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Baryon masses at second order in larg& chiral perturbation theory
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We consider flavor breaking in the octet and decuplet baryon masses at second order i d¢dwiged-
perturbation theory, where N is the number of QCD colors. We assume that
IN~INg~mg/A>my 4/A,agy, whereNg is the number of light quark flavors, amd, 4 /A are the
parameters controlling SB{) flavor breaking in chiral perturbation theory. We consistently include nonana-
lytic contributions to the baryon masses at orde&z, mglnmq, and (nglnmy)/N. The mg’z corrections are
small for the relations that follow from SB{) symmetry alone, but the corrections to the laMyeelations
are large and have the wrong sign. Chiral power counting and Mrgensistency allow a two-loop contri-
bution at ordemélnmq, and a nontrivial explicit calculation is required to show that this contribution vanishes.
At second order in the expansion, there are eight relations that are nontrivial consequencesNfekgaht
sion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 MeV
for the Al =0 mass differences and 0.35 MeV for thé+# 0 mass differences, consistent with the expectation
that the error is of order W~ 10%.[S0556-282(196)05715-3

PACS numbgs): 12.39.Fe, 11.15.Pg, 14.26c

[. INTRODUCTION One important feature of the present work is that we con-
sistently include the chiral loop contributions in our expan-
In this paper, we analyze the octet and decuplet baryogion. The leading nonanalytic contributions to the baryon
masses to second order in a simultaneous chiral aNd 1/mass differences are order;?, (mglnmy)/N, and mjinm,
expansion, wher@l is the number of QCD colors. TheN/ ~Wheremy is a light quark mas&Power-counting and large-
expansion for baryons has a rich structure and significanl consistency arguments allow a two-loop contribution at
predictive power: At leading order in the Nl/expansion, orc_ler mélnmq, and a nontrivial_explicit calculation is re-
static baryon matrix elements satisfy S spin-flavor quired tgzsee tha_t such a contribution does not appear. The
relations(where N is the number of flavois[1,2] and the order m;'“ corrections are ca}lculable, and the result is that
1IN corrections to these relations are highly constrainedhey are small for the relations that follow from SUK)
[3-6]. In order to compare the predictions of thé\léxpan- Symmetry alone, but the corrections to the laNyeelations
sion with experiment at subleading order, we must conside®'® large and have the wrong sign. While this may indicate
both 1N corrections and explicit breaking of SN) flavor that the expansion p_arameters' are not sufficiently small in
symmetry due to quark masses and electromagnetism. wpature to believe this expansion, we note that_ there are
will use the formalism of Refs[6,7] that takesNg~N>1 higher-order gffects that areglgxpecteq to substantially reduce
and makes use of an explicit effective Lagrangian that keepd1€Se corrections. Also, tive ™~ corrections can be canceled
the SUN) flavor symmetry manifest order by order in the at higher orders, giving results that agree wezll with experi-
1/N expansion. In order to determine which terms in thement. The coefficients of thenf;inmy)/N and mglnm, cor-

double expansion to keep, we will expand assuming that rections are not calculable in terms of measured couplings,
and we have included them as arbitrary parameters.

1 1 m m Our final results include corrections up to ordei and
s u,d f
e~ e~ —— > — > gy, (1.) mg/N for the Al=0 mass differences, and order
N Ne A- A (Mg—my)ms, (Mg—m,)/N, and agy for the Al#0 mass
differences. At this order there are eight relations which are
where A is the chiral expansion parameter angdy is the  nontrivial consequences of theNLexpansion(That is, they
electromagnetic coupling.The baryon magnetic moments do not follow from flavor symmetry considerations alone.
were analyzed in the same expansion in [R&fand found to  These relations agree well with experiment, and the remain-
be in excellent agreement with experiment. Differerll 1/ ing deviations are consistent with the expectation that the
expansions for various baryon observables have also beésading corrections are orderN?.
considered in Refd.4,9-11. In the concluding section we This paper is organized as follows. In Sec. I, we review
will briefly compare our results with those of Rdfl0], the expansion used in this paper. In Sec. I, we present our
which also considers baryon masses. results, and Sec. IV contains our conclusions. The details of
a two-loop computation are contained in an appendix.

*Electronic address: bedaque@mitins.mit.edu
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see Sec. Il C for a discussion of the last inequality. expansion scale.
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T 1 if X=1, I'=d/,

XI'}t= . 2.2
XI N otherwise. 2.2
-
N 2J ; Since the operators have definite $13) quantum numbers,
](/ this procedure keeps the flavor symmetry manifest for arbi-
trary N.
FIG. 1. The Young tableaux for the SNf) flavor representa-
tion of the spind baryon multiplet.
B. Large Ng
Il. EXPANSION In Ref. [7] it was shown that the largs-counting rules

for baryons are unaffected when the number of flavors is

The 1N expansion for baryons has a good deal of predictaken to be large, i.eNz~N. From the point of view of the
tive power even at subleading orders, but some aspects of thgiark and gluon degrees of freedom, the reason for this is
expansion are rather _subtle. In this section, we review thenat the largeN counting rules arise from the suppression of
main ingredients of this expansion. many-quark interactions, and this suppression is unaffected
by the presence of quark loops. This is to be contrasted with
the largeN predictions for mesons, which generally rely on
the suppression of quark loops and therefore are valid only in

