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Extraction of Vub from inclusive B decays and the resummation of end point logarithms
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In this paper we discuss the theoretical difficulties in extractingVub using the data from inclusiveB decays.
Specifically, we address the issue of end point singularities. We perform the resummation of both the leading
and next to leading end point logarithms and include the leading corrections to the hard scattering amplitude.
We find that the resummation is a 20%–50% effect in the end point region where the resummation is valid.
Furthermore, the resummed subleading logarithms dominate the resummed double logarithms. The conse
quences of this result for a model-independent extraction of the mixing angleVub are explored.
@S0556-2821~96!02915-3#

PACS number~s!: 13.20.He, 12.15.Hh
I. INTRODUCTION

Measurements in the bottom quark sector have reac
the point that our knowledge of many observables is n
bounded by the theoretical uncertainties@1#. Fortunately,
theoretical advances in calculating both exclusive as wel
inclusive rates now allow the extraction of the Cabibb
Kobayaski-Maskawa~CKM! parameters without recourse
the models which have soiled the extraction processe
date. The present values ofVub have a model dependenc
which introduce an uncertainty of a factor of 2@1#, which is
several times larger than the experimental uncertaint
With QCD-based calculations, we can now hope to extr
bothVbc andVub with errors on the order of tens of a pe
cent. In this work, we concentrate on the extraction ofVub
from the measurement of the electron spectrum in semi
tonic inclusiveB meson decays.

The extraction ofVub from inclusive semileptonicB de-
cays is hindered by the fact that the background fr
charmed decays is overwhelming for most of the range of
lepton energy. Thus, we are forced to make a cut on
lepton energy, vetoing all events, or some large fract
thereof, with lepton energy less than theb→c end point
energy. Given the proximity of the two relevant end poin
this obviously hinders the statistics. However, even with
large data sample, the accuracy of the extraction will be l
ited by the errors induced from the approximations used
calculating the theoretical prediction in the end point regi
This region of the Dalitz plot is especially nettlesome f
theory, because the perturbative as well as the nonpertu
tive corrections become large when the lepton energy is n
its end point value.

It has been shown that it is possible to calculate the de
spectrum of inclusive heavy meson decay in a system
expansion ine5LQCD/mb andas using an operator produc
expansion within the confines of heavy quark effective fi
theory @2#. It is possible to Euclideanize the calculation
the rate for most of the region of the Dalitz plot with on
546-2821/96/54~3!/2349~14!/$10.00
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minimal assumptions about local duality. However, in the
end point region, the expansion ine, as well as the expansion
in as , begins to breakdown.~The end point region poses
problems for local duality as well. We shall discuss this in
more detail later.!

The aim of this paper is to determine the size of the errors
induced from the theoretical uncertainties in the extraction of
Vub . A large piece of this work consists of implementing the
resummation of the leading and subleading end point loga-
rithms which cause the breakdown of the expansion inas ,
as first discussed on general grounds in@3#, and the inclusion
of theas corrections to the hard scattering amplitude. How-
ever, to determine the consistency of our calculation, we
must also address the issue of the nonperturbative correc-
tions. These issues have been previously looked at in Refs.
@4# and @5#. In @4# the need for resummation was addressed
on general grounds. However, the calculational methods
used here are not compatible with the arguments given in@4#,
and thus we must recapitulate these arguments within the
confines of our methods.

In the second section of this paper, we discuss the ques-
tion of the need to resum the perturbative as well as nonper-
turbative series. The next three sections are dedicated to the
resummation of the leading and next-to-leading infrared
logarithms and the inclusion of the one-loop corrections to
the hard scattering amplitude~that is, one-loop matching!. In
the fifth section we give our numerical results while the last
section draws conclusions regarding what errors we can ex-
pect in the extraction process.

II. IS RESUMMATION NECESSARY?

As mentioned above, the theoretical calculation of the
lepton spectrum in inclusive decays breaks down near the
end point. Both the nonperturbative as well as perturbative
corrections become large in this region. Here we investigate
the need to perform resummations in either or both of these
expansions. The one-loop decay spectrum including the lead-
2349 © 1996 The American Physical Society
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ing nonperturbative corrections is given by@6#

1

G0

dG

dx
5u~12x!Fx2~322x!S 12

2as

3p D I ~x!12~32x!x2Eb

2
2

3
x2~912x!Kb2

2

3
x2~1512x!GbG

1FEb2
2

3
Kb1

8

3
GbGd~12x!1

1

3
Kbd8~12x!,

~1!

where

I ~x!5 ln2~12x!1
31

6
ln~12x!1p21

5

4
, x5

2Ee

mb
,

~2!

G05uVubu2
GF
2mb

5

96p3 . ~3!

Eb ,Gb , andKb are hadronic matrix elements of ordere2 and
are given by

Eb5Gb1Kb ,

Kb5K B~v !Ub̄v D2

2mb
2bvUB~v !L ,

GB5K B~v !Ub̄vgsabG
ab

4mb
2 bvUB~v !L . ~4!

bv is the velocity-dependent bottom quark field as defined
heavy quark effective field theory. From the above expr
sions we see that the breakdown of the expansions, inas and
e5LQCD/mb , manifests itself in the large logarithms an
the derivative ofd functions, respectively.
in
es-

d

A. Nonperturbative expansion

As one would expect for heavy meson decay, the leading
order term ine reproduces the parton model result. All cor-
rections due to the fact that theb quark is in a bound state
are down bye2 @2#. However, near the end point of the
electron spectrum we begin to probe the nonperturbative
physics. The general form of the expansion ine5l/mb , to
leading order inas , is given as

1

G0

dG

dx
5u~12x!~e01e21••• !

1d~12x!~0e1e21e31••• ! ~5!

1•••1d~n!~12x!~en111en121••• !1•••. ~6!

The end point singularities are there because the true end
point is determined by the mesonic mass and not the partonic
mass, as enforced by theu function in the leading order term.
The difference between these end points will be on the order
of a few hundred MeV. To make sense of this expansion we
must smear the decay amplitude with some smooth function
of x. Normally, this would not pose a problem; however,
given that the distance between theb→c and b→u end
points is approximately 330 MeV, we are forced to integrate
over a weighting function which has support in a relatively
small region. On the other hand, if the weighting function is
too narrow, then the expansion ine will not be well behaved.

Thus we must find a smearing function that minimizes the
errors due toLQCD/mb corrections which does not overlap
with the energy region where we expect manyb→c events.
The question then becomes how manyb→c transitions we
can allow without introducing large errors due to our igno-
rance of theb→c end point spectrum~the theory breaks
down in theb→c end point region as well though there are
important differences between this case and theb→u tran-
sitions!.

