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Metric perturbations from quantum tunneling in open inflation

Juan Garcı´a-Bellido
Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

~Received 6 October 1995!

We study the effect that quantum fluctuations produced during the nucleation of a single-bubble op
inflationary universe have on the amplitude of temperature anisotropies in the microwave background. W
compute the instanton action for the quantum tunneling between the false and true vacua in open inflat
models and show that the amplitude of quantum fluctuations of the bubble wall is very sensitive to th
gravitational effects of the true vacuum. We study the spectrum of quantum fluctuations of the bubble wall a
confirm that there is only an inhomogeneous (k2523) discrete mode associated with transverse traceless
fluctuations of the bubble wall. This supercurvature mode could, in principle, distort the anisotropy of th
microwave background. We compute the amplitude of the gauge-invariant metric perturbations induced by
bubble wall fluctuations on a comoving hypersurface, and calculate the induced amplitude of temperatu
fluctuations in the microwave background, for arbitrary values ofV0. We find that in the limitV0.1, the
quadrupole dominates the angular power spectrum, such as in the usual Grishchuk-Zel’dovich effect. T
resulting bounds on the amplitude of quantum fluctuations of the bubble wall from the absence of such
effect in the observed microwave background anisotropies are quite strong. We also study the contribut
from a discrete long wavelength supercurvature mode (k2.2m2/3H2) that appears in the spectrum of open de
Sitter vacuum fluctuations. We constrain the parameters of the models of open inflation so that these mode
not distort the observed temperature anisotropy.@S0556-2821~96!00116-6#
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I. INTRODUCTION

Until recently, one of the most robust predictions of infl
tion was the extreme flatness of our local patch of the U
verse. However, in the last few months there has been a
of excitement about the possibility of producing an op
universe from inflation@1–3#. An open universe could re
solve the age crisis caused by the observations of a relati
large Hubble constant,H056968 km/s Mpc, which corre-
sponds~for a flat Universe without a cosmological constan!
to a very small age of the universe,t059.561.1 Gyr @4#, in
conflict with the ages of globular clusters, 15.862.1 Gyr@5#.
An alternative solution could be the introduction of a no
zero cosmological constant which could accommodate bo
flat and an old universe with a large expansion rate, but th
still remains the question of why the cosmological const
is so small. But perhaps the true excitement comes from
fact that open inflation provides a new way of solving t
classical problems of the hot big bang cosmology, the hom
geneity and flatness problems. In standard inflation the
are intimately related and it is not possible to relax one~flat-
ness! without affecting the other~homogeneity! @6#. Open
inflation solves the homogeneity problem by inflating t
Universe in a false vacuum and then nucleating a very sy
metric bubble within which our Universe expanded to ‘‘a
most’’ flatness.

The first models of open inflation@1# considered a single
field trapped in a metastable state that later tunneled to
true vacuum with a nonzero energy density. The field th
rolled down a very flat potential, inflating the require
amount ofe folds to produce an open universe. At the end
inflation the Universe reheated to give the well-known, h
big bang cosmology. These models had the unpleasant
ture of strongly contrived potentials, since in order to tunn
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without producing too large inhomogeneities a large mass
the false vacuum is needed, while a very small mass for t
inflaton field is required to give the observed amplitude
density perturbations in the cosmic microwave backgrou
~CMB!. Linde and Mezhlumian@3# suggested a simple way
out by including two fields, one with a large mass, respo
sible for tunneling, and the other with a very small mas
responsible for inflation in the true vacuum.

According to this picture we live inside a bubble tha
nucleated from de Sitter space by quantum tunneling with
extremely small probability. This ensures, first of all, tha
there will be no other nucleating events, at least in our pa
light cone, and, therefore, the initial state is pure de Sitt
vacuum. Second, that the nucleated bubble is extrem
spherically symmetric. Although the homogeneity problem
thus solved at the classical level, there might still be larg
quantum fluctuations during the process of quantum tunn
ing.

There are, in principle, two sources of metric perturb
tions in open inflation, the vacuum fluctuations of the infla
ton field that are stretched to cosmological scales by the
pansion, and quantum fluctuations of the bubble wa
produced during bubble nucleation. The first have been e
tensively studied in recent papers@1,2,7–9#; the second have
been addressed by Linde and Mezhlumian@3#, and more re-
cently by Hamazakiet al. @8#, for an empty bubble. We study
the fluctuations of the wall when the bubble is not empt
The calculations will be done in the thin wall approximation
which is valid for most potentials with a deep false vacuu
minimum and a large potential barrier between the tw
vacua. Most results follow the Coleman–De Luccia forma
ism @10#, valid when the tunneling occurs from de Sitter t
Minkowski space-time. However, the new ingredient in ope
inflation is precisely the nonzero energy density of the tru
2473 © 1996 The American Physical Society
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2474 54JUAN GARCÍA-BELLIDO
vacuum which could still drive inflation to almost flatnes
The instanton action associated with the more general qu
tum tunneling process from de Sitter to de Sitter was co
puted long ago by Parke@11#. We will use his results to
calculate the tunneling action of open inflation. We compu
the average amplitude of quantum fluctuations of the bub
wall from variations of the instanton action. Following th
covariant formalism of Garriga and Vilenkin@12#, we study
the spectrum of inhomogeneous scalar modes associ
with quantum fluctuations of the bubble wall, and find th
there is only a discrete mode, withk2523.1 This mode
could, in principle, contribute very strongly to the anisotrop
of the CMB. We study its contribution to the CMB in a
gauge-invariant way and present the results in the Append
both analytically forV0.1 and numerically forV0,1. We
analyze the constraints on the open inflation models from
absence of such and effect in the anisotropies of the mic
wave background, as observed by COBE@13#. It turns out
that there are important constraints on the models, but
enough to rule them out.

