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We simulate lattice QCD at nonzero baryon density and zero temperature in the quenched approximation
both in the scaling region and in the infinite coupling limit. We investigate the nature of the forbidden region
— the range of chemical potential where the simulations grow prohibitively expensive, and the results, when
available, are puzzling if not unphysical. At weak coupling we explore the sensitivity of these pathologies to
the lattice size, and find that using a large lattice (643163) does not remove them. The effective potential
sheds considerable light on the problems in the simulations, and gives a clear interpretation of the forbidde
region. The strong coupling simulations are particularly illuminating on this point.@S0556-2821~96!00215-9#

PACS number~s!: 12.38.Mh, 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

The absence of a simulation algorithm for finite densit
QCD is an outstanding problem both of QCD thermodynam
ics and lattice field theory@1#. From the lattice viewpoint, the
source of these difficulties is the complex nature of the QC
finite density action@2,3#. This property prevents the use o
naive probabilistic methods in evaluating the functional inte
gral, thus calling either for exact studies, which are e
tremely compute intensive, or for suitable approximations

Many studies, especially the early ones@2,4#, have pur-
sued approximations. Finite density QCD has been studied
the quenched approximation, which is the most widely e
ploited approximation in lattice QCD: This approximation
has problems in the chiral limit because it ignores the ax
anomaly, but it is satisfactory for many practical calcula
tions. It was, therefore, rather perplexing and disappointin
when severe problems were first reported in quenched sim
lations of finite density QCD@4#: At finite quark mass, the
onset of chiral symmetry restoration appeared to occur a
chemical potential of half the pion mass, which would ex
trapolate to zero in the chiral limit. Several explanations o
this seemingly unphysical result were proposed, but none
them led to a satisfactory treatment of finite density QCD
nor did they indicate if the quenched approximation was
fault ~except in that they relied on simple probabilistic argu
ments that failed for the complex action of full QCD at finite
chemical potential! or if there were intrinsic problems in the
lattice formulation of fermions and chemical potential tha
would survive more sophisticated treatments.

In Ref. @5#, we attempted to confirm the relationship
monset5mp/2 in the quenched model. We considered that
be necessary because, as suggested by other authors in
past, the coincidence of the onset with one-half the pio
mass might only have been a numerical accident, the corr
relationship beingmonset5mN/32D, whereD is the contri-
542821/96/54~3!/2303~14!/$10.00
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bution of the nuclear binding energy. If this was the case, t
problems with finite density would not have been seriou
These considerations called for high precision measu
ments, never performed before. Later arguments@6# indicat-
ing that the transition should indeed occur precisely
m5mp/2 lack rigor and could well do with the scrutiny of
such measurements. This work, alas, confirmed the onse
m5mp/2.

However, as discussed at length in Ref.@5#, the finite
temporal extent of the lattice might be responsible for u
physical closed quark loops winding around the syste
Such loops can generate huge fluctuations and give misle
ing indications of deconfinement and chiral symmetry rest
ration. These considerations motivated us to follow up R
@5# with simulations on a lattice of greater temporal exten
using quenched staggered fermions as in our previous wo
We discuss these results in Sec. II below. In particular, w
shall give an overview of the results in Sec. II A, while Sec
II B and II C are devoted to the spectrum analysis and fin
size effects, and can be skipped by the reader unintereste
technical details. We next turn to the strong coupling limit o
the theory. Section III is devoted to new simulations pe
formed in that regime. The strong coupling limit has littl
phenomenological relevance, but it displays both confin
ment and chiral symmetry breaking, the QCD characterist
which are relevant in this context. There are several cons
erations which made this study appealing to us. First, in t
same spirit of the weak coupling simulations, we wanted
have a clean measure of the onset: At strong coupling h
the pion mass and one-third the baryon mass are far ap
and are easily distinguished numerically; second, the sim
lations are much less computer intensive, and accurate
sults can be obtained; finally, several analytic treatments
available, which can clarify the interpretation of the result
We have also introduced new observables which have hel
clarify some pathologies, and have helped us arrive at a
2303 © 1996 The American Physical Society
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2304 54LOMBARDO, KOGUT, AND SINCLAIR
herent description of the failure of the quenched approxim
tion. We discuss these measurements in Sec. III A. Sec
III B contains the ordinary thermodynamics results. Th
were particularly clear, and were easily extended to the s
ration region, a lattice artifact whose meaning we discus
the following. Finally, in Sec. III C we contrast the results
the simulations with the analytic predictions. This gives
new interpretation of the forbidden regionm.mp/2.

II. QCD AT NONZERO BARYON DENSITY
IN THE SCALING REGION: IMPROVED
OPERATORS, TEMPERATURE EFFECTS,

AND WINDING LOOPS

This section contains an upgrade of our previous work
quenched QCD at nonzero baryon-number density
b56.0 @5#. We briefly summarize here our main finding
and open problems, and refer to@5# for introductory material
and a general review. Our best success there was a mea
ment of the nucleon mass form,mp/2. The results were in
agreement with the predictions of a simple constituent qu
model, and hinted at a critical value for the chemical pot
tial given by one-third the baryon mass. Unfortunately,
more interesting regionm.mp/2 evaded us: Enormous fluc
tuations dominated the results, and not only was it imp
sible to estimate the mass spectrum, but the shape of
propagators themselves was grossly distorted. The result
thermodynamic quantities were somewhat better, and
were able to detect a modest decrease in the chiral con
sate atm.mp/2.

The main purpose of this new work is thus twofold: firs
to understand and possibly eliminate the source of
anomalous fluctuations in the spectrum, in order to ext
our simulations inside the interesting region of the chem
potential; second, to explore the possibility of residual te
perature~the temperature being the reciprocal of the tim
extent! effects on the thermodynamic observables. Both
the above called for a simulation on a lattice of larger te
poral extent: This pushes the temperature further tow
zero, and possibly suppresses precocious, unphysical q
loops winding around the lattice in the time direction. W
have also proposed another possible explanation for the
thologies afflicting the spectrum: The wall source used
the spectrum measurements could produce strong distor
in the propagators. Remember that such a source, use
conjunction with a point sink, alters the value of the coe

TABLE I. Results for the chiral condensate as a function of
chemical potential on the 163332 and on the 163364 lattices. We
quote the average over the three boundaries and the two opp
m values.

