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Extraction of V, from inclusive B decays and the resummation of end point logarithms
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In this paper we discuss the theoretical difficulties in extractipgusing the data from inclusiv@ decays.
Specifically, we address the issue of end point singularities. We perform the resummation of both the leading
and next to leading end point logarithms and include the leading corrections to the hard scattering amplitude.
We find that the resummation is a 20%—-50% effect in the end point region where the resummation is valid.
Furthermore, the resummed subleading logarithms dominate the resummed double logarithms. The conse-
quences of this result for a model-independent extraction of the mixing avigje are explored.
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I. INTRODUCTION minimal assumptions about local duality. However, in the
end point region, the expansiondnas well as the expansion
Measurements in the bottom quark sector have reachdd «s, begins to breakdown(The end point region poses
the point that our knowledge of many observables is nowproblems for local duality as well. We shall discuss this in
bounded by the theoretical uncertaintigll. Fortunately, —more detail latej.
theoretical advances in calculating both exclusive as well as The aim of this paper is to determine the size of the errors
inclusive rates now allow the extraction of the Cabibbo-induced from the theoretical uncertainties in the extraction of
Kobayaski-Maskaw#CKM) parameters without recourse to Vip- A Iarge piece of this_work consists of_ implement_ing the
the models which have soiled the extraction processes tgSummation of the leading and subleading end point loga-
date. The present values ¥f,, have a model dependence Mthms which cause the breakdown of the expansiomdn
which introduce an uncertainty of a factor of 2], which is 25 first discussed on general groundg3h and the inclusion

several times larger than the experimental uncertaintie! tN€ @s corTections to the hard scattering amplitude. How-

With QCD-based calculations, we can now hope to extract S O determine the _consistency of our calculiation, we
. ' must also address the issue of the nonperturbative correc-
both V. andV,, with errors on the order of tens of a per-

 Inthi K trat h traction tions. These issues have been previously looked at in Refs.
cent. In this work, we concentrate on the extractiorVgh, &4] and[5]. In [4] the need for resummation was addressed

f“".“ t.he mgasurement of the electron spectrum in semile on general grounds. However, the calculational methods
tonic inclusiveB meson decays.

. ) _ . . used here are not compatible with the arguments givélin

The extraction oWV, from inclusive semileptoni® de- 504 yhis we must recapitulate these arguments within the
cays is hindered by the fact that the background fromconfines of our methods.
charmed decays is overwhelming for most of the range of the In the second section of this paper, we discuss the ques-
lepton energy. Thus, we are forced to make a cut on e,y of the need to resum the perturbative as well as nonper-
lepton energy, vetoing all events, or some large fraction . qiiye series. The next three sections are dedicated to the
thereof, W.'th lepton energy less than the-c end point " resummation of the leading and next-to-leading infrared
energy. Given the proximity of the two relevant end points, | arithms and the inclusion of the one-loop corrections to

this obviously hinders the statistics. However, even With &he hard scattering amplitudhat is, one-loop matchinglin
large data sample, ihe accuracy of the extraction will be IInT"the fifth section we give our numerical results while the last

|te:j bly the irro;]s mdu_celd fro(;n the {:\ppr:ommgtmr)s used inection draws conclusions regarding what errors we can ex-
calculating the theoretical prediction in the end point region. o in tne extraction process,

This region of the Dalitz plot is especially nettlesome for

theory, because the perturbative as well as the nonperturba-

f[ive correc_tions become large when the lepton energy is near Il 1S RESUMMATION NECESSARY?
its end point value.

It has been shown that it is possible to calculate the decay As mentioned above, the theoretical calculation of the
spectrum of inclusive heavy meson decay in a systematitepton spectrum in inclusive decays breaks down near the
expansion ine= A ocp/M, andag using an operator product end point. Both the nonperturbative as well as perturbative
expansion within the confines of heavy quark effective fieldcorrections become large in this region. Here we investigate
theory [2]. It is possible to Euclideanize the calculation of the need to perform resummations in either or both of these
the rate for most of the region of the Dalitz plot with only expansions. The one-loop decay spectrum including the lead-
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ing nonperturbative corrections is given ]
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Ey .Gy, andK, are hadronic matrix elements of orderand
are given by
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o 2
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={ B(v)|b, | B@) ).
B 4mp

. Z. ROTHSTEIN

A. Nonperturbative expansion

As one would expect for heavy meson decay, the leading
order term ine reproduces the parton model result. All cor-
rections due to the fact that thequark is in a bound state
are down bye? [2]. However, near the end point of the
electron spectrum we begin to probe the nonperturbative
physics. The general form of the expansionelaN\/my, to
leading order inag, is given as

X O(1—x)(e%+ €+ -)

T

+8(1—X)(0Oe+ €2+ €3+ - +) (5)

o+ SM(A-X) (2 )+ (B)

The end point singularities are there because the true end
point is determined by the mesonic mass and not the partonic
mass, as enforced by ti#efunction in the leading order term.
The difference between these end points will be on the order
of a few hundred MeV. To make sense of this expansion we
must smear the decay amplitude with some smooth function
of x. Normally, this would not pose a problem; however,
given that the distance between the-c and b—u end
points is approximately 330 MeV, we are forced to integrate
over a weighting function which has support in a relatively
small region. On the other hand, if the weighting function is
too narrow, then the expansionérwill not be well behaved.

Thus we must find a smearing function that minimizes the
errors due toA ocp/My corrections which does not overlap
with the energy region where we expect mdmyc events.
The question then becomes how mamy c transitions we
can allow without introducing large errors due to our igno-
rance of theb—c end point spectrunithe theory breaks

b, is the velocity-dependent bottom quark field as defined irdown in theb—c end point region as well though there are
heavy quark effective field theory. From the above expresimportant differences between this case andlkheu tran-

sions we see that the breakdown of the expansions, and
€=Aqcp/Mmy, manifests itself in the large logarithms and
the derivative ofs functions, respectively.

