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Sidewise dispersion relations and the structure of the nucleon vertex
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We reexamine sidewise dispersion relations as a method to relate the nucleon off-shell form factor to
observable quantities, namely, the meson-nucleon scattering phase shifts. It is shown how for meson-nucleon
scattering a redefinition of the intermediate fields leaves the scattering amplitude invariant, but changes the
behavior of the off-shell form factor as expressed through dispersion relations, thus, showing representation
dependence. We also employ a coupled-channel, unitary model to test the validity of approximations concern-
ing the influence of inelastic channels in the sidewise dispersion relation m¢8@Ehb6-282196)02615-X

PACS numbsgs): 11.55.Fv, 13.40.Gp, 13.60.Fz, 13.75.Gx

I. INTRODUCTION how this representation dependence enters the sidewise dis-
persion relations analysis. Off-shell vertices are described
In the theoretical description of processes at intermediateithin the framework of the reduction formalisp8] using
energies, the structure of hadrons is often described by muilnterpolating (interacting fields for the off-shell nucleon.
tiplying the pointlike vertex operators by form factors. It is a The choice of this interpolating field is not unique. It is well
common practice to assume that these vertices, i.e., their ofghown that on-shel5-matrix elements are oblivious to the
erator structures and the associated form factors, are in athoice of interpolating field: different unitarily equivalent
situations the same as for a free on-shell hadron. This ikagrangians constitute different representations of the theory
done, for example, in the description of electron-nucleusand physically measurable quantities, such as on-shell ampli-
scattering or in two-step reactions on a free nucleon, such gsdes, are representation independent in accord with the
Compton scattering, where one is dealing with an intermediColeman-Wess-Zumino theordr]. In fact, the transforma-
ate nucleon not on its mass shell. In these cases, however, ttien need not be unitary; any reversible field redefinition will
electromagnetic vertices can have a much richer structurdeave the on-shell amplitudes unchang#d]. However, dif-
there can be more independent vertex operators and the forfarent interpolating fields in general lead to different off-
factors can depend on more than one scalar variable. Thghell extrapolationgl1] and, therefore, off-shell form factors
common treatment of such “off-shell” effects is to presume cannot be uniquely determined. This was recently demon-
them small and to ignore them by using the free verticesstrated [12,13 in the framework of chiral perturbation
However, as much of the present effort in intermediate entheory. It was shown how the off-shell electromagnetic form
ergy physics focuses on delicate effects, such as evidence f#ctor of the pion changes under a unitary transformation of
guark-gluon degrees of freedom or small components in théhe Lagrangian which leaves, e.g., the Compton amplitude
hadronic wave function, it is mandatory to examine thesainchanged. While the total amplitude for the on-shell pion is
issues in detalil. representation independent, and certainly observable, the in-
One theoretical tool for the description of the off-shell dividual contributions from “pole” and contact terms are
vertex of the nucleon is the method of sidewise dispersiomot. In other words, representation-dependent “off-shell ef-
relations. The “sidewise” here indicates that one uses thdects” in pole contributions in one representation appear as
method to get at the dependence of the form factors on theontact termg$13] in another representation.
invariant mass of the nucleon rather than, e.g.tthbannel One now faces the following puzzle: although the off-
four-momentum transfer. It has been used, e.g., for the eleshell form factors are not unique and not measurable, it ap-
tromagnetic form factors of the nucle¢h—3|, electromag- pears that through sidewise dispersion relations they can be
netic transition form factorg4], the nucleon axial-vector determined from physical quantities such as meson-nucleon
coupling constanf5], and the pion-nucleon form fact¢é]. phase shifts. However, we will show below how representa-
If one wants to calculate the half-off-shetNN form factor, tion dependence appears in the sidewise dispersion relations,
knowledge of its phase along the cut in the energy plane isnaking a unique determination of the half-off-shelNN
sufficient to determine it via a sidewise dispersion integralform factor impossible. This is in contrast to the use of dis-
Below the two-pion threshold this phase is given in terms ofpersion relations for the determination of the pion-nucleon
the known pion-nucleon phase shifts. However, above thiscattering amplitude at the nonphysical pairtt=0[14], a
threshold assumptions have been made for the pfBZe  quantity crucial in determining the pion-nucleon sigma term
which lead to quite different predictions for the half-off-shell [15].
form factor. Since neither of these prescriptions has been The outline of this paper is as follows. In Sec. Il we
tested, we use a coupled-channel, unitary model to investdiscuss the general features of an off-shell vertex and of the
gate the validity of the assumptions regarding the phase akpresentation dependence. In Sec. Ill we review the side-
the off-shell meson-nucleon form factor. wise dispersion relations and the different assumptions pro-
Another objective of this work is to investigate the “rep- posed in the literature about their use at energies above an
resentation dependence” of off-shell effects, and specificallynelastic threshold. These assumptions are tested in Sec. IV
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in a simple unitary, coupled-channel model. A summary andCompton scattering or meson electroproduction, one neces-
our conclusions are given in Sec. V. Some details of ousarily deals with the electromagnetic current or vertex of an

