ENERGETICS

Let us account for the total energy in the inflationary un
verse. Consider a scalar inflaton field with Hamiltonian de
sity defined with respect to the physical volume:

H5
1

2
ḟ21V~f!. ~2!

First, suppose that the inflaton is the only system in the u
verse. If during inflation the inflaton has negligible kinet
energy, ^ḟ2&'0, then the energy density during inflatio
would be all potential fromV(f0). Such a situation could
occur if f0 were at a local extrema whereV8(f0)50. Al-
though the energy density remains constant in this case,
volumeU of the universe in physical units would grow afte
n e-folds to U(n);R0

3e3n whereU(0);R0
3 is the initial

volume of the universe just before inflation. In terms of tot
energyET(n)[U(n)^H&, it would be, aftern e-folds of
inflation,

ET~n!5V~f0!U~0!e3n5ET~0!e3n. ~3!

Turning to the more realistic situation in which there
kinetic energy, it is conceptually helpful to first understa
energy transfer in the classical limit for the inflaton field. Th
quantum mechanical problem is treated in Sec. III. For
classical limit in the expanding universe, the rate of chan
of the energy density can be expressed as

dH~ t !

dt
523Hḟ2~ t !. ~4!

If in addition the inflaton field expels energy to some oth
system, one can express this, when treating the inflaton a
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54 2521THERMAL PROPERTIES OF AN INFLATIONARY UNIVERSE
isolated system, by adding a dissipative term to the rig
hand side of Eq.~4!. If we choose the specific form to hav
the lowest time derivative and be even in the field, Eq.~4!
becomes

dH~ t !

dt
523Hḟ2~ t !2E dt8ḟ~ t !G~ t,t8!ḟ~ t8!. ~5!

This implies that the equation of motion for the inflaton is

f̈~ t !13Hḟ~ t !1E t

G~ t,t8!ḟ~ t8!dt81V8„f~ t !…50.

~6!

In the next section we derive a quantum operator equa
similar to this but also include a random force term and tr
spatial variations.

Having inserted a dissipative term in Eqs.~5!, energy bal-
ance implies that there must be some other system rece
this energy. If the second system is sufficiently large, it w
act as a heat reservoir which induces fluctuations on the
flaton field. In the next section we examine a model h
reservoir system which we assume is thermalized. For
reservoir, we do not commit ourselves to a specific part
physics realization. However, in Sec. IV a particle phys
interpretation is offered. Furthermore, one may question
assumption of thermalization for the heat reservoir. Mo
general would be some other statistical distribution. Ho
ever, for the present work we assume that the heat rese
is in thermal equilibrium at some temperatureT. Further
treatment of this problem would require details about
dynamics beyond what we consider. Finally, during inflatio
the temperature also could be a function of cosmic time,
we consider it fixed.

What is not an assumption and the important point
establish here is the energetic justification of the syste
heat-reservoir decomposition. The validity of this as well
consistency with the inflation solution requires

drf~x,t !!r r~ t !!rf~ t !. ~7!

Here

drf~x,t !5H„f~x,t !…2H„f0~ t !…5V8„f0~ t !…df~x,t !
~8!

is the energy density contained in the fluctuations of
inflaton field

df~x,t !5f~x,t !2f0~ t !, ~9!

r r(t) is the energy density in the heat reservoir, andrf(t) is
the vacuum energy density, with all of these evaluated
cosmic timet.

The first requirement, from the right inequality in Eq.~7!,
is the vacuum dominance condition needed for inflation a
the second requirement, from the left inequality, is nee
for the system–heat-reservoir decomposition. In@9# the
warm inflation scenarios that we found were for

R[
r r
rf

<1022. ~10!
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This is sufficient to satisfy the first requirement of vacuum
energy dominance. This statement can be strengthened
certain solution regimes found, which were consistent with
observation and hadR one to two orders of magnitude less
than Eq.~10!. The second requirement can be establishe
from the observed amplitude in Eq.~1! since@3,10#

102321025;S drf~k!

r D
HE

5S drf~k!

ḟ21 4
3 r r

D
HC

!S drf~k!

rf
D
HC

. ~11!

Here HC and HE mean horizon crossing and entry, respe
tively, and k is the comoving wave number with horizon
crossing occurring at cosmic timet such thatukue2Ht;H.
On the left-hand sidedr from Eq. ~1! has been equated to
drf . In @8# we found that the minimal thermodynamic re-
quirement for a thermal scenario wasr r;ḟ2, although for
the model in@9# for all casesr r@ḟ2. In either case from Eq.
~11! we have

S drf~k!

ḟ21 4
3 r r

D
HC

;S drf~k!

r r
D
HC

;102321025, ~12!

which satisfies the second requirement in Eq.~7!. Thus en-
ergetically a thermal component can exist during inflation.

III. FIELD THEORY

In this section a field theory derivation of the operator
equation of motion for the inflaton is given which has the
form of a Langevin-like rate equation. In@8,9# such a rate
equation was postulated. Below we consider a simple mod
heat reservoir system which is coupled linearly to the com
pletely interacting inflaton field. The total system-reservoir
Lagrangian is

LT5LS1LR1LI , ~13!

where on the right-hand side the Lagrangians areLS for the
inflaton ~system!, LR for the reservoir, andLI for the inter-
action between system and reservoir. The inflaton’s Lagrang
ian, LS , can have an arbitrary potential and accounts for th
expansion term. It has the familiar form

LS5E
V
d3xe3HtF12 $@]0f~x,t !#22@e2Ht

“f~x,t !#2

2m2f2~x,t !%2V„f~x,t !…G , ~14!

where the potential can have the general expansion

V~f!5 (
n53

`
gn
n!

fn~x,t !. ~15!

In this paper we derive the effective operator equation o
motion for the inflaton, but we do not study it any further.
Thus we will not address the issues of renormalization
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2522 54ARJUN BERERA
which would be connected with solving this equation.
such, our formal derivation is valid whetherLS represents an
elementary or effective field theory.

The heat reservoir LagrangianLR is modeled as a set o
free fields each characterized by a massm i . It is written as

LR5(
i
E
V
d3xe3Ht

1

2
$@]0h i~x,t !#

22@e2Ht
“h i~x,t !#

2

2m i
2h i

2~x,t !%. ~16!

Each reservoir field is coupled linearly to the inflaton with
coupling constanta i through the interaction Lagrangian

LI52(
i

a iE
V
d3xe3Hth i~x,t !f~x,t !. ~17!

Note that the coupling constants$a i% carry engineering di-
mension 2.