Another important issue is whether large quantum flu
tuations of the inflaton field before tunneling could propaga
inside the bubble and distort the CMB. This is a releva
question in the case that the Universe in the false vacuum
actually in a process of self-reproduction, and thus extrem
inhomogeneous@14#. In that case, very large scale metri
perturbations could affect the amplitude of the lowest mul
poles of the temperature anisotropies in the background
diation. This is the so-called Grishchuk-Zel’dovich effec
@15#. We have recently evaluated this effect in the open u
verse case@16# and found strong constraints on the amplitud
of very long wavelength perturbations contributing to th
lowest CMB multipoles. In the case of open inflation mode
where the mass of the scalar field in the false vacuum
smaller than the Hubble parameter, there is a discrete su
curvature vacuum mode@2#, with k2.2m2/3H2,1, that
could, in principle, distort the CMB, as discussed by Yam
motoet al. in Ref. @7#. We derive bounds on the paramete
of open inflation models from the absence of such an eff
in the microwave background anisotropies.

II. QUANTUM TUNNELING

In this section we review the calculation of Parke@11# on
the instanton action for the quantum tunneling between
false and a true vacuum in de Sitter space. We assume
potential has a large barrier between the two minima, so t
the thin wall approximation remains valid, and a large ma
in the false vacuum. One of the dangers of quantum tunn
ing, for a small mass of the tunneling field, is the existen
of the Hawking-Moss instanton@17#. In this case, the field
jumps to the top of the barrier between the two vacua a
very slowly ‘‘rolls down’’ the potential. The problem then is
that there are large quantum fluctuations which are not
flated away, and these large perturbations would unacce
ably distort the observed anisotropy of the CMB. For th
reason alone it is assumed that the mass of the tunneling fi

1k251 corresponds to the curvature scale.
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should be much larger than the rate of expansion at the fal
vacuum.

The Euclidean tunneling action for a single scalar field
can be written as

SE5E d4xA2gF2
1

2k2R1
1

2
~]f!21U~f!G , ~1!

wherek2[8pG and the Euclidean O~4!-invariant metric is
dsE

25dt21a2(t)dV3
2 . The curvature scalar is given by

R526a22(aa91a8221), where a prime denotes deriva-
tive with respect to Euclidean time. Integrating by parts
and using the Euclidean equations of motion
a82215a2k2@f82/22U(f)#/3, we find

SE52p2E dtFa3S 12f821U~f! D1
3

k2 ~a2a91aa822a!G
52

12p2

k2 E dta~12a2H2!, ~2!

whereH2[k2U/3. The instanton~or bounce! action which
determines the probability of tunneling is given by
B5SE(f)2SE(fF). We define UF[U(fF) and
UT[U(fT) as the false and true vacuum energies, respe
tively, which characterize the end points of the quantum tun
neling. Taking into account the contributions to the instanto
action coming from both the wall and the interior of the
bubble, Parke found the following expression for the bounc
action @11#:

B~a!52p2a3S11
4p2

k2 F 1HT
2 @~12a2HT

2!3/221#

2
1

HF
2 @~12a2HF

2 !3/221#G , ~3!

where

S15E
fF

fT
df$2@U~f!2UF#%1/2, ~4!

andUF2UT[e. In general, we choosee!UT but this is not
essential. For the thin wall approximation to be valid we
require that the width of the bubble wallDa be much smaller
than its radius of curvature:

Da

a
.

HT~fT2fF!

@2~U02UF!#1/2
!1, ~5!

whereU0 is the value of the potential at the maximum. The
only requirement is that the barrier betweenfF andfT be
sufficiently high, i.e.,U0@UT .

It is now possible to compute the radius of curvature o
the bubble wall for which the action~3! is an extremum:

B8~a!5
12p2a

k2 Fk2

2
S1a2~12a2HT

2!1/21~12a2HF
2 !1/2G

50 . ~6!
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54 2475METRIC PERTURBATIONS FROM QUANTUM TUNNELING . . .
An exact solution@11# can be written in terms of dimension
less parametersa andb:

a2HT
25

a2

a21~11a2b!2
, ~7!

a5a0HT[
3S1
e

HT , b5
e

4UT
. ~8!

