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We report on results of computer simulations of spherical resonant-mass gravitational wave antennas inter-
acting with high-frequency radiation from astronomical sources. The antennas were simulated with three-mode
inductive transducers placed on the faces of a truncated icosahedron. Overall, the spheres were modeled with
a sensitivity of about three times the standard quantum limit. The gravitational radiation data used was
generated by three-dimensional numerical computer models of inspiraling and coalescing binary neutron stars
and of the dynamical bar-mode instability of a rapidly rotating star. We calculated energy signal-to-noise ratios
for aluminum spheres of different sizes cooled to 50 mK. We find that by using technology that could be
available in the next several years, spherical antennas can detect coalescing binaries out to slightly over 15
Mpc, the lower limit on the distance required for one event per year. For the rapidly rotating star, we find, for
a particular choice of the radius at centrifugal hangup, spheres are sensitive out to about 2 Mpc. The event rate
is estimated to be about 1 every 10 years at this distd®8@556-282(196)04916-9

PACS numbg(s): 04.80.Nn, 04.30.Db, 95.55.Ym

I. INTRODUCTION ferometers interacting with two possible sources of gravita-
tional waves.

The experimental effort to directly detect the space-time The best understood source of detectable gravitational
ripples known as gravitational waves has been going on fowaves is from inspiraling and coalescing binary neutron stars
35 years, beginning with Weber’'s pioneering work in the[9]. The Laser Interferometer Gravitational-Wave Observa-
early 1960’s[1]. Since then, two main experimental ap- tory (LIGO) has been designed and optimized to detect these
proaches have evolved: cryogenic resonant-mass detectaggents at a distance of 200 Mpc after significant interferom-
[2—4] and laser interferometef5—7]. The sensitivity of both  eter improvement§5]. To accomplish this, it has been de-
techniques is sufficient so that unambiguous detection ofised to be most sensitive at as low a frequency as possible
gravitational waves is expected soon, perhaps within the neXt~200 H2 where the waveform from binary neutron stars is
ten years. The work of Taylor and Hul$8], showing the stronger. However, the waveform at 200 Hz is due almost
orbital decay of binary pulsar PSR 1913-16 is in agreemensolely to theinspiral phase of the binary neutron star evolu-
with general relativity’s prediction for gravitational wave tion and contains virtually no information about theales-
emission, has added to the anticipation of the first directcence As the inspiral is determined by point-mass dynamics,
confirmed detection. It appears possible that a new generghe equation of state for nuclear mattee., neutron stajs
tion of advanced resonant-mass detectors could operate cowill affect only the coalescence waveform. Coalescence also
currently with interferometers already under construction. Atoccurs when the gravitational field between the neutron stars
this time, understanding possible sources of gravitationals strongest, so the effects of general relativity will be more
waves and which experimental technique is best suited tomportant than during the inspiral. To measure these effects,
which source of radiation takes on greater importance. Wé will be necessary to monitor theigher-frequencywaves
endeavor to clarify this by numerically computing energyfrom coalescence in addition to those at lower frequency
signal-to-noise ratios for resonant-mass detectors and intefrom inspiral.

Resonant-mass gravitational wave detectors have been in
use for longer than the interferometric detectors. Resonant-

:Electronic address: gharry@wam.umd.edu mass antennas with bar geometries have been taking data and
tElectronic address: ts88@umail.umd.edu been continually improved since their inception. The use of
Electronic address: hpl@umail.umd.edu spherical geometry as an improvement over bars was first
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suggested by Forward in 19710], and Wagoner and Paik [M.=(M;M,)%¥%(M;+M,)5 [19]], the orbital inclination
later showed that at equal frequencies spheres have an aahd the distance to the source, a result our method did not
vantage over bars in energy cross secfibf]. Recent re- produce. Both techniques provide useful information that are
examination of spherical detectdtk2—15 has generated in- unobtainable by the other.

ternational interest in constructing one or more massive In Sec. Il, we describe the method used for the energy
spherical antennas incorporating advances in transducer techignal-to-noise ratio calculations, how the code that pro-
nology. The possibility of building such an antenna to oper_duced_ the results was written, and what pa_rameters for the
ate concurrently with the first LIGO interferometers appearsPherical antenna we used. In Sec. lll, we discuss the signal
good[16]. The sensitive frequencies for a sphere are highef/@veforms we used as inputs into the model developed in
than those for the first LIGO interferometers, spanning aboup®¢- ! and present the results of jche calculapons. F_mally, n
750 Hz to 2700 Hz in the lowest mode, and therefore theyc’ec' IV, we present our conclusions and discuss ideas for
are well suited to complement interferometer experiments atirther work.

high frequencies. One such advanced resonant-mass detector

can be more sensitive than the first LIGO interferometers Il. METHOD

within a bandwidth of around 100 Hz centered at the quad-
rupole resonance of the sphere and would have a sensitivi%

within that band comparable to what will be achieved by thePrice [20] who showed how to calculate the SNR for a bar

advanced LIGO interferometers. The sphere’s sensitivity isomtenna that uses an optimal filter to process the data.

;gﬂﬁgingae:ta?sfosgl:g\:/? dg'ﬁ?g&?{;#g:ﬁ é‘éﬁﬂ'z;%meir:](zfﬁlrrig?tevensorﬁ21] has shown that for six identical transducers in
tion more easily than LIGQ13] and, properly instrumented, the TIGA geometry and identicd)'s for all five quadrupole

e 2 . modes of the sphere, the SNR of a spherical antenna is iden-
could detect any scalar gravitational radiation that might b%ical to that of a bar antenna instrumented with one of those
present[10,11]. In this paper, when we refer to “high-

o o S . six transducers. Thequivalent barhas an effective mass as
frequency” gravitational radiation, we mean those signals

that include significant strength above 750 Hz. This fre-Seen by the transducer of

guency is where the first LIGO interferometers’ sensitivity _5 (4R 1
begins to weaken from photon shot noise in the lag&rand Merr= s X(37R%)p, (1)
itrr:]eposr[::rincal resonant-mass detector's sensitivity becorm?/vshereR andp are the sphere radius and density. The dimen-

We have looked at the question of whether a spherica?ionl_eSS parametey comes from the radial driving point
detector, or in particular a truncated icosahedraladm'ttance matrix of the sphere at the quadrupolle frequency.
gravitational-wave antenr@IGA) as described by Merkow- F°_f O&g}) 1alfg1|r_1rt:1m fsptheref \év/'éh aE PC;-ISSOI’] ratt|o fOf tr? 33,
itz and Johnsofil4], is capable of observing high-frequency X = 0-301[13]. The factor o in Eq(1) accounts for the

events. Specifically, the coalescence of a binary neutron st ultiple s_phere modes and transducEQ;]. The SNR for_
P y y the TIGA is the same as that for the equivalent bar provided

system and the dynamical bar-mode instability of a single, tos th s d ited by th itational
rapidly rotating star were examined as possible astronomica]"'€ €auates the energies deposited by the gravitational wave
the two antennas. We can now calculate the SNR for the

phenomena that could produce high-frequency gravitationdﬂ . o : .
radiation. Waveforms for these events, generated with co _|mpler case of a bar, while retaining all the information
puter simulations by Centrella’s group at Drexel University,avallable from a sphe_re. . .

were used as input into a mathematical model of a 50 mK The energy deposited in the sphere is calculated from
spherical detector with three-mode inductive transducers
[17]. The energy signal-to-noise ratios obtained from this
model help determine how TIGA's and interferometer ex-
periments can best complement one another.