The derivation given below treats the energy transfer
tween the system and reservoir. However, the modeled
ervoir in Eq. ~16! does not have internal interactions. Fu
thermore, energy transfer between the inflaton and
reservoir is not fully treated. To understand the latter t
points, note that our problem has a difference from stand
problems in Langevin dynamics. The reservoir acts as a la
system on the fluctuations of the inflaton field, which is
standard situation for applying Langevin dynamics. Ho
ever, the difference is that the vacuum energy of the infla
and particularly through the zero mode, acts as a ene
source for maintaining the energy density of the reserv
which otherwise would diminish due to inflationary expa
sion. This introduces two complications. The first conce
thermalization for the reservoir. In a standard Langevin pr
lem, it is assumed that the system will weakly interact w
the subsystems of the reservoir. There can be many
systems so that the total effect of the reservoir on the sys
can be strong. However each subsystem of the reservo
affected only weakly by the system. In such a circumsta
the issue of maintaining an initially thermalized state for t
reservoir is not acute. As such, internal reservoir interacti
are not crucial to know. In our problem we can accept t
the couplingsa i in Eq. ~17! are small~although the deriva-
tion below holds for arbitrarya i ’s!. The question of concern
is, for whatever vacuum energy that is transferred into
reservoir, can it thermalize on a time scale shorter th
1/H? Even if our modeled reservoir had internal interactio
to prove thermalization from first principles dynamics wou
be complicated~some attempts in one-dimensional mod
are given in@11#!.

In our treatment we assume that thermalization occurs
make appropriate by-hand adjustments. These are detail
the derivation, when relevant. In the next section we w
return to the elementary question of thermalization aga
Alongside with this problem is the second complicatio
which is in regards to energy transfer from the inflat
vacuum to the reservoir. Our derivation accounts for o
subhorizon-scale physics. As such it treats the fluctuati
induced on the modes of the inflaton field by the reserv
while the modes are subhorizon scale,kphysical.H. However,
our derivation is not justified for treating the zero mode
As
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teraction between the inflaton and the reservoir, since th
also involves superhorizon-scale physics. The suggesti
guess is that the ‘‘naive’’ operator equation derived below
for the zero mode, but without a thermalization assumptio
on the superhorizon-scale modes of the reservoir, is approx
mately valid. We will return to this issue in the Conclusion.

It is worth noting that in certain limits the thermal infla-
tion problem reduces to the standard Langevin problem, a
though this limit did not prove useful in the warm inflation
scenarios we considered in@9#. This limit is given in Appen-
dix B as well as the derivation of the Langevin equation in
this limit.

Our first goal is to derive the effective equation of motion
for the inflaton with the reservoir field variables eliminated
The equation is valid for a time intervaluDtu,H21. We will
derive the equation for an arbitrary comoving mode of the
inflaton field and for themth time intervaltm to tm11, with
m arbitrary, wheretm[mDt andt050 is fixed as the starting
time of inflation. A complete solution for the inflaton’s evo-
lution can be obtained by piecewise construction over a
time intervals. The formal derivation is not different for
physical wave numbers that are subhorizon or superhorizo
scale, although, as stated above, the approximations lead
to the derivation are valid only for the former.

In solving the equations of motion for the reservoir fields
three approximations are made in themth time interval for
everym. First, the redshifting factor of a given comoving
wave numberkn is held fixed ate22Htm. Second, at the be-
ginning of every time interval, the state of the reservoir field
operators is readjusted. Finally the uncoupled modes of th
reservoir fields are assumed to obey a canonical distributio
with respect to their physical frequency

vn~ tm!
i [e22Htmkn

21m i
2 . ~18!

Here timet has been demoted into the subscript to signify
that it is treated as an adiabatic parameter as far as the wa
number is concerned.

The first approximation is made to simplify the calcula-
tion so that it can be solved analytically. It can be dropped
one is willing to apply more sophisticated methods of solu
tion. The latter two approximations are physically motivated
They are by-hand treatments of the interactions among th
reservoir fields. Details about the second approximation a
given within the derivation when relevant. The third approxi-
mation implements our thermalization assumption for th
reservoir. In the derivation we are careful to separate the
two approximations. The second is made at the operat
level. The third is a statement about the state. For it, we a
first assuming that the description of the reservoir is statist
cal and second that the particular distribution is canonical. I
the next section we argue that the reservoir state is creat
from quantum decay processes, in which case a statistic
description is inherently required. The assumption of being
canonical distribution seems the most obvious first guess.

The final equation of motion for the inflaton will be sto-
chastic since the reservoir state is specified by a statistic
distribution. The final equation of motion for the inflaton
superficially will appear nonconservative since the reservo
fields are going to be eliminated. Under certain condition
placed on the reservoir Hamiltonian, we derive the Langevi
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equation used in@9#. This limit is examined and we verify
the fluctuation-dissipation theorem in its standard form@12#.

The derivation below follows well-known methods fro
nonequilibrium statistical mechanics which have been
fined over the years@13–16#. A primary motivation for this
ongoing effort has been to understand the universal pro
ties of the Langevin equation and to obtain a possible ex
nation from first principles@13,17#. This believed universal-
ity is one reason for us to start our study of stochas
dynamics for thermal scenarios with the Langevin equati
Our derivation below follows closest to@13# and the model
for the heat reservoir follows@16#. We have made som
modifications to these works, which were for quantu
mechanical models, in order that we can treat a quan
field and account for the expansion term. In Appendix
there is an alternative derivation which obtains the rate eq
tion in certain limits for an arbitrary reservoir Hamiltonian

Before proceeding, let us review the literature that is
lated to the present work. Applications in cosmology us
Langevin dynamics have been done in@18,19#, although both
our methods and motivation differ from these works. Stud
of finite temperature field theory in Robertson-Walker u
verses have been done in@20#. Finally a calculation with
similar objectives to ours in this paper is given in@21#. There
a path integral derivation is presented of the inflaton’s e
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lution when coupled to a thermal bath in de Sitter space
However, the authors did not completely examine the diss
pative properties of such a system. As such they apparent
missed the connection to warm-inflation-type scenarios
which for us is the starting motivation to the present forma
exercise.

We perform our derivation in a cube for the three spatia
directions, which is centered at the origin with sides a
6L/2 in each direction. The Fourier expansion of a generi
field is, from Eqs.~A9!,

x~x,t !5
1

L3(n x~kn ,t !e
ikn•x, ~19!

where throughout this paper we use the notationkn
[2pn/L, with n[(nx ,ny ,nz) and

(
n

[ (
nx52`

`

(
ny52`

`

(
nz52`

`

. ~20!

The argument of the coordinate (x) and the momentum (k)
space fields is always given to distinguish the two.

The system-reservoir Lagrangian in terms of the Fourie
modes as defined in Eq.~19! is LT5LS1LR1LI , where
nt to
LS5
e3Ht

L3 H 12(n @ḟ~kn ,t !ḟ~2kn ,t !2~e22Htkn
21m2!f~kn ,t !f~2kn ,t !#2VFJ , ~21!

LR5
e3Ht

L3 (
i

(
n

1

2
@ḣ i~kn ,t !ḣ i~2kn ,t !2~e22Htkn

21m i
2!h i~kn ,t !h i~2kn ,t !#, ~22!

and

LI52
e3Ht

L3 (
i

(
n

a ih i~kn ,t !f~2kn ,t !, ~23!

with

VF[L3E d3xV~f!5 (
n53

`
1

L3n26 (
m1 ,...,mn21

f~km1
,t !•••f~kmn21

,t !f~2km1
2•••2kmn21

,t !. ~24!