The parametera characterizes the strength of the gravit
tional interaction in the true vacuum. The extremal soluti
~7! is valid both in the limita2!1, for which we recover the
usual tunneling result,a5a0, from de Sitter to Minkowski
(HT50); and in the limit a2b@1, which gives
a54/(k2S1). In both cases the radius of curvature satisfi
a!HT

21 . On the other hand, the largest radius of curvatu
occurs fora2b51, that isa5HF

21 .
The extremal action corresponds to the O~3,1! symmetric

bubble. We are interested in deviations from perfect isotro
and homogeneity, i.e., on the quantum fluctuations gener
during bubble nucleation. Linde and Mezhlumian@3# evalu-
ated a typical quantum deviation of the radius of curvature
the bubble by computing the first quantum correction to
tunneling action,S5S01\DS, whereDS5B9(a)(da)2/2,
and the second derivative of the bounce action~3! at the
extremum is exactly given by

B9~a!5
12p2

k2 @~12a2HT
2!21/22~12a2HF

2 !21/2#

5218p2
S1
2

e

@a21~11a2b!2#1/2

~11a2b!~12a2b!

.218p2
S1
2

e
~12a2b!21. ~9!

In order to evaluate a typical deviation of the curvature of t
bubble, we can estimateDS;1, see Ref.@3#, and, thus,

da.
Ae

3pS1
u12a2bu1/2. ~10!

In the limit a2b!1, we recover the results of Refs.@12,3#.
On the other hand, the last factor could strongly affect
overall curvature of the nucleated bubble, when gravitatio
effects are important.

We are actually interested in the spectrum of inhomo
neous quantum fluctuations of the bubble wall, which wou
appear from the inclusion of gradient terms in the boun
action. These inhomogeneous scalar modes were studie
Garriga and Vilenkin@12# for an empty bubble, using a co
variant formalism in an embedding de Sitter space. In
context of open inflation models, the bubble is not empty a
the radius of curvature of the bubble at the moment of nuc
ation is smaller than the de Sitter horizon scaleHF

21 . The
geometry of the three-dimensional bubble is characterized
its extrinsic and intrinsic curvatures. The unperturbed bub
world sheet has an induced metricgab5]ax

m]bxm , where
the subindices$a,b% label coordinates on the bubble wal
and$m,n% label space-time coordinates. The extrinsic curv
ture of the bubble wall isKab52(ȧ/a)gab . However, as the
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bubble expands,ȧ/a5Hcoth(Ht)→H, the curvature scale of
the bubble approaches the horizon scaleH21 and remains
fixed. Here,H stands for the Hubble constant of the embed
ding de Sitter space.

We are interested in perturbations in the space-time coo
dinates of the bubble wall. Since only motion transverse t
the bubble wall is physically observable~the rest can be
eliminated by a coordinate transformation!, we will only
consider linear perturbations of the typedxm5wnm, where
w is a scalar that characterizes the fluctuations normal to th
surface (nm5Hxm). The metric perturbations become
dgab522wKab1]aw]bw1w2Ka

cKcb.22wKab , to first
order. The equation of motion for the scalar fluctuationw can
be obtained from the variation of the extrinsic curvature
scalar (K523H5const!, dK5¹2w1KabK

abw
2Kab]

aw]bw2w2KabK
acKc

b.¹2w1KabK
abw50, to first

order,2

dK5¹2w13H2w5
k213

a2
w50. ~11!

The bubble wall fluctuations thus correspond to an inhomo
geneous scalar mode characterized byk2523, with the pe-
culiar property that the associated curvature perturbation
transverse traceless@12,8#,

dR̄ab
~3!52HdK̄ab52H~¹a¹bw1H2gabw!, ~12!

while the Ricci scalar remains unperturbed,

dR~3!52H
k213

a2
w50 . ~13!

In principle, there could have been other inhomogeneou
modes at bubble nucleation, but the fact that the bubble wa
asymptotically acquires a fixed curvature determines tha
only the inhomogeneous scalar mode withk2523 survives
on the surface of the bubble.

III. METRIC PERTURBATIONS

We now study the effect that quantum fluctuations of the
bubble wall produce on the microwave background. In orde
to do this, we have to relate the metric perturbations in th
~211!-dimensional bubble wall, at a fixed radial coordinate
with metric perturbations on a three-dimensional comovin
equal-time hypersurface inside the bubble. For that purpos
we recall the open de Sitter coordinates of Ref.@1#: Region I
contains the interior of the bubble and is parametrized~in
units ofH21) by ds252dz21sinh2z(dj21sinh2jdV2) with
coordinates (z,j), while region II is outside the bubble and
is described by the metric ds25ds21sin2s(2dt2

1cosh2tdV2) with coordinates (t,s). In these coordinates
the bubble wall is a timelike hypersurface at a fixed coordi
nates in region II, which can be analytically continued into
a spacelike hypersurface at a fixed comoving timez5 is

2Note that the full expressiondK50 still corresponds to a mode
with k2523.
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inside the bubble. Thus, perturbations in the bubble wall
persurface propagate inside as metric perturbations in a
moving equal-time hypersurface. The~211!-dimensional
k2523 mode of Ref.@12# corresponds analytically to the
three-dimensional open universe discrete mode w
k2523 discussed by Hamazakiet al. @8#.

We want to evaluate, in linear perturbation theory, t
primordial metric perturbations associated with these qu
tum fluctuations. The most general scalar metric pertur
tions can be written as@18–20#

ds25a2~h!@2~112A!dh212Bu idx
idh

1$~112R!g i j12Eu i j %dx
idxj #, ~14!

where $ i , j % label the three-dimensional open space coor
nates with metricg i j . The four linear scalar perturbation
are not independent. Under a gauge transforma
h̃5h1j0(h,xk), x̃i5xi1g i j j u j (h,x

k), the metric perturba-
tions transform as

Ã5A2j082
a8

a
j0, R̃5R2

a8

a
j0, ~15!

