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We investigate the distribution of energy density in a stationary self-reproducing inflationary universe. W
show that the main fraction of volume of the Universe in a state with a given densityr at any given moment
of proper timet is concentrated near the centers of deep exponentially wide spherically symmetric wells in th
density distribution. Since this statement is very surprising and counterintuitive, we perform our investigatio
by three different analytical methods to verify our conclusions, and then confirm our analytical results b
computer simulations. If one assumes that we are typical observers living in the Universe at a given mome
of time, then our results may imply that we should live near the center of a deep and exponentially large voi
which we will call an infloid. The validity of this particular interpretation of our results is not quite clear
since it depends on the as-yet unsolved problem of measure in quantum cosmology. Therefore, at the mom
we would prefer to consider our results simply as a demonstration of nontrivial properties of the hypersurfac
of a given time in the fractal self-reproducing universe, without making any far-reaching conclusions concern
ing the structure of our own part of the Universe. Still we believe that our results may be of some importanc
since they demonstrate that nonperturbative effects in quantum cosmology, at least in principle, may ha
significant observational consequences, including an apparent violation of the Copernican principle
@S0556-2821~96!03816-7#

PACS number~s!: 98.80.Cq, 98.80.Bp, 98.80.Hw
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I. INTRODUCTION

According to the Copernican principle, the only spec
thing about the Earth is that we are living here. We are no
the center of the Universe, as people thought before. T
point of view is reflected also in the so-called cosmologic
principle, which asserts that our place in the Universe is
no means special and that the space around us has t
homogeneous and isotropic after smoothing over sm
lumps of matter. This principle lies in the foundation of co
temporary cosmology@1# since it has not only definite philo
sophical appeal but also an apparent observational confir
tion by a host of data on the large scale structure of
Universe. However, theoretical interpretation of this pri
ciple is usually based on the big bang picture of the Unive
and its evolution, inherently related to a simple geometry
the Friedmann-Robertson-Walker-type. The only theoret
justification of the homogeneity and isotropy of the Univer
which is known to us at present is based on inflationa
cosmology. But this theory simultaneously with explainin
why our Universe locally looks so homogeneous predi
that on an extremely large scale the Universe must be
tremely inhomogeneous@2#. Thus, after providing certain
support to the cosmological principle, inflationary theo
eventually removes it as having only limited validity. Bu
until very recently we did not suspect that inflation may i
validate the Copernican principle as well, since there is no
ing about inflation which would require us to live in th
center of the Universe.
54-2821/96/54~4!/2504~15!/$10.00
ial
t at
his
al
by
o be
all
n-
-
ma-
the
n-
rse
of
ical
se
ry
g
cts
ex-

ry
t
n-
th-
e

The situation became less obvious when we studied
global structure of an inflationary universe in the chaot
inflation scenario, and found that according to a very wid
class of inflationary theories, the main fraction of volume
the Universe in a state with a given densityr at any given
moment of timet ~during or after inflation! should be con-
centrated near the centers of deep exponentially wide sph
cally symmetric wells in the density distribution@3#. This
result is based on investigation of nonperturbative effects
the theory of a fractal self-reproducing universe1 in the cha-
otic inflation scenario@4#.

Observational implications of this result depend on its i
terpretation. If we assume that we live in a part which
typical—and by ‘‘typical’’ we mean those parts of the Uni
verse which have the greatest volume with other paramet
~time and density! being equal—then our result implies tha
we should live near the center of one of the wells in th
density distribution. There should be many such wells in t
Universe, but each of them should be exponentially wide.
what follows we will call these wells ‘‘infloids.’’ An ob-
server living near the center of an infloid will see himself ‘‘in
the center of the world,’’ which would obviously contradic
the Copernican principle.

One should clearly distinguish between the validity of ou

1Self-reproduction of the Universe is possible in the new inflatio
ary theory as well@5#, but as we will see, in this theory the effec
which we are going to discuss is negligibly small.
2504 © 1996 The American Physical Society
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result and the validity of its interpretation suggested abo
Even though the effect by itself is rather surprising we thin
that it is correct. We verified its validity by three independe
analytical methods, as well as by computer simulation
Meanwhile, the validity of its interpretation is much les
clear. The main problem is related to the ambiguity in th
choice of measure in quantum cosmology@6#. There are in-
finitely many domains with similar properties in a self
reproducing inflationary universe. When we are trying
compare their volumes, we are comparing infinities. The
sults of this comparison depend on the choice of the regu
ization procedure. The prescription that we should comp
volumes at a given timet in synchronous coordinates is in
tuitively appealing, but there exist other prescriptions whi
lead to different conclusions@3,6–8#. Until the interpretation
problem is resolved, we will be unable to say for su
whether inflationary cosmology actually predicts that w
should live in a center of a spherically symmetric well. St
this possibility is so interesting that it deserves a detail
investigation even at our present, admittedly rather inco
plete level of understanding of quantum cosmology. This
the main purpose of our paper.

In Sec. II we will give a short review of the theory of a
self-reproducing universe in the chaotic inflation scena
and discuss which type of phenomena should be called ty
cal in such a universe. Then we will describe two approach
to the problem of estimating the typical magnitude of th
quantum fluctuations under the volume-weighted measu
The first, developed in Sec. III, is based on counting t
balance of probability factors. The second is based on
investigation of the probability distributionPP(f,t). This
distribution describes the portion of the physical volume
the Universe which contains the fieldf at the timet. Ac-
cording to@6#, this distribution rapidly approaches a station
ary regime, where the portion of the physical volume of th
Universe containing the fieldf becomes independent o
time. Investigation of this distribution in Sec. IV will allow
us to derive the results obtained in Sec. III in a different wa
In Sec. V we will develop a path integral approach to th
investigation ofPP(f,t). The new method provides anothe
way to confirm our results. However, this method is intere
ing by itself. It gives us a new powerful tool for investigatio
of the global structure of the self-reproducing univers
which may be useful independently of the existence of t
effect discussed in this paper. In Sec. VI we will describ
computer simulations which we used to verify our analytic
results. Only then, after we make sure that our rather co
terintuitive results are actually correct, will we describe the
possible interpretation and their observational consequen
In Sec. VII we will describe the structure of infloids, thei
evolution after the end of inflation, and their observation
manifestations. In Sec. VIII we will discuss our results, am
biguities of their interpretation, and formulate our conclu
sions. In the Appendix we present a generalization of o
results for different time parametrizations.

II. SELF-REPRODUCING UNIVERSE

Let us consider the simplest model of chaotic inflatio
based on the theory of a scalar fieldf minimally coupled to
gravity, with the effective potentialV(f). If the classical
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field f ~the inflaton field! is sufficiently homogeneous in
some domain of the Universe, then its behavior inside this
domain is governed by the equations

f̈13Hḟ52V8~f!, ~1!

H21
k

a2
5

8p

3MP
2 @ 1

2 ḟ21V~f!#. ~2!

HereH5ȧ/a,a(t) is the scale factor of the Universe, and
k511,21, or 0 for a closed, open, or flat universe, respec-
tively. MP is the Planck mass, which we will put equal to 1
in the rest of the paper.

Investigation of these equations has shown that for man
potentialsV(f) @e.g., in all power-lawV(f);fn and expo-
nential V(f);eaf potentials# there exists an intermediate
asymptotic regime of slow rolling of the fieldf and quasiex-
ponential expansion~inflation! of the Universe@2#. At this
stage, which is called inflation, one can neglect the termf̈ in
Eq. ~2!, as well as the termsk/a2 and (4p/3)ḟ2 in Eq. ~2!.
Therefore during inflation

H5A8pV

3
, ḟ52

V8~f!

3H
. ~3!

In the theoriesV(f);fn inflation ends atf5fe , where
fe;1021n.

Inflation stretches all initial inhomogeneities. Therefore, if
the evolution of a universe were governed solely by classica
equations of motion, we would end up with an extremely
smooth universe with no primordial fluctuations to initiate
the growth of galaxies. Fortunately, new density perturba
tions are generated during inflation due to quantum effects
The wavelengths of all vacuum fluctuations of the scalar
field f grow exponentially in the expanding Universe. When
the wavelength of any particular fluctuation becomes greate
thanH21, this fluctuation stops oscillating, and its amplitude
freezes at some nonzero valuedf(x) because of the large
friction term 3Hḟ in the equation of motion of the fieldf.
The amplitude of this fluctuation then remains almost un-
changed for a very long time, whereas its wavelength grow
exponentially. Therefore, the appearance of such a froze
fluctuation is equivalent to the appearance of a classical fiel
df(x) that does not vanish after averaging over macroscopi
intervals of space and time.

