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Baryon masses at second order in large-N chiral perturbation theory
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We consider flavor breaking in the octet and decuplet baryon masses at second order in large-N chiral
perturbation theory, where N is the number of QCD colors. We assume that
1/N;1/NF;ms /L@mu,d /L,aEM , whereNF is the number of light quark flavors, andmu,d,s /L are the
parameters controlling SU(NF) flavor breaking in chiral perturbation theory. We consistently include nonan
lytic contributions to the baryon masses at ordersmq

3/2, mq
2lnmq , and (mqlnmq)/N. Themq

3/2 corrections are
small for the relations that follow from SU(NF) symmetry alone, but the corrections to the large-N relations
are large and have the wrong sign. Chiral power counting and large-N consistency allow a two-loop contri-
bution at ordermq

2lnmq , and a nontrivial explicit calculation is required to show that this contribution vanishe
At second order in the expansion, there are eight relations that are nontrivial consequences of the 1/N expan-
sion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 M
for theDI50 mass differences and 0.35 MeV for theDIÞ0 mass differences, consistent with the expectatio
that the error is of order 1/N2;10%. @S0556-2821~96!05715-3#

PACS number~s!: 12.39.Fe, 11.15.Pg, 14.20.2c
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I. INTRODUCTION

In this paper, we analyze the octet and decuplet bar
masses to second order in a simultaneous chiral andN
expansion, whereN is the number of QCD colors. The 1/N
expansion for baryons has a rich structure and signific
predictive power: At leading order in the 1/N expansion,
static baryon matrix elements satisfy SU(2NF) spin-flavor
relations~whereNF is the number of flavors! @1,2# and the
1/N corrections to these relations are highly constrain
@3–6#. In order to compare the predictions of the 1/N expan-
sion with experiment at subleading order, we must cons
both 1/N corrections and explicit breaking of SU(NF) flavor
symmetry due to quark masses and electromagnetism.
will use the formalism of Refs.@6,7# that takesNF;N@1
and makes use of an explicit effective Lagrangian that ke
the SU(NF) flavor symmetry manifest order by order in th
1/N expansion. In order to determine which terms in t
double expansion to keep, we will expand assuming tha

1

N
;

1

NF
;
ms

L
@
mu,d

L
@aEM , ~1.1!

whereL is the chiral expansion parameter andaEM is the
electromagnetic coupling.1 The baryon magnetic momen
were analyzed in the same expansion in Ref.@8# and found to
be in excellent agreement with experiment. Different 1N
expansions for various baryon observables have also b
considered in Refs.@4,9–11#. In the concluding section we
will briefly compare our results with those of Ref.@10#,
which also considers baryon masses.

*Electronic address: bedaque@mitlns.mit.edu
†Present address: Department of Physics, University of Maryla

College Park, MD 20742. Electronic address: luty@ctp.mit.edu
1See Sec. II C for a discussion of the last inequality.
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One important feature of the present work is that we con-
sistently include the chiral loop contributions in our expan-
sion. The leading nonanalytic contributions to the baryon
mass differences are ordermq

3/2, (mqlnmq)/N, andmq
2lnmq ,

wheremq is a light quark mass.2 Power-counting and large-
N consistency arguments allow a two-loop contribution at
order mq

2lnmq , and a nontrivial explicit calculation is re-
quired to see that such a contribution does not appear. Th
ordermq

3/2 corrections are calculable, and the result is that
they are small for the relations that follow from SU(NF)
symmetry alone, but the corrections to the large-N relations
are large and have the wrong sign. While this may indicate
that the expansion parameters are not sufficiently small in
nature to believe this expansion, we note that there are
higher-order effects that are expected to substantially reduc
these corrections. Also, themq

3/2 corrections can be canceled
at higher orders, giving results that agree well with experi-
ment. The coefficients of the (mqlnmq)/N andmq

2lnmq cor-
rections are not calculable in terms of measured couplings
and we have included them as arbitrary parameters.

Our final results include corrections up to orderms
2 and

ms /N for the DI50 mass differences, and order
(md2mu)ms , (md2mu)/N, and aEM for the DIÞ0 mass
differences. At this order there are eight relations which are
nontrivial consequences of the 1/N expansion.~That is, they
do not follow from flavor symmetry considerations alone.!
These relations agree well with experiment, and the remain-
ing deviations are consistent with the expectation that the
leading corrections are order 1/N2.

This paper is organized as follows. In Sec. II, we review
the expansion used in this paper. In Sec. III, we present ou
results, and Sec. IV contains our conclusions. The details o
a two-loop computation are contained in an appendix.

nd, 2When we quote orders in chiral perturbation theory, it is to be
understood that quark masses are measured in units ofL, the chiral
expansion scale.
2317 © 1996 The American Physical Society
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II. EXPANSION

The 1/N expansion for baryons has a good deal of predi
tive power even at subleading orders, but some aspects of
expansion are rather subtle. In this section, we review t
main ingredients of this expansion.

A. Baryon quantum numbers

The 1/N expansion makes sense only for baryons wi
spinJ;1, since baryons with spinJ;N have width of order
N. One conceptual subtlety in the 1/N expansion for baryons
is that even for fixedNF>3 the number of baryon states with
given spinJ;1 grows withN. WhenNF52, the baryons
have quantum numbersI5J5 1

2,
3
2, . . . , and it isclear that

one should identify the states of lowest spin and isospin w
the corresponding baryon states atN53. WhenNF>3, the
situation is more complicated. The Young tableaux for th
SU(NF) representation of spinJ baryons is shown in Fig. 1;
for N.3, this representation contains many states that m
be identified with a given baryon state in the world with
N53. Choosing any subset of the baryon states that exist
N.3 to represent the baryons atN53 breaks the flavor
symmetry explicitly. The ‘‘extra’’ states that appear fo
N.3 are important for computing chiral loops, since the
can appear as intermediate states; the contributions of
baryon states are required in order to maintain flavor sym
metry and large-N consistency.