The conjugate momentum to any scalar fieldx(kn ,t) is

px~kn ,t ![
]L

]ẋ~kn ,t !
5
e3Ht

L3
ẋ~2kn ,t !. ~25!

Converting to the HamiltonianHT5pfḟ1( iph i
ḣ i2LT , we obtain

HS5(
n

1

2 Fe23HtL3pf~kn ,t !pf~2kn ,t !1
e3Ht

L3
~e22Htkn

21m2!f~kn ,t !f~2kn ,t !G1
e3Ht

L3
VF , ~26!

HR5(
i

(
n

1

2 Fe23HtL3ph i
~kn ,t !ph i

~2kn ,t !1
e3Ht

L3
~e22Htkn

21m i
2!h i~kn ,t !h i~2kn ,t !G , ~27!

andHI52LI . Our notation is that all Hamiltonians have some specifying subscript, which then leaves the Hubble consta
beH.
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To quantize the theory the postulated equal time commutation relations~CCR’s! are given in Eqs.~A2! and ~A11!. The
operator equations of motion fromHT are

ḟ~kn ,t !5 i @HT ,f~kn ,t !#5e23HtL3pf~kn ,t !, ~28!

ṗf~kn ,t !5 i @HT ,pf~kn ,t !#52
e3Ht

L3 F ~e22Htkn
21m2!f~kn ,t !1

dVF

df~2kn ,t !
1(

i
a ih i~kn ,t !G , ~29!

ḣ i~kn ,t !5e23HtL3ph i
~kn ,t !, ~30!

and

ṗh i
~kn ,t !52

e3Ht

L3
@~e22Htkn

21m i
2!h i~kn ,t !1a if~kn ,t !#. ~31!

The resulting second order field equations are

f̈~kn ,t !13Hḟ~kn ,t !1@e22Htkn
21m2#f~kn ,t !1

dVF

df~2kn ,t !
1(

i
a ih i~kn ,t !50 ~32!

and

ḧ i~kn ,t !13Hḣ i~kn ,t !1@e22Htkn
21m i

2#h i~kn ,t !1a if~kn ,t !50. ~33!

We now implement our second approximation discussed earlier. At the beginning of every time intervaltm , we readjust the
state of the reservoir fields as

h i~kn ,tm ;tm21!→h i
0~kn,0;tm!, ~34!

whereh i(kn ,t;tm21) andh i
0(kn ,t;tm) are the solutions of Eq.~33! at timet, respectively, with and without the coupling term

to f and with the frequencyvn(t)
i held fixed at, respectively,tm21 and tm . Formally this operation can be viewed as a set of

impulsive forces that act on the reservoir. The first purpose of these adjustments is to add sufficient energy so tha
reservoir’s energy density with respect to physical volume remains constant. Second, these adjustments are an ex
treatment of interactions within the reservoir. They shift each field back to its free field state att50 but with its physical
frequency decreased by a little. This operation is in preparation for the thermalization assumption we will make below on
reservoir’s state. The first purpose given above acts as a constraint on the inflaton’s evolution. Consistency with the infla
equation of motion for a particular model was demonstrated in@9#. The discretized treatment simplifies the calculation. One
expects the actual dynamics to be smooth and continuous.

The solution for the oscillator fieldh i for the time interval@ tm ,tm11# is

h i~kn ,t;tm!5h i
0~kn ,t2tm ;tm!2

a i

Vn~ tm!
i2 Ff~kn ,t !2f~kn ,tm!expS 23H~ t2tm!

2 D cosVn~ tm!
i ~ t2tm!

2e23H~ t2tm!/2E
tm

t

dt8cosVn~ tm!
i ~ t2t8!e3H~ t82tm!/2S ḟ~kn ,t8!1

3H

2
f~kn ,t8! D G , ~35!

where

Vn~ t !
i 5Ae22Htkn

21m i
22

9H2

4
~36!

and

h i
0~kn ,t;tm!5e23Ht/2Fh i

0~kn,0!cosVn~ tm!
i ~ t !1

1

Vn~ tm!
i S 3H2 h i

0~kn,0!1L3ph i
~kn,0!D sinVn~ tm!

i ~ t !G ~37!

is the solution for the free reservoir fields with the time-dependent physical frequency, Eq.~18!, of the comoving mode held
fixed at tm . As in Eq. ~18!, the subscriptn(t) in Eq. ~36! refers to the physical wave number of the comoving modekn at
cosmic timet. Substituting Eq.~35! into Eq. ~32!, we obtain, fortm,t,tm11,
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f̈~kn ,t !13Hḟ~kn ,t !1e23H~ t2tm!/2(
i

S a i

Vn~ tm!
i D 2E

tm

t

dt8e3H~ t82tm!/2cosVn~ tm!
i ~ t2t8!ḟ~kn ,t8!1~e22Htkn

21m2!f~kn ,t !

2(
i

S a i

Vn~ tm!
i D 2Ff~kn ,t !2f~kn ,tm!e23H~ t2tm!/2cosVn~ t !

i ~ t2tm!

2
3H

2
e23H~ t2tm!/2E

tm

t

dt8e3H~ t82tm!/2cosVn~ t !
i ~ t2t8!f~kn ,t8!G1

dVF~f!

df~2kn ,t !
5h~kn ,t;tm!, ~38!

where

h~kn ,t;tm!52(
i

a ih i
0~kn ,t2tm ;tm!. ~39!

Up to this point, no statistical assumption has been made. Following our earlier discussion, we now assume that t
reservoir fields are canonically distributed. The statistical mechanics for the reservoir system based on our above app
tions is the same within eache-fold as in flat space. For this Appendix A has been provided as a useful reference.
clarification, no approximation has been made in treating the inflaton system. For the reservoir fields from Eq.~A19! for
tm,t,t8,tm11, we have

^^h i~kn ,t2tm ;tm!h i~kn8 ,t82tm ;tm&&T5
L3

2
e23H~ t1t822tm!/2dn,2n8F S 1

2vn~ tm!
i @cosvn~ tm!

i ~ t2t8!1cosvn~ tm!
i ~ t1t822tm!#

1
1

2Vn~ tm!
i 2 S 9H2

4vn~ tm!
i 1vn~ tm!

i D @cosvn~ tm!
i ~ t2t8!2cosvn~ tm!

i ~ t1t822tm!#

1
3H

2Vn~ tm!
i vn~ tm!

i sinvn~ tm!
i ~ t1t822tm!D cothS vn~ tm!

i

2T D 2
i

Vn~ tm!
i sinvn~ tm!

i ~ t2t8!G .
~40!