^c̄c&
m 163332 163364

0.0 0.1377~6! 0.1376~2!

0.1 0.1375~8! 0.1376~3!

0.15 0.1362~18! 0.1381~5!

0.17 0.1359~140! 0.1357~19!
0.20 0.1088~100! 0.1277~35!
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cients ai in the expansion of a propagatorG(t),
G(t)5(aie

2mit, by maximizinga0 , the projection onto the
fundamental state, a clear numerical advantage. Unfortu
nately, this advantage is accompanied by a possible lack
positivity of the other coefficients, leading to instabilities in
the results, amplified by the asymmetries introduced by th
chemical potential. In the new set of simulations we have
thus decided to use a noisy-wall source: Namely, a rando
SU~3! matrix was put on the~even, even, even! sites of the
spatial cubet50, and the Dirac operator was inverted in this
background. It is easy to show that the average local-hadro
propagators are the same as the ones obtained with a po
source, thus avoiding the positivity problems we have jus
mentioned. There is a statistical gain due to the increase
the number of source points~roughly, its square root!, and a
loss because of possible incomplete cancelations of gaug
variant terms which are inherent in this technique@7#. The
real advantages can only be judgeda posteriori. A sure dis-
advantage, well known from the zero chemical potentia
simulations, is the absence of useful results for the baryon —
with this source, asymptotic behavior sets in only at a larg
time interval where the baryon propagator is too small to
measure.~N.B. We considered using a version of the noisy-
wall source which corresponds to smeared sources, alon
with the corresponding smeared sinks. However, this give
less statistical gain than for the point version.!

Summarizing, we have doubled the temporal size of th
lattice (163364 vs 163332), and used a noisy-wall~as op-
posed to a rigid-wall! source for the spectrum measurements
Making these two changes~source and time extension! si-
multaneously was the best way to optimize our compute
resources, but unfortunately we were not able to disentang
the main sources of the troubles afflicting previous spectrum
computations. The measurement strategy for the order p
rameter and number density was the same as before, and
in these cases we are genuinely monitoring finite temperatu
effects.

As in past work, we exploited the ‘‘global’’Z3 symmetry
of quenched QCD, using three different antiperiodic bound
ary conditions for the fermions in the time direction:
c i(Nt)52Zic(0), where Zi stands for each of the three
cube roots of unity. Remember that this can help enforce th
constraints of confinement by suppressing unphysical wind
ing loops. It is thus interesting to monitor the statistical gain
coming from averaging over these boundary conditions as
function of the lattice time extent. The larger the gain, the
more important the role of the~unphysical! winding loops,
and so the interplay of temperature and winding loops can b
clearly exposed.

We have generated 30 independent configurations on
163364 lattice from a code which is a blend of Metropolis
and overrelaxed algorithms. A subset of these configuration
was used for the inversion of the Dirac operator for eachm
value. The quark mass was 0.02, as in our previous wor
We have inverted the Dirac operator for
m50.0,0.1,0.15,0.17,0.2 on 13,13,26,12,28 configuration
respectively. We have also done a few exploratory runs fo
largerm values (m.1.0), searching for hints of saturation
~see@4# and the following section!, but the number of itera-
tions required for the inversion was always huge, and th
number density rather low. In the free theory saturation oc
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54 2305PATHOLOGIES OF QUENCHED LATTICE QCD AT . . .
curs only for rather largem: We probably observed a simila
trend atb56.0, in agreement with the observations of@8#.

The measurements and analyses were exactly the sam
in our past work, to which we refer the reader for details

A. Overview of the results

The results for the chiral condensate and the number d
sity are shown in Tables I and II and collected in Figs. 1 a
2. They are systematically compared with those obtained
the smaller lattice~for the sake of comparison, we have r
peated the analysis on the smaller lattice including all
data, without any cuts, which accounts for some differe
~statistically irrelevant! among the results in this table an
the ones of Ref.@9#!.

For small values of the chemical potential (m,mp/2) we
do not see any temperature effect for the chiral condens
while for m.mp/2 the overall behavior does not exclude t
possibility of ~modest! finite temperature effects. We wil
come back to this point in the last subsection.

In the spectrum the most visible phenomenon conce
the pion propagator. The huge and unphysical fluctuati
described above in our past measurements@9# disappear.
However, the number of iterations required for the invers
whenm exceedsmp/2 remains large, of order 104, meaning
that the Dirac operator is still nearly singular. If we ascri

TABLE II. Results for the number density as a function of t
chemical potential on the 163332 and on the 163364 lattices. We
quote the average over the three boundaries and, formÞ0, over the
two oppositem values.

^J0&
m 163332 163364

0.0 0.00016~93! 0.00029~50!
0.1 0.00033~83! 0.00011~56!
0.15 0.00069~145! 20.00013(52)
0.17 0.00071~161! 0.00028~212!
0.20 0.00510~899! 0.00481~315!

FIG. 1. Results for the chiral condensate atb56.0 ~diamonds!.
The results on the 163332 lattice are shown for compariso
~squares!.
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the improvement to the different sources we were using, w
would conclude that the source affects the amplitudes, b
not the poles, as expected. Despite the better behavior of
propagators, the pion mass estimate was not compelling
m.mp/2, while for smaller chemical potentials we confirm
previous results. We shall give some detail on the ma
analysis in the next subsection. Here, we quote the results
the pion mass in Table III, again comparing with the result
on the smaller lattice. We see that there are no discernib
temperature effects. Also, remember that we were using tw
different sources, wall, and point with the noisy improve
ment. For our wall source, the effective mass estimator a
pears to reach its asymptotic behavior from below~see the
details in Sec. II B below!. In particular, as we will show in
more detail later, our mass estimate atm50.17 is certainly
nonasymptotic and should be considered as a lower bou
On the other hand, because of the positivity properties w
mentioned above, the effective mass estimates from t
propagators obtained with the noisy-wall source give upp
bounds. One might be tempted to ‘‘average’’ the results fro
the two different sources, thus obtaining a nearly consta
pion mass across the transition.