calculations are contained in appendices. off-shell nucleon.
In this situation, it has been quite common to make use of
Il. THE VERTEX OF AN OFE-SHELL NUCLEON ad hocassumptions which use as much as possible the on-
AND FIELD REDEFINITIONS shell information while maintaining current conservation.

Most widely used is the prescription introduced by de Forest
The most general pion-nucleon vertex, where the incomf17] for the off-shell electromagnetic current. It allows one to
ing nucleon of massn has momentunp,,, the outgoing use the free current by changing its kinematical variables
nucleon has momenturp, and the pion has momentum according to the off-shell situation. Another often used ver-
q,= p,’f p.. can be written af16] sion for the nucleon vertex operator was introduced by Gross
and Riskg 18] and is given by
p—m p'—m

3(p’.p)=| y5G1+ vs m Gy + m v5G3

F,(9?)
@) =P+ (1Pl 0,8
p’'-m  p—m

m Y5 T m Gyl 1) ©

+

It also only involves on-shell information, the free Dirac and
By sandwichingI™® between on-shell spinors one obtains Pauli form factorsF, andF,, but has a more general Dirac
G,(g%,m%m?)u(p’) ysu(p). Clearly, the off-shell vertex structure. The second term on the right-hand side of(Ex.
has a much richer structure, in that there are more indepewnvanishes when the vertex is evaluated between on-shell
dent operators and, moreover, each of them depends on maspinors, but contributes when one or both nucleons are off
kinematical variables than just the four-momentum transfeshell. It is easily seen that this vertex satisfies the Ward-
q>. Takahashi identity when free Feynman propagators are used
Below, we will, for simplicity only, consider the “half- for the nucleon. In pion electroproduction, this prescription
off-shell” vertex, with the incoming nucleon on shell. De- is equivalent to adding a contact term to the Born amplitude
fining o’ = p'? and introducing the projection operators  Wwhich is needed to restore gauge invariaft@. The valid-

ity of this and other recipes can only be assessed on the basis

w' =p’ of a realistic microscopic calculation and will depend on the
T oW (@ kinematics of the process.
Several attempts have been made to calculate properties
we obtain, in that case, of the off-shell vertices and to estimate their effects in pro-
cesses at intermediate energies. Birlddyfor example, pro-
5(p’,p)u(p)=[P,.K(g%w')+P_K(gZ —w")]ysu(p). posed using sidewise dispersion relations in which the elec-

3) tromagnetic and strong nucleon off-shell form factors were
related to pion-nucleon phase shifsee Sec. ). This ap-
Because of the incoming on-shell nucleon spinor, the termproach was used by Nym480] and Minkowski and Fischer
proportional toG, andG, do not contribute. The functiod  [21]. Studies in the context of meson loop models have been

is obtained as performed, e.g., in Ref§22—25. Typically, effects of the
order of 5—-15% were found for the dependence of the form
) o 5 oo *w'—m 5 oo factors on the variable/'.
K(Q% =w')=Gy(q, W%, m?) + ——— G4(q",w'*,m). Recently, the off-shell pion electromagnetic vertex was

