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We report on results of computer simulations of spherical resonant-mass gravitational wave antennas inter-
acting with high-frequency radiation from astronomical sources. The antennas were simulated with three-mode
inductive transducers placed on the faces of a truncated icosahedron. Overall, the spheres were modeled with
a sensitivity of about three times the standard quantum limit. The gravitational radiation data used was
generated by three-dimensional numerical computer models of inspiraling and coalescing binary neutron stars
and of the dynamical bar-mode instability of a rapidly rotating star. We calculated energy signal-to-noise ratios
for aluminum spheres of different sizes cooled to 50 mK. We find that by using technology that could be
available in the next several years, spherical antennas can detect coalescing binaries out to slightly over 15
Mpc, the lower limit on the distance required for one event per year. For the rapidly rotating star, we find, for
a particular choice of the radius at centrifugal hangup, spheres are sensitive out to about 2 Mpc. The event rate
is estimated to be about 1 every 10 years at this distance.@S0556-2821~96!04916-8#
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I. INTRODUCTION

The experimental effort to directly detect the space-tim
ripples known as gravitational waves has been going on
35 years, beginning with Weber’s pioneering work in th
early 1960’s @1#. Since then, two main experimental ap
proaches have evolved: cryogenic resonant-mass detec
@2–4# and laser interferometers@5–7#. The sensitivity of both
techniques is sufficient so that unambiguous detection
gravitational waves is expected soon, perhaps within the n
ten years. The work of Taylor and Hulse@8#, showing the
orbital decay of binary pulsar PSR 1913-16 is in agreeme
with general relativity’s prediction for gravitational wave
emission, has added to the anticipation of the first dire
confirmed detection. It appears possible that a new gene
tion of advanced resonant-mass detectors could operate
currently with interferometers already under construction.
this time, understanding possible sources of gravitatio
waves and which experimental technique is best suited
which source of radiation takes on greater importance. W
endeavor to clarify this by numerically computing energ
signal-to-noise ratios for resonant-mass detectors and in
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ferometers interacting with two possible sources of gravi
tional waves.

The best understood source of detectable gravitatio
waves is from inspiraling and coalescing binary neutron st
@9#. The Laser Interferometer Gravitational-Wave Observ
tory ~LIGO! has been designed and optimized to detect th
events at a distance of 200 Mpc after significant interfero
eter improvements@5#. To accomplish this, it has been de
vised to be most sensitive at as low a frequency as poss
(;200 Hz! where the waveform from binary neutron stars
stronger. However, the waveform at 200 Hz is due alm
solely to theinspiral phase of the binary neutron star evolu
tion and contains virtually no information about thecoales-
cence. As the inspiral is determined by point-mass dynami
the equation of state for nuclear matter~i.e., neutron stars!
will affect only the coalescence waveform. Coalescence a
occurs when the gravitational field between the neutron s
is strongest, so the effects of general relativity will be mo
important than during the inspiral. To measure these effe
it will be necessary to monitor thehigher-frequencywaves
from coalescence in addition to those at lower frequen
from inspiral.

Resonant-mass gravitational wave detectors have bee
use for longer than the interferometric detectors. Resona
mass antennas with bar geometries have been taking data
been continually improved since their inception. The use
spherical geometry as an improvement over bars was
2409 © 1996 The American Physical Society
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2410 54HARRY, STEVENSON, AND PAIK
suggested by Forward in 1971@10#, and Wagoner and Pai
later showed that at equal frequencies spheres have an
vantage over bars in energy cross section@11#. Recent re-
examination of spherical detectors@12–15# has generated in
ternational interest in constructing one or more mass
spherical antennas incorporating advances in transducer
nology. The possibility of building such an antenna to op
ate concurrently with the first LIGO interferometers appe
good @16#. The sensitive frequencies for a sphere are hig
than those for the first LIGO interferometers, spanning ab
750 Hz to 2700 Hz in the lowest mode, and therefore th
are well suited to complement interferometer experiment
high frequencies. One such advanced resonant-mass de
can be more sensitive than the first LIGO interferomet
within a bandwidth of around 100 Hz centered at the qu
rupole resonance of the sphere and would have a sensit
within that band comparable to what will be achieved by
advanced LIGO interferometers. The sphere’s sensitivity
independent of source direction, unlike LIGO. Spherical
tennas can also provide direction and polarization inform
tion more easily than LIGO@13# and, properly instrumented
could detect any scalar gravitational radiation that might
present @10,11#. In this paper, when we refer to ‘‘high
frequency’’ gravitational radiation, we mean those sign
that include significant strength above 750 Hz. This f
quency is where the first LIGO interferometers’ sensitiv
begins to weaken from photon shot noise in the lasers@5# and
the spherical resonant-mass detector’s sensitivity beco
important.

We have looked at the question of whether a spher
detector, or in particular a truncated icosahed
gravitational-wave antenna~TIGA! as described by Merkow
itz and Johnson@14#, is capable of observing high-frequenc
events. Specifically, the coalescence of a binary neutron
system and the dynamical bar-mode instability of a sing
rapidly rotating star were examined as possible astronom
phenomena that could produce high-frequency gravitatio
radiation. Waveforms for these events, generated with c
puter simulations by Centrella’s group at Drexel Universi
were used as input into a mathematical model of a 50
spherical detector with three-mode inductive transduc
@17#. The energy signal-to-noise ratios obtained from t
model help determine how TIGA’s and interferometer e
periments can best complement one another.

Coccia and Fafone@18# have also looked at energy signa
to-noise ratios from astronomical events in spherical de
tors. Our work and theirs are complementary. They look
solely at inspiraling binary neutron stars as sources, leav
out the coalescence phase as well as any other h
frequency events. Since the inspiral can be modeled a
rately by point-mass dynamics, they used an analytical
pression for the waveform. We found it necessary to
numerical data from computer models to simulate
coalescence. By limiting themselves to the inspiral pha
Coccia and Fafone were unable to accurately pre
energy signal-to-noise ratios for higher mass neutron s
or black holes. For some sphere sizes and composit
their simulation does not produce results for 1.4M( neutron
stars, the observed mass for all known neutron stars
binaries @9#. However, their method was able to sho
that spherical antennas can determine the chirp m
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3/5/(M11M2)

1/5 @19##, the orbital inclination
and the distance to the source, a result our method did n
produce. Both techniques provide useful information that ar
unobtainable by the other.

In Sec. II, we describe the method used for the energ
signal-to-noise ratio calculations, how the code that pro
duced the results was written, and what parameters for th
spherical antenna we used. In Sec. III, we discuss the sign
waveforms we used as inputs into the model developed
Sec. II and present the results of the calculations. Finally, i
Sec. IV, we present our conclusions and discuss ideas f
further work.

