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Nonperturbative amplification of inhomogeneities in a self-reproducing universe
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We investigate the distribution of energy density in a stationary self-reproducing inflationary universe. We
show that the main fraction of volume of the Universe in a state with a given dgnsityany given moment
of proper timet is concentrated near the centers of deep exponentially wide spherically symmetric wells in the
density distribution. Since this statement is very surprising and counterintuitive, we perform our investigation
by three different analytical methods to verify our conclusions, and then confirm our analytical results by
computer simulations. If one assumes that we are typical observers living in the Universe at a given moment
of time, then our results may imply that we should live near the center of a deep and exponentially large void,
which we will call an infloid. The validity of this particular interpretation of our results is not quite clear
since it depends on the as-yet unsolved problem of measure in quantum cosmology. Therefore, at the moment
we would prefer to consider our results simply as a demonstration of nontrivial properties of the hypersurface
of a given time in the fractal self-reproducing universe, without making any far-reaching conclusions concern-
ing the structure of our own part of the Universe. Still we believe that our results may be of some importance
since they demonstrate that nonperturbative effects in quantum cosmology, at least in principle, may have
significant observational consequences, including an apparent violation of the Copernican principle.
[S0556-282(96)03816-1

PACS numbd(s): 98.80.Cq, 98.80.Bp, 98.80.Hw

I. INTRODUCTION The situation became less obvious when we studied the
global structure of an inflationary universe in the chaotic
According to the Copernican principle, the only specialinflation scenario, and found that according to a very wide
thing about the Earth is that we are living here. We are not atlass of inflationary theories, the main fraction of volume of
the center of the Universe, as people thought before. Thithe Universe in a state with a given densityat any given
point of view is reflected also in the so-called cosmologicalmoment of timet (during or after inflation should be con-
principle, which asserts that our place in the Universe is bycentrated near the centers of deep exponentially wide spheri-
no means special and that the space around us has to bally symmetric wells in the density distributidi3]. This
homogeneous and isotropic after smoothing over smaltesult is based on investigation of nonperturbative effects in
lumps of matter. This principle lies in the foundation of con- the theory of a fractal self-reproducing univerge the cha-
temporary cosmologll] since it has not only definite philo- otic inflation scenarig4].
sophical appeal but also an apparent observational confirma- Observational implications of this result depend on its in-
tion by a host of data on the large scale structure of thderpretation. If we assume that we live in a part which is
Universe. However, theoretical interpretation of this prin-typical—and by “typical” we mean those parts of the Uni-
ciple is usually based on the big bang picture of the Universererse which have the greatest volume with other parameters
and its evolution, inherently related to a simple geometry of(time and densitybeing equal—then our result implies that
the Friedmann-Robertson-Walker-type. The only theoreticaive should live near the center of one of the wells in the
justification of the homogeneity and isotropy of the Universedensity distribution. There should be many such wells in the
which is known to us at present is based on inflationarnyJniverse, but each of them should be exponentially wide. In
cosmology. But this theory simultaneously with explainingwhat follows we will call these wells “infloids.” An ob-
why our Universe locally looks so homogeneous predictsserver living near the center of an infloid will see himself “in
that on an extremely large scale the Universe must be exhe center of the world,” which would obviously contradict
tremely inhomogeneouf2]. Thus, after providing certain the Copernican principle.
support to the cosmological principle, inflationary theory One should clearly distinguish between the validity of our
eventually removes it as having only limited validity. But
until very recently we did not suspect that inflation may in-
validate the Copernican principle as well, since there is noth- Self-reproduction of the Universe is possible in the new inflation-
ing about inflation which would require us to live in the ary theory as wel[5], but as we will see, in this theory the effect
center of the Universe. which we are going to discuss is negligibly small.
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result and the validity of its interpretation suggested abovefield ¢ (the inflaton field is sufficiently homogeneous in
Even though the effect by itself is rather surprising we thinksome domain of the Universe, then its behavior inside this
that it is correct. We verified its validity by three independentdomain is governed by the equations
analytical methods, as well as by computer simulations. . )
Meanwhile, the validity of its interpretation is much less ¢+3Hp=-V'(¢), (1)
clear. The main problem is related to the ambiguity in the
choice of measure in quantum cosmold@y. There are in- 2 12
finitely many domains with similar properties in a self- Ho+ a 3|\/|§,[5‘1S V()] 2
reproducing inflationary universe. When we are trying to
compare their volumes, we are comparing infinities. The reHere H=a/a,a(t) is the scale factor of the Universe, and
sults of this comparison depend on the choice of the regulakk=+1,—1, or O for a closed, open, or flat universe, respec-
ization procedure. The prescription that we should comparévely. Mp is the Planck mass, which we will put equal to 1
volumes at a given timé in synchronous coordinates is in- in the rest of the paper.
tuitively appealing, but there exist other prescriptions which Investigation of these equations has shown that for many
lead to different conclusior|8,6—8. Until the interpretation potentialsV(¢) [e.g., in all power-lawv/($)~ ¢" and expo-
problem is resolved, we will be unable to say for surenential V(¢)~e*® potentiald there exists an intermediate
whether inflationary cosmology actually predicts that weasymptotic regime of slow rolling of the field and quasiex-
should live in a center of a spherically symmetric well. Still ponential expansiofiinflation) of the Universe[2]. At this
this possibility is so interesting that it deserves a detailedstage, which is called inflation, one can neglect the térm
investigation even at our present, admittedly rather incomgq (2), as well as the termi/a2 and (4m/3)$? in Eq. (2).
plete level of understanding of quantum cosmology. This istherefore during inflation
the main purpose of our paper.
In Sec. Il we will give a short review of the theory of a s7VvV . V' ()
\/ 3

=" En &

k 8
2

self-reproducing universe in the chaotic inflation scenario H=
and discuss which type of phenomena should be called typi-

cal in such a universe. Then we will describe two approacheg, the theoriesv($)~ ¢" inflation ends atp= ¢, where

to the problem of estimating the typical magnitude of the¢e~ 10 !n.

quantum fluctuations under the volume-weighted measure. “|nfiation stretches all initial inhomogeneities. Therefore, if
The first, developed in Sec. lll, is based on counting th&he evolution of a universe were governed solely by classical
balance of probability factors. The second is based on thgquations of motion, we would end up with an extremely
investigation of the probability distributioPp(¢,t). This  smooth universe with no primordial fluctuations to initiate
distribution describes the portion of the physical volume ofthe growth of galaxies. Fortunately, new density perturba-
the Universe which contains the fietd at the timet. Ac-  tions are generated during inflation due to quantum effects.
cording to[6], this distribution rapidly approaches a station- The wavelengths of all vacuum fluctuations of the scalar
ary regime, where the portion of the physical volume of thefie|d ¢ grow exponentially in the expanding Universe. When
Universe containing the field) becomes independent of the wavelength of any particular fluctuation becomes greater
time. Investigation of this distribution in Sec. IV will allow thanH 1, this fluctuation stops oscillating, and its amplitude
us to derive the results obtained in Sec. Ill in a different way freezes at some nonzero valdes(x) because of the large

In Sec. V we will develop a path integral approach to thefriction term 3H¢ in the equation of motion of the fielg.
investigation ofPp(¢,t). The new method provides another o amplitude of this fluctuation then remains almost un-
way to confirm our results. However, this method is interest-changed for a very long time, whereas its wavelength grows
ing by itself. It gives us a new powerful tool for !nvestigation exponentially. Therefore, the appearance of such a frozen
of the global structure of the self-reproducing universeq,qqation is equivalent to the appearance of a classical field

which may be us_eful _independently of the exist_ence of _the5¢(x) that does not vanish after averaging over macroscopic
effect discussed in this paper. In Sec. VI we will describe;iarvals of space and time.

computer simulations which we used to verify our analytical Because the vacuum contains fluctuations of all wave-
results. Only then, after we make sure that our rather coungpqihs inflation leads to the creation of more and more

terintuitive results are actually correct, will we describe the'rperturbations of the classical field with wavelengths greater

possible interpretation and their observational consequenceganH -1 The average amplitude of such perturbations gen-
In Sec. VII we will describe the structure of infloids, their erated dLJring a time intervali—* (in which the Universe

evolgtion e_lfter the end of inflatio_n, e_md their observationalexpands by a factor &) is given by
manifestations. In Sec. VIII we will discuss our results, am-
biguities of their interpretation, and formulate our conclu- H
sions. In the Appendix we present a generalization of our [5p(x)|= o (4)
results for different time parametrizations. 7

The phases of each wave are random. It is important also that
quantum fluctuations occur independently in all domains of
the inflationary universe of a size greater than the radius of
Let us consider the simplest model of chaotic inflationthe event horizorH ~1. Therefore, the sum of all waves at
based on the theory of a scalar figbdminimally coupled to  any given region of a siz©(H 1) fluctuates and experi-
gravity, with the effective potential/(¢). If the classical ences Brownian jumps in all directions in the space of fields.