The 1N expansion makes sense only for baryons withthe [imit Ng<N.
spinJ~1, since baryons with spidi~N have width of order We will assume thatN-~N>1. This seems sensible,
N. One conceptual subtlety in theNLexpansion for baryons  since we are assuming that the strange quark is light, and so
is that even for fixedNg=3 the number of baryon states with N=Ng=3. In order to carry out this expansion, we must
given spinJ~1 grows withN. WhenNg=2, the baryons decide how to extrapolate flavor breakifthe quark masses
have guantum numbets=J=3,3, ..., and it isclear that and chargesto a world withNg>3. Clearly, there are infi-
one should identify the states of lowest spin and isospin withhitely many choices, and our approach will be similar in
the corresponding baryon statesNat:3. WhenNg=3, the  spirit to the way we handle the additional baryon states that
situation is more complicated. The Young tableaux for theoccur: We set up the expansion to be independent of the
SU(Ng) representation of spid baryons is shown in Fig. 1; details of the extrapolation.
for N>3, this representation contains many states that may We therefore consider extrapolations with arbitrary num-
be identified with a given baryon state in the world with pers of individual quark flavors, N, 45, With
N=3. Choosing any subset of the baryon states that exist fax ,+ N4+ N,=Ng. There are extrapolations \)vhenQ~NF
N>3 to represent the baryons At=3 breaks the flavor (q=u,d,s), but there are also extrapolations where, e.g.,
symmetry explicitly. The “extra” states that appear for Ng~1 andN, 4~Ng. We will evaluate the matrix elements
N>3 are important for computing chiral loops, since theyfor arbitraryN, and keep any operator that is as large as the
can appear as intermediate states; the contributions of adirder to which we are working oany baryon state foany
baryon states are required in order to maintain flavor symextrapolation. Thus, for example, we keep terms of order

A. Baryon quantum numbers

metry and largeN consistency. 1/N, as well asNg/N.
A simple way to handle this situation was pointed out in
Refs.[5,6]. The 1N expansion can be carried out without C. Double expansion

selecting any subset of the baryon statedNfor3 by writing - .

the matrix elements in terms of few-body operators in a spin- 1 he predictions of the largi- limit for baryons can be
flavor Fock space that describes the baryon quantum nungUmmarized by stating that baryon matrix elements obey
bers. In this formalism, the coefficient of arbody operator >UY(2Ng) spin-flavor relations in this limit. In order to con-

is at most 0" 1, and there is a simple classification of the sider corrections to 'th|s limit, we must take into account both
operators that allows us to determine fkeand N depen- the fact thatN is finite and the fact that the SNg) flavor _
dence of the matrix elements for arbitrary baryon stigds SYMmetry is broken by quark masses and electromagnetism.
For operators with the flavor numbers of a product of e therefore carry out a simultaneous expansion h drd

SU(N{) adjoints, any operator can be written as a product oflavor breaking. In order to do this, we must decide where to

one-body operators of the form truncate the expansion in the small parameteks~11/Ng,
My as/A, andagy.
{xr}EagaxabraBabﬁ, (2.2 We will expand theAl=0 mass differences assuming
that
wherea' (a) is a creatior{annihilation operator in the spin- 11 m
flavor Fock spaceX is a flavor matrix, and’ is a spin matrix NN A 23

(either 1 oraj), with flavor and Lorentz indices contracted in

all possible ways. We keep a given operator if its matrix

element inany baryon state withJ~1 (for Nc.=3) is as The predictions we obtain will be viewed as predictions for
large as the order to which we are working. It is not hard toAS~1 mass differences, which a€ €) at leading order in
see that the largest matrix elements are this expansion.
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For theAl #0 mass differences, we assume that working. (For example, we will see that there are two-loop
graphs that potentially contribute to the baryon mass differ-

mg—m 2 ici -

_— d— My 2.4 ences at ordemglnmg, and we resort to an explicit calcula

tion to see that it does not occu¥We begin by reviewing the
o _ _ power counting for “pure” baryon chiral perturbation theory
To see that this is reasonable, we note {taffirst order in  (including only the lowest-lying baryon ocieWe then dis-

the expansion performed belpw cuss the new features that are present in theedpansion.
) 5 In “pure” baryon chiral perturbation theory, a generic
agm m_+—m_o term in the effective Lagrangian looks lik&6]
~ g =30% (2.5
(mg—my)/A Moo= My = d s k n
~M2+_2MEO+ME— A A f f\/K ! ’

= 0,
Vi - 20%.

(2.6)  whereB is the baryon field andI is the meson field(For
. simplicity, we setagy=0 in the present discussion; electro-
We therefore expandAl#0 mass differences to order magnetic effects can be included using the same arguments.