(4) investigated in the framework of meson chiral perturbation

theory [12,13. The computation was performed by using

The general electromagnetic vertex of the nucleon is morewo different chiral Lagrangians, related through a unitary
complicated 1]. Its general form is transformation of the fields, which leaves the observables

unchanged. It was shown explicitly how in the description of

ree S (b [AKyE+ Aot +AKGE()K. (5 Compton scattering off a pion the off-shell form factors are
=" 1Y 20", AFA*](B) . (5 not the same while the observable on-shell form factor and
the amplitude are the same in the two representations. This

where the 12 form factora/ are again functions of three general result concerning the _representation depender_lce of
scalar variables, usually taken to 4 p2 andp’2 By using the off-shell effects_can be |Ilustrated_ by the follpwmg
the constraints provided by the Ward-Takahashi identity, th&MPI€ example for pion-nucleon scattering. We consider the
number of independent form factors can be shown to reducBSeudoscalar meson-nucleon Lagrangian

to eight. Upon evaluating the vertex between two on-shell 1

spinors, one recovers the familiar form of the electromag- _- 22427, ip T

netic current of a free nucleon, involving two independent Le 2 [(94)"= w7 ¢TI+ yli0=m)y=igyyséy, ()
contributions with their associated form factors, such as the

Dirac and Pauli form factors. It is important to stress that inand perform the transformation

calculations of electromagnetic reactions involving bound

nucleons or two-step reactions on a free nucleon, such as y— exp(i Bysd) . (8
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Then, up to and including ordes” terms, the new Lagrang- _
ian reads Toole=1U(p")

1
[g+B(2m+4q')]ys Prd—m ys[9+B(2m

E=Le=2mBYysdy+ BUys 90y +4)]+[g+A2m=d)]ys p—q;—m yelg+B(2m
+2B(9+2mp) Y+ O(B°). 9)

. : —4")]{u(p), (15
This transformed Lagrangian has both pseudos¢B8rand

pseudovecto(PV) #NN interaction terms, as well as a con- ) )
tact term. Choosingg=— g/2m corresponds to the “Dyson” where the terms in the square brackets arise from the trans-

transformation[26] and the resultingmNN coupling be- formed vertex, Eq(12). Using the Dirac equation for the
comes purely PV. For our discussion of the representatioRn-Shell spinors, this may be cast in the form
dependence we leaygfree and show that physical, observ-

able quantities ar@ independenf27]. Too=—i19%u(p’) 1 + 1

The meson-nucleon vertex at the tree level for both rep- pore p+g—m p—¢'—m
resentations is readily obtaingthe dressed vertex at the
one-loop level will be discussed in Appendiy.B-romLp, +48(g+mp) tu(p), (16)
we find for the vertex

5 where theB-dependent term reflects the different “off-shell”
I'e=07s. (10 pehavior of the vertex obtained frot. However, there is
now also a contribution from the contact termbinthe term
corresponding to the trivial half-off-shell vertex function proportional toy ¢y, which yields

K(qz,tw’)=g. (1) Tcontact:iu_(p,){‘lﬁ(g'l'mﬂ)}u(p)- (17
~ Clearly, thep-dependent terms cancel out and the total am-
On the other hand, yields plitude remains unchanged:
TS(p'.p)=yslg+2mp+ B’ —p)], (12 7= Toole™ Teontact (18)

This simple example illustrates not only that, as expected
[9,11], total on-shell amplitudes for a given process are in-
4] variant under field redefinitions, but also the interplay be-

. tween “off-shell” effects from vertices and contact terms.
K(g%,+=w')=g+B(mFw’), (13 This makes it impossible to define “off-shell” effects in a
unigue, representation-independent fashion.
which is B8 dependent and clearly has a different off-shell Our considerations above concerned only rather simple
behavior. However, the on-shell matrix element of the vertex/ertices at the tree level. The close connection between off-
operator is the same for both representations. shell effects in a vertex and contact terms also exists when

What happens if we consider a tWO-Step process on a frewe consider dressed Vertices, as will be shown at the one-
nucleon, such as pion-nucleon scattering, that involves th#op level (see Appendix B It can be made plausible with
propagation of an intermediate off-shell nucleon? Since thighe following example that concerns the dependence of the
is an overall on-shell process, the total amplitude must b¥€rtex on the invariant mags’. Consider, for simplicity, a
independent of the value one choosesgoiThis means that scalar vertex for an initially on-shell particle together with
the B-dependent contributions from the off-shell vertices inthe subsequent propagation. By expanding the vertex around
the pole terms, i.e., in the contributions involving twdN  the on-shell point,
vertices connected by an intermediate nucleon propagator, F(@m2p?) T(mem?)  ar

corresponding to the half-off-shell vertex functipef. Eq.