To calculate the energy signal-to-noise rat&NR) per
it bandwidth of the TIGA, we followed the method of

E=F,2, 2

whereZl, is the energy cross section of the sphgi8,

Coccia and FafonEl8] have also looked at energy signal- G pVo
to-noise ratios from astronomical events in spherical detec- S = _g_gir[_ 3
tors. Our work and theirs are complementary. They looked ¢

solely at inspiraling binary neutron stars as sources, leavin ) )

out the coalescence phase as well as any other highiereVsis the extensional sound speed qf the_spherg mate-
frequency events. Since the inspiral can be modeled acctiidl fo is the quadrupole frequency, aillis a dimension-
rately by point-mass dynamics, they used an analytical exless constant that accounts for antenna geometry and mode.
pression for the waveform. We found it necessary to usdt has the value 0.21513] for a sphere in the lowest quad-
numerical data from computer models to simulate the'upole mode and 0.585 in the first excited quadrupole mode
coalescence. By limiting themselves to the inspiral phasd,13,19. ThroughoutG andc are Newton'’s gravitational con-
Coccia and Fafone were unable to accurately predictant and the speed of light. The total energy ffExis [22]
energy signal-to-noise ratios for higher mass neutron stars
or black holes. For some sphere sizes and compositions
their simulation does not produce results forM 4 neutron
stars, the observed mass for all known neutron stars in
binaries [9]. However, their method was able to show wherew is the angular frequency of the gravitational radia-
that spherical antennas can determine the chirp mag#®n and|h(w)| is the magnitude of the frequency-domain
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amplitude of the gravitational wave. Thus the total energy _ iKirans
deposited in the equivalent bar is j oMygndio= (U= Uijny) + f 2.
5
W PV 2 Here, my; is the effective mass of the antenmgy, is the
E= = ——II|h(wg)|*. (5 ) . .
2 f, mass of the intermediate resonator, ang,,sis the trans-

ducer masskg is the effective spring constant of the an-
We define areffective forcethat acts on the equivalent bar tennak;, is the spring constant that connects the antenna to
[13]: the intermediate mass, ang .. is the spring constant be-
tween the intermediate mass and the transducer mass. The
fer( @) = — Megw®N(w)l e, (6)  spring constants are complex valued and include dissipation.
] ] . . The variablesi, ,u;,;, andu, are, respectively, the velocities
where the relationship betweép; andR is determined as  of the antenna surface at the transducer, of the intermediate
follows. For an impulsive force, the energy is deposited asnass, and of the transducer mass. Applied forces acting on
kinetic energy in the antenna. The eneEgpfter the impulse  the antenna surface and betweep,, andm;, are denoted

is given by by f, andf,, respectively.
) Eliminating u;,, from Eg. (10) allows the equations of
_ [feit(@o)| motion to be written as
E : )
2Meg
ui=y;;f;, 11

Combining Egs(5)—(7) gives
with i and| taking the values 1 to 2. The energy SNR per

2m2pV3 unit bandwidth,o (), then becomep20]
| ff— . (8)
€ meﬁwg a'(w)=K(w)U2 (12)
Then using Eq(1) and the relationship betweesy,V,, and uy(w)|?
R [23] for each quadrupole mode dg; of 0.33R in the = (13
lowest quadrupole mode and 0.H9n the first excited Sh(w)

guadrupole mode are calculated. Using Ej.as the defini- ;
tion of a force on the equivalent bar, the method of Price Carll:rom Ea.(11), o(w) is found to be

be followed exactly. |f1y01]2
The transducer we assumed was a three-mode inductive o(w)= 5 ,
transducer. A three-mode transducer is necessary, rather than Syt Sily2d*+ 2ke TRe(y22) + 2Rey2Sr) (14

the standard two-mode system, to get higher bandwidths,
which are required to reach sensitivities near the standargssuming no force on the transducer, ife=0. Here the

quantum limit. Higher bandwidth reduces the requirement Oforcef- is .. from E : ;

; L g.(6) andT is the physical temperature
the Q of the sphere and transducer. Higher bandW|dth is aIs%f the lspheerﬁe. The matrix;;(w) is the admittance matrix of
useful to cover a !arger spectrum of frequencies and reducg. antenna with transducer defined in Etyl). The four
the need for additional antennas. . terms in the denominator are the individual partsSpfw),

Assuming that a template of the gravitational waveform isy, e yelocity noise. They are, respectively, the additive veloc-
available, optimal filtering can be_used on the output .S'gnaty noise, the force noise, the thermal noise, and the correla-
of the transducer. The optimal filter produces the h|ghes{ion noise. The spectral densities are defined as

SNR possiblg24] and has the form

+ o
e 1etoy* (@ 15) EJ e 1e7(f(t)f(t—7))dT,
(o) = () © Si(w)=| e l*(fOf(t-)
Sn(w)
whereu(w) is the velocity signal of the antenna effective S(w)= Jwe‘i“’f(u(t)u(t—r))dr, (15)
mass andS,(w) is the total velocity noise spectral density, —w
both referred to the input of the optimal filter. The parameter
to is the time at which the SNR is to be optimized. To cal- I T
culateu(w) andS,(w), it is necessary to solve the equations Stu(w)= f_m e l*f(tu(t—7)dr.
of motion for the antenna coupled to the three-mode resonant
transducer. They have the form In practice, these noise terms are found not to vary much
_ _ with frequency in the antenna’s sensitive range. It is often
iKint JKeft convenient to parametrize these spectral densities with three

jomgguy=f;— —(Ujr—Uq) + ug,
J effUr =11 w(lnt 1) o U1

values; noise temperatuflg,, noise resistance,, and noise
reactance, . They are defined as