Il. SELF-REPRODUCING UNIVERSE
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The standard way of description of the stochastic behavior 0b6f chaotic inflation based on Einstein’s theory of gravity
the inflaton field during the slow rolling stage is to coarsethere are several reasons to expect that there exists an upper
grain it over separate domains of radids* (we will call bound for the rate of inflatiop6,14,13.
these domains H regions” [9,10], to indicate that each of In what follows we will assume that there is an upper
them has a radius coinciding with the radius of the evenboundH 5 0n the value of the Hubble constant during in-
horizonH 1) and consider the effective equation of motion flation. For definiteness we will assume théy,,,= \87/3,
of the long-wavelength fieli11,4]: which corresponds to the Planck bound&ffipp)=1. This
) a2 is a rather natural assumption for chaotic inflation. However,
E(ﬁ:_ V'(¢) +H (¢) B (5y ©One should note that in some modd,,, may be much
dt 3H(¢) 2 ' smaller. In particular, in the new inflation scenario
_ ) ) ) Hma= v87V(0)/3 is many orders of magnitude smaller
Here ¢(t) is the effective white noise generated by quantumiygn 1.
fluctuations. - The independence of the subsequent evolution ofhthe
Let us find the critical value#, such that for region on its previous history, the dominance of the domains
V(¢)<V(¢,) the classical slow roll dominates the evolu- where the inflaton field energy grows rather than decreases in
tion of the inflaton, while forV(¢)>V(#,) the quantum the volume-weighted measure, and the upper bound for the
fluctuations are more important. Within the characteristicenergies at which the inflation can proceed are the three main
time intervalAt=H " for values of inflaton near the critical features inherent to many models of inflation. When all these
value ¢, the classical decreask¢p= @At of the inflaton, features are present the evolution of the inflationary universe
defined through Eqg(3), is of the same magnitude as the as a whole approaches a regime which we cailiethal sta-
typical quantum fluctuation generated during the same petionarity in [6]. This stage is characterized by the stability of
riod, given by Eq.(4). After some algebra we get from Egs. the distribution of regions with various local values of en-

(3) and(4) the relation definingp, implicitly: ergy density and other parameters, while the number of such
3 regions grows exponentially with a constant coefficient, pro-
3H (¢,) 4V(ey) 1 (6 Portional to the maximal possible rate of inflation

27V (dy) =H(¢) V'(¢y) N1=dqH nax. Hered; is a model-dependent fractal dimen-
sion of the classical spa¢8,6], which is very close to 3 for

Let us consider for definiteness the theoM(#)  small coupling constants of the inflaton field.
=\¢*4. In this case Eq(6) yields ¢, ~\~ . One can The new picture of the Universe is extremely unusual, and
easily see that i< ¢, , then the decrease of the fiefddue it may force us to reconsider our definition of what is typical
to its classical motiol\ ¢=1/2m¢ is much greater than the and what is not. In particular, the standard theory of the large
average amplitude of the quantum fluctuationsscale structure of the Universe is based on the assumption
d¢=1\I6m$? generated during the same characteristicthat a typical behavior of the scalar field at the last stages of
time interval H™%. But for ¢>¢, , d¢(x) will exceed inflation is described by Eq€3) and(4). This is indeed the
A¢; i.e., the Brownian motion of the fiel¢p will become case if one studies a single branch of an inflationary universe
more rapid than its classical motion. Because the typicabeginning aip<< ¢, . However, if one investigates the global
wavelength of the fluctuation§(x) generated during this structure of the universes at a#l and tries to find the typical
time is H ™1, the whole Hubble domain after the tim&"*  behavior ofall inflationary domainsvith a volume-weighted
becomes effectively divided inte® h regions, each contain- measurethe result may appear to be somewhat different.
ing almost homogeneoybut different from each othgfield
d— A+ 5.

In almost half of these domainge., in €3/2~10 h re- lll. STATIONARY INFLATIIE?:EEA(;\ITDSNONPERTURBATIVE
gions the field ¢ grows by |5¢(X)|—Ap~|5d(X)|
=H/2m, rather than decreases. During the next time interval Suppose that we have one inflationary domain of initial
At=H"! the field grows again in the half of the new  sizeH ™, containing a scalar fielep> ¢, . Let us wait 15
regions. Thus, the total number &f regions containing x10° years(in synchronous time in each part of this do-
growing field ¢ becomes equal toef/2)2=e2(~"2 This  main and see what are the typical properties of those parts
means that until the fluctuations of fiefsl grow sufficiently  of our original domain which at the present moment have
large, the total physical volume occupied by permanentlysome particular value of density, e.gp=10"2° g cm 3.
growing field ¢ (i.e., the total number df regions contain- The answer to this question proves to be rather unexpected.
ing the growing field ¢) increases with time like This domain exponentially expands, and becomes divided
exd (3—In2)Ht]. This leads to the self-reproduction of infla- into many new domains of siz¢ 1, which evolve indepen-
tionary domains withp> ¢, in the chaotic inflation scenario dently of each other. In many new domains the scalar field
[4]. decreases because of classical rolling and quantum fluctua-

Note that the greater is the value of the effective potentialtions. The rate of expansion of these domains rapidly de-
the greater is the rate of exponential expansion of the Uniereases, and they give a relatively small contribution to the
verse. As a result, the main growth of the total volume of thetotal volume of those parts of the Universe which will have
Universe occurs due to exponential expansion of the dodensity 102° g cm 3 15x 10° years later. Meanwhile, those
mains with the greatest possible values of the Hubble condomains where quantum jumps occur in the direction of
stantH = H ;.. [4,6]. In some models there is no upper boundgrowth of the field¢ gradually push this field towards the
to the value oH [12,13. However, in the simplest versions upper bound where inflation can possibly exist, which is pre-
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sumably close to the Planck boundary¢p)~1. Such do- Maximizing with respect tm(¢) gives the amplification fac-

mains for a long time stay near the Planck boundary, andor as a function of the location of the jump on the inflaton

exponentially grow with Planckian speed. Thus, the longetrajectory:

they stay near the Planck boundary, the greater the contribu-

tion to the volume of the Universe they give. ()= 4d,H V() ©
However, the domains of interest for us eventually should frtimaxy7 () -

roll down and evolve into the regions with density

10°2° gcm 3. Thus, these domains cannot stay near thdn fact, we have foundi3] that the typical trajectories which

Planck boundary for an indefinitely long time, producing agive the leading contribution to the volume of the Universe

new volume with Planckian speed. However, they will doconsist entirely of such subsequent jumps. In what follows

their best if they stay there as long as possible, in order t§/e Will give an alternative derivation of this result. Mean-

roll down at the latest possible moment. In fact they will doWhile, comparing with Eq(6) one immediately sees that

even better if they stay near the Planck boundary eveR(¢)>1 for ¢<é, , since dy~3 and Hpa>H(4) for

|Onger’ to save time for additional rapid inﬂation, and thenSUCh values of the inflaton field in chaotic inflation. There-

rush down with a speed exceeding the speed of classicHpre, our treatment of these quantum fluctuations as large and

rolling. This may happen if quantum fluctuations coherentlyre@r quantum jumps is self-consistent.