A simple way to handle this situation was pointed out i
Refs. @5,6#. The 1/N expansion can be carried out withou
selecting any subset of the baryon states forN.3 by writing
the matrix elements in terms of few-body operators in a spi
flavor Fock space that describes the baryon quantum nu
bers. In this formalism, the coefficient of anr -body operator
is at most 1/Nr21, and there is a simple classification of the
operators that allows us to determine theN andNF depen-
dence of the matrix elements for arbitrary baryon states@6#.
For operators with the flavor numbers of a product o
SU(NF) adjoints, any operator can be written as a product
one-body operators of the form

$XG%[aaa
† Xa

bG
a

ba
bb, ~2.1!

wherea† (a) is a creation~annihilation! operator in the spin-
flavor Fock space,X is a flavor matrix, andG is a spin matrix
~either 1 ors j ), with flavor and Lorentz indices contracted in
all possible ways. We keep a given operator if its matr
element inany baryon state withJ;1 ~for NF>3) is as
large as the order to which we are working. It is not hard
see that the largest matrix elements are

FIG. 1. The Young tableaux for the SU(NF) flavor representa-
tion of the spin-J baryon multiplet.
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$XG%&H 1 if X51, G5s j ,

N otherwise.
~2.2!

Since the operators have definite SU(NF) quantum numbers,
this procedure keeps the flavor symmetry manifest for arbi-
trary N.

B. Large NF

In Ref. @7# it was shown that the large-N counting rules
for baryons are unaffected when the number of flavors is
taken to be large, i.e.,NF;N. From the point of view of the
quark and gluon degrees of freedom, the reason for this is
that the large-N counting rules arise from the suppression of
many-quark interactions, and this suppression is unaffected
by the presence of quark loops. This is to be contrasted with
the large-N predictions for mesons, which generally rely on
the suppression of quark loops and therefore are valid only in
the limit NF!N.

We will assume thatNF;N@1. This seems sensible,
since we are assuming that the strange quark is light, and so
N5NF53. In order to carry out this expansion, we must
decide how to extrapolate flavor breaking~the quark masses
and charges! to a world withNF.3. Clearly, there are infi-
nitely many choices, and our approach will be similar in
spirit to the way we handle the additional baryon states that
occur: We set up the expansion to be independent of the
details of the extrapolation.

We therefore consider extrapolations with arbitrary num-
bers of individual quark flavors, Nu,d,s , with
Nu1Nd1Ns5NF . There are extrapolations whereNq;NF
(q5u,d,s), but there are also extrapolations where, e.g.,
Ns;1 andNu,d;NF . We will evaluate the matrix elements
for arbitraryNq and keep any operator that is as large as the
order to which we are working onany baryon state forany
extrapolation. Thus, for example, we keep terms of order
1/Nq as well asNq /N.

C. Double expansion

The predictions of the large-N limit for baryons can be
summarized by stating that baryon matrix elements obey
SU(2NF) spin-flavor relations in this limit. In order to con-
sider corrections to this limit, we must take into account both
the fact thatN is finite and the fact that the SU(NF) flavor
symmetry is broken by quark masses and electromagnetism
We therefore carry out a simultaneous expansion in 1/N and
flavor breaking. In order to do this, we must decide where to
truncate the expansion in the small parameters 1/N;1/NF ,
mu,d,s /L, andaEM .

We will expand theDI50 mass differences assuming
that

e[
1

N
;

1

NF
;
ms

L
. ~2.3!

The predictions we obtain will be viewed as predictions for
DS;1 mass differences, which areO(e) at leading order in
this expansion.
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For theDIÞ0 mass differences, we assume that

aEM!
md2mu

L
. ~2.4!

To see that this is reasonable, we note that~to first order in
the expansion performed below!

aEM

~md2mu!/L
;
mp6
2

2mp0
2

mK0
2

2mK6
2 530% ~2.5!

;
MS122MS01MS2

MS12MS2
520%.

~2.6!

We therefore expandDIÞ0 mass differences to orde
(md2mu)e andaEM . Except for the fact that we treatN as
a large parameter, this expansion is identical to the seco
order chiral expansion that is usually adopted in chiral p
turbation theory@12,13#.

D. Effective Lagrangian

The effective Lagrangian we use is described in Ref.@6#,
and we will not review it in detail here. We keep track of th
large-N group theory by writing the baryon fieldsuB) as
elements in a spin-flavor Fock space. The operators t
couple to these fields are written asr -body operators in spin-
flavor space with large-N ~and NF) suppression factors
1/Nr1t21, where t is the number of flavor traces used t
write the operator@6,7#. The fields for the light pseudoscala
mesonsP are collected in the usual combinationj[eiP/ f ,
where f5 f K.114 MeV is the kaon decay constant.3 Note
that theh8 mass is of orderNF /N and is therefore not in-
cluded as a light field. Explicit flavor breaking appea
through the quark masses and electromagnetic charge ma

mq5S mu1Nu
md1Nd

ms1Ns

D ,

Qq5S 2
31Nu

2 1
31Nd

2 1
31Ns

D . ~2.7!

