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We quantitatively study the charge transport mechanism of electroweak baryogenesis in a realistic two-
Higgs-doublet model, comparing the contributions from quarks and leptons reflecting from electroweak do-
main walls, and comparing the exact profile of the-violating phase with a commonly used ansatz. We note
that the phenomenon of spontaned@iB violation at high temperature can occur in this model, even when
there is noCP violation at zero temperature. We include all known effects which are likely to influence the
baryon production rate, including strong sphalerons, the nontrivial dispersion relations of the quasiparticles in
the plasma, and Debye screening of gauged charges. We confirm the claim of Joyce, Prokopec, and Turok that
the reflection ofr leptons from the wall gives the dominant effect. We conclude that this mechanism is at best
marginally capable of producing the observed baryon asymmetry of the universe, and we discuss some ways in
which it might be enhancedlS0556-282196)02414-9

PACS numbeps): 98.80.Cq, 11.15.Ex, 11.30.Er, 12.60.Fr

I. INTRODUCTION which is how a baryon asymmetry is produced in the charge
transport mechanism of electroweak baryogenigsBl. Un-

An exciting proposal during the last few years is that thetil now there have been no attempts to compd(te); rather,
baryon asymmetry of the universe was created during than ansatz has been invoked. We will show that the difference
electroweak phase transitiorl], by harnessing both the between the actual solutions and the ansatz can be quite sig-
anomalous baryon number violation present within the stannificant. Moreover, a detailed study of the equation of mo-
dard model and the first order nature of the phase transitiotion for #(x) reveals the interesting phenomenon of sponta-
which gives the necessary departure from thermal equilibneousCP violation [9] at high temperature that can occur in
rium. The third ingredient needed for baryogenesi€CB  this model, even when there is @P violation at zero tem-
violation, which is widely believed to be too small for this perature.
purpose in the standard model. However, in modest exten- We subsequently use our solution feéi(x) to study
sions of the standard model it is possible to introduce nevbaryon production in the charge transport mechanism. We
sources ofCP violation which are more effective for baryo- account for all known effects which are likely to influence
genesis[2-5]. For example, in generic models with more the baryon production rate including the nontrivial dispersion
than one Higgs doublet, phases can be introduced into thelations of the quasiparticles in the plasma, strong sphale-
potential for the scalars which are only weakly constrainedons, and Debye screening of gauged charges. We do not
by laboratory limits onCP violation [6]. include thermal damping in our calculation of reflection am-

The simplest example is a theory with two Higgs dou-plitudes, but we will argue that this phenomenon is likely to
blets, where there is a single phage namely, the phase be of little consequence to our results. We confirm the claim
mismatch between the vacuum expectation valsV’'s)  of Joyce, Prokopec, and Turd8] that the reflection ofr
of the two scalar fieldg2]. Although at zero temperatuteis  leptons from the wall gives the dominant effect; however, we
just another parameter of the theory, during the electrowealiffer from Ref. [8] in that our exact computation of the
phase transition it is a spatially varying fiek(x) whose probabilities for particles to reflect from the bubble wall
value depends on the position relative to the domain wallgives smaller results than their estimates. Based on our re-
that separate the true and false vacuum phases during tlelts, it appears difficult to get a large enough baryon asym-
transition. In principle, the detailed form @f(x) is needed metry even using the most favorable values of la@e
for computing the difference in reflection probabilities be-violation and slow bubble wall velocity. However, some
tween quarks and antiquarks bouncing off the domain wallsmodifications, such as a largerdepton Yukawa coupling or

further slowing of the bubble walls toward the end of the
phase transition, may make it possible to account for the
*Current address: Niels Bohr Institute, DK-2100, Copenhagen Obaryon asymmetry with this mechanism.
Denmark. In Sec. Il we introduce a two-Higgs-doublet model which
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is sufficiently realistic to include the physics needed for elec- mi2T2 mi3-|-
troweak baryogenesis, and we find its corresponding finite- AVT(qS)EE Ci —Dj—=—
. . . . i 48 127
temperature potential. Section Il discusses the solution for
the 6 field equation of motion, and in Sec. IV the computa- 4
tion of the fermion reflection coefficients is explained. Sec- —Ei&T'z[In(miZ/Tz)—Fi] , 4
T

tion V treats the complicated process of how the fermions

reflected from the wall will propagate back into the symmet- _ _ 1 .

ric phase before the wall overtakes them again. In Sec. VI there Gi=2 (1), Di=1 (0), E=1 (~1), andF;=5.41
put these results together to find the baryon asymmetry. W
present our results and conclusions in Sec. VII.

2.64) for bosons(fermiong. For example, the quadratic
erm has the effect of shifting the parametﬁrfsof the tree-
level Lagrangian to

Il. MODEL AND ITS EFFECTIVE POTENTIAL w?(T)=pu?—aT? )

In the most general potential with two Higgs doublets,where, in terms of the SI@) and U1) gauge couplings and
flavor-changing neutral currentSCNC'’s) are unsuppressed; the Yukawa couplings,

it is, therefore, convenient to impose a global symmetry such
as®;— —d, to forbid them[10]. This symmetry, if exact, a= (3N +hy+2hy)+ & (3g2+g'2)+ 2y2.  (6)
would also forbidCP violation and lead to domain wall
formation in the early universe, but these problems can beNote thaty,;=0 for our modell The ring improvement of
cured without reintroducing the first by allowing the symme-the potential is the first iteration of E@3), in which the
try to be softly broken by a ter®]®, [2,11]. The potential massed of the bosons are taken to be those at the tree level
is plus the one-loop temperature-corrected driss.
The effective potential derived here differs from that of
V(®,,0,)=—p20I0,— uidld,+ KD Id,+K* Db, Turok and Zadrozny2] who considered the same model
\ \ without thex term. Their computation was made in the uni-
Moatd 20 D2 mTd )2 t tary gauge, which gives unreliable results, as has been shown
T (0127 H (P27 + (D1 2) in Ref.[14]. One way to see that the result[@f is incorrect
T T T t« o Is the fact that their thermal corrections do not respect the
X(DaP1) +ha(P1P1)(PP;) +hs((P1P) symmetry®, < ®, even though the underlying Lagrangian
(1) does. Reference 14] shows that the unitary gauge is a poor
choice near the critical temperature, where each order in the
loop expansion is as important as the next for obtaining
quantities that are perturbatively calculable in covariant
gauges.
The phase transition in this model generically proceeds in
0 stages, because there are separate critical temperatures
r the two fields[15,16. To sidestep this complication we
now follow previous authors by making the simplifying tech-
cal assumption that;=\,=\, u’=pus=u? [2,17).

+(DJD1)D)+y,F Dofptec.

The last term is the Yukawa interaction of the Higgs field
with a generic fermion field, taking into account that the
couplingy, to @, is forbidden by the global symmetry.

In the above expression we have used global field redefi.[—W
nitions to make the coupling; real. In general the mass
term k thus remains complex. Ih; should happen to be
zero, as is the case at the tree level in the supersymmetr

(SUSY) standard model, the same redefinition could be use hen the Higgs potential is invariant under the exchange of

:(r)]em:ike;; ;iﬂtgdetgvig\}gfrgvvgﬁuilg t?1ee '?SSV\'(O?J'SOQ :l\ncomt-he moduli of the two fields, and we can parametrize the
99 . ' . : domain walls separating the true and false vacua in the form
plex value ofh; is generated at one lod@]. We will write

'Kk as a modulus times a phase: 1 0
0] =— ' ,
~— et ) 1(X) \/E(p(x)el[a(x)+0(x)]/2)
Finite-temperature corrections to the effective potential at 1 0
the one-loop level are given by the integfaP] Pa(x)= E p(x)eila =012 - @)
A o T (= 2 The CP-conserving phase(x) is the neutral Goldstone bo-
Vi(p)=F—]| dx L : i
27 )0 son which is absorbed by th&, when the symmetry is bro

ken. Its expectation value is a constant which can be ignored
XTrin(L=exp{— yX*+[M(¢)/T]?}), (3  in our subsequent discussion; therefore, the phase transition

is described by two real fields instead of three. Moreover, in
where the trace is over all particles in the theory ahd a first approximation, the phas#&(x) can be treated as a
(—) is for fermions (boson$. Each real field(four for a  small perturbation, so that the domain wall profile during the
Dirac fermion counts as a single state in the sum. Thephase transition is determined by a single equation for
masses are evaluated at arbitrary background values of thg€x). We expect the physics of quark reflection from bubble
scalar fields. Expandind\V(¢) to fourth order in the walls in this model to be similar to that of the more realistic
masses, the result can be written as case whemu2# u3.
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It is clear from the full potential that if, for sma#l(x), we  defined as the temperature when two degenerate minima de-
want the symmetry to break in the direction &f,=®,, velop in the Higgs potential. At this time the VEV is
then we must demand that
Pec=268T e/ Nt 12
k<0. (8)
Residual sphaleron interactions in the broken phase can wash
If not, the same physics would still ensue except that weout the baryon asymmetry once it has been created unless the
would have to change the name of one of the fields, saygondition p.=T, is satisfied or, in other wordsj= \ ¢¢/2.
®,— —d,; thus, we will take Eq(8) as our convention for [This can be derived from the condition that the sphaleron
the sign ofx. energy Egy, be greater than ~45T; [3] using
Unfortunately the necessity of coupling the fermions toEspn=8mB(Ner) Mw(T)/g?, Where B(\¢y)=1.6 for small
only one Higgs field means that finite-temperature correcvalues of \o¢.] Unfortunately the values=0.018 due to
tions will spoil the symmetry that would allow both fields to transverse gauge bosons would necessitate too small a value
have equal VEV's as in Eqs7). We will ignore this com- 0of A to be compatible with the laboratory bound of
plication in order to maintain the single-stage phase transimﬁoz)\eﬁp§>(60 GeVY. Henceforth we will therefore take
tion, yet still keep the effect of fermion contributions to the 5=\ .4/2.
finite-temperature effective potential, using the prescription For future reference we give the VEV of thefield and

that the vacuum masses of the Higgs fields here, in the limit of a
small CP-violating phase. At zero temperature the potential
p3(T)=wu?—aT?, a=(a;+a,)/2. (9 is minimized by

This should be regarded as a reasonable compromise be- 246

tween realism and simplicity. It would be exact in the case po=[2(p?— k)] '3 =—=GeV, (13
where the fermions coupled with equal strength to both V2

Higgs doublets, which is another, less familiar way of avoid-

ing flavor-changing neutral currentor further discussion of ~and if we define a parameter

this point, see Sec. VIl We will keep only the dominant top 2
qguark Yukawa contributiory,=1.4 ina,. This value corre- [=— klmZo, K= '“—_l (14)
sponds to a mass of 176 G4¥8]. h 1-(29)
The result of substituting the forrf¥) into the effective _
potential for the Higgs fields is the masses can be written as
Vei(p, 0)=[ — u2+aT2+ kcod 6— ) |p?— 5Tp® Mio=NefiPl

1 _ 4
*alhert 2hglcos26) LlipTE - M2o= — 4hp}— 2| k| = mZ(2£ — 4y /),

Neir=A+ Rty t2s. (10 Mi0=(\er— 2N1—~ 2, — 4hg) p— 2| ]

