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Metric perturbations from quantum tunneling in open inflation
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We study the effect that quantum fluctuations produced during the nucleation of a single-bubble open
inflationary universe have on the amplitude of temperature anisotropies in the microwave background. We
compute the instanton action for the quantum tunneling between the false and true vacua in open inflation
models and show that the amplitude of quantum fluctuations of the bubble wall is very sensitive to the
gravitational effects of the true vacuum. We study the spectrum of quantum fluctuations of the bubble wall and
confirm that there is only an inhomogeneol€= —3) discrete mode associated with transverse traceless
fluctuations of the bubble wall. This supercurvature mode could, in principle, distort the anisotropy of the
microwave background. We compute the amplitude of the gauge-invariant metric perturbations induced by the
bubble wall fluctuations on a comoving hypersurface, and calculate the induced amplitude of temperature
fluctuations in the microwave background, for arbitrary value$)gf We find that in the limitQ =1, the
guadrupole dominates the angular power spectrum, such as in the usual Grishchuk-Zel'dovich effect. The
resulting bounds on the amplitude of quantum fluctuations of the bubble wall from the absence of such an
effect in the observed microwave background anisotropies are quite strong. We also study the contribution
from a discrete long wavelength supercurvature made=Em?/3H?2) that appears in the spectrum of open de
Sitter vacuum fluctuations. We constrain the parameters of the models of open inflation so that these modes do
not distort the observed temperature anisotr¢f¥556-282(196)00116-9

PACS numbes): 98.80.Cq

I. INTRODUCTION without producing too large inhomogeneities a large mass in
the false vacuum is needed, while a very small mass for the
Until recently, one of the most robust predictions of infla- inflaton field is required to give the observed amplitude of
tion was the extreme flatness of our local patch of the Uni-density perturbations in the cosmic microwave background
verse. However, in the last few months there has been a ICMB). Linde and Mezhlumiaf3] suggested a simple way
of excitement about the possibility of producing an openout by including two fields, one with a large mass, respon-
universe from inflation1—3]. An open universe could re- sible for tunneling, and the other with a very small mass,
solve the age crisis caused by the observations of a relativehesponsible for inflation in the true vacuum.
large Hubble constantl,=69+8 km/s Mpc, which corre- According to this picture we live inside a bubble that
spondg(for a flat Universe without a cosmological consjant nucleated from de Sitter space by quantum tunneling with an
to a very small age of the universg=9.5+1.1 Gyr[4], in extremely small probability. This ensures, first of all, that
conflict with the ages of globular clusters, 1%.8.1 Gyr[5].  there will be no other nucleating events, at least in our past
An alternative solution could be the introduction of a non-light cone, and, therefore, the initial state is pure de Sitter
zero cosmological constant which could accommodate both sacuum. Second, that the nucleated bubble is extremely
flat and an old universe with a large expansion rate, but thergpherically symmetric. Although the homogeneity problem is
still remains the question of why the cosmological constanthus solved at the classical level, there might still be large
is so small. But perhaps the true excitement comes from thquantum fluctuations during the process of quantum tunnel-
fact that open inflation provides a new way of solving theing.
classical problems of the hot big bang cosmology, the homo- There are, in principle, two sources of metric perturba-
geneity and flatness problems. In standard inflation the twdions in open inflation, the vacuum fluctuations of the infla-
are intimately related and it is not possible to relax ¢fifet-  ton field that are stretched to cosmological scales by the ex-
nes$ without affecting the othethomogeneity [6]. Open  pansion, and quantum fluctuations of the bubble wall
inflation solves the homogeneity problem by inflating theproduced during bubble nucleation. The first have been ex-
Universe in a false vacuum and then nucleating a very symtensively studied in recent papégds2,7—9; the second have
metric bubble within which our Universe expanded to “al- been addressed by Linde and Mezhlumidh and more re-
most” flatness. cently by Hamazaket al.[8], for an empty bubble. We study
The first models of open inflatiofl] considered a single the fluctuations of the wall when the bubble is not empty.
field trapped in a metastable state that later tunneled to th€he calculations will be done in the thin wall approximation,
true vacuum with a nonzero energy density. The field themwhich is valid for most potentials with a deep false vacuum
rolled down a very flat potential, inflating the required minimum and a large potential barrier between the two
amount ofe folds to produce an open universe. At the end ofvacua. Most results follow the Coleman—De Luccia formal-
inflation the Universe reheated to give the well-known, hotism [10], valid when the tunneling occurs from de Sitter to
big bang cosmology. These models had the unpleasant fedinkowski space-time. However, the new ingredient in open
ture of strongly contrived potentials, since in order to tunnelinflation is precisely the nonzero energy density of the true
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vacuum which could still drive inflation to almost flatness. should be much larger than the rate of expansion at the false
The instanton action associated with the more general quanvacuum.
tum tunneling process from de Sitter to de Sitter was com- The Euclidean tunneling action for a single scalar field
puted long ago by Parkgl1]. We will use his results to can be written as
calculate the tunneling action of open inflation. We compute
the average amplitude of quantum fluctuations of the bubble
wall from variations of the instanton action. Following the
covariant formalism of Garriga and Vilenk[i2], we study
the spectrum of inhomogeneous scalar modes associat¥herex’=8xG and the Euclidean @)-invariant metric is
with quantum fluctuations of the bubble wall, and find thatdst=dr?+a%(r)dQ3. The curvature scalar is given by
there is only a discrete mode, wittF=—31 This mode R=—6a %(aa’+a’?—1), where a prime denotes deriva-
could, in principle, contribute very strongly to the anisotropytive with respect to Euclidean time. Integrating by parts
of the CMB. We study its contribution to the CMB in a and using the Euclidean equations of motion,
. . . .Al2_1_~2,2 1215 :
gauge-invariant way and present the results in the Appendi@ “—1=a°«"¢"“12—U(¢)]/3, we find
both analytically forQ)y=1 and numerically fo€),<1. We
analyze the constraints on the open inflation models from theq _ szj dr
absence of such and effect in the anisotropies of the micro- &
wave background, as observed by CORB]. It turns out 2
that there are important constraints on the models, but not _ _ 127 f d _a2y2
—— | dra(l—a“H?), 2
enough to rule them out. K
Another important issue is whether large quantum fluc-
tuations of the inflaton field before tunneling could propagatevhere H?= x?U/3. The instantor{or bouncg action which
inside the bubble and distort the CMB. This is a relevantdetermines the probability of tunneling is given by
question in the case that the Universe in the false vacuum i8=Sg(¢) —Se(¢e). We define Ug=U(¢r) and
actually in a process of self-reproduction, and thus extremeljJt=U(¢1) as the false and true vacuum energies, respec-
inhomogeneou$14]. In that case, very large scale metric tively, which characterize the end points of the quantum tun-
perturbations could affect the amplitude of the lowest multi-neling. Taking into account the contributions to the instanton
poles of the temperature anisotropies in the background raction coming from both the wall and the interior of the
diation. This is the so-called Grishchuk-Zel'dovich effect bubble, Parke found the following expression for the bounce
[15]. We have recently evaluated this effect in the open uniaction[11]:
verse casgl6] and found strong constraints on the amplitude
of very long wavelength perturbations contributing to the
lowest CMB multipoles. In the case of open inflation models
where the mass of the scalar field in the false vacuum is
smaller than the Hubble parameter, there is a discrete super- 3 1 o2\
curvature vacuum mod€2], with k*=2m?/3H%<1, that HTF[(l a"Hp)™"—1]|, &)
could, in principle, distort the CMB, as discussed by Yama-
moto et al. in Ref. [7]. We derive bounds on the parameters,ynere
of open inflation models from the absence of such an effect
in the microwave background anisotropies.

