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We simulate lattice QCD at nonzero baryon density and zero temperature in the quenched approximation,
both in the scaling region and in the infinite coupling limit. We investigate the nature of the forbidden region
— the range of chemical potential where the simulations grow prohibitively expensive, and the results, when
available, are puzzling if not unphysical. At weak coupling we explore the sensitivity of these pathologies to
the lattice size, and find that using a large lattice X84°) does not remove them. The effective potential
sheds considerable light on the problems in the simulations, and gives a clear interpretation of the forbidden
region. The strong coupling simulations are particularly illuminating on this p®556-282196)00215-9

PACS numbgs): 12.38.Mh, 11.15.Ha, 12.38.Gc

I. INTRODUCTION bution of the nuclear binding energy. If this was the case, the
problems with finite density would not have been serious.
The absence of a simulation algorithm for finite densityThese considerations called for high precision measure-
QCD is an outstanding problem both of QCD thermodynam-ments, never performed before. Later argumé@isndicat-
ics and lattice field theor}l]. From the lattice viewpoint, the ing that the transition should indeed occur precisely at
source of these difficulties is the complex nature of the QCDu=m_/2 lack rigor and could well do with the scrutiny of
finite density actiorf2,3]. This property prevents the use of such measurements. This work, alas, confirmed the onset at
naive probabilistic methods in evaluating the functional inte-x=m,_/2.
gral, thus calling either for exact studies, which are ex- However, as discussed at length in RE3], the finite
tremely compute intensive, or for suitable approximations. temporal extent of the lattice might be responsible for un-
Many studies, especially the early ongs4], have pur-  physical closed quark loops winding around the system.
sued approximations. Finite density QCD has been studied iSuch loops can generate huge fluctuations and give mislead-
the quenched approximation, which is the most widely ex4ing indications of deconfinement and chiral symmetry resto-
ploited approximation in lattice QCD: This approximation ration. These considerations motivated us to follow up Ref.
has problems in the chiral limit because it ignores the axia]5] with simulations on a lattice of greater temporal extent,
anomaly, but it is satisfactory for many practical calcula-using quenched staggered fermions as in our previous work.
tions. It was, therefore, rather perplexing and disappointingNVe discuss these results in Sec. Il below. In particular, we
when severe problems were first reported in quenched simwhall give an overview of the results in Sec. Il A, while Secs.
lations of finite density QCIO}4]: At finite quark mass, the 1l B and Il C are devoted to the spectrum analysis and finite
onset of chiral symmetry restoration appeared to occur at size effects, and can be skipped by the reader uninterested in
chemical potential of half the pion mass, which would ex-technical details. We next turn to the strong coupling limit of
trapolate to zero in the chiral limit. Several explanations ofthe theory. Section Il is devoted to new simulations per-
this seemingly unphysical result were proposed, but none dbrmed in that regime. The strong coupling limit has little
them led to a satisfactory treatment of finite density QCD;phenomenological relevance, but it displays both confine-
nor did they indicate if the quenched approximation was atnent and chiral symmetry breaking, the QCD characteristics
fault (except in that they relied on simple probabilistic argu-which are relevant in this context. There are several consid-
ments that failed for the complex action of full QCD at finite erations which made this study appealing to us. First, in the
chemical potentialor if there were intrinsic problems in the same spirit of the weak coupling simulations, we wanted to
lattice formulation of fermions and chemical potential thathave a clean measure of the onset: At strong coupling half
would survive more sophisticated treatments. the pion mass and one-third the baryon mass are far apart,
In Ref. [5], we attempted to confirm the relationship and are easily distinguished numerically; second, the simu-
Monset=M/2 in the quenched model. We considered that tdations are much less computer intensive, and accurate re-
be necessary because, as suggested by other authors in sudts can be obtained; finally, several analytic treatments are
past, the coincidence of the onset with one-half the pioravailable, which can clarify the interpretation of the results.
mass might only have been a numerical accident, the corretWe have also introduced new observables which have helped
relationship beinguynse=Mn/3—A, whereA is the contri-  clarify some pathologies, and have helped us arrive at a co-
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TABLE I. Results for the chiral condensate as a function of thecients a; in the expansion of a propagatoG(t),
chemical potential on the $& 32 and on the 1< 64 lattices. We G(t)=a;e” ™!, by maximizinga,, the projection onto the

quote the average over the three boundaries and the two opposi{§ndamental state, a clear numerical advantage. Unfortu-

p values. nately, this advantage is accompanied by a possible lack of
— positivity of the other coefficients, leading to instabilities in
<‘3W> the results, amplified by the asymmetries introduced by the

K 16°x32 1664 chemical potential. In the new set of simulations we have

0.0 0.13776) 0.13762) thus decided to use a noisy-wall source: Namely, a random

0.1 0.137%9) 0.13763) SU(3) matrix was put on théeven, even, eversites of the

0.15 0.1360218) 0.13815) spatial cubé =0, and the Dirac operator was inverted in this

0.17 0.1350140) 0.135719) background. It is easy to show that the average local-hadron

0.20 0.1088100) 0.127735) propagators are the same as the ones obtained with a point

source, thus avoiding the positivity problems we have just
mentioned. There is a statistical gain due to the increase of

herent description of the failure of the quenched approximathe number of source pointsoughly, its square rogtand a
tion. We discuss these measurements in Sec. Ill A. Sectiolss because of possible incomplete cancelations of gauge-
I B contains the ordinary thermodynamics results. Theyvariant terms which are inherent in this technidug The
were particularly clear, and were easily extended to the satU€al advantages can only be judgegosteriori A sure dis-
ration region, a lattice artifact whose meaning we discuss ifddvantage, well known from the zero chemical potential
the following. Finally, in Sec. Ill C we contrast the results of simulations, is the absence of useful results for the baryon —
the simulations with the analytic predictions. This gives aWwith this source, asymptotic behavior sets in only at a large

new interpretation of the forbidden regiui>m_ /2. time interval where the baryon propagator is too small to
measure(N.B. We considered using a version of the noisy-

wall source which corresponds to smeared sources, along
with the corresponding smeared sinks. However, this gives
less statistical gain than for the point versjon.

Summarizing, we have doubled the temporal size of the
lattice (16x 64 vs 16x32), and used a noisy-walas op-
posed to a rigid-wallsource for the spectrum measurements.