E. Power counting for chiral loops

In this subsection, we discuss the power counting of lo
graphs in the expansion described above. This power cou
ing is more complicated than for ordinary chiral perturbatio
theory, and it is essential in order to ensure that we have
omitted any important contributions at the order we a

3The dependence onf in our results comes entirely fromK and
h loops, and so we takef5 f K rather thanf5 f p , the pion decay
constant. The difference betweenf K and f p is higher order in SU
(3) breaking.
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working. ~For example, we will see that there are two-loop
graphs that potentially contribute to the baryon mass differ-
ences at orderms

2lnms, and we resort to an explicit calcula-
tion to see that it does not occur.! We begin by reviewing the
power counting for ‘‘pure’’ baryon chiral perturbation theory
~including only the lowest-lying baryon octet!. We then dis-
cuss the new features that are present in the 1/N expansion.

In ‘‘pure’’ baryon chiral perturbation theory, a generic
term in the effective Lagrangian looks like@16#

L;( L2f 2S ]

L D dSmq

L D sS P

f D kS B

fAL
D n, ~2.8!

whereB is the baryon field andP is the meson field.~For
simplicity, we setaEM50 in the present discussion; electro-
magnetic effects can be included using the same arguments.!
A loop diagram will contribute to the baryon mass

dM;S 1

16p2f 2D
L 1

LD22P2VB Smq

L D SmP
2L1D22VP2VB11

3F~DM /mP! ~2.9!

;LS L2

16p2f 2D
LSmq

L D CF~DM /mP!, ~2.10!

where

C[L1 1
21~ 1

2DP1SP2VP!1 1
2 ~DB1SB2VB!1 1

2SB .
~2.11!

Here,L is the number of loops,DP (DB) is the total number
of derivatives in meson~baryon! vertices,SP (SB) is the
total number of powers ofmq summed over the meson
~baryon! vertices, VP (VB) is the total number of pion
~baryon! vertices, and S[SP1SB , D[DP1DB .
F(DM /mP) is a function of the baryon mass differences and
pion masses that appear in the loop diagram. Because
DM /mP;mq

1/2, F can be expanded in a power series in
mq
1/2. The chiral suppression factorC is written in this form

becauseDB1SB2VB and 1
2DP1SP2VP measure the total

number of ‘‘extra’’ insertions of derivatives and/or powers of
mq in baryon and meson vertices, respectively. This is be-
cause each baryon vertex contains at least one derivative or
one power ofmq and each pion vertex contains at least two
derivatives or one power ofmq .

As an application of this formula, note that at order
mq
2lnmq we must include one-loop graphs with a single in-

sertion of a two-derivative baryon vertex (L51, SB50, and
DB1SB2VB51). Since the two-derivative vertices are not
measured, we cannot compute themq

2lnmq logarithmic cor-
rections to the baryon masses in baryon chiral perturbation
theory @14#.

We now turn to loop graphs in large-N baryon chiral per-
turbation theory. The chiral suppressions are as given above,
and so we will concentrate on theN dependence of diagrams.
An arbitrary diagram naively gives a contribution to the
baryon mass
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dM&
?

LS L2

16p2f 2D
LSmq

L D CNVBF~DM /mP!. ~2.12!

Because a meson vertex can change the baryon flavor q
tum numbers only by order 1~rather thanN), DM can have
contributions that are at most 1/N or mq . In our expansion
F(DM /mP) can therefore be expanded in a power series
1/N andmq

1/2

Sincef;N1/2, Eq. ~2.12! apparently violates large-N con-
sistency if VB2L.1. However, there are cancellation
among graphs that make the contributions to the phys
mass differences at most orderN. Actually, it has never been
proved that the required cancellations occur to all orders,
many explicit calculations have been done that confirm
assertion4 @3,4#. The two-loop calculation done in the Appen
dix of this paper provides an additional highly nontrivi
check.5

Since the leading terms in the expansion ofDM are order
1/N andmq in our expansion, the argument ofF is

DM

mP
;
1

N S L

mq
D 1/2, ~2.13!

and we can expandF in a power series inDM /mP for loops
of K ’s andh ’s. ~Loops withp intermediate states are ne
ligible at the order we will be working.! A term in the ex-
pansion that is naively orderNp with p.1 can be at most o
orderN by the assumed large-N consistency. Taking this into
account, we obtain

dM&LS NL2

16p2f 2D
LSmq

L D CFNmin$VB2L,1%1Nmin$VB2L21,1%

3S L

mq
D 1/21Nmin$VB2L2r ,1%S L

mq
D r /21••• G . ~2.14!

The terms in the square brackets proportional
Nmin$VB2L2r ,1% arise from contributions that are naively o
order NVB2L2r , with r powers of 1/N coming from the
baryon mass termDM in the Taylor expansion ofF. As long
as r<VB2L21, these terms can be of orderN, and so for
purposes of power counting they are effectivelyenhancedby
mq

2r /2 It is not difficult to see that the largest term in th
square brackets in Eq.~2.14! has r5VB2L21 and is of
order

4In fact, the first few terms in the 1/N expansion for a given
matrix element can be derived by demanding that these canc
tions occur@2,3#.
5Two-loop corrections to the axial vector currents are conside

in Ref. @17#.

FIG. 2. A contribution to the baryon mass. The solid lines a
baryons and the dashed lines are mesons.
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mq
D ~VB2L21!/2

. ~2.15!

Therefore,

dMB&NLSmq

L D C2~VB2L21!/2

, ~2.16!

where we have usedL&4p f /AN. SinceVB2L<L, we can
write

C2 1
2 ~VB2L21!> 1

2 ~L11!1~ 1
2DP1SP2VP!

1 1
2 ~DB1SB2VB!1 1

2SB . ~2.17!