1 1
SE=fd4x\/—_g[—2—K2R+ 5(a¢)2+U(¢) . (@

1 12 3 241 12
Ed) +U(¢) +K7(aa +aa'“—a)

a3

41
B(a)=2m?a3S,+ —

1
pzl(1-a’Hp**-1]

o
S = L dp{2[U(¢)— UL}, (4)

Il. QUANTUM TUNNELING andUr—Ut=e. In general, we choose<U+ but this is not

In this section we review the calculation of Paﬂgﬂ_] on essential. For the thin wall apprOXimation to be valid we
the instanton action for the quantum tunneling between &equire that the width of the bubble walla be much smaller
false and a true vacuum in de Sitter space. We assume tti@an its radius of curvature:
potential has a large barrier between the two minima, so that

the thin wall approximation remains valid, and a large mass Aa_ Hi(¢r—¢¢) <1 5
in the false vacuum. One of the dangers of quantum tunnel- a [2(Up— UF)]”2 '

ing, for a small mass of the tunneling field, is the existence

of the Hawking-Moss instantofiL7]. In this case, the field whereU, is the value of the potential at the maximum. The
jumps to the top of the barrier between the two vacua an@nly requirement is that the barrier betweeép and ¢+ be
very slowly “rolls down” the potential. The problem then is sufficiently high, i.e.Uy>U~+.

that there are large quantum fluctuations which are not in- It is now possible to compute the radius of curvature of
flated away, and these large perturbations would unaccepthe bubble wall for which the actio8) is an extremum:

ably distort the observed anisotropy of the CMB. For that

reason alone it is assumed that the mass of the tunneling field , 127%a | k2

B'(a)= —7—| 5 Sia—(1-a’HH) "+ (1-a’Hy)'?