add up to large quantum jumps towards smallThis pro- To avoid misunderstandings one should note that a more

cess is dual to the process of perpetual climbing up, whiciccurate definition of the amplification coefficient would be

leads to the self-reproduction of an inflationary universe. N(#)+1. Indeed, in the absence of nonperturbative effects
Of course, the probability of large quantum jumps downwe would haven(¢)=0 since perturbative jumps occur in

is exponentially suppressed. However, by staying longer nedtoth directions with equal probability. The coefficier(ts)

the Planck boundary inflationary domains get an additionafelates an additional amplitude of jumgswnto the regular

exponentially large contribution to their volume. These twoperturbative amplitude of the jumps in both directions. This

exponential factors compete with each other to give us agubtlety will not be important for us here since we are inter-

optimal trajectory by which the scalar field rushes down in€sted in the case>1.

those domains which eventually give the leading contribu- It is interesting that the coefficient of the amplification

tion to the volume of the Universe. From what we are saying)(¢) can be directly related to the ratio of amplitudes of

it should be clear that the quantum jumps of the scalar fiel¢onventional scalar and tensor perturbations generated at the

along such optimal trajectories should have a greater amplsame scale at which the jump occurs. The amplitudes of

tude than their regular valud/2, and they should prefer- these perturbations can be written as

ably occur downwards. As a result, the energy density along 2

these optimal trajectories will be smaller than the energy Agert((ﬁ):(ﬁ) :CSH (‘ﬁ),

density of their lazy neighbors which prefer to slide down s 27

without too much jumping. This creates wells in the distri-

bution of the energy density, which we called inflo{ds. per op
Suppose that the extra time interval spent at the highest AP (4)= 7

energies isAt. Then we win the volume by a factor of

exp(dfera)Kt). However, to compensate for the lost time Herecg and ¢t are some coefficients of the order of unity.
the inflaton field¢ has to jump at least oncet us say, Using these expressions we can rewrite &) for d;~3 in
when it reaches the value¢) with amplitude the form

~6<1>=n(<;S)H(<;S)/27-r such that it covers in one jump the dis-

H(¢)
:CT MP .

(10

T

per
tance which would otherwise require tindg¢ to slowly roll n(¢)= scr HmaXASTw_ (11)
down: cs Mp AFT(¢)
In the same way as the conventional amplitude of jumps
- §¢ n(p)H(P)12m 4V( ) H/2m is related to the well-known perturbations of the back-
At((f)):?: p =n )V,(¢) , (7 ground energy density, the “nonperturbatively amplified”

jumps which we have just described are related to the “non-
perturbative” contribution to deviations of the background
where we introduced the facto(¢) by which the jump is  EN€ray density from its average value. A possible interpreta-
amplified, i.e., by which it is greater than the standard jumption of this result is that at the length scale associated with
H(¢)/277., Thé probability of such a jump is suppressed bythe value of the fieldp there is an additional nonperturbative
the factor exp—21n2(¢)]. The leading contribution to the ~contribution to themonopoleamplitude:
volume of the Universe occurs due to the jumps which maxi- 3¢, H AP )
mize the volume-weighted probability: Anonperp gy | 22T _max S
S cs Mp AF(¢)

P~ex diH maAt(d) — 2n?(¢)] We will discuss the structure of infloids and their possible
observational consequences in Sec. VII. Here we only note

—extl dH.n() 4V(¢) _in2(g) ® that Eq.(11) gives a simple tool for understanding of the
friimad) V'(p) *? ' possible significance of the effect under consideration. In-

) AR, (12)
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deed, in the simplest chaotic inflation models, such as the H32($) 0 [ H¥Y( &) V' (&)
theory (\/n)¢", one has Hpu~Mp and AR(¢) 7% (M)( m1(d) +mwl(¢)l
> AP ¢); thus, one has(¢)>1. On the other hand, in the 2\2m 2\2m

versions of chaotic inflation scenario where inflation occurs +3H(p) my(d) =N 71 (). (15)
near a local maximum of the effective potent{al in the

new inflation models H . is many orders of magnitude o e

smaller thanM, and therefore the nonperturbative effects . N the limit when we can neglect the diffusidsecond
discussed above are negligibly small. Thus, investigation offerivative term it is easy to solve this equation:
nonperturbative effects can give us a rather unexpected pos-

sibility to distinguish between various classes of inflationary 3H(¢)
models. We will return to this issue at the end of the paper. m1(¢)=C(bo) V' () exp
2
IV. NONPERTURBATIVE EFFECTS «| - f% A 3H(D) 9H%(D) d¢ (16)
AND BRANCHING DIFFUSION W) V(@) ’

One of the best ways to examine nonperturbative effects
is to investigate the probability distributid®s(¢,t) to finda  Where we chose some starting poigy and the correspond-
domain of a given physical volume in a state with a givening normalization constar€(¢,) which should match this
field ¢ at some moment of timet. The distribution @approximate solution to the exact one at this point. As be-

Pr(¢,t) obeys the following branching diffusion equation fore, let us introduce the fractal dimension of classical space-
[10,16,6: time throughh ;= dgH 2 (S€€[9,6] for a detailed discussion
of the fractal structure of a self-reproducing univeréet us

IPp 9 [H¥(p) o [H3 ) V() also _intrqduce the (_:riticfal value of inflatay, at which t_he
T4 3 Pp +3H( ) Pp no-diffusion approximation for Eq15) breaks. Then, since
¢| 2\2m Id\ 2\2m ¢ H ma,>H () for chaotic inflation, we can rewrite E¢L6) as
+3H(¢)Pp. (13

3H(¢) b 3H(Q)

This equation is valid only during inflation, which typi- 771(¢)=C(¢fr)v,(¢) exp — . dferafo(g) dj.
cally occurs within some limited interval of values of the (17)
field ¢: pmin< P<dmax- IN the simplest versions of the cha-
otic inflation modelg,,i,.= d.~1, whereg, is the boundary L . -
at which inflation ends. Meanwhile, as we argued in the pre- Substituting Eq.(17) into Eq. (15 we get the defining
vious section,¢,. is close to the Planck boundamp relation for the value of inflaton field; at which the no-

Y max ) . . . . .
whereV(ép)=1. To find solutions of this equation one must diffusion approximation breaks:
specify the boundary conditions. The behavior of the solu-

tions typically is not very sensitive to the boundary condi- 9H5(g)
tions ate,; it is sufficient to assume that the diffusion co- L 272V ()] ~1. (18)

efficient[and, correspondingly, the double derivative term in

the right-hand sidéRHS) of Eq. (13)] vanishes for¢< ¢, ) , o

[6]. The conditions near the Planck boundary play a more e can rewritgthe square root ofthis relation in a form
important role. In this paper we will assume that there can b&/hich makes the comparison with the definition of the other
no inflation atV(¢#)>1, which corresponds to the boundary Cfitical value¢, more apparent:

condition Pp(¢,t)|¢>¢P=0. At the end of the paper we will

discuss possible modifications of our resultssif,., differs [diHmax 3H3( 1)
H(¢

from ¢p. i) 27V’ () ~t
One may try to obtain solutions of E(L3) in the form of

the eigenfunction series

(19

Comparing Eq(19) with Eq. (6), one finds that for all cha-

otic inflation models ¢ <¢, [one can assume self-
~ Mg (o), (14) consistently thaH ., H(¢¢) in such models The value
o of ¢, in Eq.(6) comes from comparing the slow-roll rate in

a givenh region with the typical amplitude of quantum fluc-
where, in the limit of large time, only the term with the tuations while considering only thie regions generated lo-
largest eigenvalue.; survives. The functionr,(¢) in the  cally from the region which we picked. On the other hand,
limit t—o has the meaning of a normalizetdme- the value¢; comes from comparing the slow-roll rate to the
independent probability distribution (so-called invariant typical amplitude of fluctuations considering hliregions in
probability density of the branching diffusipto find a given  the whole Universe which happen to have the same value of
field ¢ in a unit physical volume, whereas the fac®r!  the inflaton field inside. The fact that the second constraint is
shows the overall growth of the volume of all parts of themore stringent is yet another indication of the considerably
Universe, which does not depend ¢nin the limit t— . larger magnitude of the quantum fluctuations when we take
This “ground state” eigenfunction satisfies the equation  into account the whole stationary Universe.