. jkint jktrans
J wmintuint:T(uint_ up)—

(UZ_ uint) - f2,
(10

1
Tn:k_B\/SfSu_[lm(Sfu)]za (16)
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S [Im(Sq)|2 structed[28], but they are not useful for inductive transduc-
rn= ——( ) , (17) ers because of their low input coil inductance. Getting a suit-
Sy Sy able quantum-limited SQUID is an area of intense research.
Wellstood'’s group at the University of Maryland is develop-
— IM(Su) (18) ing a quantum-limited SQUID for use in a gravitational wave
" ST transducer. The best noise temperature they have achieved in

a SQUID with high enough inductance to couple to the trans-
where kg is Boltzmann’s constant. For simplicity, we set ducer coils isT,~28iwo/kg [29]. The prospect of ap-
Im(S;,)=0. Although, in general, the correlation between proaching the quantum-limit in a practical SQUID in the
the force and velocity noise is nonzero, the effects of a nonnext several years looks real. With proper matching, the
zero Sy, can normally be accounted for by a renormalizationtransducer noise is limited by the noise of the SQUID, so the
of the transducer spring constd@0]. The real part o, is  value of T, in Eq. (16) becomes equal td@,. The noise
normally zero when a superconducting quantum interferencgesistance is,,=kg/4wf,, wherekg is the real part of the

device(SQUID) amplifier is used. spring constank,,.s that is due to the electrical interaction
Once a complete expression fe(w) has been obtained, between the transducer mass and the pickup coils. The ratio
the energy SNR can be calculated from ke /Kyansis the coupling between the electrical and mechani-

cal parts of the transducer. For the vakie, we took the
product 3.7& 108 N/m3x coil area, based on measurements
made in our laboratory at Marylari@0].

Taken together, these parameters define the overall sensi-

Note that we have consistently used a double-sided spectrflyity of the antenna. Energy sensitivify; is defined as
density in contrast to the single-sided convention adopted by E

LIGO. By putting in numerical values for all parameters, this E.=— .
integral can be evaluated. For many of the parameters below, ® SIN

we chose values beyond what has been demonstrated expetri- . e :
mentally so as to represent an advanced spherical detect(a.'s useful to express this sensitivity in relation to the stan-
i

1 [+
S/N:Zf_w o(w)dw. (19

(20

Such an advanced detector could operate concurrently wit,ard quantum limit, the minimum sensitiyity possi_ble using a
the first LIGO interferometer as a result of aggressive re- near amp_llfl_er[Bl]. Expressed as .a.mult|ple of this standard
search and development efforts now being planfiedl. quantum limit, the antenna sensitivity becomes

Some of our parameter values are only slight extrapolations

beyond currently demonstrated values, while others are in- N= .
stead upper bounds to the technologies being pursued. A hawg
detaled consideration of he research burden (0 meet €2ch % a comparison for the numerical result, we calculate an
stated in the introduction, our motivation is to clarify how approximate value ol from
such spherical detectors could complement the interferom-

eter experiments by examining the detectability of high fre- N
guency events. We feel it is likely that resonant-mass detec-

tors with an energy sensitivity approaching that derived with
our parameters can be developed and built to operate withig and «; are also defined and computed in the Appendix
the time frame between the completion of the first LIGO ' '

ientteerrsferometers and the operation of advanced interferomgxrzsetgu;glgvéh?néagggz?féi\j;;s: Qefr Qint: AN Qurans 3

We chose to model aluminum spheres at a physical tem- N~1.0+0.96+0.87+0.78~3.6. (23
perature of 50 mK, instrumented with six identical sets of
three-mode inductive transducer systems located with the We calculated SNR's for eight different spheres. The di-
dodecahedral TIGA geometfil4]. The lowest temperature ameter of the lowest-frequency sphere was chosen to be the
that an aluminum bar antenna has been successfully coolégrgest size that might be constructed, 3.25 m. The size of the
to is 95 mK[25]. Two-mode transducers are in use on ahighest-frequency sphere was chosen so that its lowest quad-
number of operating cylindrical resonant-mass antennarupole frequency coincides with the peak in the spectrum of
[2—4] and a three-mode system has been demonstrated at 4tKe coalescing binary neutron star data. This peak is at twice
in a smaller, test antenid6]. A constant mass ratio between the rotation frequency of the transient, barlike structure that
the effective mass of the sphere and the intermediate mass &8ms immediately after coalescenf@2]. This assumption
well as between the intermediate and transducer masses gives a sphere diameter of about 1.05 m. The remaining
100:1 was used, and all mechanical quality factogssf{  sphere sizes were chosen to give reasonably continuous cov-
were assumed to be #QLC°. The highest mechanicg) that  erage of the frequency band 750 Hz to 2700 Hz. In addition
has been obtained in an inductive transducer is 2@ [27].  to transducers tuned to the lowest quadrupole mode of the

The transducer electronics were assumed doab9 cm  sphere, a system tuned to the first excited mode was exam-
diameter inductive pickup coil attached to a SQUID ampli-ined. Coccia, Lobo, and Ortedd5] have shown that the
fier with a quantum-limited noise temperature, i.e.,cross section of the excited mode of a large sphere is 2.72
Ts=1lhwy/ks. Quantum-limited SQUID’s have been con- times greater than that for the lowest mode of a small sphere

Es

(21)

kg
Nﬁ_wo

T+T( ! + ! + S” (22)
* 8\ a1Qefr @2Qint  @3Quand |

Equation(22) is derived in the Appendix. The parameters
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FIG. 1. The strain spectrum of the eight spherical antennas in FIG. 2. The strain spectrum of the eight spherical antennas in
the lowest quadrupole mode, shown with solid and dashed lineghe first excited quadrupole mode, shown with solid and dashed
The different line styles have no significance other than to differ-lines. The different line styles have no significance other than to
entiate the separate strain spectra. The upper dotted line shows tHiferentiate the separate strain spectra. The upper dotted line shows
strain spectrum for the first LIGO interferometer and the lowerthe strain spectrum for the first LIGO interferometer and the lower
dotted line shows the strain spectrum for the advanced LIGO interdotted line shows the strain spectrum for the advanced LIGO inter-
ferometer, for reference. The spherical antennas, each with a sengérometer, for reference. The spherical antennas, each with a sensi-
tivty about 3 times the standard quantum limit, are more sensitivaivity about 3 times the standard quantum limit, are more sensitive
than the first LIGO interferometers in a bandwidth of about 100 tothan the first LIGO interferometers in a bandwidth of about 200 to
300 Hz each and together span a total bandwidth from 750 to 270600 Hz each and together span a total bandwidth from 1350 to 5100
Hz. In this band, the spherical antennas are a little less sensitivielz. In this band, the spherical antennas are about equal to the sen-
than the advanced LIGO interferometers. sitivity of the advanced LIGO interferometers.