Because the vacuum contains fluctuations of all wave
lengths, inflation leads to the creation of more and more
perturbations of the classical field with wavelengths greate
thanH21. The average amplitude of such perturbations gen
erated during a time intervalH21 ~in which the Universe
expands by a factor ofe) is given by

udf~x!u5
H

2p
. ~4!

The phases of each wave are random. It is important also th
quantum fluctuations occur independently in all domains o
the inflationary universe of a size greater than the radius o
the event horizonH21. Therefore, the sum of all waves at
any given region of a sizeO(H21) fluctuates and experi-
ences Brownian jumps in all directions in the space of fields
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The standard way of description of the stochastic behavio
the inflaton field during the slow rolling stage is to coar
grain it over separate domains of radiusH21 ~we will call
these domains ‘‘h regions’’ @9,10#, to indicate that each of
them has a radius coinciding with the radius of the ev
horizonH21! and consider the effective equation of motio
of the long-wavelength field@11,4#:

d

dt
f52

V8~f!

3H~f!
1
H3/2~f!

2p
j~ t !, ~5!

Herej(t) is the effective white noise generated by quantu
fluctuations.

Let us find the critical valuef* such that for
V(f),V(f* ) the classical slow roll dominates the evolu
tion of the inflaton, while forV(f).V(f* ) the quantum
fluctuations are more important. Within the characteris
time intervalDt5H21 for values of inflaton near the critica
value f* the classical decreaseDf5ḟDt of the inflaton,
defined through Eqs.~3!, is of the same magnitude as th
typical quantum fluctuation generated during the same
riod, given by Eq.~4!. After some algebra we get from Eqs
~3! and ~4! the relation definingf* implicitly:

3H3~f* !

2pV8~f* !
5H~f* !

4V~f* !

V8~f* !
;1. ~6!

Let us consider for definiteness the theoryV(f)
5lf4/4. In this case Eq.~6! yields f*;l21/6. One can
easily see that iff,f* , then the decrease of the fieldf due
to its classical motionDf51/2pf is much greater than the
average amplitude of the quantum fluctuatio
df5Al/6pf2 generated during the same characteris
time interval H21. But for f.f* , df(x) will exceed
Df; i.e., the Brownian motion of the fieldf will become
more rapid than its classical motion. Because the typ
wavelength of the fluctuationsdf(x) generated during this
time isH21, the whole Hubble domain after the timeH21

becomes effectively divided intoe3 h regions, each contain
ing almost homogeneous~but different from each other! field
f2Df1df.

In almost half of these domains~i.e., in e3/2;10 h re-
gions! the field f grows by udf(x)u2Df'udf(x)u
5H/2p, rather than decreases. During the next time inter
Dt5H21 the field grows again in the half of the newh
regions. Thus, the total number ofh regions containing
growing fieldf becomes equal to (e3/2)25e2 (32 ln2). This
means that until the fluctuations of fieldf grow sufficiently
large, the total physical volume occupied by permanen
growing fieldf ~i.e., the total number ofh regions contain-
ing the growing field f) increases with time like
exp@(32ln2)Ht#. This leads to the self-reproduction of infla
tionary domains withf.f* in the chaotic inflation scenario
@4#.

Note that the greater is the value of the effective potent
the greater is the rate of exponential expansion of the U
verse. As a result, the main growth of the total volume of t
Universe occurs due to exponential expansion of the
mains with the greatest possible values of the Hubble c
stantH5Hmax @4,6#. In some models there is no upper boun
to the value ofH @12,13#. However, in the simplest version
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of chaotic inflation based on Einstein’s theory of gravity
there are several reasons to expect that there exists an up
bound for the rate of inflation@6,14,15#.

In what follows we will assume that there is an upper
boundH max on the value of the Hubble constant during in-
flation. For definiteness we will assume thatHmax5A8p/3,
which corresponds to the Planck boundaryV(fP)51. This
is a rather natural assumption for chaotic inflation. However
one should note that in some modelsHmax may be much
smaller. In particular, in the new inflation scenario
Hmax5A8pV(0)/3 is many orders of magnitude smaller
than 1.

The independence of the subsequent evolution of theh
region on its previous history, the dominance of the domain
where the inflaton field energy grows rather than decreases
the volume-weighted measure, and the upper bound for th
energies at which the inflation can proceed are the three ma
features inherent to many models of inflation. When all thes
features are present the evolution of the inflationary univers
as a whole approaches a regime which we calledglobal sta-
tionarity in @6#. This stage is characterized by the stability of
the distribution of regions with various local values of en-
ergy density and other parameters, while the number of suc
regions grows exponentially with a constant coefficient, pro
portional to the maximal possible rate of inflation
l15dfrH max. Heredfr is a model-dependent fractal dimen-
sion of the classical space@9,6#, which is very close to 3 for
small coupling constants of the inflaton field.

The new picture of the Universe is extremely unusual, an
it may force us to reconsider our definition of what is typical
and what is not. In particular, the standard theory of the larg
scale structure of the Universe is based on the assumpti
that a typical behavior of the scalar field at the last stages o
inflation is described by Eqs.~3! and ~4!. This is indeed the
case if one studies a single branch of an inflationary univers
beginning atf!f* . However, if one investigates the global
structure of the universes at allf and tries to find the typical
behavior ofall inflationary domainswith a volume-weighted
measure, the result may appear to be somewhat different.

III. STATIONARY INFLATION AND NONPERTURBATIVE
EFFECTS

Suppose that we have one inflationary domain of initia
sizeH21, containing a scalar fieldf.f* . Let us wait 15
3109 years~in synchronous timet in each part of this do-
main! and see what are the typical properties of those par
of our original domain which at the present moment have
some particular value of density, e.g.,r510229 g cm23.
The answer to this question proves to be rather unexpecte

This domain exponentially expands, and becomes divide
into many new domains of sizeH21, which evolve indepen-
dently of each other. In many new domains the scalar fiel
decreases because of classical rolling and quantum fluctu
tions. The rate of expansion of these domains rapidly de
creases, and they give a relatively small contribution to th
total volume of those parts of the Universe which will have
density 10229 g cm23 153109 years later. Meanwhile, those
domains where quantum jumps occur in the direction o
growth of the fieldf gradually push this field towards the
upper bound where inflation can possibly exist, which is pre
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sumably close to the Planck boundaryV(fP);1. Such do-
mains for a long time stay near the Planck boundary, a
exponentially grow with Planckian speed. Thus, the long
they stay near the Planck boundary, the greater the contr
tion to the volume of the Universe they give.

However, the domains of interest for us eventually sho
roll down and evolve into the regions with densi
10229 g cm23. Thus, these domains cannot stay near
Planck boundary for an indefinitely long time, producing
new volume with Planckian speed. However, they will d
their best if they stay there as long as possible, in orde
roll down at the latest possible moment. In fact they will d
even better if they stay near the Planck boundary e
longer, to save time for additional rapid inflation, and th
rush down with a speed exceeding the speed of class
rolling. This may happen if quantum fluctuations coheren
add up to large quantum jumps towards smallf. This pro-
cess is dual to the process of perpetual climbing up, wh
leads to the self-reproduction of an inflationary universe.

Of course, the probability of large quantum jumps dow
is exponentially suppressed. However, by staying longer n
the Planck boundary inflationary domains get an additio
exponentially large contribution to their volume. These tw
exponential factors compete with each other to give us
optimal trajectory by which the scalar field rushes down
those domains which eventually give the leading contrib
tion to the volume of the Universe. From what we are say
it should be clear that the quantum jumps of the scalar fi
along such optimal trajectories should have a greater am
tude than their regular valueH/2p, and they should prefer-
ably occur downwards. As a result, the energy density alo
these optimal trajectories will be smaller than the ene
density of their lazy neighbors which prefer to slide dow
without too much jumping. This creates wells in the dist
bution of the energy density, which we called infloids@3#.

Suppose that the extra time interval spent at the high
energies isD̃t. Then we win the volume by a factor o
exp(dfrHmaxD̃t). However, to compensate for the lost tim
the inflaton fieldf has to jump at least once~let us say,
when it reaches the valuef) with amplitude

d̃ f5n(f)H(f)/2p such that it covers in one jump the dis
tance which would otherwise require timeD̃t to slowly roll
down:

D̃t~f!5
d̃f

ḟ
5
n~f!H~f!/2p

ḟ
5n~f!