9 05
Vib \

2
Vbc
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sitions.

The issue of smearing was addressed by Flal. [4]
who used Gaussian smearing functions to gain quantitative
insight into the need for smearing. They found that without

N
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FIG. 1. The ratio ofv3,/VZ, for which theNth moments of the leading order spectra are equal.
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any resummation, the smearing function should have a widtlwhich is also not overly contaminated fo~—c transitions.

which is greater thas, but that after resumming the leading
singularities, we need smear only over a region of wielth

This will obviously depend on the ratio of,,, to V.. To
get a handle on the numerics, let us for the moment assume

Here we will smear by taking moments of the electron enthat we wish that the number bf—u transitions be at least

ergy spectrumwe work with the moments of the spectrum

equal to the number db—c transitions in our sample. In

because it greatly facilitates the resummation of the perturFig. 1, we plot §/2,/V2.)(N), which is the ratio of mixing
bative corrections Thus, we must address the question ofangles for which thédth moments of the leading order rates

what range of values dfl will lead to a sensible expansion

V2

S (Xm=X)H (1= X)][ 6= 3Xp+ (Xm— 6)x+ 2x2]xNdx

for b—c andb—u transitions will be equal, and is given by

ub
_(N) =
Ve

Xm IS 2E max/ My, for the B— D transitions and takes the value
Xm=~0.9. Given the boundg’]

Vupl?
|Vbc|2

0.002< <0.024,

8

Jx3(3—2x)xN

@)

Neubert[8] pointed out that it is possible to resum the
leading singularities, much as in the case of deep inelastic
scattering, into a nonperturbative shape function

T(k.)=(B| (k. —iD.)|B). (12)

we see that an understanding of the spectrum for momentEhis function gives the probability to find thequark within

aroundN=20 is necessary if we wish to keep tle-c
contamination under contro{Of course we do not suggest

the hadron with residual light cone momentwm . Thus,
this function is roughly determined by the kinetic energy of

that these moments can be measured given the finite resoltheb quark inside the meson. This structure function will be
tion of the experiment. We will discuss this situation later in centered around zero and have some characteristic width

the papey.

S will determine the maximum size df for which the ex-

We now consider the issue of determining the maximumPansion without resummation makes sense. To get a well-
value ofN for which the expansion makes sense. Let us firsPehaved expansion we chodsesuch thatx™ gives order 1

consider the expansion ia. The moments of the leading
singularities of Eq(5) will behave as

N|6n+1

I E Ny

9

As a possible criterion on the size Nf we may impose that
there be no growth witim. That is,

NIe" Ine+ ¥ (N—n+1)]
(N=n)!

0. (10)

e represents the value of some matrix element in the heav

quark effective theory. It is assumed that the valueeof
should be on the order of a few hundred Mey/, but in
theory it could vary by a factor of order 1 from term to term.
To get a handle on the sizes ef we may consider the
leading e, which is given by

d

61:<B

Quark model calculations suggest thétis on the order of

b—(iD)2

b 1
ma’

UT v (11)

support to the structure function throughout its width. The
value of § is unknown at this time, and various authors have
given different estimates for its value. We can assume that
this width should be on the order ofng—my)/2 which is
around 300 MeV. We shall choose what we believe to be the
conservative value of 500 MeV foé. Since the structure
function is the sum of derivatives af functions, we con-
clude that we should smear over the width of the function if
we do not wish to incur large errors. Let us assume, for the
sake of numerics, thad" should not fall below the value 0.1,
within 500 MeV of the end point. Then we find thidtmust

be <20. Thus, we expect that the nonperturbative effects
could be quite large for the range Wfthat we consider here.
bf course wherN becomes very large\>100, it is neces-
sary to go beyond the leading twist since the soft gluon ex-
change in the channel begins to dominate, not to mention
the failure of the operator product expansi@PE) due to its
asymptotic natur¢9].

We see that for our purposes we should include the non-
perturbative structure function in our calculation. The fact
that knowledge of this nonperturbative function is needed to
extractV,, should not bother us too much, however, given
that it is universal. That is to say, we can remove it from our
final result by taking the appropriate rafib0]. Or it can be

0.01[8]. Thus, naively, it seems that to keep the expansion imeasured on the lattice, much in the same way that the mo-

€ under control, we must kedd<10. This estimate is per-

ments of the proton structure functions are now being mea-

haps too crude for our purposes given that we know nothingured. Using the Altarelli-Cabibbo-Corbo-Maiani-Martinelli

of the growth of the coefficient€, or of the range of pos-

sible values ofey . It does suggest that some sort of resum-

mation may be necessary.

(ACCMM) model[11] Blok and Manne[5] concluded that a
resummation of the nonperturbative corrections is unneces-
sary. If the width of the structure function is smaller than the
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FIG. 2. The difference between the moments given by the leadingorrection and the moments of the rate with only the double
logarithms resummed.

conservative number chosen here, then this could very well Given this expansion, we may ask what errors we expect
be true. This would be a welcome simplification of the ex-to incur by truncating the expansion at ordey. For N near
traction process, since we would no longer need to rely or20, we see that

the extraction of nonperturbative parameters from other pro-

cesses to measure the mixing anylg, . islnzNzo 6 (14)
7T 1

B. Perturbative expansion and so we might expect that truncating at leading order
Let us now address the issue of the perturbative correcvould not be such a good idea. We must also note that in Eq.
tions_ The Corrections ims grow |arge near the e|ectron (1) the Suble.adiﬂg |Ogarithm aCtUa”y dqminates the Ieading
energy end point, and, precisely at the end point, there ardouble logarithm due to the large coefficiefit The resum-
logarithmic infrared divergences. These divergences are dugation of the double logarithms is simple and leads to the
to the fact that near the end point gluon radiation is inhibited €xponentiation of the double logarithms. Figure 2 shows the
and as a result, the usual cancellation of the infrared diverdifference between the one-loop result and the result with
gences between real and virtual gluon emission is nullifiedonly the double logarithms resummed. We see that the dif-
Of course, the rate is not divergent, and we expect that £rence is very small, on the order of 5%. Thus, one might
resummation procedure will have the effect of reducing thecome to the conclusion that no resummation of the perturba-

rate for the exclusive process. tive series is necessary. However, given that the coefficients
Near the end point large logarithms form a series of theof the single logarithms as well as the, which are just as
form large as the double logarithms for the rangeNofwe are

considering here, are unknown at higher orders, we can only

dr determine the errors induced by a truncation of the series

&=C11a|n2[1—x]+C12a|n[1—x]+C13oz after we have performed the resummation.

