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Construction of a template family for the detection of gravitational waves
from coalescing binaries

Theocharis A. Apostolatos
Max–Planck–Society, Research Unit ‘‘Theory of Gravitation’’ at the Friedrich–Schiller–University, D-07743 Jena, German

~Received 17 January 1996!

A discrete set of theoretical waveforms should be ready to use when searches for gravitational waves at the
noisy output of the laser interferometric detectors that are presently under construction begin. In this paper we
extend the method introduced by Sathyaprakash and Dhurandhar to construct such a family of templates, that
was based on simple Newtonian signals, to post2-Newtonian signals that may be modulated due to spin-
induced precession. More specifically, we show that if post-Newtonian terms of the phase are taken into
account then the Newtonian templates turn out to be a rather inadequate type of search templates and othe
templates of higher post-Newtonian order should be used instead. This expands the number of parameters tha
the templates depend on, and, therefore, it leads to a required number of templates that is 2 orders of magnitude
larger than it was previously thought, when precessionally modulation effects are ignored and a formidable
number of templates when precessionally modulated signals are considered. From our analysis it becomes clea
that a post1.5-Newtonian family of templates, with vanishing spin term, is a very promising family of search
templates for signals coming from nonprecessing binaries. Furthermore, adding an extra oscillatory term in the
phase of these post1.5-Newtonian templates would extend their detecting ability to signals coming from mod-
erately precessing binaries; but, unfortunately, the number of templates then needed leaves no hope for an
on-line search. This extended family of templates could be used more effectively in a hierarchical off-line
search.@S0556-2821~96!01714-6#

PACS number~s!: 04.80.Nn, 04.30.Nk, 95.30.Sf, 95.75.Pq
a-
,

I. INTRODUCTION

The first ground-based laser-interferometer gravitatio
wave detectors are already under construction and within
first decade of the next millennium a network of at least f
such detectors@the two Laser Interferometric Gravitation
Wave Observatories~LIGO’s!, VIRGO, and GEO600# is ex-
pected to be able to collect data and search for gravitati
waves. The most promising and well-understood source
gravitational waves are merging compact binaries.

For detecting these gravitational waves, in addition t
highly sophisticated technical design of detectors, a care
constructed family of theoretical models, called templa
for the signal is needed@1#. Since the corresponding signal
expected to be buried in the detector’s noise, only by c
correlating the noisy output of the detector with all memb
of a pre-constructed family of templates we might have g
chances for detecting some gravitational wave from a bin
source.

To obtain the highest possible signal-to-noise ratio
some given signal, and thus to increase the probabilit
detect the corresponding gravitational wave, at least
member of the template family should very accurately mim
the signal. Of course, the task of constructing a family
extremely accurate templates is completely unrealistic s
~i! one should first solve the full relativistic two-body pro
lem which is a very difficult, and very complicated proble
that still remains unsolved and~ii ! the number of paramete
that characterize the signal, though relatively small, wo
lead to an enormous bank of templates that exceeds b
the near-future computer capabilities. The only way out i
construct approximate signal models based on p
540556-2821/96/54~4!/2421~17!/$10.00
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Newtonian techniques, and get rid of all the parameters that
do not crucially affect the shape of the signal~e.g., the dis-
tance to the source; see Ref.@2#!, and those ones that are
expected, on theoretical grounds, to have some preferred
value ~e.g., the eccentricity of the binary’s orbit is expected
to be nearly zero for almost all binaries under consideration;
see@3,4#!.

The Newtonian family of templates, that is the family of
waveforms based on the quadrupole-moment formalism for
two pointlike masses orbiting around each other in circular
orbits, has for long been considered a ‘‘good’’ family of
search templates for detection purposes and extensive work
has been done@5–7# in the past to exhibit its power for
detection, its simplicity, and the small number of such tem-
plates one needs. The Newtonian waveforms depend only on
three parameters: the time to coalescence, the phase at co
lescence, and some specific combination of the two masses
called chirp mass.~The rest of the parameters, that are re-
lated to the geometry of the binary with respect to the detec-
tor, combine to a numerical factor that simply multiplies the
waveform function without affecting its shape@2#.! Now, the
time to coalescence will be taken into account directly in the
computing process, while performing the cross correlations
via fast Fourier transforms, and for the phase at coalescence
only two values are needed~cf. @8,9#!. The Newtonian wave-
forms then depend, in a nontrivial way, only on the chirp
mass. Therefore, the problem of constructing a family of
Newtonian search templates reduces to the problem of
choosing a set of carefully spaced values for the chirp mass
that covers the whole range of masses of the potentially de-
tectable binaries.

Only recently, our confidence to the Newtonian family of
templates has started shaking. By using the fitting factor~FF!
2421 © 1996 The American Physical Society
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2422 54THEOCHARIS A. APOSTOLATOS
as a tool to measure the adequateness of a family of t
plates Apostolatos@9# has demonstrated the highly dimin
ished power of a Newtonian waveform to mimic a sign
waveform described by the highest available post-Newton
approximations within the sensitive frequency range of
advanced LIGO detectors~10 Hz to;200 Hz!. Schutz@10#
has suggested using the Newtonian family of templates
narrower window of frequencies where all post-Newton
effects on the signal are not yet significant. We have tes
this and found that, although one may gain a bit in the sign
to-noise ratio, the maximum value of the corresponding F
still low; this indicates that thesetruncatedNewtonian tem-
plates are not much better than the plain Newtonian te
plates.

As it was shown in Ref.@9#, a family consisting of at leas
post1.5-Newtonian waveforms is needed to fit better a rea
tic signal waveform, and thus produce a high cro
correlation output. The problem that arises then is that
using templates of higher and higher post-Newtonian or
one introduces more and more parameters~another mass
function, besides the chirp mass, shows up in pos1-
Newtonian order, some spin parameter shows up for
time in post1.5-Newtonian order, and so on!, and that may
imply a huge number of corresponding templat
Sathyaprakash@11# has shown that with a clever choice of
new version of the chirp mass parameter one could take
account the post-Newtonian effects and still keep the pr
lem one dimensional. Unfortunately, the output of o
present work contradicts the results of Sathyaprakash.
contradiction is due to different ranges of frequencies a
noise spectra assumed. Our work assumes a realistic co
noise and an upper frequency cutoff set at the frequenc
the last stable circular orbit. It turns out from our work th
we have to deal with the two-dimensional parameter spac
a post1.5-Newtonian family of templates~the omission of the
spin parameter does not substantially reduce the FF va
one obtains, as we had shown in Ref.@9#!. This results in an
increase in the number of templates needed by almost 2
ders of magnitude as compared with previous estimati
based on Newtonian templates.

As was shown by Apostolatos, Cutler, Sussman, a
Thorne in Ref.@12#, if the orbital angular momentum of th
binary and its spins are not aligned, then its orbital plane w
precess, leading to modulation on both the amplitude and
phase of its gravitational wave. Apostolatos@9# has demon-
strated the difficulties imposed on detecting such signals
using simple post-Newtonian templates, especially when
opening angle of precession is not small. Here, we inve
gate the effects of precession on the total number of t
plates needed and suggest the expansion of the templ
parameter space by three more parameters to improve
effectiveness of templates on detecting signals that are m
erately modulated.~Highly modulated signals are very com
plicated; so even these new extended templates are not
to produce sufficiently high FF’s.! If these extended tem
plates were to be included in the bank of search templa
one would need a huge number of templates that exceed
far the present and near-future computer capabilities. T
they, or any other kind of templates that may be used
‘‘correct’’ the precessionally modulated signals, should
used at a second detection stage, off line.
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The rest of this paper is organized as follows. In Sec. I
we briefly review the definition and physical significance of
FF as a useful tool to measure the adequateness of so
family of templates. The noise spectral density is assumed
be that of an ‘‘advanced detector’’@13#. We also present all
post-Newtonian approximations for the gravitational wave
forms, that are available today, in a compact form that wil
be helpful in our analysis. In the stationary phase approx
mation all post-Newtonian waveforms have the same ampl
tude form, but different phase forms.~Actually, there are
post-Newtonian corrections to the amplitude but they tur
out to be negligible, compared to the post-Newtonian correc
tions to the phase; see Ref.@2#.! For the waveform describing
a true signal we are using the highest post-Newtonian wav
form, namely the post2-Newtonian one@14#.