4V~f!

V8~f!
, ~7!

where we introduced the factorn(f) by which the jump is
amplified, i.e., by which it is greater than the standard jum
H(f)/2p. The probability of such a jump is suppressed
the factor exp@21

2n
2(f)]. The leading contribution to the

volume of the Universe occurs due to the jumps which ma
mize the volume-weighted probability:

P;exp@dfrHmaxD̃t~f!2 1
2n

2~f!#

5expS dfrHmaxn~f!
4V~f!

V8~f!
2 1

2n
2~f! D . ~8!
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Maximizing with respect ton(f) gives the amplification fac-
tor as a function of the location of the jump on the inflato
trajectory:

n~f!54dfrHmax

V~f!

V8~f!
. ~9!

In fact, we have found@3# that the typical trajectories which
give the leading contribution to the volume of the Univers
consist entirely of such subsequent jumps. In what follow
we will give an alternative derivation of this result. Mean
while, comparing with Eq.~6! one immediately sees that
n(f)@1 for f,f* , since dfr;3 and Hmax@H(f) for
such values of the inflaton field in chaotic inflation. There
fore, our treatment of these quantum fluctuations as large a
rear quantum jumps is self-consistent.

To avoid misunderstandings one should note that a mo
accurate definition of the amplification coefficient would b
n(f)11. Indeed, in the absence of nonperturbative effec
we would haven(f)50 since perturbative jumps occur in
both directions with equal probability. The coefficientn(f)
relates an additional amplitude of jumpsdown to the regular
perturbative amplitude of the jumps in both directions. Th
subtlety will not be important for us here since we are inte
ested in the casen@1.

It is interesting that the coefficient of the amplification
n(f) can be directly related to the ratio of amplitudes o
conventional scalar and tensor perturbations generated at
same scale at which the jump occurs. The amplitudes
these perturbations can be written as

AS
pert~f!5S dr

r D
S

5cS
H2~f!

2pḟ
,

AT
pert~f!5S dr

r D
T

5cT
H~f!

MP
. ~10!

HerecS andcT are some coefficients of the order of unity
Using these expressions we can rewrite Eq.~9! for dfr;3 in
the form

n~f!5
3cT
cS

Hmax

MP

AS
pert~f!

AT
pert~f!

. ~11!

In the same way as the conventional amplitude of jum
H/2p is related to the well-known perturbations of the back
ground energy density, the ‘‘nonperturbatively amplified
jumps which we have just described are related to the ‘‘no
perturbative’’ contribution to deviations of the backgroun
energy density from its average value. A possible interpre
tion of this result is that at the length scale associated w
the value of the fieldf there is an additional nonperturbative
contribution to themonopoleamplitude:

AS
nonpert~f!5S 3cTcS Hmax

MP

AS
pert~f!

AT
pert~f!

DAS
pert. ~12!

We will discuss the structure of infloids and their possib
observational consequences in Sec. VII. Here we only no
that Eq. ~11! gives a simple tool for understanding of the
possible significance of the effect under consideration. I
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deed, in the simplest chaotic inflation models, such as
theory (l/n)fn, one has Hmax;MP and AS

pert(f)
@AT

pert(f); thus, one hasn(f)@1. On the other hand, in th
versions of chaotic inflation scenario where inflation occ
near a local maximum of the effective potential~as in the
new inflation models! Hmax is many orders of magnitud
smaller thanMP , and therefore the nonperturbative effec
discussed above are negligibly small. Thus, investigation
nonperturbative effects can give us a rather unexpected
sibility to distinguish between various classes of inflationa
models. We will return to this issue at the end of the pap

IV. NONPERTURBATIVE EFFECTS
AND BRANCHING DIFFUSION

One of the best ways to examine nonperturbative effe
is to investigate the probability distributionPP(f,t) to find a
domain of a given physical volume in a state with a giv
field f at some moment of timet. The distribution
PP(f,t) obeys the following branching diffusion equatio
@10,16,6#:

]PP

]t
5

]

]f FH3/2~f!

2A2p

]

]f S H3/2~f!

2A2p
PPD 1

V8~f!

3H~f!
PPG

13H~f!PP . ~13!

This equation is valid only during inflation, which typ
cally occurs within some limited interval of values of th
field f: fmin,f,fmax. In the simplest versions of the cha
otic inflation modelfmin[fe;1, wherefe is the boundary
at which inflation ends. Meanwhile, as we argued in the p
vious section,fmax is close to the Planck boundaryfP ,
whereV(fP)51. To find solutions of this equation one mu
specify the boundary conditions. The behavior of the so
tions typically is not very sensitive to the boundary con
tions atfe ; it is sufficient to assume that the diffusion c
efficient @and, correspondingly, the double derivative term
the right-hand side~RHS! of Eq. ~13!# vanishes forf,fe
@6#. The conditions near the Planck boundary play a m
important role. In this paper we will assume that there can
no inflation atV(f).1, which corresponds to the bounda
conditionPP(f,t)uf.fP

50. At the end of the paper we wil

discuss possible modifications of our results iffmax differs
from fP .

One may try to obtain solutions of Eq.~13! in the form of
the eigenfunction series

PP~f,t !5(
s51

`

elstps~f! ;
t→`

el1tp1~f!, ~14!

where, in the limit of large timet, only the term with the
largest eigenvaluel1 survives. The functionp1(f) in the
limit t→` has the meaning of a normalizedtime-
independent probability distribution ~so-called invariant
probability density of the branching diffusion! to find a given
field f in a unit physical volume, whereas the factorel1t

shows the overall growth of the volume of all parts of t
Universe, which does not depend onf in the limit t→`.
This ‘‘ground state’’ eigenfunction satisfies the equation
the
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]f FH3/2~f!

2A2p

]

]f S H3/2~f!

2A2p
p1~f!D 1

V8~f!

3H~f!
p1~f!G

13H~f!p1~f!5l1p1~f!. ~15!

In the limit when we can neglect the diffusion~second
derivative! term it is easy to solve this equation:

p1~f!5C~f0!
3H~f!

V8~f!
exp

3S 2E
f

f0Fl1

3H~z!

V8~z!
2
9H2~z!

V8~z! Gdz D , ~16!

where we chose some starting pointf0 and the correspond-
ing normalization constantC(f0) which should match this
approximate solution to the exact one at this point. As be
fore, let us introduce the fractal dimension of classical space
time throughl15dfrHmax ~see@9,6# for a detailed discussion
of the fractal structure of a self-reproducing universe!. Let us
also introduce the critical value of inflatonf fr at which the
no-diffusion approximation for Eq.~15! breaks. Then, since
Hmax@H(f) for chaotic inflation, we can rewrite Eq.~16! as

p1~f!5C~f fr!
3H~f!

V8~f!
expS 2E

f

f fr
dfrHmax

3H~z!

V8~z!
dz D .

~17!

Substituting Eq.~17! into Eq. ~15! we get the defining
relation for the value of inflaton fieldf fr at which the no-
diffusion approximation breaks:

l1

9H5~f fr!

4p2@V8~f fr!#
2;1. ~18!

We can rewrite~the square root of! this relation in a form
which makes the comparison with the definition of the othe
critical valuef* more apparent:

AdfrHmax

H~f fr!

3H3~f fr!

2pV8~f fr!
;1. ~19!

Comparing Eq.~19! with Eq. ~6!, one finds that for all cha-
otic inflation models f fr,f* @one can assume self-
consistently thatHmax@H(f fr) in such models#. The value
of f* in Eq. ~6! comes from comparing the slow-roll rate in
a givenh region with the typical amplitude of quantum fluc-
tuations while considering only theh regions generated lo-
cally from the region which we picked. On the other hand
the valuef fr comes from comparing the slow-roll rate to the
typical amplitude of fluctuations considering allh regions in
the whole Universe which happen to have the same value
the inflaton field inside. The fact that the second constraint i
more stringent is yet another indication of the considerabl
larger magnitude of the quantum fluctuations when we tak
into account the whole stationary Universe.
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In the particular case of the simplest theory wit
V(f)5lf4/4, we haveH5A2pl/3f2, f fr;l21/8!f* ,
and the dependence of the solution~17! on f is @6#

p1~f!;fA~6p/l!dfrHmax. ~20!