(myg—my) e and agy . I_Except for_ the_ fa_ct thf'ﬂ we tredt as  p loop diagram will contribute to the baryon mass
a large parameter, this expansion is identical to the second-

order chiral expansion that is usually adopted in chiral per-

) 1 \v 1 Mg\ S oy
turbation theonf12,13. SM ~ 9] p2b+D-2vp—Vgtl
16m2f2) AP~ 2u~Ve| A N
D. Effective Lagrangian X F(AM/my) (2.9
The effective Lagrangian we use is described in Ref,.
and we will not review it in detail here. We keep track of the A2 \L/m.\C
largeN group theory by writing the baryon field8) as NA(W) (f) F(AM/mp), (2.10

elements in a spin-flavor Fock space. The operators that
couple to these fields are written afody operators in spin-
flavor space with larg& (and Ng) suppression factors where

N1 wheret is the number of flavor traces used to

write the operatof6,7]. The fields for the light pseudoscalar 1.1 _ 1 _ 1
mesonslI are collected in the usual combinatige=e'™/", C=L+2+GDn+Sn=V)+7(De+Se=Ve) + 2?; '11)
wheref=f, =114 MeV is the kaon decay constanhote '
that then' mass is of ordeN:/N and is therefore not in- . ,
cluded as a light field. Explicit flavor breaking appearsHere.L is the number of loopdy; (Dg) is the total number

through the quark masses and electromagnetic charge mat@f derivatives in mesoribaryon vertices, Sy (Sg) is the
total number of powers ofn, summed over the meson

myly, (baryon vertices, V; (Vg) is the total number of pion
(baryon vertices, and S=S;+Sz, D=Dp+Dg.
mg= Maln, ; F(AM/my) is a function of the baryon mass differences and
mgly pion masses that appear in the loop diagram. Because
s AM/mH~mé’2, F can be expanded in a power series in

mY2. The chiral suppression fact@r is written in this form

2
aly, bgcauseDB+ Sg— Vg and 3D+ Sy — Vp measure the total
. 1 number of “extra” insertions of derivatives and/or powers of
Qq 1y, . (2.7 m. in bar . . o
q yon and meson vertices, respectively. This is be-
— 11, cause each baryon vertex contains at least one derivative or
one power ofmg and each pion vertex contains at least two
_ _ derivatives or one power ofy.
E. Power counting for chiral loops As an application of this formula, note that at order
In this subsection, we discuss the power counting of loopgMzInm, we must include one-loop graphs with a single in-
graphs in the expansion described above. This power counsertion of a two-derivative baryon vertek €1, Sg=0, and
ing is more complicated than for ordinary chiral perturbationDg+ Sg—Vg=1). Since the two-derivative vertices are not
theory, and it is essential in order to ensure that we have naheasured, we cannot compute trln\élnmq logarithmic cor-
omitted any important contributions at the order we arerections to the baryon masses in baryon chiral perturbation
theory[14].
We now turn to loop graphs in largé-baryon chiral per-
3The dependence ohin our results comes entirely frotd and  turbation theory. The chiral suppressions are as given above,
7 loops, and so we také=fy rather thanf=f _, the pion decay and so we will concentrate on tiNedependence of diagrams.
constant. The difference betweég andf . is higher order in SU  An arbitrary diagram naively gives a contribution to the
(3) breaking. baryon mass
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FIG. 3. A contribution to the baryon mass.

FIG. 2. A contribution to the baryon mass. The solid lines are
baryons and the dashed lines are mesons. N( A )WBLl)/Z

m, (2.19
2 2 L m C
M=A| =] || NYBF(AM/mp). (2.12
167-f A
Therefore,
Because a meson vertex can change the baryon flavor quan-
tum numbers only by order (ather tharN), AM can have C—(Vg—L—1)2
I . m B
contributions that are at mostNL/or mg. In our expansion SMg= NA(—q)
F(AM/my) can therefore be expanded in a power series in A
1N andmg”

Sincef~N'2, Eq.(2.12 apparently violates largh-con-
sistency if Vg—L>1. However, there are cancellations
among graphs that make the contributions to the physic
mass differences at most ordér Actually, it has never been
proved that the required cancellations occur to all orders, but N N N
many explicit calculations have been done that confirm this €~ 2(Ve—L—=1)=z(L+1)+(3Dn+Sy—Vn)

, (2.1

where we have usel<4xf/\/N. SinceVg—L<L, we can

EMVI’I'[E

assertiofi[3,4]. The two-loop calculation done in the Appen- 1 _ 1

dix of this paper provides an additional highly nontrivial T2(Det S~ Ve) +255. (217

check®

Since the leading terms in the expansion\dfl are order Using these results, we can enumerate all of the graphs

1/N andmq in our expansion, the argument Bfis that we need to consider to expand the baryon masses to
AM 1/ A\22 second order in the expansion described above. From Eq.
_N_(_) , (2.13  (2.17) we see that we need to consider at most two-loop
mp  Nimg graphs. Starting from the minimum number of insertions of

. . the 1N-suppressed baryon mass differeddd, it is easy to
and we can expan#l in a power series ihM/my; for 100ps  gaq that we need to consider the one-loop graphs of Fig. 2,
of K’s and 's. (Loops with  intermediate states are neg- he gne-loop graphs Fig. 3 with zero or one insertion of
ligible at the order we will be working.A term in the ex- 1 and the two-loop graphs of Fig. 4 with one insertion of
pansion that is naively orde#” with p>1 can be atmost of 1 | the Appendix it is shown that the leading contribu-
orderN by the assumed large-consistency. Taking this into  tions of the two-loop graphs cancel, and so there is no two-

account, we obtain loop contribution at this order.