at the same resonance frequency. This allows the calculdirst LIGO interferometers from 750 Hz to 2700 Hz in the

tions of SNR’s for the higher mode. lowest mode and from 1350 Hz to 5100 Hz in the first ex-
Figures 1 and 2 show the sensitivities of the eight spheresited mode. In these frequency regions LIGO's sensitivity is

in the ground state and excited state, respectively. These figonstrained by photon shot noise in the lagéis

ures also show the sensitivity of the first LIGO and advanced

LIGO interferometers for comparison. The data graphed is lll. SIGNALS AND RESULTS

the strain spectrumof the detectorsh(w), defined as In order to integrater(w) and obtain the SNR for the

Th(w)]? spherical antenna, numerical values for a gravitational wave-
(@=No(w)

=
e

(29)

The strain spectrum is a measure of what frequency distribu-
tion an incoming gravitational wave would have to have in
order to produce an output in a noiseless detector that mim-
ics the output of the real detector’s noise. It is a useful way to
compare detectors because it is independent of source wave-
form and thus is solely a characteristic of the antenna. The
energy SNR per unit bandwidthr(w), is related to the
guantitiesh. andh,,s used by LIGO as defined in Rg¢6] by

1 h,
o(w)= (

2
. (25

HE W W W

1000 2000 3000 4000 5000
f (Hz)

~2f

hrms

Using these quantities, a value for the SNR of LIGO is often

. ; 5 ;
e_stlmated as the ma>_(|mu_m value [“C/(‘/ghrmg] , which FIG. 3. The frequency-domain gravitational waveform averaged
gives a rough approximation to the integral in EE9). _The_ over source orientation from the inspiral and coalescence of two
factor of \/E is necessary to convert to “random direction o,tron stars with mass M4, and radius 10 km at 15 Mpc from
and polarization™[33]. . the antenna. The sharp cutoff at 300 Hz is due to the finite extent of

These figures show that the spherical resonant-mass afke time-domain data. The spectrum from 300 to about 1000 Hz is
tennas have a sensitivity intermediate between the first angue mainly to the inspiral phase. The frequerigy,= 1566 is the
advanced LIGO interferometers within a fractional band-dynamical instability frequency. The peakfat 2500 Hz is associ-
width of about 10% each. The collection of all the TIGA’S, ated with the transient barlike structure that forms immediately fol-
or the “xylophone,” is a more sensitive detector than thelowing the onset of coalescenfa?).
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form from an astronomical event are needed. For inspiraling TABLE I. Energy signal-to-noise ratios for binary neutron star
and coalescing binary neutron stars, we used the waveforgvolution in the lowest=2 mode of the sphere. The distance to the
published by Zhuge, Centrella, and McMill§82]. We Fou-  neutron stars is taken to be 15 Mpc and each neutron star has a mass
rier transformed the time-domain data using the conventio®f 1.4Mo and a radius of 10 km. The waveforms have been aver-
h(w):fojme—jwth(t)dt_ Although the calculation by Zhuge aged_ over source an_d detector angles. The |nd|V|d_ugI spheres have a
et al.is among the most complete available, it is still only aSenSitivity about 3 times the standard quantum limit. The row la-
first survey of how binary neutron stars may behave. In par2€'€d "Xylophone™ is obtained by summing the signal-to-noise ra-
ticular, it models gravity with a purely Newtonian formula. tios for each sphere.

The inclusion of general-relativistic corrections may signifi- Diameter Frequency

cantly change the orbit and lead to differences in the wave-

form. Our results derived using this waveform should be (m) (H2) Coalescence _Inspiral _ Total
seen in this light. 3.25 795 0.0113 10.6 11.3

The frequency-domain waveform for the inspiral and coa-2.75 940 0.00985 5.79 6.28
lescence phase of the binary neutron star evolution is shows 35 1100 0.0146 3.43 3.88
in Fig. 3. Zhugeet al. generated the waveform using a three-» gg 1292 0.00948 1.40 1.64
dimensional numerical simulation which models the neutron; 7o 1520 0.00853 0.907 1.09
stars as nonrotating polytropes. The neutron stars were chg@-,g 1782 0.0104 0558  0.719
sen to have equal masses of M4 each, since all known 4 o5 2096 0.0197 0.285  0.449

cases of neutr_on stars in binary systems have this f@dss 1.05 2461 0.126 0.0886 0407
Initially, the distance between the stars was chosen to b
. L - ylophone 0.210 22.8 25.6
much larger than the diameter of individual stars, so tidal_: :
s L . .First LIGO interferometers 0.00406 58.2 58.8
gravitational effects are negligible. Thus, the stars are origi-
nally spherical, with a radius of 10 km. The initial orbit was
chosen to be nearly circular and it evolves due to Newtonian
gravity with a frictional term added to simulate the energy hy,=
loss to gravitational wave emission. When the stars spiral c
together, tidal distortions in each star’s shape grow large . . .
e R A S A
Once the separation between the stars is comparable go— 15 Mpc, the approximate distance to the Vir o.cluster of
the neutron star’s radius, hydrodynamic effects become im'glaxies[%é] Thispgistance is estimated b Phinr%@}to be
portant and an approximation of the nuclear equation of stat : S y
: - elow the most optimistic value to get 3 events per year, 23
is required. Zhuget al. used . . i
Mpc. Scaling from this value, about 1 event per year is pre-
L1 dicted at 15 Mpc in this optimistic limit.
P=Kp (26) The waveform from the Newtonian inspiral with friction
was then meshed onto the waveform from SPH by Zhuge
as the equation of state, whelReis pressurep is density, et al.to get a complete waveform for the whole binary neu-
K is a constant that measures the specific entropy of th&on star evolution. Since the orientation angles of the binary
nuclear matter, ana is the polytropic index. A value of System are not knowa priori, and in fact are values that the
n=1 was used for the waveform we analyzed. Smooth parspherical antenna can determine experimen{di}, we av-
ticle hydrodynamic§SPH is then used to model the coales- eraged the waveform over these unknown angles. This aver-
cence phase once the equation of state is specified. aging is done so that the energy per frequenldy/df, radi-
The gravitational waveform was calculated from the com-ated by the binary system is held constant. Thus, in(&g.
plete orbit of the binary neutron star system using the quad- ) ) )
rupole approximation by Zhuget al. This approximation ig- [h(w)|*=([h;(@)]*+[hy(w)]%), (30)
nores contributions from mass moments higher than the h q I les. It i
quadrupole, but is valid for nearly Newtonian sour¢2g|. V;: ere(. '];> enhote{s a?} avergg'e:_ov%r a dsource argjg es. Itis
In the transverse-tracele€ET) gauge, the gravitational wave this waveform that is shown in Fig. 3 and was used as input