Resumming the leading double logarithms in itself does
+Cpa®In“[1-x]+ Cpa?In*[1-x] not increase the range kb over which perturbation theory is

3 6 3.5 valid. Even after this resummation is performed the criteria

o F CaraIn[ =X Copatin[ 1 =X] for a convergent expansion is stilie{/7)In?N<1 unless we
e O e E know that the subleading logarithms exponentiate as well.
However, one can show on very general grourds that all
the end point logarithms exponentiate as a consequence of
the fact that these logarithms are really just UV logarithms in
the effective field theory13,14. Thus, it is always possible

1 ar 1 - - - to write down a differential equation for the rate based on its
f dXXN&= N(C11a|n2N+C12a|nN+C13a factorization scale independence. As such, the general form
0 of the decay amplitude will be given by

[
0 dx

Once we have this information, the question of the region of
This form holds forb—svy; for the semileptonic decay, we will convergence becomes the following. Do the lower order
consider the moments of the derivative of the rate. terms in question contribute numbers of order 1 in the expo-

which in terms of a moment expansion givétor large N)

+621a2|n4N+622a/2|n3N+ e 2n

In =C(ag+ > al> G Jn™N. (15
n=1 m=1

+631a3|nN6+632a3|n5N+ s ) (13)
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nent? We may continue to increaleuntil we find that the the relevant scales ang, andm,(1—x), with x=2E./my in
subleading terms in the exponent contribute on the order Xhe rest frame of thd quark. To understand how to best
Thus in general resumming the leading logarithms does infactorize the differential rate in the limit—1, we need to
deed allow us to takeN into the range where know the momentum configurations which give leading con-
(as/m)IN®N=1. Here we will go further, as was done[i8], tributions in that limit. With this in mind, let us consider the
and sum the next-to-leading logarithms as well, allowing,inclusive decay of thé quark into an electron and neutrino
(as/)INN=<1. This will allow us to determine the conver- of momentap, and p,, respectively, and a hadronic jet of
gence of the expansion. Furthermore, we extend the analysisomentap,,. First we note that the kinematic analysis is
of [3] to include the one-loop matching corrections, thussimplified with the following choice of variables in the rest

completing the calculation at order;. frame of theb quark[16]
We wish to note that Blok and Manngb] analyzed the 5
effects of the large logarithms to the end point spectrum and _2Ee _2(EetE,) y— (PetP,)

concluded that no resummations were necessary. These au- my Yo my, mzb - (18
thors propose to take the lower bound on the moment inte-

gral to be the charmed quark end paigt Doing this allows  The kinematic ranges for these variables are

one to stay away from larger valuesMf(the authors choose
N<10). Cutting off the integral introduces errors that have
the doubly logarithmicx, dependence fiil—x.). To reduce
these errors, it is necessary to go to higher valued of
These authors claim that fod<<10 the errors induced by 1—
cutting off the integral are small, on the order of a few per- n= ( 2=y,
cent. However, we believe that these authors have underes-
timated their errors because they normalized their errors byhis variable plays an analogous role to the Bjorken scaling
the total width and not the moments themselves. Furthervariable in deep inelastic scattering phenomena. The invari-

more, and perhaps most importantly, the authors did not corant mass of the final state hadronic jet and its energy are
sider the possibility that the subleading logarithms couldgiven by

dominate the leading logarithms in the resummation, which
as we shall see is indeed the case. m,

Finally, it should be pointed out that aside from being PR=ma(1—7)(2—Yo), pﬂ=7(2—yo)- (19
bounded by the size of the logarithm, is bounded on
purely logical grounds. The whole perturbative QCD frame-We should note that in determining the boundary values of
work loses meaning when the time scale for gluon emissiotthe various variables we refer to thequark mass and not to
becomes on the order of the hadronization time scale. Thithat of the meson. This is justified within the perturbative
restriction bounds the minimum virtuality of the gluon, framework we are working in at the moment. However, once
which we expect to be on the order wf,/N (we will show  we include the effects of the nonperturbative structure func-
this to be true when we perform the resummalichhus, tion, the phase space limits will take on their physical values.
performing resummations can only take one so far no matter Let us now investigate the dominant momentum configu-
how powerful one is. However, for top quark decays it isrations neax— 1. First, we observe that the invariant mass
possible to get extremely close to the end point due to thef the hadronic jet + neutrino system is given by
large top quark mass. In this case it is clear that the resunfp,—p,—p,)2=m2(1—x) which vanishes at the end point.
mation of the next-to-leading logarithms will become essenThe phase space configuration where the neutrino is soft is
tial. Thus, the extraction oW,y from inclusive top quark suppressed and hence, when the value approaches 1, the
decays will have much smaller theoretical errors than in thelectron and the hadronic jet-neutrino system move back to
b decay case. We shall discuss the issue of the breakdown phck in the rest frame of thie quark. Furthermore, the in-
perturbation theory in greater detail after we perform thevariant mass of the hadronic jet vanishes independently of
resummation. the neutrino energy. This is readily verified using the phase
space boundaries. The energy of the jet is large except near
the pointx—y—1. In this region of the Dalitz plot factor-
ization breaks down, and the techniques used here fail. How-