Equation~38! with the assumption~40! is the general rate equation and the main result of this section. For use later
symmetric correlation function of the force operator is

ST~kn ,t,t8;tm![ 1
2 ^^h~kn ,t;tm!h~2kn ,t8;tm!1h~2kn ,t8;tm!h~kn ,t;tm!&&T

5
L3

4
e3H~ t1t822tm!/2(

i
a i
2F 1

vn~ tm!
i @cosvn~ tm!

i ~ t2t8!1cosvn~ tm!
i ~ t1t822tm!#

1
1

Vn~ tm!
i 2 S 9H2

4vn~ tm!
i 1vn~ tm!

i D @cosvn~ tm!
i ~ t2t8!2cosvn~ tm!

i ~ t1t822tm!#

1
3H

Vn~ tm!
i vn~ tm!

i sinvn~ tm!
i ~ t1t822tm!GcothS vn~ tm!

i

2T D . ~41!

We next derive a limiting form of Eq.~38!. Consider a large number of oscillator fieldsh i that are represented by a
continuous distribution as

(
i
→E dmN~m!, ~42!

where N(m) is the spectral weight function. Assume thatN(m) is nonzero only in the intervalm l,m,mu with
Dm[mu2m l and the corresponding definitionDn(tm)

V [Ae22Htkn
21mu

229H2/42Ae22Htkn
21m l

229H2/4. Also assume that

N~m!S a~m!

Vn~ tm!
m D 252G

p
~43!
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is a constant over the intervalDm . If Dn(tm)
V @H, then, for 1/Dn(tm)

V !t,1/H,

E
0

`

dmN~m!S a~m!

Vn~ tm!
m D 2cosVn~ tm!

m t52Gd1/D
n~ tm!
V ~ t !. ~44!

The subscript on the right-hand side is to indicate that thed function is smeared over a time interval 1/Dn(tm)
V Inserting Eq.~44!

into Eq. ~38! we obtain

f̈~kn ,t !1~3H1G!ḟ~kn ,t !1S e22Htkn
21m22

2GDm

p
1
3GH

2 Df~kn ,t !1
dVF

df~2kn ,t !

12Ge23H~ t2tm!/2f~kn ,tm!d1/D
n~ tm!
V ~ t2tm!5h8~kn ,t;tm!, ~45!

where

h8~kn ,t;tm![2E dmN~m!a~m!h0~kn ,t;tm ;m!. ~46!

In the limit of zero expansion,H50, we obtain, from Eq.~45!,

f̈~kn ,t !1Gḟ~kn ,t !1S kn21m22
2GDm

p Df~kn ,t !1
dVF

df~2kn ,t !
12Gf~kn ,tm!d1/D

n~ tm!
V ~ t2tm!5h08~kn ,t !, ~47!

whereh08(kn ,t) is as in Eq.~45! but withH50 in Eq. ~37!. Aside from the last term on the left-hand side, which is nonze
only for a very short time interval 1/Dm , this is the standard form of the Langevin equation and the type we used in@9#. In the
limit T→` we find, from Eq.~41! and Eq.~44!,

1
2 ^^h0~kn ,t !h0~2kn ,t8!1h0~2kn ,t8!h0~kn ,t !&&T→`→2L3GTd~ t2t8!, ~48!
-

-

r

which verifies the fluctuation-dissipation theorem@12#.

IV. INTERPRETATION

In the last section we obtained the generalized Lange
equation~38!, which induces fluctuations on the inflaton a
well as frictionally damps its motion. To obtain this equ
tion, we had to introduce a heat reservoir of light partic
that interacted with the inflaton. In@9# one form of rate equa-
tion ~38!, namely, Eq.~47!, was shown to be numerically
successful for inflaton dynamics. This evidence provides s
ficient motivation to seek an interpretation of the heat res
voir in the context of particle physics. The heat reservoir
the last section is a toy model. Here we want to think ge
erally about a second system of light particles which acts
a random force on the inflaton.

For the dynamics described in the last section to be re
izable in the real world, in particular two properties a
needed for the reservoir. First, there must be some me
nism available during inflation to produce the reservoir p
ticles. Second, these particles must interact rapidly on
scale of the expansion time 1/H. In Sec. III we assumed tha
they could thermalize. This stringent of a condition is n
needed for Eq.~38! to describe stochastic evolution of th
inflaton. Nevertheless, we keep with our thermalization
sumption and will see how close we can come. In addition
these two properties, a less important point of interest is w
vin
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direct interpretation the explicit reservoir Hamiltonian~17!
in our simple model has.

To address these issues, we first make three general ob
servations. First, the zero mode of the inflaton is evolving
quasistatically during its roll down the potential. Second,
quantum processes will occur within microphysical scales,
and so for physical distances and cosmic time less than
1/H at anye-fold of inflation. The third observation is based
on our analysis in@9#. There we found that the energy den-
sity of the heat reservoir was close to the grand unified
theory ~GUT! scale MGUT

4 In particular the temperature
range of the thermal scenarios we considered that were con
sistent with observation wasT;~0.01–0.03!MGUT. This im-
plies for a single light species a corresponding energy den-
sity in the range

r r;~102821026!MGUT
4 . ~49!

For MGUT51015 GeV51.78231029 g and for the lower
bound onr r this means

r r>1028MGUT
4 51052 GeV451066 g/cm3'1051rneutron star

'1050rHI collision , ~50!

whererneutron starandrHI collision are the energy densities for,
respectively, a neutron star and an upper bound estimate fo
a heavy-ion collision. For our present purpose, we make the
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general observation that the energy density of the heat re
voir is large on the scale of the largest probed energy de
ties.

The first observation above provides suitable conditio
for particle creation from quantum decay of the inflaton sim
lar to pair production in a strong quasistatic electric fie
This gives a mechanism for producing the particles in
heat reservoir. An outcome is that the description of the r
ervoir’s state must be inherently statistical.

Having made a particle association for the heat reserv
for completeness of our model in Sec. III, we make an int
pretation ofHR in Eq. ~27!. The most direct statement is tha
HR , with an appropriate spectral weight function Eq.~42!, is
a general representation of scalar quasiparticle excitation
the noninteracting limit. On the other hand, thinking in term
of elementary fields, if we apply dimensional counting
HI in Eq. ~17! we find that the reservoir fieldsh i(x,t) carry
engineering dimension 3. This suggests that in our sim
model each reservoir field represents a fermion-antiferm
pair ~i.e., qq̄, eē, etc.!, which interacts with the inflaton
through a Yukawa coupling.HR then has the interpretation
of an effective free field Hamiltonian for pairedf f̄ states. In
QCD these would be the simplest color singlet states c
structible from quarks. Beyond these ‘‘kinematic’’ stat
ments, we can not say more at present. Almost nothing
known about matter at the energy densities of Eq.~50!. We
therefore must leave unanswered to what extentHR in Eq.
~27! and the spectral weight function in Eq.~43! approximate
a heat reservoir system which can be derived from a reali
particle physics Lagrangian.

Returning from this digression, next we will examin
what expectation there is for thermalization in the reserv
For this let us review the situation up to now. Equation~38!
contains the dynamics that governs energy transfer betw
the reservoir and the inflaton. The full internal dynamics
the inflaton system in isolation is also treated. Thus Eq.~38!
is valid for an arbitrary scalar inflaton potential and for re
ervoir fields that do not interact directly with each other. W
discussed in Sec. III that in the rapid expansion environm
during inflation the internal interactions of an actual res
voir system are essential for distributing any influx of e
ergy. Having established above that the state of the reser
is inherently statistical, knowledge of internal reservoir d
namics is in particular important for addressing the quest
of thermalization. In the last section we got around the pr
lem by assuming that thermalization occurs and then m
suitable adjustments to our equations.