In Sec. III we demonstrate for one more time the fact tha
both Newtonian and post1-Newtonian templates are not suf-
ficiently adequate as search templates, by expanding Tabl
of Ref. @9# so as to include the post2-Newtonian waveforms;
see Table I. The FF values obtained for all possible comb
nations of signals and templates, for some characteristic b
naries, suggest that the post1.5-Newtonian templates with
vanishing spin term are good enough for detection purpose
even for signal waveforms that are of higher than post2-
Newtonian order. Finally, by truncating the Newtonian tem
plates to some fixed uppermost frequency in order to avo
the template-signal phase mismatching due to pos
Newtonian terms in the signal, as Schutz@10# has suggested,
we have shown that it is not very effective in improving the
performance of the Newtonian templates.

In Sec. IV we analyze the method we have used to cove
the whole parameter space~a two-dimensional space! with
carefully spaced templates so that any possible signal cro
correlated with at least one of the fixed templates produce
an output only slightly lower (10% at most! than the output
which it would have produced with a hypothetical template
that would perfectly mimic the signal. This is an extension in
two dimensions of the method used by Sathyaprakash a
Dhurandhar@5#, but it is far more complicated since the dis-
tances between neighboring templates depend greatly on t
masses and the spins of the binary, and the parameter sp
that has to be covered has irregular shape. After discussi
the problems arising in counting the number of templates
that one needs to have in a bank of templates, we presen
more or less accurate estimation of that number.

In Sec. V we briefly present the numerical process that
expected to be followed at the first stage of detection, an
transform our results for the number of templates to com
puter power requirements.

In Sec. VI we discuss the implications arising from con-
sidering signals from spin-induced precessing binaries. Afte
exploring the precessional effects induced in the phase a
the amplitude of such a signal, we make an attempt to co
struct an extended post1.5-Newtonian family of templates
able to detect these complicated signals and give an order
magnitude estimation of the number of its members.

Finally, in Sec. VII we summarize our results and sugges
ways to exploit our results for precessionally modulated sig
nals.

In Appendix A and Appendix B we present semiquantita
tive arguments for simplifying and modeling the modula-



post

e
d more

54 2423CONSTRUCTION OF A TEMPLATE FAMILY FOR THE . . .
TABLE I. This table presents the FF values for a Newtonian, a post1-Newtonian, a post1.5-Newtonian
signal with maximal spin parameterb, and a post2-Newtonian signal with maximal spin parametersb and
s, being searched for by the four corresponding families of templates: the Newtonian family, the
1-Newtonian family, the post1.5-Newtonian family with vanishing spins, and the post2-Newtonian family
with vanishing spins. For every case, two FF values are given, corresponding to a 10M(,1.4M( black-hole–
Neutron-star~BH/NS! binary and a 1.4M(,1.4M( NS-NS binary. The modulational effects are absent sinc
the spins and angular momenta are considered aligned. The numbers quoted in this table are discusse
extensively in Sec. III.

N signal P1-N signal P1.5-N signal P2-N signal
(b maximal! (b,s maximal!

N templates: 1.000~BH-NS! 0.559~BH-NS! 0.677~BH-NS! 0.669~BH-NS!

1.000~NS-NS! 0.465~NS-NS! 0.535~NS-NS! 0.531~NS-NS!

P1-N templates: 1.000~BH-NS! 0.719~BH-NS! 0.729~BH-NS!

1.000~NS-NS! 0.612~NS-NS! 0.620~NS-NS!

P1.5-N templates: 0.988~BH-NS! 0.990~BH-NS!

(b50) 0.986~NS-NS! 0.993~NS-NS!

P2-N templates: 0.979~BH-NS!

(b,s50) 0.989~NS-NS!
’’
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tional effects appearing in the phase of signals that are p
duced from precessing binaries.

Throughout we assume that all binaries’ are circular a
we use units whereG5c51.

II. THE FF AS A TOOL FOR MEASURING
THE ADEQUATENESS OF A TEMPLATE FAMILY

A. Definition and significance of the FF

As was shown in the work of Apostolatos@9#, if the fam-
ily of search templates used at the detection stage does
contain the true signal waveform, then the signal-to-no
ratio will be reduced by

S SND5FF3S SND
max

, ~1a!

where

FF5 max
l1 ,l2 , . . .

~WuTl1 ,l2 , . . .
!

A~Tl1 ,l2 , . . .
uTl1 ,l2 , . . .

!~WuW!
. ~1b!

In Eq. ~1! (S2N)max is the signal-to-noise ratio we would
obtain if we had used the exact signal waveformW(t) as a
template, andTl1 ,l2 , . . .

(t) is a member of the template fam

ily parametrized by the parametersl1 ,l2 , . . . . The inner
product of two waveforms (h1uh2) is defined@2# by

~h1uh2!52E
0

` h̃1* ~ f !h̃2~ f !1h̃1~ f !h̃2* ~ f !

Sn~ f !
d f , ~2a!

whereh̃( f ) represents the Fourier transform ofh(t), an as-
terisk as a superscript denotes complex conjugate,
Sn( f ) is the spectral density of the detector’s noise whic
ro-

nd

not
ise

-

and
h

here is assumed to be that of the ‘‘advanced LIGO detector
@13#, an analytic fit of which has been given in Ref.@2#:

Sn~ f !5H ` for f,10 Hz,

S0F S f 0f D 412S 11S ff 0D
2D G for f>10 Hz,

~2b!

whereS050.6310248Hz21 and f 0570 Hz. Of course, the
unavoidable fact of the reduced signal-to-noise ratio—partl
because of using templates that are not accurately mimicin
a realistic signal and partly because of using a discrete fami
of templates—will lead to a lower threshold setting for de-
tection and thus to a higher false alarm rate.

In this paper we have decided to set the limit of 0.9 as th
lowest acceptable FF value for some template family to b
considered adequate, since a reduction in signal-to-noise
tio by 10% means a 27% loss in the event rate. On the oth
hand a 10% reduction in signal-to-noise ratio is equivalent t
roughly 10% shortening of the detectors’ arms.

B. Review of the post-Newtonian waveforms

An ongoing effort of theorists@14# has already produced
analytic expressions for the waveforms of gravitationa
waves coming from compact binaries up to pos
2-Newtonian order, that is through order (v/c)4 ~wherev is
the orbital velocity! beyond the quadrupole formula. In the
stationary phase approximation, and after neglecting all pos
Newtonian corrections to the amplitude, the post-Newtonia
waveforms can be written in the compact form

hi~ f !5Af27/6eic i ~ f !, ~3a!



r

2424 54THEOCHARIS A. APOSTOLATOS
whereA is a constant depending on the relative geometry
the binary with respect to the detector and on some com
nation of the massesm1 , m2 of the binary, andi takes one of
the values 0,1,1.5,2 denoting the corresponding p
of
bi-

ost-

Newtonian order~post2-Newtonian order is the higher orde
included in our analysis!; h0( f ) is simply the Newtonian
waveform. The phase functionsc i( f ) of the various post-
Newtonian orders are given by@14#
S c0~ f !

c1~ f !

c1.5~ f !

c2~ f !

D 5G~ f !1H~ f !S 1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

D S 1

20

9 S 743336
1
11m

4M D ~pM f !2/3

24~4p2b!~pM f !

10S 3 058 6731 016 064
1

5429m

1008M
1

617m2

144M2 2s D ~pM f !4/3
D , ~3b!
-

e
in
-
a
e
h

ins
e

F

where

G~ f !52p f tC2fC2p/4, ~3c!

and

H~ f !5
3

128
~pMf !25/3. ~3d!

The three mass parametersM ,m,M represent the total mass
(M5m11m2), the reduced mass (m5m1m2 /M ), and the
chirp mass@M5(m1

3m2
3/M )1/5#, respectively;tC andfC are

the time and phase at coalescence, and the two termsb and
s are the so-called spin-orbit and spin-spin terms, resp
tively, that are given by

b5
1

M2 F S 11312 1
25m2

4m1
DS11S 11312 1

25m1

4m2
DS2G•L̂ , ~3e!

and
ec-

s5
1

48m1m2M
2 @2247S1•S21721~S1•L̂ !~S2•L̂ !#, ~3f!

whereS1 andS2 are the two bodies’ spins, andL̂ is the unit
vector along the direction of the binary’s orbital angular mo
mentum.