The large logarithms appearing in the perturbative expanever, this problematic region is irrelevant as a consequence
sion arise from the fact that at the edge of phase space gluai the fact that the rate to produce soft massless fermions is
emission is suppressed. The problem of summing these largeippressed at the tree level. Thus, the following picture
corrections has been treated previously for various appliceemerges ak~1. Theb quark decays into an electron mov-
tions, such as deep inelastic scattering and Drell-Yan proing back to back with the neutrino and a lightlike hadronic
cesseg$12,15, just to mention a few. The case of inclusive jet. We choose the electron to be moving in the (light
heavy quark decay has been treated previousljB8in An  cong direction, and the jet moves in the (light cong di-
important ingredient of the resummation procedure is theection in the rest frame of thie quark. The constituents of
proof of factorization. As applied to the present processeshe jet may interact via soft gluon radiation with each other
this procedure separates the particular differential rate undemd with theb quark, but hard gluon exchange is disallowed.
consideration into subprocesses with disparate scales. This simple picture is related by the Coleman-Norton

In the case of inclusive semileptonic heavy quark decaystheorem[17,18 to the type of Feynman diagrams that are

0=x=<1l, O=sy=sx, (y/x+x)=ye<(y+1). (17

Furthermore, define the variable

where x< np<1. (18

Ill. FACTORIZATION
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FIG. 3. Reduced diagram f@& decays.

infrared sensitive. According to this theorem, if we constructthat the differential decay rate will be independent wof
a “reduced” diagram by contracting all off-shell lines to a whereasu independence in deep inelastic scattering is only
point, then at the infrared singular point, such a diagramachieved after an appropriate subtraction is made with an-
describes a physically realizable process. Thux-~al the  other process, such as the Drell-Yan process, which has the
type of diagrams that give large logarithms is precisely thossame collinear divergence structure as the deep inelastic scat-
described above and shown in Fig[3L]. tering process. Next we note that, in general, the separation
In the figure,S denotes a soft blob which interacts with of diagrams into soft and jet subprocesses is not unique, and
the jet and thé quark via soft linesJ denotes the hadronic some prescription must be adopted. For a discussion of this
jet andH the hard scattering amplitude. The typical mo-issue se¢19,172. In our case, we will determine the proper
menta flowing through the hard subprocess @(gn,). H separation from the requirement of the independence of
does not contain any large end point logarithms and has the decay rate from the condition that the hard scattering
well-defined perturbative expansion dn(m,). All the lines  amplitude does not contain any large end point logarithms,
which constituteH are off shell and have been shrunk to aand that the purely collinear divergences in the jet must sat-
point. The soft functiorS contains typical soft momentum isfy an Altarelli-Parisi-like evolution equation. We will re-
k, with k* ~k~~k, =0(m,(1—x)). Thus, by “soft” we turnto this point in the next section. The factorization can be
mean soft compared tm,, but still larger tham\ gcp. The  made more manifest by going to the lightlike axial vector
jet subprocess has typical momemiasuch thatp™>p™, gauge with the gauge-fixing vector pointing in the jet direc-
pf withp*, psz(mb(l—x)) andp~=0(m,). Inorderto  tion. In this gauge, the soft lines decouple from the jet on a
delineate between momentum regimes, a factorization scaiagram by diagram basis.
w is introduced. The fact that the processuisndependent In terms of the variables introduced earlier, the triply dif-
will be utilized to sum the large end point logarithms which ferential factorized decay amplitude may be written as
are contained in the soft and jet functions. The reduced di-

, ) = : 1 dr Kt
gram for the inclusive radiative decéy— Xy is exactly the = BM(X— —x f mag k. f (kT w2
same as above if we ignore the strange quark mass. IO dxdydy (X =Y) (Yo X) min # 1)
An important consequence of the factorization is the fact e i )
that the soft functiorS is universal. That is, it is independent XJ(pp (P, —K7), uHH(My, %), (20

of the final states as long as factorization holds. Thus the soft
function in the semileptonic decay will be the same soft
function as in the radiative decay. This universality will al-
low us to remove our ignorance of any nonperturbative phys-
ics due to bound state dynamics by taking the appropriat&his form will hold up to errors on the order @(1—Xx).
ratio. Thus, throughout this paper we will treat both the We have chosen the electron to be traveling in the

Gt
F0:W|Vub|2mg- (21)

semileptonic as well as the radiative decays in turn. direction with moment&=m;(x,0,0,), and
We conclude this discussion with a few comments. First,
we should point out the differences between factorization in Kmax=Mp(1=7),  Kyin=—(Mg—mp). (22

the process considered here and in deep inelastic scattering

for large values of the Bjorken scaling variafjlis]. A cru-  Here f(k™) is the probability for theb quark to have light
cial difference arises from the fact that the initial quark iscone residual momentuki”, and thus contains not only the
massive, and hence, the semi-inclusive decays ddteavy information in the soft functiors but also the nonperturba-
quark is infrared finite to all orders in perturbation theorytive information regarding the nature of the bound state. If
because there are no collinear divergences arising from inWwe ignore perturbative “soft” gluon radiation, then this
tial state radiation. This fact has the important consequenctinction coincides withf (k) defined in the previous sec-
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tion. Notice thatkT™ is negative. This is important nonper- Semileptonic decay, at~1 the hadronic jet is moving in the
turbatively and represents the leakedge past the partonic erd dlrec'_uon. Furthermore, the invariant mass of the hadronic
point due to the soft gluon getting energy and momentuniet and its energy are

from the light degrees of freedom inside tlBe meson.
Loosely speaking it is due to the Fermi motion of thquark
inside the meson.

Less formally, we may write the derivative of the decay

amplitude ag3]

~1d (dF N ,
T, dx| dx —L dyp6(2—Yyo)“(Yo—1)G(X), (23
Mg /my 5
600= | dat(zmy 1) 3(m2-yo)
X (z=X), u?)H(Mp(2-yo)/ ). (24

In this equation we have changed variables fromto the
residual light cone momentum fractias= (1—k*/m,), and
absorbed a factor ah? into the jet factor.

p2=m3(1-x), po=my(1-x/2). (30

Thus thes quark, is very energetic, and since the invariant
mass of the jet vanishes as-1, thes quark decays into
guanta which are collinear once we ignore effects on the
order of m¥mZ Clearly the factorization picture discussed
earlier for the semileptonic decay holds here as well and the
reduced diagram is the same as in Fig 3.