Pp(¢,t)= 21 eMslry(p)
s= t
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In the particular case of the simplest theory with and the width of this maximum is of the ordét/2#. In
V(p)=\¢*4, we haveH=2mw\/3¢?, ¢~\"Y8<¢,,  other words, most of the domains of a given figidare

and the dependence of the solutidr) on ¢ is [6] formed due to nonperturbativdhence the subscript “np’
“ jumps which are greater than the “typical” ones by a factor
71 ()~ (TN rHima, (200 n(¢) which coincides with our previous resil). For future

o reference, we will write here this result in an equivalent form
This is an extremely strong dependence. For example, for the

realistic value of the coupling constant-10™ ! chosen to V()
fit the observable large scale structure of the Universe one n(¢)=4>\1m- (24)
has d;~3. One may assume for definiteness tht.,
= \8m/3, corresponding to inflation with'(¢)=1 (Planck  The |imit of applicability of this expression is below the
density. Then one has an extremely sharp dependencgnergy leveN( ;) [see Eqs(18) and(19) for the definition
i~ +21 Al surprising results we are going to obtain of the critical values .
are rooted in this effect. One of the consequences is the |n particular, for the theoryx ¢*/4 we have
distribution of energy density. For example, during infla-
tion p~ X\ ¢*/4. Equation(20) implies that the distribution of n(¢p)=N\,9. (25
densityp is

. For H .= Vv87/3, <1, and¢~4.5, which corresponds to

Pp(p)~p>*17. (21)  today’s horizon scale, this gives the amplification coefficient

.Thus. at each moment of timethe .Universe. c_onsists of an n(¢) =26~ 40. (26)
indefinitely large number of domains containing matter with
all possible values of density, the total volume of all domains

with density 2» being approximately 76’ times greater than
the total volume of all domains with densipy

Let us consider now all inflationary domains which con-  We learned in the previous section that quantum fluctua-
tain a given field$ at a given moment of timé. One may tions in volume-weighted measure have pretty large expec-
ask the question, what was the value of this field in thoseation value, which makes the jumps to go preferentially
domains at the momertt-H~*? In order to answer this downwards(unlike in the comoving measure where there is
question one should add ¥ the value of its classical drift no preferred direction of the fluctuations and therefore they
¢H ™1 and the amplitude of quantum jumpsp. The typical have a zero expectation vajuéndeed, such was the very
jump is given bys¢= +H/21. At the last stages of inflation meaning of our derivation of large jumps that they had to
this quantity is by many orders of magnitude smaller thanoccur in the direction of the usual slow roll in order to make
¢H—1_ But in which sense are jumpsH/2 typical? If we  up the extra time spent by inflaton at higher energies. There-
consider any particular initial value of the fieltl, then the  fore, we can conclude that the slow-rolling speed itself gets a
typical jump from this point is indeed given byH/27 un-  correction corresponding to the rate at which such large
der the conventional comoving measure. However, if we arédumps occur and their size. Since each such jump of size
considering all domains with a give and trying to find all  N(¢)H(#)/2m occurs during the time intervad ~*(¢), we
those domains from which the fietsl could originate back in  can estimate the additional speed gained by the inflaton as
time, the answer may be quite different. Indeed, the total(¢)H?(¢)/2, thus bringing the overall slow-roll speed to
volume of all domains with a given fiel¢ at any moment of the volume-weighted valupwe substituted Eq(9) for the
time t depends onp extremely strongly: The dependence is Value ofn(¢), the amplification factdr
exponential in the general cagg?) or a power law with a , )
huge power, like in the case of¢*/4 theory (20). This . V'(¢) 16vi(¢)

V. VOLUME-WEIGHTED SLOW-ROLLING
APPROXIMATION

means that the total volume of all domains which could jump ~ 3H(¢) dirHmax V()
towards the given fieldp from the value¢+ A ¢ will be

enhanced by a large additional fact®p(¢+A@)/Pp(¢).  Here the minus sign in front of the correction term is due to
On the other hand, the probability of large jumpsp is  the preferred direction of the jumps, bringing the slow-roll
suppressed by the Gaussian factor [exPr?(A¢)?/H?].  speed to a higher absolute value.

Thus, under the established stationary probability distribu- The limits of applicability of this expression are the same
tion the probability of the inflaton field in a given domain to as for Eq.(23), i.e., below the energy density corresponding
have experienced a quantum ju is given by to the critical valuegy, of the inflaton field, defined by Egs.
(18) and (19). However, those limits simply tell where the
approximate expressiof27) is valid, while the effect of

(27)

3H(¢) ,  2m*(A¢)°

P(A¢)~ex;{ dferaXV'(¢) Ad H2(¢) | (22) speeding up the slow roll of the inflaton is valid in a much
wider range.
One can easily verify that this distribution has a sharp maxi- Let us derive a more general version of this result and,
mum at correspondingly, a more general expression for amplified
s quantum jumpg9) and (23) which will be valid for almost
A= diH 3H(¢) () H(¢) 23 whole range of variation of the inflaton field. The volume-
npT EiTIMaxg 22V () 27’ weighted probability distribution can be defined as the path
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integral over all realizations of noise taken with Gaussianwhich corresponds to an interpretation of the diffusion equa-
weight modified by the volume fact$d.0,6]: tion (13) as a Euclidean Schdinger equation for a point
particle. We can rewrite this action in Hamiltonian form us-
ing the conventional relation

1
Pp(¢,t)=f D§exp{f (—552(3)+3H(¢g(3)))ds]

X 8(he()— ). (28) J*cdv:faopdz-f“udn (34)

Here ¢4(s) is the solution of Eq(5) with a particular real-

ization of the noise. The Gaussian path integral over the

noise can be converted into the path integral over the histowhere the canonical momentum is
ries of inflaton evolutioni17] if we express the noise through

concurrent value of inflatorp(t) using the equation of mo-

tion (5): or
p=—=z—W(2). (35
Jz
EO= o o) (29
CHT$) " 3R g)
Since the action does not contain an explicit time depen-
It is convenient to make the variable transformation dence, the Hamiltonian is conserved:
2
z= ¢HW2(<T’)d¢" (30) H=3p?+pW(2)+3H(2)=X\;. (36)

In terms of this variable the definition of the white noise is

rewritten in compact form The reason why the conserved Hamiltonian is equal to the

highest eigenvalue is that in the end we should get the time
. dependence of a type expf) as warranted by the stationary
§t)=—-z+W(2), (3D solution(14). Meanwhile, thef pdzterm of the action should
give us the correctsemiclassicalfield dependence of the
probability densityPp(z(#),t) (see below

Solving the Hamiltonian constrairB6) with respect to
p (we have to choose the positive solution of the equation for
rolling down), and using Eq(35), we obtain the equation for
27 dV(¢) d ( 3 ) (32 the typical volume-weighted trajectory:

W= 3052 4) dp  dz| 16V(2)

where we introduced the “superpotentidl[we used the re-
lation (30) to reexpress it in terms of the derivative with
respect taz]

The path integral defining the volume-weighted measure z=\W?(2)+ 2\, —6H(2). (37)
in terms of z(t) becomes, after substituting Eq81) into
Egs.(28),
This equation translates back in terms of the inflaton field
variable into a volume-weighted slow-roll equation:

tf1 .
Pp(Z,t)=f DZ(S)J[Z]eXP[—j (E[Z(S)—W(Z(S))]2

2 H3
+[dferax_3H(¢)] 27(:2)

. (39

: V'(¢)
—3H(z(s)))dsj 8(z(t)—2). (33 ¢=- \/(3H(¢)