II. METHOD

To calculate the energy signal-to-noise ratio~SNR! per
unit bandwidth of the TIGA, we followed the method of
Price @20# who showed how to calculate the SNR for a bar
antenna that uses an optimal filter to process the dat
Stevenson@21# has shown that for six identical transducers in
the TIGA geometry and identicalQ’s for all five quadrupole
modes of the sphere, the SNR of a spherical antenna is ide
tical to that of a bar antenna instrumented with one of thos
six transducers. Theequivalent barhas an effective mass as
seen by the transducer of

meff5
5
6x~ 4

3pR3!r, ~1!

whereR andr are the sphere radius and density. The dimen
sionless parameterx comes from the radial driving point
admittance matrix of the sphere at the quadrupole frequenc
For an aluminum sphere with a Poisson ratio of 0.33
x50.301@13#. The factor of 5/6 in Eq.~1! accounts for the
multiple sphere modes and transducers@21#. The SNR for
the TIGA is the same as that for the equivalent bar provide
one equates the energies deposited by the gravitational wa
in the two antennas. We can now calculate the SNR for th
simpler case of a bar, while retaining all the information
available from a sphere.

The energy deposited in the sphere is calculated from

E5FvS, ~2!

whereS is the energy cross section of the sphere@13#,

S5
G

c3
rVs

5

f 0
3 P. ~3!

HereVs is the extensional sound speed of the sphere mat
rial, f 0 is the quadrupole frequency, andP is a dimension-
less constant that accounts for antenna geometry and mod
It has the value 0.215@13# for a sphere in the lowest quad-
rupole mode and 0.585 in the first excited quadrupole mod
@13,15#. ThroughoutG andc are Newton’s gravitational con-
stant and the speed of light. The total energy fluxFv is @22#

Fv5
c3

G

1

16p
v2uh~v!u2, ~4!

wherev is the angular frequency of the gravitational radia-
tion and uh(v)u is the magnitude of the frequency-domain
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54 2411DETECTABILITY OF GRAVITATIONAL WAVE EVENTS . . .
amplitude of the gravitational wave. Thus the total energ
deposited in the equivalent bar is

E5
p

2

rVs
5

f 0
Puh~v0!u2. ~5!

We define aneffective forcethat acts on the equivalent bar
@13#:

f eff~v!52meffv
2h~v!l eff , ~6!

where the relationship betweenl eff andR is determined as
follows. For an impulsive force, the energy is deposited
kinetic energy in the antenna. The energyE after the impulse
is given by

E5
u f eff~v0!u2

2meff
. ~7!

Combining Eqs.~5!–~7! gives

l eff5AP
2p2rVs

5

meffv0
5 . ~8!

Then using Eq.~1! and the relationship betweenv0 ,Vs , and
R @23# for each quadrupole mode anl eff of 0.337R in the
lowest quadrupole mode and 0.109R in the first excited
quadrupole mode are calculated. Using Eq.~6! as the defini-
tion of a force on the equivalent bar, the method of Price c
be followed exactly.

The transducer we assumed was a three-mode induc
transducer. A three-mode transducer is necessary, rather t
the standard two-mode system, to get higher bandwidt
which are required to reach sensitivities near the standa
quantum limit. Higher bandwidth reduces the requirement o
theQ of the sphere and transducer. Higher bandwidth is al
useful to cover a larger spectrum of frequencies and redu
the need for additional antennas.

Assuming that a template of the gravitational waveform
available, optimal filtering can be used on the output sign
of the transducer. The optimal filter produces the highe
SNR possible@24# and has the form

K~v!5
e2 jvt0u* ~v!

Sn~v!
, ~9!

whereu(v) is the velocity signal of the antenna effective
mass andSn(v) is the total velocity noise spectral density
both referred to the input of the optimal filter. The paramet
t0 is the time at which the SNR is to be optimized. To ca
culateu(v) andSn(v), it is necessary to solve the equation
of motion for the antenna coupled to the three-mode reson
transducer. They have the form

jvmeffu15 f 12
jk int
v

~uint2u1!1
jkeff
v

u1 ,

jvmintuint5
jk int
v

~uint2u1!2
jk trans

v
~u22uint!2 f 2 ,

~10!
y
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jvmtransu25
jk trans

v
~u22uint!1 f 2 .

Here,meff is the effective mass of the antenna,mint is the
mass of the intermediate resonator, andmtrans is the trans-
ducer mass;keff is the effective spring constant of the an-
tenna,kint is the spring constant that connects the antenna
the intermediate mass, andktrans is the spring constant be-
tween the intermediate mass and the transducer mass. T
spring constants are complex valued and include dissipatio
The variablesu1 ,uint , andu2 are, respectively, the velocities
of the antenna surface at the transducer, of the intermedia
mass, and of the transducer mass. Applied forces acting o
the antenna surface and betweenmtrans andmint are denoted
by f 1 and f 2, respectively.

Eliminating uint from Eq. ~10! allows the equations of
motion to be written as

ui5yi j f j , ~11!

with i and j taking the values 1 to 2. The energy SNR per
unit bandwidth,s(v), then becomes@20#

s~v!5K~v!u2 ~12!

5
uu2~v!u2

Sn~v!
. ~13!

From Eq.~11!, s(v) is found to be

s~v!5
u f 1y21u2

Su1Sf uy22u212kBTRe~y22!12Re~y22Sfu!
,

~14!

assuming no force on the transducer, i.e.,f 250. Here the
force f 1 is f eff from Eq.~6! andT is the physical temperature
of the sphere. The matrixyi j (v) is the admittance matrix of
the antenna with transducer defined in Eq.~11!. The four
terms in the denominator are the individual parts ofSn(v),
the velocity noise. They are, respectively, the additive veloc
ity noise, the force noise, the thermal noise, and the correla
tion noise. The spectral densities are defined as

Sf~v![E
2`

1`

e2 jvt^ f ~ t ! f ~ t2t!&dt,

Su~v![E
2`

1`

e2 jvt^u~ t !u~ t2t!&dt, ~15!

Sfu~v![E
2`

1`

e2 jvt^ f ~ t !u~ t2t!&dt.

In practice, these noise terms are found not to vary muc
with frequency in the antenna’s sensitive range. It is often
convenient to parametrize these spectral densities with thr
values; noise temperatureTn , noise resistancer n , and noise
reactancexn . They are defined as

Tn5
1

kB
ASfSu2@ Im~Sfu!#

2, ~16!
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2412 54HARRY, STEVENSON, AND PAIK
r n5ASf
Su

2S Im~Sfu!