It should be noted here that in the presence of spins th
waveform depends on the spins not only through the sp
terms b and s but also through the spin-induced preces
sional changes in the geometry of the binary that produce
modulation in the amplitude and an extra modulation in th
phase of the gravitational waveforms that arrive on Eart
~see Ref.@12#!. For the moment we will avoid all these com-
plications caused by precession, assuming either that sp
are vanishing or that they are aligned with respect to th
orbital angular momentum.

C. The form of FF for post-Newtonian waveforms

By specializing to post-Newtonian waveforms both for
the signal and for the templates used to detect the signal, F
takes the explicit form
FF5 max
DtC ,D~M25/3!,@D~M1/3!#

U E
0

`

d f@ f27/3/Sn~ f !#e
iDc~ f !AM3PMU

AF E
0

`

d f@ f27/3/Sn~ f !#GF E
0

`

d f@ f27/3/Sn~ f !#~AM !2G , ~4!
nly
t-
irp
de-

the
ne

or
the
where AM and PM are some amplitude and phase mod
tion factors, that are present whenever the spin-induced
cession of the binary is turned on; otherwise these mod
tional terms could be omitted.Dc( f ) is the difference
between the signal’s phase function and the template’s p
function, apart from any precessional modulation, a
DtC ,D(M25/3),D(M1/3) are the differences between th
corresponding parameters of the signal and of any mem
of the chosen template family. EspeciallyD(M1/3) is written
in square brackets to show that it has to be usedonly if the
template family is not the Newtonian one, since the Newt
ula-
pre-
ula-
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ian templates depend on the masses of the binary o
through the chirp mass. For templates of higher pos
Newtonian order one more mass function, besides the ch
mass, is needed to define the template. Here, we have
cided to use the total massM1/3 because it turned out to be
easier to handle in our analysis and our numerical code;
results we have obtained do not depend on that choice. O
of the parameters of the waveforms,fC , is not present in
Eq. ~4! since we have already maximized the expression f
FF over this parameter by keeping the absolute value of
numerator in the right-hand side of Eq.~4!.



n

e

n

n

a

c
o

t

s

g

r
t

n

y
is

-
ic
y

-
t

r
is

ed
.
-
n

s

-

54 2425CONSTRUCTION OF A TEMPLATE FAMILY FOR THE . . .
It should be noted that the post-Newtonian order of t
signal is assumed to be of greater or equal order than tha
the templates, since the signal is supposed to be describe
the most accurate available waveform while the templa
are usually considered to have a simpler form than the sig
In order to keep the number of templates in the chosen fa
ily moderately low we will assume that all templates corr
spond to waveforms with vanishing spin terms.@This ex-
plains why theb ands terms do not show up in the set o
parameters over which the expression in Eq.~4! is maxi-
mized.# In the next section we will justify this simplification
by demonstrating in what extent this is harmless for det
tion purposes.

III. THE INADEQUATENESS OF THE NEWTONIAN
TEMPLATE FAMILY

In this section we present once more the results obtai
by Apostolatos@9# for the FF values one gets if various pos
Newtonian template families and various nonmodulatio
post-Newtonian signals are used, augmented by some a
tional results that we obtained by incorporating the recen
discovered nonmodulational post2-Newtonian effects@14#.
More specifically, in Table I we have computed the FF v
ues obtained if any of the Newtonian, post1-Newtonian,
post1.5-Newtonian with b50, or post2-Newtonian with
b5s50 template families is used as a family of sear
templates to detect signals described by any of the p
Newtonian waveforms of Eqs.~3!. ~One can find similar
tables in@6#.! As we discussed in the previous section,
order to avoid expanding enormously the parameter spac
the template families, all our templates correspond to po
Newtonian waveforms with vanishing spin terms; that is

c i
templ~ f !5c i~ f ;S15S250!. ~5!

However, the analogous post-Newtonian signals have b
chosen with maximalb ands terms so as to get an estima
tion for the FF values in the worst case; that is, when
mismatch between the waveform of the template and tha
the signal is maximum. Some slight disagreement in the
tries of theP1.5-N column between the present Table I an
the Table I of@9# is due to the fact that in the present ca
both objects of the binary are assumed to have spin wh
are aligned with the binary’s orbital angular momentu
while in Ref. @9# only the more massive body was spinnin

It is clear from Table I that for search templates of ord
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lower than post1.5-Newtonian, the FF values obtained for
signal waveforms that are of higher post-Newtonian orde
than the template family are rather poor. This indicates tha
the Newtonian and the post1-Newtonian families of tem-
plates are rather inadequate families of search templates. O
the other hand, the slightly differing, but quite high, FF val-
ues for both the post1.5-Newtonian and the post2-
Newtonian templates suggest that the post1.5-Newtonian
family of templates might be quite adequate for detection
purposes. The inclusion of the post2-Newtonian term in the
signal changes very slightly the fitting capability of the
post1.5-Newtonian family of templates.~It actually produces
a FF value a bit higher than the FF for a post1.5-Newtonian
signal.! This is an indication that inclusion of further post-
Newtonian terms in the signal might not produce signifi-
cantly lower FF values. For a post2-Newtonian signal, the
post2-Newtonian family of templates does produce lower FF
than the post1.5-Newtonian one sinceb and s in a
post2-Newtonian signal have opposite signs and thereby the
tend to cancel each other. Nevertheless, the difference
small and presumably it is even smaller for a family of tem-
plates of higher order. All these explain why we have chosen
to use the post1.5-Newtonian family of templates in our pa-
per.

At this point we should note that the FF values we pre-
sented in Table I are based on the assumption of a continu
ous parameter space for the templates. This is unrealist
since only a finite number of templates can be handled b
computers when cross correlating the signal with all the
members of some chosen template family. However, this un
realistic assumption was necessary in order to find out wha
kind of templates are sufficiently ‘‘flexible’’ to mimic satis-
factorily a true gravitational signal, and produce a FF value
well above 0.9. Of course the FF is expected to be furthe
reduced when a discrete set of templates is considered. Th
will be our subject in the following sections.

The simplicity of the Newtonian templates and moreover
their dependence on a small number of parameters has forc
people to develop some tricks to increase their detectability
Schutz@10# especially has proposed to truncate the Newton
ian templates at some frequency where the post-Newtonia
effects start growing large. His argument was that up to this
frequency limit a Newtonian template could very accurately
match a true signal, while it is not fair to call the Newtonian
templates ‘‘inadequate’’ on grounds that they perform badly
through the whole range of frequencies where the detector
are sensitive.

Hence, we investigated this idea by computing the FF
obtained by a truncated Newtonian family as a function of
the truncation frequency. To be more specific, we have com
puted numerically the function
FF~ f trunc!5 max
DtC ,D~M25/3!

U E
0

f trunc
d f@ f27/3/Sn~ f !#e

i @c i
sign

~ f !2c0
templ

~ f !#U
AF E

0

f trunc
d f@ f27/3/Sn~ f !#GF E

0

`

d f@ f27/3/Sn~ f !#G , ~6!
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FIG. 1. This plot shows the performance of a
truncated Newtonian family of templates on de-
tecting a post1.5-Newtonian signal~solid lines!, or
a post2-Newtonian signal~dashed lines! as a
function of the uppermost frequencyf trunc of the
templates. The top pair of lines corresponds to a
signal from a 10M(,1.4M( BH-NS binary with
both bodies maximally rotating (Si5mi

2), and
both spins and orbital angular momentum
aligned. The bottom lines correspond to an analo-
gous 1.4M(,1.4M( NS-NS binary. The small
hump in all cases indicates a slight, but not satis-
factory, improvement on the performance of the
truncated templates over the plain ones.
at

f
-
,
s

-

p
-

e

a

t

which arises from Eq.~4! if we omit the modulational factors
AM and PM and setf trunc as the uppermost frequenc
present in the Newtonian templates. In Fig. 1, the dep
dence ofFF( f trunc) on f trunc, both for a post1.5-Newtonian
( i51.5) and a post2-Newtonian signal (i52) from two typi-
cal binaries, is depicted. It is clear that although one m
gain somewhat higher FF~higher signal-to-noise ratio! by
cutting the cross correlation of the Newtonian templates
the signal at some frequencyf trunc, this method is not very
effective since a significant part of the whole signal is th
lost by reducingf trunc to avoid the post-Newtonian behavio
of the signal. The maximum possible FF achieved by t
method is only slightly higher than the FF obtained with t
nontruncated Newtonian templates. One more time the N
tonian family of templates has failed to work as a ‘‘good
family of search templates; therefore, other post-Newton
templates should be more seriously considered as pos
candidates for search templates and be studied in de
Even so, Schutz’s idea might prove helpful for whatev
post-Newtonian templates one chooses, and deserves fu
investigation.