This section contains an upgrade of our previous work orMaking these two changesource and time extensipsi-
guenched QCD at nonzero baryon-number density anthultaneously was the best way to optimize our computer
B=6.0[5]. We briefly summarize here our main findings resources, but unfortunately we were not able to disentangle
and open problems, and refer[&)] for introductory material the main sources of the troubles afflicting previous spectrum
and a general review. Our best success there was a measug¢emputations. The measurement strategy for the order pa-
ment of the nucleon mass far<m_/2. The results were in rameter and number density was the same as before, and so
agreement with the predictions of a simple constituent quarkn these cases we are genuinely monitoring finite temperature
model, and hinted at a critical value for the chemical poten<ffects.
tial given by one-third the baryon mass. Unfortunately, the As in past work, we exploited the “globalZ; symmetry
more interesting regiop.>m_/2 evaded us: Enormous fluc- of quenched QCD, using three different antiperiodic bound-
tuations dominated the results, and not only was it imposary conditions for the fermions in the time direction:
sible to estimate the mass spectrum, but the shape of thg(N)=—Z;#(0), where Z; stands for each of the three
propagators themselves was grossly distorted. The results ferbe roots of unity. Remember that this can help enforce the
thermodynamic quantities were somewhat better, and weonstraints of confinement by suppressing unphysical wind-
were able to detect a modest decrease in the chiral condeing loops. It is thus interesting to monitor the statistical gain
sate atu=m_/2. coming from averaging over these boundary conditions as a

The main purpose of this new work is thus twofold: first, function of the lattice time extent. The larger the gain, the
to understand and possibly eliminate the source of thénore important the role of th@unphysical winding loops,
anomalous fluctuations in the spectrum, in order to exten@nd so the interplay of temperature and winding loops can be
our simulations inside the interesting region of the chemicatlearly exposed.
potential; second, to explore the possibility of residual tem- We have generated 30 independent configurations on a
perature(the temperature being the reciprocal of the time16°x 64 lattice from a code which is a blend of Metropolis
exteny effects on the thermodynamic observables. Both ofand overrelaxed algorithms. A subset of these configurations
the above called for a simulation on a lattice of larger tem-was used for the inversion of the Dirac operator for each
poral extent: This pushes the temperature further towardtalue. The quark mass was 0.02, as in our previous work.
zero, and possibly suppresses precocious, unphysical quavke  have inverted the Dirac  operator  for
loops winding around the lattice in the time direction. We ©=0.0,0.1,0.15,0.17,0.2 on 13,13,26,12,28 configurations,
have also proposed another possible explanation for the paespectively. We have also done a few exploratory runs for
thologies afflicting the spectrum: The wall source used forarger u values (w=1.0), searching for hints of saturation
the spectrum measurements could produce strong distortiorisee[4] and the following section but the number of itera-
in the propagators. Remember that such a source, used iions required for the inversion was always huge, and the
conjunction with a point sink, alters the value of the coeffi-number density rather low. In the free theory saturation oc-

II. QCD AT NONZERO BARYON DENSITY
IN THE SCALING REGION: IMPROVED
OPERATORS, TEMPERATURE EFFECTS,
AND WINDING LOOPS
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TABLE Il. Results for the number density as a function of the 0.04 - ——— —

chemical potential on the $& 32 and on the 1< 64 lattices. We

quote the average over the three boundaries angy o0, over the 005 L tees o Teszo ]

two oppositeu values. -t AR i

(Jo) 00z |- , -
o 16°x 32 16x64 - ]
A C

0.0 0.0001693) 0.0002950) v -

0.1 0.0003883) 0.0001156) 5 A ]

0.15 0.00060145) —0.00013(52) 0.00 — == —

0.17 0.00070167) 0.00028212 r ]

0.20 0.0051(B99 0.00481315 ~001 [- =
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curs only for rather large.: We probably observed a similar ® m,/2 my/3

trend at3=6.0, in agreement with the observations| 8f.
The measurements and analyses were exactly the same asFIG. 2. Results for the number density At 6.0 (diamonds.
in our past work, to which we refer the reader for details. The results on the £& 32 are shown as squares, slightly displaced.

A. Overview of the results the improvement to the different sources we were using, we

The results for the chiral condensate and the number deﬁ'\-’OUId conclude that the source 'affects the amplitudes, but
sity are shown in Tables | and Il and collected in Figs. 1 an ot the poles, as expected. Despite the better behavior of the

2. They are systematically compared with those obtained ORropagators, _the pion mass eSt'mate was n_ot Compe”"?g for
the smaller latticgfor the sake of comparison, we have re- p#>m, /2, while for smaller chemical potentials we confirm

peated the analysis on the smaller lattice including all thé:)rewogs_results. We shaII_ give some detail on the mass
data, without any cuts, which accounts for some differenc nalysis in the next subsection. Here, we quote the results for

(statistically irrelevant among the results in this table and he pion mass in T_able lll, again comparing with th? resu_lts
the ones of Ref[9)) on the smaller lattice. We see that there are no discernible

For small values of the chemical potential€m./2) we temperature effects. Also, remember that we were using two

do not see any temperature effect for the chiral condensatgIfferent sources, wall, and point with the noisy improve-

while for u>m_/2 the overall behavior does not exclude the meeanrts. E)Orreoaucrh\'\i'gl;;unr]ceté)ttigebzﬁgaglrefrrgra:lssbsggzeltﬁé ap-
possibility of (modest finite temperature effects. We will P ymp

come back to this point in the last subsection, details in Sec. Il B beloy In particular, as we will show in

In the spectrum the most visible phenomenon concerngqoor:gsdfnta'tlolti;[e;hgusrhrgjzsbiszrgr?;%’f; (()jgs '; I(E)?/\r/tearml;)(/)un d
the pion propagator. The huge and unphysical fluctuation ymp ’

descried sbove i our past measuremq@kcisappear. | " "2 o1 Nand. because of he posiy propetes e
However, the number of iterations required for the inversion '

when 2 exceedsn_/2 remains large, of order f0meaning propagators obtained with the noisy-wall source give upper

that the Dirac operator is still nearly singular. If we ascribebounds' Qne might be tempted to average the results from
the two different sources, thus obtaining a nearly constant

pion mass across the transition.