Su
D 2, ~17!

xn5
Im~Sfu!

Su
, ~18!

where kB is Boltzmann’s constant. For simplicity, we se
Im(Sfu)50. Although, in general, the correlation betwee
the force and velocity noise is nonzero, the effects of a n
zeroSfu can normally be accounted for by a renormalizati
of the transducer spring constant@20#. The real part ofSfu is
normally zero when a superconducting quantum interfere
device~SQUID! amplifier is used.

Once a complete expression fors(v) has been obtained
the energy SNR can be calculated from

S/N5
1

2pE2`

1`

s~v!dv. ~19!

Note that we have consistently used a double-sided spe
density in contrast to the single-sided convention adopted
LIGO. By putting in numerical values for all parameters, th
integral can be evaluated. For many of the parameters be
we chose values beyond what has been demonstrated ex
mentally so as to represent an advanced spherical dete
Such an advanced detector could operate concurrently
the first LIGO interferometer as a result of aggressive
search and development efforts now being planned@16#.
Some of our parameter values are only slight extrapolati
beyond currently demonstrated values, while others are
stead upper bounds to the technologies being pursued
detailed consideration of the research burden to meet eac
our assumed values is beyond the scope of this paper
stated in the introduction, our motivation is to clarify ho
such spherical detectors could complement the interfero
eter experiments by examining the detectability of high f
quency events. We feel it is likely that resonant-mass de
tors with an energy sensitivity approaching that derived w
our parameters can be developed and built to operate wi
the time frame between the completion of the first LIG
interferometers and the operation of advanced interfero
eters.

We chose to model aluminum spheres at a physical te
perature of 50 mK, instrumented with six identical sets
three-mode inductive transducer systems located with
dodecahedral TIGA geometry@14#. The lowest temperature
that an aluminum bar antenna has been successfully co
to is 95 mK @25#. Two-mode transducers are in use on
number of operating cylindrical resonant-mass anten
@2–4# and a three-mode system has been demonstrated a
in a smaller, test antenna@26#. A constant mass ratio betwee
the effective mass of the sphere and the intermediate mas
well as between the intermediate and transducer masse
100:1 was used, and all mechanical quality factors (Q’s!
were assumed to be 403106. The highest mechanicalQ that
has been obtained in an inductive transducer is 243106 @27#.

The transducer electronics were assumed to be a 9 cm
diameter inductive pickup coil attached to a SQUID amp
fier with a quantum-limited noise temperature, i.e
Ts51\v0 /kB . Quantum-limited SQUID’s have been con
t
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structed@28#, but they are not useful for inductive transduc
ers because of their low input coil inductance. Getting a su
able quantum-limited SQUID is an area of intense resear
Wellstood’s group at the University of Maryland is develop
ing a quantum-limited SQUID for use in a gravitational wav
transducer. The best noise temperature they have achieve
a SQUID with high enough inductance to couple to the tran
ducer coils isTs'28\v0 /kB @29#. The prospect of ap-
proaching the quantum-limit in a practical SQUID in th
next several years looks real. With proper matching, t
transducer noise is limited by the noise of the SQUID, so t
value of Tn in Eq. ~16! becomes equal toTs . The noise
resistance isr n5kE/4p f 0, wherekE is the real part of the
spring constantktrans that is due to the electrical interaction
between the transducer mass and the pickup coils. The r
kE /ktrans is the coupling between the electrical and mechan
cal parts of the transducer. For the valuekE , we took the
product 3.783108 N/m33 coil area, based on measuremen
made in our laboratory at Maryland@30#.

Taken together, these parameters define the overall se
tivity of the antenna. Energy sensitivityEs is defined as

Es5
E

S/N
. ~20!

It is useful to express this sensitivity in relation to the sta
dard quantum limit, the minimum sensitivity possible using
linear amplifier@31#. Expressed as a multiple of this standar
quantum limit, the antenna sensitivity becomes

N5
Es

\v0
. ~21!

As a comparison for the numerical result, we calculate
approximate value ofN from

N'
kB

\v0
FTs1T

d S 1

a1Qeff
1

1

a2Qint
1

1

a3Qtrans
D G . ~22!

Equation ~22! is derived in the Appendix. The parameter
d and a i are also defined and computed in the Append
Substituting the values ofT, Ts , Qeff , Qint , andQtransas-
sumed above into Eq.~22! gives

N'1.010.9610.8710.78'3.6. ~23!

We calculated SNR’s for eight different spheres. The d
ameter of the lowest-frequency sphere was chosen to be
largest size that might be constructed, 3.25 m. The size of
highest-frequency sphere was chosen so that its lowest qu
rupole frequency coincides with the peak in the spectrum
the coalescing binary neutron star data. This peak is at tw
the rotation frequency of the transient, barlike structure th
forms immediately after coalescence@32#. This assumption
gives a sphere diameter of about 1.05 m. The remain
sphere sizes were chosen to give reasonably continuous c
erage of the frequency band 750 Hz to 2700 Hz. In additi
to transducers tuned to the lowest quadrupole mode of
sphere, a system tuned to the first excited mode was ex
ined. Coccia, Lobo, and Ortega@15# have shown that the
cross section of the excited mode of a large sphere is 2
times greater than that for the lowest mode of a small sph
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at the same resonance frequency. This allows the calc
tions of SNR’s for the higher mode.

Figures 1 and 2 show the sensitivities of the eight sphe
in the ground state and excited state, respectively. These
ures also show the sensitivity of the first LIGO and advanc
LIGO interferometers for comparison. The data graphed
the strain spectrumof the detectors,h̃(v), defined as

h̃~v!5Auh~v!u2

s~v!
. ~24!

The strain spectrum is a measure of what frequency distri
tion an incoming gravitational wave would have to have
order to produce an output in a noiseless detector that m
ics the output of the real detector’s noise. It is a useful way
compare detectors because it is independent of source w
form and thus is solely a characteristic of the antenna. T
energy SNR per unit bandwidth,s(v), is related to the
quantitieshc andhrmsused by LIGO as defined in Ref.@5# by

s~v!5
1

2 f S hc
hrms

D 2. ~25!

Using these quantities, a value for the SNR of LIGO is ofte
estimated as the maximum value of@hc /(A5hrms)#2, which
gives a rough approximation to the integral in Eq.~19!. The
factor of A5 is necessary to convert to ‘‘random directio
and polarization’’@33#.