We summarize all our findings for the spectrum in Fig. 3
Besides the old results, and the new ones from Table III, w
show there the estimates for the pion mass atm50.2 ~see
next section for discussions and caveats!, the point with the
huge error coming from the full sample, the other one
slightly displaced, from a subset from which the most wildly
fluctuating propagators have been excluded~in the prelimi-
nary results reported in@9# the statistical sample was smaller;

he

TABLE III. Pion masses as a function ofm on the two lattices.
See text for details.

mp

m 163332 163364

0.0 0.3396~36! 0.3379~31!
0.1 0.3374~75! 0.3440~51!
0.15 0.3182~52! 0.3464~142!
0.17 0.313~15! 0.41~3!~4!n

FIG. 2. Results for the number density atb56.0 ~diamonds!.
The results on the 163332 are shown as squares, slightly displaced
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2306 54LOMBARDO, KOGUT, AND SINCLAIR
so the cut was mandatory and we did not have an estim
from the full configuration ensemble!. The fairest statemen
is that, despite our attempts, we do not have a reason
mass estimate atm50.2, even though the propagator wa
better behaved than the one on the smaller lattice.

It would be interesting to determine if the pion mass do
indeed increase form.mp/2, which would be an indication
of chiral symmetry restoration. Alternatively, we can sear
for hints of chiral symmetry restoration in the spectrum se
tor by looking at the propagators of the chiral partners. W
have indeed observed~Fig. 4! that the scalar and pseudosc
lar propagators tend toward degeneracy. The same hold
the vector-pseudovector channel, but in both cases the e
is not dramatic, given that the two propagators are very cl
even atm50. Moreover, because of the different sources
were using on the smaller lattice, a finite size study of the
quantities is not possible at this time.

In conclusion, we have observed only very modest hi
of chiral symmetry restoration in the spectrum and in t
thermodynamics, possibly affected by residual tempera

FIG. 3. Summary of the spectroscopic results on the two
tices. See text for details.

FIG. 4. Scalar~circles! and pseudoscalar~crosses! propagators
as a function ofm. The ~upper, middle, lower! couple of values is
for the propagators at time separation~0,1,2!.
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effects. We have shown how suitable observables can h
control major pathologies. However, these results alone
not determine the physical nature of the onset atm5mp/2.

B. Details of the spectrum analysis

We present here some details of our spectrum analys
They provide some information on the qualitative effects
the chemical potential on the propagators.

We concentrate on the pion propagator, which is the be
behaved. The baryon propagator loses its numerical sign
cance at distance 1–2 and we cannot extract useful inform
tion from it.

We have considered the propagator generated by the
eratorGmG2m

† , which is the appropriate generalization a
nonzerom of the operator which creates the Goldstone pse
doscalar, the pion. The pion mass seems to trigger the
thologies we are studying, and its Goldstone nature mak
such pathologies particularly dangerous in the chiral limit,
discussed above; so this is why we are concentrating on
propagator. However, for staggered fermions it is possible
build several operators, labeled by the lattice symmet
group, which all approach satisfactory pseudoscalar ope
tors in the continuum limit. The masses extracted from th
corresponding propagators are degenerate only when fla
symmetry is restored, which is known not to be the case
b56.0. The standard pattern, discussed in the literature
that the Goldstone pion we are considering is the lowe
lying state. Since we will confirm that the onset for the pa
thologies is at half its mass, there is no motivation, in th
context, for pursuing the study of the other pseudoscalar o
erators.

We show in Fig. 5 the collection of the effective mas
plots for the pion~later in this work we will also extract
masses from thet dependence of the propagators!. The qual-
ity of the data is good for smallm, and plots, such as Fig. 6
for m50.1, show good agreement between our mass e
mates obtained from the two lattice sizes, and the two sou
methods. Asm is increased, the signal is lost earlier an
earlier in time. A better idea of the quality of the results ca

lat-
FIG. 5. Effective masses as a function of time form 5 ~0.0, 0.1,

0.15, 0.17, 0.2! ~pluses, circles, squares, diamonds, crosses!. Data
for differentm ’s are slightly displaced.
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be obtained from Table IV, where we give the mass e
mates from different analyses. It is clear that the asympt
behavior for the effective mass sets is only fort.20 ~con-
sidering the behavior ofm50.0 andm50.1), and so the
effective mass analysis does not give results form.0.1.

Next we considered two particle fits~fundamental1 ex-
cited!. In this case we were able to use time separations
small as 5, although large time distances were still neede
stabilize the results. Figure 7 demonstrates the quality of
fits, which were successful up tom50.15.

In Table V we show the detailed results fo
m5(0.0,0.1,0.15) of the fits of the pion propagator to t
form a0e

2m0t1a* e2m* t as a function of the fitted range~in
the fits we always use the appropriate lattice symmetri
tion!. We see that the fundamental statem0 and its amplitude
a0 are stable over a rather large set of time separations, w
the higher massm* decreases, and its signal is lost before w
observe a plateau, if any. This is a well-known problem
lattice studies: It is very difficult to estimate excited mass
and we refer the reader to the literature@10# for detailed
discussions of this issue. Here we have a simpler task, s
we only need the mass of the fundamental channel. We
thus infer the quality of the fits from the stability of th
relevant resultsa0 and m0 , and from the stability of the
overall contribution of the excited statesC* (t)5a* e2m* t,
as we explain below. Consider the pion propagatorGp(t). It
can be written as

FIG. 6. The results for the effective mass atm50.1 on the large
lattice are contrasted with the ones on the smaller lattices, for
three different boundaries.
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Gp~ t !5(
i50

`

aie
2mit5a0e

2m0t1(
i51

`

aie
2mit

5a0e
2m0t1C* ~ t !

.a0e
2m0t1a* e2m* t.

We see that two particle (m0 andm* ) fits can provide an
estimate of the first radial excitationm1 when ~roughly
speaking! ln(a1 /a0)/(m12m0)@t@ln(a2 /a1)/(m22m1) ~the up-
per bound guarantees that the contribution of the first excite
statem1 to the propagator is significant!. When the above
condition is not met~for instance, if the lattice is not fine
enough!, m* , the fit parameter, is an effective~i.e., fit inter-
val dependent! excited mass representing the contributions o
all the excited states, and we see that, as expected on t
grounds of positivity arguments,m* decreases while dis-
carding more points at small distance. However, from our fi
results we can calculateC* (t), which we quote in the last
two columns of Table V, and we see that it is fairly stable
over our range of intervals. The results for the relevant pa
rametersa0 andm0 are also perfectly stable and in excellent
agreement with the results of the effective mass analysi
From Tables IV and V we thus learn that a safe interval fo
a two particle fit is the range 5–32. Unfortunately this range
is not accessible at higherm because of the high statistical

the

FIG. 7. Two particle fits to the pion propagator in the time
interval @5–32#, atm 5 0.1 ~circles! and 0.15~crosses!. The fitting
curves are practically coincident. Only the data points statisticall
different from zero are shown.
TABLE IV. Estimates for the pion mass from effective masses~EM! or two particle fits~F2!. The first
two lines are the ‘‘good’’ results.

mp

0.0 0.1 0.15 0.17 0.20 0.20~cut!

