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Sidewise dispersion relations and the structure of the nucleon vertex
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We reexamine sidewise dispersion relations as a method to relate the nucleon off-shell form factor to
observable quantities, namely, the meson-nucleon scattering phase shifts. It is shown how for meson-nucleon
scattering a redefinition of the intermediate fields leaves the scattering amplitude invariant, but changes the
behavior of the off-shell form factor as expressed through dispersion relations, thus, showing representation
dependence. We also employ a coupled-channel, unitary model to test the validity of approximations concern-
ing the influence of inelastic channels in the sidewise dispersion relation method.@S0556-2821~96!02615-X#

PACS number~s!: 11.55.Fv, 13.40.Gp, 13.60.Fz, 13.75.Gx
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I. INTRODUCTION

In the theoretical description of processes at intermed
energies, the structure of hadrons is often described by m
tiplying the pointlike vertex operators by form factors. It is
common practice to assume that these vertices, i.e., thei
erator structures and the associated form factors, are in
situations the same as for a free on-shell hadron. Thi
done, for example, in the description of electron-nucle
scattering or in two-step reactions on a free nucleon, suc
Compton scattering, where one is dealing with an interme
ate nucleon not on its mass shell. In these cases, howeve
electromagnetic vertices can have a much richer struct
there can be more independent vertex operators and the
factors can depend on more than one scalar variable.
common treatment of such ‘‘off-shell’’ effects is to presum
them small and to ignore them by using the free vertic
However, as much of the present effort in intermediate
ergy physics focuses on delicate effects, such as evidenc
quark-gluon degrees of freedom or small components in
hadronic wave function, it is mandatory to examine the
issues in detail.

One theoretical tool for the description of the off-sh
vertex of the nucleon is the method of sidewise dispers
relations. The ‘‘sidewise’’ here indicates that one uses
method to get at the dependence of the form factors on
invariant mass of the nucleon rather than, e.g., thet-channel
four-momentum transfer. It has been used, e.g., for the e
tromagnetic form factors of the nucleon@1–3#, electromag-
netic transition form factors@4#, the nucleon axial-vecto
coupling constant@5#, and the pion-nucleon form factor@6#.
If one wants to calculate the half-off-shellpNN form factor,
knowledge of its phase along the cut in the energy plan
sufficient to determine it via a sidewise dispersion integ
Below the two-pion threshold this phase is given in terms
the known pion-nucleon phase shifts. However, above
threshold assumptions have been made for the phase@1,7#
which lead to quite different predictions for the half-off-she
form factor. Since neither of these prescriptions has b
tested, we use a coupled-channel, unitary model to inve
gate the validity of the assumptions regarding the phas
the off-shell meson-nucleon form factor.

Another objective of this work is to investigate the ‘‘rep
resentation dependence’’ of off-shell effects, and specific
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how this representation dependence enters the sidewise
persion relations analysis. Off-shell vertices are describ
within the framework of the reduction formalism@8# using
interpolating ~interacting! fields for the off-shell nucleon.
The choice of this interpolating field is not unique. It is we
known that on-shellS-matrix elements are oblivious to the
choice of interpolating field: different unitarily equivalen
Lagrangians constitute different representations of the the
and physically measurable quantities, such as on-shell am
tudes, are representation independent in accord with
Coleman-Wess-Zumino theorem@9#. In fact, the transforma-
tion need not be unitary; any reversible field redefinition wi
leave the on-shell amplitudes unchanged@10#. However, dif-
ferent interpolating fields in general lead to different off
shell extrapolations@11# and, therefore, off-shell form factors
cannot be uniquely determined. This was recently demo
strated @12,13# in the framework of chiral perturbation
theory. It was shown how the off-shell electromagnetic for
factor of the pion changes under a unitary transformation
the Lagrangian which leaves, e.g., the Compton amplitu
unchanged. While the total amplitude for the on-shell pion
representation independent, and certainly observable, the
dividual contributions from ‘‘pole’’ and contact terms are
not. In other words, representation-dependent ‘‘off-shell e
fects’’ in pole contributions in one representation appear
contact terms@13# in another representation.

One now faces the following puzzle: although the of
shell form factors are not unique and not measurable, it a
pears that through sidewise dispersion relations they can
determined from physical quantities such as meson-nucle
phase shifts. However, we will show below how represent
tion dependence appears in the sidewise dispersion relatio
making a unique determination of the half-off-shellpNN
form factor impossible. This is in contrast to the use of di
persion relations for the determination of the pion-nucleo
scattering amplitude at the nonphysical pointn5t50 @14#, a
quantity crucial in determining the pion-nucleon sigma ter
@15#.

The outline of this paper is as follows. In Sec. II we
discuss the general features of an off-shell vertex and of
representation dependence. In Sec. III we review the sid
wise dispersion relations and the different assumptions p
posed in the literature about their use at energies above
inelastic threshold. These assumptions are tested in Sec
2228 © 1996 The American Physical Society
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54 2229SIDEWISE DISPERSION RELATIONS AND THE . . .
in a simple unitary, coupled-channel model. A summary a
our conclusions are given in Sec. V. Some details of o
calculations are contained in appendices.

II. THE VERTEX OF AN OFF-SHELL NUCLEON
AND FIELD REDEFINITIONS

The most general pion-nucleon vertex, where the inco
ing nucleon of massm has momentumpm , the outgoing
nucleon has momentumpm8 and the pion has momentum
qm5pm8 2pm , can be written as@16#

G5~p8,p!5Fg5G11g5

p”2m

m
G21

p” 82m

m
g5G3

1
p” 82m

m
g5

p”2m

m
G4G . ~1!

By sandwichingG5 between on-shell spinors one obtain
G1(q

2,m2,m2)ū(p8)g5u(p). Clearly, the off-shell vertex
has a much richer structure, in that there are more indep
dent operators and, moreover, each of them depends on m
kinematical variables than just the four-momentum trans
q2.

Below, we will, for simplicity only, consider the ‘‘half-
off-shell’’ vertex, with the incoming nucleon on shell. De
fining v85Ap82 and introducing the projection operators

P65
w86p” 8

2w8
, ~2!

we obtain, in that case,

G5~p8,p!u~p!5@P1K~q2,w8!1P2K~q2,2w8!#g5u~p!.

~3!

Because of the incoming on-shell nucleon spinor, the ter
proportional toG2 andG4 do not contribute. The functionK
is obtained as

K~q2,6w8!5G1~q
2,w82,m2!1

6w82m

m
G3~q

2,w82,m2!.

~4!

The general electromagnetic vertex of the nucleon is mo
complicated@1#. Its general form is

Gm5 (
j ,k50,1

~p” 8! j@A1
jkgm1A2

jksmnqn1A3
jkqm#~p” !k, ~5!

where the 12 form factorsA i
jk are again functions of three

scalar variables, usually taken to beq2, p2, andp82. By using
the constraints provided by the Ward-Takahashi identity, t
number of independent form factors can be shown to redu
to eight. Upon evaluating the vertex between two on-sh
spinors, one recovers the familiar form of the electroma
netic current of a free nucleon, involving two independe
contributions with their associated form factors, such as
Dirac and Pauli form factors. It is important to stress that
calculations of electromagnetic reactions involving boun
nucleons or two-step reactions on a free nucleon, such
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Compton scattering or meson electroproduction, one nece
sarily deals with the electromagnetic current or vertex of a
off-shell nucleon.

In this situation, it has been quite common to make use
ad hocassumptions which use as much as possible the o
shell information while maintaining current conservation
Most widely used is the prescription introduced by de Fore
@17# for the off-shell electromagnetic current. It allows one to
use the free current by changing its kinematical variable
according to the off-shell situation. Another often used ve
sion for the nucleon vertex operator was introduced by Gro
and Riska@18# and is given by

Gm~q2!5gmF1~q
2!1

qmq”

q2
@12F1~q

2!#1smnq
n
F2~q

2!

