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Universality for SU„2… Yang-Mills theory in 211 dimensions
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A comparison is made for SU~2! Yang-Mills theory in ~211!D between various Hamiltonian results ob-
tained by series expansions, linked cluster expansions, and coupled cluster methods, and the recent Euc
Monte Carlo results of Teper. A striking demonstration of universality between the Hamiltonian and Euclide
formulations is obtained, once the difference in scales between the two formulations is taken into acco
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I. INTRODUCTION

A theoretical discussion of the SU~2! Yang-Mills theory
in 211 dimensions@~211!D# has been given by Feynman
@1#, who argued that any correlations would be of fini
range, and that the flux between external charges is restric
to a ‘‘tube’’ of finite extent, leading to a strongly confining
linear potential. All physical quantities should simply sca
according to their physical dimensions in the continuu
limit, so that the mass gap behaves as

Ma;c1g
2 as a→0, ~1.1!

and the string tension behaves as

sa2;c2g
4 as a→0, ~1.2!

wherea is the lattice spacing, andg25e2a is the dimension-
less coupling.

Numerical treatments have borne out these expectati
very well @2#. In the Hamiltonian formulation, most studie
have employed some form of linked cluster expansion, su
as strong-coupling series expansions@3,4#, coupled-cluster
expansions@5,6#, and the so-called ‘‘exact linked-cluster ex
pansion’’ ~ELCE! @3#. The only new results to be presente
here are some extended coupled-cluster expansions.

In the Euclidean formulation, Teper@7# has recently ap-
plied the full power of modern Monte Carlo techniques
this model. His results are very accurate, and now prov
the benchmark with which all other approaches must
compared at weak coupling. In this report, we show a co
parison between the available Hamiltonian results, and T
er’s Euclidean estimates.
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II. COUPLED-CLUSTER EXPANSION METHOD

The lattice Hamiltonian is given by

H5
g2

2a H(
l
El
aEl

a2l(
p
TrUpJ , ~2.1!

where El
a is a component of the electric field at linkl ,

l54/g4, andUp denotes the product of four link operators
Ul around an elementary plaquette. The commutation rela
tion between electric field and link operators at each link
may be taken as

@El
a ,Ul #5 1

2 taUl , ~2.2!

choosing theEl
a as left generators of SU~2!. For calculational

purposes, it is most convenient to ‘‘scale out’’ a factor
g2/a, and work with the dimensionless Hamiltonian

H5 1
2(

l
El
aEl

a2
l

2( TrUp . ~2.3!

This will be assumed henceforth, unless stated otherwise.
The coupled-cluster expansion method has been exte

sively used in many-body theory, and has recently been in
troduced to lattice gauge theory by Bishop@8#, Llewellyn-
Smith and Watson@6#, and Guoet al. @5#, although each uses
a different truncation scheme. The basic idea of this expan
sion is to assume the ground stateuC0& and first excited state
~the glueball wave function! uC& of the Hamiltonian in Eq.
~2.1! can be represented by an exponential form

uC0&5eR~U !u0&,
~2.4!

uC&5F~U !eR~U !u0&,

whereR(U) andF(U) are functions of loop variables and
the stateu0& is the strong-coupling ground state, defined by

El
au0&50. ~2.5!

The eigenvalue equation forH can then be written as
2395 © 1996 The American Physical Society
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(
l

$†El ,@El ,R#‡1@El ,R#@El ,R#%2
4

g4(p Tr~Up!

5
2a

g2
e0 ,

~2.6!

(
l

$†El ,@El ,F#‡12@El ,F#@El ,R#%5
2a

g2
~e12e0!,

where e0 (e1) is the ground state~the first excited-state!
energy.R(U) andF(U) can be decomposed according to t
order of graphs,

R5(
i
Ri ,

~2.7!

F5(
i
Fi ,

and the lowest order term ofR andF is

R15c1n ,

~2.8!

F15 f 1n .

The graphs of orderi are generated by

(
j51

i21

@El ,Rj #@El ,Ri2 j # ~2.9!

in Eq. ~2.6!. In order to make the calculation possible, som
truncation scheme to truncate the eigenvalue equation m
be used. The truncation scheme used by Llewellyn-Sm
and Watson@6# is

(
l

H FEl ,FEl ,(
i51

n

Ri G G1 (
i , j51

n

@El ,Ri #@El ,Rj #J
2

4

g4(p Tr~Up!5
2a

g2
e0 ,

~2.10!