The issue of smearing was addressed by Falket al. @4#
who used Gaussian smearing functions to gain quantitative
insight into the need for smearing. They found that without
FIG. 1. The ratio ofVub
2 /Vbc

2 for which theNth moments of the leading order spectra are equal.
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any resummation, the smearing function should have a w
which is greater thane, but that after resumming the leadin
singularities, we need smear only over a region of widthe.
Here we will smear by taking moments of the electron e
ergy spectrum~we work with the moments of the spectrum
because it greatly facilitates the resummation of the per
bative corrections!. Thus, we must address the question
what range of values ofN will lead to a sensible expansio
idth
g

n-

tur-
of
n

which is also not overly contaminated byb→c transitions.
This will obviously depend on the ratio ofVub to Vbc . To
get a handle on the numerics, let us for the moment assum
that we wish that the number ofb→u transitions be at least
equal to the number ofb→c transitions in our sample. In
Fig. 1, we plot (Vub

2 /Vbc
2 )(N), which is the ratio of mixing

angles for which theNth moments of the leading order rates
for b→c andb→u transitions will be equal, and is given by
Vub
2

Vbc
2 ~N!5

*0
xmx2@~xm2x!2/~12x!3#@623xm1~xm26!x12x2#xNdx

*0
1x2~322x!xN

. ~7!
-

t

-

-
-

-

xm is 2Emax/mb for theB→D transitions and takes the valu
xm'0.9. Given the bounds@7#

0.002,
uVubu2

uVbcu2
,0.024, ~8!

we see that an understanding of the spectrum for mom
aroundN.20 is necessary if we wish to keep theb→c
contamination under control.~Of course we do not sugge
that these moments can be measured given the finite re
tion of the experiment. We will discuss this situation later
the paper.!

We now consider the issue of determining the maxim
value ofN for which the expansion makes sense. Let us
consider the expansion ine. The moments of the leadin
singularities of Eq.~5! will behave as

MN'Cn

N! en11

~N2n!!
. ~9!

As a possible criterion on the size ofN, we may impose tha
there be no growth withn. That is,

N! en11@ lne1C~N2n11!#

~N2n!!
,0. ~10!

e represents the value of some matrix element in the he
quark effective theory. It is assumed that the value oe
should be on the order of a few hundred MeV/mb , but in
theory it could vary by a factor of order 1 from term to ter
To get a handle on the sizes ofe, we may consider th
leadinge, which is given by

e15 KBUb̄v ~ iD !2

2
bvUBL 1

mb
2 . ~11!

Quark model calculations suggest thate1
2 is on the order of

0.01@8#. Thus, naively, it seems that to keep the expansio
e under control, we must keepN<10. This estimate is per
haps too crude for our purposes given that we know noth
of the growth of the coefficientsCn or of the range of pos
sible values ofeN . It does suggest that some sort of resu
mation may be necessary.
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Neubert@8# pointed out that it is possible to resum the
leading singularities, much as in the case of deep inelastic
scattering, into a nonperturbative shape function

f̃ ~k1!5^Bud~k12 iD1!uB&. ~12!

This function gives the probability to find theb quark within
the hadron with residual light cone momentumk1 . Thus,
this function is roughly determined by the kinetic energy of
theb quark inside the meson. This structure function will be
centered around zero and have some characteristic widthd.
d will determine the maximum size ofN for which the ex-
pansion without resummation makes sense. To get a well
behaved expansion we chooseN such thatxN gives order 1
support to the structure function throughout its width. The
value ofd is unknown at this time, and various authors have
given different estimates for its value. We can assume tha
this width should be on the order of (mB2mb)/2 which is
around 300 MeV. We shall choose what we believe to be the
conservative value of 500 MeV ford. Since the structure
function is the sum of derivatives ofd functions, we con-
clude that we should smear over the width of the function if
we do not wish to incur large errors. Let us assume, for the
sake of numerics, thatxN should not fall below the value 0.1,
within 500 MeV of the end point. Then we find thatN must
be <20. Thus, we expect that the nonperturbative effects
could be quite large for the range ofN that we consider here.
Of course whenN becomes very large,N.100, it is neces-
sary to go beyond the leading twist since the soft gluon ex-
change in thet channel begins to dominate, not to mention
the failure of the operator product expansion~OPE! due to its
asymptotic nature@9#.

We see that for our purposes we should include the non
perturbative structure function in our calculation. The fact
that knowledge of this nonperturbative function is needed to
extractVub should not bother us too much, however, given
that it is universal. That is to say, we can remove it from our
final result by taking the appropriate ratio@10#. Or it can be
measured on the lattice, much in the same way that the mo
ments of the proton structure functions are now being mea
sured. Using the Altarelli-Cabibbo-Corbo-Maiani-Martinelli
~ACCMM! model@11# Blok and Mannel@5# concluded that a
resummation of the nonperturbative corrections is unneces
sary. If the width of the structure function is smaller than the
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FIG. 2. The difference between the moments given by the leadingas correction and the moments of the rate with only the doub
logarithms resummed.
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conservative number chosen here, then this could very w
be true. This would be a welcome simplification of the e
traction process, since we would no longer need to rely
the extraction of nonperturbative parameters from other p
cesses to measure the mixing angleVub .

B. Perturbative expansion

Let us now address the issue of the perturbative corr
tions. The corrections inas grow large near the electron
energy end point, and, precisely at the end point, there
logarithmic infrared divergences. These divergences are
to the fact that near the end point gluon radiation is inhibite
and as a result, the usual cancellation of the infrared div
gences between real and virtual gluon emission is nullifi
Of course, the rate is not divergent, and we expect tha
resummation procedure will have the effect of reducing
rate for the exclusive process.

Near the end point large logarithms form a series of
form

dG

dx
5C11a ln

2@12x#1C12a ln@12x#1C13a

1C21a
2ln4@12x#1C22a

2ln3@12x#

1•••1C31a
3ln@12x#61C32a

3ln5@12x#

1•••1• 1• 1•••1• 1• 1•••,

which in terms of a moment expansion gives1 ~for largeN)

E
0

1

dxxN
dG

dx
5
1

N
~C̃11a ln

2N1C̃12a lnN1C̃13a

1C̃21a
2ln4N1C̃22a

2ln3N1•••

1C̃31a
3lnN61C̃32a

3ln5N1••• !. ~13!