2m
.

~6!

It also only involves on-shell information, the free Dirac and
Pauli form factors,F1 andF2, but has a more general Dirac
structure. The second term on the right-hand side of Eq.~6!
vanishes when the vertex is evaluated between on-sh
spinors, but contributes when one or both nucleons are o
shell. It is easily seen that this vertex satisfies the War
Takahashi identity when free Feynman propagators are us
for the nucleon. In pion electroproduction, this prescriptio
is equivalent to adding a contact term to the Born amplitud
which is needed to restore gauge invariance@19#. The valid-
ity of this and other recipes can only be assessed on the ba
of a realistic microscopic calculation and will depend on th
kinematics of the process.

Several attempts have been made to calculate propert
of the off-shell vertices and to estimate their effects in pro
cesses at intermediate energies. Bincer@1#, for example, pro-
posed using sidewise dispersion relations in which the ele
tromagnetic and strong nucleon off-shell form factors wer
related to pion-nucleon phase shifts~see Sec. III!. This ap-
proach was used by Nyman@20# and Minkowski and Fischer
@21#. Studies in the context of meson loop models have be
performed, e.g., in Refs.@22–25#. Typically, effects of the
order of 5–15% were found for the dependence of the for
factors on the variablew8.

Recently, the off-shell pion electromagnetic vertex wa
investigated in the framework of meson chiral perturbatio
theory @12,13#. The computation was performed by using
two different chiral Lagrangians, related through a unitar
transformation of the fields, which leaves the observabl
unchanged. It was shown explicitly how in the description o
Compton scattering off a pion the off-shell form factors ar
not the same while the observable on-shell form factor an
the amplitude are the same in the two representations. T
general result concerning the representation dependence
the off-shell effects can be illustrated by the following
simple example for pion-nucleon scattering. We consider th
pseudoscalar meson-nucleon Lagrangian

LP5
1

2
@~]f!22m2f2#1c̄~ i ]”2m!c2 igc̄g5fc, ~7!

and perform the transformation

c→ exp~ ibg5f!c. ~8!
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Then, up to and including orderb2 terms, the new Lagrang-
ian reads

L̃5LP22imbc̄g5fc1bc̄g5~]”f!c

12b~g12mb!c̄f2c1O~b3!. ~9!

This transformed Lagrangian has both pseudoscalar~PS! and
pseudovector~PV! pNN interaction terms, as well as a con
tact term. Choosingb52g/2m corresponds to the ‘‘Dyson’’
transformation@26# and the resultingpNN coupling be-
comes purely PV. For our discussion of the representat
dependence we leaveb free and show that physical, observ
able quantities areb independent@27#.

The meson-nucleon vertex at the tree level for both re
resentations is readily obtained~the dressed vertex at the
one-loop level will be discussed in Appendix B!. FromLP ,
we find for the vertex

GP
55gg5 , ~10!

corresponding to the trivial half-off-shell vertex function

K~q2,6w8!5g. ~11!

On the other hand,L̃ yields

G̃5~p8,p!5g5@g12mb1b~p” 82p” !#, ~12!

corresponding to the half-off-shell vertex function@cf. Eq.
~4!#

K̃~q2,6w8!5g1b~m7w8!, ~13!

which is b dependent and clearly has a different off-she
behavior. However, the on-shell matrix element of the vert
operator is the same for both representations.

What happens if we consider a two-step process on a f
nucleon, such as pion-nucleon scattering, that involves
propagation of an intermediate off-shell nucleon? Since t
is an overall on-shell process, the total amplitude must
independent of the value one chooses forb. This means that
the b-dependent contributions from the off-shell vertices
the pole terms, i.e., in the contributions involving twopNN
vertices connected by an intermediate nucleon propaga
must be compensated by some otherb-dependent contribu-
tion. To show that, we consider the on-shell pion-nucle
scatteringT matrix at the tree level. UsingLP , it involves
pole terms only and reads

TP52 ig2ū~p8!H 1

p”1q”2m
1

1

p”2q” 82m J u~p!, ~14!

where p and p8 are the initial and final nucleon four-
momenta, andq and q8 are the initial and final pion four-
momenta, respectively. The pole term contribution to theT
matrix for the mixed PS and PV LagrangianL̃ is at the tree
level,
-
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Tpole5 i ū~p8!H @g1b~2m1q” 8!#g5

1

p”1q”2m
g5@g1b~2m

1q” !#1@g1b~2m2q” !#g5

1

p”2q” 82m
g5@g1b~2m

2q” 8!#J u~p!, ~15!

where the terms in the square brackets arise from the tra
formed vertex, Eq.~12!. Using the Dirac equation for the
on-shell spinors, this may be cast in the form

Tpole52 ig2ū~p8!H 1

p”1q”2m
1

1

p”2q” 82m

14b~g1mb!J u~p!, ~16!

where theb-dependent term reflects the different ‘‘off-shell’’
behavior of the vertex obtained fromL̃. However, there is
now also a contribution from the contact term inL̃, the term
proportional toc̄f2c, which yields

Tcontact5 i ū~p8!$4b~g1mb!%u~p!. ~17!

Clearly, theb-dependent terms cancel out and the total am
plitude remains unchanged:

TP5Tpole1Tcontact. ~18!

This simple example illustrates not only that, as expect
@9,11#, total on-shell amplitudes for a given process are i
variant under field redefinitions, but also the interplay b
tween ‘‘off-shell’’ effects from vertices and contact terms
This makes it impossible to define ‘‘off-shell’’ effects in a
unique, representation-independent fashion.

Our considerations above concerned only rather simp
vertices at the tree level. The close connection between o
shell effects in a vertex and contact terms also exists wh
we consider dressed vertices, as will be shown at the o
loop level ~see Appendix B!. It can be made plausible with
the following example that concerns the dependence of
vertex on the invariant massp2. Consider, for simplicity, a
scalar vertex for an initially on-shell particle together wit
the subsequent propagation. By expanding the vertex arou
the on-shell point,

G~q2,m2,p2!

p22m2 5
G~q2,m2,m2!

p22m2 1
]G

]p2
~m2!1••• , ~19!

one finds that the propagator gets canceled in the second
higher order terms. Thus, off-shell effects in the pole term
through the dependence of the vertex on the scalar varia
p2 can also be related to contact terms. Equations~15! and
~16! are specific examples of this. The above seems to s
gest that it is possible to find a representation for an amp
tude whereK(q2,w) has no off-shell dependence, i.e., n
dependence onw by keeping enough terms in Eq.~19! and
introducing the corresponding contact terms. However, t
Taylor expansion implicit in Eq.~19! is valid only up to the
first branch cut, i.e., the pion threshold. Thus, this procedu
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54 2231SIDEWISE DISPERSION RELATIONS AND THE . . .
is, for example, not valid in calculations of pion electropro
duction on a nucleon. In Compton scattering below the pi
threshold the shifting of the dependence on the nucleon
variant mass to contact terms is possible.

The above example also showed how the transformat
in Eq. ~8! adds one power of the nucleon four-momentum
the asymptotic behavior of the original vertex, Eq.~10!. Two
powers can be added by considering a transformation invo
ing derivatives, such as

c→exp@bg5]/f#c. ~20!

To leading order inb, this transformation generates the fo
lowing b-dependent interaction terms

L @b#522mbc̄g5~]/f!c1 ibc̄g5~]/f!~]/c!

2 ib~c̄]/ !g5~]/f!c2 ibc̄g5~]2f!c

2 ibc̄g5~]f!~]c!2 ib~c̄]!g5~]f!c. ~21!