F2 @5–32# 0.3379~31! 0.3440~51! 0.3464~142! – – –
EM @20–30# 0.3356~42! 0.3376~47! – – – –
F2 @2–9# 0.3610~55! 0.3510~55! 0.3609~57! 0.4107~324! 0.58~29! 0.32~13!
F2 @3–7# 0.3913~88! 0.3914~87! 0.3807~104! 0.4155~433! 0.60~24! 0.37~24!
EM @14–16# 0.3440~45! 0.3442~52! 0.3307~584! – – –
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TABLE V. Results of the fit of the pion propagator toa0e
2m0t1a* e2m* t as a function of the fitted

interval. We quote also the contribution of the excited statesC* (t)5a* e2m* t for t53 andt55. See text for
more details.

a0 m0 a* m* C* (3) C* (5)

m50
F2 @2–32# 0.5080~186! 0.3421~21! 1.7981~315! 1.0762~262! 0.0712~57! 0.0083~11!
F2 @3–32# 0.4933~215! 0.3407~22! 1.4022~989! 0.9570~493! 0.0794~130! 0.0117~30!
F2 @4–32# 0.4749~262! 0.3391~25! 0.8465~1356! 0.7883~767! 0.0795~223! 0.0164~68!
F2 @5–32# 0.4611~364! 0.3379~31! 0.5545~1913! 0.6781~1248! 0.0725~369! 0.0187~133!
F2 @6–32# 0.4348~1477! 0.3358~127! 0.3248~—! 0.5489~—! 0.0626~—! 0.0209~—!

F2 @8–32# 0.4835~617! 0.3399~53! — — — —
m50.1

F2 @2–32# 0.5409~208! 0.3477~31! 1.8340~284! 1.1286~258! 0.0621~49! 0.0065~8!

F2 @3–32# 0.5286~252! 0.3461~36! 1.5812~1090! 1.0507~531! 0.0676~117! 0.0083~23!
F2 @4–32# 0.5125~326! 0.3442~44! 1.0823~2015! 0.9143~956! 0.0697~238! 0.0112~57!
F2 @5–32# 0.5113~398! 0.3440~51! 1.0248~5775! 0.8997~1922! 0.0689~556! 0.0114~127!
F2 @6–32# 0.5083~870! 0.3437~100! 0.8387~—! 0.8558~—! 0.0644~—! 0.0116~—!

F2 @8–32# 0.5361~1120! 0.3470~136! — — — —
m50.15

F2 @2–32# 0.5377~292! 0.3527~77! 1.8576~157! 1.1470~308! 0.0595~55! 0.0060~9!

F2 @3–32# 0.5113~420! 0.3476~101! 1.6307~970! 1.0609~661! 0.0676~140! 0.0081~27!
F2 @4–32# 0.4936~590! 0.3444~130! 1.3466~3038! 0.9787~1350! 0.0715~331! 0.0101~72!
F2 @5–32# 0.5056~679! 0.3464~142! 1.8618~15529! 1.0753~2940! 0.0740~898! 0.0086~146!
F2 @6–32# 0.5189~773! 0.3486~155! 7.29~—! 1.35~1.17! 0.1176~—! 0.0075~1073!
F2 @8–32# 0.5305~444! 0.3506~103! 0.54~—! 2.13~2.12! 0.0009~1642! 0.0000~23!
g

m

c

-

h

g

i

c
l

errors, and we conclude that atm50.17 andm50.2 we can
estimate the pion mass only in a semiquantitative way.

To get mass estimates atm50.17 andm50.2 we first
restricted the fitted interval to a statistically significant ran
(1,t,10). Then we estimated the error due to the lack
asymptotic behavior by comparing, atm50, the result ob-
tained on that range with the correct one, and we assu
that such an estimate ism independent. In this way we esti
mated the mass and errors atm50.17, given in Table III, the
first error being statistical and the second computed as
said. It is clear that this mass is certainly not asymptotic, a
has to be considered only ‘‘indicative.’’ The same problem
occur atm50.2, where we have also tried some fits whi
discard the noisiest propagators. The situation atm50.2 is
best described by a figure. We show in Fig. 8 two fits to t
pion propagator atm50.2. The solid line is drawn in corre
spondence to the unconstrained fit, which gives for the c
tral massmp50.60, with a statistical errorD(mp)50.24.
The dashed line is for a fit with a constrained value in t
fundamental channel,mp50.3379 as in them50.0 case.
The two fits are coincident in the region where the propa
tor is statistically different from zero. Only better results
large t would allow a safe estimate for the pion mass.

C. Further search for finite temperature effects

We have said that the results for the chiral condensate
the number density do not exclude the possibility of fin
temperature effects. We have then selected threem values,
0.0,0.15,0.20, where we had the same number of gauge
figurations on the two lattices in order to do a more detai
comparison.
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In Table VI we record the results for the chiral condensate
for the different boundary conditions, and oppositem signs,
in order to find systematic trends in their average values, or
in their fluctuations.m50 sets the scale for the expected
effects. We do not see any size effects atm50, while the
error ratio is roughlyA2, expected on a purely statistical
basis~the lattice volumes differ by a factor of 2!. Deviations
from this trend have to be interpreted as induced by the
chemical potential. Atm50.20 it appears that the difference
in the results is systematic, and statistically significant. Also,

FIG. 8. Two particle fit to the pion propagator atm50.2 in the
interval @0–9# ~solid line!. A similar fit, but with the mass in the
fundamental channel constrained to itsm50 value is shown as a
dashed line.
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TABLE VI. Temperature dependence of^c̄c& . We compare the results for the 163332 and 163364
lattices atm 5 0,60.15,60.20, for the three different boundary conditions.