Using these results, we can enumerate all of the graphs
that we need to consider to expand the baryon masses to
second order in the expansion described above. From Eq.
~2.17! we see that we need to consider at most two-loop
graphs. Starting from the minimum number of insertions of
the 1/N-suppressed baryon mass differenceDM , it is easy to
see that we need to consider the one-loop graphs of Fig. 2,
the one-loop graphs Fig. 3 with zero or one insertion of
DM , and the two-loop graphs of Fig. 4 with one insertion of
DM . In the Appendix it is shown that the leading contribu-
tions of the two-loop graphs cancel, and so there is no two-
loop contribution at this order.

III. EXPANSION OF BARYON MASSES

Using the formalism discussed above, we now turn to the
expansion of the baryon masses.

A. Leading order

We first expand the baryon mass differences to ordere for
the DI50 mass differences and to orderaEM and
(md2mu) for the DIÞ0 mass differences.6 At this order,
there are no chiral loop corrections, and the expansion is
determined by the following terms in the effective Lagrang-
ian:

dL52~Bu@D01D11•••#uB!, ~3.1!

ella-

red

6Strictly speaking, we should not include the orderaEM terms
according to our power counting. However, these terms are tradi-
tionally included at ‘‘leading order’’ in chiral perturbation theory,
and so we include them for purposes of comparison.

re

FIG. 3. A contribution to the baryon mass.
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where

D05
m

N
$s j%$s j%, ~3.2!

D15a1$m%1
aEML

4p
@b1$Q%$Q%1b2$Qs j%$Qs j%#.

~3.3!

Here,

m[ 1
2 ~j†mqj1H.c.!, Q[ 1

2 ~j†Qqj
†1H.c.!. ~3.4!

Herea1, b1, andb2 are effective couplings of order 1, an
m is an effective coupling of orderL. Note that the coeffi
cients of the operators$Q%$Q% and $Qs j%$Qs j% appear to
violate the large-N counting rule discussed above. The r
son is that at the quark level these operators arise from
tromagnetic diagrams such as the one in Fig. 5, which are
suppressed by a factor of 1/N from gluon vertices. However
in order to obtain a good large-N limit, we must demand tha
aEM&1/N so that the electromagnetic Coulomb energy d
not overwhelm the strong binding energy for largeN. This
also explains why the operator$Q2% is not considered at thi
order, since the coefficient of this operator is the same o
as the electromagnetic operators considered above.7 At this
order we obtain theDI50 mass relations

~J2S!2~S2N!1 3
2 ~S2L!50 ~8%!, ~3.5!

~J*2S* !2~S*2D!50 ~3%!, ~3.6!

~V2J* !2~J*2S* !50 ~7%!, ~3.7!

~S2N!2~L2N!50 ~40%!, ~3.8!

~S*2D!2~L2N!50 ~15%!, ~3.9!

and theDIÞ0 mass relations

~J22J0!2~S22S1!1~n2p!50 @~7611!%#,
~3.10!

7In fact, this is a good example of how the 1/N expansion can
differ qualitatively from the nonrelativistic quark model. In th
quark model, the operators$Q%$Q% and$Q2% are expected to be o
the same order, while the spin-symmetry-violating opera
$Qs j%$Qs j% would be suppressed by 1/mQ

2 wheremQ is the con-
stituent quark mass. In the constituent quark model, we obtain
additional relation S*22S*15S22S1 with accuracy
(40615)%. Unfortunately, this is neither sufficiently successful
sufficiently unsuccessful to decide whether the quark model w
better than the 1/N expansion discussed here.

FIG. 4. Two-loop contributions to the baryon mass.
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D1123D113D02D250, ~3.11!

~J*22J* 0!2~S*22S*1!1~n2p!50

@~2622!%#, ~3.12!

~S*122S* 01S*2!2~S122S01S2!50

@~406100!%#, ~3.13!

~D02D1!2~n2p!50, ~3.14!

~S*22S*1!2~S122S01S2!22~n2p!50,

@~367!%#, ~3.15!

~D02D11!1~S*22S*1!24~n2p!50

@~40620!%#. ~3.16!

In addition, we can extract the quark mass ratio

R[
ms2~mu1md!/2

md2mu
56

L2N

~S12S2!24~S*12S*2!

5110630. ~3.17!

Here the name of a baryon denotes its mass. Among the
DI50 mass relations, Eq.~3.5! ~the Gell-Mann–Okubo re-
lation! and Eqs.~3.6! and ~3.7! ~the decuplet equal spacing
rules! are valid at orderms independently of the 1/N expan-
sion, while Eqs.~3.8! and ~3.9! are consequences of the
1/N expansion.~In this limit, the mass of a baryon with
strangeness2S is proportional toS.! Among theDIÞ0
mass relations, Eq.~3.10! ~the Coleman-Glashow relation! is
valid up to corrections of order (md2mu)ms independently
of the 1/N expansion@14#. Also, the only corrections to Eq.
~3.11! are second order in isospin breaking, independently of
the 1/N expansion. The remainingDIÞ0 relations Eqs.
~3.12!–~3.16! as well as Eq.~3.17! are consequences of the
1/N expansion.

The relations are written as linear combinations of mass
differences that go to zero asms→0 ~for the DI50 rela-
tions! or (md2mu)→0, aEM→0 ~for the DIÞ0 relations!.
The accuracy quoted for the relations~where data are avail-
able! is defined as the deviation from zero divided by the

e
f
tor

the

nor
orks

FIG. 5. Example of a quark graph giving rise to the two-body
operators$Q%$Q% and $Qs j%$Qs j% in the effective Lagrangian.
The wavy line represents a photon and the curly line represents a
gluon. Note that there is a factor ofN from the color sum, and so
this graph is order 1 in the large-N limit.
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average of the absolute value of the mass differences
appear in the equation. Defined in this way, all of these
lations are naively expected to have corrections of or
e;30%, except for Eq.~3.11!, which is essentially exact in
our expansion. Note that for theDIÞ0 mass differences th
relations that hold as a consequence of flavor symm
alone work better than those that depend on the 1/N expan-
sion, but there is apparently no such pattern for theDIÞ0
differences.