2 \L Cc
SM=<A & % Nmin{vst,l}_,_ Nmin{VBfol,]}
16m°f2) | A
T Ill. EXPANSION OF BARYON MASSES
1/2 2 . . .
w| 2] ymintve—L-r.1} A r ‘... (2.14 Using the formalism discussed above, we now turn to the
my my ' ' expansion of the baryon masses.

The terms in the square brackets proportional to

NMnVe~L=r.1} arise from contributions that are naively of A. Leading order
order NVe~-~"with r powers of 1IN coming from the
baryon mass terlAM in the Taylor expansion df. As long
asr<Vg—L—1, these terms can be of orddr and so for

. . (mg—m,) for the Al#0 mass difference$ At this order,
burposes of power counting they are effectivehancedy  {here are no chiral loop corrections, and the expansion is

mg “ It is not difficult to see that the largest term in the getermined by the following terms in the effective Lagrang-
square brackets in Eq2.14 hasr=Vg—L—1 and is of g

order

We first expand the baryon mass differences to oeder
the Al=0 mass differences and to orde#g, and

SL=—(B|[Ag+As+---]|B), (3.1

“In fact, the first few terms in the W expansion for a given
matrix element can be derived by demanding that these cancella-®Strictly speaking, we should not include the ordeg, terms
tions occur2,3]. according to our power counting. However, these terms are tradi-
5Two-loop corrections to the axial vector currents are consideredionally included at “leading order” in chiral perturbation theory,
in Ref. [17]. and so we include them for purposes of comparison.
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FIG. 4. Two-loop contributions to the baryon mass.

where
FIG. 5. Example of a quark graph giving rise to the two-body
Ao:ﬁ{gj}{gj}, (3.2 operators{Q}{Q} and {Qd'HQda'} in the effective_Lagrangian.
N The wavy line represents a photon and the curly line represents a
gluon. Note that there is a factor &f from the color sum, and so
agu ]. ]. this graph is order 1 in the large-limit.
Ay=a;{m}+ ype [b1{QHQ} +bx{Qa'{Qa'}].
(3.3 ATT—3A"+3A°-A"=0, (3.11
Here,
(B =E*0)=(3* =3*)+(n-p)=0
m=3(£'meé+H.c), Q=3(£'Qqué'+H.c). (3.9 [(2+22)%], (3.12

Herea,, b;, andb, are effective couplings of order 1, and

u is an effective coupling of ordek. Note that the coeffi- (3*F—23*043% )~ (37 -25%+37)=0

cients of the operatorsQ}{Q} and{Qo'}{Qa'} appear to [(40=100%], (3.13
violate the largeN counting rule discussed above. The rea-
son is that at the quark level these operators arise from elec- (A°~A*)—(n—p)=0, (3.14

tromagnetic diagrams such as the one in Fig. 5, which are not
suppressed by a factor ofNLfrom gluon vertices. However,

in order to obtain a good largg-limit, we must demand that (Z* -3*")—(2"-25%+37)-2(n—-p)=0,
agm=1/N so that the electromagnetic Coulomb energy does [(3x7)%], (3.1
not overwhelm the strong binding energy for lafye This

also explains why the operatp@?} is not considered at this (A°—A**)+(S*—3**)—4(n—p)=0

order, since the coefficient of this operator is the same order
as the electromagnetic operators considered abduethis
order we obtain thé\l =0 mass relations

[(40=20)%]. (3.16

In addition, we can extract the quark mass ratio
E-3)-C-N)+3(Z-A)=0 (8%), (3.5

— mg— (M, +my)/2 A—N
E*—3*)—(2*-A)=0 (3%), 3.6 =—— =
( )—( ) (3%) (3.9 R ma—m. oS —amr oy
(Q-E")-(E"-2%)=0 (7%), (3.7 =110 30, (3.17)
_ — — = 0,
(E=N)=(A=N)=0  (40%), 38 Here the name of a baryon denotes its mass. Among the
_ Al=0 mass relations, Eq3.5 (the Gell-Mann—Okubo re-
*~A)—(A—N)= 15% . . .
(= )= ( )=0 (15%), (3.9 lation) and Egs.(3.6) and (3.7) (the decuplet equal spacing
and theAl =0 mass relations rules are valid at ordem, independently of the I expan-
sion, while EQgs.(3.8) and (3.9 are consequences of the
(E"-E9H— (" -2H+(n—p)=0 [(7+11)%], 1/N expansion.(In this limit, the mass of a baryon with

(3.10 strangeness-S is proportional toS.) Among the Al1#0
mass relations, Eq3.10 (the Coleman-Glashow relatipis
valid up to corrections of ordemf;—m,)mg independently

"In fact, this is a good example of how theNLexpansion can Of the 1N expansior{14]. Also, the only corrections to Eq.
differ qualitatively from the nonrelativistic quark model. In the (3.11) are second order in isospin breaking, independently of
quark model, the operatof®}{Q} and{Q?} are expected to be of the 1N expansion. The remainingl#0 relations Egs.
the same order, while the spin-symmetry-violating operator(3.12—(3.16 as well as Eq(3.17) are consequences of the
{Qa'}{Qo'} would be suppressed byrd}, wheremy, is the con-  1/N expansion.
stituent quark mass. In the constituent quark model, we obtain the The relations are written as linear combinations of mass
additional relation 3* —3**=3"-3% with accuracy differences that go to zero as;—0 (for the AI=0 rela-
(40+ 15)%. Unfortunately, this is neither sufficiently successful nortions) or (my—m,)—0, agy— 0 (for the Al1+#0 relations.
sufficiently unsuccessful to decide whether the quark model workd he accuracy quoted for the relatiofghere data are avail-
better than the N expansion discussed here. ablg is defined as the deviation from zero divided by the
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average of the absolute value of the mass differences that 2

appear in the equation. Defined in this way, all of these re- O,= W{SU Hol} - m{&f HSol}
lations are naively expected to have corrections of order