IV. THE METHOD OF CONSTRUCTING A FAMILY
OF SEARCH TEMPLATES

Sathyaprakash and Dhurandhar@5# have presented an a
gorithm for constructing a lattice of search templates tha
capable of detecting any signal, of a certain minimal sign
to-noise ratio, that comes from a binary, the parameter
which lay within some range. However, their analysis is
stricted to Newtonian signals and Newtonian templates,
to detectors with white noise. According to previous disc
sions their results do not reflect a realistic situation, a
therefore, it should be reexamined. First, we will descr
their algorithm and their result and then we will extend it
the more realistic case of a post2-Newtonian signal and a
post1.5-Newtonian family of templates, and draw our concl
sions. Their work will be translated here in the language
FF which, in our opinion, is simpler and has a more dir
physical interpretation than the correlation function they h
used.

The Newtonian waveforms depend on just three para
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eterstC , fC , andM as one can verify by a quick look at
Eqs.~3!. The time of coalescencetC can be handled directly
at the stage of numerical cross correlation, and the phase
coalescencefC enters trivially in the waveform and only
two values of it need to be considered@8#. Therefore, the
problem of constructing a lattice of Newtonian templates to
search for Newtonian signals transforms to the problem o
filling the interval of chirp masses that correspond to poten
tially detectable signals, with a discrete set of chirp masses
so that for any signal represented by some fixed chirp mas
within that interval there will be at least one member of the
set of chirp masses that its corresponding Newtonian wave
form produces a FF~by maximizing the relevant quantity
overDtC , the only then free parameter to adjust! above, say,
0.9. The procedure to construct such a discrete set of chir
masses is the following: One starts with some arbitrary New
tonian template with a fixed chirp massMn ~see Fig. 2!
within the interval of interest and computes the dependenc
of FF onD(M25/3) by maximizing the quantity appearing
on the right-hand side of Eq.~4! overDtC , then the only free
parameter. Notice that now the roles of the signal and the

FIG. 2. The method used by Sathyaprakash and Dhurandhar@7#
to estimate the number of Newtonian templates needed to detect
Newtonian signal with maximum accepted signal-to-noise reduction
equal to 0.9: One keeps the chirp massMi of a template fixed and
varies the chirp massM of the signal until the corresponding FF
drops to 0.9. This determines the range of detectability for tha
specific template.
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FIG. 3. This is the potentially detectable re-
gion of the parameter space, or in other words
the space of interest. Here we have assumed th
the maximum possible mass included in the bi-
nary is 30M( and the minimum one is 0.5M( .
The bottom boundary corresponds tom15m2;
any point below thism15m2 line corresponds to
unphysical masses.
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template are interchanged since the template is assu
fixed and one varies the parameters of the signal trying
achieve the best fitting. Although what we here call FF do
not coincide with the initial definition of FF@D(M25/3) is
assumed fixed, the maximization has been taken over
signal parametertC# we will insist on calling this so, in order
not to cause any confusion by introducing many new qu
tities that all measure the same thing: the best poss
matching between template waveforms and signal wa
forms in various cases. In every case the assumptions
make will be clearly exposed.

The range of chirp masses aroundMn that produces FF’s
above 0.9 is therange of detectabilityfor this template.
When FF drops below the 0.9 level then one should fi
another template, characterized byMn21 or Mn11 , that
produces FF’s above 0.9 for chirp masses outside the ra
of detectability of the first template. Proceeding this wa
one could cover the whole set of signal waveforms, that
in principle detectable, with a discrete set of templates t
produce FF>0.9 for any Newtonian signal coming from
binary with chirp mass within that range.

Sathyaprakash and Dhurandhar found that for Newton
signals from binaries with masses within the ran
@0.5M(,30M(# one needs as many as 2450 Newtonian te
plates for detectors with white noise and lower frequen
assumed 100 Hz.~The number includes the factor of 2
which arises from the two independent values we need
the phase at coalescence for every value ofM25/3.) Cross
correlating a given data stream with such a number of te
plates in real time is well within the present computers’ c
pabilities. But this optimistic message should be revised a
considering the more realistic waveforms that are now av
able, and a more realistic detector noise.

Extending that method of constructing template famili
to post-Newtonian signals and templates is far more com
cated since the corresponding waveforms no longer dep
on only one parameter~aside fromtC andfC). The param-
eter space that one has to fill with carefully spaced templa
is now two dimensional~if one considers template wave
forms with no spin terms as we do!. There was some hope
after Sathyaprakash’s work@11# that the effective dimension
ality of the parameter space is still one. He showed, by us
med
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post1-Newtonian templates and signals that there is som
evidence of strong correlation between the chirp mass p
rameter and the post1-Newtonian parameter term; that is, by
cleverly choosing some combination of these two param
eters, one could reformulate the problem to a one
dimensional problem like the Newtonian one, with the chirp
mass being replaced by this new parameter. Unfortunatel
that was due to the assumption of white noise and the inte
gration limits that were used; see@15#. Also, the irregularity
of the parameter space, that was ignored in@11#, turns out to
be a serious issue as we shall see later.

In this paper we will assume that the spectral densit
of noise is given in Eq.~2b!, the signals are described
by the post2-Newtonian waveforms given in Eqs.~3!
either with maximal b and s terms @after substi-
tuting S15m1

2 ,S25m2
2 ,Ŝ15Ŝ25L̂ in Eqs. ~3e, 3f! one

gets bmax5(113/12)2(19/3)(m1m2 /M
2) and smax5

(79/8)(m1m2 /M
2)# or with vanishing spin terms, and the

templates are described by post1.5-Newtonian waveforms
with b50 since they seem to be superior among all othe
two-parameter templates~see Table I!.

The steps one should follow to construct a discrete famil
of post1.5-Newtonian templates to be used as search tem
plates are the following.~1! One has to choose the two-
dimensional parameter space to place his or her templat
and signals on and then define its boundaries. We have ch
sen to use a power of the chirp mass, namelyM25/3, and a
power of the total mass of the binary, namelyM1/3, as our
two parameters and draw the boundaries in such a way th
all masses in the interval@0.5M(,30M(# are included. Our
choice for the mass parameters makes it easy to rewrite t
post-Newtonian terms in terms of them and in parallel i
enables us to transform easily any combination of masses
the corresponding pair of the two mass parameters and vi
versa. The price one has to pay then is an irregular region
the parameter space for all binaries under consideration~cf.
Fig. 3!, that we shall callspace of interest. ~2! One should
find for each single signal point — practically, for several
signal points — which lies in this space of interest, some
template among the continuously parametrized chosen fam
ily of templates that produces the highest possible FF valu
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FIG. 4. The extension of Sathyaprakash-Dhurandhar method@5# to post-Newtonian signals and templates. The parameter space, wh
templates lie, is no more one-dimensional. Post-Newtonian templates depend not only onM25/3 but on other functions of the masses as well.
Therefore, instead of a series of bumps as in Fig. 2, one has now a large number of iso-FF contours covering completely the who
of interest. If signals and templates are of different post-Newtonian order and/or post-Newtonian spin terms are included in the sign
not in the templates, then each signal-template pair that is producing the maximum FF among all other nearby signals~i.e., a2a8),
corresponds to different mass parameters for the signal and the template; and the maximum FF value, then, is not unity but somewh
since the matching can not be perfect. The grey region corresponds to signals that are not expected to be detectable; that is, sign
outside the space of interest.
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One does not have the luxury to do that by identifying th
corresponding template with the signal since these t
waveforms no longer have the same post-Newtonian for
Then one should explore how FF changes as one varies
signal’s mass parameters, but keep the template fixed; h
the quantity on the right-hand side of Eq.~4!, from which FF
is determined, has to get maximized over onlyDtC , as with
the Newtonian case of@5#. Thus, one constructs contours o
constant FF around each signal point; we shall call the
iso-FF contours~see @16#!. The space inside a 0.9-iso-FF
contour is analogous to the region of detectability we defin
earlier in this section for the one-dimensional case; in oth
words, it represents all signals for which the correspondi
fixed template reduces the signal-to-noise ratio at most
10%. ~3! Finally, the space of interest should be complete
covered with such 0.9-iso-FF contours, but they should
distributed as sparsely as possible so as to keep the num
of templates low.