To check the assumption of thermalization is a difficu
problem even if one is given more dynamical details ab
the reservoir. However, based on the second and third ob
vations above we can get an idea of the scales involved
the problem. For this let us consider an unjustifiable class
model of light hard rocks of average energyE, center-of-
mass two-body elastic cross sections, and at a energy den
sity r rocks of order of Eq.~50!. The mean free path in this
system is

l rocks5
E

r rockss
, ~51!
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which for relativistic rocks implies a collision frequency
v rocks51/l rocks.

We assume that the elastic cross section is independent
energy. Up to logarithmic corrections, this corresponds to
Regge asymptotic behavior from single Pomeron exchang
with slope one~for a review please see@22# and references
therein!. For a conservative lower bound to elasticpp scat-
tering at high energy, we usesel510 GeV22. The energy of
a typical light particle at temperatureT is E;T. Taking the
lower bound from Eq.~50! r rocks51052 GeV4 which corre-
sponds toT50.01MGUT, we find

v rocks51040 GeV'1030H. ~52!

It is known that most of the elastic cross sectionsel is in-
creasingly in the forward direction with increasing energy.
Accounting for this, we take the average momentum transfe
to be utu50.025 GeV2. Let us assume statistical indepen-
dence between collisions for a typical light particle. Then
within onee-fold, the root-mean-square energy that the par-
ticle transfers will be about an order of magnitude greate
than its total energy and it samples all angular directions in
phase space. Optimistically the range for Eq.~52! could be
increased by a factor 103 by using the upper bound on
r rocks in Eq. ~49! and increasingsel by over a factor of 10.
This range presents a case that some sort of GUT plasm
could thermalize within ane-fold at GUT-scale energy den-
sities.

V. MECHANICAL ANALOGUE

In Sec. III we derived a quantum Langevin equation, but
we can think of it as a classical Langevin equation. For this
we can make a picture of the dynamics for a classical infla
ton fieldfc(x,t). We define the order parameter in the clas-
sical system as

fc~ t ![E
V

d3x

V
fc~x,t !, ~53!

and it will sometimes be denoted asfc. For the classical
theory we will make a mechanical model and then associat
it with the classical field. We will work in the infinite volume
limit where correspondence between the classical and qua
tum fields can be stated more simply.

Let us first recall some details about the inflaton Hamil-
tonian. In thermal scenarios the symmetry breaking potentia
V(f) can be of the standard double-well type without an
ultraflat region as demonstrated in@9#. The relevant magni-
tudes which define the potential are the same as in the sta
dard scenario. Thus the vacuum energyV(0);MGUT

4 , the
minima of the wells are atfm'6MGUT, and the curvature
at the minima areV9(fm)'MGUT

2 . Inflation begins when
the inflaton tunnels out of the metastable minima atf50 to
0,f i,fm . We will define this moment as the origin of
cosmic timet. Our classical analogy begins att50.

With these preliminary remarks, let us state our classica
analogue model. We picture the classical scalar field as com
posed of heavy particles of massMf5AV9(fm). They sit in
a cubic lattice arrangement with massless~anharmonic if pre-
ferred! springs connecting them. Kinetic energy is associated
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with the particle masses and their motional energy. Poten
energy is associated with the energy in the massless spr
The order parameterfc(t) is interpreted to be related to th
number densitynf(t) of f particles. To obtain a precis
relationship we will equate the order parameter with
vacuum expectation value of the quantum Heisenberg sc
field at t50 as

fc~0!5 lim
V→`

K 0U E
V

d3x

V
f~x,0!U0L . ~54!

We will assume that the vacuum is a coherent state of z
momentum particles. Using the number density operator

n̂[ lim
V→`

N̂

V
5^ &2 lim

V→`

1

V(
n

an
†an , ~55!

we arrive at

fc~0!5A2nf~0!

Mf
. ~56!

In Eq. ~55!, ^ &2 lim means evaluate the operator matrix e
ement in finite volume and then take the limitV→`. In our
classical model we define the order parameter at all time w
this relation,

fc~ t ![A2nf~ t !

Mf
. ~57!

If one prefers, this can be regarded as an unmotivated d
nition, which relates the classical mechanical model with
classical field model.

The initial conditions att50 are the order parameter is
fc(0)5f i , the masses are at rest with number density gi
by Eq.~57!, and the springs are elongated such that the cu
symmetry is maintained but the fundamental cell is bigg
When the system is released a breathing mode commen
in which the fundamental cell contracts to a minima and th
expands back to its original size att50 and so on. Corre-
spondingly, the number density oscillates.

To this system, we will add many lighth particles of
massmh!Mf that are thermalized at temperatureT. This
system forms the heat reservoir. Theh particles randomly
will impart momentum on thef particles. This will perturb
the breathing mode of thef particles as well as excite trans
verse modes on thef lattice. The system so described
similar to that for Brownian motion, except that now the
are several Brownian particles and they also have an in
action among themselves. With minor changes, one can
derstand the rest of the statistical mechanics for our sys
from Brownian motion. Slow-roll motion in our classica
model corresponds to overdamping, in which the fundam
tal cell slowly contracts to equilibrium with no oscillation
In the process the potential energy in thef system is trans-
ferred to the heat reservoir. One can also expand this pic
to include inflationary expansion andh-particle creation, but
we will leave that for the reader’s thoughts.
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VI. CONCLUSION

In Sec. III we obtained the rate equation~38! which de-
scribes the dynamics of the inflaton’s comoving modes while
they are subhorizon size. For the zero mode, Eq.~38! is
therefore unjustified, since it does not treat superhorizon-
scale physics. What one needs is an equation that describe
the transfer of potential energy from the inflaton’s vacuum
during its roll down to the potential minima. In our model,
the energy is transferred not only into the inflaton’s kinetic
energy, but also into the fields of the reservoir.

In a local patch and for a short time interval, Eq.~38!
would be valid for all modes which are definedad hocwith
respect to the patch. A network of such patches could be
constructed to cover the inflating universe for some chosen
cosmic time interval. In each patch the respective Langevin
equation could be solved with solutions matched at the
boundaries. To compute the initial subhorizon-scale energy
density perturbations, recall that they are determined by the
subhorizon-scale modes. Therefore this computation could
be done from the solution of the Langevin equation from any
one patch. For the zero mode, there are two points of inter-
est. First, we want to know the global energy loss by the
inflaton. Because of the lack of coherence between patches
the expectation value of the inflaton~order parameter! need
not be the same in different patches. Different local regions
of the universe could then be in different stages of inflation,
depending on the local order parameter. For computing the
total change in vacuum energy, one could sum the resul
from the independent patches. However, turning to the sec
ond point, for inflation to solve the smoothness problem, one
requires the order parameter to be approximately globally
homogeneous. One may argue that the local conditions in al
patches would be similar, so that the order parameter should
not differ by too much in different patches. To verify this
would require further investigation within specific models. In
particular, to meet observational constraints, one wants to
know the degree of homogeneity of the order parameter
within an inflating region for a duration of at least 70
e-folds. All statements so far apply equally well to scenarios
based on both quantum and thermal fluctuations. There is
one difference. Thermal scenarios do not require the quan
tum state of the inflaton’s zero mode to be coherent over the
entire inflationary patch. This is required in the standard sce-
nario for reheating.