1This form holds forb→sg; for the semileptonic decay, we wil
consider the moments of the derivative of the rate.
ell
x-
on
ro-

ec-

are
due
d,
er-
ed.
t a
the

the

Given this expansion, we may ask what errors we expe
to incur by truncating the expansion at orderas . ForN near
20, we see that

as

p
ln2N.0.6, ~14!

and so we might expect that truncating at leading ord
would not be such a good idea. We must also note that in E
~1! the subleading logarithm actually dominates the leadin
double logarithm due to the large coefficient31

6 . The resum-
mation of the double logarithms is simple and leads to th
exponentiation of the double logarithms. Figure 2 shows th
difference between the one-loop result and the result wi
only the double logarithms resummed. We see that the d
ference is very small, on the order of 5%. Thus, one mig
come to the conclusion that no resummation of the perturb
tive series is necessary. However, given that the coefficien
of the single logarithms as well as thep2, which are just as
large as the double logarithms for the range ofN we are
considering here, are unknown at higher orders, we can on
determine the errors induced by a truncation of the seri
after we have performed the resummation.

Resumming the leading double logarithms in itself doe
not increase the range inN over which perturbation theory is
valid. Even after this resummation is performed the criteri
for a convergent expansion is still (as /p)ln

2N,1 unless we
know that the subleading logarithms exponentiate as we
However, one can show on very general grounds@12# that all
the end point logarithms exponentiate as a consequence
the fact that these logarithms are really just UV logarithms i
the effective field theory@13,14#. Thus, it is always possible
to write down a differential equation for the rate based on i
factorization scale independence. As such, the general fo
of the decay amplitude will be given by

lnF E
0

1dG

dx
xNG5C~as!1 (

n51

`

as
n (
m51

2n

Gnmln
mN. ~15!

Once we have this information, the question of the region
convergence becomes the following. Do the lower orde
terms in question contribute numbers of order 1 in the exp

l
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nent? We may continue to increaseN until we find that the
subleading terms in the exponent contribute on the order
Thus in general resumming the leading logarithms does
deed allow us to takeN into the range where
(as /p)ln

2N.1. Here we will go further, as was done in@3#,
and sum the next-to-leading logarithms as well, allowin
(as /p)lnN<1. This will allow us to determine the conver
gence of the expansion. Furthermore, we extend the anal
of @3# to include the one-loop matching corrections, thu
completing the calculation at orderas .

We wish to note that Blok and Mannel@5# analyzed the
effects of the large logarithms to the end point spectrum a
concluded that no resummations were necessary. These
thors propose to take the lower bound on the moment in
gral to be the charmed quark end pointxc . Doing this allows
one to stay away from larger values ofN ~the authors choose
N,10). Cutting off the integral introduces errors that hav
the doubly logarithmicxc dependence ln2(12xc). To reduce
these errors, it is necessary to go to higher values ofN.
These authors claim that forN,10 the errors induced by
cutting off the integral are small, on the order of a few pe
cent. However, we believe that these authors have unde
timated their errors because they normalized their errors
the total width and not the moments themselves. Furth
more, and perhaps most importantly, the authors did not c
sider the possibility that the subleading logarithms cou
dominate the leading logarithms in the resummation, whi
as we shall see is indeed the case.

Finally, it should be pointed out that aside from bein
bounded by the size of the logarithms,N is bounded on
purely logical grounds. The whole perturbative QCD fram
work loses meaning when the time scale for gluon emiss
becomes on the order of the hadronization time scale. T
restriction bounds the minimum virtuality of the gluon
which we expect to be on the order ofmb /N ~we will show
this to be true when we perform the resummation!. Thus,
performing resummations can only take one so far no ma
how powerful one is. However, for top quark decays it
possible to get extremely close to the end point due to
large top quark mass. In this case it is clear that the resu
mation of the next-to-leading logarithms will become esse
tial. Thus, the extraction ofVtd from inclusive top quark
decays will have much smaller theoretical errors than in t
b decay case. We shall discuss the issue of the breakdow
perturbation theory in greater detail after we perform th
resummation.

III. FACTORIZATION

The large logarithms appearing in the perturbative expa
sion arise from the fact that at the edge of phase space gl
emission is suppressed. The problem of summing these la
corrections has been treated previously for various appli
tions, such as deep inelastic scattering and Drell-Yan p
cesses@12,15#, just to mention a few. The case of inclusiv
heavy quark decay has been treated previously in@3#. An
important ingredient of the resummation procedure is t
proof of factorization. As applied to the present process
this procedure separates the particular differential rate un
consideration into subprocesses with disparate scales.

In the case of inclusive semileptonic heavy quark deca
1.
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the relevant scales aremb andmb(12x), with x52Ee /mb in
the rest frame of theb quark. To understand how to bes
factorize the differential rate in the limitx→1, we need to
know the momentum configurations which give leading co
tributions in that limit. With this in mind, let us consider the
inclusive decay of theb quark into an electron and neutrino
of momentape and pn , respectively, and a hadronic jet o
momentaph . First we note that the kinematic analysis i
simplified with the following choice of variables in the res
frame of theb quark @16#

x5
2Ee

mb
, y05

2~Ee1En!

mb
, y5

~pe1pn!2

mb
2 . ~16!

The kinematic ranges for these variables are

0<x<1, 0<y<x, ~y/x1x!<y0<~y11!. ~17!

Furthermore, define the variable

h5S 12y

22y0
D where x<h<1. ~18!

This variable plays an analogous role to the Bjorken scali
variable in deep inelastic scattering phenomena. The inva
ant mass of the final state hadronic jet and its energy a
given by

ph
25mb

2~12h!~22y0!, ph
05

mb

2
~22y0!. ~19!

