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Universality for SU(2) Yang-Mills theory in 2+1 dimensions
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A comparison is made for SB) Yang-Mills theory in(2+1)D between various Hamiltonian results ob-
tained by series expansions, linked cluster expansions, and coupled cluster methods, and the recent Euclidean
Monte Carlo results of Teper. A striking demonstration of universality between the Hamiltonian and Euclidean
formulations is obtained, once the difference in scales between the two formulations is taken into account.
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I. INTRODUCTION Il. COUPLED-CLUSTER EXPANSION METHOD

A theoretical discussion of the $2) Yang-Mills theory The lattice Hamiltonian is given by

in 2+1 dimensiong (2+1)D] has been given by Feynman 92

[1], who argued that any correlations would be of finite H=>- > EPER-ND TrU,f, (2.2)
range, and that the flux between external charges is restricted ! P

to a “tube” of finite extent, leading to a strongly confining
linear potential. All physical quantities should simply scale
according to their physical dimensions in the continuum
limit, so that the mass gap behaves as

where E}! is a component of the electric field at link

A =4/g?, andU, denotes the product of four link operators
U, around an elementary plaquette. The commutation rela-
tion between electric field and link operators at each link
may be taken as

Ma~c,g> as a—0, (1.2
[EF,U|]:%TaU|, (22)
and the string tension behaves as choosing theéE? as left generators of SB). For calculational
purposes, it is most convenient to “scale out” a factor
) 4 g?/a, and work with the dimensionless Hamiltonian
oa~c,g” as a—0, (1.2

A
H=1> EPER- EE TrU,. 2.3
wherea is the lattice spacing, argf=e?a is the dimension- !

less coupling. S ,
Numerical treatments have borne out these expectation-g;hIS will be assumed hencefort_h, unless stated otherwise.
The coupled-cluster expansion method has been exten-

very well [2]. In the Hamiltonian formulation, most studies ﬁively used in many-body theory, and has recently been in-
have employed some form of linked cluster expansion, Suctroduced o lattice gauge theory by BishE, Llewellyn-

as strong-coupling series expansidids4|, coupled-cluster :
expansiong5,6], and the so-called “exact linked-cluster ex- Smith and Watsof6], and Gucet al.[3], although each uses

pansion” (ELCE) [3]. The only new results to be presented a different truncation scheme. The basic idea of this expan-
here are some extended coupled-cluster expansions. sion is to assume the grqund stpey) and f"?t exlcitegl state
In the Euclidean formulation, Tep&?] has recently ap- (the glueball wave function| W) of the Hamiltonian in Eq.

plied the full power of modern Monte Carlo techniques to (2.1) can be represented by an exponential form
this model. His results are very accurate, and now provide W) =eRV)|0)

the benchmark with which all other approaches must be 0 '

compared at weak coupling. In this report, we show a com-

parison between the available Hamiltonian results, and Tep- W) =F(U)eRV)|0)

er’'s Euclidean estimates. ’

(2.4)

whereR(U) andF(U) are functions of loop variables and

the statg0) is the strong-coupling ground state, defined by
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4
E. {[E,[E|,RII+[E,RI[E, ,R]}—gg Tr(U,)

2a

= 7 €0

g
(2.6

2a
Zl {[E [E FIT+2(E) FIE Rl = 7 (e1-€o),

where ¢; (e;1) is the ground statdthe first excited-staje
energy R(U) andF(U) can be decomposed according to the
order of graphs,

2.7
F=2 F,

and the lowest order term & andF is

Ry=cq[1,
(2.8

Fi=f.[].
The graphs of order are generated by

i—1

2, [ELRIER] (2.9

in Eq. (2.6). In order to make the calculation possible, some
truncation scheme to truncate the eigenvalue equation must
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FIG. 1. (a) The string tensionr at weak coupling. Circles: Eu-
clidean MC datd7]; squares: ELCE dati8]. (b) A comparison at
weak couplinggg between Euclidean ME7] and ELCE[3] esti-
mates of the string tension, including one-loop correction effects.