(
l

H FEl ,FEl ,(
i51

n

Fi G G12 (
i , j51

n

@El ,Fi #@El ,Rj #J
5
2a

g2
~e12e0!,

where the new graphs generated by@El ,Ri #@El ,Rj # and
@El ,Fi #@El ,Rj # are simply discarded. Guoet al. @5# have
argued that because of this the continuum limit of this s
tem could not be preserved, and they have proposed a b
truncation scheme:
he

e
ust
ith
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etter

(
l

H FEl ,FEl ,(
i51

n

Ri G G1 (
i1 j<n

@El ,Ri #@El ,Rj #J
2

4

g4(p Tr~Up!5
2a

g2
e0 ,

~2.11!

(
l

H FEl ,FEl ,(
i51

n

Fi G G12 (
i1 j<n

@El ,Fi #@El ,Rj #J
5
2a

g2
~e12e0!.

The most tedious task for the high-order approximation
is to generate a list of independent loop configurations an
derive the nonlinear coupled equations. So far, all these ca
culations in lattice gauge theory have been carried out b
hand. We have tried to develop computer algorithms to ove
come this problem. Borrowing some ideas from our com
puter algorithms used to generate a list of clusters for ou
linked-cluster series expansions andt expansions@10#, a pre-
liminary program was developed. Up to fourth order, a list o
70 graphs was generated, whereas Llewellyn-Smith an
Watson@6# obtained only 69 graphs by hand. Some result
from the truncation scheme~2.11! were presented in a pre-
vious paper@9#. Here, we make a comparison of the results
of different truncation schemes with the Green’s function
Monte Carlo~GFMC! simulation.

III. RESULTS

A. String tension

Figure 1~a! shows some earlier Hamiltonian estimates o
the string tension by Hamer and Irving@3# obtained using the

FIG. 1. ~a! The string tensions at weak coupling. Circles: Eu-
clidean MC data@7#; squares: ELCE data@3#. ~b! A comparison at
weak couplingsgE between Euclidean MC@7# and ELCE@3# esti-
mates of the string tension, including one-loop correction effects.
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ELCE method, together with the Euclidean results of Te
@7#. A number of points may be noted.

~i! The Euclidean MC results are an order of magnitu
more accurate than any Hamiltonian estimates to date,
extend to weaker couplings.

~ii ! On the positive side, it can be seen that the ELC
estimates for the string tension approach a limit very sim
to Teper’s results@7# asg→0. This provides a nice evidenc
of universality between the Euclidean and Hamiltonian fo
mulations in the continuum limit.

Let us expand on the last point a little further. Wheng is
nonzero, the Euclidean and Hamiltonian results are not
rectly comparable because there is a difference in scales~i.e.,
coupling! between the two formulations, and also the spe
of light in the Hamiltonian formulation is not equal to unity
In four dimensions, the relationship between the two sca
was calculated long ago to one-loop order in weak-coupl
perturbation theory by Hasenfratz and Hasenfratz@11#. The
calculation has recently been repeated for the thr
dimensional case by one of us@12#. The results for this
model may be summarized as

1

gH
2 5

1

gE
2 20.019241O~gE

2 !, ~3.1!

wheregH , gE are the couplings in the Hamiltonian and E
clidean models, respectively, and

c5120.08365gE
21O~gE

4 ! ~3.2!

for the ‘‘speed of light,’’ with the Hamiltonian normalized a
in Eq. ~2.1!. To make a direct comparison between stri
tension estimates, the ‘‘timelike’’ ELCE estimates must
divided by a factor ofc, and shifted from the couplinggH to
the equivalentgE , given by Eq.~3.1!. The revised estimates
are then given by

4asE
1/2

gE
2 5

4asH
1/2

gH
2 @110.0616gE

2 # ~3.3!

and are compared with Teper’s results in Fig. 1~b!. It can be
seen that the two sets of estimates now lie almost on
same curve, and the remaining discrepancy~of order 3%!
may easily be attributed to higher-order~two-loop! correc-
tions. This provides an even stronger evidence of univer
ity between the two formulations.

B. Mass gap

There have been a number of Hamiltonian estimates
the mass gap using various linked cluster expansion te
niques@5,6#, and it is interesting to compare these with th
Euclidean results of Teper@7#.