We should note that in determining the boundary values
the various variables we refer to theb-quark mass and not to
that of the meson. This is justified within the perturbativ
framework we are working in at the moment. However, onc
we include the effects of the nonperturbative structure fun
tion, the phase space limits will take on their physical value

Let us now investigate the dominant momentum config
rations nearx→1. First, we observe that the invariant mas
of the hadronic jet 1 neutrino system is given by
(pb2pe2pn)

25mb
2(12x) which vanishes at the end point

The phase space configuration where the neutrino is sof
suppressed and hence, when the value ofx approaches 1, the
electron and the hadronic jet-neutrino system move back
back in the rest frame of theb quark. Furthermore, the in-
variant mass of the hadronic jet vanishes independently
the neutrino energy. This is readily verified using the pha
space boundaries. The energy of the jet is large except n
the pointx→y→1. In this region of the Dalitz plot factor-
ization breaks down, and the techniques used here fail. Ho
ever, this problematic region is irrelevant as a consequen
of the fact that the rate to produce soft massless fermions
suppressed at the tree level. Thus, the following pictu
emerges atx;1. Theb quark decays into an electron mov
ing back to back with the neutrino and a lightlike hadron
jet. We choose the electron to be moving in the1 ~light
cone! direction, and the jet moves in the2 ~light cone! di-
rection in the rest frame of theb quark. The constituents of
the jet may interact via soft gluon radiation with each oth
and with theb quark, but hard gluon exchange is disallowed

This simple picture is related by the Coleman-Norto
theorem@17,18# to the type of Feynman diagrams that ar
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FIG. 3. Reduced diagram forB decays.
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infrared sensitive. According to this theorem, if we constr
a ‘‘reduced’’ diagram by contracting all off-shell lines to
point, then at the infrared singular point, such a diagr
describes a physically realizable process. Thus, atx;1 the
type of diagrams that give large logarithms is precisely th
described above and shown in Fig. 3@31#.

In the figure,S denotes a soft blob which interacts wi
the jet and theb quark via soft lines.J denotes the hadroni
jet andH the hard scattering amplitude. The typical m
menta flowing through the hard subprocess areO(mb). H
does not contain any large end point logarithms and ha
well-defined perturbative expansion inas(mb). All the lines
which constituteH are off shell and have been shrunk to
point. The soft functionS contains typical soft momentum
k, with k1;k2;k'5O„mb(12x)…. Thus, by ‘‘soft’’ we
mean soft compared tomb , but still larger thanLQCD. The
jet subprocess has typical momentap such thatp2@p1,
p'
2 with p1, p'

25O„mb(12x)… andp25O(mb). In order to
delineate between momentum regimes, a factorization s
m is introduced. The fact that the process ism independent
will be utilized to sum the large end point logarithms whi
are contained in the soft and jet functions. The reduced
gram for the inclusive radiative decayb→Xsg is exactly the
same as above if we ignore the strange quark mass.

An important consequence of the factorization is the f
that the soft functionS is universal. That is, it is independen
of the final states as long as factorization holds. Thus the
function in the semileptonic decay will be the same s
function as in the radiative decay. This universality will a
low us to remove our ignorance of any nonperturbative ph
ics due to bound state dynamics by taking the appropr
ratio. Thus, throughout this paper we will treat both t
semileptonic as well as the radiative decays in turn.

We conclude this discussion with a few comments. Fi
we should point out the differences between factorization
the process considered here and in deep inelastic scatt
for large values of the Bjorken scaling variable@15#. A cru-
cial difference arises from the fact that the initial quark
massive, and hence, the semi-inclusive decays of thea heavy
quark is infrared finite to all orders in perturbation theo
because there are no collinear divergences arising from
tial state radiation. This fact has the important conseque
ct
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that the differential decay rate will be independent ofm,
whereasm independence in deep inelastic scattering is onl
achieved after an appropriate subtraction is made with an
other process, such as the Drell-Yan process, which has t
same collinear divergence structure as the deep inelastic sc
tering process. Next we note that, in general, the separatio
of diagrams into soft and jet subprocesses is not unique, an
some prescription must be adopted. For a discussion of th
issue see@19,12#. In our case, we will determine the proper
separation from the requirement of them independence of
the decay rate from the condition that the hard scatterin
amplitude does not contain any large end point logarithms
and that the purely collinear divergences in the jet must sa
isfy an Altarelli-Parisi-like evolution equation. We will re-
turn to this point in the next section. The factorization can be
made more manifest by going to the lightlike axial vector
gauge with the gauge-fixing vector pointing in the jet direc-
tion. In this gauge, the soft lines decouple from the jet on
diagram by diagram basis.

In terms of the variables introduced earlier, the triply dif-
ferential factorized decay amplitude may be written as

1

G0

d3G

dxdydy0
56mb~x2y!~y02x!E

kmin
2

kmax
1

dk1 f ~k
1,m2!

3J„ph
2~ph

12k1!,m2
…H~mb ,m

2!, ~20!

G05
GF
2

96p3 uVubu2mb
5 . ~21!

This form will hold up to errors on the order ofO(12x).
We have chosen the electron to be traveling in the1

direction with momentak5mb(x,0,0'), and

kmax
1 5mb~12h!, kmin

1 52~MB2mb!. ~22!

Here f (k1) is the probability for theb quark to have light
cone residual momentumk1, and thus contains not only the
information in the soft functionS but also the nonperturba-
tive information regarding the nature of the bound state. I
we ignore perturbative ‘‘soft’’ gluon radiation, then this
function coincides withf̃ (k1) defined in the previous sec-
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tion. Notice thatk1
min is negative. This is important nonpe

turbatively and represents the leakedge past the partonic
point due to the soft gluon getting energy and moment
from the light degrees of freedom inside theB meson.
Loosely speaking it is due to the Fermi motion of theb quark
inside the meson.

Less formally, we may write the derivative of the dec
amplitude as@3#

21

G0

d

dx S dG

dxD5E
1

2

dy06~22y0!
2~y021!G~x!, ~23!

G~x!5E
x

MB /mb
dz f~z,mb /m!J„mb

2~22y0!

3~z2x!,m2
…H„mb~22y0!/m…. ~24!

In this equation we have changed variables fromk1 to the
residual light cone momentum fractionz5(12k1/mb), and
absorbed a factor ofmb

2 into the jet factor.
By taking the moments of this expression with respec

x we see that we are able to treat the hard, soft, and
functions separately. We are led to the following form for t
moments of the semileptonic rate

MN
sl[

1

G0
E
0

MB /mb
xN21

d

dx S dG

dxDdx
5E

1

2

dy06~22y0!~y021! f NJN„mb
2~22y0!,m

2
…

3H„mb~22y0!,m…, ~25!

f N5E
0

MB /mb
zNdz f~z!, ~26!

JN~22y0!5E
0

1

lNJ„mb
2~22y0!~12l,m2!…dl. ~27!

In writing the last few equations we have dropped all ter
of orderO(12x) or equivalently taken the largeN limit.
The left-hand side of Eq.~25! defines the moments of th
semileptonic decay electron distribution,MN

sl

The moments of the soft functionf N may be decompose
into a product of moments of a perturbatively calculab
sN and the nonperturbative structure functionSN , which
corresponds to the moments off̃ discussed in the previou
section. We may write

f̃ ~z!5E
z

MB /mbdy

y
S~y!sS zyD , ~28!

and thus, taking moments,

f N5sNSN . ~29!