This is an extremely strong dependence. For example, for
realistic value of the coupling constantl;10213 chosen to
fit the observable large scale structure of the Universe o
has dfr'3. One may assume for definiteness thatHmax

5A8p/3, corresponding to inflation withV(f)51 ~Planck
density!. Then one has an extremely sharp dependen
p1;f1.23108. All surprising results we are going to obtain
are rooted in this effect. One of the consequences is t
distribution of energy densityr. For example, during infla-
tion r'lf4/4. Equation~20! implies that the distribution of
densityr is

PP~r!;r33107. ~21!

Thus at each moment of timet the Universe consists of an
indefinitely large number of domains containing matter wit
all possible values of density, the total volume of all domain
with density 2r being approximately 1010

7
times greater than

the total volume of all domains with densityr.
Let us consider now all inflationary domains which con

tain a given fieldf at a given moment of timet. One may
ask the question, what was the value of this field in tho
domains at the momentt2H21? In order to answer this
question one should add tof the value of its classical drift
ḟH21 and the amplitude of quantum jumpsDf. The typical
jump is given bydf56H/2p. At the last stages of inflation
this quantity is by many orders of magnitude smaller tha
ḟH21. But in which sense are jumps6H/2p typical? If we
consider any particular initial value of the fieldf, then the
typical jump from this point is indeed given by6H/2p un-
der the conventional comoving measure. However, if we a
considering all domains with a givenf and trying to find all
those domains from which the fieldf could originate back in
time, the answer may be quite different. Indeed, the tot
volume of all domains with a given fieldf at any moment of
time t depends onf extremely strongly: The dependence i
exponential in the general case~17! or a power law with a
huge power, like in the case oflf4/4 theory ~20!. This
means that the total volume of all domains which could jum
towards the given fieldf from the valuef1Df will be
enhanced by a large additional factorPP(f1Df)/PP(f).
On the other hand, the probability of large jumpsDf is
suppressed by the Gaussian factor exp@22p2(Df)2/H2#.
Thus, under the established stationary probability distrib
tion the probability of the inflaton field in a given domain to
have experienced a quantum jumpDf is given by

P~Df!;expS dfrHmax

3H~f!

V8~f!
Df2

2p2~Df!2

H2~f! D . ~22!

One can easily verify that this distribution has a sharp max
mum at

Dfnp5dfrHmax

3H3~f!

4p2V8~f!
5n~f!

H~f!

2p
, ~23!
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and the width of this maximum is of the orderH/2p. In
other words, most of the domains of a given fieldf are
formed due to nonperturbative~hence the subscript ‘‘np’’!
jumps which are greater than the ‘‘typical’’ ones by a facto
n(f) which coincides with our previous result~9!. For future
reference, we will write here this result in an equivalent form

n~f!54l1

V~f!

V8~f!
. ~24!

The limit of applicability of this expression is below the
energy levelV(f fr) @see Eqs.~18! and~19! for the definition
of the critical valuef fr#.

In particular, for the theorylf4/4 we have

n~f!5l1f. ~25!

ForHmax5A8p/3, l!1, andf;4.5, which corresponds to
today’s horizon scale, this gives the amplification coefficie

n~f!52A6pf;40. ~26!

V. VOLUME-WEIGHTED SLOW-ROLLING
APPROXIMATION

We learned in the previous section that quantum fluctu
tions in volume-weighted measure have pretty large expe
tation value, which makes the jumps to go preferential
downwards~unlike in the comoving measure where there
no preferred direction of the fluctuations and therefore th
have a zero expectation value!. Indeed, such was the very
meaning of our derivation of large jumps that they had
occur in the direction of the usual slow roll in order to mak
up the extra time spent by inflaton at higher energies. The
fore, we can conclude that the slow-rolling speed itself gets
correction corresponding to the rate at which such lar
jumps occur and their size. Since each such jump of s
n(f)H(f)/2p occurs during the time intervalH21(f), we
can estimate the additional speed gained by the inflaton
n(f)H2(f)/2p, thus bringing the overall slow-roll speed to
the volume-weighted value@we substituted Eq.~9! for the
value ofn(f), the amplification factor#:

ḟ52
V8~f!

3H~f!
2dfrHmax

16V2~f!

3V8~f!
. ~27!

Here the minus sign in front of the correction term is due
the preferred direction of the jumps, bringing the slow-ro
speed to a higher absolute value.

The limits of applicability of this expression are the sam
as for Eq.~23!, i.e., below the energy density correspondin
to the critical valuef fr of the inflaton field, defined by Eqs.
~18! and ~19!. However, those limits simply tell where the
approximate expression~27! is valid, while the effect of
speeding up the slow roll of the inflaton is valid in a muc
wider range.

Let us derive a more general version of this result an
correspondingly, a more general expression for amplifi
quantum jumps~9! and ~23! which will be valid for almost
whole range of variation of the inflaton field. The volume
weighted probability distribution can be defined as the pa
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integral over all realizations of noise taken with Gaussi
weight modified by the volume factor@10,6#:

PP~f,t !5E DjexpH E tS 2
1

2
j2~s!13H„fj~s!…DdsJ

3d„fj~ t !2f…. ~28!

Herefj(s) is the solution of Eq.~5! with a particular real-
ization of the noise. The Gaussian path integral over t
noise can be converted into the path integral over the his
ries of inflaton evolution@17# if we express the noise through
concurrent value of inflatonf(t) using the equation of mo-
tion ~5!:

j~ t !5
2p

H3/2~f!
ḟ1

2pV8~f!

3H5/2~f!
. ~29!

It is convenient to make the variable transformation

z5E
f

2p

H3/2~f8!
df8. ~30!

In terms of this variable the definition of the white noise
rewritten in compact form

j~ t !52 ż1W~z!, ~31!

where we introduced the ‘‘superpotential’’2 @we used the re-
lation ~30! to reexpress it in terms of the derivative with
respect toz#

W~z!5
2p

3H5/2~f!

dV~f!

df
5

d

dzS 3

16V~z! D . ~32!

The path integral defining the volume-weighted measu
in terms of z(t) becomes, after substituting Eqs.~31! into
Eqs.~28!,

PP~z,t !5E Dz~s!J@z#expH 2E tS 12 @ ż~s!2W„z~s!…#2

23H„z~s!…DdsJ d„z~ t !2z…. ~33!

The JacobianJ@z# of the transformation fromj to f and
then toz is preexponential@17# and unimportant for our cur-
rent investigation. We will neglect it in what follows.

Let us find the trajectoryz(t) @which we will translate
later into trajectoryf(t)# which contributes most to the path
integral ~33!. Such a saddle point trajectory will correspon
to the typical history of the evolution of inflaton under
volume-weighted measure. The exponent in the path integ
~33! looks like a Euclidean version of the Lagrangian actio

2This name is due to the fact thatW(z) plays the role of a super-
potential in a supersymmetry-~SUSY-!Schrödinger-like version of
the Fokker-Planck equation.
an

he
to-

is

re

d
a
ral
n,

which corresponds to an interpretation of the diffusion equa-
tion ~13! as a Euclidean Schro¨dinger equation for a point
particle. We can rewrite this action in Hamiltonian form us-
ing the conventional relation

E t

Ldt5Ez~ t !
pdz2E t

Hdt, ~34!

where the canonical momentum is

p5
]L
] ż

5 ż2W~z!. ~35!

Since the action does not contain an explicit time depen-
dence, the Hamiltonian is conserved:

H5 1
2p

21pW~z!13H~z!5l1 . ~36!

The reason why the conserved Hamiltonian is equal to the
highest eigenvalue is that in the end we should get the time
dependence of a type exp(l1t) as warranted by the stationary
solution~14!. Meanwhile, the*pdz term of the action should
give us the correct~semiclassical! field dependence of the
probability densityPP„z(f),t… ~see below!.

Solving the Hamiltonian constraint~36! with respect to
p ~we have to choose the positive solution of the equation for
rolling down!, and using Eq.~35!, we obtain the equation for
the typical volume-weighted trajectory:

ż5AW2~z!12l126H~z!. ~37!

This equation translates back in terms of the inflaton field
variable into a volume-weighted slow-roll equation:

ḟ52AS V8~f!

3H~f! D
2

1@dfrHmax23H~f!#
H3~f!

2p2 . ~38!

For most of the inflaton range of variation~except very close
to the Planck boundary! we can ignore the 3H term with
respect to thedfrHmax term. The relative importance of the
two remaining terms under the square root is governed by
the critical valuef fr — below this level the first term is
more important, while above it the second one dominates.
Not surprisingly, belowf fr this equation coincides with Eq.
~27!. However, its validity limits are much wider, allowing
us to use it beyondf fr , to which the applicability of Eq.~27!
was limited.