k2=1 corresponds to the curvature scale. =0. (6)
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An exact solutior{11] can be written in terms of dimension- bubble expandsa/a=Hcoth(Ht)—H, the curvature scale of
less parametera and : the bubble approaches the horizon sddie’ and remains
fixed. Here,H stands for the Hubble constant of the embed-
@) ding de Sitter space.
a’+(1+a’p)?’ We are interested in perturbations in the space-time coor-
dinates of the bubble wall. Since only motion transverse to
B the bubble wall is physically observablghe rest can be
_4_UT' (8) eliminated by a coordinate transformatiprwe will only
consider linear perturbations of the type*= on*, where
The parameterr characterizes the strength of the gravita- ¢ is a scalar that characterizes the fluctuations normal to the
tional interaction in the true vacuum. The extremal solutionsurface (“=Hx*). The metric perturbations become
(7) is valid both in the limita®?<1, for which we recover the  5g,,= — 2¢K p+ da@dpe+ 02K Kep=—2¢K,p, to first
usual tunneling resula=a,, from de Sitter to Minkowski  order. The equation of motion for the scalar fluctuatipoan
(Hr=0); and in the limit a?8>1, which gives be obtained from the variation of the extrinsic curvature

a2

a’H2=

1
a:aoHTE_HT,
€

a=4/(x%S,). In both cases the radius of curvature satisfiesscalar K=—3H=cons}, SK=V?p+K K3
a<H;!. On the other hand, the largest radius of curvature— K 5,020 3% ¢ — ¢?K 5pK2%K 2= V2p + K ,,K?Pe=0, to first
occurs fora?=1, that isa=Hg". order?

The extremal action corresponds to thé8Q) symmetric
bubble. We are interested in deviations from perfect isotropy i 5 k?+3 B
and homogeneity, i.e., on the quantum fluctuations generated K=V p+3H%p= Py ¢=0. 1D

during bubble nucleation. Linde and Mezhlumi&j evalu-
ated a typical quantum deviation of the radius of curvature ofrhe pubble wall fluctuations thus correspond to an inhomo-
the bubble by computing the first quantum correction to theyeneous scalar mode characterizedkbs: — 3, with the pe-

tunneling action,S=S;+#%AS, where AS=B"(a)(82)%/2,  culiar property that the associated curvature perturbation is
and the second derivative of the bounce actiBnat the  transverse tracele$é2,d],

extremum is exactly given by
2 SR =—HoKap=—H(V,Vpe+ HGape), (12
[(1-a’H}) "= (1-a’HP) 7]

, 127
B'(a)=—2 . - .
while the Ricci scalar remains unperturbed,

,Si[@®+(1+a?B)4H2

— 187221 k?>+3
T e (1+a?B)(1-a?B) RO =—H——¢=0. (13)
2
- 2714 2py-1 e .
=—18x € (1-a"p) . ©) In principle, there could have been other inhomogeneous

modes at bubble nucleation, but the fact that the bubble wall
In order to evaluate a typical deviation of the curvature of theasymptotically acquires a fixed curvature determines that
bubble, we can estimat&S~1, see Ref[3], and, thus, only the inhomogeneous scalar mode wifh= — 3 survives

on the surface of the bubble.

€
Sa= e |1-a?p|™. (10)
375, Ill. METRIC PERTURBATIONS
In the limit «?28<1, we recover the results of Refd.2,3]. We now study the effect that quantum fluctuations of the

On the other hand, the last factor could strongly affect theoubble wall produce on the microwave background. In order
overall curvature of the nucleated bubble, when gravitationatlo do this, we have to relate the metric perturbations in the
effects are important. (2+1)-dimensional bubble wall, at a fixed radial coordinate,
We are actually interested in the spectrum of inhomogewith metric perturbations on a three-dimensional comoving
neous quantum fluctuations of the bubble wall, which wouldequal-time hypersurface inside the bubble. For that purpose,
appear from the inclusion of gradient terms in the bounceve recall the open de Sitter coordinates of R&f. Region |
action. These inhomogeneous scalar modes were studied bgntains the interior of the bubble and is parametriged
Garriga and Vilenkir{12] for an empty bubble, using a co- units of H 1) by ds?= —d {2+ sintP{(dé®+sint&dQ?) with
variant formalism in an embedding de Sitter space. In theoordinates {,£), while region Il is outside the bubble and
context of open inflation models, the bubble is not empty ands  described by the metric ds’=do?+ sirfo(—d7?
the radius of curvature of the bubble at the moment of nucle-+ cosif7d0?) with coordinates f,o). In these coordinates
ation is smaller than the de Sitter horizon scHIél. The the bubble wall is a timelike hypersurface at a fixed coordi-
geometry of the three-dimensional bubble is characterized bgateo in region Il, which can be analytically continued into
its extrinsic and intrinsic curvatures. The unperturbed bubbl@ spacelike hypersurface at a fixed comoving tifeio
world sheet has an induced metdg,= dx*dpX,, where
the subindiceqa,b} label coordinates on the bubble wall,
and{u, v} label space-time coordinates. The extrinsic curva- 2Note that the full expressiodK =0 still corresponds to a mode
ture of the bubble wall i¥ ,,= — (a/a)g,,. However, as the with k?=—3.
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inside the bubble. Thus, perturbations in the bubble wall hyQ,;(£,Q)=11,(£)Y n(6,¢), see Appendix. The scalar
persurface propagate inside as metric perturbations in a cttrarmonics can be used to construct a traceless tensor

moving equal-time hypersurface. Th@+1)-dimensional
k?=—3 mode of Ref[12] corresponds analytically to the

three-dimensional open universe discrete mode with Qjj :PQIiPL §7iJQ* (22)
k?=—3 discussed by Hamazakt al. [8]. .
We want to evaluate, in linear perturbation theory, thesatisfyingQ,'=0, see Eq(21), as well as

primordial metric perturbations associated with these quan-

tum fluctuations. The most general scalar metric perturba- 2 k?+3

tions can be written asl8—20 ViQij=- 3 K2 viQ. (23
ds’=a*(n)[—(1+2A)d7*+2B;dxdy We can now investigate the contribution of the discrete