B̃5B1j02j8, Ẽ5E2j, ~16!

where a prime denotes derivative with respect to conform
time h. There are, however, only two independent gau
invariant gravitational potentials@20#,

F5A1
1

a
@a~B2E8!#8, ~17!

C5R1
a8

a
~B2E8!, ~18!

which are further related through the perturbed Einst
equations

F1C50, ~19!

4
k213

a2
C52dr. ~20!

Here, dr is the gauge-invariant density perturbation@18#.
Note that for thek2523 mode of bubble wall fluctuations
the amplitude of density perturbations is identically ze
This is a very special mode, as was first pointed out
Lifshitz and Khalatnikov@21#. We will study in detail its
effect on metric perturbations.

The scalar metric perturbations can be separated
A(h,xi)5A(h)Q(xi),3 whereQ(xi) are the scalar harmon
ics of a spatially open universe, solutions of the Helmho
equation@22#,

L2Q~j,V!52k2Q~j,V!, ~21!

whereL25sinh22j]j(sinh
2j]j)1sinh22jLV

2 is the open uni-
verse Laplacian. These solutions have the general f

3From now onA, B, etc. stand for theh-dependent functions.
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Qklm(j,V)5Pkl(j)Ylm(u,f), see Appendix. The scalar
harmonics can be used to construct a traceless tensor

Qi j5
1

k2
Qu i j1

1

3
g i j Q, ~22!

satisfyingQi
i50, see Eq.~21!, as well as

¹ iQi j52
2

3

k213

k2
¹ jQ. ~23!

We can now investigate the contribution of the discrete
k2523 mode to the primordial perturbations in an open
universe. In principle, it is possible to analyze the amplitude
of metric perturbations on any hypersurface@18#. However,
we believe it is most convenient to study them on comoving
hypersurfaces, where they have a clear physical meaning
curvature perturbations. Furthermore, the perturbed bubb
wall hypersurface has the property of being also a uniform
expansion (dK50) hypersurface, see Eq.~11!. It turns out
that, for k2523 ~and only for this mode!, the same gauge
transformation that takes you to a comoving hypersurface
also takes you to a uniform-Hubble-constant hypersurfac
@18#,

dK52
3

a FR82
a8

a
A1

k2

3
~B2E8!GQ[0 , ~24!

dK̄ i j52
k2

a
~B2E8!Qi j[

3

a SR82
a8

a
ADQi j , ~25!

with intrinsic curvature separated into its trace and traceles
parts:

dR~3!54
k213

a2
RQ[0 , ~26!

dR̄i j
~3!52

k2

a2
RQi j . ~27!

Furthermore, fork2523, the dynamic equations can be
written as@18#

A52
w

11w
h, ~28!

Fa2SR82
a8

a
AD G85

k2

3
~R1A!a2, ~29!

where w5p/r, and h5(dp2drdp/dr)Q is the gauge-
invariant nonadiabatic part of matter perturbations, which
vanishes for the single-field~adiabatic! perturbations of open
inflation. In that case, the remaining scalar perturbation sa
isfies the equation

R912
a8

a
R81R50 . ~30!

During inflation,a(h)5a0 /sinhh, there is an exact solu-
tion to this equation given by
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54 2477METRIC PERTURBATIONS FROM QUANTUM TUNNELING . . .
R5C
a8

a2
5C

ȧ

a
, ~31!

whereC5da is the amplitude of quantum fluctuations of th
bubble wall, see Eq.~10!. It is easy to see that during infla
tion R becomes constant:

R05Hda. ~32!

This curvature perturbation is a very peculiar one. Let
evaluate the gauge-invariant potentialsF andC in Eq. ~17!.
Substituting the solution~31!, together withR852C/a, we
find

F5
1

a
~aR8!850 , ~33!

C5R1
a8

a
R850 . ~34!

Therefore, this mode has vanishing gauge-invariant po
tials, as well as vanishing gauge-invariant density pertur
tions. One might be tempted to dismiss this mode altogeth
however, it is possible to see that the traceless parts of
extrinsic and intrinsic curvatures do not vanish:

dK̄ i j5
3

a
R8Qi j52

3

a2
CQi j , ~35!

dR̄i j
~3!5

3

a2
RQi j5

3

a2
C
a8

a2
Qi j . ~36!

Therefore, thisk2523 mode can be understood as a tran
verse traceless perturbation, see Eqs.~22! and ~23!. This
was pointed out in Refs. @8,23#. During inflation,
a8/a25ȧ/a→H5const, and thusdR̄i j

(3)52HdK̄ i j , which
coincides with the bubble wall fluctuations’ relation~12!, as
expected.

Spatial curvature,a225H2(12V), will vanish during
the last stages of inflation and will be negligible (V.1)
during radiation. It is then easy to show with Eq.~30! that
R remains approximately constant. However, as we enter
matter era,a(h)5a0(coshh21), spatial curvature will be-
come important, in order to produce an open unive
(V,1). As a consequence,R is no longer a constant an
evolves with Eq.~30!. There is an exact solution to thi
equation during the matter era,

R5R0G~h![R03
h sinhh22~coshh21!