These figures show that the spherical resonant-mass
tennas have a sensitivity intermediate between the first a
advanced LIGO interferometers within a fractional ban
width of about 10% each. The collection of all the TIGA’s
or the ‘‘xylophone,’’ is a more sensitive detector than th

FIG. 1. The strain spectrum of the eight spherical antennas
the lowest quadrupole mode, shown with solid and dashed lin
The different line styles have no significance other than to diffe
entiate the separate strain spectra. The upper dotted line show
strain spectrum for the first LIGO interferometer and the low
dotted line shows the strain spectrum for the advanced LIGO int
ferometer, for reference. The spherical antennas, each with a se
tivty about 3 times the standard quantum limit, are more sensit
than the first LIGO interferometers in a bandwidth of about 100
300 Hz each and together span a total bandwidth from 750 to 2
Hz. In this band, the spherical antennas are a little less sensi
than the advanced LIGO interferometers.
ula-

res
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to
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e

first LIGO interferometers from 750 Hz to 2700 Hz in the
lowest mode and from 1350 Hz to 5100 Hz in the first ex-
cited mode. In these frequency regions LIGO’s sensitivity is
constrained by photon shot noise in the lasers@5#.

III. SIGNALS AND RESULTS

In order to integrates(v) and obtain the SNR for the
spherical antenna, numerical values for a gravitational wave
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FIG. 2. The strain spectrum of the eight spherical antennas i
the first excited quadrupole mode, shown with solid and dashe
lines. The different line styles have no significance other than t
differentiate the separate strain spectra. The upper dotted line sho
the strain spectrum for the first LIGO interferometer and the lowe
dotted line shows the strain spectrum for the advanced LIGO inte
ferometer, for reference. The spherical antennas, each with a sen
tivity about 3 times the standard quantum limit, are more sensitiv
than the first LIGO interferometers in a bandwidth of about 200 to
600 Hz each and together span a total bandwidth from 1350 to 510
Hz. In this band, the spherical antennas are about equal to the se
sitivity of the advanced LIGO interferometers.

FIG. 3. The frequency-domain gravitational waveform average
over source orientation from the inspiral and coalescence of tw
neutron stars with mass 1.4M( and radius 10 km at 15 Mpc from
the antenna. The sharp cutoff at 300 Hz is due to the finite extent o
the time-domain data. The spectrum from 300 to about 1000 Hz
due mainly to the inspiral phase. The frequencyf dyn51566 is the
dynamical instability frequency. The peak atf'2500 Hz is associ-
ated with the transient barlike structure that forms immediately fol
lowing the onset of coalescence@32#.
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2414 54HARRY, STEVENSON, AND PAIK
form from an astronomical event are needed. For inspira
and coalescing binary neutron stars, we used the wavef
published by Zhuge, Centrella, and McMillan@32#. We Fou-
rier transformed the time-domain data using the conven
h(v)5*2`

` e2 jvth(t)dt. Although the calculation by Zhuge
et al. is among the most complete available, it is still only
first survey of how binary neutron stars may behave. In p
ticular, it models gravity with a purely Newtonian formul
The inclusion of general-relativistic corrections may sign
cantly change the orbit and lead to differences in the wa
form. Our results derived using this waveform should
seen in this light.

The frequency-domain waveform for the inspiral and co
lescence phase of the binary neutron star evolution is sh
in Fig. 3. Zhugeet al.generated the waveform using a thre
dimensional numerical simulation which models the neut
stars as nonrotating polytropes. The neutron stars were
sen to have equal masses of 1.4M( each, since all known
cases of neutron stars in binary systems have this mass@9#.
Initially, the distance between the stars was chosen to
much larger than the diameter of individual stars, so ti
gravitational effects are negligible. Thus, the stars are or
nally spherical, with a radius of 10 km. The initial orbit wa
chosen to be nearly circular and it evolves due to Newton
gravity with a frictional term added to simulate the ener
loss to gravitational wave emission. When the stars sp
together, tidal distortions in each star’s shape grow lar
and the evolution approaches coalescence.

Once the separation between the stars is comparab
the neutron star’s radius, hydrodynamic effects become
portant and an approximation of the nuclear equation of s
is required. Zhugeet al. used

P5Kr111/n ~26!

as the equation of state, whereP is pressure,r is density,
K is a constant that measures the specific entropy of
nuclear matter, andn is the polytropic index. A value of
n51 was used for the waveform we analyzed. Smooth p
ticle hydrodynamics~SPH! is then used to model the coale
cence phase once the equation of state is specified.

The gravitational waveform was calculated from the co
plete orbit of the binary neutron star system using the qu
rupole approximation by Zhugeet al.This approximation ig-
nores contributions from mass moments higher than
quadrupole, but is valid for nearly Newtonian sources@22#.
In the transverse-traceless~TT! gauge, the gravitational wav
amplitude is

hi j
TT5

G

c4
2

r
Ï i j
TT , ~27!

whereÏ is the second time derivative of the reduced quad
pole mass moment of the source. The amplitude of
‘‘plus’’ and ‘‘cross’’ polarizations of the gravitational wave
expressed in spherical coordinates, are

h15
G

c4
1

r
~ Ï uu2 Ïff!, ~28!
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h35
G

c4
2

r
Ï uf . ~29!

The absolute scale of these amplitudes requires a choice
r , the distance from the detector to the source. We us
r515 Mpc, the approximate distance to the Virgo cluster o
galaxies@33#. This distance is estimated by Phinney@9# to be
below the most optimistic value to get 3 events per year, 2
Mpc. Scaling from this value, about 1 event per year is pre
dicted at 15 Mpc in this optimistic limit.

The waveform from the Newtonian inspiral with friction
was then meshed onto the waveform from SPH by Zhug
et al. to get a complete waveform for the whole binary neu
tron star evolution. Since the orientation angles of the bina
system are not knowna priori, and in fact are values that the
spherical antenna can determine experimentally@18#, we av-
eraged the waveform over these unknown angles. This av
aging is done so that the energy per frequency,dE/d f , radi-
ated by the binary system is held constant. Thus, in Eq.~5!,

uh~v!u25^uh1~v!u21uh3~v!u2&, ~30!

where^•••& denotes an average over all source angles. It
this waveform that is shown in Fig. 3 and was used as inp
in Eq. ~14!.