We can write down a good approximation for the field-
dependent normalized probability densityp1(f), omitting
the less important preexponential terms:
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p1~f!5expH 2Ez~f!

pdzJ
5expH 2E

f
dzSAS 3V8~z!

16V2~z! D 21@dfrHmax23H~f!#
8p2

H3~f!
2
3V8~z!

16V2~z! D J . ~39!
s

u

o

h

i

p

e

r

t
.
ic
o
-

e
be

-
a

-

e

s
,

-
f
d
at
r-

-

a

a-

a

l

Of course, belowf fr this expression also coincides with it
counterpart~17! derived previously. This result has remark
able properties which will be studied further in@18#.

Using the volume-weighted slow-roll equation~38! we
can derive a general expression for the amplified quant
jump size. It is given by the change inf within time interval
H21 calculated according to Eq.~38!, less the regular ex-
pression for the change of field due to the slow roll in
comoving measure:

Dfnp5AS V8~f!

3H2~f! D
2

1@dfrHmax23H~f!#
H~f!

2p2

2
V8~f!

3H2~f!
. ~40!

This gives the following expression for the amplification fac
tor ~the ration of Dfnp and the conventional amplitude
H/2p):

n~f!5AS 2pV8~f!

3H3~f! D 21 2dfrHmax26H~f!

H~f!
2
2pV8~f!

3H3~f!
.

~41!

The consistency conditions for our results~38!–~41! arise
from several assumptions which we made in their derivati
and whose validity should be maintained. The first one is th
the slow rolling approximation be valid; i.e.,f̈!3H(f)ḟ.
The second is that the amplification factor be greater than
The third condition is that the saddle-point approximatio
used to derive these results be valid, which means t
p@1. And the final, fourth condition is the implicit assump
tion that large quantum jumps which occur in a singleh
region do not make the gradient energy inside that reg
greater than the potential energy of the inflaton field~which,
of course, would immediately invalidate the inflationary a
proximation!. One can easily check that all four condition
lead to the same, very relaxed restrictions — the energy d
sity of the inflaton fieldV(f) must be lower than the Planck
density ~or, more precisely, lower than the energy densi
corresponding to the maximal rate of expansionHmax). Thus,
we can use the results obtained above in most of the va
tion range for the inflaton field in chaotic inflation.

One can easily check that forf,f fr , H(f)!Hmax, Eq.
~41! yields

n~f!54dfrHmax

V~f!

V8~f!
. ~42!

This expression coincides with the expression for the amp
fication coefficient which we obtained earlier by two othe
methods; see Eqs.~9! and ~23!.
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VI. NUMERICAL SIMULATIONS

A. Basic idea of computer simulations

Even though we verified our results by several differen
methods, they are still very unusual and counterintuitive
Therefore we performed a computer simulation of stochast
processes in an inflationary universe, which allows one t
obtain an additional verification of our results and to calcu
late the amplification factorn(f) numerically. We have used
two different methods of computer simulations. The first on
is more direct and easy to understand. Its basic idea can
explained as follows.

We have studied a set of domains of initial sizeH21 filled
with a large homogeneous fieldf. We considered large ini-
tial values off, which leads to the self-reproduction of in-
flationary domains. From the point of view of stochastic pro
cesses which we study, each domain can be modeled by
single point with the fieldf in it. Our purpose was to study
the typical amplitude of quantum jumps of the scalar field
f in those domains which reached some valuef05O(1)
close to the end of inflation. Then we calculate the amplifi
cation factorn(f0) for variousf0.

Each step of our calculations corresponds to a tim
changeDt5uH0

21. HereH0[H(f0), andu is some num-
ber, u,1. The results do not depend onu if it is small
enough. The evolution of the fieldf in each domain consists
of several independent parts. First of all, the field evolve
according to classical equations of motion during inflation
which means that it decreases byuV8/3HH0 during each
time interval uH0

21. Second, it makes quantum jumps by
df5(H/2p)(AuH/H0)r i . Here r i is a set of normal ran-
dom numbers, which are different for each inflationary do
main. To account for the growth of the physical volume o
each domain we used the following procedure. We followe
each domain until its radius had grown 2 times, and after th
we considered it as eight independent domains. In acco
dance with our conditionPP(f,t)uf.fP

50, we removed all

domains where the fieldf jumped to the super-Planckian
densitiesV(f).1. Therefore our method removes the over
all growth factorel1t in the expressionPP;el1tp1(f) and
directly gives the time-independent functionp1(f) which
we are looking for. Indeed we have checked that after
sufficiently large timet the distribution of domains followed
by the computer with a good accuracy approached the st
tionary distributionp1(f) which we have obtained in@6# by
a completely different method; see Fig. 1. We used it as
consistency check for our calculations. In what follows we
will not distinguish betweenPP and the time-independent
factorp1(f).

We kept in the computer memory information about al
jumps of each domain during the last time intervalH0

21 be-
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fore the fieldf inside this domain becomes smaller tha
f0. This made it possible to evaluate an average sum of
jumps of those domains in which the scalar field beca
smaller thanf0 within the last time intervalH0

21. Naively,
one could expect this value to be smaller thanH0 /2p, since
the average amplitude of the jumps isH0 /2p, but they occur
both in the positive and negative directions. However, o
simulations confirmed our analytical resultDf5l1fH0 /
2p. In other words, we have found that most of the doma
which reach the hypersurfacef5f0 within a time interval
Dt5H0

21 do it by rolling accompanied by persistent jump
down, which have a combined amplitudel1f0 times greater
thanH0 /2p.

B. Details of the method

Even though this method of calculations may seem qu
straightforward~it is the so-called event-tracing Monte Car
method!, in reality it must be somewhat modified. The ma
problem is obvious if one recalls our expression for the pro
ability distribution PP;el1tp1(f) at small f:
PP;el1tf (A6p/l)l1. As we already mentioned~omitting the
time-dependent factor!, this yieldsPP;f108 for the realistic
valuel;10213. It is extremely difficult to work with distri-
butions which are so sharp.

Therefore in our computer simulations we have stud
models withl;0.1, which makes computations possible. O
the other hand, when one increases the value ofl an addi-
tional problem arises. Our simple expressio
PP;f (A6p/l)l1 has been obtained in the limit of very sma
l, which is not perfectly accurate forl;0.1. Therefore we
will representPP in a more general formP(f)5fg(f),
where g(f) approaches a constant value (A6p/l)l1 for
f!l21/8. One should also take into account that the clas
cal decreasec(f)5 V8(f)/3HH0 of the fieldf during the
time H0

21 and the standard deviation s(f)
5(H/2p)AH/H0 ~the average amplitude of quantum flu
tuations during the timeH0

21) are not constant throughou

FIG. 1. Probability distributionP(f) for V5lf4/4, l50.1.
The dashed line is the numerical solution to a differential equat
describingP(f). The solid curve is obtained using computer sim
lations described in this paper. A small deviation between the s
curve and the dashed line is due to the finite size of each step
the finite grid size.
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the region where the effect takes place. In such a situation a
expression for the amplification coefficientn(f) will be
slightly different from our simple expressionn5l1f.
Therefore we should first derive here a more accurate expre
sion for n(f), and then compare it with the results of our
simulations.

Consider a point for whichf5f0 at some timet, at
which the stationary regime is already established. At the
earlier time t2H0

21 this point was approximately at
f5f01c(f0)1x, wherex5df is the sum of all quantum
jumps experienced by the fieldf at this point during the last
time intervalH0

21. Consider the probabilityP(df) that the
field f jumped tof0 from the pointf01c(f0)1x. This
probability distribution is equal to the distributionPP(f)
times the probability of undergoing a quantum fluctuation of
lengthdf:

P~x!}PP@f01c~f0!1x#expS 2
x2

2s2D . ~43!

The position of the maximum of the distributionP(x) is
given by

PP8 @f01c~f0!1x#

PP@f01c~f0!1x#
5

x

s2
. ~44!

To solve this equation forx we need to knowPP(f). As
earlier we assumePP(f)5fg(f) whereg(f) varies slowly
with f. If g8f lnf!f21lng ~which happens to be a good
approximation forf;1), Eq.~44! can be easily solved, and
the expression forn(f0) looks as follows:

n~f0!5
x

s~f0!

'
1

2s~f0!
$A@f01c~f0!#

214g~f0!s
2~f0!

2@f01c~f0!#%. ~45!