~coshh21!2
, ~37!

satisfying G(0)51. We are interested, however, in th
gauge-invariant gravitational potential~17!,

F52SR1
a8

a
R8D52

3

5
R0F~h!, ~38!

where

F~h![5
sinh2h23h sinhh14~coshh21!

~coshh21!3
, ~39!
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satisfyingF(0)51.
In the next section we will evaluate the amplitude of tem

perature anisotropies from all possible modes present in op
inflation. These include thek2523 mode associated with
bubble wall fluctuations, as well as the discrete supercurv
ture mode withk252m2/3H2 present in the spectrum of
open de Sitter vacuum fluctuations. There is also the co
tinuum of subcurvature modes associated with quantum flu
tuations of the inflaton field during the second stage of infl
tion.

IV. TEMPERATURE ANISOTROPIES

In this section we study the constraints that temperatu
anisotropies in the CMB impose on the models of open i
flation. For any model, the value ofV0 today depends very
critically upon the number ofe folds of inflation from the
tunneling event to the end of inflation. ForNe565 we find
V0 very close to 1. In fact, since

u12V0u;exp~22Ne!31056, ~40!

a few e folds of inflation less will produce a wide open
universe. In most models, the second stage of inflation with
the bubble occurs in the usual way with a very flat scal
potential, where 65e folds correspond to a value of the in-
flaton fields.3MP . In that case, tunneling to a value o
the inflaton just below 3MP would produce an open uni-
verse@3#. In the single-field models of open inflation pro
posed in Refs.@1,2#, the tunneling field is also the inflaton
field. As we discussed in Sec. II, in order that the field do
not tunnel to the top of the potential, and thus produce lar
amplitude metric perturbations, we need a mass at the fa
vacuum which is larger than the rate of expansio
MF@HF . This condition is enough to suppress the amp
tude of metric perturbations before tunneling. However,
the two-field models of Ref.@3# the tunneling fieldf could
be very heavy while the inflaton fields has a small mass,
both in the false and the true vacua. In this case, Sasakiet al.
have shown that there exists a discrete supercurvature m
in the spectrum of vacuum fluctuations in the open de Sit
space@2#. This mode could, in principle, affect the lowes
multipoles of the temperature anisotropy of the CMB, i
what is known as the Grishchuk-Zel’dovich effect, studied
Ref. @16# for an open universe.

The dominant effect on large scales is known as t
Sachs-Wolfe effect. Due to this effect, metric perturbation
on the surface of last scattering are responsible for tempe
ture fluctuations in the CMB@24#,

dT

T
5
1

3
F~0!12E

0

h0
F8~h02r !dr, ~41!

whereh05arccosh(2/V021) is the distance to the last scat
tering surface. ForV0,2/(11cosh1).0.786, the surface of
last scattering is located beyond the curvature scale.

We can expand the observed temperature anisotropies
terms of spherical harmonics,

dT

T
~u,f!5(

l ,m
almYlm~u,f!, ~42!
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2478 54JUAN GARCÍA-BELLIDO
and evaluate the angular power spectrumCl[^ualmu2&, de-
fined as the ensemble average of thel th multipole of the
CMB temperature anisotropy. Observations, in fact, sugg
that

l ~ l11!Cl&
24p

5

Qrms
2

T0
2 .8310210, ~43!

for the lowest multipoles of the CMB anisotropies, whe
Qrms.20mK @25#.

The contribution of different metric perturbation modes
the multipole components of the angular power spectrum
be separated into a discrete part, which includes the bu
wall fluctuations, labeled byn52; the supercurvature mod
kVL
2 .2mF

2/3HF
2,1 of open de Sitter vacuum@2#, plus a con-

tinuum of subcurvature modes from fluctuations of the infl
ton field in the last stage of inflation:

l ~ l11!Cl52p2l ~ l11!^R0
2&wallI n l

2

12p2l ~ l11!Nl
2Bl

2kVL
2 ^R2&VL

12p2l ~ l11!E
1

`dk

k
PR~k!I kl

2 . ~44!

Here,PR(k) is the spectrum of primordial curvature pertu
bations. For then52 mode associated with the bubble wa
^R0

2&wall is the average square amplitude of the curvat
perturbation~32!. The ‘‘window function’’ I kl

2 indicates how
a given scale contributes to theCl ’s. We have evaluatedI n l

2

for the n52 mode in the Appendix. The window functio
Nl
2Bl

2 associated with the very long wavelength supercur
ture modekVL

2 was computed in Ref.@16#.
We analyze now the different sources of metric pertur

tions in models of open inflation and the contraints that
servations of the microwave background impose on the m
els.

A. The subcurvature modes

Let us consider the temperature anisotropies produce
the continuum spectrum of subcurvature modes; see
Ref. @7#. The amplitude of scalar metric perturbations pr
duced by quantum fluctuations of the inflaton fields during
the second phase of inflation is approximately given by@9#

R52H
ds

ṡ
, ~45!

which gives a nearly scale-invariant spectrum,

^R2&1/25
4V

sV8

Hs

MP
2 .