The derivation in Sec. III is formally valid for a funda-
mental or effective inflaton LagrangianLS in Eq. ~14!. Given
an initial fundamental Lagrangian for the inflaton, one antici-
pates that to formulate a consistent stochastic process, it wil
require high frequency interactions of the inflaton with itself
and with other fields to be treated first and appear in the form
of an effective LagrangianLS in Eq. ~14!. We have not de-
veloped in this paper any methods for obtaining the appro-
priate effective Lagrangian one should use forLS .

In @9# we assumed near-equilibrium dynamics applied ev-
erywhere. We therefore used the finite temperature effective
potential in LS . However, nonequilibrium considerations
such as done in@23# for flat space may be important to take
into account and develop further for the inflationary era of
expanding space. Generally for a scalar inflaton field coupled
to gauge fields, such as in GUT theories, one should expec
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quantum corrections from self-coupling and quantum p
thermal corrections from coupling to the gauge fields to g
a modified potential inLS . Since the relevant temperatu
scale for slow-roll dynamics is of order or less than the
flaton mass, one does not expect thermal corrections f
the inflaton’s self-coupling to be substantial.

To summarize, in this paper we showed that the prese
of a sizable thermal component during inflation is energ
cally allowed. Following our hypothesis in@8#, we treated
the thermal component as a heat reservoir, which intera
with the inflaton in the manner of Langevin dynamics. W
demonstrated in Sec. III that the Langevin equation pos
lated in @8# could be derived from quantum field theory.
@9# we showed that such a dynamical arrangement, for
specific case of a double-well scalar potential, was num
cally successful in describing observational data with
fine-tuning the coupling constant.

One of the improvements suggested by our calculation
@9# was to have a time-dependent temperature that smoo
varied by a factor 2–3 over the course of the roll-down p
riod. Not only was this numerically preferable, but it see
that thermodynamics does not restrict some variation in
temperature just before to just after inflation. As such
general dynamical equations during inflation should be a
to accommodate such a variation, although specific mo
may make specific predictions.

In @9# the reservoir was defined by its thermodynam
properties, but was not given a dynamical representat
Thus we had no underlying mechanism that could exp
temperature variations. In Sec. III our model supplies an
planation. However, it is clear from our treatment there t
it was an arbitrary decision to hold the reservoir’s ene
density constant with respect to physical volume all throu
out inflation. Just as well within the same dynamical fram
work, it could increase or decrease and in different time
riods do either. However, this is as far as the model in
present form can go. On the plus side, the model goes
enough to dynamically explain a time-dependent reser
energy density. However, the model is not sufficiently co
strained to do better than this. The options to improve t
situation are to determine a further constraint from eit
formal means or phenomenological motivation.
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APPENDIX A: STATISTICAL MECHANICS
OF FREE FIELDS

Some statistical mechanical properties of free fiel
which are often used in the text, are given here. We cons
a free field Hamiltonian defined in a box of volumeVL cen-
tered at the origin with sides at6L/2 in all three spatial
directions. We give results in the discrete form inVL for
finite but largeL and then in the infinite volume limitV` ,
whereL→`. The free field Hamiltonian which we study i
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H5E
VL

d3x1
2 $px

2~x,t !1@¹x~x,t !#21m2x2~x,t !%1C,

~A1!

whereC is a constant that later will be set so that the lowest
energy state is at zero. The fields satisfy the equal time ca
nonical commutation relations~CCR’s!

@x~x,t !,x~x8,t !#50,

@px~x,t !,px~x8,t !#50,

@px~x,t !,x~x8,t !#52 id~3!~x2x8!. ~A2!

The fields have the expansion in terms of the creation and
annihilation operators

x~x,t !5
1

L3/2 (
nx ,ny ,nz52`

`
1

A2vn

@ane
i ~kn•x2vnt !

1an
†e2 i ~kn•x2vnt !#,

px~x,t !5
2 i

L3/2 (
nx ,ny ,nz52`

` Avn

2
@ane

i ~kn•x2vnt !

2an
†e2 i ~kn•x2vnt !#, ~A3!

where

kn[
2pn

L
, ~A4!

n[~nx ,ny ,nz!, ~A5!

vn[Akn21m2, ~A6!

and, from Eq.~A2!,

@an ,an8#5@an
† ,an8

†
#50, ~A7!

@an ,an8
†

#5dnn8. ~A8!

We define the Fourier transform of the fields as

x~kn ,t ![E
VL

d3xx~x,t !e2 ikn•x, ~A9!

px~kn ,t ![
1

L3EVLd3xp~x,t !e2 ikn•x. ~A10!

From Eq.~A2! one can verify that the Fourier space modes
of the fields satisfy the equal time CCR’s

@x~kn ,t !,x~kn8,t !#50,

@px~kn ,t !,px~kn8,t !#50,

@px~kn ,t !,x~2kn8,t !#52 idnn8. ~A11!

The expansion of the Fourier modes in terms of the creation
annihilation operators is
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x~kn ,t !5
L3/2

A2vn

@ane
2 ivnt1a2n

† eivnt#,

px~kn ,t !5
2 i

L3/2
Avn

2
@ane

2 ivnt2a2n
† eivnt#. ~A12!

The constantC in Eq. ~A1! is to be defined as

C52
1

2(n vn . ~A13!

Two equivalent forms of the HamiltonianH in Eq. ~A1! are
given below. Writing

H5(
n

Hn5(
n

Hkn
, ~A14!

where, in terms of the creation-annihilation operators in E
~A8!,

Hn5vnan
†an ~A15!

and, in terms of the Fourier-modes in Eq.~A12!,

Hkn
5
L3

2
px~kn ,t !px~2kn ,t !

1
1

2L3
~kn

21m2!x~kn ,t !x~2kn ,t !. ~A16!

The partition function,Z[Tr(e2H/T), evaluated in the
creation-annihilation basis, is a productZ5)nZn , where

Zn5Tr~e2Hn /T!5
1

12e2vn /T
. ~A17!

The two-point thermal correlation function for th
creation-annihilation operators is

1

Zn
Tr~e2Hn /Tan

†an8![^^an
†an8&&T5dnn8

1

evn /T21
,

^^anan8&&T5^^an
†an8

† &&T50 ~A18!

and for the Fourier-modes is

1

Z
Tr~e2H/Tx~kn ,t !x~kn8 ,t8!!

[^^x~kn ,t !x~kn8 ,t8&&T

5dn,2n8

L3

2vn
FcothS vn

2TD cosvn~ t2t8!