€~30%, except for Eq(3.11), which is essentially exact in Ng o . .

our expansion. Note that for th®l #0 mass differences the *BR NTM{TsU'}{UJ}"‘{TsU’}{SUJ} . (322
relations that hold as a consequence of flavor symmetry v

alone work better than those that depend on tite éxpan- Nq _ _
sion, but there is apparently no such pattern for Aez0 Ok+—Ogo=— ?{73}— {1 S+ :{ 130/ H{Sc1.
differences. (3.23

The value forR obtained is far from the valu®=25
obtained from an analysis of the light pseudoscalar massegere,
[12]. The quoted error only takes into account the experi-

mental uncertainty of the masses and does not include the On
theoretical uncertainty from higher-order corrections. In !
view of the large errors in the relations above, we do not take = ONd )
this value very seriously. 1y
A more objective measure of how well these relations s
work is obtained by fitting the mass differences to the pa- N1
rameters given above. The average deviation in the best fit is 5 d=Ny
29 MeV for theAl =0 mass differences and 0.35 MeV for Ty ——— —Ny1y . (3.29
the Al1#0 differences.(If we omit the model-dependent Ny+ Ny ¢
value for A°~A** we get an average deviation of 0.20 Ons
MeV for the Al+#0 mass differencesThe fit also give$ . : .
R=90. We do not need expressions for the pion loops, since they are
suppressed by-(m, 4/mg)*? for AI=0 quantities, and by
B. Chiral loops ~agyA/my 4 for Al+#0 quantitiesince the contribution of

pion loops is proportional ton_ +—m_o, which is purely
The largest corrections to the leading-order results in the&lectromagnetic at first order in chiral perturbation theory
expansion we are performing come from the loop diagrams Note that Egs.(3.2)—(3.23 are valid for arbitrary
in Fig. 3 and are of ordem3’2 for the Al=0 mass differ- N, 4 and Ng, and that they have a sensible limit as
ences and ordetrn”z(md m,) for the A1+0 mass differ- N,Ng— independently of the extrapolation of the quanti-
ences. These diagrams can be evaluated from tiesNy 4 5. According to the rules of our expansion, we must
keep the full dependence d¥, 4 s and Ng since there are
_ i K limits where each of the above terms is important. The physi-
oMg=(B[{Ta0"}{Tac'}|B) 6f2f (2m)* (p? mA)pO cal results are obtained by simply setfing\p=3
(318 Nyge=1.
Substituting these expressions into the lowest-order rela-
whereA=K, 7, etc., labels the pseudoscalar mass eigenstat@mns, we obtain the modified| =0 relations

and T, are the corresponding generators normalized so that
tr(TaTg)=0as. The effects ofn%x mixing are incorpo-  (E-3)—(2-N)+3(2—A)=3)—J,=—2=1 MeV,

k

rated by using the generator (3.295
(NyNgNgNp) 2 1 ) (E*—3*)—(3*—A)=4J¢—J,=—2+1 MeV,
T,=Tg— NN, TN, 2RT3-|—O(1/R ) (3.19 (3.26
for the » mass eigenstate, wheReis the quark mass ratio (Q-E*)—(E*-3*)=3J¢—J,=—2%=1 MeV,
defined in Eq(3.17). The result can be written (3.27
g? (3—N)—(A—N)=—2(Jc+J,)=—400+160 MeV,
SMg=(B|JAOalB), JA:Wmi: (3.20 ! (3.29
where (2*—A)—(A—N)I%(JK-FJ”):ZOO‘_"SO MeV
(3.29

Ox=—(N+Ng—2Ng){S}+3{Sc’}{o}

+{SHS!— E{ng}{so_j}, (3.21) Note that _forNF>3 there are “extra” p_seudoscalar mesons
transforming in the fundamental representation of S}J(that also
contribute in the chiral loops. The masses of these states are deter-
mined in terms of the “physical” states by SNf) flavor symme-
8We do not give values for the coefficients in the Lagrangiantry, and so these contributions are calculable. However, these con-
because the large loop corrections we find in the next section rertributions go to zero in the physical limM-= 3, and so there is no
ders them meaningless. reason to compute them explicitly.
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and the modified\1 #0 relations large enough that the expansion we are performing makes
sense at higher orders. We certainly cannot prove conclu-
(S* =3*")—(3T-23%+37)-2(n—p) sively that this point of view is correct, but we can obtain
evidence for it by going to higher orders.
4 2 Th | Iyti tions of
= —4(Jgo—Jy+ )+ ﬁ‘]n ere are also nonanalytic corrections o ormﬁﬂnmq.