The ellipsis repregents contributions which have.a smaller =mﬁo[1+2§—(2h1+2h2+4h3)/)\eﬁ]

effect on the evolution of the fields than those retained: tem-

perature corrections to the quartic couplings and cubic terms " 2

of the form (p%+ ¢ T?)%”2. The cubic term retained in E¢LO) M= = = (hy+2h3) pg— 2| k| =M o[ 20— (1 +2h3)/Neg].
is contributed by the transverse gauge bosons whose thermal (15

squared masghe c T? term) vanishes at ordag?. They give 0 . . .
5=[2g+ (g2+g'?)*?]/(12y27) = 0.018. However, this is Note thath" is the Higgs field which gets a VEV. To explore

an underestimate since the2- cT2)¥%like terms must still the implications of various choices of the paramatgeit will

function in somewhat the same way as a pure cubic terr’rPe he_lpful to invert_ the relationd5) to solve for the quartic
and they are numerous because the two Higgs doublets Coﬁguplmgs as functions of and the mass ratios

tribute a total of eight particles in the suf#). These terms

are inconvenient to include explicitly because they make it
impossible to compute the parameters of the phase transition ) )
analytically. Instead we will parametrize their effect, as wellWith yno=1. The couplings can then be written as
as contributions from other possible particles such as singlet

yi=m2/mZ, (16)

Higgs fields[19] and possible nonperturbative effe¢®0], hy=hy/\eg= (20— 2y + ya)12,

by keepingé as an adjustable parametéor more discus- R

sion, see Sec. VIl In any case, this is necessary for avoiding ho=hy/Nesi=(1—2{+ 2y — yy)/2,

the problem of baryon washout in the broken phidsg. To

see this, we note that the phase transition occurs at the criti- ha=ha/\ey= (27— yp)/4. (17)

cal temperature

) 5 ) From these we can express the paramatef Eq. (9) in
Te= ("= K)(a— 6 hex), (1) terms of the mass parameters,
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1 ¢ 1 3g°+g'? y? 4pg
a_)\eﬁ(g_§+2_4h0,A,H 7i)+—+§1 (18 Awa”_mhopc'
e

For example, with\ ;4=0.12, y;={=1, andd=\¢4/2, one
which is useful for determining the critical temperature finds a rather wide wall witt,,;=11.5/T,=0.15 GeV 1.
through Eq(11), and thereby the width of the bubble wall to For the equation of motion fo, we define a dimensionless

be discussed below. distancez=z/A,,,; along the bubble wall and obtain
Curiously, the combinatioa— §%/\ o can vanish for suf-

ficiently large negative values of (large positive?), the a§0+4(1—g)330+ Bsin(6— 6,) + Cg?(sin26)/2=0,

mass which mixes the two Higgs fields in the tree-level po-

tential. From Eq(11) we see that this would imply a nega- B=2«kA2,,, C=4hzA2 p2=64h3/\es. (22

tive value for T2, meaning that there would be no phase

transition. We should not trust our effective potential for The boundary conditions in the broken and unbroken sym-
these parameter@nd even if we could, there would be no metry phasesz>0 andz<0, respectively depend on the
electroweak baryogenegisand so we will exclude this re- values of the paramete® and C. By demanding that the
gion. Using the top quark Yukawa coupliyg=1.4, one can derivative of # vanishes at+« it is easy to see that the

solve for the condition that there is a phase transition: boundary conditions for the caget+ C<0 are
2 O 22 23
{<3C/\ gt 1/2—3(8/\eg) +th ¥i/8, 02| 5 BIB+C), 2=+, (23
Rl
to lowest order ins,. However, ifB+C>0, the boundary
3g%+g'? 3y? conditions are no longer proportional & . In particular in
c=—7 T g 034 (19 the case thas, =0, so thaCP is explicitly conserved by the

Higgs potential, one finds the nontrivial boundary conditions
(note that becaus®<0 this solutiononly exists when

For the smallest experimentally allowed values rofp,
P Y fo gyc-0)

Neir=0.12, and assuming th&@=\.4/2 and the mass ratios
v;=1, we get{<8.8. This condition can be violated only if 0, z=-
there is a fine-tuned cancellation betweghand « designed 0(z)=
to keep the weak scale at 100 GeV. For heavy Higgs boson

masses the restriction @hbecomes even less severe.

arccos }(—B/C), z=+o. (24

This is an example of spontaneous breaking>éf at finite
temperaturg9], whereCP is conserved al =0. It is inter-
ll. BUBBLE WALL PROFILES esting because in this case there will be no constraints from
laboratory searches faCP violation in the phasé. It is

We now turn to the description of the domain wall at the =~ hif d h h 0P violati
phase transition. In principle the equations of motion for theStraightiorward to show that spontane violation oc-

.. 2
bubble wall nonlinearily couple all doublet field components.Curs only for sufficiently large values d@f= — «x/m,,
For technical reasons we will assume that the relative phase

between the Higgs doublet is small, and therefore we work (> VF?43ya(8lhe) >+ F,

only to the lowest order id(x); in this case, the equation for

the modulugp- decouples from that of. The eqqatiqn for F=1.5/\ o4+ 1/4_952/2}\§ﬁ+ Z yI16, (25
6 has nontrivial solutions because of the expliciP viola- hO A H

tion present in the effective action in the form of a complex -

x. Moreover, we find that for a qertain region o_f parametersuSing the parametar defined in Eq(19) and the mass ratio
i?]P gets spontgngously proken in the symmetric phase, .g'V&A= m,i/ mﬁo. The constraint§19) and(25) restrict the range
g rise to nontrivial solutions even when the effective action

has no explicitC P violation of spontaneou€ P violation to a rather narrow band i
Since the bubbles of true vacuum grow to macroscopifor example, with the particular choice of parameters shown

proportions, one can approximate the walls as planar, dd! Eq. (34), one finds that it occurs if 7.85{=8.70. How-

: . ; . , this is essentially the only constraint there is; one can
pending only on a single coordinare[21]. Combining the ever : ;
effective potential10) with the kinetic energy density ve_nfy that the upper bound afiin Eq. (19) does not conflict

with the lower bound25) unlessy, is larger than the aver-

Evn=(3,0)2+ 2 (pd,0)2. 20 age ratio of the other Higgs boson masses by the amount

one finds that to zeroth order ihthe equation of motion of YA~ > , ¥i/3=8C/ N+ 5/3—8(8/\e).  (26)
the p field has the usual kink solution i#Ah

Such a large discrepancy between the masses seems unlikely
p(2)=pc9(2), (21)  and would invalidate the use of perturbation theory in the
construction of the finite-temperature effective potential. We
g(2)= 3[1+tanh(Z/A )], will always assumée,=0 when considering the spontaneous
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CP violation and focus on the situatid+ C~0, so that the ditions at finite values ok, where one does not know the
boundary values of are small and we are justified in treat- exact asymptotic behavior without first having solved the
ing it as a perturbation. equations. We found that results for the baryon asymmetry
Since there is no unique choice for the signéfvhen  due to heavy top quarks were quite sensitive to small uncer-
CP is only spontaneously violated, one would expect thatainties in the asymptotic behavior, making these methods
half of all the bubbles that form during the transition produceunsuitable. Instead, it is convenient to rewrite [E2j7) with
baryon asymmetries of the opposite sign, which average tthe kink profileg as the independent variable:
zero in the end. However, it is conceivable that a small
amount of explicitCP violation could be dynamically am- 492(1—g)zage+4g(1—g)(3—4g)3ga+(B+CgZ)9+D
plified by the spontaneous effd@3], avoiding the cancella-
tion, and so we will keep in mind the possibility. =0. (28)
Let us first, however, consider the case of explCiP
violation with B+C<0 and small CP-violating angle The solution can be written as a power seriegiar 1-g,
S,.<m. The linearized equation is valid in the intervalg € (0,1):

950+4(1—9)d;0+ (B+Cg? 6+ D=0, - = _ B
0(g>=k§0 <ak+ﬂk97>gk=k§0 [+ Br(1—9)"1(1—g) .

=-4,B. 2
p 27 (29
Although one might try various techniques for numerically
integrating Eq.(22), they require specifying boundary con- The coefficients are given by recursion relations:
|
_(yTk=D)[8(y+ k) +12]Bx-1—[4(y+k=2)(y+k+1)+C]Bk->
K 4(y+K)(y+k+2)+B ’
5, WOk D27+ + 11+ 20} By —[4(7 k= 2kt 1)+ ClBycs
“ 4(7+K)2+B+C !
y=(1-Bl4)Y>~1, F=(-B-C)¥¥2. (30)

The analogous relations far anda are obtained from these asymmetry of the fermions, and a judicious shift allows us to
by settingy="y=0. a; anda, correspond to the inhomoge- recover the original form of Eq27), except that the coeffi-

neous solution and are proportional@o cients must be reparametrized according to
a,lzo, OZOZ_D/B, B—>BCO§0,
a_1=0, ay=—D/(B+C). (3D C—Ccos2dy,
By and By correspond to the inhomogeneous solution, and so D — Bcosdo(tandy— stan26y), (33)

their overall scales are not determined by the equation itself;

where cogy,=—B/C in terms of the original parameters. Af-
ter this replacement the solution fé(g) is identical to that

~ ~ _ given above.

B-1=0, B, undetermined. (32 In previous papers it has been assumed that the kink an-
satz 6(z)=Adg(z) provides a good approximation to the
VOolution, whereA 6 is the difference between the two bound-

B_1=0, By undetermined,

on the interval. After this, by choosing the appropriate series?
for the point in question it is always possible to get quite
rapid numerical convergence.

For the case of spontaneouSP violation, where
B+ C>0, we can again linearize the equation of motion in
0 as long as its value in the broken phagds small, that is,
if —B/C is not much smaller than unity. Expanding around Ae=0.12, 5=0.06, y,=1, « variable, (34)

0, gives an equation similar to ER7) except with a term of
the formDg? rather tharD. However, one is always free to corresponding to Higgs boson masses of 60 GeV, at the ex-
shift # by a constant since this has no effect on the reflectiopperimental lower limit. For very smalt ({<1) the solution

or our imminent goal of determining the asymmetry of fer-
mions reflecting from the domain wall, we can also take the
exact solution fom to vanish in the symmetric phase. In Fig.

1 we compare the profiles of the real solution and the ansatz,
using the parameter set
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FIG. 1. The ¢ profiles corre-
sponding to the solution of Eq.
(22) for the set of parameters de-
fined in Eq.(34) and for varying
(= —K/mﬁo. The curves with
{<7.85 and{>7.85 correspond,
respectively, to explicit and spon-
taneous breaking o€P symme-
try. All curves are scaled by 6
and shifted so as to be zero at the
symmetric phase. The profile cor-
responding to the tanh ansatz
0(2)/A6=[1+tanh@A,)]1/2 is
given by the solid line.