2 isinvn~ t2t8!G ~A19!

^^px~kn ,t !px~kn8 ,t8!&&T

5dn,2n8

vn

2L3 FcothS vn

2TD cosvn~ t2t8!2 isinvn~ t2t8!G
q.

e

^^x~kn ,t !px~kn8 ,t8!&&T5dn,2n8

1

2 FcothS vn

2TD sinvn~ t2t8!

1 icosvn~ t2t8!G .
From the last relation note that

^^@px~kn ,t !,x~kn8 ,t8!#&&T52 idn,2n8cosvn~ t2t8!.
~A20!

The total ensemble-averaged energy of the thermalize
system is

UVL
~T!5(

n
UVL
n ~T!, ~A21!

where

UVL
n ~T!5vn^^an

†an&&T5
vn

evn /T21
. ~A22!

Let us examine the infinite volume limit. The creation and
annihilation operators must be rescaled as

c~kn![S L

2p D 3/2an ~A23!

and similarly foran
† . Substituting Eq.~A23! into Eq. ~A3!

and identifying

S 2p

L D 35S 2pDn

L D
L→`

3

→d3k, ~A24!

we get the continuum form

x~x,t !5E d3k

@~2p!32vk#
1/2@c~k!ei ~kn•x2vkt !

1c†~k!e2 i ~kn•x2vk!t# ~A25!

and similarly forpx(x,t). For the momentum space Fourier
transforms of the fields in the infinite volume limit,VL must
be replaced byV` in Eqs.~A9! and~A10! andpx(k,t) must
be defined without the factor 1/L3. The Hamiltonians in the
forms Eq.~A15! and Eq.~A16! in V` are, respectively,

H5E d3kvkc
†~k!c~k!

5E d3k

~2p!3
1

2
@px~k,t !px~2k,t !

1~k21m2!x~k,t !x~2k,t !#. ~A26!

The energy density inV` is obtained as

u~T!5 lim
L→`

UVL
~T!

L3
. ~A27!

From Eqs.~A21! and ~A22! we find
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u~T!5E d3k

~2p!3
vk

evk /T21
. ~A28!

The familiar formula for the energy density of electromag
netic radiation is twice this, due to two polarization states f
the photon, and withm50, so thatvk5uku.

APPENDIX B: ALTERNATIVE DERIVATION
OF THE RATE EQUATION

For a system with a nearly harmonic potential, such
within one well of a double-well potential, one can derive th
Langevin equation with a general reservoir HamiltonianHR
in the regime

H!G!v, ~B1!

whereH is the Hubble constant,G is the dissipative constant
andv is the frequency of the system with no anharmon
terms in the potential. We perform the derivation in this a
pendix. It follows the method of@14#. As in Sec. III, it is
done in a cube for the three spatial directions, which is ce
tered at the origin with sides at6L/2 in each direction.

The Hamiltonian we examine is

HT5HS1HR1HI , ~B2!

whereHS is the system Hamiltonian given for the inflato
field in Eq. ~26!, HR is the Hamiltonian for the reservoir
system when it is uncoupled to the scalar field system, a

HI5aE
V
d3xe3HtV~x,t !f~x,t !, ~B3!

whereV(x,t) is a Hermitian operator made of any field o
composite fields of the reservoir system that couples to
scalar field. For our derivation, we do not need specific d
tails aboutHR . It may well represent a strongly interactin
system with respect toV(x,t). Expressed in momentum
space, Eq.~B3! is

HI5
e3Ht

L3 (
n

aV~kn ,t !f~2kn ,t !. ~B4!

Postulating the standard equal time CCR’s of Eqs.~A2!
and ~A11!, the equations of motion for the inflaton are

ḟ~kn ,t !5 i @HT ,f~kn ,t !#5e23HtL3pf~kn ,t !, ~B5!

ṗf~kn ,t !5 i @H,pf~kn ,t !#

52
e3Ht

L3 Fvn
2~ t !f~kn ,t !1

dVF

df~2kn ,t !

1aV~kn ,t !G , ~B6!

where

vn~ t !5Ae22Htkn
21m2. ~B7!

This implies the second order equation of motion
-
r

as
e

ic
-

n-

d

r
he
e-

f̈~kn ,t !13Hḟ~kn ,t !1vn
2~ t !f~kn ,t !1

dVF

df~2kn ,t !

1aV~kn ,t !50. ~B8!

We derive the effective equation of motion for a given
comoving mode of the inflaton. In the parametric regime, Eq
~B1!, the time interval 1/G!Dt!1/H is sufficient to study
the relaxational dynamics of the inflaton. Thus we can drop
the second term in Eq.~B8! above and assume that the co-
moving wave numberkn is constant ate

22Htkn5kn
m , where

kn
m is the initial value in the time intervalm of interest.
Dropping the superscriptm, the resulting second order equa-
tion of motion is

f̈~kn ,t !1vn
2f~kn ,t !1

dVF

df~2kn ,t !
1aV~kn ,t !50,

~B9!

where

vn5Akn21m2. ~B10!

This can be obtained from the first order equations in Eqs
~B5! and ~B6! by the replacement

e22Htkn
2→e22Htmkn

2 ~B11!

in vn(t) in Eq. ~B6! and by settingH50 everywhere else.
Doing this, the solution to Eqs.~B5! and~B6! are, respec-

tively,

f~kn ,t !5f0~kn ,t !2
a

vn
E
0

t

dt8V~kn ,t8!sinvn~ t2t8!

2
1

vn
E
0

t

dt8
dV~f!

df~2kn ,t8!
sinvn~ t2t8!, ~B12!

p~kn ,t !5p0~kn ,t !2
a

vn
E
0

t

dt8V~kn ,t8!cosvn~ t2t8!

2
1

vn
E
0

t

dt8
dV~f!

df~2kn ,t8!
cosvn~ t2t8!, ~B13!

wheref0 andp0 are the solutions of Eqs.~B5! and ~B6!
with VF50 anda50. Again for notational convenience we
denote the physical momentum simply bykn . The associ-
ated comoving mode can be computed at timetm from Eq.
~B11!.

The inflaton~system! can be treated as a small perturba-
tion onV(kn ,t); however, full account must be taken of the
heat reservoir’s effect on the inflaton. Thus we will account
for the lowest order effect of the system on the reservoir
coordinateV(kn ,t), which gives
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V~kn ,t !5e2 iHtV~kn,0!eiHt5V0~kn ,t !1
ia

L3 H V0~kn ,t !(
n8

E
0

t

dt8f~kn8,t8!V0~2kn8,t8!

2(
n8

E
0

t

dt8f~kn8,t2t8!V0~2kn ,t2t8!V0~kn ,t !J , ~B14!

where

V0~kn ,t !5e2 iHRtV~kn,0!eiHRt ~B15!

is the time development ofV in the uncoupled reservoir.
Substituting this into the second term on the right-hand side of Eq.~B12!, this term becomes

a

vn
E
0

t

dt8V~kn ,t8!sinvn~ t2t8!5
a

vn
E
0

t

dt8V0~kn ,t8!sinvn~ t2t8!1L~kn ,t !, ~B16!

where

L~kn ,t !5
ia2

vnL
3(
n8

E
0

t

dt8sinvn~ t2t8!E
0

t8
dt9@f~kn8,t9!V0~kn ,t8!V0~2kn8,t9!