The value forR obtained is far from the valueR.25
obtained from an analysis of the light pseudoscalar ma
@12#. The quoted error only takes into account the expe
mental uncertainty of the masses and does not include
theoretical uncertainty from higher-order corrections.
view of the large errors in the relations above, we do not t
this value very seriously.

A more objective measure of how well these relatio
work is obtained by fitting the mass differences to the
rameters given above. The average deviation in the best
29 MeV for theDI50 mass differences and 0.35 MeV fo
the DIÞ0 differences.~If we omit the model-dependen
value for D02D11, we get an average deviation of 0.2
MeV for the DIÞ0 mass differences.! The fit also gives8

R.90.

B. Chiral loops

The largest corrections to the leading-order results in
expansion we are performing come from the loop diagra
in Fig. 3 and are of orderms

3/2 for the DI50 mass differ-
ences and orderms

1/2(md2mu) for the DIÞ0 mass differ-
ences. These diagrams can be evaluated from

dMB5~Bu$TAs j%$TAsk%uB!
ig2

6 f 2E d4p

~2p!4
pjpk

~p22mA
2 !p0

,

~3.18!

whereA5K,h, etc., labels the pseudoscalar mass eigenst
andTA are the corresponding generators normalized so
tr(TATB)5dAB . The effects ofp0-h mixing are incorpo-
rated by using the generator

Th5T82
~NuNdNsNF!1/2

Nu1Nd

1

2R
T31O~1/R2! ~3.19!

for the h mass eigenstate, whereR is the quark mass ratio
defined in Eq.~3.17!. The result can be written

dMB5~BuJAOAuB!, JA5
g2

16p f 2
mA
3 , ~3.20!

where

OK52~N1NF22Ns!$S%1 1
3 $Ss j%$s j%

1$S%$S%2
1

3
$Ss j%$Ss j%, ~3.21!

8We do not give values for the coefficients in the Lagrang
because the large loop corrections we find in the next section
ders them meaningless.
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2

3~NF2Ns!
$Ss j%$s j%2

NF

3Ns~NF2Ns!
$Ss j%$Ss j%

1
1

6R F Ns

Nu1Nd
$t3s

j%$s j%1$t3s
j%$Ss j%G , ~3.22!

OK62OK052
Ns

2
$t3%2 1

2 $t3%$S%1 1
6 $t3s

j%$Ss j%.

~3.23!

Here,

S[S 0Nu
0Nd

1Ns

D ,

t3[
2

Nu1Nd S Nd1Nu
2Nu1Nd

0Ns

D . ~3.24!

We do not need expressions for the pion loops, since they a
suppressed by;(mu,d /ms)

3/2 for DI50 quantities, and by
;aEML/mu,d for DIÞ0 quantities~since the contribution of
pion loops is proportional tomp12mp0, which is purely
electromagnetic at first order in chiral perturbation theory!.

Note that Eqs. ~3.21!–~3.23! are valid for arbitrary
Nu,d,s and NF , and that they have a sensible limit as
N,NF→` independently of the extrapolation of the quanti-
tiesNu,d,s . According to the rules of our expansion, we must
keep the full dependence onNu,d,s andNF since there are
limits where each of the above terms is important. The physi
cal results are obtained by simply setting9 NF53,
Nu,d,s51.

Substituting these expressions into the lowest-order rela
tions, we obtain the modifiedDI50 relations

~J2S!2~S2N!1 3
2 ~S2L!5 4

3JK2Jh52261 MeV,
~3.25!

~J*2S* !2~S*2D!5 4
3JK2Jh52261 MeV,

~3.26!

~V2J* !2~J*2S* !5 4
3JK2Jh52261 MeV,

~3.27!

~S2N!2~L2N!52 4
3 ~JK1Jh!524006160 MeV,

~3.28!

~S*2D!2~L2N!5 2
3 ~JK1Jh!5200680 MeV

~3.29!

ian
ren-

9Note that forNF.3 there are ‘‘extra’’ pseudoscalar mesons
transforming in the fundamental representation of SU(Nq) that also
contribute in the chiral loops. The masses of these states are dete
mined in terms of the ‘‘physical’’ states by SU(NF) flavor symme-
try, and so these contributions are calculable. However, these con
tributions go to zero in the physical limitNF53, and so there is no
reason to compute them explicitly.
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and the modifiedDIÞ0 relations

~S*22S*1!2~S122S01S2!22~n2p!

52 4
3 ~JK02JK1!1

2

3R
Jh

5~24.061.6!1~4.861.9!S 24R D ~0.160.6 MeV!,

~3.30!

~D02D11!1~S*22S*1!24~n2p!

52 4
3 ~JK02JK1!1

2

3R
Jh5~24.061.6!1~4.861.9!

3S 24R D ~1.660.85 MeV!, ~3.31!

where the errors in the theoretical prediction are obtained
assigning a 20% uncertainty to the couplingg50.8 extracted
from a lowest-order fit to theDS51 semileptonic baryon
decays and the experimental values are shown in paren
ses.~The remainingDIÞ0 relations do not receive correc
tions at this order.! In theDI50 relations, theO(ms

3/2) cor-
rections to the relations that follow from SU(NF) flavor
symmetry alone are small due to an ‘‘accidental’’ cancel
tion. ~This was noted in Ref.@15#.! However, even taking
into account the theoretical errors, the corrections to the
lations that follow from the large-N expansion are too large
and have the wrong sign. The same conclusion does not
pear to hold for the corrections to theDIÞ0 relations, al-
though the situation is obscured by the large uncertain
involved. This situation is analogous to what happens for
magnetic moments, where theO(ms

1/2) corrections to the
large-N relations are too large, although of the right sign@8#.