+{(1+2R) y;; + 2Ej; X dx], (14) k?=—3 mode to the primordial perturbations in an open

universe. In principle, it is possible to analyze the amplitude

where{i,j} label the three-dimensional open space coordiof metric perturbations on any hypersurf4ds]. However,
nates with metricy;;. The four linear scalar perturbations We believe it is most convenient to study them on comoving

are not independent. Under a gauge transformatioypersurfaces, where they have a clear physical meaning as
7=+ E%(7,x4) ‘;('i:Xi_,_yijgl_(n xX), the metric perturba- curvature perturbations. Furthermore, the perturbed bubble
L ’ ] L L

tions transform as wall hypersurface has the property of being also a uniform-
expansion §K=0) hypersurface, see E@L1). It turns out
that, fork?=—3 (and only for this mode the same gauge

!

_ a — !
A=A—EY — g§°, R=R~- g&o, (15  transformation that takes you to a comoving hypersurface,
also takes you to a uniform-Hubble-constant hypersurface
~ ~ 18],
B=B+¢—¢', E=E-¢, (16) 18]
3 a K

where a prime denotes derivative with respect to conformal SK=—=
time . There are, however, only two independent gauge- a
invariant gravitational potential20],

R’—EA—FE(B—E’)}QEO, (24

— k? , 3, &
1 oKij=— 7 (B-ENQj=Z|R'—A|Qj, (29
b=A+_[a(B-E"], 17
with intrinsic curvature separated into its trace and traceless
a’ parts:
v=R+—(B—-E'), (19
a 2
5R<3>—4k +3R =0 26
which are further related through the perturbed Einstein - al Q=0, 26
equations
— k2
d+¥=0, (19 ORI =— 5RQ;;. 27
|(2+ 3 2_ . .
b~V =25p. (200  Furthermore, fork®=—3, the dynamic equations can be
a written as[18]
Here, p is the gauge-invariant density perturbatifit8]. W
Note that for thek?= —3 mode of bubble wall fluctuations, A=—Trw ™ (29)
the amplitude of density perturbations is identically zero.
This is a very special mode, as was first pointed out by a K2
Lifshitz and Khalatnikov[21]. We will study in detail its a2 R’——A” ——(R+A)a% (29)
effect on metric perturbations. a 3

The scalar metric perturbations can be separated into .
A(7,x)=A(7)Q(x)),2 whereQ(x) are the scalar harmon- Where w=p/p, and »=(6p—dpdp/dp)Q is the gauge-
ics of a spatially open universe, solutions of the HelmholtzZNvariant nonadiabatic part of matter perturbations, which
equation[22], vanishes for the single-fiel@ghdiabati¢ perturbations of open

inflation. In that case, the remaining scalar perturbation sat-
L2Q(£,0)=-k?Q(£,Q), (21) isfies the equation

!

2 cinh2 ; +sinh24.2 i P a
where L“=sinh §¢9§(S|nl¥§a§) sinh™“éLg, is the open uni R”+2ER’+R=O. (30)

verse Laplacian. These solutions have the general form

During inflation,a(#) = a,/sinhz, there is an exact solu-
3From now onA, B, etc. stand for the;-dependent functions. tion to this equation given by
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a satisfyingF(0)=1.
R=Cx=Cg, (3D In the next section we will evaluate the amplitude of tem-
perature anisotropies from all possible modes present in open
whereC = 5a is the amplitude of quantum fluctuations of the inflation. These include the®=—3 mode associated with
bubble wall, see Eq10). It is easy to see that during infla- Pubble wall fluctuations, as well as the discrete supercurva-

tion R becomes constant: ture mode withk?=2m?/3H? present in the spectrum of
open de Sitter vacuum fluctuations. There is also the con-
Ro=Héda. (320 tinuum of subcurvature modes associated with quantum fluc-

tuations of the inflaton field during the second stage of infla-
This curvature perturbation is a very peculiar one. Let ugjon.
evaluate the gauge-invariant potentidsand¥ in Eq. (17).
Substituting the solutio31), together withR' = —C/a, we IV. TEMPERATURE ANISOTROPIES
find
In this section we study the constraints that temperature
anisotropies in the CMB impose on the models of open in-
flation. For any model, the value 61, today depends very
critically upon the number oé folds of inflation from the
a’' tunneling event to the end of inflation. Fbl,=65 we find
=R+ ER':O . (34) Qg very close to 1. In fact, since