An analogous situation exists for the decayB→Xsg. We
definex52Eg /mb in the rest frame of theb quark, and take
the photon to be moving in the1 direction, and, as in the
r-
end
um

ay

t to
jet

he

ms

e

d
le

s

semileptonic decay, atx;1 the hadronic jet is moving in the
2 direction. Furthermore, the invariant mass of the hadroni
jet and its energy are

ph
25mb

2~12x!, ph
05mb~12x/2!. ~30!

Thus thes quark, is very energetic, and since the invarian
mass of the jet vanishes asx;1, the s quark decays into
quanta which are collinear once we ignore effects on th
order ofms

2/mb
2 Clearly the factorization picture discussed

earlier for the semileptonic decay holds here as well and th
reduced diagram is the same as in Fig 3.

As before we may take the moments of the differentia
rate

MN
g [

1

Gg
E
0

MB /mb
dxxN21

dG

dx
5SNsNJN , ~31!

where@20#,

Gg5
aGF

2

32p4mb
5uVtbVts* u2C7

2~mb! ~32!

and

JN5E
0

1

dyyN21J„mb
2~12y!,m2

…. ~33!

sN andSN are the same functions defined in Eq.~28! and
C7 is the Wilson coefficient ofO7 as defined in@20#. For the
radiative decay, the ln(12x)/(12x)1 distribution in the am-
plitude will correspond to ln2(N) in the moment, whereas, in
the semileptonic decay, taking the derivative of the ampli
tude will generate plus distributions which will then generate
lnN and ln2N after taking the moments. Thus, we have re-
duced the problem of the resummation of the large loga
rithms in the amplitude to resumming the logarithms inJN
andsN separately. This greatly simplifies the calculation as
will be seen below.

IV. RESUMMATION

The resummation of the infrared logarithms is analogou
to summing ultraviolet logarithms. One takes advantage o
them independence of the amplitude. In the case of infrare
logarithms,m is the factorization scale or, equivalently, the
renormalization scale within the appropriate effective field
theory, which for this case would the field theory of Wilson
lines @14#.

We first outline the derivation of a representation of the
soft functionsN nearx51 following the techniques devel-
oped in Ref.@15#. We will work in the eikonal approxima-
tion where soft momenta are ignored wherever possible. A
the one-loop level, the real gluon emission contribution fac
torizes and the quantity multiplying the tree level rate is
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Feik
real~x!5g2CFE d3k

~2p!32k0
S 2p•q

p•kq•k
2

mb
2

~p•k!2
D

3dS 12x2
2k0
m D . ~34!

Thed function enforces the phase space constraint. Simila
the one-loop virtual gluon contribution is given by

Feik
virt52g2CFd~12x!E d2k

~2p!32k0

3H 2p•q

p•kq•k
2

mb
2

~p•k!2 J , ~35!

where p and q are theb-quark and light-quark momenta
respectively. In the Abelian theory exponentiation follow
simply as a consequence of the factorization in the eiko
approximation. For each gluon emission one gets a factor
Feik
virt which is unitarized by the virtual contribution. After

appropriate symmetrization the exponentiation follows. Ne
we use the result that even in a non-Abelian theory, for t
semi-inclusive process under consideration, exponentiat
of the one-loop result takes place@21,13#. By considering the
Nth moment of the soft part, we obtain

sN5expH g2CFE d3k

~2p!32k0
F S 12

2k0
M D N21

21G
3F 2p•q

p•kq•k
2

mb
2

~p•k!2
G J . ~36!

It should be noted that the ultraviolet cutoff is determine
by the factorization scalem. This cutoff is necessary despite
the fact that the process under consideration is infrared fin
All momenta above this scale get shuffled into the hard sc
tering amplitudeH. The need for a cutoff stems from the fac
that we have used the eikonal approximation. This appro
mation is equivalent to a Wilson line formulation of th
problem, and thus, as in heavy quark effective field theo
generates a new velocity-dependent anomalous dimens
@14#.

By an appropriate change of variablessN may be written
as

sN5expH 2E
0

m/mbdy

y
@12~12y!N21#

3S E
mb
2y2

m2 dk'
2

k'
2 CF

as

p
~k'

2 !2CF

as

p
~mb

2y2!D J . ~37!

In arriving at the above, we have made the replacem
as→as(k'

2 ). This change has the effect of resumming th
next-to-leading logarithms coming from collinear emissio
of light fermion pairs@22#. However, it does not sum all the
soft subleading logarithms.

Explicit calculations carried out at the two-loop leve
@23,15# indicate that the rest of the subleading terms in t
above may be included@15#
rly

s
nal
of

xt
he
ion

d

ite.
at-
t
xi-
e
ry,
ion

ent
e
n

l
he

CFas~k'
2 !

p
→A„as~k'

2 !…, ~38!

with

A~as!5
as

p
CF1S as

p D 2 12CFk,

k5CAS 67182
p2

6 D2
10

9
TRNf . ~39!

This resums all the leading and next-to-leading logarithms o
N in the soft function.

Thus, we obtain

sN~mb /m!5expH 2E
0

m/mbdy

y
@12~12y!N21#

3S E
mb
2y2

m2 dk'
2

k'
2 A„as~k'

2 !…1B„as~mb
2y2…!J ,

~40!

with B(as)52as /p. This integral is not well defined due
to the existence of the Landau pole, and a prescription
needed to define the integral. Choosing a prescription leav
an ambiguity on the order of the power corrections@3,24,
25#. If we use the largeN identity

12xN215uS 12x2
1

Ñ
D ,

Ñ5
N

N0
, N05e2gE, ~41!

which is accurate to within 2% atN510, to rewrite

sN~mb /m!5expH 2E
mb /Ñ

m dk'
k'

F2A„as~k'!…ln
k'Ñ

mb

2B„as~k'
2 !…G , ~42!

then we have fixed a prescription which is unambiguous t
the accuracy we are concerned with in this paper. From th
result, we find thatsN(mb /m) satisfies the renormalization
group ~RG! equation

S m
]

]m
1b

]

]gDsNSmb

m D 52F2A„as~m2!…ln
mÑ

mb

1B„as~m2!…GsNSmb

m D .
~43!

We note that this is in agreement with Ref.@3# where Wilson
line techniques were utilized.