Once a numerical expression for the waveformh(v) was
made available to us, it was possible to obtain SNR’s for th
eight spheres with the diameters shown in Table I. To d
this, the integral in Eq.~19! must be evaluated. Performing
this integration with theh(v) from Eq.~30! gave the SNR’s
in the column marked ‘‘total’’ in Table I. The row marked
‘‘xylophone’’ is what an array of all eight TIGA’s acting
together could accomplish and is the sum of each SNR in t
rows above. The row marked ‘‘first LIGO interferometers’’
is for comparison with the first LIGO interferometers and
was calculated by using the same waveform integrated w
the strain spectrum published for LIGO@5#. Since the wave-
form is of finite extent in time, the frequency domain data i

TABLE I. Energy signal-to-noise ratios for binary neutron sta
evolution in the lowestl52 mode of the sphere. The distance to the
neutron stars is taken to be 15 Mpc and each neutron star has a m
of 1.4M( and a radius of 10 km. The waveforms have been ave
aged over source and detector angles. The individual spheres ha
sensitivity about 3 times the standard quantum limit. The row la
beled ‘‘xylophone’’ is obtained by summing the signal-to-noise ra
tios for each sphere.

Diameter Frequency
~m! ~Hz! Coalescence Inspiral Total

3.25 795 0.0113 10.6 11.3
2.75 940 0.00985 5.79 6.28
2.35 1100 0.0146 3.43 3.88
2.00 1292 0.00948 1.40 1.64
1.70 1520 0.00853 0.907 1.09
1.45 1782 0.0104 0.558 0.719
1.25 2096 0.0197 0.285 0.449
1.05 2461 0.126 0.0886 0.407
Xylophone 0.210 22.8 25.6
First LIGO interferometers 0.00406 58.2 58.8
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not accurate below 300 Hz. In order to get a reasonable v
for the SNR of LIGO, it was necessary to extrapolate
data below this cut off and into LIGO’s sensitive region. W
did this with the analytical waveform in Eq.~44! of Ref.
@33#. Note that this equation as published has a factor o
error. The valuep/12 should be insteadp/6 @34#. We used
the corrected version for the extrapolation. It was also n
essary to divide the LIGO SNR by a factor of 5 to repres
a wave with random direction and polarization@33#. This
correction is unnecessary for the spherical antennas bec
they are equally sensitive in all directions.

To determine how effective the TIGA’s can be in obse
ing the coalescence phase of the binary neutron star ev
tion, we separated the waveform into two parts. The insp
occurs fromt50 s tot50.234 s, and the coalescence occ
from t50.234 s tot50.241 s. This division of time was
chosen so that the instantaneous frequency att50.234 s co-
incides with f dyn, the dynamical instability frequency iden
tified by Zhugeet al. as the frequency where the neutro
stars cease to act as point masses. The separate time-do
waveforms were then multiplied by a Hahn windowing fun
tion @35# before Fourier transforming, to ensure that the
vision was smooth and no spurious high-frequency sign
were artificially created. The SNR’s obtained from each
these separate waveforms are shown in the columns ma
‘‘inspiral’’ and ‘‘coalescence,’’ respectively, in Table I.

With the results, we can calculate the energy sensitiv
Es achieved by the spheres from Eq.~20!. The energy depos
ited in the 3.25 m sphere in the lowest mode
1.79310229 J, from Eq.~5!. Thus, with a SNR of 11.3,

Es5
1.79310229 J

11.3
53.0\v0 , ~31!

in good agreement with the approximate calculation in E
~22!.

We also calculated SNR’s for the spheres instrumen
with resonant-mass transducers tuned to the first exc

TABLE II. Energy signal-to-noise ratios for binary neutron st
evolution in the first excitedl52 mode of the sphere. The wave
forms have been averaged over source and detector angles
distance to the neutron stars is taken to be 15 Mpc and each ne
star has a mass of 1.4M( and a radius of 10 km. The individua
spheres have a sensitivity about 3 times the standard quantum
The row labeled ‘‘xylophone’’ is obtained by summing the sign
to-noise ratios for each sphere.

Diameter Frequency
~m! ~Hz! Coalescence Inspiral Total

3.25 1528 0.0235 2.43 2.93
2.75 1806 0.0289 1.45 1.88
2.35 2113 0.0593 0.679 1.13
2.00 2483 0.349 0.222 1.09
1.70 2921 0.0688 0.0448 0.224
1.45 3425 0.00709 0.00591 0.0252
1.25 3973 0.00111 0.00150 0.0051
1.05 4729 0.000674 0.000733 0.0027
Xylophone 0.538 4.83 7.29
First LIGO interferometers 0.00406 58.2 58.8
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mode of the antenna. The same physical parameters we
used to model the spheres and the same waveforms used
signals. This data is shown in Table II.

Binary neutron star events are the best understood signa
for gravitational wave detection, but because of the high op
erating frequency of spherical antennas, other astronomic
sources may be important for the spheres. One possible hig
frequency signal is from the dynamical bar-mode instability
of a rapidly rotating star. This event may be detectable b
spherical antennas provided the star is compact enough. T
stellar radius that this event occurs at is uncertain. This in
stability has been investigated by Smith, Houser, and Cen
trella @36# and it is their numerical waveform data that we
used.

Figure 4 shows the spectrum for the bar-mode instability
which develops following ‘‘centrifugal hangup’’ during the
core collapse of a massive star. This gravitational waveform
was generated by Smithet al. using three-dimensional nu-
merical simulations which modeled the star as a polytrope
with equation of state

P5
re

n
. ~32!

HereP is pressure,r is density,e is specific internal energy,
andn is the polytropic index. A value ofn53/2 was used for
the waveform in our simulation. A total mass of 1.4M( was
assumed, as the star is expected to end up as a neutron s
An equatorial radius for the centrifugal hangup of 20 km was
also assumed. This is the radius where the star’s collapse
arrested by the centrifugal effects from the rotation. A real
istic value for this radius is not known, but could range from
as high as 3000 km down to as low as 10 km@37#. The initial
rotation had a ratio of rotational kinetic energy to gravita-
tional potential energy oft'0.30. Newtonian gravity was
assumed and the gravitational radiation produced from th
dynamical bar-mode instability was calculated in the quad
rupole approximation, as with the coalescence waveform
Back reaction from gravitational wave emission was ignored
The bar mode, i.e.,m52 mode, was used as it is expected to
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9

FIG. 4. The frequency-domain gravitational waveform average
over source orientation from the bar-mode instability of a rapidly
rotating star of mass 1.4M( and radius at centrifugal hangup of 20
km at a distance of 1 Mpc from the antenna. The primary peak a
1765 Hz is twice the rotational frequency of the star.
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2416 54HARRY, STEVENSON, AND PAIK
be the fastest growing mode@36#. This waveform was gen-
erated for thedynamicalbar instability, which is driven by
Newtonian hydrodynamics and gravity rather than thesecu-
lar instability, which is due to dissipative processes such
gravitational radiation reaction. The dynamical instability d
velops on a time scale of about one rotation period while
secular instability grows over several periods or even m
slowly. The choice oft50.30 is just above the dynamica
stability limit of 0.2738 @38# and thus is a reasonable ap
proximation for a star that spins up, due to collapse or acc
tion, and becomes dynamically unstable@36#. The star’s evo-
lution was simulated by Smithet al.using SPH and from this
evolution the gravitational waveform is calculated by usi
Eq. ~27!.