0.75

0/A0

falls to zero in the symmetric phase= —«) much more We have also found a more analytical solution #fx)

slowly than does the tanh ansatz. For intermediate values thehich can be expressed as a single integral. This is presented

two profiles are close to each other, and/asecomes large, in Appendix A.

the real solution falls to zero before the ansatz does. This

behavior continues right up to the critical val{@5) of ¢ IV. FERMION REFLECTION ASYMMETRY

where spontaneouSP violation begins, at which point in- FROM THE BUBBLE WALL

creasing{ causes the solution to head back toward the tanh . )

ansatz. For=8 the solution once again lies quite close to  With the solution for the spatial dependence of the

the ansatz, only to move again away from it with even large/C P-violating phase at hand, we now wish to compute the

{. The conclusion is that the tanh ansatz seems, somewh@rmion reflection asymmetry from the bubble wall. We will

accidentally, to be a rather good approximation to the solufirst consider the scattering to the zero.th order, ignoring the

tion for certain narrow ranges of including the natural effects of the background to the fermion propagation, and

valuesk~myo, but may be poor elsewhere. t_hen ge_znerallze the treatment for the_ scatterl_ng_of quasipar-
It is interesting to note that the tanh ansatz in fact coindicles, i.e., _fo_r the effective one-particle excitations of thg

cides with the exact solution of for special values of the plasma at finite temperature. The zeroth order treatment will

parameters. This can easily be seen by substituting the gue@€ @dequate for the scattering of fermions with large trans-
0=ao+ayg into Eq. (28), resulting in the conditions VErse momentum and in particular for the scattering of the

B=—12, C=—16 in the case of expliciCP violation. top quark(see Appendix B for further detajlsFor light fer-

These in turn can be solved fgrand some linear combina- MioNs and with small momentum the quasiparticle picture is
tion of y,. The solution takes the form essential, but even then we will be able to derive the corre-
i -

sponding reflection asymmetries from the zeroth order re-
-B sults by simple mapping of the momentum variable.

C= T8l 1)

A. Zeroth order equation

ya=2{—Cl16. (35 The different reflection probabilities for fermions and an-
tifermions arise from having a spatially varying, complex

Normally the first of these equations would be quadratic inmass in the Dirac equation
{ because the parametar[Eq. (6)] depends ory and v; ) .
through Eq.(17) for the quartic couplings. However, if we [i6=m(z)Pr—m*(2)P ]W(t,2)=0, (36)
assume that all they, are equal(with the exception of
vro=1), the second equation of E(85) fixes precisely the
same linear combination of and y; as appears im. For
example, withh.4=0.12 and5=0.06 as above, Eq$35)
give {=0.06 andy=1.1 whenB=—12,C=—16. This ex-
plains vyhy _the solution fo(=0.1_falls so close to the tqnh _ M(z)= —y(D,) = — ﬁp(z)efi(f(zw_ (37)
ansatz in Fig. 1. One can also find that the tanh solution is J2
recovered whetB = — (480)*2, C=40 for the case of spon-
taneousC P violation. These values also correspond to some The fermion states that interact with the bubble wall are
hypersurface in the physical parameter space, but it is lesgigenstates of energy, not momentum, and so one takes
straightforward to find a representative here than in the cas®(t,z) =e 'E'y(z). In the chiral representation of the Dirac
of explicit CP violation above. matrices, the Dirac equation then separates into two equa-

whereP| and Py are the chirality projection operators. The
mass is given by replacing the Higgs fields in ED.by their
vacuum expectation values:
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tions for a pair of two-component spinors which we shall calltively, then those off] areR* (—m) andT* (—m). Next we

Y1=(L_,R,)T and ,=(R_,L,)", where the letter de- can form a linear combination af, and ¢/ (remember that
notes the chirality and the subscript the direction of motion:y” goes backward in time

E -m

i52¢1=(m* _E

—m*)l// [R*(—m) gy — g1 T*(—m), (42)
—E 2-

_ E

)'/’1, |f9z'/’2=(m

(3g)  chosen so as to exactly cancel the incoming wave from the

symmetric phase and to normalize the incoming wave from

The two equations are thus identical except for the interthe broken phase to unity. Thus our new solution describes
changem«m*. The boundary conditions faf,, describing reflectionR—L of a particle incident from the broken phase,
an incoming wave from the symmetric phase<Q) plus and the reflection coefficient is seen to be
reflected and transmitted parts, are —R*(—m)T(m)/T*(—m). When we square this and use

the fact that no observable can depend on the sign of the

R(p)e™'P? mass, we immediately get the first of E¢41). This result is
Pi(2)= eiP? » 2<0, a consequence @PT invariance.
The reflection amplitudes can be numerically computed
T(p) * , from Eqgs.(38) and(39) by a straightforward shooting algo-

U (2) = ————— P’z 750, (39 rithm to integrate the two differential equations. We have
V2p'(p'+E) used this method to verify the results of previous authors.
However, it breaks down when the quark mass in the broken

where R(p) and T(p) are the reflection and transmission phase starts to greatly exceed the inverse wall width, that is,
amplitudes,m is the asymptotic value ai(z) deep in the \when

broken phase, and’' = JEZ—[m?|. We use the prime to dis-
tinguish p’ from the momentum deep in the symmetric 4my
phasep=E. The boundary conditions are satisfied only for E=MEA yai= Mio >1 (43
certain values ofR(p) and T(p), for which we want to
solve. The boundary conditions fgr, are the same except (wherem, andm, are the fermion mass values®t T, and
for the replacementsn™ —m, R—R and T—T. Then the T=0, respectively This is apparently because the solution
asymmetry in the reflection probabilities foar.—R, and  begins to undergo many oscillations over the region of the
R_—L, is bubble wall, which makes it prohibitively difficult to numeri-
_ cally solve the equation between the two asymptotic regimes
AR(p)=|R(p)|>=|R(p)|>. (40)  outside the wall. This is also the regime where the overall
reflection coefficients are exponentially suppressed in the
The whole analysis can be repeated for the antiparticlefermion mass, so that this regime should make a subdomi-
simply by lettingE— — E in the original Dirac equation. Itis nant contribution to the total baryon asymmetry. We have
straightforward to show that the respective equations foused the perturbative method of Funakal.[24] to com-
1=(R_,L,)" and ¢,=(L_,R,)" are the same as those puteAR in this case. They found that, for the lowest order in
for 4 and ¢,, except for the changen— —m. But the  6<« and for the particular wall profilg(z) given by Egs.
overall sign of the mass can have no effect on measurabl@ll), the asymmetry is given by an integral involviigz),
quantities, and so it follows that the reflection probabilitiesg(z), and the unperturbed negative- and positive-chirality
for ¢, and ¢, are also|R(p)|? and|R(p)|?, respectively. wave functionsé,, () of the fermions:
For particles incident from the broken phase, we can eas- g
{hlglgg(;c:t;i?jartiegf(g;on probabilities are related to those of AR(D)=CpJ_de¢;(Z)¢E(Z)d—z[g(Z) 6(2)]+c.c.

(44)

E+p’

IRR_.LI*=IR?_gl%
The complex constan€, in front of integral can be ex-
IRP_RI2=|R%_. |2, (41)  pressed in terms of ratios of functions and the wave func-
tions ¢§(z) are expressible in terms of hypergeometric func-
where we have indicated the particle chiralities in the subtions[24].
scripts and the superscripbisand s refer to the broken and Some typical profiles for the reflection asymmetry as a
symmetric phases. The relations can be derived starting frofunction of momentum are shown in Fig. 2. For later pur-
the solution fory; obtained abovéwhich describes the pro- poses it turns out that a simple exponential provides a rea-
cessL—R in the symmetric phageand taking its charge sonably good fit for any value of the mass:
conjugate ;= o473 . This is a time reversal of the original
solution, and it satisfies the same equationaexcept for AR(p,) [A(&e”PmWE - p >m,
the changem— —m. Therefore, if we form a third spinor A6 0, p,<m, 49
] made in just the same way &g except starting from the
Dirac equation withm— —m, it will be a solution to the with a height and width that depend on the masR van-
original equation(38) for ¢, . If we denote the reflection and ishes forp,<m because then both particles and antiparticles
transmission amplitudes fak; asR(m) and T(m), respec- are totally reflected by the bubble wall. The actual functions
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veals no such oscillatory behavior. The difference is shown

in Fig. 3, where we plot the maximum value pfR(p,)|
| a £=05 versus¢ for the first two cases.
We have also examined how the widti{£¢) of the AR
3; Dnu ° E=15 profiles varies as a function of the fermion mass. We have
0.75 e N\, . defined it to be the area under the cutvB(p,) divided by
_ o a £=50 the maximum value oA R discussed above. The dependence
ﬂé 0.5 i o is shown for typical values of the model parameters in Fig. 4.
— i a In fact we find thatw(¢) is largely independent of the po-
AR & tential parametek. For the region of fermion masses shown
0.25 - °o° *3 S g in Fig. 4, it is fit well by the expressions
[ o
o °3 i w(&)/m=—(1.1Iné+0.54, £<0.3,
0 0.1 0.2 0.3 0.4 0.5

w(§)/m=0.1%"12 0.3<¢<0.7,
E - mA (&) % £
_ _ w(é)/m=0.15"18  £>0.7, (46)

FIG. 2. The scaled\R(p)/A @ profiles defined by Eqs.38)—

(40) for certain representative values of the mass parametef e e hencefortim stands for the mass of the fermion at the
¢=M(Tc)Aya - The solid lines are the exponential fits given by Bq. ¢ ;) temperature. The smaller values éfire of interest
“9). for the 7 lepton.

To make contact with the physical situation of interest, we
ote that for the choices of parameters we have been using
or the Higgs potentialonly the value\ .4=0.12 is relevant

here, the dimensionless quanti§=mA,,, that character-

AR(p,) go smoothly to zero ap,—m, as shown in Fig. 2,
but this occurs on a scale much shorter than the widt
w(§), so that the exponential is not a bad approximation
Little error is made by using E45) in later expressions for . _
the baryon asymmetry since these are momentum integraléeS the fermion mass turns out to be
which do not especially weight the threshold region.

A curious property of Eq(44) is that when one uses the
tanh ansat#(z) ~g(z), the sign of the asymmetry oscillates

&=11.7 top quark,

as a function of the quark mass, changing at small integer §=0.33 bottom quark,
values of the inverse wall widthé=2, 3, 4. Thereafter it
falls to a value smaller than our computational accuracy. The £=0.12 7lepton. (47)

real solutions ford(z) typically display no such behavior,

and AR falls much more slowly with increasing fermion For the top quark this means that the reflection coefficient is
mass than for the ansatz. Using our complete numerical codextremely small except in a very narrow region of momen-
we have verified that this is truly a behavior of the ansatz intum space. We find that the height times width of the reflec-
the small@ limit and not an artifact of the linear approxima- tion asymmetry profile is of ordeAw~10 %m, which is
tion leading to Eq(44). However, even for the ansatz, if the seven orders of magnitude smaller than that of the bottom
change ing is sufficiently large that Eq(44) is no longer quark. Henceforth we will ignore the top quark contribution
valid, the full numerical solution of the Dirac equation re- to the process of forming the baryon asymmetry.

20

-—8--- 1000 ceemtee- 25000 ——0o— tanh profile

f—
(%)}

FIG. 3. The dependence of the
maximum value of thé\R profile
on the mass parametér for dif-
ferent values of the Higgs poten-
tial parameterc in units of Ge\?
(assuming a Higgs boson mass of
m, =60 GeV) For comparison
with Fig. 1, the values of
{=— K/mﬁo corresponding to
these— « values are 0.28, 3.9, 7,
and 8, respectively.