We readily obtain for the contribution of theb-dependent
terms to the half-off-shell vertex

G5
b~p8,p!u~p!5b~m22p82!g5u~p!, ~22!

which vanishes on shell, as anticipated. Higher powers in
nucleon momenta can be obtained by using transformati
involving higher derivatives. Of course, one can perfor
transformations acting on the nucleon field that induce n
just ap82 dependence, but also a combinedp8/2 andq2 de-
pendence of the half-off-shell vertexG5. For example, the
transformationc→exp(ibg5]

2f)c induces a new term
b(p” 82m)q2g5u(p).

Observations similar to those we made for the strong fo
factor can also be made for the electromagnetic vertex
QED by starting with the QED Lagrangian and transformin
the electron field. The electromagnetic vertex obtained at
tree level from the QED Lagrangian is simply2iegm for on-
and off-shell electrons. Applying the transformatio
c→exp(b]2A” !c changes, for example, the half-off-she
vertex to 2i [e1bq2(p” 82m)gm]u(p). The b-dependent
part of this vertex vanishes on shell, as expected.

III. SIDEWISE DISPERSION RELATIONS

We now turn to the method of sidewise dispersion rel
tions which seems to suggest that one can uniquely ob
the off-shell form factor from experimentally measurab
phase shifts. There are two main issues we would like
address here. The first is where does the representation
pendence discussed in the previous section enter the side
dispersion relation method. The second is the validity of c
tain approximations, related to the treatment of inelas
channels, that have been used in the literature. Dispers
relations are expressions relating the real part of a functi
such as a Green’s function, to a principal value integral ov
its imaginary part. Physically, the requirement of causal
implies the analyticity properties of such functions@28#
which allows one to obtain dispersion relations. Scatteri
amplitudes, for example, are real analytic functions of t
energy E when regarded as a complex variable, i.e
f (E)5 f * (E* ). In the case of form factors of a particle
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usually the four-momentum transfer to the particle is used a
the dispersion variable.

As shown by Bincer@1# using the reduction formalism
@8#, one may analytically continue both the electromagneti
and the strong nucleon form factors not only as a function o
the momentum transfer, but also of the invariant mass of th
off-shell nucleon. For the functionK(q2,w) ~we henceforth
denote the dispersion variable byw! appearing in the half
off-shell strong vertex, Eq.~4!, he showed that it is a real
analytic function ofw with cuts along the real axis starting at
w56(m1mp! and extending to6`. Furthermore,K(q2,w)
is purely real along the real axis in the interval
2~m1mp),w,(m1mp). Thus,K(q

2,w) satisfies disper-
sion relations, termed ‘‘sidewise’’ to emphasize that the dis
persion variable is now the nucleon four-momentum,w
5Ap82. Using Cauchy’s theorem, one obtains

ReK~q2,w!5
1

p
PE

m1mp

`

dw8F Im K~q2,w8!

w82w

1
Im K~q2,2w8!

w81w G , ~23!

provided thatuK(q2,w)u vanishes fast enough foruwu→`. If,
for example,uK(q2,w)u approaches a constant asuwu→`,
one must consider a once-subtracted dispersion relation f
K(q2,w):

ReK~q2,w!5ReK~q2,w0!1
~w2w0!

p
PE

m1mp

`

dw8

3F Im K~q2,w8!

~w82w0!~w82w!
2

Im K~q2,2w8!

~w81w0!~w81w!G ,
~24!

wherew0 is a ‘‘subtraction point,’’ most conveniently taken
to be the nucleon mass,w05m, whereK(q2,m) is ~experi-
mentally! known. Evidently, ifuK(q2,w)u grows likeuwun ~n
an integer! asw→`, n11 subtractions must be performed
which introduce the same number ofa priori unknown sub-
traction constants into the dispersion relation. The role o
subtractions in the sidewise dispersion method is importan
Since we only knowK(q2,w) at the on-shell point,w5m, a
need for more than one subtraction will spoil any possible
predictive power. In cases where the vertex function is no
known at the on-shell point, as, e.g., in the electromagnet
vertex of the nucleon, even one subtraction will destroy pre
dictive power.

For our discussion below we are interested in the cas
where the pion is on its mass shell, i.e., inK(mp

2 ,w). It is
useful to note that starting from Eq.~24!, one can obtain@1#

uK~mp
2 ,w!u5uK~mp

2 ,m!uexpH ~w2m!

p
PE

m1mp

`

dw8

3F f~w8!

~w82m!~w82w!
2

f~2w8!

~w81m!~w81w!G J ,
~25!
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wheref~6w! is the phase ofK(mp
2 ,w) along the positive

~1! or negative~2! cut. Thus,K(mp
2 ,w) can be determined

if these phases are known.
So far, dispersion relations just reflect analyticity prop

ties of Greens functions and are void of any predicti
power. This changes when one makes use of unitarity c
straints that provide additional relations between the real
imaginary parts of the Green’s function. The simplest e
ample of the power of using analyticity and unitarity in co
jucntion is the forward amplitude for the scattering of lig
with frequencyv from atoms. Unitarity implies that the for
ward amplitude for positive frequencies is related to the to
cross section through the optical theorem

Im f ~v!5
v

4p
s tot~v!, v.0, ~26!

leading, with one subtraction, to the famous Kramers-Ko¨nig
relation

Re f ~v!5Re f ~0!1
v2

2p2 PE
0

`

dw8
s tot~w8!

~v822v2!
, ~27!

which allows the determination off (v) from the experimen-
tally measured total cross section.

For the meson-nucleonT matrix, unitarity implies the
well-known matrix equation

Im T5TT†, ~28!

from which the optical theorem follows. This equation a
sumes a simple form after projecting onto states of total
gular momentumJ, parity P, and isospinT. We will con-
sider in the following sections a simple situation where the
are two reaction channels,pN andhN. TheT matrix may
then be written in the general form

Tl5S 1
2i ~r le

2idp
l
21! 1

2 A12r l
2ei ~dp

l
1dh

l
!

1
2 A12r l

2e~ idp
l

1dh
l

! 1
2i ~r le

2idh
l
21!

D , ~29!

where l labels the quantum numbersJ, P, T, and the two-
body channels are denoted byp andh. Furthermore,d p

l and
d h
l are the elastic scattering phase shifts forpN and hN

scattering, respectively, given by

tan 2d i
l5

2ReTii
l

122Im Tii
l , i5p,h, ~30!

and rl is the corresponding inelasticity parameter. TheT
matrix is symmetric since time-reversal invariance has b
assumed. Below theh threshold, onlyT pp

l is nonzero, and
the familiar elastic form ofT is obtained:

Tpp
l 5sin d l

peidp
l
. ~31!

For w.0, Tpp describespN scattering in theP11 partial
wave~l51/21,1/2! and forw,0 scattering in theS11 partial
wave ~l51/22,1/2!. The consequences of unitarity fo
K(mp

2 ,w) may be obtained by looking at its absorptive pa
which receives contributions from physical on-shell interm
er-
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diate states. Unitarity provides forK, which is now a vector
in the space of the different reaction channels, the constrai
@1,3,6#

Im K5F21TFK* . ~32!

Here,F21 andF are phase space factors~see Appendix A!.
For thepNN form factor, this constraint can be written as

Im Kp~mp
2 ,w!5u~ uwu2m2mp!Tpp~w!Kp* ~mp

2 ,w!

1u~ uwu2wT!A~w!, ~33!

wherewT is the threshold energy of the first inelastic chan
nel. The first term on the right-hand side of Eq.~33! arises
from the intermediate pion-nucleon two-body state and th
second term represents contributions from intermedia
states with higher masses, e.g.,ppN, hN, KL, etc.