The choice ofr , the distance from source to detector,
not as simple as for the binary neutron star. There is l
observational evidence for stars with bar-mode instabiliti
Such rapidly rotating stars may be formed from supernov
so the rate of supernovae might be taken as a reason
guide to the rate of this gravitational wave event. Out to
Virgo cluster of galaxies~15 Mpc!, the supernovae rate i
estimated at a few per year@39#. We took the source distanc
to ber51 Mpc, which has an estimated event rate of 1 eve
10 years@39#. Once the magnitude of each polarization sta
was evaluated, the same average over angles as in Eq.~30!
was performed to give the waveform shown in Fig. 4. T
SNR’s were calculated by using the method described
Sec. II. These values are shown in Table III for both t
ground state and the first excited quadrupole modes.
1.45 m, 1.25 m, and 1.05 m diameter spheres do not h
data listed for the excited mode because the frequen
domain waveform cuts off at 3500 Hz, which is below th
resonance frequencies of these spheres. This is becaus
granularity of the time domain data provided was too gr

TABLE III. Energy signal-to-noise ratios for the rapidly rotatin
star waveform forl52 modes of the sphere. The waveforms ha
been averaged over source and detector angles. The dashes f
excited mode of the 1.45, 1.25, and 1.05 m spheres represen
fact that the signal data cuts off below the resonance frequenc
these modes. The distance to the star is taken to be 1 Mpc, the
of the star is taken to be 1.4M( , and the radius of centrifuga
hangup is taken to be 20 km. The individual spheres have a se
tivity about 3 times the standard quantum limit. The row label
‘‘xylophone’’ is obtained by summing the signal-to-noise ratios f
each sphere.

Ground state Excited state
Diameter Frequency Frequency

~m! ~Hz! SNR ~Hz! SNR

3.25 795 0.0661 1528 19.5
2.75 940 0.220 1806 25.0
2.35 1100 1.22 2113 1.08
2.00 1292 4.75 2483 0.00434
1.70 1520 6.95 2921 0.00278
1.45 1782 9.91 3425 -
1.25 2096 0.935 3973 -
1.05 2461 0.00168 4729 -
Xylophone 24.1 45.6
First LIGO interferometers 0.197 0.197
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for frequencies above 3500 Hz. However, we believe it
safe to assume that the frequency-domain data would rem
below h(v)510225 Hz21 and thus the SNR’s for these
three spheres would be negligible.

The secular instability can develop fort values greater
than 0.1375@38#. After the dynamical instability has run its
course, Houseret al. find the system has evolved to a nearly
axisymmetric state with a core havingt50.26, which is
above the secular instability limit. Lai and Shapiro@38# have
investigated the secular instability which may develop i
which a Maclaurin spheroid evolves into a Dedekind ellip
soid producing a gravitational wave signal sweeping in fre
quency from possibly near 1 kHz down to zero. A differen
type of secular evolution would apply if the calculations o
Durisenet al. @40# or Williams and Tohline@41# correctly
predict the end point of the dynamical instability as a ba
surrounded by a ring, rather than the spheroid found b
Houseret al. If a rapidly spinning bar is produced, the secu
lar evolution changes the bar from a Jacobi-like ellipsoid int
a Maclaurin spheroid with a gravitational wave signal from
500 Hz to as high as 3 kHz.

Lai and Shapiro give analytical waveforms for these tw
different secular instabilities. For the same 1.4M( star at 1
Mpc with a radius of 10 km averaged over all source an
detector angles, the Dedekind waveform would give an e
ergy SNR of 2000 in the 3.25 m diameter sphere and 12
for the first LIGO interferometers. Such a strong signa
would be detectable even at the Virgo cluster distance. Ho
ever, it seems likely that the starting frequency for the Ded
kind evolution will be well below the spherical detector’s
band unless the star is initially spinning just below the dy
namical instability limit and is nearly incompressible. In or-
der for the starting frequency of this event to exceed the 79
Hz frequency of the 3.25 m sphere, Lai and Shapiro’s Fig
~5! indicates one needs a polytropic indexn,0.7 for
t50.26, while evenn50 does not suffice fort<0.24. In
contrast, the frequency span of the signal from Jacobi-lik
evolution seems to have a higher possibility of overlap wit
the band covered by the spheres; however, the chief unc
tainty for that signal is whether or not the dynamical insta
bility produces a spinning bar rather than a spheroid.If
Jacobi-like evolution occurs and its starting frequency is b
low 800 Hz, then the signal computed by Lai and Shapiro
a very strong source for a big sphere: we calculate an ener
SNR of 4000 for a 3.25 m diameter sphere and an ener
SNR of 240 for the first LIGO interferometers from a wave
form averaged over all angles and a source distance of
Mpc.

IV. CONCLUSION

The results in Table I for the spherical antenna tuned
the lowest quadrupole frequency interacting with gravita
tional radiation from binary neutron stars shows that sphe
cal antennas operate at a level that is complementary w
the first LIGO interferometers. The largest sphere obtains
energy SNR of 11.3 at a distance of 15 Mpc. If a SNR of 1
in this detector is a sufficient threshold for a three-way co
incidence experiment, then a source with angle averag
strength could be detected out to a distance of 15.9 Mp
With the most optimistic estimate of the coalescence rate,
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events per year out to 23 Mpc@9#, the expected rate of de
tection r d is

r d51.1533 yr21S 15.9 Mpc

23 Mpc D 3 ~33!

51.15 yr21. ~34!

The factor of 1.15 is due to statistical preference for ang
that give high SNR’s~see@33# for details!. For detection of
gravitational radiation from binary neutron stars at a dista
of 15 Mpc, a 3.25 m diameter aluminum sphere near
standard quantum limit will be sufficient. The upper limit o
the event rate at this distance is about 1 coalescence per
@9#.

Table I also shows that a large sphere instrumented a
lowest quadrupole frequency does not hold out much hop
seeing the details of binary neutron star coalescence. E
the 1.05 m diameter sphere, whose size was chosen so
the lowest quadrupole mode was at the maximum of
coalescence wave spectrum, does not manage to reach a
of 1. As the frequency of the sphere goes up, the radius,
with it its mass, goes down. At frequencies where the wa
form from Zhugeet al. is strong, the energy cross section
the sphere is too small to detect much. This raises the q
tion of the reliability of the numerical waveform, especial
of the frequencyf peak associated with the barlike transien
According to Centrella@42#, the qualitative shape of th
waveform is fairly reliable, but the exact position of th
peak and other structures may change as numerical relat
techniques improve. Iff peak were to be found at a lowe
frequency, closer to the lowest quadrupole mode of one
the larger spheres, the prospect for a SNR greater than
the coalescence phase might improve.