J

(2.11

|

Pz

+ > [E.RIE Ri]

i+j<n

2a
e,
g2 0

4
_?Ep: Tr(U,) =

2

a
= — (€1~ €).

g

n

E.> Fi
i=1

+2 > [E.FIE.R]

i+j<n

be used. The truncation scheme used by Llewellyn-Smith

and Watsorj6] is

L=

3

E, ,{E, an R

. [EI-Ri][EIuRj]]

4 2a
_EEp: Tr(Up)I?EO,

=]

(2.10

n

E.> Fi
=1

n

+2 >

L=

p)

| LELFilE ,Rj]]

a
=— (€1~ €p),

g

where the new graphs generated [0y ,R][E;,R;] and
[Ei,Fil[E,R;] are simply discarded. Guet al. [5] have

argued that because of this the continuum limit of this sys-

The most tedious task for the high-order approximations
is to generate a list of independent loop configurations and
derive the nonlinear coupled equations. So far, all these cal-
culations in lattice gauge theory have been carried out by
hand. We have tried to develop computer algorithms to over-
come this problem. Borrowing some ideas from our com-
puter algorithms used to generate a list of clusters for our
linked-cluster series expansions anekpansion$10], a pre-
liminary program was developed. Up to fourth order, a list of
70 graphs was generated, whereas Llewellyn-Smith and
Watson[6] obtained only 69 graphs by hand. Some results
from the truncation schem@.11) were presented in a pre-
vious papef9]. Here, we make a comparison of the results
of different truncation schemes with the Green’s function
Monte Carlo(GFMC) simulation.

Ill. RESULTS

A. String tension

tem could not be preserved, and they have proposed a better Figure Xa) shows some earlier Hamiltonian estimates of

truncation scheme:

the string tension by Hamer and Irvihg] obtained using the
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ELCE method, together with the Euclidean results of Teper
[7]. A number of points may be noted.

(i) The Euclidean MC results are an order of magnitude 5
more accurate than any Hamiltonian estimates to date, and
extend to weaker couplings.

(i) On the positive side, it can be seen that the ELCE
estimates for the string tension approach a limit very similar 5
to Teper's result§7] asg— 0. This provides a nice evidence
of universality between the Euclidean and Hamiltonian for-
mulations in the continuum limit.

Let us expand on the last point a little further. Wigpis
nonzero, the Euclidean and Hamiltonian results are not di-
rectly comparable because there is a difference in s¢iades 42
coupling between the two formulations, and also the speed L L
of light in the Hamiltonian formulation is not equal to unity. 05 1 15 >
In four dimensions, the relationship between the two scales 2
was calculated long ago to one-loop order in weak-coupling 9e
perturbation theory by Hasenfratz and Hasenffatly. The
calculation has recently been repeated for the three- FIG. 2. The ratioMg/\og plotted as a function of3=4/g>.
dimensional case by one of (42]. The results for this Circles: Euclidean MC datfr]; squares: ELCE datg8].
model may be summarized as

4.8

e
=S
—e—
ot
b—e—t
——

4.6

ME/O'E1

4.4
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e ey e b e b by

o

101 Me _ Mu _Mu
g_:g——o.01924+0(g§), (3.2) Joe Nope oy

2 2
H E

1+0.04182). (3.4

) ) o It can be seen that the two sets of data match rather well:
wheregy , g are the couplings in the Hamiltonian and Eu- 5nce more, in excellent agreement with universality.

clidean models, respectively, and Next, Fig. 3 shows a number of different Hamiltonian
estimates of the mass gap itself, or more precisely, of the
c= 1—0.0836@é+ O(gé) (3.2 quantityMa/g?, which should approach a finite value in the

continuum limit. The strong-coupling series expansion esti-

. . _ 2~
for the “speed of light,” with the Hamiltonian normalized as Mates[4] rise fairly abruptly around3=4/g”=3, and then

in Eq. (2.1). To make a direct comparison between stringbeg'_” to level off towards an -asymptotic value estimated
tension estimates, the “timelike” ELCE estimates must bepreV|oust[4] as 2.225). The higher-order coupled-cluster

divided by a factor ot, and shifted from the couplingy to

the equivalengg, given by Eq.(3.1). The revised estimates 3 ———r—+ 1 —
. | — : series expansion 7]