For w,wT , the last term in Eq.~33! does not contribute
and one sees from this equation that the phase of the for
factor for thepNN vertex,fp5Arg~Kp!, is determined by
the elasticpN phase shift, defined in Eq.~30!,

fp5dp
l 5

1

2
arctanS 2 ReTpp

122 Im Tpp
D . ~34!

We note that since the phase shift is a representatio
independent observable quantity, both the real and imagina
parts of the representation-dependent off-shell form facto
ReKp and ImKp , must change under a field transformation
such that the phase,fp[arctan~Im Kp/ReKp!, remains un-
changed forw,wT .

The use of the dispersion technique to obtain the verte
functionK(w) for wÞm with only experimental input faces
problems in practice. In order to obtain the off-shell form
factor from Eq.~25!, the phase must be known up to infinite
energies. Therefore, it is clear that one must make approx
mations about the behavior of the elastic phase shift for hig
energies and also about the contributions coming from th
inelastic channels forw.wT . Two such approximations
have been proposed in the literature.

The simplest assumption is to ignore inelastic contribu
tions, i.e., setA50 in Eq. ~33!, which would be justifiable if
the dispersion integral is dominated by the interval where th
contribution fromA is small compared to the elastic term.
This is referred to as the ‘‘threshold’’ approximation@1#. It
amounts to assuming that Eq.~34! remains valid for all en-
ergies and allows one to evaluateK(w) in terms of the elas-
tic phase shift. As shown in Ref.@6#, the threshold assump-
tion impliesr l

251, which is quite unrealistic as soon as one
gets above the threshold for theppN channel.

To avoid this problem, Epstein@6# adopted in the disper-
sion analysis of the off-shellpNN form factor a suggestion
by Goldberger and Treiman@7# which leads to a differentad
hoc prescription to deal with the dispersion integral. Con
sider the right-hand side of Eq.~33!, which, although it in-
volves complex quantities, must nevertheless be real. Th
leads to the following conditions for the combined effect of
the inelastic states contained in the complex quantityA:

ReA5Im Kp2ReTpp ReKp2Im Tpp Im Kp ,

Im A5ReTpp Im Kp2Im Tpp ReKp . ~35!



of

r

.
-

n

s,

-

s

ss

n

-

p

e

c-

54 2233SIDEWISE DISPERSION RELATIONS AND THE . . .
Epstein assumed that the inelastic channels will not gene
a significant real part forA, i.e., ReA50. This leads to a
different expression for the phasefp of theKp form factor in
terms of the elasticpN T matrix @6#,

fp5arctanS ReTpp

12Im Tpp
D

5
1

2
arctanS 2 ReTpp~12Im Tpp!

~12Im Tpp!22~ReTpp!2D . ~36!

In the rest of this paper, we will refer to this approximatio
for simplicity as the ‘‘Goldberger-Treiman’’ approximation
Of course, by setting ImA50 as well, from Eq.~35! we
would then again obtainfp5d p

l , the threshold approxima-
tion. Below the inelastic threshold, the unitary constraint, E
~28!, reads~Im Tpp!21~ReTpp!25Im Tpp , and simple in-
spection shows that Eqs.~34! and ~36! agree, but above the
inelastic threshold they can be quite different, especially i
resonance is present~see Sec. IV!. The general problem of
the choice of the phase above the inelastic threshold was
discussed in connection with the dispersive analyses of
pion elastic electromagnetic form factor@28#.

Even knowing all the relevantT-matrix elements, it is not
at all straightforward to solve forfp . To illustrate this, we
stay with the case when there are only two channels pres
the two-body states pN and hN. Defining
K(6w)[K(mp

2 ,6w), we find from Eq.~32! that

Im Kp~1w!5Tpp
P11~1w!Kp* ~1w!

1
Fhh

2

Fpp
2 Tph

P11~1w!Kh* ~1w!,

Im Kh~1w!5Thh
P11~1w!Kh* ~1w!

1
Fpp

2

Fhh
2 Tph

P11~1w!Kp* ~1w!, ~37!

and similar equations forK(2w). In the two-channel case,
the termA in Eq. ~33! is

A~6w!5Tph~6w!Kh* ~6w!Aqh~Eh7m!

qp~Ep7m!
, ~38!

whereqp~h! is thep~h! three-momentum in the c.m. frame
andEp(h)5Aqp(h)

2 1m2. As for Tpp , for w.0 Thp is given

by theJPT51/21,1/2 partial wave while forw,0 it is given
by the 1/22,1/2 partial wave.

Equations~37! seem to provide the desired constraints f
extracting the phasesfp5Arg~Kp! and fh5Arg~Kh! from
the meson-nucleonT matrix without resorting to any of the
aforementioned approximations. First, one eliminates t
magnitudesuKpu and uKhu from Eq. ~37!. Since the phase
space factors cancel out, one obtains

Tph
2 e2 i ~fp1fh!5@sin fp2Tppe

2 ifp#@sin fh2Thhe
2 ifh#.

~39!

The real and imaginary parts of Eq.~39! provide two equa-
tions that should allow the determination offp andfh from
theT-matrix elements. However, this is not possible becau
rate
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the two resulting equations are, in fact, identical because
the unitary constraint for theT matrix. To see this, notice
that ImK5F21TFK* implies both

Im K5F21~ReT!F~ReK !1F21~ Im T!F~ Im K !
~40!

and

~ Im T!F~ReK !5~ReT!F~ Im K !. ~41!

Using Eq.~41!, Eq. ~40! reads

F21@12Im T#F~ Im K !5F21~ReT!F~ReK !

⇒@12Im T#ReT21 Im T

5ReT. ~42!

Using the real part of the unitary condition for theT matrix,
TT†5Im T, yields ~ReT!21~Im T!25Im T, while the imagi-
nary part results in the vanishing of the commutato
@ReT,Im T#50. This shows that Eq.~42! is just theT-matrix
unitary constraint and the real and imaginary parts of Eq
~40! do not provide independent equations allowing the de
termination of the phase ofK from the on-shellT matrix.

This does not necessarily imply that sidewise dispersio
relations cannot be used to determineK ~provided that one
subtraction is enough!, but more work needs to be done.
Above the eta threshold, we can use Eq.~37! to determine
Im K in terms of ReK and the on-shellT matrix. This may
then be substituted into Eq.~24! to obtain a coupled set of
Fredholm-like integral equations for ReK. The problem, as
shown below, is that between the pion and eta threshold
Im Kh is expressed in terms of an off-shellT-matrix element;
it might then be possible through dispersion relations to de
termineTph at the needed off-shell points in terms of on-
shell information. A more detailed investigation of this pos-
sibility is beyond the scope of this paper.

In the ~hypothetical! case of a single channel system it
seems to be possible to determine the phasef and thus also
the function K(w) for the off-shell vertex in a model-
independent fashion using the observable phased of the on-
shell T matrix. This appears to be in contradiction with the
observation in Sec. II that the off-shell form factor change
when we carry out field transformations. How can this be
reconciled with the sidewise dispersion relations that expre
K(w) in terms of observable quantities?

The answer lies in the fact that in the sidewise dispersio
relation approach the number of necessary subtractions isa
priori unknown. Indeed, different choices of the nucleon
interpolating field will, in general, lead to different asymp-
totic behaviors of the off-shell form factor. The examples
given in Sec. II illustrate this point. From Eq.~10! we see
thatK(w)5g, i.e., is of order 1 asw→`. On the other hand,
the vertex function, Eq.~13!, obtained from the transformed
Lagrangian, is of orderw at infinity. Thus, the ‘‘representa-
tion dependence’’ in sidewise dispersion relations shows u
in the a priori unknown needed number of subtractions. As
previously remarked, any predictive power of the sidewis
dispersion relations method will be lost if two~or more!
subtractions are necessary since we only know the form fa
tor at the physical pointw5m. Another way to im-
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prove the convergence of the dispersion integral is to co
sider the derivative ofK(w). However, none of its deriva-
tives with respect tow atw5m are known and, therefore, no
information about an off-shell point can be obtained.