One can obtain a slightly more accurate expression by takin
into account the dependence ofg, c, ands onf. Note that in
the situation which we are going to investigate
f0@c(f0)@x@s(f0). In the limit wheng, s, andc can be
considered constant, andf0@s,c this equation leads to our
earlier expressionn(f0)5l1f0.

In order to use Eq.~45! we also need to knowg(f) for
our problem. We approximateg(f) by a second order poly-
nomial in f and substituteP(f)5fa01a1f1a2f2

into the
differential equation for P(f). Local analysis around
f5f0 showsP(f)'f56223f24f2

. This approximation is
accurate forf;1.

C. Numerical calculation of n„f…

Even for not very smalll the distributionPP remains
extremely sharp. We have made our simulations with
l50.1, in which casePP;f60. This means that if we want
to follow the evolution of a single domain withf50.5, then
we should simultaneously keep track of 260–1018 domains
with f51. Therefore the simple event-tracing Monte Carlo
approach which we described above can be quite adequa
for the investigation ofPP near its maximum, but not for the
study ofPP far away from the maximum of the distribution.
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A more advanced approach is to represent the distribu
by evenly spaced points with weight proportional to the d
tribution. In other words, we rewrite the probability distrib
tion as a finite sum of nearlyd-functional distributions:

PP~f,t !'(
i51

N

pi~f,t !, ~46!

where

pi~f,t !5H PP~f i ! for f i<f,f i11,

0 otherwise.
~47!

At each step of the simulation we investigate the evo
tion of the distributionspi during the timeDt5uH0

21. The
following equation takes into account classical decrease
the fieldf, quantum fluctuations, and inflation:

pi~f,t1Dt !}pi~f,t !
1

s~f i !
expS 2

~f2f i1c!2

2 s2~f i !
D

3expS 3uH~f!

H~f0!
D . ~48!

We find PP(f,t1Dt) by computing the sum o
pi(f,t1Dt). Then we normalize the distributio
PP(f,t1Dt) and again subdivide into a new set ofpi , in
accordance with Eq.~46!. We repeat this process until th
resulting distributionPP approaches a stationary regime.

The most tricky part of the algorithm is to find the amp
fication factorn(f0). To do that, we associate another d
tribution xi(f,t) with eachf i . Herexi(f,t) is the sum of
quantum fluctuations during the last time intervalH21, along
all trajectories which ended up in the intervalf i<f
,f i11 at the timet. We combine allxi(f,t) into a single
distribution X(f,t), and evolve it in the same way a
PP(f,t), dividing it into the nearlyd-functional distribu-
tions xi(f,t) at every iteration. This is possible becau
xi(f,t) is approximately Gaussian and its standard devia
is small compared with its mean. When thePP(f,t) con-
verges,x0(f0 ,t) approximatesx, from whichn(f0) can be
calculated.

Decreasing step sizeu increases accuracy ofPP(f) until
some point, after which the accuracy starts to decrease.
decrease is explained by the fact that evolvedpi ’s are too
sharp and therefore are represented inaccurately. To a
this, having fixedN, we must keepu high enough, so that the
smallest quantum fluctuations is wider than the grid spacing
The grid spacing is proportional to 1/N ands is proportional
to Au, and so the minimalAu is proportional to 1/N. The
execution time until convergence is proportional toN2/Au,
or for the minimalu it is proportional toN3. In practice the
largestN for which the algorithm converges in a reasona
amount of time is of the order of 103.

D. Results of numerical calculations

The first step is to verify the numerical algorithm by com
paring the probability distributionP(f) it computes with a
solution obtained by solving equation~15! obtained in@6#.
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Figure 1 shows thatP(f) is very close to the correct prob-
ability distribution. The deviation between the two decreases
with step size.

The second step is to verify out formula forn. Figure 2
shows that numerically computed values ofn for different
f0 are close to the ones predicted by the analytical result
The deviation is explained by the approximations made in
the analytical solution~constancy ofg, c, ands during time
H21). We have found, also, that the typical deviation of the
amplitude of jumps from their average valuenH/2p is of the
order ofH/2p, as suggested by Eq.~22!. This will be impor-
tant for our subsequent considerations.

VII. SPATIAL STRUCTURE OF INFLOIDS

As one can see from Eq.~38!, the value of the field
f(t) corresponding to the typical volume-weighted trajecto-
ries moves down more rapidly that one would expect from
the classical slow-roll equationḟ52V8(f)/3H(f). This is
exactly the reason why such nonperturbatively enhanced tra
jectories, being surrounded by usual classical neighbors
should correspond to the minima in the distribution of den-
sity. To analyze the spatial structure of the Universe near the
points corresponding to the optimal volume-weighted trajec-
tory ~38! one should remember that in terms of the ordinary
comoving measurePc the probability of large fluctuations is
suppressed by the factor exp@2n2(f)/2#. It is well known
that exponentially suppressed perturbations typically give
rise to spherically symmetric bubbles@19#. Let us show first
of all that the main part of the volume of the Universe in a
state with a givenf ~or with a given densityr) corresponds
to the centers of these bubbles, which we called infloids.

Consider again the collection of all parts of the Universe
with a givenf ~or a given density! at a given timet. We
have found that most of the jumps producing this fieldf
during the previous time intervalH21 occurred from do-
mains containing the fieldf in a narrow interval of values
nearf2ḟ/H1n(f)H/2p. The width of this interval was
found to be of the order ofH/2p, which is much smaller
than the typical depth of our bubble,Df;n(f)H/2p, since

FIG. 2. Comparison between the analytical expression for
n(f) ~dashed line! and the values forn(f) obtained by computer
simulations. While the analytical expression is not absolutely pre-
cise due to various assumptions~such as constancy ofg, c, and
s during the timeH21), it does give approximately correct values
for n.
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we haven(f)@1 for all chaotic inflation models. Now sup
pose that the domain containing the fieldf appears not at the
center of the bubble, but at its wall. This would mean that
field near the center of the bubble is even smaller thanf.
Such a configuration could be created by a jump fro
f2ḟ/H1n(f)H/2p only if the amplitude of the jump is
greater thann(f)H/2p. However, we have found that th
main contribution to the volume of domains with a give
f is produced by jumps of an amplitude@n(f)61#H/2p,
the greater deviation from the typical amplituden(f)H/2p
being exponentially suppressed. This means that the sc
fieldf can differ from its value at the center of the bubble
no more than the usual amplitude of scalar field perturbati
H/2p, which is smaller than the depth of the bubble by
factor of n21(f). Thus, the main fraction of the volume o
the Universe with a givenf ~or with a given density of
matter! can be only slightly outside the center. This may le
to a small contribution to the anisotropy of the microwa
background radiation.

We should emphasize that all our results are based on
investigation of the global structure of the Universe rath
than of the structure of each particular bubble. This is w
we assert that our effect isnonperturbative. If one neglects
that the Universe is a fractal and looks only at one particu
bubble~i.e., at the one in which we live now!, then one can
find that inside each bubble there is a plenty of space
away from its center. Therefore one could conclude t
there is nothing special about the centers of the bubb
However, when determining the fraction of domains near
centers we were comparing the volumes ofall regions of
equaldensity at equal time. Meanwhile, the densityrwall of
matter on the walls of a bubble is greater than the den
rcenterin its center. As we have emphasized in the discuss
after Eq. ~20!, the total volume ofall domains of density
rwall is greater than the total volume of all domains of de
sity rcenter by the factor (rwall /r center)

33107. Thus, it is cor-
rect that the volume of space outside the center of the bub
is not smaller than the space near the center. However, g
outside the center brings us to the region of a different d
sity, rwall.rcenter. Our results imply that one can find muc
more space withr5r wall not at the walls of our bubble, bu
near the centers ofotherbubbles.

This situation can be very schematically illustrated
Fig. 3. We do not make an attempt to show the spatial d
tribution of infloids. Rather we show the density distributio

FIG. 3. A schematic illustration which shows the number
infloids with a given density and distribution of matter near th
centers.
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near the center of each of them. All these regions basical
are very similar, but at any particular moment of timet there
are much more regions with large density since they ap
peared from the regions which inflated at the nearly Planck
ian density for a longer time. With time the whole set of
curves should go lower, to smallerr. However, at each mo-
ment of time there will be domains with all possible values
of r, so that the distribution of all curves does not change i
time ~stationarity!. If one looks at the whole picture without
discriminating between states with different values of the
density, it may seem that there is much more space outsi
of the centers of the bubbles. However, at any given mome
of time t the main fraction of volume of the Universe in a
statewith a given densityr is concentrated near the centers
of spherically symmetric bubbles. One may look, for ex-
ample, at the density corresponding to the centers of the thi
row of curves. At this density one may live either near the
center of any of the 11 infloids or at the walls of only 3 of
them. The fraction of the volume near the centers would b
much greater if we try to show the realistic distribution
PP(r);r33107 of the number of domains with a given den-
sity in the theorylf4/4.