amplitude is in Eqg. (14).
P Once a numerical expression for the wavefdrm) was

made available to us, it was possible to obtain SNR’s for the
hTT:E E'I'_TT 27) eight spheres with the diameters shown in Table I. To do
et this, the integral in Eq(19) must be evaluated. Performing
this integration with thé(w) from Eqg. (30) gave the SNR’s
wherel is the second time derivative of the reduced quadru—!,r:(;r:)epﬁglrluerfr}smvar]:?dantogﬁ;y'no;rz‘ﬁliigh-lt—h_ﬁ g;\V,VS n;i'[itlzd
pole mass moment of the source. The amplitude of thef ) . :
“ ” “ ” ot o ogether could accomplish and is the sum of each SNR in the
plus angl ; croshs b olla rlzatljo_ns of the gravitational wave, rogvs above. The rowpmarked “first LIGO interferometers”
tes, . T . . .
expressed in spherical coordinates, are is for comparison with the first LIGO interferometers and
was calculated by using the same waveform integrated with
E('I' . 28) the strain spectrum published for LIGB]. Since the wave-
re 00 ek form is of finite extent in time, the frequency domain data is

G

7

=N

G
~Z
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TABLE II. Energy signal-to-noise ratios for binary neutron star 23
evolution in the first excited=2 mode of the sphere. The wave-
forms have been averaged over source and detector angles. The
distance to the neutron stars is taken to be 15 Mpc and each neutron
star has a mass of Mk, and a radius of 10 km. The individual
spheres have a sensitivity about 3 times the standard quantum limit.
The row labeled “xylophone” is obtained by summing the signal-
to-noise ratios for each sphere.

Diameter Frequency

(m) (Hz) Coalescence Inspiral Total
3.25 1528 0.0235 2.43 2.93
2.75 1806 0.0289 1.45 1.88 107 . ' . ' : '
2.35 2113 0.0593 0.679 1.13 0 1000 (sz‘))oo 3000
2.00 2483 0.349 0.222 1.09
1.70 2921 0.0688 0.0448 0.224 FIG. 4. The frequency-domain gravitational waveform averaged
1.45 3425 0.00709 0.00591 0.0252 over source orientation from the bar-mode instability of a rapidly
1.25 3973 0.00111 0.00150 0.00513 rotating star of mass 1M and radius at centrifugal hangup of 20
1.05 4729 0.000674 0.000733 0.00279 km at a distance of 1 Mpc from the antenna. The primary peak at
Xylophone 0.538 4.83 729 1765 Hz is twice the rotational frequency of the star.
First LIGO interferometers 0.00406 58.2 58.8

mode of the antenna. The same physical parameters were
used to model the spheres and the same waveforms used as

not accurate below 300 Hz. In order to get a reasonable valug@gnals. This data is shown in Table II. .
for the SNR of LIGO, it was necessary to extrapolate the Binary neutron star events are the best understood signals
data below this cut off and into LIGO’s sensitive region. We for gravitational wave detection, but because of the high op-
did this with the analytical waveform in Eq44) of Ref.  erating frequency of spherical antennas, other astronomical
[33]. Note that this equation as published has a factor of Bources may be important for the spheres. One possible high-
error. The valuer/12 should be instead/6 [34]. We used frequency signal is from the dynamical bar-mode instability
the corrected version for the extrapolation. It was also necOf a rapidly rotating star. This event may be detectable by
essary to divide the LIGO SNR by a factor of 5 to represengPherical antennas provided the star is compact enough. The
a wave with random direction and polarizatif@3]. This  Stellar radius that this event occurs at is uncertain. This in-
correction is unnecessary for the spherical antennas becaug@bility has been investigated by Smith, Houser, and Cen-
they are equa”y sensitive in all directions. trella [36] and it is their numerical waveform data that we
To determine how effective the TIGA’s can be in obsery-used. _ 3
ing the coalescence phase of the binary neutron star evolu- Figure 4 shows the spectrum for the bar-mode instability
tion, we separated the waveform into two parts. The inspirayhich develops following “centrifugal hangup” during the
occurs fromt=0 s tot=0.234 s, and the coalescence occurstore collapse of a massive star. This gravitational waveform
from t=0.234 s tot=0.241 s. This division of time was Was generated by Smitét al. using three-dimensional nu-
chosen so that the instantaneous frequendy=8t234 s co- merical simulations which modeled the star as a polytrope,
incides withfq,,,, the dynamical instability frequency iden- With equation of state
tified by Zhugeet al. as the frequency where the neutron
stars cease to act as point masses. The separate time-domain _P¢
. ‘ X P . (32
waveforms were then multiplied by a Hahn windowing func- n
tion [35] before Fourier transforming, to ensure that the di- _ _ . _ o
vision was smooth and no spurious high-frequency signallereP is pressurep is density,e is specific internal energy,
were artificially created. The SNR'’s obtained from each ofandn is the polytropic index. A value af=3/2 was used for
these separate waveforms are shown in the columns markéae waveform in our simulation. A total mass of M4, was
“inspiral” and “coalescence,” respectively, in Table I. assumed, as the star is expected to end up as a neutron star.
With the results, we can calculate the energy sensitivityAn equatorial radius for the centrifugal hangup of 20 km was

E, achieved by the spheres from E80). The energy depos- also assumed. This is the radius where the star’s collapse is
ited in the 3.25 m sphere in the lowest mode isarrested by the centrifugal effects from the rotation. A real-

1.79<10 2°J, from Eq.(5). Thus, with a SNR of 11.3, istic value for this radius is not known, but could range from
as high as 3000 km down to as low as 10 [8i]. The initial
1.79x10 0] rotation had a ratio of rotational kinetic energy to gravita-
Be=—q15 =30, (3D tional potential energy of-~0.30. Newtonian gravity was

assumed and the gravitational radiation produced from the

in good agreement with the approximate calculation in Eqdynamical bar-mode instability was calculated in the quad-
(22). rupole approximation, as with the coalescence waveform.
We also calculated SNR’s for the spheres instrumentedack reaction from gravitational wave emission was ignored.
with resonant-mass transducers tuned to the first excitedlhe bar mode, i.em=2 mode, was used as it is expected to
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TABLE IIl. Energy signal-to-noise ratios for the rapidly rotating for frequencies above 3500 Hz. However, we believe it is
star waveform fof =2 modes of the sphere. The waveforms havesafe to assume that the frequency-domain data would remain
been averaged over source and detector angles. The dashes for fhglow h(w)=10’25 Hz ! and thus the SNR’s for these
excited mode of the 1.45, 1.25, and 1.05 m spheres represent thgree spheres would be negligible.