We summarize all our findings for the spectrum in Fig. 3.
Besides the old results, and the new ones from Table IlI, we
1 show there the estimates for the pion masg.at0.2 (see
T=64 0, T=320 - next section for discussions and cavegatise point with the

018 _ ] huge error coming from the full sample, the other one,
I N i slightly displaced, from a subset from which the most wildly

0.20 T T T T T T T T T T T

N L \% | fluctuating propagators have been excludedthe prelimi-
% 010 = ] nary results reported if®] the statistical sample was smaller;
L ] TABLE lIl. Pion masses as a function gf on the two lattices.
0.05 (— — See text for details.
m7T
L1 . 16%x 32 16x 64
000 ) 01 LY kN ’
© m, /2 my/3 0.0 0.339636) 0.337931)
0.1 0.337475) 0.344051)
FIG. 1. Results for the chiral condensateat 6.0 (diamonds. 0.15 0.318%52) 0.3464142
The results on the £&32 lattice are shown for comparison 0.17 0.31815) 0.41(3)(4)

(squares
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FIG. 5. Effective masses as a function of time for= (0.0, 0.1,
0.15, 0.17, 0.2 (pluses, circles, squares, diamonds, crosdeata
for different u’s are slightly displaced.

FIG. 3. Summary of the spectroscopic results on the two lat
tices. See text for details.

so the cut was mandatory and we did not have an estimatgf
from the full configuration ensembleThe fairest statement
is that, despite our attempts, we do not have a reasonab
mass estimate gt=0.2, even though the propagator was
better behaved than the one on the smaller lattice.

It would be interesting to determine if the pion mass does B. Details of the spectrum analysis
indeed increase for>m_/2, which would be an indication e present here some details of our spectrum analysis.
of chiral symmetry restoration. Alternatively, we can searchthey provide some information on the qualitative effects of
for hints of chiral symmetry restoration in the spectrum seChe chemical potential on the propagators.
tor by_ looking at the propagators of the chiral partners. We  \we concentrate on the pion propagator, which is the best
have indeed observe#ig. 4) that the scalar and pseudosca- pahaved. The baryon propagator loses its numerical signifi-

lar propagators tend toward degenera}cy. The same holds 0,0 4t gistance 1-2 and we cannot extract useful informa-
the vector-pseudovector channel, but in both cases the effe{.}})n from it

is not dramatic, given that the two propagators are very close .
even atuw=0. Moreover, because of the different sources we We have considered the propagator generated by the op

were using on the smaller lattice, a finite size study of thesgratorGMG,#, which is the_ appropriate generalization at

quantities is not possible at this time. nonzerou of the operator which creates the Goldstone pseu-
In conclusion, we have observed only very modest hintloscalar, the pion. The pion mass seems to trigger the pa-

of chiral symmetry restoration in the spectrum and in thethologies we are studying, and its Goldstone nature makes

thermodynamics, possibly affected by residual temperaturgUch pathologies particularly dangerous in the chiral limit, as
discussed above; so this is why we are concentrating on its

propagator. However, for staggered fermions it is possible to
build several operators, labeled by the lattice symmetry
group, which all approach satisfactory pseudoscalar opera-
" ] tors in the continuum limit. The masses extracted from the
corresponding propagators are degenerate only when flavor
symmetry is restored, which is known not to be the case at
B=6.0. The standard pattern, discussed in the literature, is
that the Goldstone pion we are considering is the lowest
lying state. Since we will confirm that the onset for the pa-
thologies is at half its mass, there is no mativation, in this
context, for pursuing the study of the other pseudoscalar op-
erators.

We show in Fig. 5 the collection of the effective mass
plots for the pion(later in this work we will also extract
005 o1 o155 % masses from the dependence of the propagatorBhe qual-

H ity of the data is good for smajk, and plots, such as Fig. 6
for ©=0.1, show good agreement between our mass esti-

FIG. 4. Scalar(circles and pseudoscaldcrossep propagators ~mates obtained from the two lattice sizes, and the two source
as a function ofu. The (upper, middle, lowarcouple of values is methods. Asu is increased, the signal is lost earlier and
for the propagators at time separati@1,2. earlier in time. A better idea of the quality of the results can

fects. We have shown how suitable observables can help
Feontrol major pathologies. However, these results alone do
not determine the physical nature of the onseivatm, /2.
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FIG. 7. Two particle fits to the pion propagator in the time

.FIG' 6. The results fqr the effective mass.at 0.1 on the large interval[5-32, at u = 0.1 (circles and 0.15(crosses The fitting
lattice are contrasted with the ones on the smaller lattices, for the . L . .
. . Curves are practically coincident. Only the data points statistically

three different boundaries.

different from zero are shown.

be obtained from Table IV, where we give the mass esti- " "

mates from different analyses. It is clear that the asymptotic _ —mit_ —mat —mit
behavior for the effective mass sets is only for20 (con- G”(t)_;o aie TH=a0e +i§1 ae
sidering the behavior ojx=0.0 andux=0.1), and so the
effective mass analysis does not give resultsgfor0.1.

Next we considered two particle fitftundamentaH- ex-
cited). In this case we were able to use time separations as
small as 5, although large time distances were still needed to
stabilize the results. Figure 7 demonstrates the quality of thg\/e see that two particlent,
fits, which were successful up ©=0.15.

=age Mot+ C* (1)

~ape Mot gre ML,

and m*) fits can provide an
N Table V we show the detailed results for estimate of the first radial excitatiom; when (roughly

) . speaking In(a; /ag)/(my—my)>t>In(a,/a))/(m,—my) (the up-
©=(0.0,0.1,0.15) of*the fits of the pion propagator to thepIer bougd éugr?%t(eels trf:g)t the co(nfribllzti((t;rr:2 of th)e first epxcited
form age”™'+a*e ™ ' as a function of the fitted randé  statem, to the propagator is significantWhen the above
the fits we always use the appropriate lattice symmetrizacondition is not metfor instance, if the lattice is not fine
tion). We see that the fundamental sta‘t@and its amplitude enough, m*, the fit parameter, is an effecti\('ee” fit inter-
ap are stable over a rather large set of time separations, whilgal dependentexcited mass representing the contributions of
the higher masm* decreases, and its signal is lost before weg|| the excited states, and we see that, as expected on the
observe a plateau, if any. This is a well-known problem ofgrounds of positivity argumentsn* decreases while dis-
lattice studies: It is very difficult to estimate excited massescarding more points at small distance. However, from our fit
and we refer the reader to the IiteratL[liIED] for detailed results we can calculatié* (t), which we guote in the last
discussions of this issue. Here we have a Simpler task, SianO columns of Table V, and we see that it is fa|r|y stable
we only need the mass of the fundamental channel. We cagver our range of intervals. The results for the relevant pa-
thus infer the quality of the fits from the stability of the rametersa, andm, are also perfectly stable and in excellent
relevant resultsay and mg, and from the stability of the agreement with the results of the effective mass analysis.