As dispersion relations do not depend on a particular L
grangian, it is useful to look at the above discussion for th
vertex functionK in a different way and to contrast it with
the dispersion relations for the pion-nucleon scattering am
plitude. Consider the unitarity constraint, Eq.~32!: evidently,
it remains valid under the replacementK→ f (w)K, where
f (w) is a real function ofw, reflecting a different off-shell
behavior. Iff (w) is a polynomial inw and one hasf (m)51,
then the analytical properties ofK are not changed andK
still satisfies a dispersion relation. However, in general,~ad-
ditional! subtractions will be needed, and these subtractio
have to be done at unphysical points,wÞm, and, therefore,
cannot be done model independently. When using the disp
sion relation approach for theT matrix, we also may need
subtractions to make the integrals converge. However, f
this purpose we can do these subtractions at different en
gies where we have experimental information about theT
matrix. In some cases, this makes it possible to determine
pion-nucleonT matrix at an unphysical point through disper
sion relations, while the off-shell form factors can never b
uniquely determined. Notice also that our discussion do
not imply that dispersion relations for the electromagnet
form factor, with the momentum transferq2 as the dispersion
variable, show any representation dependence. In this c
the form factorF(q2) can be measured for a number o
values of the four-momentum transferq2.

IV. A COUPLED-CHANNEL, UNITARY MODEL

In the previous section we have discussed two inhere
difficulties of the sidewise dispersion relation approach a
plied to the off-shell form factors. The first one is thea priori
unknown number of subtractions, which reflects the ‘‘repre
sentation dependence.’’ The second difficulty is related
determiningf, the phase of the vertex function, in terms o
observable physical quantities: one is, in general, unable
properly take into account the contribution of all possibl
intermediate states to the absorptive~imaginary! part of the
form factor. With respect to this second difficulty, two ap
proximations had been proposed in the literature; the thres
old approximation, Eq.~34!, and the ‘‘Goldberger-Treiman’’
@6# approximation, Eq.~36!. In this section we study these
approximations by using a model with a nucleon
interpolating field that leads to aK satisfying a once-
subtracted dispersion relation. Even after assuming the val
ity of only one subtraction, a precise determination ofK
through the dispersion relations remains extremely difficu
~if not impossible!. It is, therefore, interesting to see in the
framework of a simple model under what circumstances th
two approximations to the phase discussed in the previo
section can be trusted to give reasonable results forK(w).
Indeed,K(w) has already been ‘‘extracted’’ from thepN
phase shifts using the Goldberger-Treiman approximatio
@6#, but the approximation itself has not been examine
Since we will use a meson-loop model, this allows us also
examine, e.g., the behavior of the absorptive part of th
strong form factor under field redefinitions, extending th
n-
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studies of Sec. III beyond the tree level.
We construct a unitaryT matrix based on the toy model

meson-nucleon Lagrangian@29#

L5
1

2
~]mF]mF2FM2F!1c̄~ i ]/2m!c2 i c̄g5GFc

1
1

2
c̄FLFc. ~43!

Apart from the conventional fermionic part describing the
nucleon with massm, we take into account two isoscalar
mesons, given by the two-component fieldF, and their mass
matrixM:

F5S p
h D , M5S mp 0

0 mh
D , ~44!

where we use the suggestive names ‘‘pion’’ and ‘‘eta.’’ We
assume a pseudoscalar three-point meson-nucleon coupli
G, and a scalar four-point meson-meson-nucleon couplingL,
where

G5S gp

gh
D , L5S lpp lph

lhp lhh
D . ~45!

TheL matrix has the dimension of an inverse mass, whileG
is dimensionless. The nonvanishing off-diagonal elements
lph andlhp , couple the two meson channels. For simplicity,
we make the choicelhp5lph5Alpplhh ~see Appendix
A!.

While we cannot solve this model exactly, it is possible to
select an infinite subset of diagrams which satisfies the nec
essary analyticity and unitary properties. We do that by treat
ing the three-point ‘‘G’’ coupling to leading order only,
while summing higher order contributions generated by the
‘‘ L’’ interaction. Only two-particle intermediate states, i.e.,
pN and hN, but not ppN or hpN, are considered. Our
approach does not satisfy crossing symmetry and, moreove
there are no meson loops that connect the incoming and ou
going nucleons; they would be either of second order inG,
or have three-particle intermediate states. This selection o
contributing diagrams does not generate aq2 dependence for
the form factor~in other words, what one usually refers to as
the ‘‘on-shell’’ form factor is trivial in this model!. However,
it does generate a nontrivial dependence on the invarian
massp82 of the off-shell nucleon and satisfies two-body uni-
tarity. We should also emphasize here that the truncation t
‘‘two-body unitarity’’ is an approximation, but it is the va-
lidity of the approximations made on top of our assumptions
that we wish to test here.

The diagrams that can contribute to meson-nucleon sca
tering with our restrictions are shown in Fig. 1, and those
contributing to the half-off-shell meson-nucleon form factor
in Fig. 2. The external and internal mesons may be eithe
pions or etas. As the ‘‘L’’ interaction is separable, we can
express the geometric series for theT matrix in a closed
form:

T5L1LIL1LILIL1•••5~12LI!21L, ~46!
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FIG. 1. Diagrams contributing to the on-shell meson-nucleonT matrix @Eq. ~46! in text#. The dashed lines denote either a pion or an e
meson and~d! stands for aL-type coupling.
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whereI5diag~Ip , Ih! is a diagonal matrix whose~pp! and
~hh! entries are pion-nucleon and eta-nucleon loop integr
respectively. The interested reader is referred to Appendi
for details of results stated without proof throughout th
section. The integralsI, and, therefore, theT matrix, depend
only on the total center-of-mass momentum squar
s5w25(p1q)2, and have no angular dependence. Us
the projection operators defined in Eq.~2! and the standard
partial wave projections, it is easy to show thatP1 projects
only into the f 01 partial wave andP2 only into the f 12

partial wave, that is

T5T 01P11T 12P2 . ~47!

Taking into account the appropriate phase space factorsF, it
can be shown~see Appendix A! thatT5FTF, satisfies uni-
tarity for uwu,m1M , whereM is the cutoff needed to regu
larize the loop integralsI,

Im~TS11!5TS11~TS11!†, ~48!

and analogously forTP11. Thus, theT i j
l may be written in the

form given in Eq. ~29! where d p
l (d h

l ) are the pion~eta!
phase shifts~Swave forl50 andP wave forl51! andrl are
the corresponding inelasticities~rl51 below the eta thresh
old, wT5m1mh!. For a numerical study of these form fa
tors we take form andmp 0.939 GeV and 0.14 GeV, respe
tively, and choosemh to be 0.42 GeV, since atw51.36
GeV5m1mh , the P11 inelasticity starts to deviate from
unity. TheL couplings are chosen to reproduce some qu
tative features of the physical pion-nucleon scattering ph
shifts and inelasticity, in particular, a resonance appea
above the inelastic threshold. While the actualpN scattering
amplitude exhibits this feature in both theP11 andS11 chan-
nels, our model is too simple to simultaneously produ
resonances in both channels. We therefore concentrate o
P11 channel, and show in Fig. 3 the phase shifts and ine
ticity parameter obtained withlpp50.5 MeV21 andlhh50.8
MeV21, which leads to a resonance in theP11 channel with a
substantial inelasticity. This parametrization yiel
Kh(m)/Kp(m)520.87. As mentioned, the presence of a
nite cutoff violates unitarity forw.m1M , and we, there-
fore, use a large cutoff,M510 GeV.
als,
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The half-off-shell strong vertex in our model is generate
by the series in Fig. 2, and gives

@G5~p8,p!#Tu~p!5g5G
T@12I~w!L#21u~p!