The Jacobian)[z] of the transformation fron¥ to ¢ and
then toz is preexponentidll7] and unimportant for our cur- For most of the inflaton range of variatiéexcept very close
rent investigation. We will neglect it in what follows. to the Planck boundajywe can ignore the B term with
Let us find the trajectorg(t) [which we will translate respect to thed;H ., term. The relative importance of the
later into trajectoryp(t) ] which contributes most to the path two remaining terms under the square root is governed by
integral (33). Such a saddle point trajectory will correspond the critical value¢ — below this level the first term is
to the typical history of the evolution of inflaton under a more important, while above it the second one dominates.
volume-weighted measure. The exponent in the path integralot surprisingly, belowg ;. this equation coincides with Eq.
(33) looks like a Euclidean version of the Lagrangian action,(27). However, its validity limits are much wider, allowing
us to use it beyondy, , to which the applicability of Eq(27)
was limited.
2This name is due to the fact thei(z) plays the role of a super- We can write down a good approximation for the field-
potential in a supersymmetrySUSY)Schralinger-like version of ~dependent normalized probability density(¢), omitting
the Fokker-Planck equation. the less important preexponential terms:



54 NONPERTURBATIVE AMPLIFICATION OF . .. 2511

z(¢)
771(d>)=eXp{ - pdz]

J ds’( \/( o )2”0' i 3H(6) | — L)
=exp — —_— — - T
y 16vi(g) T H3(¢) 16V(0)
Of course, belowp;, this expression also coincides with its VI. NUMERICAL SIMULATIONS
counterpar{17) derived previously. This result has remark-
able properties which will be studied further [ib8].
Using the volume-weighted slow-roll equatidB8) we

can derive a general expression for the amplified quanturﬂ1
jump size. It is given by the change #within time interval
H™! calculated according to Eq38), less the regular ex-

pression for the change of field due to the slow roll in a
comoving measure:

} . (39

A. Basic idea of computer simulations

Even though we verified our results by several different
ethods, they are still very unusual and counterintuitive.
Therefore we performed a computer simulation of stochastic
processes in an inflationary universe, which allows one to
obtain an additional verification of our results and to calcu-
late the amplification factan(¢$) numerically. We have used
two different methods of computer simulations. The first one

V() \? H( ) is more direct and easy to understand. Its basic idea can be
Apnp= \/(W +ldrHma3H() 15 = explained as follows.
We have studied a set of domains of initial size? filled
V' () (40) with a large homogeneous fielt. We considered large ini-

tial values of¢, which leads to the self-reproduction of in-

flationary domains. From the point of view of stochastic pro-

This gives the following expression for the amplification fac- cesses which we study, each domain can be modeled by a

tor (the ration of A¢,, and the conventional amplitude single point with the fields in it. Our purpose was to study

H/2m): the typical amplitude of quantum jumps of the scalar field

¢ in those domains which reached some vadbyge=0O(1)

close to the end of inflation. Then we calculate the amplifi-

) cation factom(¢g) for various ¢,.

H(#) 3H(¢) Each step of our calculations corresponds to a time
(42) changeAtzqul. HereHy=H(¢,), andu is some num-

The consistency conditions for our resule®)—(41) arise  ber, u<1. The results do not depend anif it is small
from several assumptions which we made in their derivatiorenough. The evolution of the fiel@l in each domain consists
and whose validity should be maintained. The first one is thaof several independent parts. First of all, the field evolves
the slow rolling approximation be valid; i.e<3H(¢)¢.  according to classical equations of motion during inflation,
The second is that the amplification factor be greater than Mwhich means that it decreases by’'/3HH, during each
The third condition is that the saddle-point approximationtime interval uH, . Second, it makes quantum jumps by
used to derive these results be valid, which means thagg=(H/27)(JuH/Hg)r;. Herer, is a set of normal ran-
p>1. And the final, fourth condition is the implicit assump- dom numbers, which are different for each inflationary do-
tion that large quantum jumps which occur in a single  main. To account for the growth of the physical volume of
region do not make the gradient energy inside that regioRach domain we used the following procedure. We followed
greater than the potential energy of the inflaton figltlich,  e4ch domain until its radius had grown 2 times, and after that
of course, would immediately invalidate the inflationary ap-,a considered it as eight independent domains. In accor-

proximatior). One can easily check that all four conditions dance with our conditiof® t —0. we removed all
lead to the same, very relaxed restrictions — the energy den- P(¢:0]4>0,=0,

sity of the inflaton fieldV/($) must be lower than the Planck domains where the fieldb jumped to the super-Planckian
density (or, more precisely, lower than the energy densityden3|tlesV(¢)>1. Therefore our mgthod removes the over-
corresponding to the maximal rate of expansign,). Thus, &l growth factore*s' in the expressioPp~e*t'my(4) and
we can use the results obtained above in most of the varidlirectly gives the time-independent functiorn (¢) which

© 3HZ(¢)

27V (¢)\? 2dyHma—6H(¢) 27V'(¢)
”(¢):\/( 37TH3<¢>) " :

tion range for the inflaton field in chaotic inflation. we are looking for. Indeed we have checked that after a
One can easily check that far<< ¢y, H(¢)<H ., Eg.  sufficiently large timet the distribution of domains followed
(41) yields by the computer with a good accuracy approached the sta-

tionary distributions,(¢) which we have obtained if6] by
a completely different method; see Fig. 1. We used it as a

n(¢)=4d;H V(¢) (42 consistency check for our calculations. In what follows we
MY () will not distinguish betweerP, and the time-independent
factor m1( ).

This expression coincides with the expression for the ampli-

fication coefficient which we obtained earlier by two other . We kept in the cqmputgr memory mforr_nat|on aibout al
methods; see Eq9) and (23). jumps of each domain during the last time interirg] = be-
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6000} the region where the effect takes place. In such a situation an
P(qb) NN expression for the amplification coefficieni($) will be

5000} ! X slightly different from our simple expressiom=X\q¢.
v\ Therefore we should first derive here a more accurate expres-
\ sion for n(¢), and then compare it with the results of our
\ simulations.
\ Consider a point for whichp= ¢, at some timet, at
\ which the stationary regime is already established. At the
Y earlier time t—Hg1 this point was approximately at
/ b= o+ (o) + X, Wherex= §¢ is the sum of all quantum
1000l A jumps experienced by the fielfl at this point during the last
A time intervaIHgl. Consider the probability?(5¢) that the
. z . \ field ¢ jumped to ¢, from the point¢y+ c(¢pg) +x. This

' probability distribution is equal to the distributioRp( )

times the probability of undergoing a quantum fluctuation of
length 6¢:

~~
-

4000

3000¢

2000

FIG. 1. Probability distributionP(¢) for V= ¢*4, A=0.1. X2
The dashed line is the numerical solution to a differential equation P(x)*Pp[ o+ (o) +X]eXp — >32) (43
describingP(¢). The solid curve is obtained using computer simu-

lations described in this paper. A small deviation between the solidChe position of the maximum of the distributid®(x) is
curve and the dashed line is due to the finite size of each step angiven by
the finite grid size.

fore the field ¢ inside this domain becomes smaller than Po[do+C(do)+X] S
¢o- This made it possible to evaluate an average sum of all

jumps of those domains in which the scalar field becamd 0 solve this equation fok we need to knowPp(¢). As
smaller thang, within the last time intervaH, . Naively, ~ earlier we assum®p( )= ¢%? whereg(¢) varies slowly
one could expect this value to be smaller tégy2, since  With ¢. If g’ ¢Ing<¢ Ing (which happens to be a good
the average amplitude of the jumpsHg /2, but they occur ~ @PProximation forg~1), Eq.(44) can be easily solved, and
both in the positive and negative directions. However, oufth® expression fon(¢,) looks as follows:

simulations confirmed our analytical result$p=N,¢pHq/ X

2. In other words, we have found that most of the domains N(¢g)=——

Ppl dotC( o) +X] 12 44)

which reach the hypersurfacg= ¢, within a time interval S(bo)
At=H, ! do it by rolling accompanied by persistent jumps 1 5 5
down, which have a combined amplitugg, times greater ~ m{\/[ $o+C(Po) 17+ 49( o) (o)
thanHq /2.
—[potc(do)]} (45

B. Details of the method One can obtain a slightly more accurate expression by taking

Even though this method of calculations may seem quiténto account the dependencegfc, ands on ¢. Note that in
straightforward(it is the so-called event-tracing Monte Carlo the situation which we are going to investigate
method, in reality it must be somewhat modified. The main ¢¢>C(¢g)>x>5(¢g). In the limit wheng, s, andc can be
problem is obvious if one recalls our expression for the prob<considered constant, anph>s,c this equation leads to our
ability distribution Pp~eMim(¢) at small ¢:  earlier expression(gg)=\1ey.