We may now use them dependence of the soft function,
together with the fact that the total amplitude ism indepen-
dent, to determine the renormalization group equation sati
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fied by the jet and hard functions. We have seen in Sec
that theNth of the derivative of the moments of the semile
tonic decay has the factorized form

sN~mbA22y0/m!JN
sl~mb /m!Hsl

„mb
2~22y0!/m

2
…, ~44!

whereas, for the radiative decay, the moments of the de
spectrum are given by

sN~mb /m!JN
g ~mb /m!Hg~mb

2/m2!. ~45!

We have now labeled the jet and hard functions according
their processes since these function are not universal.
will first consider the RG equation satisfied byJN

g andHg.
The equations satisfied byJsl andHsl can then be determined
by simply making the appropriate replacements. We m
derive the RG equations satisfied by these functions by us
the following facts: m(d/dm)@sN(mb /m)JN(mb /
m)H(mb /m)#50; the RG equation satisfied bysN(mb /m)
is given by Eq.~43!; the hard scattering amplitude by defi
nition has noN dependence; the jet functional form which
JN@mb

2/Ñ)•(1/m2)]. This leads to the RG equations

S m
]

]m
1b

]

]g
1 f ~as! D JN~mb /m!

52A„as~m2!…ln
m2Ñ

mb
2 JN~mb /m!, ~46!

S m
]

]m
1b

]

]g
2 f ~as!2B„as~m2!…DH~mb /m!

522AS as~m2!ln
m

mDH~mb /m!. ~47!

f (as) is an arbitrary function which can only be determine
from additional input. We fixf (as) by requiring that the
purely collinear divergences of the jet factor be determin
by an Altarelli-Parisi-type equation as discussed in@15,12#.
We note that for these purposes the jet factor is a cut li
quark propagator in the axial gauge.

By requiring that we correctly reproduce the pure colli
ear divergences at the one-loop level it is found that

f ~as!52g~as!, ~48!

whereg(as) is the axial vector gauge anomalous dimensi
@15,12#:

g~as!52
3

4

as

p
CF1•••. ~49!

The solution of the jet RG equation may be written~to the
desired accuracy! in the form

JN
g ~mb /m!5expH E

1/Ñ

m2/mb
2dy

y F E
mb
2y

m2 dk'
2

k'
2 A„as~k'

2 !…

2g„as~mb
2y!…G J . ~50!

For future purposes, we rewrite this in the form
. III
p-

cay

to
We
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-
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d
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ght

n-

on

JN
g ~mb /m!5expH E

0

1dy

y
@12~12y!N21#

3F E
mb
2y

m2 dk'
2

k'
2 A„as~k'

2 !…2g„as~mb
2y!…G

1E
1

m2/mb
2dy

y F E
mb
2y

m2 dy2

k'
2 A„as~k'

2 !…

2g„as~mb
2y!…G J . ~51!

We may now write the explicit expressions for the re-
summed jet and soft factors. For the radiative decay
B→Xsg we rewrite the various representations obtained ear
lier, leaving

sN~mb /m!5expS E
0

1 dz

12z
~12zN21!N~z! D , ~52!

JN~mb /m!5expS E
0

1 dz

12z
~12zN21!I ~z! D , ~53!

N~z!5E
mb
2
~12z!2

m2 Fdk'k'
2 2A„as~k'

2 !…G2B„as~mb
2~12z!2!…

2E
1

m/mbF E
mb
2y2

m2 dk'
2

k'
2 A„as~k'

2 !…1B„as~mb
2y2!…G ,

~54!

I ~z!5F E
mb
2
~12z!

m2 dk'
2

k'
2 A„as~k'

2 !…G2g~as„mb
2~12z!…!

1E
1

m2/mb
2dy

y F E
mb
2y

m2 dk'
2

k'
2 A„as~k'

2 !…2g„as~mb
2y!…G .

~55!

Combining these two factors we see that for the
N-dependent piece in the exponent, them2 dependence ex-
actly cancels. There are, however, pieces which are indepe
dent ofN which arem dependent and these will combine
with similar terms in the hard scattering amplitude to give a
m-independent answer which must be true by construction
Combining all the factors we find

sN~mb /m!JN~mb /m!5expS 2E
0

1 dz

12z
~12zN21!K~z! D ,

~56!

K~z!5E
mb
2
~12z!2

mb
2
~12z! dk'

2

k'
2 A„as~k'

2 !…2g~as„mb
2~12z!…!

2B~as„mb
2~12z!2…!. ~57!

TheNth moment of the decay rate in then given by

MN
g 5SNsNJN

gHg
„as~mb

2!…. ~58!



-

2358 54R. AKHOURY AND I. Z. ROTHSTEIN
The value of the one-loop hard scattering amplitudeHg is
given in the Appendix.

For the case of the semileptonic decay the expression
the soft factor is the same as above. However, for the jet, w
must rescaleJN

sl(mb /m)→JN(mb /mA22y0). Thus, we get

JN
sl~mb /mA12xn!5expH E

0

1dy

y
@12~12y!N21#L~y,xn!J ,

~59!

L~y,xn!5E
mb
2y~12xn!

m2 dk'
2

k'
2 A„as~k'

2 !…2g~as„mb
2y~12xn!…!.

~60!

In writing the above, we have used the fact thaty05x1xn

andx;1 to replace the variabley0 by xn , the neutrino en-
ergy fraction. After some algebra the above may be com
bined with the expression for the perturbative soft function
such that for the product we may write

sNSmb

m D JNslSmb

m
A12xnD 5expH 2E

0

1 dz

12z
~12zN21!Q~z!

1P~N,xn!J , ~61!

Q~z!5E
mb
2
~12z!2

mb
2
~12z! dk'

2

k'
2 A„as~k'

2 !…2g~as„mb
2~12z!…!

2B~as„mb
2~12z!2…!, ~62!

P~N,xn!5E
1/Ñ

1 dy

y Emb
2y~12xn!

mb
2y dk'

2

k'
2 A„as~k'

2 !…

2E
12xn

1 dy

y FgS asSmb
2y

Ñ
D D 2g„as~mb

2y!…G .
~63!

We note that in deriving this form we have kept only the
N-dependent pieces in the exponent. Our analysis shows t
certainN-independent terms, such as those proportional
ln(12xn), can also be resummed using the above-mention
procedure. However, we have takenas(mb

2)ln(12xn) to be
small in the relevantxn range and hence relegated all o
these logarithms to the hard scattering amplitude. Thus, w
may write for theNth moment of the semileptonic decay
rate, up to correctionsO(1/N),

MN
sl5SNE

0

1

dxn6xn~12xn!sNJN„mb
2~12xn!,m2

…

3H„mb~12xn!,m…. ~64!