overall contribution of the excited stat€¥' (t)=a* e ™, From Tables IV and V we thus learn that a safe interval for
as we explain below. Consider the pion propag&q(t). It  a two particle fit is the range 5-32. Unfortunately this range
can be written as is not accessible at higher because of the high statistical

TABLE IV. Estimates for the pion mass from effective mas&ebl) or two particle fits(F2). The first
two lines are the “good” results.

m7T
0.0 0.1 0.15 0.17 0.20 0.2@u)
F2[5-32 0.337931)  0.344G51)  0.3464142) - - -
EM [20-3( 0.335642  0.337647) - - - -
F2[2-9 0.361G55  0.351@55  0.360957)  0.4107324  0.5829)  0.3213)
F2[3-7] 0.391389  0.391487)  0.3807104  0.415%433  0.6024)  0.3724)

EM [14-14 0.344@45) 0.344252) 0.3307584 - - -
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TABLE V. Results of the fit of the pion propagator spe™ ™'+ a* e ™ as a function of the fitted
interval. We quote also the contribution of the excited sta@te&) =a*e ™"t for t=3 andt=5. See text for

more details.
ag mg a* m* C*(3) C*(5)
u=0
F2[2-321 0.5083186) 0.342121) 1.7981315 1.0762262 0.071257) 0.008311)
F2[3-320 0.4933215 0.340722 1.4022989 0.9570493)  0.0794130 0.011730)
F2[4-320 0.4749262 0.339125 0.8465%1356 0.7883767) 0.079%223 0.016468)
F2[5-321 0.4611364) 0.337931) 0.55451913 0.67811248 0.0725369 0.0187133
F2[6-321 0.43481477 0.3358127) 0.3248—) 0.5489—) 0.0626—) 0.0209—)
F2[8-321 0.4835617) 0.339953) — — — —
pn=0.1
F2[2-32] 0.5409208 0.347731) 1.834@284) 1.1286258 0.062149) 0.0065%8)
F2[3-32] 0.5286252 0.346136) 1.58121090 1.05071531) 0.0676117) 0.008323)
F2[4-320 0.5125326) 0.344244) 1.08232015 0.9143956 0.06972398 0.011257)
F2[5-320 0.5113398 0.344Q51) 1.02485775 0.89971922 0.0689556) 0.0114127)
F2[6-32 0.5083870 0.3437100 0.8387—) 0.8558—) 0.0644—) 0.0116—)
F2[8-37 0.53611120 0.347G136) — — — —
w=0.15
F2[2-32] 0.5377292 0.352777) 1.8576157) 1.147G308 0.059555) 0.006@9)
F2[3-320 0.5113420 0.347410)) 1.6307970 1.0609661) 0.0676140 0.008127)
F2[4-32] 0.4936590 0.3444130 1.34663038 0.97871350 0.0715331) 0.010172
F2[5-32] 0.5056679 0.3464142 1.861815529 1.07532940 0.074@898 0.0086146)
F2[6-32 0.5184773 0.3486155 7.29—) 1.351.17) 0.1176—) 0.00751073
F2[8-320 0.5305444) 0.3508103 0.54—) 2.132.12 0.00091642  0.000G23)

errors, and we conclude that at=0.17 andu=0.2 we can In Table VI we record the results for the chiral condensate
estimate the pion mass only in a semigquantitative way. for the different boundary conditions, and oppogitesigns,

To get mass estimates at=0.17 andu=0.2 we first in order to find systematic trends in their average values, or
restricted the fitted interval to a statistically significant rangein their fluctuations.u=0 sets the scale for the expected
(1<t<10). Then we estimated the error due to the lack ofeffects. We do not see any size effectsuat 0, while the
asymptotic behavior by comparing, at=0, the result ob- error ratio is roughly2, expected on a purely statistical
tained on that range with the correct one, and we assumegshsis(the lattice volumes differ by a factor of.2Deviations
that such an estimate s independent. In this way we esti- from this trend have to be interpreted as induced by the
mated the mass and errorsyat0.17, given in Table Ill, the chemical potential. A= 0.20 it appears that the difference
first error being statistical and the second computed as jush the results is systematic, and statistically significant. Also,
said. It is clear that this mass is certainly not asymptotic, and
has to be considered only “indicative.” The same problems
occur atu=0.2, where we have also tried some fits which ———r —— —
discard the noisiest propagators. The situatiopat0.2 is
best described by a figure. We show in Fig. 8 two fits to the 100 L
pion propagator at.=0.2. The solid line is drawn in corre-
spondence to the unconstrained fit, which gives for the cen- i
tral massm_=0.60, with a statistical erroA(m,)=0.24. 1o-1 |
The dashed line is for a fit with a constrained value in the 2
fundamental channein_=0.3379 as in theu=0.0 case. i
The two fits are coincident in the region where the propaga- 1072
tor is statistically different from zero. Only better results at g
larget would allow a safe estimate for the pion mass.

GL(t)

1073 |

C. Further search for finite temperature effects

We have said that the results for the chiral condensate and '
the number density do not exclude the possibility of finite
temperature effects. We have then selected threslues, FIG. 8. Two particle fit to the pion propagator at=0.2 in the
0.0,0.15,0.20, where we had the same number of gauge colmterval [0-9] (solid line). A similar fit, but with the mass in the
figurations on the two lattices in order to do a more detailedundamental channel constrained to jis=0 value is shown as a
comparison. dashed line.
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TABLE VI. Temperature dependence ()Eﬁ) . We compare the results for the 3632 and 18x 64
lattices atu = 0,£0.15,+0.20, for the three different boundary conditions.