Pp~ertgp(®7M Ag we already mentionetbmitting the In order to use Eq(45) we also need to know(¢) for
time-dependent factiyrthis yieldsPp~ ¢1% for the realistic  ©OUr Problem. We approximaig(¢) by a secondzorder poly-
valuex~10"22 It is extremely difficult to work with distri- nomial in ¢ and substituteP(¢) = ¢ 214+22¢" into the
butions which are so sharp. differential equation for P(¢). Local analysis around

Therefore in our computer simulations we have studiedp= ¢, shows P(¢)%¢56_23¢_4'/’2. This approximation is
models withx ~0.1, which makes computations possible. Onaccurate forgp~1.
the other hand, when one increases the valuk ah addi-
tional problem arises. Our simple expression C. Numerical calculation of n(¢)

Pp~ ¢(*7VM has been obtained in the limit of very small  Even for not very smallk the distributionPp remains

\, which is not perfectly accurate foar~0.1. Therefore we extremely sharp. We have made our simulations with
will representPp in @ more general formP(¢)=¢%?, )\ _g 1 in which casé®p~ ¢%. This means that if we want
where g(¢) approaches a constant valug6@@/\)A; for g follow the evolution of a single domain wit#= 0.5, then
¢<\""% One should also take into account that the classiwe should simultaneously keep track di°210'® domains

cal decrease(¢) = V'($)/3HH, of the field ¢ during the  with ¢=1. Therefore the simple event-tracing Monte Carlo
time Hy' and the standard deviation s(¢)  approach which we described above can be quite adequate
=(H/2m)JyH/H, (the average amplitude of quantum fluc- for the investigation oPp near its maximum, but not for the
tuations during the timed, ') are not constant throughout study of Pp far away from the maximum of the distribution.
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A more advanced approach is to represent the distribution irs
by evenly spaced points with weight proportional to the dis- 7% -
tribution. In other words, we rewrite the probability distribu- sl Tt .
tion as a finite sum of nearly-functional distributions: ' Tt
N 3 \\v\\
Pe(¢,0~ 2, Pi(¢:0), (46)
= 2.5 e
where , .
()= Pp(¢i) for ¢i<ep<dj,1, @n 5 =5 - ) =
Pil @, 0 otherwise. )

At each step of the simulation we investigate the evolu-
tion of the distributionsp; during the timeAt=uH,*. The
following equation takes into account classical decrease o
the field ¢, quantum fluctuations, and inflation:

FIG. 2. Comparison between the analytical expression for
(¢) (dashed lingand the values fon(¢) obtained by computer
imulations. While the analytical expression is not absolutely pre-
cise due to various assumptiofsuch as constancy @, c, and
) s during the timeH ~1), it does give approximately correct values
D(bt+ At (Hit) 1 ex‘{_(s‘b_(ﬁi‘kc) ) for n.

nr BT s(¢) 25%(¢)

Figure 1 shows thaP(¢) is very close to the correct prob-
ex;{ 3“H(¢’))_ (48) ability distribution. The deviation between the two decreases
H( o) with step size.
The second step is to verify out formula for Figure 2
We find Pp(¢,t+At) by computing the sum of shows that numerically computed valuesrofor different
pi(¢,t+At). Then we normalize the distribution ¢, are close to the ones predicted by the analytical result.
Pr(¢,t+At) and again subdivide into a new setf, in  The deviation is explained by the approximations made in
accordance with Eq46). We repeat this process until the the analytical solutioriconstancy ofy, ¢, ands during time
resulting distributionP, approaches a stationary regime.  H™1). We have found, also, that the typical deviation of the
The most tricky part of the algorithm is to find the ampli- amplitude of jumps from their average valukl/2 is of the
fication factorn(¢p). To do that, we associate another dis- order ofH/27, as suggested by E(R2). This will be impor-
tribution x;(¢,t) with each¢;. Herex;(¢,t) is the sum of tant for our subsequent considerations.
quantum fluctuations during the last time interi#l*, along
all trajectories which ended up in the interval<d¢ VII. SPATIAL STRUCTURE OF INFLOIDS
< ¢;, 1 at the timet. We combine allx;(,t) into a single ]
distribution X(#,t), and evolve it in the same way as AS one can see from E¢38), the value of the field
Pe(¢,1), dividing it into the nearlys-functional distribu- q?(t) corresponding to the t)_/plcal volume-weighted trajecto-
tions x;(¢,t) at every iteration. This is possible because€S moves down more rapidly that one would expect from
xi(¢,t) is approximately Gaussian and its standard deviatiothe classical slow-roll equatiop=—V'($)/3H(¢). This is
is small compared with its mean. When tRg(,t) con-  exactly the reason why such nonperturbatively enhanced tra-
vergesXo( do,t) approximates, from whichn(¢,) can be  Jectories, being surrounded by usual classical neighbors,
calculated. should correspond to the minima in the distribution of den-
some point, after which the accuracy starts to decrease. ThRoints corresponding to the optimal volume-weighted trajec-
decrease is explained by the fact that evolyes are too Oy (38) one should remember Fhat in terms of the _ordlnary
sharp and therefore are represented inaccurately. To avof®moving measur@ the probability of large fluctuations is
this, having fixedN, we must keepi high enough, so that the Suppressed by the factor §xm*(¢)/2]. It is well known
smallest quantum fluctuaticsis wider than the grid spacing. that exponentially suppressed perturbations typically give
The grid spacing is proportional toN/ands is proportional  fise to spherically symmetric bubblgs9]. Let us show first
to \u, and so the minimal/u is proportional to IN. The of all that the_ main part _of the.volume o_f the Universe in a
execution time until convergence is proportionalNg/u,  State with a givenp (or with a given density) corresponds
or for the minimalu it is proportional toN®. In practice the to the centers of these bubbles, which we called infloids.

largestN for which the algorithm converges in a reasonable . Consi_der again the _collection_of all parts of _the Universe
amount of time is of the order of 30 with a given ¢ (or a given densityat a given timet. We
have found that most of the jumps producing this fieid

during the previous time interval ~! occurred from do-

D. Results of numerical calculations mains containing the fielg in a narrow interval of values

The first step is to verify the numerical algorithm by com- near ¢ — ¢/H+n(¢)H/27. The width of this interval was
paring the probability distributioP(¢) it computes with a found to be of the order oH/24, which is much smaller
solution obtained by solving equatid5) obtained in[6].  than the typical depth of our bubbl&g~n(4)H/27, since
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p near the center of each of them. All these regions basically
are very similar, but at any particular moment of titnere
are much more regions with large density since they ap-
peared from the regions which inflated at the nearly Planck-
ian density for a longer time. With time the whole set of
curves should go lower, to smallpr However, at each mo-
ment of time there will be domains with all possible values
of p, so that the distribution of all curves does not change in
time (stationarity. If one looks at the whole picture without
discriminating between states with different values of the
density, it may seem that there is much more space outside
of the centers of the bubbles. However, at any given moment