One can view this situation in several ways. The mo
conservative view is that these results show that the exp
sion we are performing does not work well. We will instea
adopt the attitude that the apparently large corrections at
order of the expansion may be misleading, and go on
higher orders of the expansion. At higher orders, these la
loop contributions can be canceled by counterterms, and
will see that the predictions work very well.~The values of
the effective couplings are sensitive to the computed lo
corrections, and so we do not quote values for them.!

To see why our viewpoint may be reasonable, we n
that there are several calculable higher-order effects that
have omitted in our calculation, all of which substantia
suppress the correction. The first of these are higher-o
corrections to the meson couplingg. These are known to be
large and apparently reduceg @16,18#. Second, we have
checked that using the exact kinematics for the particles
the loops decreases the loop corrections by approximate
factor of 12 for the large-N relations. Third, we expect that th
meson-baryon coupling decreases at large momentum tr
fer, reducing the effects ofK andh loops. All of these ef-
fects are suppressed by additional powers ofms , and are
therefore higher order in the expansion we are performi
Although none of these corrections changes the sign of
loop corrections, it is possible that these suppressions
by

the-
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e
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the
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large enough that the expansion we are performing make
sense at higher orders. We certainly cannot prove conclu
sively that this point of view is correct, but we can obtain
evidence for it by going to higher orders.

There are also nonanalytic corrections of ordermq
2lnmq .

These are formally larger than the analytic corrections due to
the counterterms by lnL2/MK

251.4 for L51 GeV. While
these effects are definitely enhanced forms sufficiently
small, we believe that for the physical value ofms this en-
hancement is not numerically large enough to give reliable
predictions without including the analytic counterterms.

C. Second order

In order to expand theDI50 mass differences to order
e2 and the DIÞ0 mass differences to orderaEM and
(md2mu)e, we must include the additional terms

D25
a2
N

$ms j%$s j%1
a3
L

$m2%1
a4
NL

$m%$m%

1
a5
NL

$ms j%$ms j%. ~3.32!

In addition to the analytic contributions, there are nonana-
lytic contributions from loop graphs of ordermq

2lnmq and
(mqlnmq)/N. There aremq

2lnmq contributions from graphs
such as Fig. 2 with the baryon-meson vertices coming from
higher-order operators such as

1

L
$AjAj%,

1

NL
$Aj%$Aj%,

1

NL
$Ajs j%$Aksk%.

~3.33!

There are alsomq
2lnmq contributions from graphs such as

Fig. 3 with one of the baryon-meson vertices coming from
the higher-order operators

1

L
$~¹0A

j !s j%,
1

L
$~¹ jA

0!s j%. ~3.34!

The coupling constants associated with these operators ar
not well measured, and we will treat them as free parameters
These graphs give contributions to the baryons masses of th
form

dMB5~BuCjOjAKAuB!, KA[
1

16p2f 2L
mA
4 ln

L2

mA
2 ,

~3.35!

where theCj are unknown constants and the independent
operators that contribute at this order are

O1A5$TA%$TA%, O2A5$TAs j%$TAs j%. ~3.36!

There are also (mqlnmq)/N corrections arising from graphs
such as Fig. 3 with a single insertion of the flavor-
independent baryon mass operatorD05m$s j%$s j%/N. These
contributions are proportional to
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g2

16p2f 2
@$TAs j%,@$TAs j%,D0##mA

2 ln
L2

mA
2

}
g2

16p2f 2
m

N
@$TAs j%$TAs j%2$TATAs j%$s j%#mA

2 ln
L2

mA
2

~3.37!

;
1

N2 @N21NNF#mqlnmq . ~3.38!

The normalization of these contributions is calculable, b
will not be needed.

When we expand the operators above in terms of
SU(NF)-violating spurionsS andt3, we see that the opera
tors that appear inO1 andO2 are linear combinations of the
operators that appear in the tree terms. However, the l
contributions are important because they eliminate a pre
tion for the quark mass ratioR that would otherwise exist a
this order.

Eliminating the unknown constants leads to the relatio

~V2J* !22~J*2S* !1~S*2D!50 ~1%!,
~3.39!

~J*2S* !2~S*2D!2~J2S!1~S2N!2 3
2 ~S2L!50

~6%!, ~3.40!

~J*2S* !2~J2S!50 ~17%!, ~3.41!

~J22J0!2~S22S1!1~n2p!50 @~7611!%#,
~3.42!

D1123D113D02D250, ~3.43!

~J*22J* 0!2~S*22S*1!1~n2p!50 @~2622!%#,
~3.44!

~S*122S* 01S*2!2~S122S01S2!50

@~406100!%#, ~3.45!

~D02D1!2~n2p!50, ~3.46!

~D02D11!1~S122S01S2!22~n2p!50

@~70630!%#. ~3.47!