()
16°x 32 16x 64
M Z; Z; Z3 Z; Z; Z3
0.0 0.13776) 0.13779) 0.137Q9) 0.13764) 0.13733) 0.13794)

+0.15 0.137116)  0.138119) 0.136815  0.138510)  0.139G8) 0.13918)
-0.15 0.138114)  0.131769) 0.135412  0.1377100  0.13637) 0.13819)
+0.20 0.114890)  0.123@154  0.0843248  0.130148)  0.132882)  0.128379)
-0.20 0.129755)  0.1073142  0.0944267)  0.126272  0.125@43  0.123736)

the error ratio grows larger, thus indicating some nontrivialstrong coupling this onset of sensitivity {@ observed in
improvement mechanism on the larger lattice, probably iniumerical simulations also differs from analytic predictions.
duced by the suppression of winding loops. Note also thaThis is rather peculiar, since analytic mean-field strong-
the statistical gain coming from averaging over the boundaryoupling results usually compare well with numerical simu-
conditions is larger on the smaller lattice, and that on thaations. It will prove to be informative to uncover the reasons
smaller lattice there is a much larger dispersion from ongyehind the discrepancy at strong coupling because it will
boundary condition to another. This suggests that windingy,ggest the reason for the failure of the quenched approxi-
loops are playing a significant role, which diminishes as theyation in general. These considerations, together with the
lattice size increases. low computational costs of these simulatioft®mpared to

. Table VI, Whe“? the results fo_r the nl_meer densit.y €he simulations in the scaling region described apoweti-
given, shows thal, is always consistent with 0. From Fig. 9 vated the following study

we see that on the.smaller I'att|a§e|'rcle5) Fhere are excep- We generated 20 random configurations or®x &6 lat-
tional eventgdeconfined configuratiohsvhich are absent on tice and 10 confiaurations on #832 lattice. Adain. we
the larger latticdsquares Note that some of the exceptional d three differ ?]t ntineriodic boundar : .ndi?i Ianr th
configurations have a density of the “wrong” sign: For in- usr?nionse?n th: t?meadirzﬁtignwc(tfg ;é(%o) wr?ersézo €
. . .. . . i - T4 1 i
stance, a negative chemical potential is apparently mducmgS ands for each of the three cube roots of unity. We first

positive density. chose a bare quark mass of 0.1. The strong coupling predic-

In conclusion, by increasing the temporal extent, lattice’ tor the bi db =01 0.6 and
artifacts are lessened. However, the improvements are ve ns for the pion and baryon massesig=u. - are 0.6 an
.3, respectively. In our simulations ranged from 0.0 to

modest, and so there is no reason to believe that the pro ) . . . :
P .2, thus including the interesting region &2<1.1 and

lems inherent in quenched simulations will be solved simpl h field dicti f h docriti
by using large volumes. the mean field prediction for the pseudocriticat

(u.=0.6). Moreover, a subset of 7 configurations on the
smaller lattice was analyzed with a very heavy quark mass
(mg=1.5), with . in the interval(1.2:1.5, the pseudocritical
point in this case being.~=1.37. Finally, 10 configurations
Recall, once more, the nature of the finite densityon an &x32 lattice with m,=0.1 were used to monitor
guenched QCD puzzle: Observables deviate from theipossible temperature effects.
©=0.0 values whemw=m_/2. In particular, the chiral con- We have measured the chiral condensate, the number den-
densate appears to fall at=m_/2. This result, which has sity, the energy density, and the pion mass. The other masses
suggested to other workers in the field that an infinitesimahre too heavy, and difficult to extract, a typical limitation of
value of the chemical potential restores chiral symmetry irstrong coupling simulations. Along with standard observ-
the chiral limit, has been observed in simulations in the scalables, the unphysical operal@rMGL (the “false” or “bary-
ing region, as well as in the strong coupling linit]. At  onic” pion, suggested by6] as opposed to the real pion

IIl. INFINITE COUPLING LIMIT OF NONZERO
DENSITY QCD

TABLE VII. Temperature dependence df. We compare the results for the two lattices wat=
0,+£0.15,£0.20, for the three different boundary conditions.

(Jo)
16°% 32 16X 64
M Z, Z, Z3 Zy Z, Z3
0.0 —0.0004899) 0.00081117) 0.00063128 0.0003488) 0.0003988)  0.0001%90)

+0.15 —0.0004@0123 0.00228297) —0.00219140 0.0002491) 0.0017@72) 0.00081101)
—0.15 —0.00237123 0.00291297) 0.00078161) 0.0019498) 0.0005383)  0.0010795)
+0.20 —0.0166%973 —0.003111350 0.041923721) 0.00548499  0.00901585 0.00819541)
—0.20 —0.01253736 —0.00023731) 0.004331263 —0.00886447) —0.00207777) 0.00477324)
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FIG. 9. Collection of the results for the number density at

B=6.0, for the three different boundaries, as a functionuofThe FIG. 10. The propagator of the “baryonic” pion is shown as a
results foru and —u have been averaged. The circles are for thefunction of time for» = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.9, and
small lattice, the squares, displaced, for the large one. m,=0.1.

N . .

G,G-,) was measured to obtain information about the |, order to gain additional insight into the eigenvalue dis-

poles of the Dirac operator. _ tribution and zero modes of the Dirac operator, we studied a
The main results of this study are the following. suitable, “unphysical” operator, the “baryonic pion”

First, there are three distinct intervals of chemical pOten'(which we shall often denote #" ): G#GT as opposed to

tial: a conventional region, for<<m_/2, where all the zero- : + . o i
triality observables maintain thejp=0 value; a “forbid- the real pionG,G_,, G, being the quark propagator com

den” region, for m_/2< u<u. (we will observe in the puted with chemical potentigk. We shall see that the am-
) T’ S

simulations thafu is close to one third the nucleon mass plitude of the baryonic pion propagator grows very large
S

characterized by wild fluctuations, and by average valueWhen’“>m”/2’ and its poles, which are related to the poles

which (when statistically meaningfushow deviations from f the Dirac ope‘r‘a,t,or, are very well exposed

their ©=0.0 values; and finally, a saturation region, where We show the %" propagator formg=0.1 in Figs. 10 and
M= ' Y, region, 11. For small values of the chemical potential the propagator
all the thermodynamic observables have their limiting, larg

values, the amplitudes in the mass spectrum drop to zerehas a baryonlike T-asymmetri¢ behavior. For.>m,/2 the
K ! P : P P ?J'ropagator flattens, which can only happen because of zero
and no single particle states exist.