@zé(aR’)EO, (33

Therefore, this mode has vanishing gauge-invariant poten- |1 Q| ~exp( — 2Ng) X 10°, (40)
tials, as well as vanishing gauge-invariant density perturba- ) ) ) .
tions. One might be tempted to dismiss this mode altogethe@ few e folds of inflation less will produce a wide open

however, it is possible to see that the traceless parts of théNiverse. In most models, the second stage of inflation within
extrinsic and intrinsic curvatures do not vanish: the bubble occurs in the usual way with a very flat scalar

potential, where 6% folds correspond to a value of the in-
flaton field =3 Mp. In that case, tunneling to a value of

oKij=7R'Qij=—32CQy, (39  the inflaton just below 31, would produce an open uni-
verse[3]. In the single-field models of open inflation pro-

__ 3 3 a posed in Refs[1,2], the tunneling field is also the inflaton

5Rff’)=;RQij =2C2Qy- (36) field. As we discussed in Sec. II, in order that the field does

not tunnel to the top of the potential, and thus produce large
.amplitude metric perturbations, we need a mass at the false
vacuum which is larger than the rate of expansion,
Mg>Hg. This condition is enough to suppress the ampli-
tude of metric perturbations before tunneling. However, in
the two-field models of Ref.3] the tunneling field$ could
be very heavy while the inflaton field has a small mass,
both in the false and the true vacua. In this case, Satalli
have shown that there exists a discrete supercurvature mode
in the spectrum of vacuum fluctuations in the open de Sitter
%pace[Z]. This mode could, in principle, affect the lowest
multipoles of the temperature anisotropy of the CMB, in
what is known as the Grishchuk-Zel'dovich effect, studied in
Ref. [16] for an open universe.

The dominant effect on large scales is known as the
Sachs-Wolfe effect. Due to this effect, metric perturbations
on the surface of last scattering are responsible for tempera-

Therefore, thik’= —3 mode can be understood as a trans
verse traceless perturbation, see E@2) and (23). This
was pointed out in Refs.[8,23. During inflation,
a'la®=a/a—H=const, and thussR)=—HsK;;, which
coincides with the bubble wall fluctuations’ relati¢h?2), as
expected.

Spatial curvaturea 2=H?(1—Q), will vanish during
the last stages of inflation and will be negligibl€ 1)
during radiation. It is then easy to show with E80) that
R remains approximately constant. However, as we enter th
matter eraa(»n)=ag(coshy—1), spatial curvature will be-
come important, in order to produce an open univers
(2<1). As a consequenc& is no longer a constant and
evolves with EQ.(30). There is an exact solution to this
equation during the matter era,

R RG(m=R 7 sinhy— 2(coshy— 1) a ture fluctuations in the CMB24],
OV (costy—1)2 5T 1 -
?=§¢(0)+2j O’ (no—r)dr, (41
satisfying G(0)=1. We are interested, however, in the 0

gauge-invariant gravitational potentidl7), _ ]
where 7o=arccosh(2),— 1) is the distance to the last scat-

a 3 tering surface. Fof),<<2/(1+cosh1}=0.786, the surface of
P=—|R+R"|=~ gRoF(m), (38)  last scattering is located beyond the curvature scale.
We can expand the observed temperature anisotropies in
where terms of spherical harmonics,
sintfn—37 sinhy+4(coshy—1) oT
T T0.6)=3 anYin(0,9), @2
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and evaluate the angular power spectrGe=(|a,,|?), de-  Assuming that the observed anisotropi@8) are due solely

fined as the ensemble average of tiie multipole of the to quantum fluctuations of the inflaton requires

CMB temperature anisotropy. Observations, in fact, sugges$ti/Mp=10"°. This is a very general constraint. In the case

that of a massive inflaton, this bound requires its mass in the true
vacuum to be

Qrms
[(1+1)C/= ——2— =8x10"1° (43 mr
T 5 T —T_2%10°S, (48)
Mp

for the lowest multipoles of the CMB anisotropies, where

ms= 20 uK [25].

The contribution of different metric perturbation modes to
the multipole components of the angular power spectrum can )
be separated into a discrete part, which includes the bubble B. The k“=—3 mode
Wzall fluctzuatiozns, labeled by =2; the supercurvature mode  This mode is associated with quantum fluctuations of the
kyL=2mg/3HE<1 of open de Sitter vacuup2], plus a con-  bubble wall at tunneling that survive as scalar perturbations
tinuum of subcurvature modes from fluctuations of the infla-after the bubble has acquired a fixed comoving curvature. In
ton field in the last stage of inflation: order to evaluate its amplitude, let us parametrize the tunnel-

ing potential of Sec. Il by

All models of open inflation should satisfy this constraint.
Let us now discuss the more interesting discrete modes.

|(14+1)C=2a%1 (1 + L){RG)wal 3 N "y
+272(1+ 1)N?BZKZ, (R, U(¢)=Ug+ Z¢2(¢—¢o)2—e(%) : (49

+272(1 +1)JM%PR(k)I§|. (44) The two minima occur a$hr=0 and¢r=pg=M+2/\, and
1 K the maximum of the potential is &l,= )\¢g/64— M4/16\.