^c̄c&
163332 163364

m Z1 Z2 Z3 Z1 Z2 Z3

0.0 0.1377~6! 0.1377~9! 0.1370~9! 0.1376~4! 0.1373~3! 0.1379~4!

10.15 0.1371~16! 0.1381~19! 0.1368~15! 0.1385~10! 0.1390~8! 0.1391~8!

20.15 0.1381~14! 0.1317~69! 0.1354~12! 0.1377~10! 0.1363~7! 0.1381~9!

10.20 0.1145~90! 0.1230~154! 0.0843~248! 0.1301~48! 0.1328~82! 0.1283~78!
20.20 0.1292~55! 0.1073~142! 0.0944~267! 0.1262~72! 0.1250~43! 0.1237~36!
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the error ratio grows larger, thus indicating some nontrivi
improvement mechanism on the larger lattice, probably i
duced by the suppression of winding loops. Note also th
the statistical gain coming from averaging over the bounda
conditions is larger on the smaller lattice, and that on th
smaller lattice there is a much larger dispersion from on
boundary condition to another. This suggests that windin
loops are playing a significant role, which diminishes as th
lattice size increases.

Table VII, where the results for the number density ar
given, shows thatJ0 is always consistent with 0. From Fig. 9
we see that on the smaller lattice~circles! there are excep-
tional events~deconfined configurations! which are absent on
the larger lattice~squares!. Note that some of the exceptiona
configurations have a density of the ‘‘wrong’’ sign: For in
stance, a negative chemical potential is apparently inducin
positive density.

In conclusion, by increasing the temporal extent, lattic
artifacts are lessened. However, the improvements are v
modest, and so there is no reason to believe that the pr
lems inherent in quenched simulations will be solved simp
by using large volumes.

III. INFINITE COUPLING LIMIT OF NONZERO
DENSITY QCD

Recall, once more, the nature of the finite densi
quenched QCD puzzle: Observables deviate from th
m50.0 values whenm5mp/2. In particular, the chiral con-
densate appears to fall atm5mp/2. This result, which has
suggested to other workers in the field that an infinitesim
value of the chemical potential restores chiral symmetry
the chiral limit, has been observed in simulations in the sca
ing region, as well as in the strong coupling limit@4#. At
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strong coupling this onset of sensitivity tom observed in
numerical simulations also differs from analytic predictions
This is rather peculiar, since analytic mean-field strong
coupling results usually compare well with numerical simu-
lations. It will prove to be informative to uncover the reasons
behind the discrepancy at strong coupling because it wi
suggest the reason for the failure of the quenched approx
mation in general. These considerations, together with th
low computational costs of these simulations~compared to
the simulations in the scaling region described above!, moti-
vated the following study.

We generated 20 random configurations on a 83316 lat-
tice and 10 configurations on a 83332 lattice. Again, we
used three different antiperiodic boundary conditions for th
fermions in the time direction:c i(t)52Zic(0), whereZi
stands for each of the three cube roots of unity. We firs
chose a bare quark mass of 0.1. The strong coupling predi
tions for the pion and baryon masses atmq50.1 are 0.6 and
3.3, respectively. In our simulationsm ranged from 0.0 to
1.2, thus including the interesting region 0.3,m,1.1 and
the mean field prediction for the pseudocriticalm
(mc.0.6). Moreover, a subset of 7 configurations on the
smaller lattice was analyzed with a very heavy quark mas
(mq51.5), withm in the interval~1.2:1.5!, the pseudocritical
point in this case beingmc.1.37. Finally, 10 configurations
on an 83332 lattice withmq50.1 were used to monitor
possible temperature effects.

We have measured the chiral condensate, the number de
sity, the energy density, and the pion mass. The other mass
are too heavy, and difficult to extract, a typical limitation of
strong coupling simulations. Along with standard observ
ables, the unphysical operatorGmGm

† ~the ‘‘false’’ or ‘‘bary-
onic’’ pion, suggested by@6# as opposed to the real pion
TABLE VII. Temperature dependence ofJ0. We compare the results for the two lattices atm 5
0,60.15,60.20, for the three different boundary conditions.

^J0&
163332 163364

m Z1 Z2 Z3 Z1 Z2 Z3

0.0 20.00048~99! 0.00081~117! 0.00063~128! 0.00034~88! 0.00039~88! 0.00015~90!
10.15 20.00040~123! 0.00228~297! 20.00219~140! 0.00024~91! 0.00170~72! 0.00081~101!
20.15 20.00232~123! 0.00291~297! 0.00078~161! 0.00194~98! 0.00053~83! 0.00107~95!
10.20 20.01665~973! 20.00311~1350! 0.04192~3721! 0.00548~499! 0.00901~585! 0.00819~541!
20.20 20.01253~736! 20.00023~731! 0.00433~1263! 20.00886~447! 20.00207~777! 0.00477~324!



n

e

s

r

o

e

-

2310 54LOMBARDO, KOGUT, AND SINCLAIR
GmG2m
† ) was measured to obtain information about th

poles of the Dirac operator.
The main results of this study are the following.
First, there are three distinct intervals of chemical pote

tial: a conventional region, form,mp/2, where all the zero-
triality observables maintain theirm50 value; a ‘‘forbid-
den’’ region, for mp/2,m,ms ~we will observe in the
simulations thatms is close to one third the nucleon mass!,
characterized by wild fluctuations, and by average valu
which ~when statistically meaningful! show deviations from
their m50.0 values; and finally, a saturation region, wher
all the thermodynamic observables have their limiting, larg
m values, the amplitudes in the mass spectrum drop to ze
and no single particle states exist.

Moreover, inspection of the effective potential as com
puted in a mean field approximation shows that the ‘‘forbid
den’’ region, which begins atm5mp/2, corresponds to the
onset of metastability in the effective potential.

A. Fluctuations, poles of the Dirac operator,
and the ‘‘baryonic’’ pion

As discussed at length in past work, when the chemic
potentialm exceeds half the pion mass, the fluctuations in
crease dramatically. This can be read off the eigenvalue d
tribution @4#, since whenm.mp/2 the quark mass lies inside
the eigenvalue cloud, thus producing eigenvalues of the f
Dirac operator close to zero. These huge fluctuations are
sociated with a dramatic increase in the CPU time requir
for the inversion of the Dirac operator: The average numb
of conjugate gradient iterations form,mp/2 was .100,
while whenm exceedsmp/2 the number of iterations grows
large (.104). Again, this is consistent with the eigenvalue
picture, the number of iterations being proportional to th
ratio of the largest to the smallest eigenvalue. Form*1 the
number of iterations is again very small (.10). In this re-
gion we are inside the eigenvalue ‘‘crescent,’’ and the fir
Brillouin zone is saturated. Again, we note that this valu
corresponds, approximatively, to one-third the baryon ma
The theory, at least in its strong coupling limit, is sensitive t
the nucleon, as predicted by simple nuclear models.