Moreover, inspection of the effective potential as Com_e|genvalues of the Dirac operator: This gives direct evidence

) . L o . of the zero modes we were looking fdFig. 10. In the
uted in a mean field approximation shows that the “forbid- ; . : . " .
Een” region, which begFi)rF])s akt=m_/2, corresponds to the saturation regioriFig. 11), G.. .. (t) is again baryonlike, but

e g ; this time the propagation, as expected, is in the opposite
onset of metastability in the effective potential. direction. Outside the forbidden region, which, in this case,

is associated with the flat propagators, we can measure the
baryonic pion mass. For that purpose, we relied on a simple
effective mass analysis, and evaluated the logarithmic de-
As discussed at length in past work, when the chemical
potential u exceeds half the pion mass, the fluctuations in-
crease dramatically. This can be read off the eigenvalue dis- 1ol
tribution[4], since whenu=m_/2 the quark mass lies inside :
the eigenvalue cloud, thus producing eigenvalues of the full
Dirac operator close to zero. These huge fluctuations are as- 100 2
sociated with a dramatic increase in the CPU time required C
for the inversion of the Dirac operator: The average number -1 | +
of conjugate gradient iterations fge<<m_/2 was =100, :
while whenu exceedsn,/2 the number of iterations grows L
large (=10%). Again, this is consistent with the eigenvalue % 1072 =
picture, the number of iterations being proportional to the © i
ratio of the largest to the smallest eigenvalue. gar1 the
number of iterations is again very sma#(0). In this re-
gion we are inside the eigenvalue “crescent,” and the first
Brillouin zone is saturated. Again, we note that this value ot L v L
corresponds, approximatively, to one-third the baryon mass: t
The theory, at least in its strong coupling limit, is sensitive to
the nucleon, as predicted by simple nuclear models. FIG. 11. As in Fig. 10, bup = 1.0, 1.1, 1.2.

A. Fluctuations, poles of the Dirac operator,
and the “baryonic” pion

1073

T I

T |n|||||

o
(<]
—_
(=]
-
w



54 PATHOLOGIES OF QUENCHED LATTICE QCD AT ... 2311

10— 7T T —V—J T ] T T T T T T 10.00 T —
5.00 [
08 -
M M M R M N —H— e — ¥

0.6 [ — 100 |

e 2 A 0.50

G, (t)

0.4 w —

M M M M M — ¢

G«,,n'"( 'L)

0.2 — — 0.10 [

L R e M N e — — — g 0.05 F
0.0 Lol v v b e bw e v by b e PR R R

1] 2.5 5 7.5 10 125 15 0 5 10 15
t t

FIG. 14. Pion propagators at = (0.0, 0.1, 0.2, 0.B(plus’s,
crosses, diamonds, circbesmqu:O.l. The pion mass is insensi-
tive to the chemical potential in this range of values.

FIG. 12. “Pion” effective mass versus time, gt = (0.0, 0.1,
0.2, 0.3 andmy=0.1, from top to bottom.

L ith L hesi _ _ _ . _ .
rivative without any attempt at symmetrizatigne hesitated éatlons which have been discussed and reviewed in the lit-

to use the same parametrization as for staggered bgryon . .
The flat region in the effective mass plots extends until therature. We shall comment further on this point below.

influence of the backward propagating state becomes appre- .
ciable: From our results it is clear that this still produces a B. Physical observables
reasonable interval, so that we can obtain a safe estimate for We have measured the particle spectrum and thermody-
the baryonic pion mass. In Fig. 12 we show the effectivenamic observablegchiral condensate and number density
mass plots, together with the results of a conventional effecyia a standard stochastic estimator.
tive mass analysis for the real pion. Ther™ mass satisfies, The pion propagata(Fig. 14 is completely insensitive to
for  pu<mg/2, m...(u)=m. . (0)—2u  [where the chemical potential up tm_/2. The “forbidden” region
m. .~ (0)=m_,(0)=m_], thus extrapolating to zero for (m_/2<u<m,) is dominated by fluctuations, while in the
u=m_/2 (Fig. 13. saturation region £>m,) the pion propagator amplitude
In conclusion, the study of the baryonic pion gives cleardrops to zero. As noticed abovg; is close to one-third the
evidence of zero modes in the quark propagator fomucleon mass. We were not able to measure the baryon mass
m=m_/2, in agreement with the eigenvalue picture. (a common drawback of strong coupling simulatiprtaus
Summarizing, these measurements provide a coherent dgissing a very important piece of information about the criti-
scription of the spectral structure of the Dirac operator ovekal behavior. It was, however, possible to monitor the ampli-
the entirey range. The poles fop.>m_/2 can be clearly tude of the baryon propagator. At,=0.1 we found that it
exposed by suitable, yet unphysical observables. Their mathtecreased by an order of magnitude in the saturation region
ematical and physical significance is open to many interprefthe amplitude is=0.01 in the conventional region, unde-
fined in the forbidden one, and 4¢%Y at
©=1(1,1.1,1.2). This trend in the amplitude is common to
08 [ e all the propagators we have measured, and indicates that no
- 1 real particle can exist in the saturation region.
| The results for the thermodynamic observables are shown
I B in Fig. 15, formy=0.1[Fig. 15a)] andmy,=1.5[Fig. 15b)].
Lo x As noticed in past work, the chiral condensate and the num-
ber density are closely correlated. Saturation is especially
clear in the number density, which is 3 the maximum number
of quarks which can occupy a single site. We see from Fig.
_ 15 that the saturation threshold is closentp/3, as men-
i \ . | tioned above. Our results are consistent with those previ-
0z |- v 3 - ously reported in the literature, whenever a comparison is
i 1 possible u<m_/2).
r X ] It is also informative to consider the results configuration
ool by b L L by configuration. We know that ensemble averages have
0 025 § 05 0.75 1 1.25 - i A .
M2 “ some special features at finite density, and a more detailed
analysis can be worthwhile. For that purpose, we use the data
FIG. 13. “Pion” masses, from an effective mass analysis, ver-at Mq=0.1 which has the best statistics.
sus the chemical potential at my=0.1. The dashed line ig = In Figs. 16 we show the number density as a function of
m_(0)—2u. the configuration number. At low [Fig. 16a)], the densi-

04 —
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i phase, and that the identification of the onsetuoflepen-

20 = s dence in the theory’s observables with the pseudocritical
1 point computed in a mean field approximation may not be

correct. In the next subsection we shall compare this inter-

pretation of the data with the predictions of the strong cou-

pling analytic calculations.