—In|AR|max
=
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FIG. 4. The width in momen-
tum spacew(¢) of our fit (45) for
the asymmetry in the reflection
probabilities AR(p), along with
our fits (46) to w(¢) for large and
small é&=mA,, -

In(w/m)

§

For future reference we tabulate certain valuesvof), They are shown in Fig. 5. The modes with the negative slope
along with the corresponding values At&)=|AR| ., Us- dw/dk close to the origin are called holg27], or abnormal
ing the parameters of E@34) and the representative value [26], because their group velocity is opposite to their mo-
x=—1000: mentum, and since they do not exist at low temperatures.
When the momentum is purely in tlzedirection, the dis-
£=0.06, w/m=26, A=e 3% persion relations correspond to an effective Lagrangian
whose resulting Dirac equation is, instead of E@S),
£=0.12, w/m=1.8, A=e 27

i w—w —m/2

£=0.16, w/m=13, A=e 25 397 2 —w+og Y1,

£=0.33, w/m=0.7, A=e 1° (48) ia__ w—wg —mM*/2 61
3 o= m2 —wto Yo (52)

B. Thermal corrections: Small-momentum regime . . .
For the antiparticles, one must change not only the sign of

_ The propagation of fermions is affected by the ambient,, pyt also thew;’s since purely thermal effects increase the
high-temperature plasma in the early universe. Therefore thgnergies of both particles and antiparticles equally.
Dirac equation used in the previous subsection, which as- The quasiparticle dispersion relations given here are a lin-
sumed that the fermions obey the usual vacuum dispersiogar approximation valid only for momenta much smaller
relations, apparently needs some modification. We give ghan the scalev,. In particular the abnormal mode energies
more detailed derivation of the modified Dirac equation ingq not really fall monotonically to zero but reach a minimum

Appendix B, where we argue that the zeroth order treatmening start to rise again. However, this happens on a scale
given above is adequate to use in the large transverse mo-

mentum region, and also derive the equations used below to
study the small momentum limit, where the effects of the
background are most important.

Whenever the fermion momentum is small compared to
the thermal masses, denoted by and wg for the two
chiralities of a given fermion species, induced by interactions
with the plasmd 25,26, the dispersion relations for thi¢h
chirality, in the rest frame of the plasma, are change@6
(see also Appendix B

w=w;*|K|/3, symmetric phase,

w=wo*[(A,/2+|K|/3)%+|m|%/4]Y2  broken phase,
(49 FIG. 5. Schematic view of the fermion dispersion relations in
the small momentum limit corresponding to E¢49). The solid
using the definitions lines pertain to the broken and the dashed lines to the symmetric
phase. The mass gap in the former, near the eneggyhas half of
wo=(w +wg)/2 and A,=w —wg. (500  its zero-temperature value.
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wg, Which is much larger than the scale of the exponentia[30], and we do not wish to get into the details of that argu-
decay inAR(p) apparent in our previous solutions of Egs. ment here. Here we will demonstrate that the neglect of
(38), and which will also be supplied by the solutions of Egs.damping is much better justified for the situation in which
(51) a posteriori Therefore, setting aside the possible depenwe are interested.
dence on the parallel momentum, the linear approximation is Let us begin with the damping in the small-momentum
reasonable for computing the effects of the quasiparticles oregion. The damping rate of a fermion at zero momentum
baryon production. was first computed in a gauge-invariant way in RE34.,32]
Despite the differences between E€gl) and the original ~ with the result
Dirac equation(38), there is a simple mapping between their
reflection coefficients because each equation can be trans-
formed into the other. LéZ=3z, i, ,=e"*«??y; ,, and
w=w—wq. Itis straightforward to show that the new equa-
tions resulting from this transformation are the same as oneshereC=(N?—1)/2N is the usual Casimir operator eigen-
would obtain from the Dirac equatio(88) by making the value and the constamt(N,N;) has a weak dependence on
replacemenE—® andm—m/2 in the latter. The reflection the group indeXN and the number of fermion familieN; .
asymmetry is given by exactly the same functibR(p), but  In QCD with three families, Ref431,37 give a(3,3)=5.7
the correspondence betwegrand the actualoutgoing mo-  which, with @s~0.1, leads to a ratej2,~0.19T. This result

9T
ye(k=0)=a(N.N)Cr(N) 75 (53)

mentumk is was used by Ref[29] to obtain a mean free path of the
quarks of/ 4~ 1/6y4~0.9/T, which is significantly less than
A2, L,,R_modes, the smallest expected wall widtlis, ;= few/T.
p=k/3+ —A,/2, R.,L_modes. (52 However, this large result for the quark damping rate is

almost exclusively due to strong interactions. There exists no

This applies to the excitations, whose energies exeegd standard model computation of for the leptons in the lit-
The Dirac equations for the modes wiih< w, are the same ~ €rature, but from the results di32] for pure SU2),
except for the opposite sign @f= w— wy. The sign change 2(2,2)=5.8 anda(2,4)=6.3, one can estimate that=6.
means that there is a mapping between the Dirac equationid'en Ea.(53) straightforwardly givesy;=0.04T, and hence

for @>w, and w<w, modes which makes them look the /_T~4.A_1/T. This result is compar_able t_o the wall width pre-
same except for the interchangerofandm* . Therefore the dicted in th.e model under consideration, and so we expect
reflection asymmetry changes sign along with w, [28]. that scattering of Iow—momentum leptons .by the plagma will
To be explicit, recalling thah R(p) is the difference in re- not strongly da_mp their quantum_mechan|cal reflection from
flection probabiliies between the processes—R, and the wall, even if the more restrictive picture of the Ref9]

R_—L, for o> wy, —AR is the reflection asymmetr is the correct one. . .
forae +mode(;) Wﬁ)ﬁu<wo (vf/)%ich are depicted in l}:/ig 5 y At large momenta there are no problems with the infrared

eqroperties of the gauge interactions that led to the difficulties
to the wall were zero in this discussion. For the usual disper!—n the eV?"“aF'O” Ogy athlow morlnenta[31_,32 and the d_amp-
sion relations which are valid at large momenta this is ndnd rate is given by the usual scattering computation. One

limitation because one can always boost to the frame wher: en expects '.‘hat _the damping length would be rough[y one-
these components are zero to solve the Dirac equation. In t8ird of the diffusion length. Thus for quarks we estimate
small-momentum region, however, the dispersion relation at /qNDq/S_:Z/T and for leptons/, ~40/T. One might

of the quasiparticles are clearly not Lorentz invariant, so tha® qu to bglleve that at .Ieast for Iep_tons, the negleqt of
if one does the same boost, they take on a different fornfi@MPing during the reflection process is a good approxima-
which is incompatible with the boundary conditions of the O, given our determination of ID/for the wall width.
Dirac equation as we have written them. The exact treatmerifoWeVver, one must keep in mind that the important reflec-
would be quite cumbersome, and so we will compromise b)pgns are coming from particles with small momenta perpen-
ignoring the dependence on the parallel momenta when th cglar to the wall, whose other momentum components are
are smaller thanwy. When they are greater than,, the ~ DPically of orderT, so that they approach the wall at a
usual dispersion relations become appropriate and we cdancing angle and therefore typically undergo several inter-

use the first form(38) of the Dirac equation. actions during their traversal of the wadl]. In our treatment
below we will distinguish between the particles with large

and small momenta parallel to the wall, the latter of which
are much less sensitive to the decoherence effects.

We have so far completely ignored the effects of damping To conclude this section we note that it is not yet clear
in our treatment of the reflection from the wall. In REZ9]  how to consistently compute the effects of decoherence in
it was argued that the continuous scatterings off the backthe present mechanism of baryogenesis. Nevertheless, in the
ground particles experienced by the reflecting quarks leads tend we will find that the reflection of leptons dominates
a significant loss of coherence of the wave function. Theybaryon production and, moreover, for these particles the re-
accounted for the scatterings by including the complex pargion of phase space where all components of the momenta
of the quark self-energy into the Dirac equation, and found are small(so that they are approaching the wall from a sharp
tremendous suppression of the final baryon asymmetry in thengle and do not undergo many scatterjngisminates over
minimal standard model. The issue of how to correctly acthe large momentum region. Therefore we do not expect that
count for the decoherence phenomenon is still controversidhe decoherence effects will be crucial for our final results.

C. Decoherence during the reflection
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V. FERMION TRANSPORT ferent for left and right movers. It is, however, the same for

To compute the baryon asymmetry resulting from fermi-gzgc')crfssand antiparticles, so that using £40), Eq. (54)

ons reflecting off the wall, it is necessary to understand the
diffusion of reflected fermions back into the symmetric

phase. There exist several different ways of treating this in
the literature: Monte Carlo simulation], the diffusion

JLAR(P)[fs(R-) = fp(L4)]. (59

equation[8], and solving a more exact form of the Boltz- Thus the asymmetry vanishes in the absence of edifer
q ’ 9 violation or the velocity of the wall, as expected. The current

mann equation, called the Fokker-Planck equaf®®i. Al- - . N
though the Fokker-Planck equation should in principle beOf right-handed fermions has the opposite sign due to the

more accurate, more work is needed to establish why it givegPT theorem(as can be seen from comparing the Dirac
different results from the diffusion equation, which has here- quations for right- and left-handed partigles

tofore received more attention. For ease of comparison with
previous work, we will also adopt the diffusion equation as

our framework for splvmg the transport p“’b'e”?- To the extent that left- and right-handed particles have iden-
Our approach will proceed in three steps. First we com

" tical dispersion relations, hence equal distribution functions,

pute the flux of net right-handed and left-handed fermlonthe sum of], andJy is zero, so that there is no net current of

humbers into the symmetnic phase in the vicinity of thebaryon or lepton number. In fact the two chiralities get dif-

bubble wall. This results in an initial chiral asymmetry " ferent thermal energy shifts due to their different interactions

f/:/zmt g:c the warlll, Imr V;:h'?h v:e dare |tr)1t?reited ibnecatl;]se Ithlzl%ith the background plasma particles; this will be relevant
at biases spnalerons to proauce baryons, since the sp hen considering the contributions to the baryon asymmetry

ron rate is proportional to the asymmetry in left-handed fer'from the reflected quarks

mions. However, flavor-changing processes W'" red|str|.bute The full expression for the flux is an integral over all the

the initial asymmetry among the various species of particles

. . . “nomenta of the expressions like those above, weighted b
and so we must next take into account the interactions Wh|cﬁ: P g y

cer . ... ~the group velocity of the right-moving particles which is
are fast compared Fc') the diffusion rate, and f|nd. new m'.t!alobtained from their dispersion relations. We will divide the
values for the densities near the wall after chemical equilib

. ; . . i _ .- momentum space into two regions, depending on whether
rium is estabhshed. In the thlr_d st_ep we consider t_he dlffu-,[he momenta are large or small compared to the thermal
sion of the particle asymmetries into the symmetric phase

incorporating the Debye screening of hypercharge using thSelf-energles. The large-momentum region gives a contribu-

results of Ref[37]. Th | of th moutations i fion to the flux which is similar to what we would have
esulls of ReLs/]. The goal of these computations 1S a computed with the usual dispersion relations, because in this
spatial profile for the total left-handed fermion number

hich b dt e th te of b b region the temperature corrections become small and the
which can be used lo compute the rate of baryon numbef .o ., symmetry is approximately restored. The small-

violation, assume(_j to be th? slowes.t Process of interest in threhomentum region gives new contributions associated with
problem. Integration of this rate finally gives the baryonthe normal and abnormal quasiparticle excitatioH.
asymmetry.