6H

MP
. ~46!

The observed temperature anisotropies of the microw
background at large scales@13# are consistent with such
spectrum of metric perturbations,

l ~ l11!Cl5
2p

25
^R2&.const. ~47!
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Assuming that the observed anisotropies~43! are due solely
to quantum fluctuations of the inflaton requires
H/MP.1025. This is a very general constraint. In the case
of a massive inflaton, this bound requires its mass in the tru
vacuum to be

mT

MP
.231026. ~48!

All models of open inflation should satisfy this constraint.
Let us now discuss the more interesting discrete modes.

B. The k2523 mode

This mode is associated with quantum fluctuations of th
bubble wall at tunneling that survive as scalar perturbation
after the bubble has acquired a fixed comoving curvature. I
order to evaluate its amplitude, let us parametrize the tunne
ing potential of Sec. II by

U~f!5UF1
l

4
f2~f2f0!

22eS f

f0
D 4. ~49!

The two minima occur atfF50 andfT.f0[MA2/l, and
the maximum of the potential is atU05lf0

4/645M4/16l.
Following Ref. @3#, we will definee[mU0, with m!1 for
the thin wall approximation to be valid.

It is now possible to evaluate the instanton contribution
from the bubble wall@Eq. ~4!#,

S15
M3

3l S 11
11

32

e

U0
D.

M3

3l
, ~50!

while a andb are, see Eq.~7!,

a5
16

m

H

M
, b5

p

24

m

l

M4

MP
2H2 , ~51!

a2b5
32p

3ml

M2

MP
2 . ~52!

The average amplitude of the metric perturbation pro
duced by quantum fluctuations in the radius of curvature o
the bubble at nucleation,R05Hda, can then be written as

^R0
2&wall

1/2 .
Aml

4p

H

M
u12a2bu1/2

5A 2

3p

H

MP
U 12a2b

a2b U1/2. ~53!

Note that we recover the result of Ref.@3# in the limit
a2b!1. The constraints on̂R0

2&wall from the CMB tem-
perature fluctuations are discussed in the Appendix, see Eq
~A12! and ~A13Q!. Using Eq.~53!, we find

U 12a2b

a2b U&18p2, 0.1&V0&0.4, ~54!

U 12a2b

a2b U& 54p2

~12V0!
2 , 0.4&V0<1 . ~55!



,

ue

e

-
u-

in
are
re
oes
k-

ric
he
in
i-
of
r-
nt,
ue
s
as
ba-
er
t a
a
he
le
nd
o-
he
us
t
ro-
this

to
es.
n-
ule

ry
hat
ot
no

54 2479METRIC PERTURBATIONS FROM QUANTUM TUNNELING . . .
We can now bound the parameters of the model~7!:

ml&192p3
M2

MP
2 , 0.1&V0&0.4, ~56!

ml&
576p3

~12V0!
2

M2

MP
2 , 0.4&V0<1 . ~57!

Let us give some values to the parameters. Suppose
M;1023MP , see Ref.@3#, and take, e.g.,V0.0.3. Then

ml,631023. ~58!

This is a relatively weak bound onl for small values of
m. On the other hand, forV050.8, the bound becomes
ml,0.4, much weaker and thus much easier to satisfy. F
thermore, asV0 tends to 1, the bound disappears altogeth

In summary, the bound on the parameters of open infl
tion models from quantum fluctuations of the bubble wa
depends significantly on the value ofV0. In most cases, the
bound is not very strong and it is possible to find mode
satisfying the constraints.

C. The discrete vacuum mode

For open inflation models in which one of the scalar field
has a mass in the false vacuum much smaller than
Hubble rate of expansion, there exists a discrete supercu
ture mode in the spectrum of open de Sitter vacuum fluctu
tions @2#,

kVL
2 512F S 942

mF
2

HF
2 D 1/22 1

2G2. 2

3

mF
2

HF
2 , ~59!

that propagates inside the bubble. This is the case of one
the two-field models of Ref.@3#, where the inflaton in the
false vacuum is light. The metric perturbation for this mod
is

^R2&VL.S 4VF~s!

VF8 ~s!

HF

MP
2 D 2.36

HF
2

MP
2 , ~60!

which could, in principle, affect the anisotropy of the micro
wave background, due to a large value ofHF .

The Grishchuk-Zel’dovich effect gives the contribution t
the microwave background anisotropy from a very larg
scale metric perturbation. In an open universe, one can c
strain the amplitude of a discrete, very long wavelength s
percurvature mode 0,kVL

2 ,1 to satisfy4 @16#

kVL
2 ^R2&VL&431028, ~61!

in the range 0.25&V0&0.8, in order not to affect the ob-
served low multipole anisotropies of the microwave bac
ground, see Eq.~43!. The constraint is somewhat weake
kVL
2 ^R2&VL,231029(12V0)

22, for 0.8&V0,1, see Ref.
@16#.

4Note that in Ref.@16# there is a factor of 2p2 missing in the
amplitude of the angular power spectrum, which makes the bou
on the curvature perturbation stronger.
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Using the bound~61!, we find a relatively weak bound on
the allowed mass of the inflaton field in the false vacuum

mF

MP
&431025, ~62!

which allows a mass somewhat larger than that in the tr
vacuum~48!.