As before we may take the moments of the differential
rate

By taking the moments of this expression with respect towhere[20],
X we see that we are able to treat the hard, soft, and jet

functions separately. We are led to the following form for the

moments of the semileptonic rate

1 MB/mb
N__J XN~
FoJo

2
- | dy68(2-y0) o~ D1nIN(TE 2 y0) 17

d(dI’
1( dx

dx| dx

XH(Mp(2-Yo), ), (29

MB/mb
szf Ndzf(z), (26)
0

1
I2=yo) = [ N2y 1A a2, (27

MI= fMB/mbd DL 31
N=1-_y . X &_SNO-N N (31
2

XBF 5 * 22

Fy:meWthtJ C2(mp) (32
and
1 2

JN:J'O dyyN LI(mg(1-y),ud). (33

oy and Sy are the same functions defined in E88) and

C- is the Wilson coefficient 00, as defined if20]. For the
radiative decay, the In(dx)/(1—x) .. distribution in the am-
plitude will correspond to f(N) in the moment, whereas, in
the semileptonic decay, taking the derivative of the ampli-
tude will generate plus distributions which will then generate
InN and IrfN after taking the moments. Thus, we have re-

In writing the last few equations we have dropped all termsduced the problem of the resummation of the large loga-

of order O(1—x) or equivalently taken the largd limit.

rithms in the amplitude to resumming the logarithmsJijp

The left-hand side of Eq(25) defines the moments of the and o separately. This greatly simplifies the calculation as

semileptonic decay electron distributid\7|,§I
The moments of the soft functidiy, may be decomposed

into a product of moments of a perturbatively calculable

oy and the nonperturbative structure functi§y, which
corresponds to the moments bfdiscussed in the previous
section. We may write

fo= """ Ysy) (Z) (28)
z)= — -1,
.y %y
and thus, taking moments,
sz(TNSN. (29)

An analogous situation exists for the decBy-Xgy. We
definex=2E, /my in the rest frame of the quark, and take
the photon to be moving in the direction, and, as in the

will be seen below.

IV. RESUMMATION

The resummation of the infrared logarithms is analogous
to summing ultraviolet logarithms. One takes advantage of
the u independence of the amplitude. In the case of infrared
logarithms, i is the factorization scale or, equivalently, the
renormalization scale within the appropriate effective field
theory, which for this case would the field theory of Wilson
lines[14].

We first outline the derivation of a representation of the
soft functionoy nearx=1 following the techniques devel-
oped in Ref[15]. We will work in the eikonal approxima-
tion where soft momenta are ignored wherever possible. At
the one-loop level, the real gluon emission contribution fac-
torizes and the quantity multiplying the tree level rate is
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d3k 2p-q m3 Crag(k?)
Freal 2 _ s\ L 2
e|k(X) g CF (27T)32k0<ka]k (pk)2 T *’A(as(kj_))’ (38)
2k ith
X5 1—x— WO) 3y M
2
1
. . A<a3>——scp+( °| 5Cek,
The § function enforces the phase space constraint. Similarly 2
the one-loop virtual gluon contribution is given by
67 =2\ 10

d
Fek="—9g°Ced(1-X) f VLT
0 This resums all the leading and next-to-leading logarithms of

[ 2p-q mz ] N in the soft function.

— , 35 .
D kg k  (p-k)? (39 Thus, we obtain

wl

where p and q are theb-quark and light-quark momenta on(my/ )= exp{ f m d_y[l (1—y)N"1]
respectively. In the Abelian theory exponentiation follows
simply as a consequence of the factorization in the eikonal > di2
approximation. For each gluon emission one gets a factor of % Jf‘ A(a (k2))+B(ags(m2y2) |,
FU which is unitarized by the virtual contribution. After mﬁy2 s S

appropriate symmetrization the exponentiation follows. Next (40)
we use the result that even in a non-Abelian theory, for the
semi-inclusive process under consideration, exponentiatiofith B(as) = — as/#. This integral is not well defined due

of the one-loop result takes plaf21,13. By considering the  to the existence of the Landau pole, and a prescription is

Nth moment of the soft part, we obtain needed to define the integral. Choosing a prescription leaves
an ambiguity on the order of the power correctid8s24,
d3k 2ko\ N7t 25]. If we use the large\ identity
on=exp 0°Ce [ =—==—||1—-—] -1
N FJ (2m)32k, M .
o 2P0 M } a8 N
p-ka-k  (p-k)
~ N

It should be noted that the ultraviolet cutoff is determined N=3 No=e’% (41)

by the factorization scalg. This cutoff is necessary despite
the fact that the process under consideration is infrared finitgyhich is accurate to within 2% &= 10, to rewrite
All momenta above this scale get shuffled into the hard scat-
tering amplitudeH. The need for a cutoff stems from the fact
that we have used the eikonal approximation. This approxi- UN(mb/M)IeXD[ —f K
. . . X . . mb/N |

mation is equivalent to a Wilson line formulation of the
problem, and thus, as in heavy quark effective field theory,
generates a new velocity-dependent anomalous dimension —B(as(kf)) ,
[14].

By an appropriate change of variablkeg may be written

2A(ozs (k)

(42

then we have fixed a prescription which is unambiguous to

as the accuracy we are concerned with in this paper. From this
o result, we find thatry(my,/w) satisfies the renormalization
uimpdy . ;
UN=eXp[ _fo 7[1 (1—y)N1] group (RG) equation
z B .
dki a M= TP JON| — | =~ ag(u”))In——
X f 17 CF S(ki)—cp—s(mﬁy%)}. 37 e AT o
mby ™

m
y +B(as(1?)) oN(—b).
In arriving at the above, we have made the replacement M
as— as(kf). This change has the effect of resumming the (43
next-to-leading logarithms coming from collinear emission
of light fermion pairs[22]. However, it does not sum all the We note that this is in agreement with RES] where Wilson
soft subleading logarithms. line techniques were utilized.
Explicit calculations carried out at the two-loop level ~We may now use the dependence of the soft function,
[23,15 indicate that the rest of the subleading terms in thetogether with the fact that the total amplituderisindepen-
above may be includedL5] dent, to determine the renormalization group equation satis-
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fied by the jet and hard functions. We have seen in Sec. lll 1dy
that theNth of the derivative of the moments of the semilep- J(my/ ) =ex f —[1-(1-yN 1]
tonic decay has the factorized form oY