FIG. 3. A schematic illustration which shows the number of Of time t the main fraction of volume of the Universe in a
infloids with a given density and distribution of matter near their Statewith a given density is concentrated near the centers
centers. of spherically symmetric bubbles. One may look, for ex-

ample, at the density corresponding to the centers of the third
we haven(¢)>1 for all chaotic inflation models. Now sup- row of curves. At this density one may live either near the
pose that the domain containing the figldappears not at the center of any of the 11 infloids or at the walls of only 3 of
center of the bubble, but at its wall. This would mean that thehem. The fraction of the volume near the centers would be
field near the center of the bubble is even smaller than much greater if we try to show the realistic distribution
Such a configuration could be created by a jump frompp(p)~p3x107 of the number of domains with a given den-
¢— ¢p/H+n($)H/27 only if the amplitude of the jump is  sjty in the theoryA ¢*/4.
greater tham(¢)H/27. However, we have found that the  The nonperturbative jumps down should occur on all
main contribution to the volume of domains with a given scales independently. One may visualize the whole process
¢ is produced by jumps of an amplitude(¢)=1]H/27,  as follows. At each given moment most of the volume of the
the greater deviation from the typical amplitudep)H/27  Universe where the field) takes some particular value ap-
being exponentially suppressed. This means that the scalgears close to the centers of infloids created by the nonper-
field ¢ can differ from its value at the center of the bubble byturbati\/e jumps bw(d))H/Zﬂ- The new jumps occur each
no more than the usual amplitude of scalar field perturbationme H~! independently of the previous history of the re-
H/2m, which is smaller than the depth of the bubble by agions with a giveng. Therefore the leading contribution to
factor of n~*(¢). Thus, the main fraction of the volume of the volume will be given by those rare centers of infloids
the Universe with a givenp (or with a given density of where the field¢ jumps down byn(¢)H/27 again and
matte) can be only slightly outside the center. This may leadagain. That is why the typical volume-weighted trajectories
to a small contribution to the anisotropy of the microwavepermanenﬂy go down with a Speed exceeding the Speed of
background radiation. classical rolling byn($)H?/27; see Eqs(38) and (41).

We should emphasize that all our results are based on the One may visualize the resulting distribution of the scalar
investigation of the global structure of the Universe rathefie|d in the following way. At some scale the deviation of
than of the structure of each particular bubble. This is Whythe field ¢ from homogeneity can be approximate'y repre-
we assert that our effect isonperturbative If one neglects sented as a well of a radiuswith the depthn(¢)H/21r.
that the Universe is a fractal and looks only at one particulaiear the bottom of this well there is another well of a smaller
bubble(i.e., at the one in which we live ngwthen one can radius e Ir and approximately of the same depth

find that inside each bubble there is a plenty of space fap(4)H/2+. Near the center of this well there is another well
away from its center. Therefore one could conclude thabs 5 radiuse2r, etc. In particular, in the theory ¢*/4 the
there is nothing special about the centers of the bubble%epth of each well will be Bl ,,H ¢/27. Of course, this is

However, when determining the fraction of domains near thest a discrete model. The shape of the smooth distribution of
centers we were comparing the volumesalif regions of  ihe scalar field is determined by the equation
equaldensity at equal time. Meanwhile, the density,, of

matter on the walls of a bubble is greater than the density d¢ 3HmaH @ 3\
ini ized in the discussi - = V5 Hmat® (49)
Pcenterin its center. As we have emphasized in the discussion dinrH 2 2 Tmax®s
after Eq.(20), the total volume ofall domains of density
pwai 1S greater than the total volume of all domains of den-which gives

Sity peenter Y the factor puai/p cene) > 1% Thus, it is cor-
rect that the volume of space outside the center of the bubble P2(r)~ $%(0)
is not smaller than thg space near the center. Hoyvever, going 1—H, ., $%(0) J(6N7)InrH
outside the center brings us to the region of a different den- (50)
SitY, pwall™ Peenterr OUr results imply that one can find much
more space Withh= p o NOt at the walls of our bubble, but Note that¢(r)~¢(0) for r<H™?! (there are no perturba-
near the centers ajther bubbles. tions of the classical field on this scale

This situation can be very schematically illustrated by This distribution is slightly altered by the usual small per-
Fig. 3. We do not make an attempt to show the spatial disturbations of the scalar field. At a distance much greater than
tribution of infloids. Rather we show the density distribution their wavelength from the center of the well these perturba-

for r>H™ L.
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tions have the usual magnitud®/2+. Thus, our results do tive jumps look very similar to tunneling with the bubble
not lead to considerable modifications of the usual densitformation. However, unlike in the case considered in
perturbations which lead to galaxy formation. However, the[20,21], our bubbles appear on all length scales.
presence of the deep weB0) can significantly change the  The results discussed above refer to the density distribu-
local geometry of the Universe. tion at the moment when the corresponding wavelengths
In the inflationary scenario with'($)=(\/4)¢* fluctua-  were entering horizon. At the later stages gravitational insta-
tions which presently have a scale comparable with the hopjlity should lead to growth of the corresponding density
nzon radiusr,~10°® cm have been formed @~5 (in the  pertyrbations. Indeed, we know that density perturbations on
units Mp=1). As we have mentioned alreadyH3ax  the galaxy scale have grown more tharf Ines in the

~2,/67m~8.68 for our choice of boundary condition®] |inear growth regime until they reached the amplitude
and the typical nonperturbative jump down on the scale ofy

) , plp~1, and then continued growing even further. The
the present horizon should beH3.,¢~40 times greater same can be expected in our case, but even in a more dra-
than the standard jump;

A : see EO). In the theory maiic way since our “density perturbations” on all scales
(M/4)¢" the standard jumps lead to density perturbations ofre mych greater than the usual density perturbations which

the amplitude are responsible for galaxy formation. This would make the
= center of the well very deep; its density should be many
@N 26N $3~5x1075 orders of magnitude smaller than the density of the Universe

P 5 on the scale of horizon. This is not what we see around.

This problem can be easily resolved. Indeed, our effect
but not the amplitude of the usual density perturbatioss
Gr‘oportional toH,ax, Which is the maximal value of the
Hubble constant compatible with inflation. If, for example,

(in the normalization of2]). Thus, according to our analysis,
the nonperturbative decrease of density on each length sc
different from the previous one by the factershould be

about the maximal energy scale in quantum gravity or in string
theory is given not by 1 GeV, but by 18° GeV, then the
S 66\ :
P HmaquT P*~2x10"3. parameteH ., Will decrease by a factor 16. Therefore the

nonperturbative effects can be strongly suppressed in the

This allows one to evaluate the shape of the resulting well i ioc:1deedls wigrgcgyfrg;l:igfde;?eg? ?napneerWA;&?igLre:?ey g/eerr]{
the density distribution as a function of the distance from itsmuch ’smallgr since thersl s alwavs manv orders of
center. One can write the following equation for the scale . ' max = y y
depend f densitv: magnitude smaller than 1. Inflationary Brans-Dicke cosmol-
pendence of density: . S :

ogy in cases when the probability distributi®p is station-
1 dp 66N , ary also Ie.a(js to negligibly small nonperturbative gffects
P T —HmaxT¢> , (61  [13]. Thus it is easy to make our effect very small without
p din(r/ro) disturbing the standard predictions of inflationary cosmol-
ogy. However, it is quite possible that we will not have any
difficulties even with very largen(¢) if we interpret our
r )1/2 results more carefully.

wherer is the distance from the center of the well. Note that

In —

in the theory §/4)¢* [2]. Herer, corresponds to the small-
est scale at which inflationary perturbations have been pro-
duced. This scale is model dependent, but typically at present An implicit hypothesis behind our interpretation is that we
itis about 1 cm. This yields are typical, and therefore we live and make observations in
those parts of the Universe where most other people do. One
Ap _p(r)—p(ro) 2H max\/alng r may argue that the total number of observers which can live
Pe p(ro) 5737 To

in domains with given propertiege.g., in domains with a

given density should be proportional to the total volume of
This gives the typical deviation of the density on the scale ofhese domains at a given time. However, our existence is
the horizor{where In¢,,/r;)~60] from the density at the cen- determined not only by the local density of the Universe but
ter: by the possibility for life to evolve for abouts10° years on

a planet of our type in a vicinity of a star of the type of the
Ap op , Sun. If, for example, we have density 7 gem 3 in a
p—c~7507~4>< 107~ small vicinity of the center of the infloid, and density

10"2" g cm 2 on the horizon scale, then the age of our part

It is very tempting to interpret this effect in such a way of the Universe(or, to be more accurate, the time after the

that the Universe around us becomes locally open, wittend of inflation will be determined not by the density near
1-Q~101. Indeed, our effect is very similar to the one the center of the infloid, by the large scale density
discussed if20,21], where it was shown that the Universe 10 27 g cm 2, and it will be only about X 10° years.
becomes open if it is contained in the interior of a bubble Moreover, any structures such as galaxies or clusters can-
created by the @) symmetric tunneling. Our nonperturba- not be formed near the centers of the infloids since the den-