must be compensated by some otledlependent contribu- _ +— (M) +-, (19

tion. To show that, we consider the on-shell pion-nucleon p’—m? p?—m? ap? '
scatteringT matrix at the tree level. Usingp, it involves ] )

pole terms only and reads one finds that the propagator gets canceled in the second and

higher order terms. Thus, off-shell effects in the pole terms
1 1 through the dependence of the vertex on the scalar variable
Tpo=—ig%u(p’) + : u(p), (14 p? can also be related to contact terms. Equatidri and
p+dg-—m p—¢’'—m (16) are specific examples of this. The above seems to sug-
gest that it is possible to find a representation for an ampli-
where p and p’ are the initial and final nucleon four- tude whereK (g?,w) has no off-shell dependence, i.e., no
momenta, andy andq’ are the initial and final pion four- dependence ow by keeping enough terms in E€L9) and
momenta, respectively. The pole term contribution to The introducing the corresponding contact terms. However, the
matrix for the mixed PS and PV Lagrangianis at the tree  Taylor expansion implicit in Eq(19) is valid only up to the
level, first branch cut, i.e., the pion threshold. Thus, this procedure
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is, for example, not valid in calculations of pion electropro- usually the four-momentum transfer to the particle is used as
duction on a nucleon. In Compton scattering below the piorthe dispersion variable.
threshold the shifting of the dependence on the nucleon in- As shown by Bincel{1] using the reduction formalism
variant mass to contact terms is possible. [8], one may analytically continue both the electromagnetic
The above example also showed how the transformatioand the strong nucleon form factors not only as a function of
in Eq. (8) adds one power of the nucleon four-momentum tothe momentum transfer, but also of the invariant mass of the
the asymptotic behavior of the original vertex, Et0). Two  off-shell nucleon. For the functiok (q2,w) (we henceforth
powers can be added by considering a transformation involvdenote the dispersion variable lby) appearing in the half

ing derivatives, such as off-shell strong vertex, Eq(4), he showed that it is a real
analytic function ofw with cuts along the real axis starting at
p—exd Bysd ¢l (200 w==(m+pu,) and extending ta=o. FurthermoreK (g?,w)

is purely real along the real axis in the interval
—(m+pu,)<w<(m+u_). Thus,K(g? w) satisfies disper-
sion relations, termed “sidewise” to emphasize that the dis-
persion variable is now the nucleon four-momentum,
=/p'?. Using Cauchy’s theorem, one obtains

To leading order inB, this transformation generates the fol-
lowing B-dependent interaction terms

LU= —2mByrys(d ¢) i+ Birys(d $)(d )
—iB(Yd) ys(d ) h—i Birys( P ) i
- - 1 0
—iByYrys(dh)(Ig) —iB(Yd) ys(dP)yp.  (21) ReK(qz,w)=;7> dw’

m+

Im K(g?,w’)
w —w

We readily obtain for the contribution of th8-dependent
terms to the half-off-shell vertex

TE(p’,p)u(p)=B(m*=p'?) ysu(p), (22
. . . ) __provided tha{K(g?,w)| vanishes fast enough fow|—<. If,
which vanishes on shell, as anticipated. Higher powers in thg,, example,|K(g%,w)| approaches a constant fg|—

nucleon momenta can be obtained by using transformationgne must consider a once-subtracted dispersion relation for
involving higher derivatives. Of course, one can performK(qz w):

transformations acting on the nucleon field that induce not
just ap’? dependence, but also a combing@ and g? de-