2

2dk
an(MyV2 = Yol ) (M / ) HIME(2 = yo) ), (44) X f:zyk—;A(as(kf))— Y(as(My))
L
whereas, for the radiative decay, the moments of the decay ’ )
spectrum are given by 2m2dy 2dy
v [ S Ak
on(My /1) I3 (M / ) HY (M ?). (45) ! MY "L
We have now Iabeled the jet and hgrd functions apcording to — (e mﬁy))} ] (51)
their processes since these function are not universal. We

will first consider the RG equation satisfied B andH?. ] o )

The equations satisfied ' andH' can then be determined W& may now write the explicit expressions for the re-
by simply making the appropriate replacements. We ma)ﬁummed jet an_d soft fgctors. For the_ radlatlve; decay
derive the RG equations satisfied by these functions by usin§ — Xs¥ We rewrite the various representations obtained ear-
the following facts:  w(d/du)[on(my/w)dn(m,/  Mer leaving

w)H(my/w)]1=0; the RG equation satisfied kyy(m,/uw) 1 dz

is given by Eq.(43); the hard scattering amplitude by defi- UN(mb/M):eXP(f —(1—le)N(z)), (52)
nition has noN dependence; the jet functional form which is 0l-z

IN[M2/N) - (1/?)]. This leads to the RG equations

1dz N-1
P P In(My/ ) =ex fﬁ(l—z (2|, (53
(Mﬂ”‘ﬁ@_’_f(as))‘]N(mb/M) 0

251 Mz ki
— ZA(as(Mz))ln%L\l_JN(mb/M). (46) N(Z): fmﬁ(l—z)z F _A(as(ka_))} - B(as(mtz)(l_z)z))
b
pimel (2 did 2 2
(M%+ﬂ%—f(as)—s(as(u2)))H(mb/m _L [fmgyZ?A(aS(kﬁHB(aS(mbyz)) |

(54)

_ —ZA( aS(MZ)In%) H(my /). (47) . g
[ A
L

mﬁ(lfz)

I(z)=

_ _ o _ — y(as(My(1-2)))
f(ag) is an arbitrary function which can only be determined
from additional input. We fixf(as) by requiring that the 2 2d 2 dI2
purely collinear divergences of the jet factor be determined + fﬂ Im,dY f” — Aag(k2))— y(ag(miy))|.
by an Altarelli-Parisi-type equation as discussed 16,12 1 Y | Jmiy kf S -
We note that for these purposes the jet factor is a cut light (55)
guark propagator in the axial gauge.

By requiring that we correctly reproduce the pure collin-  combining these two factors we see that for the
ear divergences at the one-loop level it is found that N-dependent piece in the exponent, i dependence ex-
actly cancels. There are, however, pieces which are indepen-

flag=2y(as), (48) dent of N which areu dependent and these will combine
where y(ay) is the axial vector gauge anomalous dimensionWith similar terms in the hard scattering amplitude to give a
[15,17; u-independent answer which must be true by construction.
' Combining all the factors we find
(a9 =3 2o+ (49) 1 d
Yag)=—7 —Cgt---. z _
° 4 UN(mb/M)JN(mb/M):eX[{_foﬁ(l_ZN HK(2) |,
The solution of the jet RG equation may be writt¢a the (56)
desired accuragyin the form
2d 2 dk? K(2) ngu_ndkf Alag(k?)) = y(as(mi(1-2)))
2 = 7 o —yla -
Myl ) =ex f wIm=Y f " Alag(K?)) mia-p2 kT T S
1N y mgy kl )
—B(as(Mmy(1-2)%). (57)
2
— v(as(mpy)) ] . (30 The Nth moment of the decay rate in then given by

— 2
For future purposes, we rewrite this in the form M= SyondiH Y (as(mp)). (58)
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The value of the one-loop hard scattering amplitétieis  a convergent power series expansiondg(m2)InN to the
given in the Appendix. next-to-leading logarithmic accuracy. Thus, we compute
For the case of the semileptonic decay the expression fahese expressions to this accuracy and delegate all the non-
the soft factor is the same as above. However, for the jet, Wgerturbative effects phenomenologically to the structure
must rescaledy(my /) —In(My/u\2—yo). Thus, we get  function Sy. For a similar approach for the case ®fe”
1dy annihilation, se¢26]. To evaluate the integrals in the expo-
sl M v\ — Y a1 \N-1 nent, we may perform the integration using the largél
Iy /uv1=x,) exq’ fo y =A==y L yx) identity (41). Thek, integration is simplified by using the
(59 RG equation for the running coupling to change variables to

ag: i.e.,
2 dR , , )
L= [ A8~ asmiy(1-x,)) A 1da/ B
miy(1-x,) K —=———|1-—a+0(ad)|, (65
(60) kT Bo ag Bo

In writing the above, we have used the fact thgt=x+X,  where
andx~1 to replace the variablg, by x,,, the neutrino en-

ergy fraction. After some algebra the above may be com- 11C,—2N; 17C,§—5CANf—SCFNf
bined with the expression for the perturbative soft function, BO:Ta B1= 24772 .
such that for the product we may write (66)

m m 1dz ; . ; ;
on b Jle b 1-x,|=ex _f (1-2N"HQ(2) Next we use the expansion, correct to next-to-leading loga
i o’ 0l—2z rithmic accuracy,

2
P(N, ’ 61 2 _ as(mb) ( _&
+P( x,,)] (61 as(mg/N) —1—,80as(m§)lnN Bo
21— dK2 as(mz)
Qz)= f mﬁ‘z(ll_z)lk—fA(as(kf))— Y as(M3(1-2))) X T Boad rzbz)InN
2
—B(as(My(1-2)%), (62) xIn[1— goas<mg)|nw]), (67)
1dy (2 dk?
P(N,x,)= fl/NNmeﬁi/tl—xv)?EiA(aS(ki)) to obtain
L dy miy In(onIn) =INN(g{(x))+93(x), (68)
_f | Y| &s| = ) —7(as(m§Y)) .
1-x, Y N where
(63) x=Boas(mZ)InN. (69)