Now, counting the number of templates that are needed
not as easy as it was for the one-dimensional case. One
no longer estimate this number by dividing the area of t
space of interest by the area of a 0.9-iso-FF contour beca
~1! some of the contours extend out of the boundaries of
space of interest,~2! a significant part of the contours’ area i
shared by two or more neighboring contours, due to th
irregular shapes, and~3! the contours’ sizes and shapes a
not fixed but vary greatly with location~for a pictorial dem-
onstration of all these counting problems see Fig. 4!. Taking
all these intricacies into account, we have attempted to giv
rough estimate of the number of templates one would need
cover the whole space of interest with these 0.9-iso-FF c
tours.

More specifically, we have chosen several points in t
space of interest, which correspond to some hypothetical s
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nals, and computed the FF for each one assuming contin
ously varying parameters of the post1.5-Newtonian template
family. After fixing these best-matching templates we com
puted the FF output around the central signal point. We dre
the corresponding 0.9-iso-FF contours and studied the
shape and size. It should be noted that the template used
produce each 0.9-iso-FF contour does not necessarily l
within the boundaries of the contour since the waveform
used for the templates are quite different from the waveform
used for the signals; cf. Fig. 4.

In Fig. 5 we have plotted the shapes and sizes of some
these 0.9-iso-FF’s for various locations in the space of inter
est. For each 0.9-iso-FF there exists a unique template wav
form that produces FF>0.9 for all signals inside this 0.9-
iso-FF contour. As these few contour plots indicate, the 0.9
iso-FF are in general very thin along theM25/3 parameter
with an average size of;231024M(

25/3, and quite elon-
gated along theM1/3 parameter. This was to be expected
since the total mass parameter appears only in the pos
Newtonian terms of a waveform; therefore, in order to
change FF as much as tiny shifts in the chirp mass paramet
do, a much larger shift in the total mass parameter is re
quired. The actual horizontal size of the 0.9-iso-FF does no
depend greatly on the horizontal position of the template~the
M1/3 value of the central signal!, but it depends greatly on
the value of the spin termsb and s assumed for the
post2-Newtonian waveforms of the signals. For vanishing
spins (b5s50) the corresponding 0.9-iso-FF contours are
narrower ~along M1/3) than the ones with maximal spin
terms (b,s: maximal!. This seemingly paradoxical effect is
due to the opposite signs between the spin terms and the r
post1.5- and post2-Newtonian terms, that are not related to
spin, respectively. Whenb and s terms are maximal they
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FIG. 5. This is again a plot of the parameter
space showing the 0.9-iso-FF contours aroun
several points residing inside the space of inter
est. Here, the templates are assumed to be
post1.5-Newtonian order withb50, while the
signals are of post2-Newtonian order withb50,
s50. The iso-FF contours have quite different
sizes along theM1/3 axis but not much different
sizes along theM25/3 axis. The method we have
used to plot these contour plots is described i
detail in Sec. IV.
t
the
to

-

f
ss
e

nd
of
es
le

of

be
s

e
so

t
h
t
,
e

reduce the magnitude of both these post-Newtonian ter
and thus they help post1.5-Newtonian templates imitate th
corresponding signal. In Fig. 6 we have plotted the num
of contours that fit along the width~alongM1/3) of the space
of interest, versus the chirp mass parameter,M25/3. As one
can see, much fewer templates are needed in the cas
maximum spins that are aligned with the orbital angular m

FIG. 6. These diagrams show a crude estimation of the num
of contours needed to fill up the parameter space along its w
~alongM1/3) as a function ofM25/3. The solid lines correspond to
post2-Newtonian signals with vanishing spin terms (b5s50),
while the dashed lines correspond to post2-Newtonian signals with
maximal spin terms (b,s: maximal!. The templates we have use
are assumed to be of post1.5-Newtonian order withb50, as every-
where in our analysis.~a! For the case ofmmin50.5M( , ~b! for
mmin51.0M( . These plots have been used to compute the to
number of templates, quoted in Table II.
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mentum, than in the case of vanishing spins. From that plo
one can deduce the average number of contours, thereby
average number of templates, that should be placed next
each other to fill the space of interest along its width. We
found that number to be approximately 4.8 for the nonspin
ning binary case and 1.5 for the maximally spinning binary
case. Now, by multiplying that number by the number o
contours needed to cover the whole range of the chirp ma
parameter we obtain the total number of templates on
should use to pick up any signal with no more than 10%
reduction in its signal-to-noise ratio. Finally, the total num-
ber of templates has been augmented by 20%~see@17#! to
take into account the overlap between adjacent contours, a
by a factor of 2 because of the two independent values
fC that need to be considered for each one of the templat
we mentioned right above. Our results are presented in Tab
II.

The number of templates needed for a different space
interest is also shown in Table II. Namely, for binaries, the
masses of which lie within the interval@1M(,30M(#. Part
of the counting process that was described above had to
repeated once again for this case, since all three difficultie
in connection with counting templates make it impossible to
scale the number of templates with the limiting masses of th
space of interest. However, the fact that the 0.9-iso-FF are
thin vertically suggests the following rough scaling law:

F}k~~M25/3!max2~M25/3!min!.k~M25/3!max}kmmin
25/3,

~7!

where the proportionality factork, which denotes the aver-
age number of contours along the horizontal direction, is no
a constant but depends on the limiting masses in a muc
softer way though; cf. Fig. 6. The maximum mass limit is no
very crucial in determining the number of templates, which
on the other hand, cannot be extremely high since then th
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frequency corresponding to the last stable orbit would be
low that only a few cycles of the signal would enter th
LIGO-VIRGO band.

V. COMPUTING POWER

In the actual data process one has to transform the r
data from the time domain to the frequency domain, take t
product between the data and all preconstructed templates

TABLE II. This table presents the total number of
post1.5-Newtonian templates withb50 that a template family
should contain in order to produce a FF>0.9 for any post2-
Newtonian signal from a binary with any combination of masse
within the interval @0.5M(,30M(# or within the interval @1
M(,30M(#. Signals with vanishing or maximal spin parameters a
assumed. Any spin-induced precessional effects have been
glected since the spins — whenever they are present — have b
considered to be aligned with respect to the binary’s orbital angu
momentum. The numbers of templates have been computed by
ing the method described in Sec. IV. Also, we are showing th
computing power that each case demands. The numbers, quo
here, for the computing power have been based on Eq.~9! assuming
f u5300 Hz.

Range of masses No. of templates Gflops
in M(

P2-N signal: @0.5,30# 231 000 12.2
(b5s50) @1,30# 42 000 2.1

P2-N signal: @0.5,30# 73 000 3.9
(b,s maximal) @1,30# 13 300 0.7
so
e

eal
he
—

after having weighted the latter byf 7/3/Sn( f ) — and finally
transform these products back to the time domain~see Fig.
7!. This whole process requires, forF templates,

Nflop.3n~ log2N12F1F log2n!.3nF~21 log2n!, ~8!

whereN is the number of elements the data stretch consis
of, andn is the number of elements kept in the frequenc
domain@since very high frequencies of the signal are highl
suppressed by the weighting functionf27/3/Sn( f ), only a
narrow range of frequencies should be used#. Obviously
n5N(2 f u / f s), wheref s is the sampling rate of the data and
f u is the uppermost frequency kept in the frequency domai
Now, there should be some overlap between success

real data stretches in order to avoid problems arising fro
circular correlation; see@10#. Let us call this overlapping
fractionx. This overlapxN should be as long as the longes
expected signal. If one wants to keep up with the incomin
data, the number of floating operations quoted in Eq.~8!
should be performed in a time periodT5N(12x)/ f s . Thus
the computing power one needs is related to the number
templates through

R.
1.8

12x S ln2 2 f utmaxx
12D S F

106D S f u
300HzDGflops, ~9!

wheretmax is the time duration of the longest template in the
template family. One, then, has to compute the optimal valu
for x and replace it in Eq.~9! in order to find the required
computing power. The optimal value forx is of the order of
0.05 for f u5300 Hz andtmax.5.53103sec~this is the time
a binary withm15m250.5M( needs to sweep upwards in
frequency from 10 Hz tof u). ~One should note that the op-
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FIG. 7. This is a schematic diagram present
ing the whole data analysis process at the stage
detection. First, a data stretch consisting ofN real
numbers gets fast Fourier transformed. But sinc
all frequencies above;300 Hz are mainly com-
ing from noise, the corresponding data could be
disregarded. That reduces the amount of floatin
operations from 3Nlog2N to 3nlog2N, wheren is
the number of data kept in the frequency domain
Then, thesen complex numbers should be multi-
plied with all, sayF, preconstructed weighted
templates. That means 6Fn floating point opera-
tions. Finally, these products should be fast Fou
rier transformed to obtain the correlation for each
template. This final process demands 3Fnlog2n
floating operations.
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timal value ofx does not depend crucially on the assum
values of f u and tmax.) The computing power quoted in
Table II is based on Eq.~9! with assumed value forf u , 300
Hz. These numbers are remarkably close to the numbers
tained by Owen@18# by a somewhat different method.