Jr* —AR(P)[fs(L-) —fy(R1)]. (56)

1. Large-momentum region

A. Fermion flux in the symmetric phase We will first concentrate on the large-momentum region.

The first step toward generating a baryon asymmetry is t&or the flux of left-handed particles per f:olor Qegree of free-
create an asymmetry in the density of left-handed particles iffom (Ne=3 for quarks, 1 for leptons this region contrib-
the symmetric phase, since it is these which drive sphaleror‘}étes
to create baryons. The left-handed asymmetry arises due to

four contributions: Left-moving, right-handed particl&s ﬂ:J’w%AR(k .|m|)J'°°dkk| ﬁ[f(E —uk,)
reflect into right-moving, left-handed particlés, with re- Ne  Jim2m 2 wy 27 Eq ! z
flection probability|R(p)|?, wherep labels the momentum )

in the symmetric phase; using E¢1), L, fermions are —H(Ei+vk)[1-f(Ex+vky)], (57)

transmitted from the broken phase with probability

1—|R(p)|?; the analogous processes with antiparticles give avhere the factok,/E is the group velocity in the direction
canceling contribution, however with a different probability and

|R(p)|? because of th€ P violation in the wall. For a given

momentum, this gives a left-handed current of Ey = V|K/?+|m|?+2w?,

k.= Vki—|m|2. (58)

Note that the lower limit on the parallel momentum integra-

tion in Eq. (57) has been somewhat arbitrarily chosen to be
wheref, ,(X) denotes the Fermi-Dirac distribution function K min=o; we will come back to this shortly. To a good
for speciesX with subscripts or b showing whether the approximation thek, dependence oE; can be neglected in
corresponding particle is propagating in the symmetric or théhe phase space distribution. Then taking the limit of small
broken phase. Because the wall is movih@) will be dif- wall velocity we can expand the phase space functions in

I RIPF(RO)+(1—|RP)fp(L ) —|RIPf(R_)
— (1= R fy(L), (54)
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after which thek integral is elementary. Finally, using the 2. Small-momentum region

form (45) for the reflection asymmetrAR, we obtain the We now turn to the contribution to the flux coming from

result the small-momentum region. This region of phase space was
vA AW M2 found to be crucial for standard model baryogeng2#,
JtM/NC: TrL(WIImI)f(E'i)[l— f(E'i)/z], becfagse only at sma_lll momentum does one have the hppe of
avoiding Glashow-lliopoulos-MaianiGIM) suppression in
(59 the CP violation arising from the Cabibbo-Kobayashi-
where Maskawa(CKM) matrix. At first it would appear that this
region does not have the same significance in the present
Eb= \/m, mechanism, where th€P violation comes from the com-
plex phase of the Higgs field, but we will find that it is
rL(w/|m|)=[1+2w/|m|+2w2/|m|2+ K2(|m|/w)e|m|"”]. actually more important than the large-momentum regime.

(60) We first compute the reflected current in one spatial dimen-
sion (1D) model and then estimate the 3D current from that
Here K,(x) is the Bessel function of the second kind. For of 1D using a simple phase space argument.
smallw/|m| the functionr, (w/|m[) approaches unity, which  After some straightforward algebra one can show that the
is the appropriate limit to take for the top quark. For all the1D left-handed particle flux, for example, is given in the
other fermions w/|m| is not small and one obtains small-momentum region by
ro(w/|m|)=(2+4w/|m|+4w?/|m|?). For example for the

7 lepton with§=0.12, w/|m|=1.8 andr =22, while for the S _ m _ N
bottom quark withé=0.33, w/|m|=0.7 andr =6.2. Thus JCNe= ﬂ,min4q-rAR @7 [1=flotvk))]
one sees that the flux is rather sensitive to the fermion mass. N \

The energyE} reflects how the flux depends on the X{f(o+vkg) = flo+uvk(')}
choice wq for the lower limit of k| integration. This value wrad Im|
was chosen to ensure that the finite-temperature corrections " _wA —w—T1—f KA

{ 4 ¢ R| wo— w; [1-f(o+vk])]

are small at higher momenta, but we might have instead used wee AT 2
K|,min=O(few)wg. In order to see how this ambiguity af- A A
fects our results, we need to know the thermal masses of the X{H(wtvkg) = flw+ok")}, (63)

bottom quark and thg Iepton('ghe top q.ugrk vyill no longer where the limits of integration are

concern us because its reflection coefficient is so small that it

makes a negligible contribution compared to these lighter Omin=wo+|m|/2,

particleg; at the one-loop level, they are given by

Wmax= Wo— |M|/2, 64

w?, I T2=g2/6+3g%/32+g’ 2/288+y?/16~0.40, max= o~ | (69
and the momenta the left-handed particle transmitted into the

wipl T?=g2/6+g'?/72=0.24, symmetric phase, the right-handed particle incident from the
symmetric phase, and the left-handed particle transmitted
wEL/TZZ(392+gf2)/3220_o44, from the broken phase, for the normal and abnormal modes,

are, respectively,
2 2 _~N'2/Q

wip/T°=0'“/8=0.016. (61) KN=KA=3(w0—w,),
We have ignored all Yukawa couplings except for that of the N A
top quark,y=1.4, and we evaluated the gauge couplings at kr=kgr=3(wr~ ),
M (which is close to the critical temperature in our model
as=0.12, g?=0.42, andg’?=0.13. Using these numbers
one finds that ﬂE&TzO.34—0.5 and correspondingly
f(E},)=0.42-0.38 when the lower limit is varied over the o
rangekf] yin=(1-5)wo. Similarly for the bottom quark we In arriving at Eq.(63) we have transformed the momentum

find BEL,~1.1-1.5 andf(E&b):0.26—0.18. To a reason- integral into an integral over energy using the relation

10~ = i )
ably good accuracy then the contributions to the left-handed(d@/dk) =dw, where @w/dK) is the group velocity of
the excitation, and expressed the relevant momentum vari-

flux coming from the high-momentum region are, using Eqs.

. A, m|?
kN,kf\zs(—7i (w—wo)z—%). (65)

(49) ables(52) in terms of the energy difference —wy. The
' relative minus sign between the two terms was explained
IM(m)=2x10"2A6M3, below Eq.(52). The additional factor of 1/2 included in the
phase space measure comes from the wave function renor-
IM(b)=9x 10 3pAom?. (62)  malization of the incoming flux (Appendix B and

1—f(w+uvk"?) is the Pauli blocking factor. The integration
Thus the initial asymmetry in left-handed{ L) due to limits (64) have a simple interpretation, as illustrated in Fig.
bottom quarks from the high-momentum region is larger by &: For any energy in betweef,, and o, the states are
factor of 16 than that due te leptons.(Remember that each totally reflected because they do not have enough energy to
quark carrieB=1/3.) penetrate the broken phase. The cutoff is due to the fact
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that the linear dispersion relations break down and the quahe previous estimate of E(p9), the contribution to the total
siparticles become unstable at the momenta that would coftux from the large-momentum region is given by
respond to such small energies. However, the actual value of 5
w¢o IS Of No consequence because the sharp momentum detm vA6AW|m| / EL_ER i f(1—f/2
pendence ofAR cuts off the integral at energies well above ¢ 47 ru(w/ml)(E; 1)(9E1[ ( a
this value. Then, expanding the difference of the two distri- (70
bution functions to first order in the wall velocity, we obtain R . L

simple integrals over the reflection asymmetR. Using WhereEj follows from the definition ofE; in Eq. (58) by

the form (45) for AR, the resulting 1D flux is replacingw, by wg. For the bottom quark the ratio of the
fluxes implied by Eqs(62) and(70) is roughly

3vA0 g2hwo
IPING=— 2 A(£12) | mIW( £12) ——go—g T (Wi |m]), IM(p)
L 47T (1+€P)3 %2—0.1. (71)
L

rs(w/|mf)=[1+ 2w/ m| +Kq (] m|/2W)elmI/2w]_ (66) The total flux coming from the small-momentum region van-
Because the thermal dispersion relatio#®) are not Lorentz  ishes at linear order in the wall velocity, and so we must
invariant, it is not straightforward to relate this result to the€xpand the distribution functions of E3) to second order
desired 3D case. If we assume, however, thatkthdepen- in vk_, with the result tha_t the total flux is p_roportional to the
dence of the reflection asymmetry is small, and take a readreviously computed chiral flut67) according to

sonable upper cutoff & ,,,.x= o On the integral over these
Il, : ; JsM eBwo_ 2
momenta to ensure that the small-momentum dispersion re- ﬂ:&),BA (72)
lations are still valid, we find the result M ©ehrot 1’
M 3vA0 , b which gives=—0.04 for the bottom quark. For the's the
N —16772TA(§/2)|m|W(§/2)wons(W/|m|)a total fluxes are clearly ignorably small. For bottom quark,
Cc

(67) however, because total baryon number is conserved by the
QCD sphaleron effects and left-handed baryon number is
where we used the superscript to distinguish this contributiomot, as will be seen below, it will turn out that these ratios do
from that of the large-momentum regi¢d9)—(62), and the not remain small after the reflected quarks interact with the
ratio of the three-dimensional phase space to that of onplasma.
dimension is

B. Equilibration of species

(68) Knowing the flux of the two chiralities of a fermion at the
bubble wall gives us an initial condition for the problem of

how they diffuse into the symmetric phase in front of the

tak!ng Into_account the relevant cutoff on the momentum, oy, During the diffusion process there will be interactions
which defines what we mean by the small-momentum re-

gion. Using this estimate, we find that ratios of fluxes fromOf the fermions with particles in the plasma which change

the small- to large-momenta reqions are. approximatel the net fermion densitiethe asymmetry between particles
9 9 » app Y: and antiparticles redistributing them among other species.

f‘”o dzkH _ wg
o (2m)? 4w’

M (—04 lept For example, interactions with Higgs bosons will convert
D A4, 7 lepton, . :

= (69)  between the two chiralities. A precise treatment would re-
Ji —6, baquark. quire the equations for the transport of the two chiralities to

. ) be coupled by such interactions. For simplicity we prefer to
It will be shown in Sec. V C that the large-momentum con-qnsider such reactions as either being slow or fast compared
tributions get a suppression of approximateyT in their 5 the transport time so that we can deal with uncoupled
contribution to the chiral asymmetry that develops in front ofy ansport equations. If the reaction times are borderline be-
the bubble wall. This being a few percent both for the {yeen these two extremes, we can interpolate between them
lepton and theb quark, we see that the small-momentum, get an idea of what the more exact treatment would give.
region makes the dominant contribution to baryogenesisy, gur model it will turn out to be unnecessary to do so,
Moreover, as argued in Sec. IV C, the large-momentum parpygwever.
ticles approach the wall at a glancing angle and undergo Tg decide which interactions are important let us estimate
more scatterings with the plasma in the wall; hence, theithe time scales. The diffusion time scale depends on the
effects will ultimately be even further suppressed. bubble wall velocity and the diffusion rate, as will become
clear in the next subsection, and is givenudyD whereD is
the diffusion coefficient. This rate is approximately £0

To conclude this section we mention that due to the dif-for quarks at a temperatufig and 10 * for leptons, assum-
ference of the thermal distribution functions for the left- anding a wall velocity ofv =0.1 for definiteness. The only in-
right-handed particles, the total fluk +Jg is nonzero, as teractions with a competitive rate are the strong sphalerons,
was first pointed out in Ref34]. We will see that the total which are the QCD analogue of the usual sphalerons, and the
flux of leptons is unimportant compared to the left-handednteractions of Higgs bosons with top quarks. The former
flux, but for quarks one must keep track of both. Based orhave a rate around 18T implied by appropriate scaling of

3. Total flux



2464 CLINE, KAINULAINEN, AND VISCHER 54

the weak and strong coupling constaf®d], and the latter since they change the chirality of each flavor of quark by two

we estimate to be IG'T, making certain reasonable assump-units. The Higgs constraint from interactions with top quarks

tions about the Higgs boson masses; the rate of normas

sphaleron interactions, by contrast, i 50 °T, consistent

with our assumption that it is smaller than the other relevant

rates. Ho=,tU— b or
Clearly we want to impose the equilibrium of strong # FrROHL a

sphalerons on our system of fermion asymmetries, conve-

niently characterized by local chemical potentials for eacl‘lg

o= pr—al (76)

e distinction between the isospin components of weak

species. This has important consequences for the quar ublets will turn out to be irrelevant for our results, so that

asymmetries, essentially erasing them up to small correctioqﬁe need not worry about the rate of the weak interactions.