VIIl. INTERPRETATION AND POSSIBLE
IMPROVEMENTS OF THE PROBABILITY MEASURE

(52
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sity there is very small. Indeed, on each particular scale thetrization which is most closely related to our own nature
jump down completely overwhelms the amplitude of the(time measured by number of oscillations rather than by the
usual density perturbations. The bubble cannot contain anglistance to the nearby galaxie®ut maybe we should use
galaxies at the distance from the center comparable with thanother time parametrizatigqsee the Appendjxor even in-
galaxy scale, it cannot contain any clusters at the distancegrate over all possible time parametrizations. Right now we
comparable with the size of a cluster, etc. In other words, thetill do not know what is the right way to go. We do not even
center would be devoid of any structures necessary for thknow if it is right that we are typical and that we should live
existence of our life. in domains of the greatest volume; see the discussion of this
Thus, the naive idea that the number of observers is proproblem in[6,8,15.
portional to volume does not work at the distances from the Therefore at present we would prefer to consider our re-
centers which are smaller than the present size of the horsults simply as a demonstration of the nontrivial properties of
zon. Even though at any given moment of time most of thethe hypersurface of a given time in the fractal self-
volume of the Universe at the density 7 gcm 2 is con-  reproducing universe, without making any far-reaching con-
centrated near the centers of infloids, the corresponding partdusions concerning the structure of our own part of the Uni-
of the Universe are too young and do not have any structuregerse. However, we must admit that we are amazed by the
necessary for our existence. Volume alone does not medact that the main fraction of the volume of the inflationary
much. We live on the surface of the Earth even though theiniverse in a state with a given densjyat any given mo-
volume of empty space around us is incomparably greater.ment of proper timé should be concentrated near the centers
One may argue that the disparity between the age of thef deep spherically symmetric wells. We confirmed this re-
local part of the Universe and its density appears only if onesult by four different methods, and we believe that it is cor-
considers perturbations on a scale smaller than the horizonect. Until the interpretation problem is resolved, it will re-
Therefore it still may be true that we should live in the cen-main unclear whether our result is just a mathematical
ters of huge bubbles, which have a sh#pg) for r>H51, curiosity or can be considered as a real prediction of proper-
whereH, ! is the size of the present horizon. If the cutoff ties of our own part of the Universe. At present we can
occurs atr>H, %, this may not lead to any observable con- neither prove nor disprove the last possibility, and this by
sequences at all. However, if the cutoff occurs a{Hal’ itself is a very unexpected conclusion. A few years ago we

the resulting geometry may resemble an open Universe witould say that the possibility that we live in a local “center
a scale-dependent effective paramé¥r) [3]. Thus a more of the world” definitely contradicts ba_3|c principles of cos-
elaborate choice of the probability measure may lead to opT0l09y. Now we can only say that it is an open question to
servable effects which will be interesting and less dramatiﬁe studied both theoretically and experimentally. If some-
than the effects described in the previous section. In order t ody .asks whether we should l'.V? in the center O.f the world,
make any definite conclusions about the preferable parts o€ will be unable to give a def!mte answer. But if observa-
the Universe one should study probability distributions!!ONS show us that the answer is yes, we will know why.
which include several other factors in addition to density.
This should be a subject of a separate investigation. The ACKNOWLEDGMENTS
main goal of our paper was to demonstrate that in a certain i
class of theories with a rather reasonable choice of probabil- The authors are grateful to J. GardBellido, V. Mukha-
ity measure the nonperturbative effects may be quite sub?ov, and A. Vilenkin for many valuable discussions. This
stantial. This result by itself was very surprising, and wework was supported in part by NSF Grant No. PHY-
believe that it deserves further investigation despite all un8612280.
certainties involved.

An additional ambiguity in the interpretation of our re-
sults appears due to the dependence of the distrib&tjoon
the choice of time parametrization. Indeed, there are many Let us consider a different time parametrization, related to
different ways to define “time” in general relativity. If, for the proper time by local path dependent transformation:
example, one measures time not by a clock but by rulers and
determines time by the degree of a local expansion of the ¢
Universe, then in this “time” the rate of expansion of the tar(t)=f dsT(¢«(s)), (A1)
Universe does not depend on its density. As a result, our
effect is absent in this time parametrizati8]. The reason
why the results depend on the time parametrization is deeplwhereT(¢) is a positive function, and its argument in Eq.
related to the properties of a self-reproducing universe. ThéAl) is a solution of Eq(5) with a particular realization of
total volume of all parts of such a universe diverges in thethe white noise. The stochastic Langevin equation in this
large time limit. Therefore when we are trying to find which parametrization looks like
parts of the Universe have a greater volume we are compar-
ing infinities. There are some methods to regularize these do V' () H32( )
infinities in a way that would make the final results only ——=- + 7
mildly dependent on the choice of time parametrization dr 3H(#)T(¢) 27TH(¢)
[7,8]. However, there are many such methods, and the final
results are exponentially sensitive to the choice of the The branching diffusion equation in an arbitrary time pa-
method[8]. In this paper we used the standard time paramfametrization can be written as

APPENDIX
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E_PP(Q{)!T):E %{ZWTUZ( ¢) @(ZWTlIZ(d)) PP(d)’T))
a [ V(g )
* a¢><3H<¢>T<¢>> Pr(é.7)
3H(¢)
T gy PP (A3)

Its solution will generally be a stationary probability func-

tion with an overall constant expansion factor just like in Eq.

(14). The value of the constant; will depend on the param-
etrization.

We can find the volume-weighted slow-roll trajectory of
the inflaton field in an arbitrary parametrization very simi
larly to the approach used for proper time, but we have t
keep in mind that it is no longer true that=d;H.. The
result is

d Vg 12 H($)| H(9)
dar \/(3H<¢>T<¢>) *(M‘ST<¢>)2W2T<¢3A4)

Since the conventiondl.e., calculated under the comov-

NONPERTURBATIVE AMPLIFICATION OF . ..
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d¢é "(¢) \° H%(¢)
E: - \/(3H2(¢)) +()\1_3)W (A6)
and
27V ($)\? 2wV’ ()
n(¢)= \/(SH?’—W) +2(R1—3)—3H3—W.
(A7)

Since A1 <3, in this time parametrization the volume-
weighted slow roll(A6) is not faster but slightly slower than

C}he conventional slow roll. As a result, most of the volume

on the hypersurfaces of constant “time* will be concen-
trated near the spherically symmetric hiltather than wells

in the energy density. However, the amplification factor is
always very small.

The change of time parametrizatidAl) corresponds to
one of the possible ways to choose regularization procedure
for evaluation of divergent probabilities in an eternally ex-
panding univers€8]. Other types of regularization procedure

ing probability amplitude of the quantum jumps generatedWere proposed in7,8]. In particular, the regularization

during the typical time interval 7~T(#)H () in the

scheme suggested fii] is essentially equivalent to choosing

given time parametrization is still given by the usual quantitythe T=H parametrization which we discussed abdés.

H/27 [see the Langevin equatigA2) abovd, then the defi-
nition for amplification factor becomes

22V (¢))|? H(#)\2T(¢)
n(#)= \/< 3H%( &) ) +(“_3T<¢>) H(e)
21V ()

In the particular case of the time parametrizatiba H,
which corresponds to the scale facidt) playing the role of
time 7, we get

One can easily verify that in the limib<< ¢4, our equations

for the T=H parametrization, EqgA6) and (A7), yield the
same results for the nonperturbative jumps as the ones ob-
tained in[7]. As is argued in[8] from the point of view of

the interpretation of our results it is not obvious that this
regularization has any advantages as compared to a more
intuitive and straightforward approach used in the main part
of this paper. However, each regularization scheme and each
time parametrization gives an additional interesting informa-
tion about the structure of an inflationary universe. Therefore
we presented in this appendix an extension of our results for
the more general class of time parametrizatiohs).
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