Following Ref.[3], we will define e=uU,, with u<1 for
Here, Pr(K) is the spectrum of primordial curvature pertur- the thin wall approximation to be valid.

bations. For thes=2 mode associated with the bubble wall, |t is now possible to evaluate the instanton contribution
(RO>Wa|, is the average square amplltude of the curvaturérom the bubble wal[Eq. (4)],
perturbation(32). The “window function” |2 indicates how

a given scale contributes to ti®y’s. We have evaluatetf, s _M_3 N 11 e} |V|_3 (50)
for the v=2 mode in the Appendix. The window function 173\ 32U, 3\
N?Bf associated with the very long wavelength supercurva-
ture modekZ, was computed in Ref16]. while « and 8 are, see Eq(7),

We analyze now the different sources of metric perturba- 4
tions in models of open inflation and the contraints that ob- = 1_6ﬂ _ T M (51)
servations of the microwave background impose on the mod- u M’ 24\ M%Hz’
els.

0 327 M?
A. The subcurvature modes a’p= 3u\ M_E,' (52)

Let us consider the temperature anisotropies produced by
the continuum spectrum of subcurvature modes; see als
Ref. [7]. The amplitude of scalar metric perturbations pro-
duced by quantum fluctuations of the inflaton fietdduring

The average amplitude of the metric perturbation pro-
uced by quantum fluctuations in the radius of curvature of
the bubble at nucleatioriR,=H da, can then be written as

the second phase of inflation is approximately giver By
1/2 \/_)\ 1/2
So <R0>wall~ A7 M _|1 ’Bl
R=-H e (45)
_ [2 H|1-a?B|"? 53
which gives a nearly scale-invariant spectrum, ~ V3wMp| a’B
4V Ho 6H Note that we recover the result of RdB] in the limit
(R?)YV2= (46)  a?’B<1. The constraints OR2),q from the CMB tem-

N7 w2
oV’ M3 Me P perature fluctuations are discussed in the Appendix, see Eqgs.

The observed temperature anisotropies of the microwaw(sAlz) and(A13Q). Using Eq.(53), we find

background at large scal¢$3] are consistent with such a 1-a?8
spectrum of metric perturbations, ’ 25 ‘sl&rz, 0.1=0,=<0.4, (549
o
1(1+1)C = 27 (g2 t 47) a’p
(I+1)C =75 (R%)=const. ( ’ ‘ 04=0,<1. (55

(1 Q )21
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We can now bound the parameters of the mddgl Using the bound61), we find a relatively weak bound on
M2 the allowed mass of the inflaton field in the false vacuum,
uA=1927°—  0.1=0,=<0.4, (56)
Mp Me -5
A 576m° M® 0.4<Q,<1 (57) ]
<—>— A<Qy=<1.
K (1—Qp)? M%’ 0 which allows a mass somewhat larger than that in the true
. vacuum(48).
Let us give some values to the parameters. Suppose that another possibility is to choose the inflaton field to be
M~10 °Mp, see Ref[3], and take, e.g{),=0.3. Then massless in the false vacuum and thus the discrete &&ie
LN<6X 1072, (59) would correspond to a homogeneod€£0) mode, which

does not affect the CMB, see R¢f6]. This is the case of

This is a relatively weak bound on for small values of hybrid open inflatior{3]. One could also have a very mas-
w. On the other hand, fof,=0.8, the bound becomes sive inflaton field in the false vacuum, as in the “supernatu-

u\<0.4, much weaker and thus much easier to satisfy. Fufi@” open inflation model of Ref[3], in which case there is

thermore, ag€), tends to 1, the bound disappears altogether'© discrete supercurvature vacuum mode. o
In summary, either the scalar fields are very massive in

In summary, the bound on the parameters of open infla-h fal h th d
tion models from quantum fluctuations of the bubble wall 1€ Talse vacuum, such that no supercurvaiure moces are

depends significantly on the value 8f,. In most cases, the present in the spectrum of metric perturbations, or they are

bound is not very strong and it is possible to find models’€Y light so that their associated supercurvature mode does
satisfying the constraints not distort the observed anisotropy of the microwave back-

ground.

C. The discrete vacuum mode

. . . . . V. NCLUSION
For open inflation models in which one of the scalar fields CONCLUSIONS

has a mass in the false vacuum much smaller than the In this paper we have computed the amplitude of metric
Hubble rate of expansion, there exists a discrete supercurvgerturbations produced by quantum fluctuations of the
ture mode in the spectrum of open de Sitter vacuum fluctuabubble wall at the moment of tunneling. These could, in

tions[2], principle, be a source of temperature fluctuations in the mi-
212 .12 5 crowave background, in the context of the present models of

K2 =1— 2 _ E _ } - E E (59) single-bubble open inflation. By taking into account the cor-