⇒G5~p8,p!u~p!

5g5@12LI~w!#21Gu~p!. ~49!

Here, the transpose acts on the channel space indices o
andw5A(p1q)2. With our assumptions, the pion-nucleon
strong vertex function reads

Kp~w!5
@12lhhIp~w!#gp1lphIh~w!gh

12lppIp~w!2lhhIh~w!
, ~50!

where we have ignored graphs of orderO(G3) and higher, as
well as intermediate states with more than two particles. M
son loops on the on-shell nucleon need not to be conside
since their contributions can be absorbed in the definition
the on-shell vertex. The vertex functionK(w) is determined
through theP-wave on-shell scattering amplitude,TP11(w),
andK(2w) by theS-wave on-shell amplitude,TS11(w). In
the examples below, the values ofgp andgh will be varied to
change the ratio of the on-shell form factors,Kh(m)/Kp(m).

As shown in Appendix A, the unitarity equation forK,
Eq. ~37!, is satisfied in this model below the cutoff. As men
tioned above, below the pion threshold,uwu,m1mp , one
has ImK50. Between the pion and eta thresholds
m1mp,uwu,m1mh , we have

Im Kp~1w!5Tpp
P11Kp* ~1w!,

Im Kh~1w!5~Fpp
2 !2Tph

P11Kh* ~1w!, ~51!

where Tph
P11 is the ph matrix element multiplying theP2

operator in Eqs.~47! and ~A8!, in this case evaluated at an
off-shell point. Although the form of Eq.~51! is specific to
our model, it is true, in general, that ImKh is nonzero be-
tween the thresholds and in this region is related to off-sh
quantities.

Let us now discuss the dispersion relations for the o
shell form factors in this model. While the presence of th
cutoff violates unitarity, it does not affect the validity of the
FIG. 2. Diagrams contributing to the half-off-shell~p25m2, p82Þm2! meson-nucleon~strong! form factor@Eq. ~49! in text#. The dashed
lines may denote either a pion or an eta meson,~d! stands for aL-type coupling, and~s! for aG-type coupling.
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dispersion relations. Because of the choice of a large cuto
the dispersion integral has largely converged by the time t
cutoff is reached. It is well known that the functionsIp and
Ih satisfy once-subtracted dispersion relations@30#. Kp and
Kh have the same analytical structures asIp andIh , apart
from possible additional poles on the first Riemann she
Furthermore, the number of needed subtractions may be d
ferent, but it is easy to establish in our model thatK also
satisfies a once-subtracted dispersion relation. On the ot
hand, the existence of poles in the complexw plane is more
difficult to assess. We have simply established their absen
numerically by showing that the once-subtracted dispersi
relation is satisfied to six significant figures for22 GeV
,w,2 GeV.

In the analysis of the pion-nucleon vertex function b
Epstein@6# and by Bos@3#, it was found that the Goldberger-
Treiman approximation leads to a much smoother off-sh
behavior ofK than that in the threshold approximation. Thi
can be easily explained: if one uses the threshold approxim
tion, the phase of the form factor is given by the scatterin
phase shift and we, therefore, expect the functionK to show
resonance behavior. When thepNN phase shift passes
through p/2 the threshold approximation to ReK will
change sign and ImK peaks. On the other hand, using th
Goldberger-Treiman assumption,fp is constrained to be in
the interval2p/2,fp,p/2. This is easily seen from Eq.
~36! with rl,1, which impliesTpp,1. Therefore, ReK will
not change sign sincefp does not pass throughp/2. Thus,
we expect that the Goldberger-Treiman approximation w
generate a smooth off-shell dependence, while the thresh
assumption will generate a more rapid dependence onw if

FIG. 3. Inelasticities~dotted lines!, the pion-nucleon phase shift
in radians~solid lines!, and the phase of the pion-nucleon form
factor~dashed lines! for theS11 andP11 channels in our model with
parameterslpp50.5 MeV21, lhh50.8 MeV21, gp52gh52.
ff,
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there is a resonance in the scatteringT matrix, as happens in
reality forpN scattering as well as with ourP11 phase shifts.

Our model allows us to put these previous analyses in
perspective and to confirm our qualitative expectations.
Fig. 4 we show the exact model results forKp with gp and
gh adjusted to giveKh(m)/Kp(m)521 and 1, all other pa-
rameters as in Fig. 3. As expected,K obtained from the
threshold assumption~solid lines! displays a rapidw varia-
tion because of the resonance in theP11 channel~see Fig. 3!,
while the Goldberger-Treiman approximation~dot-dashed
lines! leads to a rather smooth energy dependence ofK.
Whether the Goldberger-Treiman or threshold approximati
is better cannot be answered in general. It depends on
details of the dynamics. AtKh(m)/Kp(m)521, the
Goldberger-Treiman approximation seems to work we
while at 11 it is the threshold approximation that works
well. We, therefore, conclude that neither approximatio
may be trusted a priori at anyw. Figure 4 shows that there
can be large discrepancies between the exact model re
and the phase approximations even in the vicinity of th
on-shell point.

As shown in Fig. 3, the inelasticity deviates significantl
from unity for large values ofw. That the qualitative features
of the two approximations discussed above are not beca
of this large inelasticity was confirmed by considering an
other parametrization~results not shown!. A resonance in the
P11 channel can also be obtained with, e.g.,lpp50.5 MeV21

and lhh50.05 MeV21. Since lhp5lph5Alpplhh, this
corresponds to a much weaker coupling between the ch
nels and the inelasticity remains close to one. The same f

FIG. 4. Various approximations for determining the pion form
factor Kp~solid5threshold, dot dashed5Goldberger Treiman!,
compared with the model prediction forKp for two choices ofG
couplings corresponding toKh(m)/Kp(m)521 ~dots! and
Kh(m)/Kp(m)511 ~dashes!.
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tures as in Fig. 4 were found, thus casting doubt on the us
the threshold approximation in general. In fact, the thresh
approximation requiresrl51, while the Goldberger-Treiman
is too restrictive to allow for a resonant behavior of the fo
factor. Thus, neither of these approximations can be
pected to be satisfactory.

The above observations are not based on some spe
detail of our model, but on rather general properties such
the existence of resonances in theT matrix. The dependenc
on the details of the underlying reaction mechanism that
have shown with our simple model probably underestima
the real situation. In our model, the off-shell variation
positive w is mainly because of the resonance in theP11
channel. For example, theS11 resonance inpN scattering,
absent in our model, would afflict the negativew sector as
well.

It is also interesting to look at the model results for the
form factorKh(w). The results for the same set of coupling
L, G, as in Fig. 3, are shown in Fig. 5. Because of t
simplicity of our ‘‘toy model,’’ the results again only illus
trate some general qualitative features. At negative energ
we see very pronounced effect because of the pion and
thresholds. This effect is not visible for positivew since the
P-wave phase space suppresses the cusp. It can be see
Kh is complex even below theh threshold and displays som
rapid energy dependence around theh threshold. These fea
tures arise because of the branch cuts associated with
thresholds, and, therefore, should be general features o
functionKh . The magnitude of these effects will, of cours
depend on the model. Nevertheless, this casts doubt on
use of simple tree-level amplitudes with real coupling co
stants to extract thehNN coupling constant, for exampl
from photoproduction of etas@31#.

FIG. 5. The eta-nucleon form factor. Parameters as in Fig.
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V. SUMMARY AND CONCLUSIONS

Sidewise dispersion relations have been suggested in
literature as a method to obtain the electromagnetic a
strong half-off-shell form factors of the nucleon. These form
factors enter in calculations of, e.g., nuclear processes or
two-step reactions on a free nucleon where one includes t
structure of the nucleon in terms of dressed vertices. W
have focused our discussion on the strong pion-nucleon v
tex, where sidewise dispersion relations relate the half-o
shell strong form factor to on-shell meson-nucleon scatte
ing. Two aspects of this approach were examined, i
representation dependence and the validity of approxim
tions that have been used in the literature.