Of theDI50 relations, Eq.~3.39! is an improved version of
the equal-spacing rule that holds to orderms

2 independently
of the 1/N expansion@15# while Eqs.~3.40! and ~3.41! are
nontrivial predictions of the 1/N expansion. These relation
were derived in this expansion in Ref.@7#; the same relations
are derived in a different expansion in Ref.@4#. Of theDI
Þ0 relations, Eqs.~3.42!–~3.46! are identical to the lowest-
order relations Eqs.~3.10!–~3.14!. It is worth noting that the
Coleman-Glashow relation, Eq.~3.42!, receives calculable
ut

the
-

oop
dic-
t

ns

s

analyticcorrections of order (md2mu)ms in chiral perturba-
tion theory @14#; the results above show that these correc-
tions are suppressed by 1/N.

A fit to the measured mass differences gives an averag
deviation of 7 MeV for theDI50 mass differences~com-
pared to 29 MeV at lowest order!. For theDIÞ0 mass dif-
ferences, the average deviation is 0.35 MeV, or 0.20 MeV if
we exclude theD0-D11 mass difference. Since the average
of the DI50 mass differences is approximately 150 MeV
and the average of theDIÞ0 mass differences is approxi-
mately 3.5 MeV, this is consistent with the expected accu
racy of 1/N2;10%. Note that the result for theDIÞ0 mass
difference is the same as at first order, but this simply reflect
the fact that the first-order relations work better than ex-
pected.

D. Higher orders

At next order in large-N chiral perturbation theory, we
must include the operators

D35
a6
N2 $m%$s j%$s j%1

a7
N2L

$m%$ms j%$s j%

1
a8

N2L2 $m%$m%$m%1
a9

N2L2 $m%$ms j%$ms j%,

~3.48!

which give contributions to the mass differences of order
mq /N

2, mq
2/N, andmq

3 Including these terms in addition to
the second-order effects discussed above, there is one surv
ing relation

~S*122S* 01S*2!5~S122S01S2! @~406100!%#.
~3.49!

This relation gets corrections from the term

aEML

4p

1

NL
$Q%$Qs j%$ms j% ~3.50!

at orderaEMms and also possibly from loop effects at order
mq
5/2, mq

3lnmq , etc. ~Checking this requires us to consider
three-loop graphs.! In view of the large experimental uncer-
tainty in this relation, we will not pursue the expansion be-
yond this point.

IV. CONCLUSIONS

We have analyzed the baryon mass differences in large
N baryon chiral perturbation theory with particular emphasis
on the chiral loop corrections. One result of our work is that
the nonanalyticms

3/2 corrections to theDI50 large-N mass
relations appear to be too large and have the wrong sign t
explain the corrections to the lowest-order relations. None
theless, accurate results are obtained at higher order in th
expansion. At second order, there are eight nontrivial predic
tions of the 1/N expansion~which do not follow from flavor
symmetry alone!. These relations work to better than 10%
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accuracy, consistent with the assumption that the errors
;1/N2;ms

2/L2.
Reference@10# also analyzes the baryon masses in a co

bined expansion in 1/N and flavor breaking. The main dif-
ferences from the present work is that Ref.@10# performs a
different expansion in which only baryons with strangene
of order 1 in the large-N limit are considered and nonanalytic
chiral loop corrections are not included. Loop corrections
the expansion of Ref.@10# are considered in Ref.@19#.
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APPENDIX: BARYON MASSES TO TWO LOOPS

In this appendix, we compute the two-loop contribution
to the baryon masses shown in Fig. 4.~The other two-loop
graphs can be seen to be negligible using the power-coun
arguments of Sec. III B.! We will find that these contribu-
tions are negligible, but we do not know any simpler way
see this than by computing them explicitly.

General formula

We begin by deriving the general formula for the two
loop contribution to the masses in the presence of mixin
The baryon self-energy can be viewed as an operatorG(E)
in the spin-flavor Fock space, whereE is the energy of the
baryon. If we denote the physical baryon fields byun), the
mass eigenvalues are determined by

G~En!un)50. ~A1!

This is a nonlinear eigenvalue equation to be solved sim
taneously forEn and un) order by order in the loop expan-
sion. The first step is to expand all quantities in the numb
of loops:

G~En!5En2D2L1~En!2L2~En!1•••, ~A2!

En5En
~0!1En

~1!1En
~2!1•••, ~A3!

un)5un~0!)1un~1!)1un~2!)1•••. ~A4!

The energy dependence of the loop perturbations must a
be expanded:

L j~En!5L j~En
~0!!1L j8~En

~0!!En
~1!1•••. ~A5!

Writing out Eq.~A1! and equating terms at the same order
the loop expansion gives, at the tree level,

Dun~0!)5En
~0!un~0!), ~A6!
are

m-

ss

in

-
at
s-
ce

E
o.

s

ting

to

-
g.

ul-

er

lso

in

at one loop,10

En
~1!5~n~0!uL1~En

~0!!un~0!!, ~A7!

un~1!)5 (
mÞn

um~0!)
m~0!uL1~En

~0!!un~0!

En
~0!2Em

~0! , ~A8!

and at two loops

En
~2!5~n~0!uL2~En

~0!!un~0!!1En
~1!~n~0!uL18~En

~0!!un~0!!

1 (
mÞn

u@m~0!uL1~En
~0!!un~0!#u2

En
~0!2Em

~0! . ~A9!

The ‘‘energy denominator’’ terms in the two-loop formula
are irrelevant in the limit where we can ignore mixing:

~m~0!uL1~En
~0!!un~0!!50 for mÞn. ~A10!

For the problem at hand, mixing always violates isospin, s
that the energy denominator terms in Eq.~A9! are second
order in isospin violation. This is true for arbitraryN and
NF , as can be seen by considering the generalized isosp
and strangeness discussed in Sec. II B as good quantu
numbers. Since the baryons of given spinJ form an irreduc-
ible representation of SU(NF) and because any state in such
a representation is uniquely specified by these quantum num
bers, we see that mixing always violates generalized isospi
We can then write

En
~2!5~n~0!uL2~En

~0!!1 1
2 @L1~En

~0!!,L18~En
~0!!#1un~0!!.