We note that in deriving this form we have kept only the . .
N-dependent pieces in the exponent. Our analysis shows thjﬂ the above, the functiong, andg, have the following
certain N-independent terms, such as those proportional t¢°'™ for the o processes discussed in this paper.
In(1—x,), can also be resummed using the above-mentioned For the radiative decay

procedure. However, we have takez@(mﬁ)ln(l—x,,) to be A
small in the relevani, range and hence relegated all of gi=-— 5 [(1-2x)INn(1—=2x)—2(1—x)In(1—x)],
these logarithms to the hard scattering amplitude. Thus, we Box 70
may write for theNth moment of the semileptonic decay (70
rate, up to correction®(1/N), and
MS|_ S 1d 6 _ 2094 2 A(Z)
N— >N 0 X, Xv(l XV)O'N‘]N(mb(l XV)’ILL ) 927:—ﬁ[—h’](l—zx)'f'Zln(l_)()]
T Po
XHMy(1—x,),u). (64) A(l)ﬁl 1 ,

The complete expressions for the one-loop hard scattering 27Tﬂ8 (In(l 2x)=2In(1=)x)+ 2In (1=20
amplitude in both the radiative and semileptonic processes at o 5D
x~1 are given in the Appendix. —In2(1—x) |+ —In(1—x)+ In(1-2x)

We conclude this section by giving some simplified ex- 7Bo 27 By
pressions for the produetyJy Which will be useful for nu- AlD
merical analysis. We begin by noticing that, as long as — ——InNg[IN(1—2x)—In(1—x)]. (72)
as(mﬁ)InNsl, the resummation formulas given above have mBo
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1.2 14 16 18 20

22 24 26 28 30

N

FIG. 4. The difference between the moments of the one-loop result and the resummed reddastigd lingand without(solid line)
the resummation of ther?, normalized to the one-loop resul. varies from 10 to 30.

For the semileptonic decay
97=97 (72
and
AL

92 93 +—ﬂln(1 x)In(1—x). (73

We have kept only th&l-dependent terms in thegefactors
which exponentiate. There are albl-dependent constant

terms which we will shuffle into the hard scattering ampli-

tude. These terms are given by

a 44
h7=—2InNo(B')+g) = 5>In*No,

(44
hs'=h7+A(1)fInNoln(1—xv). (74)
Furthermore, Eq(64) for the semileptonic case becomes

——f dxdx st dx,6(1—x,)

Xx,[H(x,)+hsexp(g; +g3).
(75)

In writing the above, we have used the notation
2
a o
Alag)= (_S) AD 4 (_S) A2 (76)
v aa
and
o (64
B<a5>=(§)8<1>, y(as)=(f)y<1>. (77)

The values forA®, A®), B®), and 4) have been given

It is interesting to note that if we expand the expressions
for g5 andgs' in Eq. (68), we see thaG,,, as defined in Eq.
(15), vanishes. Thus, the two-loop results do not trivially
exponentiate as one might have naively thought. Such behav-
ior is a universal property of the asymptotic limit of distri-
bution functions and is a consequence of the fact that only
“maximally non-Abelian” graphs contribute to the exponent
beyond one loog21]. Knowing this greatly reduces the
number of graphs that need to be calculated in a general
resummation procedure.

From expressiori75) we may determine the range bf
for which our calculation is valid. The integration over
contains a branch cut &=my,/Aqcp, signaling the break-
down of the perturbative formalism. This breakdown is com-
ing from the fact that the time scale for gluon emission is
becoming too long. An inspection of the resummation for-
mulas for these quantities suggests that in the regied
such thak? < A2, nonperturbative effects become important.
Thus, we conclude that we may only trust our results in the
range

my
N<

: 78
Nocs (78)

V. ANALYSIS AND RESULTS

With the resummation now in hand, let us consider the
relative sizes of all the contributions. In Fig. 4 we show the
difference between the one-loop result and the resummed
rate given by Eq.(75) normalized to the moments of the
one-loop result:

1le d dI 20

2+5 3|N+|2N
Foo w 6n n

dx dx =1- 37 4
(79

In our calculation we take\ggngoo MeV. We see that
resumming the next-to-leading logarithms has a 20%—-50%

previously.H(x,) is the one-loop correction to the hard scat- effect in the range ol we are considering. Furthermore, for

tering amplitude given in the Appendix.

completeness we have included the effect of resumming the
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2. The result of this resummation is given by the dashedhat we can reduce the model dependence as much as pos-
line. We see that the effect of resumming thé is small>  sible. Certainly, we can greatly reduce the model dependence
As a check of the numerics we compared the resummed eXrom what it is in present extractions which rely solely on
pression to the one-loop resit9) and found that for small models.

N the two coincide to within less than a percent. The factthat The last point that needs to be mentioned is the fact that
the resummation of the next-to-leading logarithms is moreneasuring large moments is not experimentally feasible, as
important that the leading logarithms, is rather dishearteningN yaries much too rapidly. For instance, if we assume that
It leads one to believe that perhaps the next-to-next-toge pin size is given by= SE/m,, then the error at point
leading logarithms will be even more important. However,, ¢, the Nth moment will besN/x. Therefore, the error can
the fact that the effect of subleading logarithms is larger tha%ccumulate quite rapidly. Thus, it will be necessary to take
the leading is already hinted at one loop, given that the rati(fhe Mellin transform of our res’ult. Given that our result is

of the coefficients in fron.t of these Ioga_rlthms is 31/6. It only trustable foN <25, one must be careful to calculate the
could behopedthat the ratio of the coefficients of the next- 0 . .
contribution to the inverse transform from higher moments,

to-leading and next-to-next-to-leading logarithms is not sa : . :
large and the terms left over in our resummation will be On|f one hopes to impose the bounds on the errors discussed in

the order of 10%. this paper. Also, for smaller values Nfone must be sure not
to use the resummed formula as we have dropped terms that
go like 1—x.
VI. DISCUSSION Given these caveats, we may now address the issue as to