(known as mass_corrcho)nsalthough it has no effeqt 9N The reason is that the weak interaction constraints only serve
lepton asymmetries. The Higgs-boson—top-quark mteract- determine the chemical potential of & bosons. but
tions are marginally in equilibrium on the diffusion time 0 dete € the chemical potential o osons, bu

scale, and so we will consider both extremes, when they ar@ave no eff'e.ct.on the bgryon and lepton asymme'trles.
approximated as being fast and slow. The _equmbnum co_nd|t|0ns_r_nust be solved subject to the
Let us introduce chemical potentials, localized at the wall €Onstraints that certain quantities are conserved: namely,
Since there is no practical difference between the first and
second generations, we need oplj/ ¢ and,uf'R to represent
up, down, charmed and strange quarks of both chiralities; Bl+2_pgl+2,gl+2 pg3_pg3;pg3
these will be produced from top and bottom quarks by the L R L :
strong sphalerons. We also imagine that thés the only
lepton whose Yukawa coupling is large enough for a signifi- ud bu 3 3
cant asymmetry to be produced through reflections at the Br =0Bg",L{,LR,Y. (77
bubble wall, so that we need not concern ourselves about the
first two generations of leptons. It is also useful to define a
quantity u for each species: The last of these is hypercharge; we will deal with the Debye
screening of hypercharge in the next subsection. Here let us
3m2 only note that the list of conserved quantities is augmented
Mi:,ui( 1— ﬁ') =ui(1-6), (73  with one more By, say, if the Higgs equilibrium condition
il (76) is removed.

wherem? is the thermal mass oghe particle, since we areché)nlqjircagloalOrt'gr\?{i;?Stothsilvgofﬁgsthgnl('jnet?)r f&glbllré?ﬂﬁgi d?: d
interested in the symmetric phage.is directly proportional P P

o the censty of pariciead 35, whereass hias s prop- D907 16 EPIf nuber because s ese ol trve e
erty only when the mass corrections are neglected. P yons. Y

We can also define quantities proportional to the densitieggolrgf?_;gi drggsks)acrocr)rr?cr?gr?}sbé?a\tadr:isghngswgsefrtoomtr’:; Sétron
of various flavor and chiral combinations of baryon and lep- y 9

X sphalerons, for then we would have
ton number, as well as weak hypercharge: . . -
yp g B{"2+B3=B5"2+B3, which coupled with the initial con-
1+2 _ —d iti 1+2, B3= i i
BL(R)_Z(;E(R)—'_ML(R))' dition that B +B°=0 from the reflections would give
zero for both chiralities of total baryon number. Actually
3 _ ot —b i i i i
B} (R = (BLry T AL(R): there. is another correction to this statement since, as we
mentioned, the net flux of baryon number at the wall is not
Bl ="t — L quite zero due to similar thermal mass corrections. Both ef-
R~ MR™ MR, .
fects save the quark reflection asymmetry at the wall from
LE:M—[JFVT making a vanishing contribution to the final baryon asymme-
L try. The situation for leptons is considerably simpler: To the
L§=,u_§ order of our approximations, nothing happens to them once

they are produced at the wall, aside from the diffusion pro-
e [N e Sl - N e e —u_ ~—d cess which is yet to be considered.
Y=2(pet o)+ (et pd) = (Rit p )+ 2(40r— 20R) It isastraig%/tforward algebraic task to solve the system of
+ (45— zﬁg)_zﬂ_&_‘_zn(ﬁﬂo_{_wﬂy (74) gqgations for thel fiqal chemical potentigls in terms of the
initial ones. The initial ones are proportional to the fluxes
assuming for the moment that there areHiggs doublets that we computed in the last section; the exact proportional-
which are in equilibrium with each other. To find the new ity between fluxes and densities will be discussed shortly.
equilibrium conditions of the chemical species we must im-For now we will simply express the final values of left-
pose constraints on the'’s for each reaction considered to handed baryon and lepton number, after equilibration has

be fast. For the strong sphalerons the condition is taken place, in terms of conserved quantities, which can be
replaced by their initial values. To first order in the thermal
2(pi+ )+ (ul + Py =2(uk+ pd) + (uh+ ub), mass corrections, the equilibrated values of left-handed

(75) baryon number are found to be
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BE=4 [BL 2+ B3+ (8, — 5, )BR]—[ 8y, + 3 (8u + 84 )+ 3 (8o, 3) — S, 8]

[Y+ L%-f- (6+4n)BE”]/(9+ 14n),  Higgs-boson—top-quark equilibrium,

(BE{‘+ BR)/3, no Higgs-boson-top-quark equilibrium. (79
Notice that this equation would vanish if we ignored thermal masses because the total baryon number in each generation is
nonzero only due to the thermal masses, as our equation for the total flux of fermion number in the preceding section showed.
Now since the right-hand sides are expressed in terms of conserved quantities, we can evaluate them at the initial time, when
the asymmetries were produced at the wall, before any equilibration takes place. All the lower generation asymmetries are
essentially zero, and hyperchargecan be expressed in terms of tBeandL asymmetries. Furthermore, since tdabr L is

a first order thermal effect, it can be ignored whenever multiplied by thermal masses as this would be second order. Evaluating
the thermal masses

) . B 3 7y2 gIZ
Su 2 (Bugt 84+ 7 (b= Otr) = G, =0y =~ 2| 35+ 35
3 yZ 39/2
Op,~ 51R=—?(§+7 ) (79
and takingn=2 Higgs doublets, the equilibrated value of total left-handed baryon nhumber becomes
1.4x10 41— O.SEhtZ)BE— 0.01B! , Higgs-boson—top-quark equilibrium,
Bf9=0.583+ (80)

1.4x10 41— 2.3ht2)BE— 0.0B!, no Higgs-boson—top-quark equilibrium.

Although we kept the top quark contribution for complete- flections. Hence the major conclusion to be drawn from Eq.
ness here, it is practically zero. Furthermore, the differencé8l) is that the quark reflection is unimportant for the present
between considering the Higgs-boson—top-quark interactionsiechanism of baryogenesis.

to be in or out of equilibrium is obviously small for the Of course for the left-handed lepton flux, which will also
bottom quark. It should be noted how the left-handed asymbias the sphaleron interactions, we have the trivial relation
metry is diluted by the equilibrating processes, leaving thehatL, =L since under our assumptions the Higgs interac-
initially much smaller total current, conserved by the strongtions of ther lepton are too slow to change its asymmetry.
sphalerons, as the dominant source of the injected baryonidowever, it has been noted that the Yukawa couplings of the
asymmetry. Using the previous resu(®9), (71), and(72)  fermions may be larger than we have assumed, since it is

for the ratios of injected fluxes, we get possible that the VEV’s of the two Higgs fields evolve dif-
ferently than in our simple model. In this case théepton
Jtsohtll JEM J{-O'\t/' J'[M might have been in equilibrium with the Higgs field on time

Bf%=0.58%=0.8B!| —sy — + ~t —— scales comparable with the diffusion time. The equilibrium

I I A conditions would then suppress the final value of left-handed

=(0.01-0.0%)BP, (81) lepton number. By repeating the previous computations with
the new equilibrium conditions for Higgs-bosordepton

) and Higgs-boson—bottom-quark interactions, we find that
whereJ, is the sum of the large- and small-momentum con-

tributions. Let us now compare this to the injectedepton 1 Hi b lent ilibri
Current; USing [JEM(b) +JI|:M(b)]/[JEM(’T) +JtM(T)] L3 - no Higgs-boson+-lepton equilorium,

=L . I
= —400, the ratio is L "L (6n+3/27 1 Higgs-boson«-lepton equilibrium,
(83
B
=~ 1+ 3v. (82)  the latter of which cases we include for completeness.
L These results can now be used to correct the initial fluxes

obtained in the previous section, since we are using the sepa-
Therefore we see that the effect of the sphalerons is to reducation of time scales to assume that the initial fluxes at the
the initial preponderance df quarks overr leptons in the wall are quickly altered by the establishment of chemical
injected flux so that they are roughly equal in strength afteequilibrium before much diffusion into the plasma takes
equilibration. However, in the next section we shall see thaplace. We have found that the lepton flux is unaltdradess
there is an additional large suppression of the quarks cominthe VEV’s of the two Higgs fields evolve in a complicated
from the much larger diffusivity of the leptons, so that in the way between the phase transition and hdwut that for left-
end the contribution from the quark reflections will be com-handed quarks is reduced by roughly a factor of 20 from its
pletely overwhelmed by that coming from thelepton re-  preequilibrium value.
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C. Debye screening and diffusion the results of Sec. V B, would produce only a minor change
So far we have computed the initial fluxes from the wall Which could be accounted for by takirfg=1.85 instead.
and determined how they are changed by the chemical equiNce the quark contribution is further suppressed by thermal
librium of fast interactionsprimarily strong sphaleropsn ~ da@mping(see Sec. IV G it is clearly negligible in compari-
the plasma. The next step is to propagate the fluxes into theP" to the contribution of lepton reflection.
symmetric phase, and so see how efficiently they are able to W& must now determine the chiral density at the wall,

bias the baryon-violating interactions of the weak sphaleo. in terms of the chiral flux injected at the wall, , which
rons. was computed in Sec. V A. To do so, we will imagine that

In the diffusion equation approach it is assumed that thdhe wall deposits an infinitesimal amount of chiral density at

densityn of chirality in front of the wall, due to asymmetric €ach point in spacg; when it passes by at timg=x;/v,
reflection of quarks or leptons, is described by the continuityVhich at first is localized exactly and then spreads out in

equation and Fick’s plus Ohm'’s law: accordance with the diffusion equation. Integrating all these

contributions gives the total chiral density due to the flux of
on;+9d,3;=0, Ji=-—D;d,n;+aiE. (84) particles reflected from the wall:

Here D; is the diffusion coefficient for théth particle spe- vt e~ (x—x)?14D(t—t)

cies, ands; is its conductivity under the influence of a weak N(X—Ut):Cf dx

hypercharge electric field which is induced through the par- o =t

ticles themselves via Gauss's laWE=2>y;n;, wherey; is w @ v(x—vt+2)%4Dz

the hypercharge of thigh species. It is this coupling between :cf dz (88

the densities and the gauged charge which gives rise to De- 0 Vz

bye screening of a certain linear combination of the densi-

ties. Equation84) and Gauss’s law result in coupled equa_Notice that Eq.(88) is a solution to the diffusion equation
tions for then (85), ignoring the screening term, but with & function
|

source localized at=wvt, the position of the wall. The sec-
ond form comes from the changes of variables z+uvt,
U”i'+Dinf'_‘Tiz yinj=0, (85  and the constant of proportionality can be determined by
. conservation of particle number. To do so, we note that for

using the fact that for steady state solutions in the rest fram§—vt—, expression88) approaches an asymptotic value
of the bubble walln; has the forrm;(z—wvt), so thatwe can No=2cy7D/v. Since the wall is moving at velocity, the
replace the time derivative in E¢84) by —vd,. The general rate at which the chiral charge is being created per unit area
solution of Eq.(85) is given in Ref.[37]. There it is shown is Nov, and this must be equal to the flux injected from
that, for the purpose of computing the baryon asymmetrythe wall.
one can account for the effect of screening by applying a However, this is not yet the correct identificationrgf in
correction factorF;~ 1 to the solution one would have got- EQ. (86) because we must remember that there is an equal

ten by ignoring the screening term in E@5): and opposite chiral flux being injected by the wall in the
o opposite direction. However, the diffusion equation does not
ni(z) =Finge 2", (86)  “know” it is being injected in the opposite direction; it only