The strong vertex, or three-point Green’s function, is no
uniquely defined when one or both nucleons are not on the
mass shells. They are dependent on the representation
chooses for the intermediate~off-shell! fields and, therefore,
cannot be unambiguously extracted from experimental da
In order to illustrate this representation dependence and
show how it enters in the sidewise dispersion relations, w
used unitarily equivalent Lagrangian models. Starting at th
tree level, we showed how off-shell vertices do change und
a change of representation, while the on-shell vertices a
oblivious to such changes. We then showed how in on-sh
amplitudes corresponding to two-step processes, this rep
sentation dependence of the vertices manifests itself throu
contributions of pole as well as contact terms. This mean
that what one would call off-shell effects resulting from a
vertex in an amplitude in one representation are related
contact terms in another. We then showed how the chang
of representations can change the asymptotic behavior of
off-shell form factor, thus requiring a representation
dependent number of subtractions in the dispersion relatio
In other words, representation dependence enters the si
wise dispersion analysis through the number of necessa
subtractions. As the form factor is only known at the on-she
point,w5m, only one subtraction constant is known and th
sidewise dispersion analysis, thus, has no predictive pow
for the vertex function. We showed at the one-loop level i
perturbation theory that not only the real, but also the ‘‘ab
sorptive’’ imaginary part of the half-off-shell form factor,
related to open physical channels, exhibit this representatio
dependent asymptotic behavior.

Even when one chooses a particular representation~i.e.,
assumes one subtraction!, one still faces problems when try-
ing to obtain the corresponding off-shell vertex functions
These difficulties arise because of the contribution of inela
tic channels, i.e., other thanpN intermediate states. These
channels contribute through the unitarity constraint that r
lates the half-off-shell vertex function to the meson-nucleo
T matrix, or scattering amplitude. Approximations how to
deal with these channels in an ad hoc fashion had been p
posed in the literature, but their validity had not been exam
ined.

In order to study these recipes, we introduced a ve
simple coupled-channel, unitary model for the pion-nucleo
system, where the inelastic channel is represented by anhN
intermediate state. We first established that the half-off-she
form factor in this toy model satisfies a once-subtracted sid
wise dispersion relation and then compared this result to t
results obtained from sidewise dispersion relations usin

3.
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thesead hocprescriptions. We found that differences amo
the approximations and the exact model result for the o
shell vertex functions can be sizable, particularly whenw
lies in the vicinity of resonances of theT matrix, where the
two prescriptions we tested produce very different resu
We found that which of the two prescriptions is better, i.e.,
closer to the exact model result, depends on details of
dynamics assumed in the model. Therefore, neither of
two approximations is a priori preferred, and the results o
obtains by using such recipes remain questionable.

We conclude that, in practice, sidewise dispersion re
tions cannot provide reliable and unique information abo
the structure of off-shell nucleons. The number of requir
subtractions is representation dependent and thus a prior
known. Even if one chooses a particular representation,
inclusion of the other reaction channels cannot be dealt w
without approximations. The off-shell vertex, which has
much more complicated structure than the free vertex, t
cannot be extracted from experimental data, but should
stead be consistently calculated within the framework o
microscopic theory. Such a calculation will yield the dress
off-shell vertices and the concommitant contact terms. T
proper interpretation of future high precision measureme
of intermediate energy processes depends crucially on
ability to carry out such consistent calculations in realis
microscopic models.
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APPENDIX A

Here, we present some details of our model calculati
The integral matrix introduced in Eq.~46!:

I5S Ip 0

0 Ih
D ~A1!

describes the meson-nucleon loop Feynman integrals tha
pear on the right-hand side~RHS! of Figs. 1 and 2. Thus,

Ii~w!52 i E d4k

~2p!4
1

~k22m i
2!

1

~p”1q”2k”2m!
, ~A2!

wherew5A(p1q)2. Equation~A2! is made meaningful by
Pauli-Villars regularization of the meson propagators:

i

k22m i
2→

i

k22m i
22

i

k22M2 . ~A3!

For simplicity, we will use the same cutoff massM for both
thep andh propagators.
ng
ff-

lts.
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We may now writeIi5mI i01(p”1q” )I i1, and defining
D i5(w21m22m i

2)224w2m2, we find, for the imaginary
parts,

Im Ii05
1

16p

AuD i u
w2 u~D i !2@m i→M #,

Im Ii15
1

16p

~w21m22m i
2!

2w2

AuD i u
w2 u~D i !2@m i→M #,

~A4!

while the real parts are given by

ReIi05
1

16p2 E
0

1

dx lnuw2x21b ix1m2u2@m i→M #,

ReIi15
1

16p2 E
0

1

dxx lnuw2x21b ix1m2u2@m i→M #,

~A5!

with b i[(m i
22w22m2). We now make the choicelhp

5lph5Alpplhh which considerably simplifies the formu-
las, renderingT of the form

Ti j5L i j

1

a1~p”1q” !b
, ~A6!

with

a[12m~lppIp
01lhhIh

0 !,

b[2~lppIp
11lhhIh

1 !. ~A7!

Using the projection operators defined in Eq.~2!, T may be
written as

T5
L

a1wb
P11

L

a2wb
P2 . ~A8!

As our T matrix has nox5cosu dependence, it is easy to
show using the standard partial wave projections thatP1

projects only into thef 01 partial wave andP2 only into the
f 12 partial wave. The formalism for meson-nucleon scatter-
ing is well known @30# and need not be repeated here. We
only mention that phase space factors must be included i
theT matrix, Eq.~A8!, that is, in terms of the partial waves
f i j
l6; it is the objectTi j5Auqi uuqj u f i j

l6 ~no sum overi , j ! that
satisfies the simple unitarity equation~28!. Including phase
space factors, we, thus, obtain

Ti j
S115

1

8pw~wb1a!
Fi j1 , ~A9!

Ti j
P115

1

8pw~wb2a!
Fi j2 , ~A10!

where F65F6LF6, with F65diag@Auqpu(Ep6m),
Auqhu(Eh6m)], i.e.,

F65S f p
6 Af p

6 f h
6

Af p
6 f h

6 f h
6 D . ~A11!
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Here, f p
65lppuqpu(Ep6m) ~and similarly for f h

6! and the
1~2! sign is associated withT S11~T P11!, respectively. We
now show that unitarity is satisfied. Notice thatF6 is of the
form Fi j65Ahi6hj6 and thus ~F6!25Tr~F6!F6. Using
(w21m22m i

2)52wEi it is easy to inspect that Eqs.~A4!
and ~A7! imply

28pw Im~a1wb!5 f p
11 f h

1⇒28pw Im~a1wb!F1

5Tr~F1!F15~F1!2

⇒2
1

8pw

Im~a1wb!

ua1wbu2
F1

5
1

~8pw!2
1

ua1wbu2 ~F1!2⇒Im~TS11!

5TS11~TS11!†, ~A12!

and analogously forTP11. Notice that, forw>M1m, the
extra terms [m i→M ] contribute to the RHS of Eq.~A4!. As
a result, Eq.~A12! is spoiled and unitarity is violated. How
ever, we will takeM large enough so that this violation o
unitarity is of no practical consequence.

Let us next consider the unitarity constraint for the stro
half-off-shell vertexG5u(p) given by Eq.~49!. Writing T in
terms of the unitaryT matrix,

T58pw@~F1!21TS11~F1!21P1

1~F2!21TP11~F2!21P2#, ~A13!

and using the definition ofT, Eq. ~46!, we obtain

G5u~p!5g5~12DI!21LL21Gu~p!5g5TL21Gu~p!