VL 4 HZ 2]  3HZ rections due to gravitational effects at the tunneling event,

we have found that a nonzero energy density in the true
that propagates inside the bubble. This is the case of one @acuum could strongly modify the amplitude of fluctuations
the two-field models of Ref 3], where the inflaton in the in the bubble wall. These fluctuations can be understood as
false vacuum is light. The metric perturbation for this modediscrete, long wavelength modes associated with perturba-
is tions in the curvature of the bubble. In the open de Sitter
) 2 coordinates, the bubble wall is a timelike hypersurface at a
<R2>VL2(4VF(0) E) 236E (60) fixed radial coordinate which asymptotically determines a
Vi(o) M,% M35’ spacelike hypersurface at a fixed comoving time inside the
bubble. Small fluctuations in the curvature of the bubble
which could, in principle, affect the anisotropy of the micro- propagate inside as perturbations in the time it takes to end
wave background, due to a large valuetyf. inflation [26], and thus generate metric perturbations on co-
The Grishchuk-Zel'dovich effect gives the contribution to moving hypersurfaces. However, quantum fluctuations of the
the microwave background anisotropy from a very largepubble wall generate only a discrete, inhomogeneous
scale metric perturbation. In an open universe, one can cork?= —3) mode[12,8]. It is possible to calculate the effect
strain the amplitude of a discrete, very long wavelength suthat this transverse traceless scalar metric perturbation pro-

percurvature mode 9k3, <1 to satisfy [16] duces on the microwave background. We have computed this
2 o . effect for arbitrary values of)y, and described the results in
ky (RO =4Xx10"%, (61)  the Appendix. See also RgR3] for the limit Qy=1. In Sec.

IV we constrain the parameters of open inflation models to
avoid distortions in the observed temperature anisotropies.

“The resulting bounds on the amplitude of bubble wall quan-

' tum fluctuations are quite severe, although not enough to rule
out these models.

Furthermore, in the single-field models of Ref§,2], the
inflaton potential is fine tuned so that the field has a very
large mass in the false vacuum. This ensures not only that
“Note that in Ref[16] there is a factor of 22 missing in the the tunneling occurs in the thin wall approximation and not

amplitude of the angular power spectrum, which makes the boundalong the Hawking-Moss instanton, but also that there are no
on the curvature perturbation stronger. supercurvature modes that propagate inside the bUlBhle

in the range 0.25((=<0.8, in order not to affect the ob-

served low multipole anisotropies of the microwave back
ground, see Eq(43). The constraint is somewhat weaker
k2, (R?)\ <2X107%(1— Q) 2, for 0.8<0y<1, see Ref.

[16].
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However, in the two-field models of Rdf3], the tunneling N, =[T(I+1+v)I(I+1— v)12]%2, (A2)
field has a very large mass in the false vacuum, but the
inflaton field does no(texcept in the “supernatural inflation” in terms of the associated Legendre p0|yn0mia|s_ Here,

modeb. This Implles two thingS, first that there is a discrete, y=+1— k2 is real for Supercurvature moddé,<1, and we

supercurvature vacuum modi2] that propagates inside the pave normalized the modes following Refi8,23). The
bubble, and second that the amplitude of such a long wavesigher multipoles can be obtained frd29]:

length perturbation could be rather large. These two features
could, in principle, be enough to destroy the isotropy of the 5
CMB to a level incompatible with observations, see Réf. 172 ]
Using the bounds on the amplitude and wavelength of such a P, Zycostt) = Trsinhgcosrvg’ (A3)
perturbation from the open universe Grishchuk-Zel'dovich
effect[16], we find an upper bound on the mass of the infla- )
ton field at the false vacuum which is easily satisfied by all —1 | 2 sinhw
models. v-1/2(COSIE) = msinké v (Ad)
As a consequence, the present models of open inflation
seem to work well with very reasonable parameters, at leastith the recurrence relation
as reasonable as those of standard inflation. A different issue
is whether these models will turn out to be the correct de- -1 3/9- |
scription of the origin of our patch of the Universe. As men-(”z_'z)PVfl/z (cost) =P =5 costt)
tioned in the Introduction, another possible solution to the —(21—1)cothtPY? | (costt).
age crisis could be that the Universe is flat with a nonvan-
ishing cosmological constant. Fortunately, cosmology has (AS5)
become a science and within a few years we will be able to ] . ] ]
te”’ from the Shape and amp“tude of the Spectrum of tem:rhe scalar harmonics for the first two mu|tlp0|eS can be writ-
perature fluctuations, whether our patch of the Universe i$€n as
indeed open or flaf27]. A different possibility is that the
present observations of the Hubble parameter turn out to be Qu0d &) =NycoshEY oo 6, ), (AB)
wrong and the actual value is well within the range allowed
by a flat universe without a cosmological constant.
In any case, it is encouraging to see that the inflationary Q21m(&,Q) =N3SinhEY 1,6, &), (AT)
paradigm is able to accommodate an open universe, even if
we never have to make use of it. Much more difficult would Where the norm&\, and N, diverge, see Eq(Al). This is
be to compute a probability distribution for the value of not a problem since the only contribution of these modes to
Qo. Such an attempt was made in Ref3] and[28]. We  curvature perturbations comes through the transverse trace-
believe the problem of probability measure in cosmology isless tensoQ;;, see Eq/(35), and is easy to check that, for
not yet settled and we still have to learn how to pose thé&®= —3, it vanishes identically for the first two multipoles,
appropriate questions. I=0 andl=1. However, it does not vanish for the higher
multipoles and thus the transverse traceless curvature pertur-
bation (35) gets contributions from all th&=2 multipoles
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0.2
APPENDIX: CMB TEMPERATURE FLUCTUATIONS