These are formally larger than the analytic corrections due to
24 the counterterms by W?/Mz=1.4 for A=1 GeV. While
=(—4.0+1.6)+(4.8+ 1.9)(3) (0.1+0.6 MeV), these effects are definitely enhanced fog sufficiently
small, we believe that for the physical value raf this en-
(3.30 hancement is not numerically large enough to give reliable
predictions without including the analytic counterterms.
(AP—ATT)+(3* =3**)—4(n—p)
C. Second order
4

2
=—3(Jko—=Jx+)+ ﬁ%:(—4-0i 1.6)+(4.8x1.9 In order to expand thé& | =0 mass differences to order

€? and the Al+#0 mass differences to ordetg, and

(myg—m,) e, we must include the additional terms
X

R (1.60.85 MeV), (3.32)

a, LAz L, Ay
where the errors in the theoretical prediction are obtained by Azzﬁ{mﬂj}{al}"‘ X{m T M{m}{m}
assigning a 20% uncertainty to the couplipg 0.8 extracted
from a lowest-order fit to thdS=1 semileptonic baryon
decays and the experimental values are shown in parenthe-
ses.(The remainingAl #0 relations do not receive correc-
tions at this orde}.In the Al =0 relations, thed(m>?) cor- In addition to the analytic contributions, there are nonana-
rections to the relations that follow from SNf) flavor  Iytic contributions from loop graphs of ordelfnglnmq and
symmetry alone are small due to an “accidental” cancella—(mqmmq)/N, There aremglnmq contributions from graphs

tion. (This was noted in Refl15].) However, even taking such as Fig. 2 with the baryon-meson vertices coming from
into account the theoretical errors, the corrections to the renjgher-order operators such as

lations that follow from the larg®& expansion are too large
and have the wrong sign. The same conclusion does not ap-
pear to hold for the corrections to thel #0 relations, al- —{AIA}, L{AJ}{AJ'}, L{Aiai}{AkUk}‘
though the situation is obscured by the large uncertainties A NA NA
involved. This situation is analogous to what happens for the (3.33
magnetic moments, where tk@(mi’z) corrections to the
largeN relations are too large, although of the right sigh

One can view this situation in several ways. The mos
conservative view is that these results show that the expa
sion we are performing does not work well. We will instead
adopt the attitude that the apparently large corrections at this 1 i 1 o i
order of the expansion may be misleading, and go on to X{(VOA )o'}, K{(VJA )o'}. (3.34
higher orders of the expansion. At higher orders, these large
loop contributions can be canceled by counterterms, and Wghe coupling constants associated with these operators are
will see that the predictions work very wellThe values of  not well measured, and we will treat them as free parameters.
the effective couplings are sensitive to the computed looprhese graphs give contributions to the baryons masses of the
corrections, and so we do not quote values for them. form

To see why our viewpoint may be reasonable, we note
that there are several calculable higher-order effects that we 2
have omitted in our calculation, all of which substantially
suppress the correction. The first of these are higher-order
corrections to the meson coupligg These are known to be (3.39
large and apparently reduag [16,18. Second, we have )
checked that using the exact kinematics for the particles if’here theC; are unknown constants and the independent
the loops decreases the loop corrections by approximately @Perators that contribute at this order are
factor of 3 for the largeN relations. Third, we expect that the
meson-baryon coupling decreases at large momentum trans- O1a={TaH{Ta}, O2a={Tad'H{Tad}. (3.36
fer, reducing the effects df and » loops. All of these ef-
fects are suppressed by additional powersvpf and are There are alsorfylnmy)/N corrections arising from graphs
therefore higher order in the expansion we are performingsuch as Fig. 3 with a single insertion of the flavor-
Although none of these corrections changes the sign of thindependent baryon mass operatgr= u{co'}{c'}/N. These
loop corrections, it is possible that these suppressions amntributions are proportional to

+ 2 el {mel) (3.32
s . .

There are alscmglnmq contributions from graphs such as
tFig. 3 with one of the baryon-meson vertices coming from
r;[1e higher-order operators

1
oM B:(B|CjOjAKA| B), Ka= mmilnﬁz,
A
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g? , , 5 A2 analytic corrections of orderriy;— m,)mg in chiral perturba-
W[{TAUJ}a[{TAUJ}!AO]]mAIan tion theory[14]; the results above show that these correc-
A tions are suppressed byNL/
9 u A2 A fit to the measured mass differences gives an average
% s —[{TAO'j}{TAO'j}—{TATAUJ}{G'j}]mE\ln—Z deviation of 7 MeV for theAl =0 mass differencetcom-
167f° N Ma pared to 29 MeV at lowest orderFor theAl#0 mass dif-
(837 ferences, the average deviation is 0.35 MeV, or 0.20 MeV if
1 we exclude theA®-A** mass difference. Since the average
NW[NzJFNNF]qumq_ (3.3g  of the Al=0 mass differences is approximately 150 MeV

The normalization of these contributions is calculable, bu

will not be needed.

When we expand the operators above in terms of th
SU(Ng)-violating spurionsS and 73, we see that the opera-
tors that appear i, and O, are linear combinations of the

and the average of thal #0 mass differences is approxi-
mately 3.5 MeV, this is consistent with the expected accu-

tracy of 1IN?~10%. Note that the result for thel #0 mass

difference is the same as at first order, but this simply reflects

®he fact that the first-order relations work better than ex-

pected.

operators that appear in the tree terms. However, the loop

contributions are important because they eliminate a predic-
tion for the quark mass ratiB that would otherwise exist at

this order.