The nonperturbative jumps down should occur on al
scales independently. One may visualize the whole proce
as follows. At each given moment most of the volume of the
Universe where the fieldf takes some particular value ap-
pears close to the centers of infloids created by the nonpe
turbative jumps byn(f)H/2p. The new jumps occur each
time H21 independently of the previous history of the re-
gions with a givenf. Therefore the leading contribution to
the volume will be given by those rare centers of infloids
where the fieldf jumps down byn(f)H/2p again and
again. That is why the typical volume-weighted trajectorie
permanently go down with a speed exceeding the speed
classical rolling byn(f)H2/2p; see Eqs.~38! and ~41!.

One may visualize the resulting distribution of the scala
field in the following way. At some scaler the deviation of
the fieldf from homogeneity can be approximately repre-
sented as a well of a radiusr with the depthn(f)H/2p.
Near the bottom of this well there is another well of a smalle
radius e21r and approximately of the same depth
n(f)H/2p. Near the center of this well there is another wel
of a radiuse22r , etc. In particular, in the theorylf4/4 the
depth of each well will be 3HmaxHf/2p. Of course, this is
just a discrete model. The shape of the smooth distribution
the scalar field is determined by the equation

df

dlnrH
5
3HmaxHf

2p
5A3l

2p
Hmaxf

3, ~49!

which gives

f2~r !'
f2~0!

12Hmaxf
2~0!A~6l/p!lnrH

for r.H21.

~50!

Note thatf(r )'f(0) for r,H21 ~there are no perturba-
tions of the classical field on this scale!.

This distribution is slightly altered by the usual small per-
turbations of the scalar field. At a distance much greater tha
their wavelength from the center of the well these perturba

of
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tions have the usual magnitudeH/2p. Thus, our results do
not lead to considerable modifications of the usual dens
perturbations which lead to galaxy formation. However, t
presence of the deep well~50! can significantly change the
local geometry of the Universe.

In the inflationary scenario withV(f)5(l/4)f4 fluctua-
tions which presently have a scale comparable with the h
rizon radiusr h;1028 cm have been formed atf;5 ~in the
units MP51). As we have mentioned already 3Hmax

'2A6p;8.68 for our choice of boundary conditions,@6#
and the typical nonperturbative jump down on the scale
the present horizon should be 3Hmaxf;40 times greater
than the standard jump; see Eq.~26!. In the theory
(l/4)f4 the standard jumps lead to density perturbations
the amplitude

dr

r
;
2A6lp

5
f3;531025

~in the normalization of@2#!. Thus, according to our analysis
the nonperturbative decrease of density on each length s
different from the previous one by the factore should be
about

dr

r
;Hmax

6A6lp

5
f4;231023.

This allows one to evaluate the shape of the resulting well
the density distribution as a function of the distance from
center. One can write the following equation for the sca
dependence of density:

1

r

dr

dln~r /r 0!
52Hmax

6A6lp

5
f4, ~51!

wherer is the distance from the center of the well. Note th

f5
1

Ap
S ln r

r 0
D 1/2

in the theory (l/4)f4 @2#. Herer 0 corresponds to the small-
est scale at which inflationary perturbations have been p
duced. This scale is model dependent, but typically at pres
it is about 1 cm. This yields

Dr

rc
[

r~r !2r~r 0!

r~r 0!
5
2HmaxA6l

5pA3p
ln3

r

r 0
. ~52!

This gives the typical deviation of the density on the scale
the horizon@where ln(rh /r0);60# from the density at the cen-
ter:

Dr

rc
;750

dr

r
;431022.

It is very tempting to interpret this effect in such a wa
that the Universe around us becomes locally open, w
12V;1021. Indeed, our effect is very similar to the on
discussed in@20,21#, where it was shown that the Univers
becomes open if it is contained in the interior of a bubb
created by the O~4! symmetric tunneling. Our nonperturba
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tive jumps look very similar to tunneling with the bubble
formation. However, unlike in the case considered in
@20,21#, our bubbles appear on all length scales.

The results discussed above refer to the density distribu
tion at the moment when the corresponding wavelength
were entering horizon. At the later stages gravitational insta
bility should lead to growth of the corresponding density
perturbations. Indeed, we know that density perturbations o
the galaxy scale have grown more than 104 times in the
linear growth regime until they reached the amplitude
dr/r;1, and then continued growing even further. The
same can be expected in our case, but even in a more dr
matic way since our ‘‘density perturbations’’ on all scales
are much greater than the usual density perturbations whic
are responsible for galaxy formation. This would make the
center of the well very deep; its density should be many
orders of magnitude smaller than the density of the Univers
on the scale of horizon. This is not what we see around.

This problem can be easily resolved. Indeed, our effec
~but not the amplitude of the usual density perturbations! is
proportional toHmax, which is the maximal value of the
Hubble constant compatible with inflation. If, for example,
the maximal energy scale in quantum gravity or in string
theory is given not by 1019 GeV, but by 1018 GeV, then the
parameterHmaxwill decrease by a factor 10

22. Therefore the
nonperturbative effects can be strongly suppressed in th
models which we studied in this paper. As we already men
tioned, nonperturbative effects in new inflation are even
much smaller, since thereHmax is always many orders of
magnitude smaller than 1. Inflationary Brans-Dicke cosmol-
ogy in cases when the probability distributionPP is station-
ary also leads to negligibly small nonperturbative effects
@13#. Thus it is easy to make our effect very small without
disturbing the standard predictions of inflationary cosmol-
ogy. However, it is quite possible that we will not have any
difficulties even with very largen(f) if we interpret our
results more carefully.

VIII. INTERPRETATION AND POSSIBLE
IMPROVEMENTS OF THE PROBABILITY MEASURE

An implicit hypothesis behind our interpretation is that we
are typical, and therefore we live and make observations i
those parts of the Universe where most other people do. On
may argue that the total number of observers which can live
in domains with given properties~e.g., in domains with a
given density! should be proportional to the total volume of
these domains at a given time. However, our existence i
determined not only by the local density of the Universe but
by the possibility for life to evolve for about 53109 years on
a planet of our type in a vicinity of a star of the type of the
Sun. If, for example, we have density 10229 g cm23 in a
small vicinity of the center of the infloid, and density
10227 g cm23 on the horizon scale, then the age of our part
of the Universe~or, to be more accurate, the time after the
end of inflation! will be determined not by the density near
the center of the infloid, by the large scale density
10227 g cm23, and it will be only about 13109 years.

Moreover, any structures such as galaxies or clusters ca
not be formed near the centers of the infloids since the den
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sity there is very small. Indeed, on each particular scale
jump down completely overwhelms the amplitude of th
usual density perturbations. The bubble cannot contain a
galaxies at the distance from the center comparable with
galaxy scale, it cannot contain any clusters at the dista
comparable with the size of a cluster, etc. In other words,
center would be devoid of any structures necessary for
existence of our life.

Thus, the naive idea that the number of observers is p
portional to volume does not work at the distances from t
centers which are smaller than the present size of the h
zon. Even though at any given moment of time most of t
volume of the Universe at the density 10229 g cm23 is con-
centrated near the centers of infloids, the corresponding p
of the Universe are too young and do not have any structu
necessary for our existence. Volume alone does not m
much. We live on the surface of the Earth even though t
volume of empty space around us is incomparably greate

One may argue that the disparity between the age of
local part of the Universe and its density appears only if o
considers perturbations on a scale smaller than the horiz
Therefore it still may be true that we should live in the ce
ters of huge bubbles, which have a shape~52! for r.H0

21,
whereH0

21 is the size of the present horizon. If the cuto
occurs atr@H0

21, this may not lead to any observable con
sequences at all. However, if the cutoff occurs atr;H0

21,
the resulting geometry may resemble an open Universe w
a scale-dependent effective parameterV(r ) @3#. Thus a more
elaborate choice of the probability measure may lead to o
servable effects which will be interesting and less drama
than the effects described in the previous section. In orde
make any definite conclusions about the preferable parts
the Universe one should study probability distribution
which include several other factors in addition to densit
This should be a subject of a separate investigation. T
main goal of our paper was to demonstrate that in a cert
class of theories with a rather reasonable choice of proba
ity measure the nonperturbative effects may be quite s
stantial. This result by itself was very surprising, and w
believe that it deserves further investigation despite all u
certainties involved.