C. Effective models and simulation results

Aypuap JaquunN

0.5 Several, qualitatively equivalent, strong coupling] &k-
pansions of full QCD with staggered fermions at finite den-
1 sity and temperature are available in the literafdré1-13.

1° Such mean field analyses predict a strong first order transi-

- tion at finite chemical potential and zero temperature. Since
W3 fermion loops do not play a significant role in the leading
order of the 1d expansion at strong coupling, it is sensible to
try to interpret quenched simulations in terms of the analytic
mean field predictions. This has been done in the [ga%t],
and we will continue in this tradition in some detail. We
shall show that the onsegt of the metastable region of the
effective potential of these studies is associated with the on-
setuonsetfor 1 dependent thermodynamics introduced at the
beginning of this paper.

Let us now describe these calculations in more detail. At
small « the free energy, which plays the role of an effective
potential, plotted as a function gfyy has only one minimum,
corresponding to thee=0.0 value of the chiral condensate
I S o (h)o. While increasingu = u, the free energy develops a
T secondary minimum ag=0 . The two minima become of
) 08 1 12 iffz il/ge . 1.8 equal height fow=u*. w* is thus interpreted as the pseud-

" " ocritical point at finite mass, or the exact critical pojint for

FIG. 15. (&) Summary of the thermodynamics results at strongChlral symmetry restoration in the _Ch'ral limitu¢ 4‘*) ap-

coupling. The chiral condensateircles, left and the number den- proaches 0 as the quark mass increases, while these two

sity (crosses, rightare plotted as a function qf, for mq=0.1. (b) values of the chemical potential are well separated for
As in (a), butmg=1.5. smaller quark masses, thus creating a wide metastable re-

gion. By further increasing the chemical potential, the mini-

ties computed with opposite values of the chemical potentiamum at finiteyiy eventually disappears at=ug, the only
(joined with dotted and dashed lines, respectiveye  surviving minimum being the one afy=0. This should
strongly correlated: So we do not see any sensitivity to theorrespond to the complete saturation of the first Brillouin
chemical potential itself. In the intermediate regipig.  zone, i.e., density= 3. Before proceeding, we recall that
16(b)], Jo is wildly oscillating. We observe configurations .+ my/3. This can be understood because of a considerable
which have a nonzero density, but with the wrong sign, fornuclear binding energy at strong couplifyl] (in fact, u.
instance when a positive density is obtained with a negativeipproaches/3 wheng—0), or because of the effects sug-
. This, once more, tells us that one must be careful in usingested in Ref[8]. Anyway, from the perspective of the
concepts like confinement and chiral symmetry breaking orpresent study, the main feature of the strong coupling analy-
an isolated configuration: A negative chemical potentialsis is that the critical chemical potential, is different from
should enhance, in the statistical average, antibaryon propaero, and the lack of exact coincidence with the naive pre-
gation, while we see that on isolated configurations the opdictionsm,/3 carries little weight: If the results of the strong
posite can happen. In the saturated reqféig. 16c)] things  coupling analysis were realistic, the theory would not be
are very clear, and each configuration has a net density witjathological. This is why it is important to reconcile the
the “right” sign. numerical and analytic results at finite mass, or to uncover

In Figs. 17 and 18 we give the full ensemble of values forthe reasons behind their differences.
the chiral condensate and the number density, as a function A few comments on the saturation effect are in order: The
of the chemical potential. For the number density, we tooksaturation is a by-product of the lattice discretization, in par-
the average ovet u, which enforcesT symmetry event by ticular of the momentum space effect of the lattice cutoff, as
event, and producek =0 atu=0. Foru>m_/2 the results can be seen explicitly in the free cd<8. It does not exist in
for (¢) and J, obtained configuration by configuration the continuum, where in the plasma phase the chemical po-
spread over a wide range, which includes both the saturatiotential dependence in the number density should follow the
and theu =0 values. Stefan-Boltzmann lawyoc 12 ( a discussion of continuum vs

The behavior we have described suggests that we mighattice results in the free case can be foundllid]). So there
have entered a metastable region rather than the symmetiie no simplea priori argument, at least to our knowledge,

0.0

=4 T | T

(@) m,/2 n

£ysuUsp JaquIny
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FIG. 16. (a8 The results for the number density are shown configuration by configuration, for the three boundaries and the two opposite
w values atu = 0.1.(b) As in (a), but x =0.5.(c) As in (a), butu = 1.2.

which ties the lattice saturation threshold to any physicain the free case, but also @#=6.0. More relevant, in this
observable. Neverthless, we find it interesting that in thecontext, is the observation that, is associated with the end
strong coupling limit this threshold is close /3 — the  point of the mixed phase, whose properties we shall discuss
natural scale of the phenomenon we are studying — even iin the following.

as noticed above, such simple relationships are lost not only Summarizing, there are a few interesting values of the
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FIG. 17. Collection of the results for the chiral condensate, for FIG. 18. Collection of the results for the number density, for the
the three different boundaries, and the opposite valueg,ais a  three different boundaries, as a functiorwafThe results fo and
function of the chemical potential. — u have been averaged.
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chemical potential, labeling the different physical regions asrameter and the number densityss) deviates from its
sociated with the chiral transition which emerge from the, =0 value at the valug.* of the chemical potential com-
effective potential analysigi, the critical point of the chi- pyted in a mean field approximation. However the onset
ral transitjon in the chiral Iimit';u.*, the pseudocritical point LonsetfOr 1 dependence in thermodynamic quantities, as in-
as analytically computed at finite mags, the onset of the  ferred from the behavior of the number density, occurs much
metastable region found in an effective potential approachgyyjier.

and us, the chemical potential at which saturation occurs. \ye now turn to a discussion of the results: We shall com-
We would like to study the interrelation of these points with pare the results for the effective potential drawn in Figs. 19

Honset th? onset O dependence in t_hermody_namip obsgrv- (@) and 19b) with the thermodynamic results presented in
ables at finite quark mass observed in numerical S|mulat|on\"=.:igs 15a) and 15b)