D. Higher orders

At next order in largeN chiral perturbation theory, we
must include the operators

Eliminating the unknown constants leads to the relations

(Q=E*)-2(E*-3*)+(2*-A)=0 (1%),

(3.39

(B*=3%)=(3*—A)—(E-3)+(E-N)—-3(Z-A)=0

(6%), (3.40
(B*-3*)—(E-3)=0 (17%), (3.41

(E"-E9— (S =3 +(n-p)=0 [(7+11)%],
(3.42
At —3AT+3A0— A~ =0, (3.43
(E*—_:*O)_(E*f_z*+)+(n—p):0 [(2+22)%],
(3.44

(3*F—23*04 5% )~ (37 -23%437)=0

[(40+100)%], (3.49
(A°—A*)—(n—p)=0, (3.46

(A=A )+ (2 —239+37)—2(n—p)=0

[(70=30)%]. (3.47)
Of the Al =0 relations, Eq(3.39 is an improved version of
the equal-spacing rule that holds to ordeir independently
of the 1N expansion15] while Egs.(3.40 and (3.41) are

nontrivial predictions of the N expansion. These relations

were derived in this expansion in RET]; the same relations
are derived in a different expansion in R@d]. Of the Al

#0 relations, Eqs(3.42—(3.46 are identical to the lowest-
order relations Eq¥3.10—(3.14). It is worth noting that the
Coleman-Glashow relation, E@3.42), receives calculable

ag Ay B
As=pimalH{ol}+ sz mimol} o)

ag ag . .
+ S ZazimimHm} + Sz z {mi{mo’{mo'},
(3.48

which give contributions to the mass differences of order
mg/N?, mj/N, andm; Including these terms in addition to
the second-order effects discussed above, there is one surviv-
ing relation

(S*T—23*04+3*)=(3T-23°+37) [(40+100%].

(3.49

This relation gets corrections from the term

aEMA

1 . .
s S {QHQo mo)

(3.50

at orderagyms and also possibly from loop effects at order
my’?, miinmy, etc. (Checking this requires us to consider
three-loop graphslIn view of the large experimental uncer-

tainty in this relation, we will not pursue the expansion be-

yond this point.

IV. CONCLUSIONS

We have analyzed the baryon mass differences in large-
N baryon chiral perturbation theory with particular emphasis
on the chiral loop corrections. One result of our work is that
the nonanalytian®’? corrections to the\1=0 largeN mass
relations appear to be too large and have the wrong sign to
explain the corrections to the lowest-order relations. None-
theless, accurate results are obtained at higher order in this
expansion. At second order, there are eight nontrivial predic-
tions of the 1IN expansionwhich do not follow from flavor

symmetry along These relations work to better than 10%
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accuracy, consistent with the assumption that the errors am@ one loop™°
~1IN2~m2/A2,

Referencd10] also analyzes the baryon masses in a com- EM=(nO|L,(EL)|n©), (A7)
bined expansion in N and flavor breaking. The main dif-
ferences from the present work is that Rgf0] performs a mO|L,(E®)|n©
different expansion in which only baryons with strangeness InNWy= > |m®) =0 nE(O) , (A8)
m#n -

of order 1 in the largeN limit are considered and nonanalytic
chiral loop corrections are not included. Loop corrections in

the expansion of Ref10] are considered in Ref19]. and at two loops
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APPENDIX: BARYON MASSES TO TWO LOOPS For the problem at hand, mixing always violates isospin, so
] ) . that the energy denominator terms in E9) are second
In this appendix, we compute the two-loop contributionsgqer in isospin violation. This is true for arbitraty and
to the baryon masses shown in Fig.(#he other two-loop N as can be seen by considering the generalized isospin
graphs can be seen to be negligible using the power-counting, strangeness discussed in Sec. Il B as good quantum
arguments of Sec. Il B.We will find that these contribu- numbers. Since the baryons of given spiform an irreduc-
tions are negligible, but we do not know any simpler way t0jp|e representation of SW) and because any state in such

see this than by computing them explicitly. a representation is uniquely specified by these quantum num-
bers, we see that mixing always violates generalized isospin.
General formula We can then write

We begin by deriving the general formula for the two-
loop contribution to the masses in the presence of mixing. E2'=(nO|Ly(EL)+3[L,(E),L{(E?)]|n@).
The baryon self-energy can be viewed as an opetlafé) (A11)
in the spin-flavor Fock space, whekeis the energy of the

baryon. If we denote the physical baryon fields |y, the ~ This formula gives the precise meaning of the graphs in Fig.
mass eigenvalues are determined by 4. The anticommutator term can be thought of as arising

from wave function renormalization.
['(Ey)|n)=0. (A1)
Two-loop contribution
This is a nonlinear eigenvalue equation to be solved simul-
taneously forE, and|n) order by order in the loop expan-
sion. The first step is to expand all quantities in the numbe
of loops:

We begin by considering the “true” two-loop graphs; we

will consider the one-loop graphs with counterterm inser-

tions in the following subsection. By the power-counting

considerations of Sec. Il B, we need only consider graphs of

the form in Fig. 4 with a single insertidhof A,. These

P(En)=En—A—Ly(Ep)—LaAEp)+- -, (A2)  integrals are regulated using, e.g., dimensional regularization
so that all the manipulations below are well defined. This

E,=EQ+EW+E@ ..., (A3) contribution is a sum of terms with momentum integrals of

the form

In)=[n©@)+|nD) +|n@)+. ... (Ad) ‘o p'p* [ dg dq" K Am
@m’ pr-mg) @m qpomg | (P00
The energy dependence of the loop perturbations must also A A (A12)
be expanded:

by three-dimensional rotational invariance. We then obtain
Li(En)=Lj(E) +L (EPHEM+- - - (A5)

Writing out Eg.(A1) and equating terms at the same order in  %ye are assuming that all degeneracies are lifted by the tree-level
the loop expansion gives, at the tree level, terms, so that we do not need degenerate perturbation theory.
O7 _ (0] n(0) we have also evaluated the two-loop graphs with no mass in-
A[n®)= En In®), (A6) sertion and verified that thid dependence is consistent.
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g4 d4p 52 d4q 52

SMp= ABXBA
B736f%) (2m)% p?—m2 (2w)4q2—mé{pg(po+%)

AXBBA+ABBXA+ ———
( A P5(Po+do)?

1 1
BAB+ —— > ABXAB+ ————ABAXB

+——AX AB
Podo(Po+ do) Podo(Po+ do) Pod5(Po+ do)

_<%§,q§+ ﬁ) (AXABB+ BBAXA)}, (A13)
where we have used the abbreviations
A={Tpo'}, B={Tgo'}, (Al4)
and e.qg.,
ABXBA=ABABA—1(A,ABBA+ABBAA,)

=1[AB,A(]BA+3AB[Ay,BA], (A15)
(A16)

whereA o= u{d'H{a}/N.
Equation(A13) is naively a five-body operatdif we take into account the commutator structure definechygsertions,

but it must be a four-body operator by lartyeconsistency. By explicit calculation, we find that the five-body part of(B23)
indeed vanishes, and we obtain

4 4 ) 4 =5
_9 (dp p f d'a. 9 1 4+ 3po
6MB_36f4 (2m)* p?—mz) (2m)* q2_m§(2p§quB[A’[B’A]]+ 2p8Qo(DO+QO)AB[[A’B]'A]
2p3+3p3do+ 2pods+ 2a5
Po 2030 Poflo qoA[A,B][B,A] + lower-body operators. (A17)
Pod5(Po+ do)

Evaluating the four-body operators that appear, we find thatounterterm structure, since we must also evaluate the one-
they are all<N?, and we have checked that all lower-body loop graphs with a single insertion of a one-loop counter-
operators that appear are alsdtN? even forNe~N. This  term.

shows that As already stated above, diagrams wlitloops generally
scale asN" for large N. This means that there are diver-
SMg=s Nomélnmq, (A18) gences in 1Pl graphs that cannot be canceled by counter-
terms with the sambl dependence as the tree-level Lagrang-
which is negligible in our expansion. ian. Even at one loop, there is a divergent wave function
Note that there is a four-body operator that could haveenormalization of ordeN, while the tree-level kinetic term
contributed: namely, is order 1. This does not imply that the Lagrangian is not

closed under renormalization, since we can rescale the fields

1 j j so that the counterterms have the correct féfiwe, there-
AA[B,[B,A]]~ NAA([Bv{‘T HIB.{o'}] fore, write the(bare effective Lagrangian as
+{oN[B,[B{aN]]+ ) L£=(B|ZYqiv-V—A+g{A-o}+-- - +O4Z¥3B),
(A20)
1 2r N2
NNN [N“+NgN+---]. (A19)

where Z and O, are divergent counterterms to be chosen

Therefore, the important point of this calculation is that thisc_)rder by order in the loop expansion to render all graphs

operator does not appear in the evaluation of the two-looﬁ'nite' By aIonvingZ to have_ arbiiranN dependence, we can
graphs. cancel the divergences with counterterig that have the

same form as the operators appearing in the tree-level La-
grangian. This is the sense in which the bare Lagrangian has
the same form as the tree-level Lagrangian.

As long as we are evaluating one-loop graphs, we can use At one loop, we find
dimensional regularization and minimal subtraction, which
allow us to simply drop the divergent parts. When we con-
sider two-loop graphs, we must be more careful about the *?Again, this has not been proved to all loops.

One-loop counterterm graphs
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2

Z=1— g—fz{TAai}{TAaJHO(Az), (A21)
g : :
Oc=— W[{TAUJ}:[{TAUJ}:A
[ dp o p? o1
—g{A~U}]]dIVf (27)4[)2_—mip_g (A22)

Here “div” indicates the divergent part.

2327

The counterterms irO. are smaller by one power of
1/N than required by larg&t consistency. This can be used
to see that the contribution of the one-loop counterterm
graphs to the baryon masses ardl® (not ~N). The reason
is simply that the physical mass is independent of the scale
of the fields, and so one can compute the masses with
Z=1. All the other counterterms that appear are now sup-
pressed by an additional power ofNlL/which immediately
gives the result that these contributions are negligible in our
expansion.
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