FIG. 9. Collection of the results for the number density a
b56.0, for the three different boundaries, as a function ofm. The
results form and2m have been averaged. The circles are for th
small lattice, the squares, displaced, for the large one.
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In order to gain additional insight into the eigenvalue dis-
tribution and zero modes of the Dirac operator, we studied a
suitable, ‘‘unphysical’’ operator, the ‘‘baryonic pion’’
~which we shall often denote ‘‘p’’ !: GmGm

† , as opposed to
the real pionGmG2m

† , Gm being the quark propagator com-
puted with chemical potentialm. We shall see that the am-
plitude of the baryonic pion propagator grows very large
whenm.mp/2, and its poles, which are related to the poles
of the Dirac operator, are very well exposed.

We show the ‘‘p’’ propagator formq50.1 in Figs. 10 and
11. For small values of the chemical potential the propagato
has a baryonlike (T-asymmetric! behavior. Form.mp/2 the
propagator flattens, which can only happen because of zer
eigenvalues of the Dirac operator: This gives direct evidence
of the zero modes we were looking for~Fig. 10!. In the
saturation region~Fig. 11!, G‘ ‘ p ’ ’ (t) is again baryonlike, but
this time the propagation, as expected, is in the opposite
direction. Outside the forbidden region, which, in this case,
is associated with the flat propagators, we can measure th
baryonic pion mass. For that purpose, we relied on a simple
effective mass analysis, and evaluated the logarithmic de

t

e
FIG. 10. The propagator of the ‘‘baryonic’’ pion is shown as a

function of time for m 5 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.9, and
mq50.1.

FIG. 11. As in Fig. 10, butm 5 1.0, 1.1, 1.2.
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rivative without any attempt at symmetrization~we hesitated
to use the same parametrization as for staggered baryo!.
The flat region in the effective mass plots extends until th
influence of the backward propagating state becomes app
ciable: From our results it is clear that this still produces
reasonable interval, so that we can obtain a safe estimate
the baryonic pion mass. In Fig. 12 we show the effectiv
mass plots, together with the results of a conventional effe
tive mass analysis for the real pion. The ‘‘p’’ mass satisfies,
for m,mp/2, m‘ ‘ p ’ ’ (m)5m‘ ‘ p ’ ’ (0)22m @where
m‘ ‘ p ’ ’ (0)5mp(0)5mp#, thus extrapolating to zero for
m5mp/2 ~Fig. 13!.

In conclusion, the study of the baryonic pion gives clea
evidence of zero modes in the quark propagator fo
m.mp/2, in agreement with the eigenvalue picture.

Summarizing, these measurements provide a coherent
scription of the spectral structure of the Dirac operator ov
the entirem range. The poles form.mp/2 can be clearly
exposed by suitable, yet unphysical observables. Their ma
ematical and physical significance is open to many interpr

FIG. 12. ‘‘Pion’’ effective mass versus time, atm 5 ~0.0, 0.1,
0.2, 0.3! andmq50.1, from top to bottom.

FIG. 13. ‘‘Pion’’ masses, from an effective mass analysis, ve
sus the chemical potentialm at mq50.1. The dashed line isy 5
mp(0)22m.
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tations which have been discussed and reviewed in the li
erature. We shall comment further on this point below.

B. Physical observables

We have measured the particle spectrum and thermod
namic observables~chiral condensate and number density!
via a standard stochastic estimator.

The pion propagator~Fig. 14! is completely insensitive to
the chemical potential up tomp/2. The ‘‘forbidden’’ region
(mp/2,m,ms) is dominated by fluctuations, while in the
saturation region (m.ms) the pion propagator amplitude
drops to zero. As noticed above,ms is close to one-third the
nucleon mass. We were not able to measure the baryon ma
~a common drawback of strong coupling simulations!, thus
missing a very important piece of information about the criti-
cal behavior. It was, however, possible to monitor the ampli
tude of the baryon propagator. Atmq50.1 we found that it
decreased by an order of magnitude in the saturation regio
@the amplitude is.0.01 in the conventional region, unde-
fined in the forbidden one, and 10(26,9,11) at
m5(1,1.1,1.2)#. This trend in the amplitude is common to
all the propagators we have measured, and indicates that
real particle can exist in the saturation region.

The results for the thermodynamic observables are show
in Fig. 15, formq50.1 @Fig. 15~a!# andmq51.5 @Fig. 15~b!#.
As noticed in past work, the chiral condensate and the num
ber density are closely correlated. Saturation is especial
clear in the number density, which is 3 the maximum numbe
of quarks which can occupy a single site. We see from Fig
15 that the saturation threshold is close tomN/3, as men-
tioned above. Our results are consistent with those prev
ously reported in the literature, whenever a comparison i
possible (m,mp/2).

It is also informative to consider the results configuration
by configuration. We know that ensemble averages hav
some special features at finite density, and a more detaile
analysis can be worthwhile. For that purpose, we use the da
atmq50.1 which has the best statistics.

In Figs. 16 we show the number density as a function o
the configuration number. At lowm @Fig. 16~a!#, the densi-

r-

FIG. 14. Pion propagators atm 5 ~0.0, 0.1, 0.2, 0.3! ~plus’s,
crosses, diamonds, circles!, andmq50.1. The pion mass is insensi-
tive to the chemical potential in this range of values.
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2312 54LOMBARDO, KOGUT, AND SINCLAIR
ties computed with opposite values of the chemical potent
~joined with dotted and dashed lines, respectively! are
strongly correlated: So we do not see any sensitivity to t
chemical potential itself. In the intermediate region@Fig.
16~b!#, J0 is wildly oscillating. We observe configurations
which have a nonzero density, but with the wrong sign, fo
instance when a positive density is obtained with a negati
m. This, once more, tells us that one must be careful in usi
concepts like confinement and chiral symmetry breaking
an isolated configuration: A negative chemical potenti
should enhance, in the statistical average, antibaryon pro
gation, while we see that on isolated configurations the o
posite can happen. In the saturated region@Fig. 16~c!# things
are very clear, and each configuration has a net density w
the ‘‘right’’ sign.