An additional ambiguity in the interpretation of our re
sults appears due to the dependence of the distributionPP on
the choice of time parametrization. Indeed, there are ma
different ways to define ‘‘time’’ in general relativity. If, for
example, one measures time not by a clock but by rulers a
determines time by the degree of a local expansion of
Universe, then in this ‘‘time’’ the rate of expansion of th
Universe does not depend on its density. As a result, o
effect is absent in this time parametrization@3#. The reason
why the results depend on the time parametrization is dee
related to the properties of a self-reproducing universe. T
total volume of all parts of such a universe diverges in t
large time limit. Therefore when we are trying to find whic
parts of the Universe have a greater volume we are comp
ing infinities. There are some methods to regularize the
infinities in a way that would make the final results onl
mildly dependent on the choice of time parametrizatio
@7,8#. However, there are many such methods, and the fi
results are exponentially sensitive to the choice of t
method@8#. In this paper we used the standard time para
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etrization which is most closely related to our own nature
~time measured by number of oscillations rather than by the
distance to the nearby galaxies!. But maybe we should use
another time parametrization~see the Appendix! or even in-
tegrate over all possible time parametrizations. Right now we
still do not know what is the right way to go. We do not even
know if it is right that we are typical and that we should live
in domains of the greatest volume; see the discussion of th
problem in@6,8,15#.

Therefore at present we would prefer to consider our re
sults simply as a demonstration of the nontrivial properties o
the hypersurface of a given time in the fractal self-
reproducing universe, without making any far-reaching con
clusions concerning the structure of our own part of the Uni-
verse. However, we must admit that we are amazed by th
fact that the main fraction of the volume of the inflationary
universe in a state with a given densityr at any given mo-
ment of proper timet should be concentrated near the centers
of deep spherically symmetric wells. We confirmed this re-
sult by four different methods, and we believe that it is cor-
rect. Until the interpretation problem is resolved, it will re-
main unclear whether our result is just a mathematica
curiosity or can be considered as a real prediction of proper
ties of our own part of the Universe. At present we can
neither prove nor disprove the last possibility, and this by
itself is a very unexpected conclusion. A few years ago we
would say that the possibility that we live in a local ‘‘center
of the world’’ definitely contradicts basic principles of cos-
mology. Now we can only say that it is an open question to
be studied both theoretically and experimentally. If some-
body asks whether we should live in the center of the world
we will be unable to give a definite answer. But if observa-
tions show us that the answer is yes, we will know why.
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APPENDIX

Let us consider a different time parametrization, related to
the proper time by local path dependent transformation:

t→t~ t !5E t

dsT„fj~s!…, ~A1!

whereT(f) is a positive function, and its argument in Eq.
~A1! is a solution of Eq.~5! with a particular realization of
the white noise. The stochastic Langevin equation in this
parametrization looks like

df

dt
52

V8~f!

3H~f!T~f!
1

H3/2~f!

2pT1/2~f!
j~t!, ~A2!

The branching diffusion equation in an arbitrary time pa-
rametrization can be written as
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]

]t
PP~f,t!5

1

2

]

]f F H3/2~f!

2pT1/2~f!

]

]f S H3/2~f!

2pT1/2~f!
PP~f,t! D G

1
]

]f S V8~f!

3H~f!T~f!
PP~f,t! D

1
3H~f!

T~f!
PP~f,t!. ~A3!

Its solution will generally be a stationary probability func
tion with an overall constant expansion factor just like in E
~14!. The value of the constantl1 will depend on the param-
etrization.

We can find the volume-weighted slow-roll trajectory o
the inflaton field in an arbitrary parametrization very sim
larly to the approach used for proper time, but we have
keep in mind that it is no longer true thatl15dfrHmax. The
result is

df

dt
52AS V8~f!

3H~f!T~f! D
2

1S l123
H~f!

T~f! D H3~f!

2p2T~f!
.

~A4!

Since the conventional~i.e., calculated under the comov
ing probability! amplitude of the quantum jumps generate
during the typical time intervalDt;T(f)H21(f) in the
given time parametrization is still given by the usual quanti
H/2p @see the Langevin equation~A2! above#, then the defi-
nition for amplification factor becomes

n~f!5AS 2pV8~f!

3H3~f! D 21S l123
H~f!

T~f! D2T~f!

H~f!

2
2pV8~f!

3H3~f!
. ~A5!

In the particular case of the time parametrizationT5H,
which corresponds to the scale factora(t) playing the role of
time t, we get
-
q.

f
i-
to

-
d

ty

df

dt
52AS V8~f!

3H2~f! D
2

1~l123!
H2~f!

2p2 ~A6!

and

n~f!5AS 2pV8~f!

3H3~f! D 212~l123!2
2pV8~f!

3H3~f!
.

~A7!

Since l1,3, in this time parametrization the volume-
weighted slow roll~A6! is not faster but slightly slower than
the conventional slow roll. As a result, most of the volum
on the hypersurfaces of constant ‘‘time’’t will be concen-
trated near the spherically symmetric hills~rather than wells!
in the energy density. However, the amplification factor i
always very small.

The change of time parametrization~A1! corresponds to
one of the possible ways to choose regularization procedu
for evaluation of divergent probabilities in an eternally ex
panding universe@8#. Other types of regularization procedure
were proposed in@7,8#. In particular, the regularization
scheme suggested in@7# is essentially equivalent to choosing
the T5H parametrization which we discussed above@8#.
One can easily verify that in the limitf!f fr our equations
for theT5H parametrization, Eqs.~A6! and~A7!, yield the
same results for the nonperturbative jumps as the ones o
tained in@7#. As is argued in,@8# from the point of view of
the interpretation of our results it is not obvious that thi
regularization has any advantages as compared to a m
intuitive and straightforward approach used in the main pa
of this paper. However, each regularization scheme and ea
time parametrization gives an additional interesting informa
tion about the structure of an inflationary universe. Therefo
we presented in this appendix an extension of our results f
the more general class of time parametrizations~A5!.
@1# P. J. E. Peebles,Principles of Physical Cosmology~Princeton
University Press, Princeton, 1993!.

@2# A. D. Linde, Particle Physics and Inflationary Cosmology
~Harwood Academic, Chur, Switzerland, 1990!.

@3# A. D. Linde, D. A. Linde, and A. Mezhlumian, Phys. Lett. B
345, 203 ~1995!.

@4# A. D. Linde, Phys. Lett. B175, 395 ~1986!; A. S. Goncharov
and A. D. Linde, Sov. Phys. JETP65, 635 ~1987!; A. S. Gon-
charov, A. D. Linde, and V. F. Mukhanov, Int. J. Mod. Phys
A 2, 561 ~1987!.

@5# A. Vilenkin, Phys. Rev. D27, 2848~1983!.
@6# A. D. Linde and A. Mezhlumian, Phys. Lett. B307, 25 ~1993!;

A. D. Linde, D. A. Linde, and A. Mezhlumian, Phys. Rev. D
49, 1783~1994!.

@7# A. Vilenkin, Phys. Rev. D52, 3365~1995!; S. Winitzki and A.
Vilenkin, ibid. 53, 4298~1996!.

@8# A. D. Linde and A. Mezhlumian, Phys. Rev. D53, 4267
~1996!.
.

@9# M. Aryal and A. Vilenkin, Phys. Lett. B199, 351 ~1987!.
@10# Y. Nambu and M. Sasaki, Phys. Lett. B219, 240 ~1989!; Y.

Nambu, Prog. Theor. Phys.81, 1037~1989!.
@11# A. A. Starobinsky, inCurrent Topics in Field Theory, Quan-

tum Gravity and Strings, edited by H. J. de Vega and N.
Sanchez, Lecture Notes in Physics Vol. 206~Springer, Heidel-
berg, 1986!, p. 107.

@12# A. Linde, Phys. Lett. B238, 160 ~1990!; J. Garcı´a-Bellido, A.
D. Linde, and D. A. Linde, Phys. Rev. D50, 730 ~1994!.

@13# J. Garcı´a-Bellido and A. D. Linde, Phys. Rev. D52, 6730
~1995!.

@14# A. Vilenkin, Phys. Rev. Lett.74, 846 ~1995!.
@15# J. Garcı´a-Bellido, and A. D. Linde, Phys. Rev. D51, 429

~1995!.
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