Naive arguments would suggest that = uopser 1.€., that
the transition has a strong first order character also at finit
mass. However, it is easy to imagine situatigas we are
will explain below) in which u* and uqnsetare different. In

this case, lim, _ou* = e, While wonset in itself does not
have an immqediate relationship with the critical poj asymmetry parametea,/a;=r=1, and T=16. Also, we
Y b poL. show as a dotted line the effective potential at

Rather, it should be identified with: The onset ofu depen- —0.7= u* The curves are basicallv coincident for “larae”
dence in the thermodynamic observables is produced by the— M urves sically coincl 9

edge of the metastability region. We also mention that th ¢, while for small values they are qualitatively different.

work of Ref. [15] supports the possibility thaignee and In particular, we clearly see the onset of metastabilities at
. onse — . .. . g

ue are indeed different. In Ref15] a representation of the #=0.4, and the disappearance of ﬂ:e_mmlmum at figie

partition function at strong coupling written in term of a for x=1. The pseudocritical poink™ is obscured by the

monomer-dimer expansion is used to compute the order pdiuge fluctuations associated with such metastabilities. It is
only whenu> ug that the minimum at finitel¢ disappears,

0 and for u>mg (once more, we note thaks=my/3 is a

A ] strong coupling result, which is lost at weak coup)iad) the
observables have their limiting values: The chiral condensate
is zero and the number density is 3. By contrasting this be-
havior with Fig. 1%a) we see indeed thaiy=u, and that
saturation occurs for> us. In Fig. 19b) we have repeated
this plotting exercise for our higher mass valug,1.5),
with an analogous result. In fact, we have observed that in
this case the metastable regiqgu,< w<ug) in the effective
potential shrinks to the expected small interval, as predicted
from Fig. 15b).

We learn that the metastable region in the effective poten-
tial can be identified with the forbidden region observed in
the simulations. This clarifies the nature of the phenomena
observed am_/2: The pathologies are not manifestations of
an early chiral transition, but are indicative of the existence
of a region of metastability. Foe=m_/2 we have the first
appearance of zero modes. These manifest themselves in
huge fluctuations, in the increase of the iterations needed for
the inversion, and in the flatness of the baryonic pion propa-
gator. In particular, the fluctuations observed in the chiral
condensate should be associated with fluctuations and distor-
tions of the eigenvalue distribution: When the chiral conden-
sate is almost zero, the eigenvalue distribution must be such
that the point (n,,0) gets insidé. This, in turn, generates the
secondary minimum around zero in the chiral condensate
distribution, and produces the observed decline in the chiral
condensate itself, which thus happens much before than the
actual pseudocritical point*.

To master the pathologies far>m_/2, and expose the
physics of the chiral transition which is hidden deep inside

In the following, we use results and notation from Ref.
Fll]. We show in Fig. 169 the effective potentialafter
formulas(2.10 and(2.11) of Ref.[11]] for the sameu val-
ues of our simulations ah,=0.1, the same quark mass, the

(@)

(b)

FIG. 19. (a) Free energy, from Refl1], as a function ofyy,
for my=0.1, and the chemical potentials used in our simulations. LIt is possible that the situation improves in the full model, since
u increases from top to bottom. The dashed line is drawn in apin that case the eigenvalue distribution does depend on the mass
proximate correspondence to the mean field prediction for thevalue, which can prevent the distribution itself from fluctuating ran-
pseudocriticalu. (b) As in (a), butmy=1.5. domly around the mass point on the real axes.
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the metastable region, we need to “enforce” the saddle poinmodel. We confirmed the pathological behavior observed in
solution. the past foru>m_/2. The onset am_/2 has been measured
We thought that a natural possibility would be to increasewith great accuracy both at strong and weak coupling, and
the time extent of the lattice so the system could find thefound to be independent of the lattice size and the measure-
actual minimum: This is why we produced the 10 configu-ment technique. We think that our simulations in the scaling
rations on a 8x 32 lattice mentioned at the beginning of this region have clearly exposed the pathologiemat2. In par-
section. However, the inversion time inside the metastablécular, it has been shown that the early onset is indeed half
region remained very large, and the comparison between thibe pion mass, which rules out the possibility of rescuing
results of the two lattices excluded strong volume effects. quenched, finite density QCD by using some refined nuclear
This subject deserves further study. Comparisons with thenatter models. However, the accurate simulations performed
behavior of other models can offer some guidance. In parin the scaling region do not suffice to clarify the very nature
ticular, we note that the zero temperature, finite density tranef the onset am_/2 — we have searched for hints of chiral
sition of the U1) X U(1) Gross Neveu model, which has been symmetry restoration, both in the order parameter and in the
successfully simulatefil6], is second ordef17], i.e., does spectrum, and found them to be very weak and inconclusive.
not have a metastable region. In $J(gauge models the The new simulations on large lattices have not greatly im-
transition turns first order foN>2, while the SW2) model  proved our understanding. We have also performed new, ex-
has a second order transiti¢a2]. First order transitions, tensive simulations at strong coupling. We used different
with their “forbidden” metastable regions, and their numeri- values of the bare quark mass, and a wide array of chemical
cal failures, seem associated with complex actfomgiile  potentials. We have also introduced new observables which
models which can be successfully simulated have real adielped shed more light on the pathologies. The analytic re-
tions, and undergo continuous transitions. sults available in that case offered a simple interpretation of
Clearly we need to uncover the physical reasons for thehe pathologies ap=m_/2: The forbidden region of the
complex action at nonzerg and/or to explore possible al- simulations is to be associated with the metastable region in
ternatives, such as the Hamiltonian formulation: We notehe effective potential. This suggests that the problems with
that the authors of Ref19] found that the critical chemical finite density QCD could be solved if we could handle the
potential, computed at strong coupling in Hamiltonian latticemetastable region.
QCD, is indeed equal to the dynamical fermion mass, which, Summarizing, the simulations of quenched QCD in the

in the same scheme, is one-third the nucleon Mma8k scaling region, large lattices, and at largevalue produce
clear evidence of the major pathologies of the theory, but do
IV. CONCLUSIONS not help to clarify the reasons behind these failures. The

) simulations in the strong coupling limit were particularly in-
We have performed an exhaustive study of quenchegormative, especially when their results were analyzed in the
QCD at finite density in the scaling region and in the strongcontext of available analytic treatments.
coupling limit. We have measured the standard thermody-

namic observables, the spectrum, and unphysachhocob-
servables meant to elucidate some of the peculiarities of the ACKNOWLEDGMENTS
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