In Figs. 17 and 18 we give the full ensemble of values fo
the chiral condensate and the number density, as a funct
of the chemical potential. For the number density, we too
the average over6m, which enforcesT symmetry event by
event, and producesJ050 atm50. Form.mp/2 the results
for ^c̄c& and J0 obtained configuration by configuration
spread over a wide range, which includes both the saturat
and them50 values.

The behavior we have described suggests that we mi
have entered a metastable region rather than the symme

FIG. 15. ~a! Summary of the thermodynamics results at stron
coupling. The chiral condensate~circles, left! and the number den-
sity ~crosses, right! are plotted as a function ofm, for mq50.1. ~b!
As in ~a!, butmq51.5.
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phase, and that the identification of the onset ofm depen-
dence in the theory’s observables with the pseudocritica
point computed in a mean field approximation may not be
correct. In the next subsection we shall compare this inter
pretation of the data with the predictions of the strong cou-
pling analytic calculations.

C. Effective models and simulation results

Several, qualitatively equivalent, strong coupling, 1/d ex-
pansions of full QCD with staggered fermions at finite den-
sity and temperature are available in the literature@4,11–13#.
Such mean field analyses predict a strong first order trans
tion at finite chemical potential and zero temperature. Since
fermion loops do not play a significant role in the leading
order of the 1/d expansion at strong coupling, it is sensible to
try to interpret quenched simulations in terms of the analytic
mean field predictions. This has been done in the past@4,11#,
and we will continue in this tradition in some detail. We
shall show that the onsetm̄ of the metastable region of the
effective potential of these studies is associated with the on
setmonsetfor m dependent thermodynamics introduced at the
beginning of this paper.

Let us now describe these calculations in more detail. A
smallm the free energy, which plays the role of an effective
potential, plotted as a function ofc̄c has only one minimum,
corresponding to them50.0 value of the chiral condensate
^c̄c&0 . While increasingm 5 m̄, the free energy develops a
secondary minimum atc̄c50 . The two minima become of
equal height form5m* . m* is thus interpreted as the pseud-
ocritical point at finite mass, or the exact critical pointmc for
chiral symmetry restoration in the chiral limit. (m̄2m* ) ap-
proaches 0 as the quark mass increases, while these tw
values of the chemical potential are well separated fo
smaller quark masses, thus creating a wide metastable r
gion. By further increasing the chemical potential, the mini-
mum at finitec̄c eventually disappears atm5ms , the only
surviving minimum being the one atc̄c.0. This should
correspond to the complete saturation of the first Brillouin
zone, i.e., density5 3. Before proceeding, we recall that
mcÞmN/3. This can be understood because of a considerab
nuclear binding energy at strong coupling@11# ~in fact, mc
approachesmN/3 wheng→0), or because of the effects sug-
gested in Ref.@8#. Anyway, from the perspective of the
present study, the main feature of the strong coupling analy
sis is that the critical chemical potentialmc is different from
zero, and the lack of exact coincidence with the naive pre
dictionsmN/3 carries little weight: If the results of the strong
coupling analysis were realistic, the theory would not be
pathological. This is why it is important to reconcile the
numerical and analytic results at finite mass, or to uncove
the reasons behind their differences.

A few comments on the saturation effect are in order: The
saturation is a by-product of the lattice discretization, in par-
ticular of the momentum space effect of the lattice cutoff, as
can be seen explicitly in the free case@2#. It does not exist in
the continuum, where in the plasma phase the chemical po
tential dependence in the number density should follow the
Stefan-Boltzmann lawJ0}m3 ~ a discussion of continuum vs
lattice results in the free case can be found in@14#!. So there
is no simplea priori argument, at least to our knowledge,

g
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FIG. 16. ~a! The results for the number densityJ0 are shown configuration by configuration, for the three boundaries and the two oppo
m values atm 5 0.1. ~b! As in ~a!, butm 50.5. ~c! As in ~a!, butm 5 1.2.
s

which ties the lattice saturation threshold to any physic
observable. Neverthless, we find it interesting that in th
strong coupling limit this threshold is close tomN/3 — the
natural scale of the phenomenon we are studying — even
as noticed above, such simple relationships are lost not o

FIG. 17. Collection of the results for the chiral condensate, fo
the three different boundaries, and the opposite values ofm, as a
function of the chemical potential.
al
e
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nly

in the free case, but also atb56.0. More relevant, in this
context, is the observation thatms is associated with the end
point of the mixed phase, whose properties we shall discus
in the following.

Summarizing, there are a few interesting values of the

r FIG. 18. Collection of the results for the number density, for the
three different boundaries, as a function ofm. The results form and
2m have been averaged.
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2314 54LOMBARDO, KOGUT, AND SINCLAIR
chemical potential, labeling the different physical regions a
sociated with the chiral transition which emerge from th
effective potential analysis:mc , the critical point of the chi-
ral transition in the chiral limit;m* , the pseudocritical point
as analytically computed at finite mass;m̄, the onset of the
metastable region found in an effective potential approa
andms , the chemical potential at which saturation occur
We would like to study the interrelation of these points wit
monset, the onset ofm dependence in thermodynamic obser
ables at finite quark mass observed in numerical simulatio
Naive arguments would suggest thatm*5monset, i.e., that
the transition has a strong first order character also at fin
mass. However, it is easy to imagine situations~as we are
will explain below! in which m* andmonsetare different. In
this case, limmq→0m*5mc , while monset in itself does not

have any immediate relationship with the critical pointmc .
Rather, it should be identified withm̄: The onset ofm depen-
dence in the thermodynamic observables is produced by
edge of the metastability region. We also mention that t
work of Ref. @15# supports the possibility thatmonset and
mc are indeed different. In Ref.@15# a representation of the
partition function at strong coupling written in term of a
monomer-dimer expansion is used to compute the order

FIG. 19. ~a! Free energy, from Ref.@11#, as a function ofc̄c,
for mq50.1, and the chemical potentials used in our simulation
m increases from top to bottom. The dashed line is drawn in a
proximate correspondence to the mean field prediction for
pseudocriticalm. ~b! As in ~a!, butmq51.5.
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rameter and the number density.^c̄c& deviates from its
m50 value at the valuem* of the chemical potential com-
puted in a mean field approximation. However the onse
monset for m dependence in thermodynamic quantities, as in
ferred from the behavior of the number density, occurs muc
earlier.