The data in Table II for spheres sensitive at the first
cited quadrupole mode to inspiraling and coalescing bin
neutron stars appears a little more promising for the de
tion of coalescence. The largest sphere still has the hig
overall SNR, but it is reduced from its value in the grou
state. The 2.00 m diameter sphere, with an excited qua
pole frequency of 2483 Hz, is now the sphere tuned
f peak. It does not quite manage a SNR of 1 either, but it do
have a higher SNR for the coalescence than for the insp
phase, as do the 1.70 m and 1.45 m spheres.

The data in Tables I and II, taken together, suggest th
xylophone of spheres acting collectively and in collaborat
with LIGO may be the best approach to detection of bin
neutron star coalescence. The smaller spheres do not con
ute much to the xylophone SNR, so four spheres, from 3
m to 2.00 m in diameter, would be enough to give most
the xylophone benefits. If these four spheres could be ins
mented at both the ground and the first excited quadrup
frequencies, a fairly wide spectrum, from 750 Hz to 2700
continuously, could be monitored. The spheres could rely
LIGO to provide a high SNR detection of the inspiral. On
the event is discovered, the spheres would have the
strenuous task of identifying and analyzing the high f
quency coalescence. Thus, even the modest SNR’s foun
our work may still prove useful in gathering astrophysic
data on coalescing binary neutron stars.
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The data for the rapidly rotating star shown in Table III is
more encouraging. For the ground state modes, the 1.45
sphere has its frequency near the peak of the spectrum a
obtains a strong SNR of almost 10. The two spheres wi
quadrupole frequencies below the resonance of the 1.45
sphere also have strong SNR’s, about 7 and 5. Further aw
from the peak, SNR’s fall off rapidly, especially on the high
frequency end. The SNR goes from 0.935 for a sphere dia
eter of 1.25 m to well below 1 for a diameter of 1.05 m. Thu
with only two antennas the peak signal can be easily foun
provided their sensitive frequencies occur at the appropria
positions.

The first excited state data is similar to the ground stat
showing strong SNR’s when the sphere’s quadrupole fr
quency is at or near the 1765 Hz peak. In the excited mod
however, this occurs between the 3.25 m and the 2.75
diameter spheres. With larger masses, these spheres h
higher energy cross sections and thus obtain much high
SNR’s. A SNR of 25, from the 2.75 m sphere in the excite
state, represents such a strong signal that the source posi
on the sky could be located to within almost 0.13 steradia
@13#. As with the ground state data, there is a sharp drop
SNR to effectively zero about 500 Hz above the peak fre
quency, making location of the peak frequency possible.

The rapidly rotating star waveform was generated by a
suming a total mass of 1.4M( and a centrifugal hangup at 20
km. The location of the peak frequency, which is twice th
rotation frequency of the star, is very sensitive to the value
of these parameters. It can be as low as 1 Hz for a 1.0M( ,
3000 km star up to 6000 Hz for a 2.0M( , 10 km star@37#.
Since the appropriate values for these star parameters are
known, and in fact are values we could hope to determin
from gravitational wave data, actual signals from this sourc
could potentially be outside the sensitive range of spheric
antennas. A peak frequency above about 2500 Hz, cor
sponding to a 1.4M( , 10 km star, would be extremely dif-
ficult to detect outside our galaxy. This would limit the num
ber of events to a few per century. Detecting these high
frequency signals depends on the accuracy of the curre
template, especially the secondary peak in Fig. 4 at 400 H
Many details of the rapidly rotating star’s evolution are no
well understood and this waveform may undergo substant
changes as the field of numerical relativity advances.

A xylophone of a 3.25, 2.75, 2.35, and a 2.00 m diamet
sphere instrumented at both the ground state and the fi
excited quadrupole state working along with LIGO, as sug
gested for the inspiraling and coalescing binary neutron sta
would do an effective job of searching for rapidly rotating
star events. For favorable mass and radius parameters,
excited state of the 2.75 m diameter sphere would be sen
tive, with a SNR threshold of 10, out to 1.6 Mpc. This will
be sufficient to observe one event every decade, provid
nearly all type Ib and type II supernovae are sources of thi
event@39#. This xylophone would also determine the star’s
rotation frequency, as a large SNR would be seen in th
more massive sphere and effectively nothing would be se
in the smaller. This would locate the peak frequency, an
hence the rotation frequency, to within a few hundred hert
Negative results from such a xylophone would restrict th
parameter space, providing data about neutron star devel
ment and equation of state. The xylophone covers a fr
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2418 54HARRY, STEVENSON, AND PAIK
quency range corresponding to hangup radii between 45
down to 15 km. The broadband interferometers have di
culty detecting this dynamical instability, but do have a hig
SNR for the secular instability. Since these two gravitation
wave events may occur in succession, a collaborative ef
between spheres and interferometers would prove effec
as with the binary neutron stars.

In this paper, we have compared broadband interfero
eters with resonant-mass antennas for detection of high
quency gravitational radiation. Another possible techniq
for detecting high frequency events involves dual-recycl
interferometers@43#. This approach allows laser interferom
eters to become much more sensitive within a narrow ba
width at the expense of sensitivity elsewhere. Krolak, Lob
and Meers@43# have looked at SNR’s for inspiraling neutron
stars interacting with recycled interferometers using a si
plified strain spectrum and an analytical formula for th
waveform. Their results for the unrecycled LIGO are in clo
agreement with ours. Further investigations of SNR’s co
paring spherical antennas with dual-recycled interferomet
is being done at Caltech@34#.