fact that the signal data cuts off below the resonance frequency of The secular instability can develop forvalues greater
these modes. The distance to the star is taken to be 1 Mpc, the magsan 0.137938]. After the dynamical instability has run its

T o o srtius_goure, Houscet l. i he sysiem s evoled b a near
tivity about 3 times the standard quantum limit. The row labeled isymmetric state with a core having=0.26, which is

. o . . . i ; above the secular instability limit. Lai and Shapj&8] have

xylophone” is obtained by summing the signal-to-noise ratios for . : . o . .
investigated the secular instability which may develop in

each sphere. . . . . . .
which a Maclaurin spheroid evolves into a Dedekind ellip-

soid producing a gravitational wave signal sweeping in fre-

Ground state Excited state : )

Diameter Frequency Frequency quency from possibly near 1 kHz down to zero. A d]fferent

m) (H2) SNR (H2) SNR type of secular evolutlon _would apply |f.the calculations of

Durisenet al. [40] or Williams and Tohling[41] correctly

3.25 795 0.0661 1528 19.5 predict the end point of the dynamical instability as a bar
2.75 940 0.220 1806 25.0 surrounded by a ring, rather than the spheroid found by
2.35 1100 1.22 2113 1.08 Houseret al. If a rapidly spinning bar is produced, the secu-
2.00 1292 4.75 2483 0.00434 lar evolution changes the bar from a Jacobi-like ellipsoid into
1.70 1520 6.95 2021 0.00278 @ Maclaurin spheroid with a gravitational wave signal from
1.45 1782 9.91 3425 - 500 Hz to as high as 3 kHz.
1.25 2096 0.935 3973 . Lai and Shapiro give analytical waveforms for these two
1.05 2461 0.00168 4729 . different secular instabilities. For the sameN 4 star at 1
Xylophone 241 456 Mpc with a radius of 10 km averaged over all source and
First LIGO interferometers 0.197 0197 detector angles, the Dedekind waveform would give an en-

ergy SNR of 2000 in the 3.25 m diameter sphere and 1200
for the first LIGO interferometers. Such a strong signal

be the fastest growing mod&6]. This waveform was gen- Would_ be detecyable even at the \_/irgo cluster distance. How-
erated for thedynamicalbar instability, which is driven by ~€Ver. itseems likely that the starting frequency for the Dede-
Newtonian hydrodynamics and gravity rather than seeu- kind evolution will be.w.el_l .below .the. spherlcal detector’s
lar instability, which is due to dissipative processes such afand unless the star is initially spinning just below the dy-
gravitational radiation reaction. The dynamical instability de-"amical instability limit and is nearly incompressible. In or-
velops on a time scale of about one rotation period while th&er for the starting frequency of this event to exceed t’he 795
secular instability grows over several periods or even moréiZ frequency of the 3.25 m sphere, Lai and Shapiro’s Fig.
slowly. The choice ofr=0.30 is just above the dynamical () indicates one needs a polytropic index<0.7 for
stability limit of 0.2738[38] and thus is a reasonable ap- 7=0-26, while evem=0 does not suffice for<0.24. In
proximation for a star that spins up, due to collapse or accrecontrast, the frequency span of the signal from Jacobi-like
tion, and becomes dynamically unstaf8é]. The star’s evo- evolution seems to have a higher possibility of over_Iap with
lution was simulated by Smitét al. using SPH and from this the band covered by the spheres; however, the chief uncer-
evolution the gravitational waveform is calculated by usingt@inty for that signal is whether or not the dynamical insta-
Eq. (27). bility pr_oduces a spinning bar _rather t_han a spherdr_id.
The choice ofr, the distance from source to detector, is Jacobi-like evolution occurs and its starting frequency is be-
not as simple as for the binary neutron star. There is les!9W 800 Hz, then the signal computed by Lai and Shapiro is
observational evidence for stars with bar-mode instabilities2 VETY strong source for a big sphere: we calculate an energy
Such rapidly rotating stars may be formed from supernovae>NR 0f 4000 for a 3.25 m diameter sphere and an energy
so the rate of supernovae might be taken as a reasonabé{;é\‘R of 240 for the first LIGO interferometers from a wave-
guide to the rate of this gravitational wave event. Out to thdOrm averaged over all angles and a source distance of 1
Virgo cluster of galaxieg15 Mpo), the supernovae rate is Mpc.
estimated at a few per yeg89]. We took the source distance
to ber =1 Mpc, which has an estimated event rate of 1 every
10 yearq 39]. Once the magnitude of each polarization state
was evaluated, the same average over angles as i(38q. The results in Table | for the spherical antenna tuned to
was performed to give the waveform shown in Fig. 4. Thethe lowest quadrupole frequency interacting with gravita-
SNR’s were calculated by using the method described irtional radiation from binary neutron stars shows that spheri-
Sec. Il. These values are shown in Table Il for both thecal antennas operate at a level that is complementary with
ground state and the first excited quadrupole modes. Thihe first LIGO interferometers. The largest sphere obtains an
1.45 m, 1.25 m, and 1.05 m diameter spheres do not havenergy SNR of 11.3 at a distance of 15 Mpc. If a SNR of 10
data listed for the excited mode because the frequencyin this detector is a sufficient threshold for a three-way co-
domain waveform cuts off at 3500 Hz, which is below theincidence experiment, then a source with angle averaged
resonance frequencies of these spheres. This is because 8teength could be detected out to a distance of 15.9 Mpc.
granularity of the time domain data provided was too greatVith the most optimistic estimate of the coalescence rate, 3

IV. CONCLUSION
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events per year out to 23 MA8], the expected rate of de- The data for the rapidly rotating star shown in Table 11l is

tectionry is more encouraging. For the ground state modes, the 1.45 m
sphere has its frequency near the peak of the spectrum and