The complete expressions for the one-loop hard scatteri
amplitude in both the radiative and semileptonic processes
x;1 are given in the Appendix.

We conclude this section by giving some simplified ex
pressions for the productsNJN which will be useful for nu-
merical analysis. We begin by noticing that, as long a
as(mb

2)lnN<1, the resummation formulas given above hav
for
e

-
,

hat
to
ed

f
e

ng
at

-

s
e

a convergent power series expansion inas(mb
2)lnN to the

next-to-leading logarithmic accuracy. Thus, we compute
these expressions to this accuracy and delegate all the non
perturbative effects phenomenologically to the structure
function SN . For a similar approach for the case ofe1e2

annihilation, see@26#. To evaluate the integrals in the expo-
nent, we may perform thez integration using the largeN
identity ~41!. The k' integration is simplified by using the
RG equation for the running coupling to change variables to
as : i.e.,

dk'
2

k'
2 52

1

b0

das

as
2 S 12

b1

b0
as1O~as

2! D , ~65!

where

b05
11CA22Nf

12p
, b15

17CA
225CANf23CFNf

24p2 .

~66!

Next we use the expansion, correct to next-to-leading loga-
rithmic accuracy,

as~mb
2/N!5

as~mb
2!

12b0as~mb
2!lnN S 12

b1

b0

3
as~mb

2!

12b0as~mb
2!lnN

3 ln@12b0as~mb
2!lnN# D , ~67!

to obtain

ln~sNJN!5 lnN„g1
g~x!…1g2

g~x!, ~68!

where

x5b0as~mb
2!lnN. ~69!

In the above, the functionsg1 and g2 have the following
form for the two processes discussed in this paper.

For the radiative decay

g1
g52

A~1!

2pb0x
@~122x!ln~122x!22~12x!ln~12x!#,

~70!

and

g2
g52

A~2!

2p2b0
2 @2 ln~122x!12ln~12x!#

2
A~1!b1

2pb0
3 S ln~122x!22ln~12x!1

1

2
ln2~122x!

2 ln2~12x! D1
g~1!

pb0
ln~12x!1

B~1!

2pb0
ln~122x!

2
A~1!

pb0
lnN0@ ln~122x!2 ln~12x!#. ~71!
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FIG. 4. The difference between the moments of the one-loop result and the resummed result with~dashed line! and without~solid line!
the resummation of thep2, normalized to the one-loop result.N varies from 10 to 30.
v-
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For the semileptonic decay

g1
sl5g1

g ~72!

and

g2
sl5g2

g1
A~1!

pb0
ln~12xn!ln~12x!. ~73!

We have kept only theN-dependent terms in theseg factors
which exponentiate. There are alsoN0-dependent constan
terms which we will shuffle into the hard scattering amp
tude. These terms are given by

hg5
as

p
lnN0~B

~1!1g~1!!2
as

2p
ln2N0 ,

hsl5hg1A~1!
as

p
lnN0ln~12xn!. ~74!

Furthermore, Eq.~64! for the semileptonic case becomes

2
1

G0
E
0

1

xN21
d

dx

dG

dx
5SNE

0

1

dxn6~12xn!

3xn@H~xn!1hsl#exp~g11g2
sl!.

~75!

In writing the above, we have used the notation

A~as!5S as

p DA~1!1S as

p D 2A~2! ~76!

and

B~as!5S as

p DB~1!, g~as!5S as

p Dg~1!. ~77!

The values forA(1), A(2), B(1), and g (1) have been given
previously.H(xn) is the one-loop correction to the hard sca
tering amplitude given in the Appendix.
t
li-

t-

It is interesting to note that if we expand the expressions
for g1

sl andg2
sl in Eq. ~68!, we see thatG24, as defined in Eq.

~15!, vanishes. Thus, the two-loop results do not trivially
exponentiate as one might have naively thought. Such beha
ior is a universal property of the asymptotic limit of distri-
bution functions and is a consequence of the fact that onl
‘‘maximally non-Abelian’’ graphs contribute to the exponent
beyond one loop@21#. Knowing this greatly reduces the
number of graphs that need to be calculated in a genera
resummation procedure.

From expression~75! we may determine the range ofN
for which our calculation is valid. The integration overy
contains a branch cut atN5mb /LQCD, signaling the break-
down of the perturbative formalism. This breakdown is com-
ing from the fact that the time scale for gluon emission is
becoming too long. An inspection of the resummation for-
mulas for these quantities suggests that in the regionz;1
such thatk'

2<L2, nonperturbative effects become important.
Thus, we conclude that we may only trust our results in the
range

N,
mb

LQCD
. ~78!

V. ANALYSIS AND RESULTS

With the resummation now in hand, let us consider the
relative sizes of all the contributions. In Fig. 4 we show the
difference between the one-loop result and the resumme
rate given by Eq.~75! normalized to the moments of the
one-loop result:

2
1

G0
E
0

1

xN21
d

dx

dG

dx
512

2as

3p S p21
5

4
2
31

6
lnÑ1 ln2ÑD .

~79!

In our calculation we takeLQCD
nf54

'200 MeV. We see that
resumming the next-to-leading logarithms has a 20%–50%
effect in the range ofN we are considering. Furthermore, for
completeness we have included the effect of resumming th
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p2. The result of this resummation is given by the dash
line. We see that the effect of resumming thep2 is small.2

As a check of the numerics we compared the resummed
pression to the one-loop result~79! and found that for smal
N the two coincide to within less than a percent. The fact t
the resummation of the next-to-leading logarithms is m
important that the leading logarithms, is rather dishearten
It leads one to believe that perhaps the next-to-next
leading logarithms will be even more important. Howev
the fact that the effect of subleading logarithms is larger th
the leading is already hinted at one loop, given that the r
of the coefficients in front of these logarithms is 31/6.
could behopedthat the ratio of the coefficients of the nex
to-leading and next-to-next-to-leading logarithms is not
large and the terms left over in our resummation will be
the order of 10%.

VI. DISCUSSION

Before we conclude with a discussion of the future pr
pects of the extraction ofVub we wish to point out that there
is one tacit assumption which has been made up to this p
in our investigation. That is, we have assumed that lo
duality will hold when we are a few hundred MeV from th
end point. The whole formalism of using the OPE in calc
lating inclusive decay rates assumes that at certain par
the Dalitz plot, the Minkowski space calculation will giv
the correct result. This should be a good approximation
long as we stay away from the resonance region. The q
tion is, how far from the end point does this region begin?
it is found that single resonances dominate, even as far
few hundred MeV from the end point, then the extraction
Vub through inclusive decays is surely doomed. The qu
model seems to indicate that this may be the case@27#,
though other theoretical predictions say otherwise. We w
have to wait to see the data before we can decide on the
of the extraction methods discussed here.