58pwg5@~F
1!21TS11~F1!21P1

1~F2!21TP11~F2!21P2#L21Gu~p!

58pw@~F1!21TS11~F1!21P2

1~F2!21TP11~F2!21P1#L21Gg5u~p!,

~A14!

where we have usedg5P65P7g5 . Using Eq.~3!, we find

K~1w!58pw@F2~w!#21TP11~w!@F2~w!#21L21G,

K~2w!58pw@F1~w!#21TS11~w!@F1~w!#21L21G.

~A15!

Thus, K(w) is related to theP-wave on-shell amplitude
TP11(w) andK(2w) to theS-wave on-shellT-matrix am-
plitude TS11(w). Taking the imaginary parts of both side
we obtain
-
f

ng

s,

Im K~1w!58pw~F2!21 Im~TP11!~F2!21L21G

58pw~F2!21~TP11!†TP11~F2!21L21G

58pw~F21!21~TP11!†F2~F2!21

3TP11~F2!21L21G

5~F2!21~TP11!†F2K~1w!

5~F2!21~TP11!F2K* ~1w!, ~A16!

where, in the last step, we have taken the complex conjugat
of Eq. ~A16! and used the fact thatT is symmetric so as to
cast Eq.~A16! in the form of Eq.~32!. Similar equations are
found for K(2w) with F2→F1 and TP11→TS11. Notice
that we have tacitly assumed thatL has an inverse, but we
have chosenL such that this is not the case. However, we
have explicitly checked that Eq.~37! remains valid.

APPENDIX B

Here, we study the effect of field transformations on the
absorptive~imaginary! part of the strong form factor. To do
this, we must go beyond the tree level. Ideally, we would
like to perform the transformation, Eq.~8!, to the one-
channel version of our model, Eq.~43!, checking that the
off-shell form factor shows a different asymptotic behavior
while remaining invariant on shell. To first order inb, we
obtain

L85L f2 i ~g12mb!c̄g5fc1bc̄g5~]/f!c1
l

2
c̄f2c

1 iblc̄g5f
3c, ~B1!

whereL f represents the free~kinetic! part of the Lagrangian.
However, the equivalence theorem~representation indepen-
dence of on-shell form factors! only holds if all diagrams to
a given order are included. In particular, diagrams that we
have omitted because they do not contribute to the imaginary
part, as for example diagrams with meson loops that dress
the on-shell nucleon as well as reducible diagrams with
closed loops, have to be included as well. Unfortunately, that
means that it is impossible to make a nonperturbative com-
parison since we would have to solve both theories exactly,
without being able to restrict ourselves to an infinite subset
of diagrams as in the previous section.

We can still, however, make a perturbative comparison.
First of all, we can check toO~bl! that the on-shell form
factors are the same betweenL andL8. That will provide an
example of the representation in-dependence of on-shel
form factors beyond the tree-level result of Sec. II. To show
this, we need to take into account all diagrams in Fig. 6.
Notice that diagram@Fig. 6~f!# is present only in the trans-
formed Lagrangian, Eq.~B1!. The comparison is most easily
made by examining how the terms proportional to the ‘‘tad-
pole’’ integral

t[2 i E d4k

~2p!4
1

k22m2 ~B2!
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FIG. 6. Feynman diagrams for LagrangianL8 of Eq. ~B1! contributing to the form factor at orderbL.
ut
i-

art

-

compare for the on-shell matrix element@hence theū(p8)
spinor to the left as well# between the two models. From th
transformed LagrangianL8, we obtain for the tadpole graph

~d8!5~d!1
blt

2
ū~p8!g5~2m1q” !

1

p”2m
u~p!

5~d!2
blt

2
ū~p8!g5u~p!, ~B3!

~e8!5~e!1
blt

2
ū~p8!

1

p” 82m
g5~2m1q” !u~p!

5~e!2
blt

2
ū~p8!g5u~p!, ~B4!

~ f 8!53bltū~p8!g5u~p!. ~B5!

Theb-dependent contribution from the~b8! and ~c8! graphs
can also be cast in terms oft by using the Dirac equation fo
the on-shell spinors

~b8!5 ilE d4k

~2p!4
i

k22m2 ū~p8!
i

p”2k”2m

3g5~g12mb2bk” !u~p!

5~b!2 iblE d4k

~2p!4
1

k22m2 ū~p8!
1

p”2k”2m

3~m2p”1k” !g5u~p!

5~b!2bltū~p8!g5u~p!, ~B6!

and similarly for~c8!. From Eqs.~B3!–~B6!, it is clear that
the overall coefficient of the b-dependent terms
ltū(p8)g5u(p) vanishes

S 2
1

2
2
1

2
132121D50. ~B7!
e
s

r

That completes the proof of on-shell invariance. What abo
the imaginary part? The on-shell form factor has no imag
nary part. For the half-off-shell (p25m2) form factor, the
tadpole contributions are real. The~b8! contribution is also
real, since, forw5m, D52m2~4m22m2!,0 @cf. Eq. ~A4!#.
Thus, the only diagrams that can generate an imaginary p
are ~c8! and (c) @obtained from~c8! by taking b→0#. We
find

~c!85g5$@g12mb#I1bJ%lu~p!, ~B8!

where J is a Feynman integral resulting from the
‘‘pseudovector’’ coupling and is defined analogously toI
@Eq. ~A2! and Fig. 2#:

J~p8!52 i E d4k

~2p!4
1

k22m2 k”
1

p”1q”2k”2m

52 i E d4k

~2p!4
~p” 82m!

k22m2

~p” 82k”1m!

~p82k!22m2

1 i E d4k

~2p!4
1

k22m2⇒J~p8!

5~p” 82m!I~p8!2t, ~B9!

wheret is a realc number~i.e., independent of the off-shell
variablew!, and, therefore, does not contribute to the once
subtracted dispersion relation. Thus,

~c!85$~g2b@p” 82m# !I2bt%g5u~p!. ~B10!

We clearly see that the same off-shell operator, (p” 82m),
multiplies both the real and imaginary parts of the integralI.
We conclude that the imaginary part of the off-shell form
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factor shows a higher power asymptotic behavior inw that is
representation dependent, in agreement with our argum
based on unitarity.

As a last exercise that clarifies the points made in t
work, consider the half-off-shell vertex function in the tw
channel Lagrangians

L15LP1
1

2
c̄FLFc, ~B11!

L25L̄1
1

2
c̄FLFc. ~B12!

Here,LP is given by Eq.~7! andL̃ by Eq.~9!. KeepingO~b!
terms only~whereb is now a two-component vector such
G!, L1 is our original Lagrangian, Eq.~43!, whereas the sec
ond is a different ‘‘model,’’ not unitarily equivalent toL1,
but, nevertheless, generating the sameT matrix ~in the sense
of Fig. 1!. ToO(G,b), the off-shell form factor generated b
L2 is @cf. Eq. ~49!#
ents

his
o-

as
-

y

G2
5u~p!5g5

1

12LI $G1b~p” 81m!2bLt%u~p!.

~B13!

Projecting as in Eq.~2!, we see that, since the imaginary pa
comes solely from the 12LI term ~related to theT matrix!,
the same line of arguments leading to Eq.~A15! shows that
bothKa , aP$1,2%, satisfy

Im~Ka!5F21TFKa* , ~B14!

with the sameT matrix. As with K1(w), we renormalize
K2(w) such that it is equal to the~physical! GpNN coupling
at w5m, i.e., the two form factorsK1(w) andK2(w) are
equal at the on-shell pointw5m. However, they have a dif-
ferent asymptotic behavior in the off-shell variable and
therefore, require a different number of subtractions in th
dispersion relation. Thus, this example shows that know
edge of theT matrix cannot uniquely determine the off-she
form factor.
.
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