~[15.9 Mpg 3 obtains a strong SNR of almost 10. The two spheres with

rq=1.15x3 yr 1(23—Mpcc) (33  quadrupole frequencies below the resonance of the 1.45 m

sphere also have strong SNR’s, about 7 and 5. Further away
, from the peak, SNR’s fall off rapidly, especially on the high-
=115 yr~ (34) frequency end. The SNR goes from 0.935 for a sphere diam-
eter of 1.25 m to well below 1 for a diameter of 1.05 m. Thus
The factor of 1.15 is due to statistical preference for anglesvith only two antennas the peak signal can be easily found,
that give high SNR’'gsee[33] for detailg. For detection of provided their sensitive frequencies occur at the appropriate
gravitational radiation from binary neutron stars at a distancgositions.
of 15 Mpc, a 3.25 m diameter aluminum sphere near the The first excited state data is similar to the ground state,
standard quantum limit will be sufficient. The upper limit on showing strong SNR’s when the sphere’s quadrupole fre-
the event rate at this distance is about 1 coalescence per yeagency is at or near the 1765 Hz peak. In the excited mode,
[9]. however, this occurs between the 3.25 m and the 2.75 m
Table | also shows that a large sphere instrumented at thdiameter spheres. With larger masses, these spheres have
lowest quadrupole frequency does not hold out much hope diigher energy cross sections and thus obtain much higher
seeing the details of binary neutron star coalescence. EveBNR’s. A SNR of 25, from the 2.75 m sphere in the excited
the 1.05 m diameter sphere, whose size was chosen so thgifite, represents such a strong signal that the source position
the lowest quadrupole mode was at the maximum of then the sky could be located to within almost 0.13 steradian
coalescence wave spectrum, does not manage to reach a SNE]. As with the ground state data, there is a sharp drop in
of 1. As the frequency of the sphere goes up, the radius, an8NR to effectively zero about 500 Hz above the peak fre-
with it its mass, goes down. At frequencies where the waveguency, making location of the peak frequency possible.
form from Zhugeet al. is strong, the energy cross section of  The rapidly rotating star waveform was generated by as-
the sphere is too small to detect much. This raises the quesuming a total mass of 1Ml and a centrifugal hangup at 20
tion of the reliability of the numerical waveform, especially km. The location of the peak frequency, which is twice the
of the frequencyf ..« associated with the barlike transient. rotation frequency of the star, is very sensitive to the values
According to Centrella[42], the qualitative shape of the of these parameters. It can be as low as 1 Hz for M1,0
waveform is fairly reliable, but the exact position of this 3000 km star up to 6000 Hz for a 20, 10 km star 37].
peak and other structures may change as numerical relativitgince the appropriate values for these star parameters are not
techniques improve. Iff ., Were to be found at a lower known, and in fact are values we could hope to determine
frequency, closer to the lowest quadrupole mode of one ofrom gravitational wave data, actual signals from this source
the larger spheres, the prospect for a SNR greater than 1 faould potentially be outside the sensitive range of spherical
the coalescence phase might improve. antennas. A peak frequency above about 2500 Hz, corre-
The data in Table Il for spheres sensitive at the first exsponding to a 1Mo, 10 km star, would be extremely dif-
cited quadrupole mode to inspiraling and coalescing binaryicult to detect outside our galaxy. This would limit the num-
neutron stars appears a little more promising for the detedser of events to a few per century. Detecting these higher
tion of coalescence. The largest sphere still has the higheftequency signals depends on the accuracy of the current
overall SNR, but it is reduced from its value in the groundtemplate, especially the secondary peak in Fig. 4 at 400 Hz.
state. The 2.00 m diameter sphere, with an excited quadriMany details of the rapidly rotating star’s evolution are not
pole frequency of 2483 Hz, is now the sphere tuned towvell understood and this waveform may undergo substantial
fpear: It does not quite manage a SNR of 1 either, but it doeshanges as the field of numerical relativity advances.
have a higher SNR for the coalescence than for the inspiral A xylophone of a 3.25, 2.75, 2.35, and a 2.00 m diameter
phase, as do the 1.70 m and 1.45 m spheres. sphere instrumented at both the ground state and the first
The data in Tables | and I, taken together, suggest that axcited quadrupole state working along with LIGO, as sug-
xylophone of spheres acting collectively and in collaborationgested for the inspiraling and coalescing binary neutron stars,
with LIGO may be the best approach to detection of binarywould do an effective job of searching for rapidly rotating
neutron star coalescence. The smaller spheres do not contristar events. For favorable mass and radius parameters, the
ute much to the xylophone SNR, so four spheres, from 3.2%xcited state of the 2.75 m diameter sphere would be sensi-
m to 2.00 m in diameter, would be enough to give most oftive, with a SNR threshold of 10, out to 1.6 Mpc. This will
the xylophone benefits. If these four spheres could be instribe sufficient to observe one event every decade, provided
mented at both the ground and the first excited quadrupoleearly all type |, and type Il supernovae are sources of this
frequencies, a fairly wide spectrum, from 750 Hz to 2700 Hzevent[39]. This xylophone would also determine the star’s
continuously, could be monitored. The spheres could rely omotation frequency, as a large SNR would be seen in the
LIGO to provide a high SNR detection of the inspiral. Oncemore massive sphere and effectively nothing would be seen
the event is discovered, the spheres would have the less the smaller. This would locate the peak frequency, and
strenuous task of identifying and analyzing the high fre-hence the rotation frequency, to within a few hundred hertz.
guency coalescence. Thus, even the modest SNR’s found Megative results from such a xylophone would restrict the
our work may still prove useful in gathering astrophysical parameter space, providing data about neutron star develop-
data on coalescing binary neutron stars. ment and equation of state. The xylophone covers a fre-
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guency range corresponding to hangup radii between 45 krany for invaluable computer assistance and comments. This
down to 15 km. The broadband interferometers have diffiwork was supported by NSF Grant No. PHY93-12229.
culty detecting this dynamical instability, but do have a high
SNR for the secular instability. Since these two gravitational
wave events may occur in succession, a collaborative effort APPENDIX: ASYMPTOTIC EXPANSION
between spheres and interferometers would prove effective OF THE ENERGY SENSITIVITY
as with the binary neutron stars.