. , , ) , knows that it has the opposite sign. If we were to add the two
wheren, is the density at the wall ignoring screening, 10 be ., nyipytions naively, they would exactly cancel each other.
determined below. As will become apparent, the importantynat must happen, in fact, is that the two fluxes must pen-

guantity for baryon production is the integrated density inetrate a distancé\p into the plasma before they become
front of the wall: thermalized and the diffusion equation becomes a valid de-
w scription[8]. Therefore the correct expression for the chiral
fo dzn(z)=F;nyDjv L. (87) density is

: I : n(z2)=N(z+Ap)—N(z—Ap), (89
This means that the contribution from quark reflections to the
baryon reflection will be doubly suppressed compared to thaind if Ap<D/v, its integrated value is approximately given
of leptons, as has been emphasizefBilhonce by the strong by
sphaleron suppression of the flux itself, and again because
the diffusion coefficient for quarks is much smaller than that *
for left-handed leptons: &/versus 110/ [8]. In Ref.[37] it jo dzn(z)=2J Aplv, (90
was shown that,=1.75 for the left-handed leptons in the
case that the quarks are completely neglected. Moreover, weghich must still be corrected with the factér to account
checked that including the quark fluxes, as computed fronfor hypercharge screening as in Eg§7). This is precisely the
result one would get by putting the source term
2JAp8' (2)=J.[8(z+Ap)—S8(z—Ap)] into the diffusion
The value 6T agrees with an independent calculation done inequation, as was done in RE8]. We believe that the present
Ref. [33]. It can be shown that the momentum-space diffusion co-derivation clarifies their procedure.
efficient D computed there is related to the normal one by For the thermalization distand®,, we take the estimate
D=T%D. made in Ref[8] of the distance over which scatterings in the
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plasma will randomize the velocities of the particles in theusing energy conservation to equate,+---+E, to
injected flux(this might underestimate the injection distanceE7= - - - + E5~ The combination of chemical potentials ap-
for the low momentum states, but we nevertheless use it asgearing here is always the same one no matter what channel,
conservative estimafe once we average over the members of the doublets: It is half
the sum of potentials for 18 left-handed quarks and 6 left-
Ap=3Dvj, (91) handed leptons associated with the sphaleron. The sum over
channels of the integral is by definition the rate of sphaleron
interactions per unit time and volume. Using the fact that
density is related to the chemical potential oy 1 T2/6 for
a single lepton flavor and= . T?/2 for a single quark flavor
(because of the three colgrsve arrive at Eq.(94) after
summing over generations and averaging over members of

wherev; is the average velocity of the particlesJdp. Fol-
lowing the logic of Sec. V A, this velocity is the ratio of the
flux, Eqg. (59), to the same expression except without the
factor of k,/E; in the integrand. For the large-momentum
region of phase space discussed in Sec. V A the result is

r.(a) m doublets.
vi=|y 2a)|| oL et e | (92 We have shown that,<n, in front of the wall, so that
s Ei+T(1+e”1)In(1+e" 1) only the lepton contribution need be considered. The inter-

action rate per unit volume' is g awT)? in the symmet-

wherea=w/m and the other symbols are defined in Eqs'ric phase. To find the density of baryons produced by sphale-

(60) and(66). For ther lepton, this gives;=2.4m/T, while r . o .

. . L ons at a given positiorz, one integrates Eq94) from
for the b quark it |Svi=_1.3m/T: For particles |nj_ected al ¢~ _c until the time when the bubble wall passes the posi-
small momentum, the direction is nearly perpendicular to th(:‘[ion z, when the sphaleron interactions effectively turn off.

wall and the dispersion relatiod9) implies The integral over time can be rewritten as an integral over
v, =1/3. (93) distance in front of the wall by a change of variables:

aI' [
VI. BARYON ASYMMETRY Ng=— ﬁfo dzn (2). (98)

With the preceding results it is a simple matter to COmputéa ¢onvenient measure of the baryon asymmetry is the ratio
the baryon asymmetry, because the rate of baryon violatiogs ng to the entropy density of the universe

due to sphalerons in terms of the total left-handed quark angzzwzg T3/45, withg, = 110.75 degrees of freedom at the
o * , . .
lepton densities is electroweak phase transition. Then, assembling our previous
hg= —9(F/T3)(nqL+n|L)- (94) results, we have that
4
This can easily be derived from the Boltzmann equation in s _ M‘
the following way. Define forwardbackward sphaleron in- S TG, Tev
teractions as those which change baryon numberH8/ _ _ _ _
(—3) units. Half of the time the sphaleron interaction will "€c@lling that the expressions for the fluxes were given in
involve one member of a given fermion doublet and half theEds- (59 and(67). Putting in the numbers pertinent for the
time the other; if we ignore the distinction between the two”  lepton - contribution  [D,=110,  F =185,
at first and then average over different doublet members #(0-06)=€ "7, w(0.06)=2.6m, rs(0.12)=12.4,
the end, we will get the right answer. Since baryon number ig?o/T=0.17, andn(T.)/T¢=0.01], and using the recent re-

violated by 3 units, the Boltzmann equation is sult k spr= 1.1 corresponding to the classical sphaleron tran-
sition rate[ 38,39, we obtain

D\Fi(vid + 3 37M), (99)

133 [ allity - f,(1- 13- (1- 1)

n AG
?B =1x10717— (100
—fr-ftl—1fy)---(1-F)], (95

) , : . Given the range allowed by primordial nucleosynthesis,
where the sum is over all possible channels, the integratiop /s=1.4-3.8<10 ! [42], EqQ. (100 translates to a con-
measure includes the squared matrix element and thac- sfraint for the parameterZsb anduv:

tion for four-momentum conservation, and tHis are Fermi-

Dirac distribution functions fom (n) initial (final) states. A6
The Pauli blocking factors can be written as 15=< 7540. (101
1-fi=efEmfi=eS(1-pu), (96)

Although recent estimatdd0,41] predict rather small termi-
so that Eq(95) becomes nal veloqitigs gorresponding to . deflagrating bub.bles,
v~0.3, this is still too large to satisfy Eq100), even if
) A6=1. However, it is possible to imagine means by which
nB:3BE (Wt pua—pa— -~ i) the final asymmetry could be boosted to the desired level, as
we now discuss.
A very promising possibility of enhancement is provided

“ .. PR B(E++En)
XJ dIlfy- - - fofye - fref= . (97 by a dynamical slowing down of the bubble walls due to the
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Figure 6 shows that one can get somewhat larger values if

100 1000 ' ' k is tuned to particular values, as the casexef —25 000
,,,,,,,, o 14000 GeV? illustrates. It is possible to understand this enhance-
o 75 Lo 25000 o 0O OO00y ment qualitatively{22]. In the classical limit of the fermion
= et 29000 o° scattering off the wall, the gradient of thiefield acts like an
g ceeve-- tanh d.P' effective potential to be added on top of the usual wall po-
€ 50} ',o" . tential, with opposite sign for particles and antiparticles.
§ 5 Therefore, if 6 is mainly changing well inside the broken
E o phase, some particles whose momentum would otherwise get
§ o5} s . them over the barrier effectively see a “bump” that causes
O s SOGGas > - them to be reflected. At the same time antiparticles with the
A #ﬂ‘g"v’-va-w-v@w3:3?3:“__6; § same momentum see no such bump and are transmitted. Al-

though quantum mechanics will reduce this effect because of
tunneling, one nevertheless expects to see an enhancement in
£ the differenceAR of the reflection probabilities. Comparison
with Figs. 1 and 3 shows that, in contrast to the other cases,
FIG. 6. The enhancement of the generated baryon asymmetry g[ghereaamz is concentrated toward the front of the wall, in
a function of the effective fermion mass parameiermA,,, [see  the case ofk=—25000 GeVf, 4(x) is indeed changing
Eg. (48)]. The curve is normalized to unity at the valge=0.12  primarily within the broken phase.
which we take to correspond to thdepton. As in Fig. 3, the curves
are labeled by the corresponding value-ok in GeV?2.

0 1

VII. RESULTS AND CONCLUSIONS

heating of the plasma in the unbroken phase by the shock We have attempted to make a quantitatively accurate es-
waves of the neighboring bubblg40]. This deceleration al- timate of the baryon asymmetry in the charge transport
ways occurs for deflagration bubbles, and while it has anechanism of electroweak baryogenesis, using a somewhat
strong quantitative dependence on the dynamical details okalistic two-Higgs-doublet model. By assuming reasonable
the transition, it is qualitatively easy to understand: The heatvalues of parameters, we find that théepton is by far the
ing of the unbroken phase reduces the difference of the fremost important particle species contributing to the baryon
energies between the interior and exterior regions of asymmetry through it€ P-violating reflections from the do-
bubble, which is the driving force of the expansion, and samain walls that form during the phase transition, and that the
the walls slow down when eventually hit by the shock wavesesulting baryon asymmetry can be marginally big enough
of the neighboring bubbles. Then, given that the wall velocfor consistency with primordial nucleosynthesis.
ity goes down by a large factor when, say, half of the uni- In this section we will remind the reader of our assump-
verse is still in the unbroken phase, and knowing that theions and try to indicate how our conclusions depend upon
baryon production rate goes likevl/it becomes evident that them.
essentially all baryons might have been produced in this (1) Concerning the phase transition, we tuned the param-
later, decelerated phase of the transition. Refererid@] eters of the Higgs boson potential to give ganl for the
suggests the possibility of a very large decelerationratio of the two Higgs field VEV's, because we chose not to
v—v/100, which would easily make the present mechanisndeal with a two-stage phase transition, in which one field
a viable candidate for baryogenesis. We stress, however, thyets a VEV before the other does. In order for the fermionic
sensitive dependence of this effect on the dynamics of théoop corrections not to spoil this tuning, that is, to keep also
transition and that we have not attempted to calculate its sizthe temperature-dependent Higgs masses equal, it was nec-
in the present model. essary to couple heavy fermions with equal strength to both
Another way of increasing the above result was suggesteHiggs fields. However, if we letll fermions couple to each
in Ref. [8], namely, to increase the ratim/T. during the  Higgs field with exactly the same strength, then there would
phase transition beyond its value in our model, by invokingbe no CP violation in the fermion mass, because the two
possible complications in the evolution of the two Higgsfields would give contributions with canceling imaginary
fields: If the one that couples to thelepton has a larger parts. In this paper we assumed equal couplings of the top
VEV relative to the other Higgs field during the phase tran-quark to the Higgs fields in the effective action, yet com-
sition than at zero temperature, then the power-law deperputed the quark reflection as if they only coupled to one of
dence orm/T. would boost the production of baryons. This the fields. It should be clear that our conclusion about the
corresponds to taking a larger value of the dimensionlessmallness of the asymmetry arising from quark reflections
parameteré=mA,, than that €=0.12) which our model does not depend on these details. So in retrospect we see that
gave. We have explored the dependence of the baryon asyme can choose to couple quarks symmetrically to the Higgs
metry on¢é and summarized the results in Fig. 6. Althoughbosons and yet have the leptons coupling only®tg. In
the enhancement depends on the details of the bubble wadlich a model the transition truly proceeds simultaneously in
profile, which in turn depends on the Higgs potential param-both Higgs fields, and our treatment is completely self-
eterx, for most values ok the optimal fermion mass occurs consistent. Moreover, we believe that our results are repre-
in the vicinity of é=1, corresponding to one inverse bubble sentative also of the two-stage phase transitions, because as
wall width. Thus the mass of thelepton is not very far from long as one keeps./T.=1 to satisfy the sphaleron washout
being the ideal size given the width of the wall in our model.constraint, the baryon asymmetry should not change much
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since the ratio to which it is most sensitive(T.)/T., re- ing the phase transition. One possibility would be to actually
mains constant. find a model that displays the behavior suggested by [Béf.