VI. SPIN-INDUCED PRECESSIONAL EFFECTS INCLUDED

Up to this point we have assumed that even if spins
nonvanishing they are aligned with the binary’s orbital a
gular momentum to make sure that no precession of the
bital plane occurs, and thus, the gravitational signal wa
forms are simply described by the post-Newtoni
waveforms that are given in Eqs.~3!. Now, if we consider
arbitrary angles between spins and orbital angular mom
tum the signal’s parameter space becomes much richer
the two-dimensional post1.5-Newtonian template family used
in Sec. IV can hardly mimicin some casesthe true preces-
sionally modulated signal and produce high FF values. T
larger the misalignment angles the more difficult it is to fin
a post1.5-Newtonian template~with b50) that adequately
mimics the true signal~cf. Ref.@9#!. Also other parameters o
the binary affect the complexity of the signal and acco
ingly the adequacy of such post1.5-Newtonian templates.
Apart from the geometry of the binary what is actually d
rectly responsible for the deep modulation of the sign
waveform is the opening anglelL for the precession ofL̂
~the unit vector along the orbital angular momentum of t
binary! and not the spin-orbital angular momentum ang
S&L , which was used in Ref.@9# as the main parameter con
nected with spins, to demonstrate the degradation of the
fectiveness of various template families as the precessio
effects get more and more pronounced. The opening a
lL is given by

coslL5
11gcosf

A11g212gcosf
, ~10!

whereg5S/L depends on the masses involved and the
stantaneous frequency, cosf5L̂•Ŝ, andS,Ŝ are the magni-
tude of the total spinuS11S2u and the unit vector along the
total spin (S11S2)/uS11S2u, respectively. In the following
we will assume that both spins have magnitudeSi5Mi

2 and
they always remain parallel to each other (Ŝ15Ŝ2); essen-
tially one then has to take into account a single spin vec
These assumptions make the situation more dramatic
maximizing the spin-induced precessional effects and on
other hand they simplify our analysis since the precessio
motion for the case of one spin~simple precession! is known
analytically~see Ref.@12#!, and can be easily implemented i
our computer code for calculating FF.~The assumption tha
S1iS2 is actually wrong, since each spin traces a differe
precession path and the angle between the two spins cha
continuously, but the precessional behavior one gets un
this assumption still resembles quite well the true precess
as was shown in@12#.!

The larger the opening anglelL , the larger the portion of
the geometries defining the orientation and location of
binary with respect to the detector, which lead to low F
values because of deep amplitude modulation and ma
ed
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because of deep phase modulation of the waves. Of co
the plain post1.5-Newtonian template family is not ‘‘flex-
ible’’ enough to mimic this complicated modulated sign
waveforms. If signals from binaries with considerable ope
ing angles — which carry quite a lot of information an
could ultimately serve as excellent tests of general relativ
— are not to be missed, then more complicated templa
should be used. This would magnify the computational ta
How much is the issue addressed in the following analys

Since most of the signal-to-noise ratio is picked up a
frequency lower than the frequency at which the detect
are more sensitive~see Fig. 2 of Ref.@2#!, more specifically,
at;50 Hz for the advanced LIGO detectors, we have cho
to use the opening angle value at 50 Hz~henceforth denoted
lL
(50)) as the main parameter to measure the intensity of

precessional effects. In Fig. 8 we are showing a density p
of lL

(50) in grey scale~black represents lowest angle! cover-
ing the whole space of interest for some fixedf angle. At
least forf angles up to 90o, lL

(50) is a monotonically increas-
ing function off, therefore the pattern showing up in th
density plot is more or less independent off; only the maxi-
mum value oflL

(50) depends onf. One can see clearly tha
the region of the space of interest that might cause the gr
est problems with respect to spin-induced precessional
fects is the upper right corner of it; that is, the region of t
binaries with the highest mass ratios. That means that
0.9-iso-FF contours~analyzed in Sec. IV for nonmodulate
signals!, when drawn around these regions of potentia
deep-modulated signals, are expected to contain a very
percentage of realistic modulated signals for which the c
responding fixed post1.5-Newtonian template produces F
values above 0.9.

To get a feeling for the fraction of extremely spinnin
binaries for which the post1.5-Newtonian template family
proves adequate~producing FF values above 0.9! we have
compiled in Fig. 9 a large amount of information concernin
the distribution of FF for variouslL

(50) angles as one varies
the geometry of the binary with respect to the detecto
arms. We have picked up a few points inside one of
0.9-iso-FF contours for nonmodulated post2-Newtonian sig-
nals with maximalb ands terms, andapproximatelyesti-
mated the percentage of binary geometries that are produ
FF>0.9 for any possiblelL

(50) . This estimation was based o
the following approximate relation~for a proof see Appendix
A!:

FF~Q,lL
~50! ;geometry!.FF~Q,lL

~50! ;no precession!

3FF~Q* ,lL
~50! ;geometry! ,

~11!

whereQ* andQ are the ‘‘central point’’ — the one produc
ing the highest FF if precession is absent — and an arbitr
point inside the 0.9-iso-FF contour, respectively. This re
tion simply states that one can separate the drop of sig
to-noise ratio due to spin-induced precession alone@right-
most term in Eq.~11!# from the one due to nonoptima
combination of parameters of the nonmodulated signal a
the template@left term on the right-hand side of Eq.~11!#.
The term ‘‘geometry’’ denotes some arbitrary fixed ge
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FIG. 8. This density plot diagram shows
which regions of the parameter space are mos
affected by spin-induced precession effects
~lighter regions!. What has been actually plotted
here in grey scale, is thelL

(50) value for all pos-
sible combinations of masses within
@0.5M(,30M(#. The misalignment angle be-
tween orbital angular momentum and spins has
been assumed here to be 90o, but sincelL

(50) is a
monotonic function of L&S, at least for L&S
<90o, this diagram gives a more or less correct
distribution of lL

(50) for any moderate misalign-
ment angle; however the maximumlL

(50) angle
depends onL&S. ~The dotted form of the upper
part of the diagram is only due to the number of
points that were chosen to be depicted.!
d
ct
e

metrical configuration of the binary and the detector. T
term FF(Q,lL

(50) ;no precession) has no reference to geo
etry since the output of FF is independent of the binar
detector geometry when there is no precession. When co
puting this FF though, one should use for the pos
Newtonian phase terms of the signal, the sameb and s
terms that are assumed for the other two FF termswith pre-
cession.