Before we conclude with a discussion of the future pros-W.hat accuracy we can dete_r ik, usirjg inclusive depays.
pects of the extraction of,,, we wish to point out that there Since the subleading logarithms dominate the leading loga-

is one tacit assumption which has been made up to this poiffthms, the conservative conclusion would be that a model-
in our investigation. That is, we have assumed that locaindependent extraction &fyy, is not possible. However, let
duality will hold when we are a few hundred MeV from the US proceed under the assumption the sub-subleading loga-
end point. The whole formalism of using the OPE in calcu-fithms will be smaller than the subleading logarithms. In this
lating inclusive decay rates assumes that at certain parts 68se we may say that we have been able to reduce the errors
the Dalitz plot, the Minkowski space calculation will give from radiative corrections down to the order of 10%. How-
the correct result. This should be a good approximation asver, the QCD perturbative expansion is notoriously asymp-
long as we stay away from the resonance region. The quesstic, and though we may hope that we have resummed the
tion is, how far from the end point does this region begin? Ifdominant pieces of the expansion, there could still be large
it is found that single resonances dominate, even as far asgonstantgindependent o) which could arise.
few hundred MeV from the end point, then the extraction of  Another source of errors will come from the fact that we
Vyp through inclusive decays is surely doomed. The quarkeed to eliminate the dependence of the decay rate on the
model seems to indicate that this may be the d&8, moments of the nonperturbative structure funct{@ by
though othgr theoretical predictions say othervyise. We Wi"taking the ratio of the semileptonic decay moments to the
have to wait to see the data before we can decide on the fajfoments of the radiative decay. This will introduce the er-
of the extraction methods discussed here. ~ rors in the radiative decay into the semileptonic decay. One
Next we wish to reiterate thampletelyeliminating the ., 14 cajculate without any nonperturbative resummation,
background from thé—c transition by going to very large thus eliminating these errorghe results in this paper are

N>30 is not feasible since there is no way to reliably calcu-g,j\, oified to include this possibilitybut then it is dif-
late the soft gluon emission which takes place. This is be:. : . .

; : ficult to quantify the model-dependent errors introduced in
cause when one goes that far out on the tail, the time Scalt%e truncation. Finally, there are the errors introduced due to
for gluon emission is too long compared to the QCD scale tqQ ' Y,

have any hope of perturbation theory making any sensé.he model _depende_nce from the calculation of the back-
Again, this statement is independent of how many soft |Ogaground. Th'§ error will be rgduced as we choos_e larger val-
rithms one is willing to resum. Another way of saying this is U€S OfN. This is the most difficult error to quantify, and we
that whenx gets to close to 1, there is no operator productShall not discuss it here. o .
expansion since the expansion parametera figi,(1—x). The authors believe that, if the end point is not dominated
Thus, we are stuck with the fact that there will always beby single-particle resonances, and if we assume that the fact
contamination from transitions to charmed final states. Calthat the subleading logarithms dominate the leading loga-
culating the end point of the charmed spectrum using thé&ithms is just an anomaly, then we may hope to eventually
techniques discussed above fails as well since resonancestractV,,, at the 30% level using the results presented here.
will dominate. Thus, there does not seem to be any way tdoreover, resumming the next-to-leading logarithms is in-
avoid having to use a model to determine the background inleed necessary. However, the more conservative view would
the extraction process. The best we can hope to do, using thee that the end point calculation is just intractable at this
results in this paper, is to go to a large enough valu®of time, since it could be that the sub-subleading logarithms
will dominate. To be sure that this is not the case the sub-
subleading logarithms would need to be resummed. This
Note that in resumming the? we only resum part of ther> in ~ would entail calculating® to three loops, an8 andy to two
the expression2), since part of ther? contribution comes from loops. Without this calculation, we cannot determine with
integration over the neutrino energy. certainty the size of the errors.
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APPENDIX I S S A T T P Tinl 2
2y0_1 +2 6+2In ﬁ+2In 2

In this appendix we give explicit expressions for the hard
scattering amplitude at the one-loop level and to leading or- 2
der in (1—x). We first present the results of the computation —2In(2=yo)ln| = . (A3)
of the QCD corrections to the doubly differential rate b
d’I'/dxdy, for the semileptonico-quark decay. It is clear |n the aboven is the gluon mass used to regulate the infra-
from Secs. Il and Ill that this is the quantity whose momentsred divergences at intermediate stages of the calculation.
faCtOI‘ize and Wh|Ch IS relevant f0r the resummation. WeCOmbining these resu|ts and integrating Owrgives the
write electron spectrum which agrees wi8] but disagrees with
[29].
From this we see that to the approximation we are work-

o 2a, ing | i i ined i i
_ _ _ _4Gs g in, the hard scattering amplitude as defined in Eq. 25 is
dXdyO 61—‘O(yO 1)(2 y0)<1 37 G(vao))' given by
(A1)
wherel'y was defined earlier. The contributions of the real 2a4( 7? )
and the virtual gluon emission diagrams @&(x,yo) are ~ Hs=1—2—1 = +2In%(2=yo) = 2In(2—yo)In(yo—1)
given by
3 IN(2—vyy) e{ ) ( 1 ” 5]
—=In(2—yg)+ ———+2ReLiy| m——| |+ 5.
. 2 (2—=yo) Vo1 2 2=V, 2
GFA=In?(1—x)+ 5IN(1=x)—2In(2-yo)In(1-x) (Ad)
3 2 1 A2 For the radiative decay, we may extract the hard scatter-
—In?(2—yo)+ =In(2—yo)+ — — =In*| — ing amplitude from[30]
2 6 2 mj
? \? 2a5(3 272
—Zinl = _ = s ™
2|n<m§ +2In(2—-yop)In mﬁ) (A2) HV:l_g(E_T)' (A5)
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