~A11!

This formula gives the precise meaning of the graphs in Fig
4. The anticommutator term can be thought of as arisin
from wave function renormalization.

Two-loop contribution

We begin by considering the ‘‘true’’ two-loop graphs; we
will consider the one-loop graphs with counterterm inser
tions in the following subsection. By the power-counting
considerations of Sec. III B, we need only consider graphs o
the form in Fig. 4 with a single insertion11 of D0. These
integrals are regulated using, e.g., dimensional regularizatio
so that all the manipulations below are well defined. This
contribution is a sum of terms with momentum integrals of
the form

E d4p

~2p!4
pjpk

p22mA
2E d4q

~2p!4
qlqm

q22mA
2 F~p0 ,q0!}d jkd lm

~A12!

by three-dimensional rotational invariance. We then obtain

10We are assuming that all degeneracies are lifted by the tree-lev
terms, so that we do not need degenerate perturbation theory.
11We have also evaluated the two-loop graphs with no mass in

sertion and verified that theN dependence is consistent.
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dMB5
g4

36f 4E d4p

~2p!4
pW 2

p22mA
2E d4q

~2p!4
qW 2

q22mB
2 F 1

p0
3~p01q0!

~AXBBA1ABBXA!1
1

p0
2~p01q0!

2ABXBA

1
1

p0
2q0~p01q0!

AXBAB1
1

p0q0~p01q0!
2ABXAB1

1

p0q0
2~p01q0!

ABAXB

2S 1

2p0
2q0

2 1
1

p0
3q0

D ~AXABB1BBAXA!G , ~A13!

where we have used the abbreviations

A[$TAs j%, B[$TBsk%, ~A14!

and e.g.,

ABXBA[ABD0BA2 1
2 ~D0ABBA1ABBAD0!

5 1
2 @AB,D0#BA1 1

2AB@D0 ,BA#, ~A15!

~A16!

whereD05m$s j%$s j%/N.
Equation~A13! is naively a five-body operator~if we take into account the commutator structure defined byX insertions!,

but it must be a four-body operator by large-N consistency. By explicit calculation, we find that the five-body part of Eq.~A13!
indeed vanishes, and we obtain

dMB5
g4

36f 4E d4p

~2p!4
pW 2

p22mA
2E d4q

~2p!4
qW 2

q22mB
2 S 1

2p0
2q0

2AB@A,@B,D##1
4q013p0

2p0
3q0~p01q0!

AB@@A,B#,D#

1
2p0

313p0
2q012p0q0

212q0
3

p0
3q0

3~p01q0!
A@A,B#@B,D# D 1 lower-body operators. ~A17!
e-
-

r-
-
n

t
ds

s

a-
as
Evaluating the four-body operators that appear, we find
they are all&N2, and we have checked that all lower-bod
operators that appear are also&N2 even forNF;N. This
shows that

dMB&N0mq
2lnmq , ~A18!

which is negligible in our expansion.
Note that there is a four-body operator that could ha

contributed: namely,

AA@B,@B,D##;
1

N
AA~@B,$s j%#@B,$s j%#

1$s j%@B,@B,$s j%##1••• !

;
1

N
N2@N21NFN1•••#. ~A19!

Therefore, the important point of this calculation is that th
operator does not appear in the evaluation of the two-l
graphs.

One-loop counterterm graphs

As long as we are evaluating one-loop graphs, we can
dimensional regularization and minimal subtraction, wh
allow us to simply drop the divergent parts. When we co
sider two-loop graphs, we must be more careful about
that
y

ve

is
oop

use
ich
n-
the

counterterm structure, since we must also evaluate the on
loop graphs with a single insertion of a one-loop counter
term.

As already stated above, diagrams withL loops generally
scale asNL for large N. This means that there are diver-
gences in 1PI graphs that cannot be canceled by counte
terms with the sameN dependence as the tree-level Lagrang
ian. Even at one loop, there is a divergent wave functio
renormalization of orderN, while the tree-level kinetic term
is order 1. This does not imply that the Lagrangian is no
closed under renormalization, since we can rescale the fiel
so that the counterterms have the correct form.12 We, there-
fore, write the~bare! effective Lagrangian as

L5~BuZ1/2@ iv•¹2D1g$A•s%1•••1Oct#Z
1/2uB!,

~A20!

whereZ andOcr are divergent counterterms to be chosen
order by order in the loop expansion to render all graph
finite. By allowingZ to have arbitraryN dependence, we can
cancel the divergences with countertermsOct that have the
same form as the operators appearing in the tree-level L
grangian. This is the sense in which the bare Lagrangian h
the same form as the tree-level Lagrangian.

At one loop, we find

12Again, this has not been proved to all loops.
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Z512
g2

6 f 2
$TAs j%$TAs j%1O~D2!, ~A21!

Oct52
g2

12f 2
@$TAs j%,@$TAs j%,D

2g$A•s%##divE d4p

~2p!4
pW 2

p22mA
2

1

p0
2 . ~A22!

Here ‘‘div’’ indicates the divergent part.
The counterterms inOct are smaller by one power of
1/N than required by large-N consistency. This can be use
to see that the contribution of the one-loop counterter
graphs to the baryon masses are;N0 ~not;N). The reason
is simply that the physical mass is independent of the sc
of the fields, and so one can compute the masses w
Z51. All the other counterterms that appear are now su
pressed by an additional power of 1/N, which immediately
gives the result that these contributions are negligible in o
expansion.
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