We now turn to a discussion of the results: We shall com
pare the results for the effective potential drawn in Figs. 19
~a! and 19~b! with the thermodynamic results presented in
Figs. 15~a! and 15~b!.

In the following, we use results and notation from Ref.
@11#. We show in Fig. 19~a! the effective potential@after
formulas~2.10! and~2.11! of Ref. @11## for the samem val-
ues of our simulations atmq50.1, the same quark mass, the
asymmetry parameterat /as5r51, and T516. Also, we
show as a dotted line the effective potential atm
50.7.m* . The curves are basically coincident for ‘‘large’’
c c̄, while for small values they are qualitatively different.
In particular, we clearly see the onset of metastabilities a
m̄.0.4, and the disappearance of the minimum at finitec̄c
for m.1. The pseudocritical pointm* is obscured by the
huge fluctuations associated with such metastabilities. It
only whenm.ms that the minimum at finitec̄c disappears,
and for m.ms ~once more, we note thatms.mN/3 is a
strong coupling result, which is lost at weak coupling! all the
observables have their limiting values: The chiral condensa
is zero and the number density is 3. By contrasting this be
havior with Fig. 15~a! we see indeed thatm0.m̄, and that
saturation occurs form.ms . In Fig. 19~b! we have repeated
this plotting exercise for our higher mass value (mq51.5),
with an analogous result. In fact, we have observed that i
this case the metastable region (m0,m,ms) in the effective
potential shrinks to the expected small interval, as predicte
from Fig. 15~b!.

We learn that the metastable region in the effective poten
tial can be identified with the forbidden region observed in
the simulations. This clarifies the nature of the phenomen
observed atmp/2: The pathologies are not manifestations of
an early chiral transition, but are indicative of the existence
of a region of metastability. Form.mp/2 we have the first
appearance of zero modes. These manifest themselves
huge fluctuations, in the increase of the iterations needed f
the inversion, and in the flatness of the baryonic pion propa
gator. In particular, the fluctuations observed in the chira
condensate should be associated with fluctuations and disto
tions of the eigenvalue distribution: When the chiral conden
sate is almost zero, the eigenvalue distribution must be suc
that the point (mq ,0) gets inside.

1 This, in turn, generates the
secondary minimum around zero in the chiral condensa
distribution, and produces the observed decline in the chira
condensate itself, which thus happens much before than t
actual pseudocritical pointm* .

To master the pathologies form.mp/2, and expose the
physics of the chiral transition which is hidden deep inside

1It is possible that the situation improves in the full model, since
in that case the eigenvalue distribution does depend on the ma
value, which can prevent the distribution itself from fluctuating ran-
domly around the mass point on the real axes.
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54 2315PATHOLOGIES OF QUENCHED LATTICE QCD AT . . .
the metastable region, we need to ‘‘enforce’’ the saddle po
solution.

We thought that a natural possibility would be to increa
the time extent of the lattice so the system could find t
actual minimum: This is why we produced the 10 config
rations on a 83332 lattice mentioned at the beginning of thi
section. However, the inversion time inside the metasta
region remained very large, and the comparison between
results of the two lattices excluded strong volume effects

This subject deserves further study. Comparisons with
behavior of other models can offer some guidance. In p
ticular, we note that the zero temperature, finite density tra
sition of the U~1!3U~1! Gross Neveu model, which has bee
successfully simulated@16#, is second order@17#, i.e., does
not have a metastable region. In SU(N) gauge models the
transition turns first order forN.2, while the SU~2! model
has a second order transition@12#. First order transitions,
with their ‘‘forbidden’’ metastable regions, and their numer
cal failures, seem associated with complex actions,2 while
models which can be successfully simulated have real
tions, and undergo continuous transitions.

Clearly we need to uncover the physical reasons for t
complex action at nonzerom and/or to explore possible al-
ternatives, such as the Hamiltonian formulation: We no
that the authors of Ref.@19# found that the critical chemical
potential, computed at strong coupling in Hamiltonian lattic
QCD, is indeed equal to the dynamical fermion mass, whic
in the same scheme, is one-third the nucleon mass@20#.

IV. CONCLUSIONS

We have performed an exhaustive study of quench
QCD at finite density in the scaling region and in the stro
coupling limit. We have measured the standard thermod
namic observables, the spectrum, and unphysical,ad hocob-
servables meant to elucidate some of the peculiarities of

2This is consistent with the picture sketched above: Only an
genvalue distribution spread over the real axes~i.e., generated by a
complex action! can produce the secondary minimum atc̄c50,
since this is due to the mass point falling inside the eigenva
distribution.
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model. We confirmed the pathological behavior observed
the past form.mp/2. The onset atmp/2 has been measured
with great accuracy both at strong and weak coupling, a
found to be independent of the lattice size and the measu
ment technique. We think that our simulations in the scalin
region have clearly exposed the pathologies atmp/2. In par-
ticular, it has been shown that the early onset is indeed h
the pion mass, which rules out the possibility of rescuin
quenched, finite density QCD by using some refined nucle
matter models. However, the accurate simulations perform
in the scaling region do not suffice to clarify the very natur
of the onset atmp/2 — we have searched for hints of chira
symmetry restoration, both in the order parameter and in t
spectrum, and found them to be very weak and inconclusi
The new simulations on large lattices have not greatly im
proved our understanding. We have also performed new,
tensive simulations at strong coupling. We used differe
values of the bare quark mass, and a wide array of chemi
potentials. We have also introduced new observables wh
helped shed more light on the pathologies. The analytic
sults available in that case offered a simple interpretation
the pathologies atm5mp/2: The forbidden region of the
simulations is to be associated with the metastable region
the effective potential. This suggests that the problems w
finite density QCD could be solved if we could handle th
metastable region.

Summarizing, the simulations of quenched QCD in th
scaling region, large lattices, and at largem value produce
clear evidence of the major pathologies of the theory, but
not help to clarify the reasons behind these failures. T
simulations in the strong coupling limit were particularly in
formative, especially when their results were analyzed in t
context of available analytic treatments.
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