2 !
+ImK(q, W)},

w’ +w 23

pendence of the half-off-shell vertd?’. For example, the Re K(g2.w) = Re K(q2,p) + (W—Wo) pfoc dw’
transformation y—exp( Bysd*¢)y induces a new term ’ ’ m M+,
B(p,_m)qz'}/Su(p)- 2 2 ’
Observations similar to those we made for the strong form Im K(g“,w’) Im K(g, —w’)
factor can also be made for the electromagnetic vertex in (W —wg)(W' —w) (W' +wg) (W' +w) |’
QED by starting with the QED Lagrangian and transforming (24)

the electron field. The electromagnetic vertex obtained at the
tree level from the QED Lagrangian is simpliey* for on-
and off-shell electrons. Applying the transformation
y—exp(Bd*A)y changes, for example, the half-off-shell
vertex to —i[e+Bg%(p’ —m)y*]u(p). The B-dependent
part of this vertex vanishes on shell, as expected.

wherewy is a “subtraction point,” most conveniently taken
to be the nucleon massj,=m, whereK(q?,m) is (experi-
mentally known. Evidently, if|K(q2 w)| grows like|w|" (n
an integer asw—oo, n+1 subtractions must be performed
which introduce the same number @foriori unknown sub-
traction constants into the dispersion relation. The role of
subtractions in the sidewise dispersion method is important.
We now turn to the method of sidewise dispersion rela-Since we only knovK (qg?,w) at the on-shell pointy=m, a
tions which seems to suggest that one can uniquely obtaiieed for more than one subtraction will spoil any possible
the off-shell form factor from experimentally measurable Predictive power. In cases where the vertex function is not
phase shifts. There are two main issues we would like tknown at the on-shell paint, as, e.g., in the electromagnetic
address here. The first is where does the representation d¢ertex of the nucleon, even one subtraction will destroy pre-
pendence discussed in the previous section enter the sidewidietive power. ) ) )
dispersion relation method. The second is the validity of cer- For our discussion below we are interested in the case
tain approximations, related to the treatment of inelasticvhere the pion is on its mass shell, i.e.,Kifm?%,w). It is
channels, that have been used in the literature. Dispersio#seful to note that starting from ER4), one can obtaif1]
relations are expressions relating the real part of a function,
such as a Green'’s function, to a principal value integral over ) 5 (w—m) ol
its imaginary part. Physically, the requirement of causality|K(mz,w)|=|K(mZ,m)[ex - Pf dw'’
implies the analyticity properties of such functiof28] Mty
which allows one to obtain dispersion relations. Scattering [ d(W') d(—w')

Ill. SIDEWISE DISPERSION RELATIONS

amplitudes, for example, are real analytic functions of the }
energy E when regarded as a complex variable, i.e.,
f(E)=f*(E*). In the case of form factors of a particle, (25

wW-—my(w —w) (W +m)(w +w)
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where ¢(+w) is the phase oK(mZ2,w) along the positive diate states. Unitarity provides féf, which is now a vector
(+) or negative(—) cut. ThusK(m?2,w) can be determined in the space of the different reaction channels, the constraint

if these phases are known. [1,3,6
So far, dispersion relations just reflect analyticity proper-

ties of Greens functions and are void of any predictive

power. This changes when one makes use of unitarity COMHere,F L andF are phase space factdsee Appendix A

straints that provide additional relations between the real ang,. ihe ~NN form factor, this constraint can be written as

imaginary parts of the Green’s function. The simplest ex-

Im K=F 1TFK*. (32

ample of the power of using analyticity and unitarity in con- Im Kw(min)= o(|w]| —m—Mw)Tm(W)KfT(mfﬂW)
jucntion is the forward amplitude for the scattering of light
with frequencyw from atoms. Unitarity implies that the for- +0(|w|—wp)A(w), 33

ward amplitude for positive frequencies is related to the total . o :
cross section through the optical theorem wherews is the threshold energy of the first inelastic chan-

nel. The first term on the right-hand side of E§3) arises
o from the intermediate pion-nucleon two-body state and the
Im f(w)= yp ol®), >0, (26)  second term represents contributions from intermediate
states with higher masses, e.gaN, 7N, KA, etc.
Forw<wsr, the last term in Eq(33) does not contribute

leading, with one subtraction, to the famous Kramersigo i .
9 s and one sees from this equation that the phase of the form