Let us begin with estimates of the dimensionless ra
M /As. Figure 2 compares the results obtained by Ham
and Irving @3# with Teper’s estimates@7#. The Hamiltonian
estimates have been slightly shifted from couplinggH

2 to the
equivalent couplinggE

2 using Eq.~3.1!, and ‘‘renormalized’’
by the speed of lightc according to
per
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ME

AsE

5
MH

AsHc
5

MH

AsH

~110.0418gE
2 !. ~3.4!

It can be seen that the two sets of data match rather wel
once more, in excellent agreement with universality.

Next, Fig. 3 shows a number of different Hamiltonian
estimates of the mass gap itself, or more precisely, of th
quantityMa/g2, which should approach a finite value in the
continuum limit. The strong-coupling series expansion esti-
mates@4# rise fairly abruptly aroundb54/g2.3, and then
begin to level off towards an asymptotic value estimated
previously @4# as 2.22~5!. The higher-order coupled-cluster

FIG. 2. The ratioME /AsE plotted as a function ofb54/g2.
Circles: Euclidean MC data@7#; squares: ELCE data@3#.

FIG. 3. Estimates ofaM/g2, whereM is the mass gap, as a
function of b54/g2. Series expansion results from Ref.@4#;
coupled-cluster estimates from the truncation scheme used b
Llewellyn-Smith and Watson@6# and Guoet al. @5#; the heavy line
is an estimate inferred from Teper@7#.
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estimates from the truncation schemes used by Llewell
Smith and Watson@6# and Guoet al. @5# also show a rise
until b.4, but their behavior beyond that point is somewh
variable. Teper@7# does not give direct estimates of the ma
gap itself; but using his results fors and the ratioM /As,
together with Eqs.~3.1! and ~3.2!, one may infer a behavior
for the Hamiltonian mass gap at weak coupling which
shown as a heavy solid line in Fig. 3. It would appear th
Ma/g2 actually reaches a peak at aroundb.4, and then
declines slowly towards the asymptotic value 1.59~2!. The
strong-coupling series extrapolations were unable to pick
this decrease at weak coupling. Some of the coupled-clu
approximants perhaps give some indication of it, but not i
very consistent or reliable manner.

IV. DISCUSSION

The most interesting result of this paper is the remarka
demonstration of universality between the Euclidean a
Hamiltonian formulations which has been obtained. If a
count is taken of the difference in scale between the t
formulations as predicted in one-loop perturbation theo
@12#, then the Euclidean results of Teper@7# and the Hamil-
tonian results of Hamer and Irving@3# for the string tension
and the ratioM /As fall almost on top of each other, not onl
in the continuum limit, but over a whole range of weak co
plings. This provides a pleasing confirmation of this hypo
esis of universality. There is little doubt that the hypothesis
correct, but it is important to check it wherever possib
since it underpins the whole program of lattice gauge theo

In the case of the mass gap itself, it was possible to co
pare the results of several different linked-cluster expans
techniques@4–6#. Out to b.4, they were found to agree
with each other quite well. Beyond that point, the conve
gence is poor. Teper’s data@7# imply a gradual decline in the
scaled mass gapaM/g2 to an asymptotic limit of 1.59(2),
yn-
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which is not clearly indicated by any of the expansion meth
ods. It appears, once again, that one must be cautious ab
placing too much trust in extrapolated linked-cluster expan
sions deep in the weak-coupling regime. This is not surpri
ing, since the cluster expansions are basically stron
coupling expansions of one or another form, and they cann
be expected to converge very well in the neighborhood of th
weak-coupling~continuum! limit, which is likely to be an
essential singularity.

The linked-cluster expansion techniques have an impo
tant role to play, nevertheless. They are presently more a
curate than every Hamiltonian Monte Carlo method for ex
cited states. They can also be used for models containi
dynamical fermions, for instance, which at present are ina
cessible by Hamiltonian Monte Carlo methods.

At present, we are trying to improve the coupled-cluste
expansion technique@14# by combining it with the
D-function expansion used in the ‘‘ELCE’’ approach of Irv-
ing, Preece, and Hamer@13#. This avoids both the use of the
Cayley Hamilton relation for the elimination of redundan
cies, and also the explicit handling of many SU(n) coupling
coefficients, and allows one to define the truncation wit
respect to an orthogonal basis. The incorporation of states
the spectrum having arbitrary lattice momentum and lattic
angular momentum has also been possible in this framewo
@14#.
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