One can see clearly in Fig. 9 that forlL
(50)*25o FF is

above 0.9 only for 50% of the binaries at the central poin
he
m-
y-
m-
t-

t,

and even forlL
(50),25o the contours that contain at least

somebinaries, for which the fixed post1.5-Newtonian tem-
plate produces FF>0.9, shrink considerably~e.g., for
lL
(50)525o there is almost no binary producing FF>0.9 out-

side the 0.925-iso-FF contour!. The consequence of this is
twofold: ~1! One has to increase the number of templates an
reduce their spacing in order to have some chances to dete
a signal from a moderately precessing binary. This increas
depends on the maximumlL

(50) value one considers realistic
and insists on searching for such a binary.~2! For lL

(50)
s

s

d

FIG. 9. By compiling the values of the FF for
all possible geometrical configurations, and using
Eq. ~11! for severallL

(50) , we obtained the per-
centages of precessing binaries with masse
around the masses of the central point
(10M(,1.4M() and opening anglelL

(50) that pro-
duce a FF above 0.9.~The central point of the
diagram represents theQ* point of our discus-
sion in Appendix A while any other point around
could be thought of as theQ point of our analy-
sis.! The grey histograms show the percentage
when we use the simple post1.5-Newtonian tem-
plates with those fixedM25/3 andM1/3 values
that produce the highest possible FF value
~0.998! for the central point’s signal when preces-
sion is not present. The black histograms arise
when the more complicated family of templates
that allow for an oscillating term in their phase
are used; see Eq.~12!. The contours shown at the
main diagram are the iso-FF contours discusse
in Sec. IV that refer to signals from nonprecess-
ing binaries; here, they serve as the multiplicative
factor FF(Q,lL

(50) ;no precession) of Eq.~11!.
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above 50o, no matter how densely one fills the space
interest with post1.5-Newtonian templates, they are prac
cally inadequate to detect such precessing binaries.

Possible improvement could offer a more advanced fa
ily of templates that might be able to mimic the spin-induc
modulation of the waves. Having chosen properly the para
eters of the post1.5-Newtonian template, one obtains a tot
phase in the expression from which one computes
@Dc( f ) plus the phase evolution which is hidden in the P
term; see Eq.~4!# that looks like an oscillatory phase, due
precession, superimposed on an almost constant, throug
the most sensitive frequency band of the detector, ph
even the secular evolution of the precessionally modula
phase, that might arise in some special geometric config
tions~cf. @9#!, could disappear by properly adjusting the te
plate’s parameters. Therefore, the simplest extension of
post1.5-Newtonian template family one could think of is
family of post1.5-Newtonian templates with an additional o
cillatory phase. More specifically, since the precession an
a( f ) ~see@9,12#! evolves} f22/3 or f21, depending on the
relative sizes ofL andS, a good choice for the frequenc
dependence of the additional oscillatory phase would be
ther f22/3 or f21. We have chosen the one that is} f22/3

since only ifS is of about the same order asL the preces-
sional effects are noticeable. The templates that we have
sen to use have the same form as the post1.5-Newtonian tem-
plates given in Eqs.~3!, with an extra oscillatory term adde
on its phasec1.5

(b50)( f ):

c1.5
new~ f !5c1.5

~b50!~ f !1Ccos~d1Bf22/3!. ~12!

The precise frequency dependence does not seem to be
cial since only a small number of precession cycles oc
within the sensitive range of the detector; we have verifi
this by testing the behavior of bothf22/3 and f21 frequency
terms in the additional phase.

These new templates introduce three n
parameters C,d,B, besides the old one
DtC ,DfC ,D(M25/3),D(M1/3), thus raising substantially
the total number of templates. On the other hand they gre
improve the FF values. The code we have used to com
the FF’s does not perform a simultaneous maximization
the quantity appearing in Eq.~4! over all six parameters
@maximization over one of them,fC , has already been
achieved by replacing the quantity to be maximized with
absolute value; cf. Eq.~4!#. Rather it computes the maximum
over the old parameters first and then over the new ones;
is justified by the nearly independent contribution of the
two sets of parameters on FF~see Appendix B!. In Fig. 9 the
FF values obtained~black histograms! when these new tem
plates are used are compared with the old FF values~grey
histograms!, for variouslL

(50) values.
Unfortunately the inclusion of three more parameters

the templates’ waveforms will skyrocket the number of te
plates since each old template will then split in roughly 16

new templates~see Appendix B!. That leads to a completel
unrealistic total number of templates with respect to comp
ing power — at least for the next coming decade or
Nevertheless, it offers a conceivable way to expand the
tectability of our templates to become able to search for s
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precessing binaries in the future. These new templates cou
also be used at a more detailed afterdetection stage for e
tracting all possible spin information and thus improving the
extraction of other parameters that are nonrelated to spin@2#.

VII. CONCLUSIONS

This paper addresses the question of the number of tem
plates needed for detection as well as the form the templat
should have and the method to construct them from the ou
set, assuming, for first time, a more or less realistic signa
waveform from a coalescing binary~post2-Newtonian! and a
realistic noisy detector~the advanced LIGO one!. By using
FF ~the fitting factor introduced in@9#! not as a measure of
adequateness of a template family but as a tool to set th
spacing between neighboring templates, we obtained a num
ber of templates almost two orders of magnitude higher tha
the number estimated in Ref.@5# which was based on New-
tonian signals, Newtonian templates, and detectors wit
white noise.

Our analysis suggests that neither the Newtonian famil
of templates nor any other family of templates with as few
parameters as the Newtonian one is adequate for detecti
purposes. At least one more mass parameter is necessary
the candidate family of templates. This has been verifie
independently by Owen@18# for the restricted case of
post1-Newtonian signals and templates.

Finally, we have analyzed the role of spins in the numbe
of templates. If one ignores the spin-induced precession o
the binary then the spin terms in the higher post-Newtonia
order terms have a moderate impact on the total number
parameters. However, if one allows for precession effect
then not only the number of templates has to raise conside
ably but even then a great number of signals might remai
undetectable due to inadequate matching between the simp
templates and the highly precessionally modulated signa
Essential improvement might offer more complicated tem
plates, like the ones introduced in Eq.~12!, but then the price
is a formidable number of templates, well beyond the capa
bilities of the near-future computers. These new complicate
templates could be used after detection to improve th
signal-to-noise ratio and offer some information about the
spins, which then could be used to extract more accurate
other astrophysical parameters like the masses@2#.

This work is a first step in expanding the post-Newtonian
templates so as to include ‘‘corrections’’ that mimic the true
precessionally modulated gravitational waves. Further inves
tigation has to be done to enable this rich structure, due t
precession, be revealed.
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APPENDIX A: DECOMPOSITION OF FF INTO
A NONOSCILLATING-PHASE PART AND AN

OSCILLATING-PHASE PART

Consider the following version of FF:
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FF~Q,lL
~50! ;geometry!5max

DtC

U E
0

`

d f@ f27/3/Sn~ f !#e
iDc~ f !AM3PMU

AF E
0

`

d f@ f27/3/Sn~ f !#GF E
0

`

d f@ f27/3/Sn~ f !#~AM !2G . ~A1!
t

t
f l,
The only thing that makes this expression different from
usual formula for FF@cf. Eq. ~4!# is that the quantity on the
right-hand side is maximized over only one parame
DtC . Equation ~A1! gives the FF value for a family o
post1.5-Newtonian templates located at a fixed locationQ*
on the@M25/3,M1/3# space — thus, having onlytC as a free
parameter to adjust — and a post2-Newtonian signal, located
at positionQ on the @M25/3,M1/3# space, coming from a
precessing binary with a specific geometry relative to
detector’s arms and a fixed opening angle at 50 Hz,lL

(50) .
Now, assume that all secular evolution of PM has be

transferred intoDc( f ) term, and thus, PM is just a purel
oscillating phase term. After the maximization overDtC ,
Dc( f ) acquires aø-like shape~or aù-like one as in Fig.
10! with its flat part centered around 50 Hz. The reason
that f27/3/Sn( f ) is maximum at about 50 Hz~for the ad-
vanced LIGO detector!, thus the phase term should be ke
he

er,

the

en
y

is

pt

nearly constant near that frequency. The larger the distance
betweenQ and Q* , the narrower the opening ofø ~or
ù), since only atQ* the differences between the template’s
mass parameters and signal’s mass parameters are optima
and, therefore,Dc( f ) has the widest possible flat bottom~or
top!.

One, then, could approximateDc( f ) as

Dc~ f !5H const forf l< f< f u ,

` for f, f l, 50 Hz,

` for f. f u. 50 Hz,
~A2!

wheref l and f u are two frequencies on either side of 50 Hz,
that depend on the location ofQ; more specifically, the
smaller the distance betweenQ andQ* the larger the inter-
val f u2 f l . Hence Eq.~13! simplifies to
FF~Q,lL
~50! ;geometry!.