In this paper, we have compared broadband interferom
eters with resonant-mass antennas for detection of high fr
guency gravitational radiation. Another possible techniqu

for detecting high frequency events involves dual-recycle ashion, useful insight into the dependenceEgfon the de-

interferometerg43]. This approach allows laser interferom- ector parameters comes from considering the asymptotic be-

eters to become much more sensitive within a narrow banc{i - S L
) > vior for theQ; roaching infini indi Eq.
width at the expense of sensitivity elsewhere. Krolak, Lobo,(zaz)0 or theQ; approaching ty as indicated by Eq

and Meerg43] have looked at SNR's for inspiraling neutron First, consider the lossless case when(i8 are infinite.

e ol S Then Ref;) i zer, and PrcEZn) shovis hat he expres
P P y sion for o(w) can be rewritten exactly as

waveform. Their results for the unrecycled LIGO are in close

agreement with ours. Further investigations of SNR’s com-

paring spherical antennas with dual-recycled interferometers en(w)

is being done at Calted84]. o(w)= KeT (A1)
In addition to the astronomical sources of gravitational "

radiation that we investigated here, there may be other high

frequency signals potentially detectable in detectors optiwhere

mized for the 1-2 kHz band. Events that might produce

high-frequency gravitational waves include coalescence of a

neutron star with a black hole or a black hole with a second en(w)=

black hole[19], asymmetric core collapse and bounce in su-

pernovad 19|, spinning neutron staf€l4], and cosmic string

vibrations[45]. Especially promising may be the black hole T, is the mechanical amplifier noise temperature defined by

coalescences and spinning neutron stars. Excitation of thgq. (16), and

high-frequencyf f~1200-3250 Hz (1M /M) [46]] black

hole quasinormal modes would give a relatively strong sig- )

nal at kilohertz frequencies. A gravitational-wave antenna Zn=Int Xy (A3)

detection of this radiation could provide the observational

“smoking gun” to confirm the existence of black holes. Ex- s the mechanical amplifier's complex noise impedance, de-

perimental evidence of gravitational radiation from blackfineq by Eqs(17) and(18).

hole coalescence would undoubtedly also provide great in- ag price[20] explains,e,(w) has the following physical

sight into relativistic gravity. Spinning neutron stars are ajnterpretation: it is the spectrum of the energy which would

periodic source that could radiate strongly for mort].  pe issipated im, if the signal were applied when the am-

The frequency of the waves would be twice the rotation peyjifier had been replaced by its input impedance plus an ad-

riod, often above a kilohertz, and details of the wave wouldyitional mechanical impedance equalzp. If f(w) varies

tell much about the structure of neutron stars. According t9ittle over the band where, (o) is large, then the signal is

Thorne,[19] “the deepest searches for these nearly periodicypnroximately an impulsive force which deposits the energy
waves will be performed by narrow-band detectors , e.g.,

dual recycled interferometers or resonant-mass antennas.”

We call on the numerical relativity community to continue to _ |f1(w0)]?
develop reliable waveforms for all possible high-frequency E= 2Mgg
events. It is only through the combined efforts of everyone,

interferometer and resonant-mass experimentalists, as well as ) ) . )
numerical and analytical theorists, that confirmed, direct delnitially all in antenna motion. Since the hypothetical detec-

tection of gravitational radiation will become a reality. tor with z, inserted is assumed lossless exceptrfgreven-
tually 100% of the energ¥ ends up being dissipated in

r,. Thus from this physical argument we have

Equation(20) defines the energy sensitiviB, as the ratio
of E, the energy the signal would deposit in a bare antenna
‘?hitially at rest, to the SNR calculated by integratingw)
iven by Eq.(14). Although we calculate& directly in this

(A2)

(A4)
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» de TABLE IV. Coefficients in the asymptotic expansion of energy
S/IN= J z—o(w) (AB) sensitivity. Thea; determine the influence of th@’s on the noise
i temperature. The valugis the fractional bandwidth of the detector

in the lossless limit.

> dw e
= f Z_w kn('(lf)) (A7) Constant Calculated Theoretical
—»£T Kglp
ay 0.34 1k = 0.32
a; 0.41 -
__E ' (A8) @ 0.40 -
kBTn ) 0.103 \ mtrans/mim= 0.100

provided f; and T, vary little over the frequencies where
e, is significant. Hence, for an impulsive fordé;=kgT,, in 1 1 To
the lossless case independent of the other detector param- _%_(1_—0), (A15)
eters. Tp T TnQerr26fo
Next, consider the case where @lIs are infinite except
that for the antenna. Then the antenna dissipation produces a
thermal force noise acting omg; with spectral density

2kg TMegwo/ Qe Therefore, Eq(14) becomes To=Th Q 577 as Qeff— . (A16)
o(w) When otherQ’s besidesQ.¢ are also finite, analysis along
|f1y21]2 the lines above is more cumbersome, but one finds
Syt SilY2d*+ 2Rey5S1y) + 2kg T(Megwo/ Qe [Y 21
(A9) T N
. . o P Ipwen (AL7)

For convenience, we define the energy sensitivity expressed =

in temperature units to bg;, the detector’s pulse-detection

noise temperature: where the constants; can be determined numerically. Com-
parison with Eq(A16) shows thatw,=1/7r always. Thus, a

keT,=Es. (A10) higher fractional bandwidths reduces the effect of finite

Q'sonT,.

Motivated by Eq.(26) in Price[20], we use Eqs(Al) and Price[20] argues that a clever choice of the masses and

(A2) to rewrite Eq.(A9) in terms ofe,(w), and then expand springs to maximize’ for a given value of , is the optimal

the integral for SNR to first order i@e‘ﬁ1 and use Eq(A5): design strategy, and that a design in whiglfw) is made
“optimally flat” is nearly optimal in this sense. However, in
this paper, we have chosen the simpler design originally pro-

SIN=—— (A11)  posed by Richard47] which has constant successive mass
kgTp ratios since we find both designs give similar values for
T,.
= dow ey(w) 1 The values ofe; for i=2 depend on the masses and
_f_mﬁ KT, 1+ (Tog/ T.Ou[ex(@)/E] springs chosen for the detector design. The values for

aq, a,, andas that we calculated and used are shown in
Table IV. These values are for the case of a constant mass
ratio between stages of 100. This ratio was chosen as a con-
E Twg venient value that gives a final transducer mass slightly
~ ket ( 1 TnQeff25fo) : (A13) higher than the mass that gives the lowBst A higher mass

is more resistant to uncertainties in noise resistance and thus
where is preferred experimentally to a lower than optimal mass.
The design rule suggested by Richda¥] for choosing a
constant mass ratio given ap andmgk can be written as

(A12)

[J”.(dw/2m)ey(w)]?
26fp=—= Al4
07 7 (dal2m e @) (AL4
m ..\ @N=DP2 r
) A X i i+1 n
defines the fractional bandwid# of the lossless detector in (_m- ) =iy g’ (A18)
] e

a way which arises naturally in the SNR expansion, and
which agrees with the intuitive definition of bandwidth if
e,(w) is box shaped. whereN is the number of modes of the system ahé 2.

Thus when all othe@'’s are infinite, the asymptotic form The design we chose correspondd\te 3 and{=2.61; the
of E for large Q¢ is described by «; in Table IV apply for any such design.
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