Next we wish to reiterate thatcompletelyeliminating the
background from theb→c transition by going to very large
N.30 is not feasible since there is no way to reliably calc
late the soft gluon emission which takes place. This is
cause when one goes that far out on the tail, the time s
for gluon emission is too long compared to the QCD scale
have any hope of perturbation theory making any sen
Again, this statement is independent of how many soft lo
rithms one is willing to resum. Another way of saying this
that whenx gets to close to 1, there is no operator prod
expansion since the expansion parameters isL/mb(12x).
Thus, we are stuck with the fact that there will always
contamination from transitions to charmed final states. C
culating the end point of the charmed spectrum using
techniques discussed above fails as well since resona
will dominate. Thus, there does not seem to be any way
avoid having to use a model to determine the backgroun
the extraction process. The best we can hope to do, using
results in this paper, is to go to a large enough value oN

2Note that in resumming thep2 we only resum part of thep2 in
the expression~2!, since part of thep2 contribution comes from
integration over the neutrino energy.
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that we can reduce the model dependence as much as p
sible. Certainly, we can greatly reduce the model dependen
from what it is in present extractions which rely solely on
models.

The last point that needs to be mentioned is the fact th
measuring large moments is not experimentally feasible,
xN varies much too rapidly. For instance, if we assume th
the bin size is given byd5dE/mb , then the error at point
x for theNth moment will bedN/x. Therefore, the error can
accumulate quite rapidly. Thus, it will be necessary to tak
the Mellin transform of our result. Given that our result is
only trustable forN,25, one must be careful to calculate the
contribution to the inverse transform from higher moments
if one hopes to impose the bounds on the errors discussed
this paper. Also, for smaller values ofN one must be sure not
to use the resummed formula as we have dropped terms t
go like 12x.

Given these caveats, we may now address the issue a
what accuracy we can determineVub using inclusive decays.
Since the subleading logarithms dominate the leading log
rithms, the conservative conclusion would be that a mode
independent extraction ofVub is not possible. However, let
us proceed under the assumption the sub-subleading lo
rithms will be smaller than the subleading logarithms. In thi
case we may say that we have been able to reduce the er
from radiative corrections down to the order of 10%. How
ever, the QCD perturbative expansion is notoriously asym
totic, and though we may hope that we have resummed t
dominant pieces of the expansion, there could still be larg
constants~independent ofN) which could arise.

Another source of errors will come from the fact that we
need to eliminate the dependence of the decay rate on
moments of the nonperturbative structure function@8# by
taking the ratio of the semileptonic decay moments to th
moments of the radiative decay. This will introduce the er
rors in the radiative decay into the semileptonic decay. On
could calculate without any nonperturbative resummatio
thus eliminating these errors~the results in this paper are
easily modified to include this possibility!, but then it is dif-
ficult to quantify the model-dependent errors introduced i
the truncation. Finally, there are the errors introduced due
the model dependence from the calculation of the bac
ground. This error will be reduced as we choose larger va
ues ofN. This is the most difficult error to quantify, and we
shall not discuss it here.

The authors believe that, if the end point is not dominate
by single-particle resonances, and if we assume that the f
that the subleading logarithms dominate the leading log
rithms is just an anomaly, then we may hope to eventual
extractVub at the 30% level using the results presented her
Moreover, resumming the next-to-leading logarithms is in
deed necessary. However, the more conservative view wou
be that the end point calculation is just intractable at th
time, since it could be that the sub-subleading logarithm
will dominate. To be sure that this is not the case the su
subleading logarithms would need to be resummed. Th
would entail calculatingA to three loops, andB andg to two
loops. Without this calculation, we cannot determine wit
certainty the size of the errors.
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APPENDIX

In this appendix we give explicit expressions for the ha
scattering amplitude at the one-loop level and to leading
der in (12x). We first present the results of the computatio
of the QCD corrections to the doubly differential rat
d2G/dxdy0 for the semileptonicb-quark decay. It is clear
from Secs. II and III that this is the quantity whose momen
factorize and which is relevant for the resummation. W
write

d2G

dxdy0
56G0~y021!~22y0!S 12

2as

3p
G~x,y0! D .

~A1!

whereG0 was defined earlier. The contributions of the re
and the virtual gluon emission diagrams toG(x,y0) are
given by

Gf in
real5 ln2~12x!1

7

2
ln~12x!22ln~22y0!ln~12x!

2 ln2~22y0!1
3

2
ln~22y0!1

p2

6
2
1

2
ln2S l2

mb
2D

2
5

2
lnS l2

mb
2D 12ln~22y0!lnS l2

mb
2D ~A2!
G.
,
.
f

rd
or-
n
e

ts
e

al

and

Gfin
virt53ln2~22y0!22ln~22y0!ln~y021!

12ReFLi2S 1

22y0
D G13

~22y0!

y021
ln~22y0!

22
ln~22y0!

y021
1
5

2
1

p2

6
1
1

2
ln2S l2

mb
2D 1

5

2
lnS l2

mb
2D

22ln~22y0!lnS l2

mb
2D . ~A3!

In the above,l is the gluon mass used to regulate the infra
red divergences at intermediate stages of the calculatio
Combining these results and integrating overy0 gives the
electron spectrum which agrees with@28# but disagrees with
@29#.

From this we see that to the approximation we are work
ing in, the hard scattering amplitude as defined in Eq. 25
given by

Hsl512
2as

3p H p2

3
12ln2~22y0!22ln~22y0!ln~y021!

2
3

2
ln~22y0!1

ln~22y0!

y021
12ReFLi2S 1

22y0
D G1

5

2 J .
~A4!

For the radiative decay, we may extract the hard scatte
ing amplitude from@30#

Hg512
2as

3p S 322
2p2

3 D . ~A5!
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@28# M. Jèzabek and J.H. Ku¨hn, Nucl. Phys.B320, 20 ~1989!.
@29# G. Corbo, Nucl. Phys.B212, 99 ~1983!.
@30# A. Ali and C. Greub, Phys. Lett.B287, 191~1992!; A. Kapus-

tin and Z. Ligeti,ibid. 355, 318 ~1995!.
@31# For a review see J.C. Collins, D.E. Soper, and G. Sterman, in

Perturbative Quantum Chromodynamics, edited by A.H.
Mueller ~World Scientific, Singapore, 1989!.