Another possibility is to choose the inflaton field to b
massless in the false vacuum and thus the discrete mode~59!
would correspond to a homogeneous (k250) mode, which
does not affect the CMB, see Ref.@16#. This is the case of
hybrid open inflation@3#. One could also have a very mas
sive inflaton field in the false vacuum, as in the ‘‘supernat
ral’’ open inflation model of Ref.@3#, in which case there is
no discrete supercurvature vacuum mode.

In summary, either the scalar fields are very massive
the false vacuum, such that no supercurvature modes
present in the spectrum of metric perturbations, or they a
very light so that their associated supercurvature mode d
not distort the observed anisotropy of the microwave bac
ground.

V. CONCLUSIONS

In this paper we have computed the amplitude of met
perturbations produced by quantum fluctuations of t
bubble wall at the moment of tunneling. These could,
principle, be a source of temperature fluctuations in the m
crowave background, in the context of the present models
single-bubble open inflation. By taking into account the co
rections due to gravitational effects at the tunneling eve
we have found that a nonzero energy density in the tr
vacuum could strongly modify the amplitude of fluctuation
in the bubble wall. These fluctuations can be understood
discrete, long wavelength modes associated with pertur
tions in the curvature of the bubble. In the open de Sitt
coordinates, the bubble wall is a timelike hypersurface a
fixed radial coordinate which asymptotically determines
spacelike hypersurface at a fixed comoving time inside t
bubble. Small fluctuations in the curvature of the bubb
propagate inside as perturbations in the time it takes to e
inflation @26#, and thus generate metric perturbations on c
moving hypersurfaces. However, quantum fluctuations of t
bubble wall generate only a discrete, inhomogeneo
(k2523) mode@12,8#. It is possible to calculate the effec
that this transverse traceless scalar metric perturbation p
duces on the microwave background. We have computed
effect for arbitrary values ofV0, and described the results in
the Appendix. See also Ref.@23# for the limitV0.1. In Sec.
IV we constrain the parameters of open inflation models
avoid distortions in the observed temperature anisotropi
The resulting bounds on the amplitude of bubble wall qua
tum fluctuations are quite severe, although not enough to r
out these models.

Furthermore, in the single-field models of Refs.@1,2#, the
inflaton potential is fine tuned so that the field has a ve
large mass in the false vacuum. This ensures not only t
the tunneling occurs in the thin wall approximation and n
along the Hawking-Moss instanton, but also that there are
supercurvature modes that propagate inside the bubble@8#.

nds
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However, in the two-field models of Ref.@3#, the tunneling
field has a very large mass in the false vacuum, but
inflaton field does not~except in the ‘‘supernatural inflation’’
model!. This implies two things, first that there is a discret
supercurvature vacuum mode@2# that propagates inside the
bubble, and second that the amplitude of such a long wa
length perturbation could be rather large. These two featu
could, in principle, be enough to destroy the isotropy of th
CMB to a level incompatible with observations, see Ref.@7#.
Using the bounds on the amplitude and wavelength of suc
perturbation from the open universe Grishchuk-Zel’dovic
effect @16#, we find an upper bound on the mass of the infl
ton field at the false vacuum which is easily satisfied by
models.

As a consequence, the present models of open inflat
seem to work well with very reasonable parameters, at le
as reasonable as those of standard inflation. A different is
is whether these models will turn out to be the correct d
scription of the origin of our patch of the Universe. As men
tioned in the Introduction, another possible solution to t
age crisis could be that the Universe is flat with a nonva
ishing cosmological constant. Fortunately, cosmology h
become a science and within a few years we will be able
tell, from the shape and amplitude of the spectrum of te
perature fluctuations, whether our patch of the Universe
indeed open or flat@27#. A different possibility is that the
present observations of the Hubble parameter turn out to
wrong and the actual value is well within the range allowe
by a flat universe without a cosmological constant.

In any case, it is encouraging to see that the inflationa
paradigm is able to accommodate an open universe, eve
we never have to make use of it. Much more difficult wou
be to compute a probability distribution for the value o
V0. Such an attempt was made in Refs.@3# and @28#. We
believe the problem of probability measure in cosmology
not yet settled and we still have to learn how to pose t
appropriate questions.
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APPENDIX: CMB TEMPERATURE FLUCTUATIONS
FROM A K2523 MODE

The open universe scalar harmonics can be written
Qklm(j,V)5Pkl(j)Ylm(u,f), with Ylm(u,f) the usual
spherical harmonics and

Pkl~j!5Nn l

Pn21/2
2 l21/2~coshj!

Asinhj
, ~A1!
the
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Nn l5@G~ l111n!G~ l112n!/2#1/2, ~A2!

in terms of the associated Legendre polynomials. Here
n[A12k2 is real for supercurvature modes,k2,1, and we
have normalized the modes following Refs.@8,23#. The
higher multipoles can be obtained from@29#:

Pn21/2
1/2 ~coshj!5A 2

psinhj
coshnj, ~A3!