2f~kn8,t82t9!V0~2kn8,t82t9!V0~kn ,t8!#. ~B17!

We now take the statistical expectation value of Eq.~B9! with respect to the free states of the heat reservoir, which ar
assumed to obey a canonical distribution. The matrix elements ofV0(kn ,t) between statêau and ub& of the uncoupled
reservoir system are written as

^auV0~kn ,t !ub&[@V r
ab~kn ,t !1 iV i

ab~kn ,t !#e
2 ivab

R t, ~B18!

where

vab
R 5va

R2vb
R , ~B19!

with va
R being the energy of theath state of the uncoupled reservoir. Hermeticity ofV implies thatV r

ab5V r
ba and

V i
ab52V i

ba . We assume that the diagonal matrix elements are zero:

V r
aa50. ~B20!

This is equivalent to assuming that there is no time-independent force exerted by the heat reservoir on the system. Th
nontrivial term for which the statistical expectation value needs to be evaluated is Eq.~B16!. The expectation value of the first
term on the right-hand side of Eq.~B16! is zero due to Eq.~B20!. However, we must retain this term in its operator form since
we will also want products of it in the final rate equation when evaluating correlation functions.

For L(kn ,t) in Eq. ~B16!, upon statistical averaging we get

1

N(
a

^auL~kn ,t !ua&e2va
R/T5LT

D~kn ,t !1LT
C~kn ,t !, ~B21!

where

LT
D~kn ,t !5

2a2

vnNL
3(
ab

e2va
R/T(

n8
E
0

t

dt8sinvn~ t2t8!E
0

t8
dt9sinvab

R ~ t82t9!f~kn8,t9!VD
2 ~a,b,kn ,kn8!, ~B22!

LT
C~kn ,t !52

2a2

vnNL
3(
ab

e2va
R/T(

n8
E
0

t

dt8sinvn~ t2t8!E
0

t8
dt9cosvab

R ~ t82t9!f~kn8,t9!VC
2 ~a,b,kn ,kn8! ~B23!

with

N[(
a

e2va
R/T, ~B24!

VD
2 ~a,b,kn ,kn8![V r

ab~kn!V r
ba~2kn8!2V i

ab~kn!V i
ba~2kn8!, ~B25!
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and

VC
2 ~a,b,kn ,kn8![V r

ab~kn!V i
ba~2kn8!1V i

ab~kn!V r
ba~2kn8!. ~B26!

The energy levels in the heat reservoir are assumed to be closely spaced so that we can replace the summation o
states by an integration as

(
ab
→E

0

`

r~va
R!dva

RE
0

`

r~vb
R!dvb

R . ~B27!

We perform the above energy integration with the variables

v1
R[

va
R1vb

R

2
, v2

R[va
R2vb

R , ~B28!

so that

E
0

`

dva
RE

0

`

dvb
R5E

0

`

dv2
R E

v2
R /2

`

dv1
R1E

2`

0

dv2
R E

2v2
R /2

`

dv1
R[E dṽ2

R E dṽ1
R . ~B29!

Equations~B22! and ~B23! then become, respectively,

LT
D~kn ,t !5

22a2

vnNL
3(
n8

E dṽ2
R E dṽ1

RrS ṽ1
R1

ṽ2
R

2 D rS ṽ1
R2

ṽ2
R

2 D e2~ṽ1
R

1ṽ2
R /2!/TVD

2 S ṽ1
R1

ṽ2
R

2
,ṽ1

R2
ṽ2
R

2
,kn ,kn8D

3E
0

t

dtF cos~ṽ2
R1vn!~t/2!sin~ṽ2

R2vn!~t/2!

ṽ2
R2vn

2
cos~ṽ2

R2vn!~t/2!sin~ṽ2
R1vn!~t/2!

ṽ2
R1vn

Gf~kn8,t2t!,

~B30!

LT
C~kn ,t !5

22a2

vnNL
3(
n8

E dṽ2
R E dṽ1

RrS ṽ1
R1

ṽ2
R

2 D rS ṽ1
R2

ṽ2
R

2 D e2~ṽ1
R

1ṽ2
R /2!/TVC

2 S ṽ1
R1

ṽ2
R

2
,ṽ1

R2
ṽ2
R

2
,kn ,kn8D

3E
0

t

dt sin~ṽ2
R1vn!

t

2
sin~ṽ2

R2vn!
t

2 F 1

ṽ2
R2vn

2
1

ṽ2
R1vn

Gf~kn8,t2t!. ~B31!

Define

BI~v,kn ,kn8![E
0

`

dv8r~v81v!r~v8!V I
2~v81v,v8,kn ,kn8!e

2v8/T, ~B32!
where I5C or I5D. We assumeBI is a smooth function
with respect tov. Identifying this term in Eqs.~B30! and
~B31! we observe that due to the oscillatory factor the m
contribution to theṽ2

R integral is fromṽ2
R56vn . Evaluat-

ing the ṽ2
R integration under this approximation, we obta

LT
D~kn ,t !5(

n8
Gnn8
D E

0

t

dt8f~kn8,t8!cosvn~ t2t8!, ~B33!

LT
C~kn ,t !5(

n8
Gnn8
C E

0

t

dt8f~kn8,t8!sinvn~ t2t8!, ~B34!

where

Gnn8
I [

pa2

vnNL
3 ~12e2vn /T!BI~vn ,kn ,kn8!, ~B35!
ain

in

with I5C,D. Substituting this into Eq.~B12! we obtain the
equation of motion

f̈~kn ,t !1vn
2f~kn ,t !1(

n8
Gnn8
D ḟ~kn8,t !

1vn(
n8

Gnn8
C f~kn8,t !1

dV

df~2kn ,t !
5h~kn ,t !,

~B36!

where h(kn ,t)[2aV0(kn ,t). Hereafter we will assume
that the uncoupled reservoir system is translationally invari-
ant so that

^^V0~kn ,t !V0~kn8,t8!&&T

5dn,2n8^^V0~kn ,t !V0~2kn ,t !&&T . ~B37!
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The statistical properties ofh(kn ,t) are

^^h~kn ,t !&&T50, ~B38!

^^h~kn ,t !h~kn8,t8!&&T

5dn,2n8

vnGn,n
D L3

p F iP

t2t8
1pd~ t2t8!cothS vn

2TD G .
~B39!

The first property follows from Eq.~B20!. The second fol-
lows from Eqs.~B25!, ~B26!, ~B32!, and~B35! and using
E
0

`

dveivt5
iP

t
1pd~ t !. ~B40!

In the high temperature limit, Eq.~B39! becomes

^^h~kn ,t !h~2kn ,t8!&&T→`→2L3Gn,n
D Td~ t2t8!, ~B41!

which agrees with Eq.~48!.
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