FROM A K2=-3 MODE 3 4 5 s 7 3 0
!
The open universe scalar harmonics can be written as
Qum(&, D) =I1(&)Ym(6,¢), with Y,,(6,4¢) the usual FIG. 1. The shape of the radiation angular power spectra
spherical harmonics and I(I+1)C, induced by thek?=—3 mode of bubble wall fluctua-

tions, normalized to the quadrupole, for the first nine multipoles.

The curves correspond ©Q,=0.2, 0.4, 0.6, 0.8, from top to bot-
—1-1/2 k) tom. It is clear that none of them is compatible with a flat spectrum.
v-1i2 (COS (A1) Note that we recover the usual Grishchuk-Zel'dovich effect of a

H(é)=N, . ;
K I Vsinhé dominating quadrupole in the lim2,=1.
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FIG. 2. The amplitude of the first three contributing multipoles,
1=2,3,4 (from top to botton, of the angular power spectrum in
units of (R3)wa1, as a function of2,. It is clear that for a large
range of(),, the quadrupole dominates the spectrum.

FIG. 3. Limits on{R3)..ai, based on current observational lim-
its on I(1+1)C,<8x10 % The allowed values 0fR2), are
those below the curve. In a large range(hf, the quadrupole pro-
vides the strongest constraint.

clear from this equation that the mo#é=—3, or v=2, is

very special since the left-hand sideHS) seems to vanish

for |=2. However, the right-hand sid®RHS) also vanishes WwhereF (%) is given by Eq.(39).

and thus we should find the quadrupole in the limit2, It is possible to compute analytically its contribution to

the first multipoles of the angular power spectrum, for values
of Q, close to one:
6 sinh4¢—8sinh2:+ 12¢
(§) = \/; : (A8)

48sink¥ m(8)\?
¢ Co=% _) (R wai(1—Q0)?, (A10)
3125
The rest of the multipoles can now be obtained from this m [16)2 2 3
expression together with the recurrence relatidg). C3:1_5(§ (Ro)wai(1 =€) (A11)

We are interested in the multipole components of tem-
perature fluctuations induced by this discrete mode. The beén general, we findC|~(RS>Wau(1—Qo)', and thus the
way to analyze its effect on the microwave background is taquadrupole dominates over the rest of the multipoles, such as
study this scalar metric perturbation in the comoving,in the case of open universe Grishchuk-Zel'dovich effect
uniform-Hubble-constant hypersurface gauge, in terms of thgl6)].
gauge-invariant potentiab, as we did in Sec. Ill. For Qy<1, we have to evaluate numerically the window

Let us evaluate the multipole components of the temperafunctions for the different multipoles, and compute their con-
ture anisotropies associated with the bubble wall fluctuatributions to the CMB. In Fig. 1 we show the shape of the
tions. A formalism that includes supercurvature modesangular power spectrum, normalized to the quadrupole, as a
(k?<1) was developed in Ref9], where it was found that function of multipole numbetf, for various values of). It
they contribute to the CMB temperature anisotropies as reals clear that none of them is compatible with a flat spectrum.
izations of a homogeneous random field. Furthermore, iNote that we recover the usual Grishchuk-Zel'dovich effect
Ref. [8] it was shown that thé&?=—3 mode also corre- of a dominating quadrupole in the limi2q=1. In Fig. 2 we
sponds to a homogeneous random field, once we subtract tlsbow the amplitude of the first contributing multipoles of the
nonphysical monopole and dipole contributions. angular power spectrum in units ¢R2),i, as a function of

In Sec. IV, we gave the expression of the angular poweK),,. It is clear that for a large range 61, the quadrupole
spectrum of the observed temperature fluctuations comingominates the spectrum.
from the various metric perturbations, see Etf). We will In Fig. 3 we show the limits on the curvature perturbation
concentrate here on the contribution of the discrete2 (R(Z))Wa” as a function of,, from the observational limits on
mode associated with the bubble wall quantum fluctuations(] + 1)C,<8x 107 °. We can parametrize this bound as
(Ré}wa” is the average square amplitude of the metric per-
turbation (32). The “window function” 12, indicates how (R&)\ar=3%107°%, 0.1=0,=<0.4, (A12)
this mode contributes to thg,’s,

1 —9
2
(R wars 1—0g?" 0.4<Qp<1. (A13)

1 6 (70 o : ; ; :
Iy ==T1 (7o) + _f I, (NF'(7o—r)dr, (A9) This is our main _resqlt. We will use it to constrain the mod-
5 5 els of open inflation in Sec. IV.
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