Pn21/2
21/2 ~coshj!5A 2

psinhj

sinhnj

n
, ~A4!

with the recurrence relation

~n22 l 2!Pn21/2
2 l21/2~coshj!5Pn21/2

3/22 l ~coshj!

2~2l21!cothjPn21/2
1/22 l ~coshj!.

~A5!

The scalar harmonics for the first two multipoles can be writ-
ten as

Q200~j,V!5N0coshjY00~u,f!, ~A6!

Q21m~j,V!5N1sinhjY1m~u,f!, ~A7!

where the normsN0 andN1 diverge, see Eq.~A1!. This is
not a problem since the only contribution of these modes to
curvature perturbations comes through the transverse trac
less tensorQi j , see Eq.~35!, and is easy to check that, for
k2523, it vanishes identically for the first two multipoles,
l50 and l51. However, it does not vanish for the higher
multipoles and thus the transverse traceless curvature pertu
bation ~35! gets contributions from all thel>2 multipoles
@23#. Let us calculate the quadrupole with Eq.~A5!. It is

FIG. 1. The shape of the radiation angular power spectra
l ( l11)Cl induced by thek2523 mode of bubble wall fluctua-
tions, normalized to the quadrupole, for the first nine multipoles.
The curves correspond toV050.2, 0.4, 0.6, 0.8, from top to bot-
tom. It is clear that none of them is compatible with a flat spectrum
Note that we recover the usual Grishchuk-Zel’dovich effect of a
dominating quadrupole in the limitV0.1.
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clear from this equation that the modek2523, or n52, is
very special since the left-hand side~LHS! seems to vanish
for l52. However, the right-hand side~RHS! also vanishes
and thus we should find the quadrupole in the limitn→2,

P22~j!5A6

p

sinh4j28sinh2j112j

48sinh3j
. ~A8!

The rest of the multipoles can now be obtained from th
expression together with the recurrence relation~A5!.

We are interested in the multipole components of tem
perature fluctuations induced by this discrete mode. The b
way to analyze its effect on the microwave background is
study this scalar metric perturbation in the comovin
uniform-Hubble-constant hypersurface gauge, in terms of
gauge-invariant potentialF, as we did in Sec. III.

Let us evaluate the multipole components of the tempe
ture anisotropies associated with the bubble wall fluctu
tions. A formalism that includes supercurvature mod
(k2,1) was developed in Ref.@9#, where it was found that
they contribute to the CMB temperature anisotropies as re
izations of a homogeneous random field. Furthermore,
Ref. @8# it was shown that thek2523 mode also corre-
sponds to a homogeneous random field, once we subtrac
nonphysical monopole and dipole contributions.

In Sec. IV, we gave the expression of the angular pow
spectrum of the observed temperature fluctuations com
from the various metric perturbations, see Eq.~44!. We will
concentrate here on the contribution of the discreten52
mode associated with the bubble wall quantum fluctuatio
^R0

2&wall is the average square amplitude of the metric p
turbation ~32!. The ‘‘window function’’ I n l

2 indicates how
this mode contributes to theCl ’s,

nI n l5
1

5
Pn l~h0!1

6

5Eo
h0

Pn l~r !F8~h02r !dr, ~A9!

FIG. 2. The amplitude of the first three contributing multipole
l52,3,4 ~from top to bottom!, of the angular power spectrum in
units of ^R0

2&wall , as a function ofV0. It is clear that for a large
range ofV0, the quadrupole dominates the spectrum.
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whereF(h) is given by Eq.~39!.
It is possible to compute analytically its contribution to

the first multipoles of the angular power spectrum, for value
of V0 close to one:

C25
p

3 S 825D
2

^R0
2&wall~12V0!

2, ~A10!

C35
p

15S 1635D
2

^R0
2&wall~12V0!

3. ~A11!

In general, we findCl;^R0
2&wall(12V0)

l , and thus the
quadrupole dominates over the rest of the multipoles, such
in the case of open universe Grishchuk-Zel’dovich effec
@16#.

For V0,1, we have to evaluate numerically the window
functions for the different multipoles, and compute their con
tributions to the CMB. In Fig. 1 we show the shape of the
angular power spectrum, normalized to the quadrupole, as
function of multipole numberl , for various values ofV0. It
is clear that none of them is compatible with a flat spectrum
Note that we recover the usual Grishchuk-Zel’dovich effec
of a dominating quadrupole in the limitV0.1. In Fig. 2 we
show the amplitude of the first contributing multipoles of the
angular power spectrum in units of^R0

2&wall , as a function of
V0. It is clear that for a large range ofV0, the quadrupole
dominates the spectrum.

In Fig. 3 we show the limits on the curvature perturbation
^R0

2&wall as a function ofV0, from the observational limits on
l ( l11)Cl,8310210. We can parametrize this bound as

^R0
2&wall&331029, 0.1&V0&0.4, ~A12!

^R0
2&wall&

1029

~12V0!
2 , 0.4&V0<1 . ~A13!

This is our main result. We will use it to constrain the mod-
els of open inflation in Sec. IV.

s,
FIG. 3. Limits on^R0

2&wall , based on current observational lim-
its on l ( l11)Cl,8310210. The allowed values of̂R0

2&wall are
those below the curve. In a large range ofV0, the quadrupole pro-
vides the strongest constraint.
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