lati . .
relation factor for themwNN vertex, ¢, =Arg(K ), is determined by
Re () —Re f(0)+ w2 pfxdw' O W) - the elasticrN phase shift, defined in E¢30),
w)= ~ D 72 o\
27" o (0'%- ) gL 2ReT,, o
| o | $a=Or=p AN i, 3
which allows the determination df w) from the experimen-
tally measured total cross section. We note that since the phase shift is a representation-
For the meson-nucleofl matrix, unitarity implies the jndependent observable quantity, both the real and imaginary
well-known matrix equation parts of the representation-dependent off-shell form factor,
" ReK, and ImK ., must change under a field transformation
Im T=TT7, (28)  such that the phasej, =arctarflm K /ReK ), remains un-

changed fomw<w-.
The use of the dispersion technique to obtain the vertex
nction K(w) for w#m with only experimental input faces
roblems in practice. In order to obtain the off-shell form
actor from Eq.(25), the phase must be known up to infinite
energies. Therefore, it is clear that one must make approxi-
mations about the behavior of the elastic phase shift for high
energies and also about the contributions coming from the
inelastic channels fow>w;. Two such approximations
have been proposed in the literature.

The simplest assumption is to ignore inelastic contribu-
tions, i.e., seA=0 in Eq.(33), which would be justifiable if
the dispersion integral is dominated by the interval where the
contribution fromA is small compared to the elastic term.
This is referred to as the “threshold” approximatiph]. It
amounts to assuming that E@4) remains valid for all en-

from which the optical theorem follows. This equation as-
sumes a simple form after projecting onto states of total ang,
gular momentuml, parity P, and isospinT. We will con-
sider in the following sections a simple situation where ther
are two reaction channelsN and »N. The T matrix may
then be written in the general form

od codl |
7 (pe?%=1) 3 1-plelo" o)
s d | s d
L T=pei5 %) & (pe?%-1)
wherel labels the quantum numbeds P, T, and the two-
body channels are denoted byand 7. FurthermoreﬁL, and

5',] are the elastic scattering phase shifts faX and nN
scattering, respectively, given by

T= , (29

2ReT! ergies and allows one to evalud€w) in terms of the elas-
tan m]:m i=m,7, (30)  tic phase shift. As shown in Reff6], the threshold assump-
i

tion implies p?=1, which is quite unrealistic as soon as one
. _ . gets above the threshold for therN channel.
and p, is the corresponding inelasticity parameter. The To avoid this problem, Epsteii§] adopted in the disper-
matrix is symmetric since time—revers:lsll ir]variance has beeg;y, analysis of the off-shelNN form factor a suggestion
assumed. Below the threshold, onlyT ", is nonzero, and  ,y Goldberger and Treimdir] which leads to a differerad
the familiar elastic form off is obtained: hoc prescription to deal with the dispersion integral. Con-
| i sider the right-hand side of E¢33), which, although it in-
Taz=sin e’ (3D volves complex quantities, must nevertheless be real. This
leads to the following conditions for the combined effect of

Forw>0, T, describesN scattering in theP; partial  the inelastic states contained in the complex quarity
wave (I =1/2",1/2) and forw<0 scattering in thés,, partial

wave (1=1/27,1/2). The consequences of unitarity for ReA=ImK_,—ReT_ . ReK_ —-ImT_.ImK_,
K(m2,w) may be obtained by looking at its absorptive part
which receives contributions from physical on-shell interme- ImA=ReT,,ImK_—ImT_. ReK_. (35
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Epstein assumed that the inelastic channels will not generatbe two resulting equations are, in fact, identical because of
a significant real part foA, i.e., ReA=0. This leads to a the unitary constraint for th& matrix. To see this, notice
different expression for the phage of theK _form factorin  that InK=F “1TFK* implies both
terms of the elastierN T matrix [6],

Im K=F~}ReT)F(ReK)+F~1(Im T)F(Im K)

ReT,,. (40
¢w=arctar<w)
o and
1 2ReT . (1-ImT_.)
=3 arctarE 1-ImT.)?—(Re Tqm)z)' (36) (Im T)F(ReK)=(Re T)F(Im K). 41