(2) The problem of sphaleron washout also prompted usn which the VEV's of the two Higgs fields obey
to assume a small value of the mass of the lightest neutrad,(T;)/p»(T.)>p1(0)/p,(0). Oneshould in this case also
Higgs particle, with a definite corresponding value of thetake into account other effects of a two-stage phase transition
effective quartic coupling\.=0.12. The ratiop./T. de-  on baryogenesis. A second possibility we discussed is that at
creases with increasing.;, making the sphaleron interac- the final stage of the phase transition the bubble walls are
tions not sufficiently suppressed in the broken phase insidslowed down due to the heating of the unbroken phase by the
the bubbles. But this ratio also depends on the cubic term ishock waves of the neighboring bubbles, which could lead to
the high-temperature Higgs potential. We had to assume a large enhancement of the baryon production. A third pos-
larger value of the cubic coupling than predicted within oursibility would be to demonstrate in a more convincing fash-
model in order to avoid the washout problem. The situatiorion that the cubic term in the effective potential could be
is ameliorated somewhat by recent wgdd] which finds a increased even more than we assumed above, so that
suppression of the sphaleron rate inside the bubbles due to(T.)/T. would be increased. This would also be welcome
loop effects. Moreover, there is a large number of cubiclikefrom the point of view of ensuring that sphaleron interactions
contributions coming from the scalar fields, which we omit-in the broken phase are too slow to destroy the baryon asym-
ted because of technical reasons, which might tend to inmetry that nature may have so intricately produced at the
crease the effective cubic term in this model. Finally oneelectroweak phase transition.
might expect that nonperturbative effects in the symmetric
phase play the same role in the two-doublet model as has ACKNOWLEDGMENTS
been recently found in the standard mof20], increasing
the amount of supercooling and hence effectively increasing This research was supported by DOE Grant Nos. DE-
the ratiop./T.. This phenomenon should also be roughly AC02-83ER40105 and DE-FG02-87ER40328, N.S.E.R.C. of
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bation which had no back reaction on the VipYx) of the
Higgs fields. Since there are no strong constraints on this APPENDIX A: ANALYTIC SOLUTION
phase, and none at all if it arises spontaneouly at finite tem- TO THE LINEARIZED 6 EQUATION
perature, this assumption was not necessary and served only
as a convenience. It is possible that a complete solution of In this appendix we derive an analytical solution to the
the coupled equations fgr(x) and #(x) would give differ- linearized equation of motion fof(x) = 6(g(x)), Eq. (28).
ent results, but if thec-dependent changes of the shape ofRecall thatg(x) describes the modulus of the Higgs field at
these solutions give any indicati¢Rig. 3), we do not expect the bubble wall, Eq(21).
much sensitivity except for fermion masses significantly
larger than the inverse wall thickness. ) 2d20 de ’

If the 7 lepton was heavier by a factor of 5, the baryon 497 (1—9) d_92+49(1_9)(3_49)d_g+(8+cg )0
production in the present mechanism would be increased by
a factor of 15—-80, making it a viable mechanism of baryo- =-D. (A1)
genesis. One obviously cannot change this fact of nature, but
we can imagine ways of making,. effectively heavier dur- The two homogeneous solutions to this equation are given by

1
67 (9)= ag’“(l—g)*ﬁzFl(—a+B+ 3y, —atpBtz—y1+2B,1-0),

1
67(9)= ag*“(l—g)‘ﬁzF1(+a—B+ 3ty ta—pB+ 35—y l1+2a;9), (A2)

where the,F, are hypergeometric functions characterized byThe homogeneous solutiods diverge forx— +oo. But our

the parameters boundary conditions require finiteness in these limits. We
a=+1—B/4, therefore have to set the coefficients of the homogeneous
solutions(A2) identically to zero and are left with the inho-
B=3J-B-C, mogeneous solution.

The inhomogeneous solution can be constructed by use of
y=3\9—-C. the Green’s function of EqAL). We find



2470 CLINE, KAINULAINEN, AND VISCHER 54
g’ elsewhere, we present them here for completeness and in
O(x)=— {V(Q(X))J dg' 7570 (9") order to be able to discuss their implications for the present
g’ physical application.
g’ The basic computational task is to compute the thermal
+6° (Q(X))J dg’ —9+(9 )} (A3)  self-energy corrections to the fermion propagator. In the un-
broken phase chirality is a good quantum number, so that the
self-energy separates in the chiral representation. Going di-
rectly to the rest frame of the plasma, one may show that
[25]

where the WronskiaiV is given by

[(atf+ b+ 9T (atft}—y) ) ;

Although we cannot further simplify EA3), we can find
an approximation to EqA3) in the thick wall limit. In this
adiabatic case one would expect that the kinetic term is irz
relevant throughout. We then simply ignore the kinetic termf

whereX=L,R refers to the chiralityPy is the correspond-
ing chiral projectork and w are the three-momentum and
the energy of the particle in the plasma rest frame, and the
unctionsa and b have the well-known high temperature

in Eg. (A1) and find the solution foBV/§6(x)=0: (K, 0<T) limit [25]:
B t(X):_—Dz- (A5) )2< o [otk
adia B+Cg ax(k (1))=— l—ﬂln m
This solution can be verified using EGA3).
wi o 0*-k [o+k
APPENDIX B: FINITE-TEMPERATURE DIRAC by(K,w)=—|+— —ZIn(—”. (B2)
EQUATION klk 2k w—k

In this appendix we outline the derivation of the Dirac In the approximation that the masses of the particles within
equation for the scattering of a fermionic excitation off athe loops can be neglected, the above expressions are valid
bubble wall including the effects of the thermal background.also in the broken phas@nd within the wall. Then the
While most of the equations shown below have been deriveéffective Dirac equation, at the one-loop level, becomes

(l-a)w—b +(1—a)o -k -m )(L)
=0. (B3)

-m* (1—aR)w—bR—(1—aR)0'-k

Because of the nonlinear dependence of the functtoaed  metric phase the resulting dispersion relations take the par-
b on the energy and momentum, this is a highly nonlocaticularly simple form

equation, which is a reflection of its inherent multiparticle

nature. In particular the nonlinearity in energy makes it im-
possible to give it an exact interpretation in terms of effec-
tive single-particle states, except in the small- and large-

momentum limits, where the self-energy can bewhere the two signs correspond to two different branches of
approximately linearized and thee)quantization procedure solutions: The one with the minus sign can be viewed as a
may be completed. generalization of the usual particle excitation to finite tem-

In order to proceed with the reflection computation, how-peratures. The one with the plus sign on the other hand rep-
ever, one needs to find at least an approximate interpretatia®sents a new solution that has no counterpart at zero-
of Eg. (B3) in terms of single-particle states. The remedy istemperature. The appearance of this new “hole” excitation
of course well known; one defines the effective quasiparticlepparently leads to unphysical doubling of the number of
states as the collective excitations corresponding to the poletegrees of freedontas measured by the volume of phase
of the one-loop propagator or, in other words, to the peaks iispace, which calls for and is corrected by finite-temperature
the phase-space density in energy. One should, howevenave function renormalization. Indeed, by constructing a
bear in mind that such an interpretation does not give a comene-particle propagatd26,27 from the quasiparticle states
plete description of the system and in some cases pushing tlad comparing to the full propagator, one finds that the cor-
picture too far can lead to ambiguities. rectly normalized quasiparticle wave functions differ from

The poles of the propagator correspond to the zeros of ththe vacuum wave functions by the momentum-dependent
determinant of the matrix appearing in E&3). In the sym-  normalization factof Z%"(k)1*?, where[25,27,44

92" (w,k)=(1—ay) (0T k) —by=0, (B4)
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dgg(’h the number of excitations due to the appearance of the hole
Z5M(k)~t= Ao states, was included in our E¢63). This factor was over-
w=wPh(k) looked in the treatments of the quasiparticle scatterings in the

w¥k

w*k

1+ay+(1—ay) (BS)

w=wP:h(k)

One can readily work out the limiting values @f In the
small-momentum limit,

28N (k)= 1.k (B6)
X 2 _30))(,
and in the large-momentum limfivhere alsow=Kk),
wi wx
Z8(k)=1— P—In—,
Z0(k)=e~ 20k 1, (B7)

standard model in Ref$26,29.

In the large-momentum limit the hole excitations vanish,
since their wave function renormalization factor goes expo-
nentially to zero. Moreover, since bothandb go to zero at
largek,

2 2
wy k wy
ax:FInw—X, bX_ ?, (89)

one might expect that the Dirac equation trivially approaches
the vacuum equation. The situation is more complicated,
however, because we are interested in phenomena that de-
pend on small differences between energy and momentum.
In fact one can show that the factor may safely be ne-
glected, but that the remaining equation has other terms that
are of the same order as thaerm even at high momentum.

Thus, in the small-momentum limit both particle and holeNevertheless, one would still expect that the vacuum equa-
excitations have equal weight, which is half of the zero-tion gives a reasonable approximation for the reflection of
temperature value. Moreover, holes are only present at mdigh-momentum particles, since thaerm affects both sym-
mentak= wy, above which their effective number density metric and broken phases equally.

[given by Z(k)f(w(k))] falls off exponentially. Therefore

Let us finally point out that in the intermediate momen-

one does not need to account for holes in the highium regionk~wy the wave function normalization factors

momentum region.
The small-momentum limit dispersion relatio9) and
the Dirac equatioi(51) are easily derived from Eq&B3) and

(B4) after finding the small-momentum limits of the func-

tionsa andb:

2

w
aX=3—aj(2+O(k2), by=2a+O(k2). (B9)

The factor of 1/2 coming fronZy (0) for both particles and

do not add up to 1; instead, their sum can be as low as about
0.8 [27]. This signals the breakdown of the single-particle
interpretation, which can lead to inconsistencies. For in-
stance, replacing the limiting normalization factgrby cor-
responding momentum-dependetis leads to a small non-
vanishing flux in the intermediate-momentum region, even
when the wall is not moving. However, this flux is much
smaller than, and clearly caused by, the inherent error in the
total flux due to the above-mentioned fact that in this region
the effective one-particle states do not give a faithful repre-

holes of both chiralities, which compensates the doubling oéentation of the phase space.
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