In addition to the astronomical sources of gravitation
radiation that we investigated here, there may be other h
frequency signals potentially detectable in detectors op
mized for the 1–2 kHz band. Events that might produ
high-frequency gravitational waves include coalescence o
neutron star with a black hole or a black hole with a seco
black hole@19#, asymmetric core collapse and bounce in s
pernovae@19#, spinning neutron stars@44#, and cosmic string
vibrations@45#. Especially promising may be the black hol
coalescences and spinning neutron stars. Excitation of
high-frequency@ f'120023250 Hz (10M( /M ) @46## black
hole quasinormal modes would give a relatively strong s
nal at kilohertz frequencies. A gravitational-wave anten
detection of this radiation could provide the observation
‘‘smoking gun’’ to confirm the existence of black holes. Ex
perimental evidence of gravitational radiation from blac
hole coalescence would undoubtedly also provide great
sight into relativistic gravity. Spinning neutron stars are
periodic source that could radiate strongly for months@44#.
The frequency of the waves would be twice the rotation p
riod, often above a kilohertz, and details of the wave wou
tell much about the structure of neutron stars. According
Thorne,@19# ‘‘the deepest searches for these nearly period
waves will be performed by narrow-band detectors. . . , e.g.,
dual recycled interferometers or resonant-mass antenna
We call on the numerical relativity community to continue t
develop reliable waveforms for all possible high-frequen
events. It is only through the combined efforts of everyon
interferometer and resonant-mass experimentalists, as we
numerical and analytical theorists, that confirmed, direct d
tection of gravitational radiation will become a reality.
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APPENDIX: ASYMPTOTIC EXPANSION
OF THE ENERGY SENSITIVITY

Equation~20! defines the energy sensitivityEs as the ratio
of E, the energy the signal would deposit in a bare antenn
initially at rest, to the SNR calculated by integratings(v)
given by Eq.~14!. Although we calculatedEs directly in this
fashion, useful insight into the dependence ofEs on the de-
tector parameters comes from considering the asymptotic be
havior for theQi approaching infinity as indicated by Eq.
~22!.

First, consider the lossless case when allQ’s are infinite.
Then Re(y22) is zero, and Price@20# shows that the expres-
sion fors(v) can be rewritten exactly as

s~v!5
en~v!

kBTn
, ~A1!

where

en~v!5
u f 1y21u2

u11zny22u2
r n , ~A2!

Tn is the mechanical amplifier noise temperature defined b
Eq. ~16!, and

zn5r n1 jxn ~A3!

is the mechanical amplifier’s complex noise impedance, de
fined by Eqs.~17! and ~18!.

As Price@20# explains,en(v) has the following physical
interpretation: it is the spectrum of the energy which would
be dissipated inr n if the signal were applied when the am-
plifier had been replaced by its input impedance plus an ad
ditional mechanical impedance equal tozn . If f 1(v) varies
little over the band whereen(v) is large, then the signal is
approximately an impulsive force which deposits the energy

E5
u f 1~v0!u2

2meff
~A4!

initially all in antenna motion. Since the hypothetical detec-
tor with zn inserted is assumed lossless except forr n , even-
tually 100% of the energyE ends up being dissipated in
r n . Thus from this physical argument we have

E
2`

` dv

2p
en~v!'

u f 1~v0!u2

2meff
, ~A5!

independent of the values ofr n and the detector masses and
springs. Therefore, in the lossless case, the SNR is
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S/N5E
2`

` dv

2p
s~v! ~A6!

5E
2`

` dv

2p

en~v!

kBTn
~A7!

'
E

kBTn
, ~A8!

provided f 1 and Tn vary little over the frequencies where
en is significant. Hence, for an impulsive force,Es5kBTn in
the lossless case independent of the other detector par
eters.

Next, consider the case where allQ’s are infinite except
that for the antenna. Then the antenna dissipation produc
thermal force noise acting onmeff with spectral density
2kBTmeffv0 /Qeff . Therefore, Eq.~14! becomes

s~v!

5
u f 1y21u2

Su1Sf uy22u212Re~y22Sfu!12kBT~meffv0/Qeff!uy21u2
.

~A9!

For convenience, we define the energy sensitivity expres
in temperature units to beTp , the detector’s pulse-detection
noise temperature:

kBTp5Es . ~A10!

Motivated by Eq.~26! in Price @20#, we use Eqs.~A1! and
~A2! to rewrite Eq.~A9! in terms ofen(v), and then expand
the integral for SNR to first order inQeff

21 and use Eq.~A5!:

S/N5
E

kBTp
~A11!

5E
2`

` dv

2p

en~v!

kBTn

1

11~Tv0/TnQeff!@en~v!/E#
~A12!

'
E

kBTn
S 12

Tv0

TnQeff2d f 0
D , ~A13!

where

2d f 05
@*2`

` ~dv/2p!en~v!#2

*2`
` ~dv/2p!@en~v!#2

~A14!

defines the fractional bandwidthd of the lossless detector in
a way which arises naturally in the SNR expansion, a
which agrees with the intuitive definition of bandwidth i
en(v) is box shaped.

Thus when all otherQ’s are infinite, the asymptotic form
of Es for largeQeff is described by
am-

es a

sed

nd
f

1

Tp
'

1

Tn
S 12

Tv0

TnQeff2d f 0
D , ~A15!

Tp'Tn1
T

Qeffd
p as Qeff→`. ~A16!

When otherQ’s besidesQeff are also finite, analysis along
the lines above is more cumbersome, but one finds

Tp'Tn1
T

d (
i51

N
1

a iQi
, ~A17!

where the constantsa i can be determined numerically. Com-
parison with Eq.~A16! shows thata151/p always. Thus, a
higher fractional bandwidthd reduces the effect of finite
Q’s on Tp .

Price @20# argues that a clever choice of the masses an
springs to maximized for a given value ofr n is the optimal
design strategy, and that a design in whichen(v) is made
‘‘optimally flat’’ is nearly optimal in this sense. However, in
this paper, we have chosen the simpler design originally pro
posed by Richard@47# which has constant successive mass
ratios since we find both designs give similar values for
Tp .

The values ofa i for i>2 depend on the masses and
springs chosen for the detector design. The values fo
a1 , a2 , anda3 that we calculated and used are shown in
Table IV. These values are for the case of a constant mas
ratio between stages of 100. This ratio was chosen as a co
venient value that gives a final transducer mass slightly
higher than the mass that gives the lowestTp . A higher mass
is more resistant to uncertainties in noise resistance and thu
is preferred experimentally to a lower than optimal mass
The design rule suggested by Richard@47# for choosing a
constant mass ratio given anr n andmeff can be written as

Smi11

mi
D ~2N21!/2

5z
r n

meffv0
, ~A18!

whereN is the number of modes of the system andz is 2.
The design we chose corresponds toN53 andz52.61; the
a i in Table IV apply for any such design.

TABLE IV. Coefficients in the asymptotic expansion of energy
sensitivity. Thea i determine the influence of theQ’s on the noise
temperature. The valued is the fractional bandwidth of the detector
in the lossless limit.

Constant Calculated Theoretical

a1 0.34 1/p 5 0.32
a2 0.41 -
a3 0.40 -
d 0.103 Amtrans/mint50.100
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