In the rest of this paper, we will refer to this approximation Using Eq.(41), Eq. (40) reads

for simplicity as the “Goldberger-Treiman” approximation.
Of course, by setting IMA=0 as well, from Eq.(35) we
would then again obtai,= 5'7,, the threshold approxima- =[1-ImT]JReT 1 ImT
tion. Below the inelastic threshold, the unitary constraint, Eq.
(28), reads(Im T,,)?>+(ReT,,)>=Im T, and simple in- =ReT. (42)
spection shows that Eq&34) and (36) agree, but above the . . . .
inelastic threshold they can be quite different, especially if aUs[rng the real part of thze unitary condition for thiematrix,
resonance is presefsee Sec. IY. The general problem of |1 =Im T, yields(ReT)"+(Im T)*=Im T, while the imagi-
the choice of the phase above the inelastic threshold was al§ig"y Part results in the vanishing of the commutator
discussed in connection with the dispersive analyses of thex€T,Im T]=0. This shows that Eq42) is just theT-matrix
pion elastic electromagnetic form fact@s]. unitary constralr_nt ar_1d the real and imaginary p_arts of Eq.
Even knowing all the relevant-matrix elements, it is not (40) do not provide independent equations allowing the de-
at all straightforward to solve fog,.. To illustrate this, we (€rmination of the phase &t from the on-shelll matrix.

stay with the case when there are only two channels present, 1S does not necessarily imply that sidewise dispersion
the two-body states wN and #N. Defining relations cannot be used to determideg(provided that one

F 1-Im T]F(Im K)=F (ReT)F(ReK)

K(+w)=K(mZ,+w), we find from Eq.(32) that subtraction is enough but more work needs to be QOne.
Above the eta threshold, we can use Egj7) to determine
Im K, (+w) =T+ w)K* (+w) Im K in terms of Re&K and the on-shell' matrix. This may

then be substituted into E@24) to obtain a coupled set of

Fredholm-like integral equations for Re The problem, as

shown below, is that between the pion and eta thresholds,

Im K, is expressed in terms of an off-sh&Hmatrix element;

Im K”(_{_W):T':]]r}l(_}_w)K;(_{_W) it might then be possible through dispersion relations to de-

termine T™” at the needed off-shell points in terms of on-
Fror _p11 . shell information. A more detailed investigation of this pos-
te= T (FWKZ(+w),  (37)  sibility is beyond the scope of this paper.

K In the (hypothetical case of a single channel system it
and similar equations foK(—w). In the two-channel case, seems to be possible to determine the phased thus also
the termA in Eq. (33) is the function K(w) for the off-shell vertex in a model-

independent fashion using the observable phastthe on-
q,(E,+m) shell T matrix. This appears to be in contradiction with the
q,(E,xm)’ (38 observation in Sec. Il that the off-shell form factor changes

when we carry out field transformations. How can this be
whereq,,,, is the (7)) three-momentum in the c.m. frame reconciled with the sidewise dispersion relations that express
andE )= \/qzw(,})erz. Asfor T,,, forw>0T, is given K(W) interms of observable quantities? '
by theJPT=1/2*,1/2 partial wave while fow<0 it is given The answer lies in the fact that in the sidewise dls_per5|_on
by the 1/2,1/2 partial wave. relation approach the number of necessary subtractioas is

Equationsg(37) seem to provide the desired constraints fc)r.prlorl unknown. Indeed, different choices of the nucleon-

. interpolating field will, in general, lead to different asymp-
extracting the phase#,=Arg(K,) and ¢,=Arg(K,) from ) .
the meson-nucleofi matrix without resorting to any of the t?\t/'gnbﬁhg\é'grsu oilflutgt(raa?eﬁ:[i?se” c1:T)nrtm g?c)cr;oré(;'lg;a Vsé(asrggles
aforementioned approximations. First, one eliminates th ) point.

. . hatK(w)=g, i.e., is of order 1 agv—0oc. On the other hand,
magnitudes|K ;| and |K,| from Eq. (37). Since the phase i )
space factors cancel out, one obtains the vertex function, Eq13), obtained from the transformed

Lagrangian, is of ordew at infinity. Thus, the “representa-
2 a (bt b)) —Tgi _ ~i¢al g _ —i¢ tion dependence” in sidewise dispersion relations shows up
T 7SN Gy Tame 0elsin @y = T8 100, in the a priori unknown needed number of subtractions. As
(39 previously remarked, any predictive power of the sidewise
The real and imaginary parts of E(R9) provide two equa- dispersion relations method will be lost if tw@r more
tions that should allow the determination ¢f and ¢, from  subtractions are necessary since we only know the form fac-
the T-matrix elements. However, this is not possible becaus¢or at the physical pointw=m. Another way to im-