are then givenby T © 2nd Guo S

[ -——-—-=- : 2nd Llewellyn—Smith L

[ ———: 3rd Guo L,/ 4
4a0_]é/2 4a0’ﬁ/2 ) A i{g Iélj;/vellyn—Smith L |
———=—>—[1+0.0616)¢] 3.3 25 -—-—- . 4th Lewellyn-Smith /~ .
O g4 | ———— : Teper’s results L |

and are compared with Teper’s results in Figo)1lt can be
seen that the two sets of estimates now lie almost on the
same curve, and the remaining discrepakafy order 3%
may easily be attributed to higher-ord@wo-loop) correc-
tions. This provides an even stronger evidence of universal-
ity between the two formulations.

aM/g2

B. Mass gap
There have been a number of Hamiltonian estimates of I \\\ ]
the mass gap using various linked cluster expansion tech- N | R
niques[5,6], and it is interesting to compare these with the 0 2 4 6 8
Euclidean results of Tepér]. g

Let us begin with estimates of the dimensionless ratio
M/+/o. Figure 2 compares the results obtained by Hamer FIG. 3. Estimates 0aM/g?, whereM is the mass gap, as a
and Irving[3] with Teper's estimatef7]. The Hamiltonian ¢ \ction of B=4lg%. Series expansion results from ReH];
estimates have been slightly shifted from couplgfgto the coupled-cluster estimates from the truncation scheme used by

equivalent couplingg using Eq.(3.1), and “renormalized”  Llewellyn-Smith and Watsop6] and Guoet al. [5]; the heavy line
by the speed of light according to is an estimate inferred from TepEf].
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estimates from the truncation schemes used by Llewellynwhich is not clearly indicated by any of the expansion meth-
Smith and Watsor6] and Guoet al. [5] also show a rise ods. It appears, once again, that one must be cautious about
until 8=4, but their behavior beyond that point is somewhatplacing too much trust in extrapolated linked-cluster expan-
variable. Tepef7] does not give direct estimates of the masssions deep in the weak-coupling regime. This is not surpris-
gap itself; but using his results far and the ratioM/+/, ing, since the cluster expansions are basically strong-
together with Egs(3.1) and(3.2), one may infer a behavior coupling expansions of one or another form, and they cannot
for the Hamiltonian mass gap at weak coupling which isbe expected to converge very well in the neighborhood of the
shown as a heavy solid line in Fig. 3. It would appear thatweak-coupling(continuum limit, which is likely to be an
Ma/g? actually reaches a peak at aroupe=4, and then essential singularity.

declines slowly towards the asymptotic value 159The The linked-cluster expansion techniques have an impor-
strong-coupling series extrapolations were unable to pick ugant role to play, nevertheless. They are presently more ac-
this decrease at weak coupling. Some of the coupled-clust@urate than every Hamiltonian Monte Carlo method for ex-
approximants perhaps give some indication of it, but not in ecited states. They can also be used for models containing

very consistent or reliable manner. dynamical fermions, for instance, which at present are inac-
cessible by Hamiltonian Monte Carlo methods.
IV. DISCUSSION At present, we are trying to improve the coupled-cluster

expansion technique[14] by combining it with the

The most interesting result of this paper is the remarkablgy -function expansion used in the “ELCE” approach of Irv-
demonstration of universality between the Euclidean anqlng, Preece, and Ham§t3]. This avoids both the use of the
Hamiltonian formulations which has been obtained. If ac-Cayley Hamilton relation for the elimination of redundan-
count is taken of the difference in scale between the twaies, and also the explicit handling of many $ccoupling
formulations as predicted in one-loop perturbation theorycoefficients, and allows one to define the truncation with
[12], then the Euclidean results of Te(&d and the Hamil-  respect to an orthogonal basis. The incorporation of states in
tonian results of Hamer and Irviri@] for the string tension  the spectrum having arbitrary lattice momentum and lattice
and the rativl/ /o fall almost on top of each other, not only angular momentum has also been possible in this framework
in the continuum limit, but over a whole range of weak cou-[14].
plings. This provides a pleasing confirmation of this hypoth-
esis of universality. There is little doubt that the hypothesis is ACKNOWLEDGMENTS
correct, but it is important to check it wherever possible,
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