UE
f l ~Q!

f u~Q!

d f@ f27/3/Sn~ f !#AM3PMU
AF E

0

`

d f@ f27/3/Sn~ f !#GF E
0

`

d f@ f27/3/Sn~ f !#~AM !2G . ~A3!

FIG. 10. This plot shows how the phase dif-
ference between a post2-Newtonian signal from a
precessing binary~shown in the schematic picture
at the bottom of the diagram! and the best-
matching simple post1.5-Newtonian template de-
pends on frequency. One can see clearly its wavy
ù shape that we discussed in Appendix A. This
picture justifies the addition of an extra oscilla-
tory term on the phase of our post1.5-Newtonian
templates; cf. Eq.~12!.
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Now, since the modulation terms PM and AM are oscillating rather fast compared to the rate thatf27/3/Sn( f ) evolves, one
could replace their effect with a constant suppression factor, and rewrite Eq.~A3! as the following:

FF~Q,lL
~50! ;geometry!.

UE
f l ~Q!

f u~Q!

d f@ f27/3/Sn~ f !#3~supr. factor!U
AF E0`d f@ f27/3/Sn~ f !#GF E0`d f@ f27/3/Sn~ f !#~AM !2G

5
* f l ~Q!

f u~Q!
d f@ f27/3/Sn~ f !#

* f l ~Q*
!

f u~Q*
!
d f@ f27/3/Sn~ f !#

U E
f l ~Q*

!

f u~Q*
!

d f@ f27/3/Sn~ f !#3~supr. factor!U
AF E0`d f@ f27/3/Sn~ f !#GF E0`d f@ f27/3/Sn~ f !#~AM !2G

. ~A4!

Remember thatQ* is the location of that special signal that our one-parameter family of templates would match very w
precessional modulation was not present. Therefore,* f l (Q*

)
f u(Q*

)
d f f27/3/Sn( f ) could be replaced by*0

`d f f27/3/Sn( f ). That brings

Eq. ~A4! to the form

FF~Q,lL
~50! ;geometry!.

* f l ~Q!

f u~Q!
d f@ f27/3/Sn~ f !#

*0
`d f@ f27/3/Sn~ f !#

U E
f l ~Q*

!

f u~Q*
!

d f@ f27/3/Sn~ f !#AM3PMU
AF E0`d f@ f27/3/Sn~ f !#GF E0`d f@ f27/3/Sn~ f !#~AM !2G

, ~A5!
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which is just the same with Eq.~11!, apart from small dif-
ferences that arise from approximatingDc( f ) by a constant
within the interval@ f l , f u# and` outside this interval.

In the following, we will give an example that demon-
strates the accuracy of Eq.~11!. For a post2-Newtonian sig-
nal coming from a binary withm1510M( , m251.4M( ,
and LS530o, which is located at the position
shown in Fig. 10, the best matching post1.5-Newtonian
template is the one whose parameters are differing from t
signal’s parameters byDtc523.1 msec, D(M25/3)5
9.00231024M(

25/3, D(M1/3)50.7945M(
1/3. The FF pro-

duced then is FF(Q* ,lL
(50) ;geometry)50.9490. On the

other hand, if one uses templates with the sam
M25/3,M1/3 as before to match another signal nearbyQ* ,
sayQ with massesm1510.255 20M( , m251.374 26M( ,
and with the samelL

(50) as forQ* the computed FF values
are FF(Q,lL

(50) ;geometry)50.8884, if the binary is precess-
ing with the samelL

(50) as before, and FF(Q,lL
(50) ;no pre-

cession)50.9218, if the binary is not precessing, respec
tively. The approximate equation~11! is accurate to the level
of 1.5%.

APPENDIX B: TEMPLATES WITH AN EXTRA
OSCILLATORY TERM IN THEIR PHASE

During the orbital inspiral of a binary, if at least one o
the bodies is rapidly rotating, then the general relativist
he

e

-

f
ic

spin-orbit and spin-spin coupling cause the binary’s orbita
plane to precess. This precession leads to a modulation
gravitational waves both in amplitude and in phase. As wa
shown in@9# the phase modulation has more dramatic con
sequences than the amplitude modulation. Here, we are f
cusing our interest on trying to improve the matching be
tween a signal from a precessing binary and a
post1.5-Newtonian family of templates by adding in the tem-
plates’ phase an extra term that resembles the true modula
phase of a signal. The modulated phase could happen
grow secularly, but that could in general get fixed quite wel
by properly adjusting the templates parameters. What r
mains then, is a complicated oscillation in phase that evolve
at the same rate as the precession itself; cf. Fig. 10. Ther
fore, a natural extra term we could add to the templates
phase is a simple sinusoidal term that has the same frequen
dependence as precession. Of course, the actual oscillat
phase term of a real signal is much more complicated than
simplistic sinusoidal term, as one can see from Fig. 10. Nev
ertheless, a sinusoidal term, like the one given in Eq.~12!,
with the appropriate triad of amplitude (C), initial phase
(d), and ‘‘wave number’’ (B), can greatly enhance the
matching ability of a template.

In order to get a feeling of the necessary spacing betwee
templates in the@C,d,B# parameter space we have explored
the drop of correlation between simple sinusoidal phas
terms as a function of parameter mismatching. More specifi
cally, we have computed numerically the function
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c~a1 ,a2 ,a3!5

U E
210p

10p

dx exp„i $cos~x!2~11a1!cos@a21~11a3!x#%…U
20p

. ~B1!

FIG. 11. Here we have plotted the contour
c(a1 ,a2 ,a3)50.990 at variousa3 values, where
c(a1 ,a2 ,a3) models the correlation between the
new expanded templates and the signal from
precessing binary; see Eq.~B1!. The sizes of the
contours indicate that in order to cover the whol
@a1 ,a2 ,a3# parameter space with as few tem
plates as possible one should choose templa
spaced by roughly@0.1,0.1,0.005#, respectively.
r

t

les
g

we

o

ig-
e

Apart from an amplitude term this function has the form
FF before the maximization over the three new parameter
the oscillatory term has been carried out. Here, the signa
assumed to have a simple sinusoidal phase given
csignal(x)5cos(x), while the template is assumed to have
similar phase form with slightly different amplitude, initia
phase, and wave number. The integration over ten cycle
justified from the fact that ten is roughly the number of p
cessions occur in the range of frequencies over which
advanced LIGO detectors have high sensitivity. From Fig.
it is clear that in order to achieve sufficiently good pha
matching@producingc(a1 ,a2 ,a3)>0.99# one should choose
templates spaced by roughly@0.1,0.1,0.005# in the
@a1 ,a2 ,a3# parameter space.

Now, going back to the somewhat different phase te
Ccos(d1B/ f 2/3), that was introduced in Eq.~12! as an im-
provement of the post1.5-Newtonian templates, these num
bers could be interpreted as follows:~i! The values ofC
should be spaced by about 0.1; that means that we n
of
s of
l is
by
a
l
s is
e-
the
11
se

rm

-

eed

about 30 values ofC to cover all possible amplitudes up to
p. ~ii ! The values ofd should be spaced by about 0.1; tha
means that we need about 60 values ofd to cover all possible
phase displacements up to 2p. ~iii ! Since our example sug-
gests that nearby values ofB should differ by no more than
0.5%, the number ofB one would then need is
. ln(Bmin /Bmax)/ln0.995. The minimum and maximum
value of B, Bmin , and Bmax, respectively, depend on the
range of masses, spin magnitudes, and misalignment ang
between spin and orbital angular momentum. After explorin
the values off 2/3@a( f )2a( f5`)#, wherea( f ) is the pre-
cession angle, for the most extreme parameter values
have inferred that the ratioBmin /Bmax is of the order of 1:20;
therefore one should use.600 individual values ofB.
Hence, every single old template should be split t
30360360032.23106 new templates to make it possible
to improve the correlation between templates and a true s
nal from a precessing binary. The factor 2 comes from th
fact that for large opening angleslL , the orbital precession
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could be such that the modulated phase oscillates with tw
the frequency of precession; see@9#.

One should also keep in mind that there are two or mo
depending on the magnitude oflL , regions in the space of
the binary-detector geometry that are characterized by diff
ice

e,

er-

ent secular evolution of the modulated phase. For eac
these regions, one needs a different combination
DtC ,D(M25/3),D(M1/3) parameters to cancel out the
secularly or nonsecularly evolving phases. That raises
total number of templates to a formidable;1011–1012.
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