E-
7m +P11
+ F_;W T,n_n('i‘W)K;(-FW),

A(=w)=T,, (WK} (=w)
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prove the convergence of the dispersion integral is to constudies of Sec. Il beyond the tree level.
sider the derivative oK(w). However, none of its deriva- We construct a unitary’ matrix based on the toy model
tives with respect tov atw=m are known and, therefore, no meson-nucleon Lagrangid@9]
information about an off-shell point can be obtained.

As dispersion relations do not depend on a particular La- 1 ) — —
grangian, it is useful to look at the above discussion for the L= 5 (9, P*® =P M D)+ y(id —m)y—igysCPy
vertex functionK in a different way and to contrast it with
the dispersion relations for the pion-nucleon scattering am-
plitude. Consider the unitarity constraint, E§2): evidently,
it remains valid under the replacemeidt—f(w)K, where
f(w) is a real function ofw, reflecting a different off-shell - apart from the conventional fermionic part describing the
behavior. Iff(w) is a polynomial inw and one ha$(m)=1,  nycleon with massn, we take into account two isoscalar

then the analytical properties ¢f are not changed anl  mesons, given by the two-component fididand their mass
still satisfies a dispersion relation. However, in gendl@-  matrix M:

ditional) subtractions will be needed, and these subtractions

+ %%p/\qnp. (43)

have to be done at unphysical points# m, and, therefore, - P 0
cannot be done model independently. When using the disper- o= , =" ) , (44)
sion relation approach for th& matrix, we also may need K 0 uy

subtractions to make the integrals converge. However, for ) )

this purpose we can do these subtractions at different enewhere we use the suggestive names “pion” and “eta.” We
gies where we have experimental information about The assume a pseudoscalar three-point meson-nucleon coupling
matrix. In some cases, this makes it possible to determine tHe. and a scalar four-point meson-meson-nucleon coupling
pion-nucleonT matrix at an unphysical point through disper- where

sion relations, while the off-shell form factors can never be

uniquely determined. Notice also that our discussion does O Now Ny
not imply that dispersion relations for the electromagnetic G= 9, A= A Y
form factor, with the momentum transfgf as the dispersion e

variable, show anyzrepresentation dependence. In this casge A matrix has the dimension of an inverse mass, wéile
the form factorF(q) can be measured for a number of is gimensionless. The nonvanishing off-diagonal elements,
values of the four-momentum transfgf. N, and\, ., couple the two meson channels. For simplicity,
\,IA\V)e make the choice\,,=\,,=\..\,, (see Appendix
While we cannot solve this model exactly, it is possible to
In the previous section we have discussed two inherergelect an infinite subset of diagrams which satisfies the nec-
difficulties of the sidewise dispersion relation approach ap€ssary analyticity and unitary properties. We do that by treat-
plied to the off-shell form factors. The first one is ta@riori ing the three-point G” coupling to leading order only,
unknown number of subtractions, which reflects the “repre-while summing higher order contributions generated by the
sentation dependence.” The second difficulty is related td' A interaction. Only two-particle intermediate states, i.e.,
determining¢, the phase of the vertex function, in terms of 7N and »N, but not w#N or n«N, are considered. Our
observable physical quantities: one is, in general, unable tapproach does not satisfy crossing symmetry and, moreover,
properly take into account the contribution of all possiblethere are no meson loops that connect the incoming and out-
intermediate states to the absorptiimaginary part of the  going nucleons; they would be either of second ordeGin
form factor. With respect to this second difficulty, two ap- or have three-particle intermediate states. This selection of
proximations had been proposed in the literature; the threstsontributing diagrams does not generaigalependence for
old approximation, Eq(34), and the “Goldberger-Treiman” the form factor(in other words, what one usually refers to as
[6] approximation, Eq(36). In this section we study these the “on-shell” form factor is trivial in this mod¢l However,
approximations by using a model with a nucleon-it does generate a nontrivial dependence on the invariant
interpolating field that leads to & satisfying a once- massp’? of the off-shell nucleon and satisfies two-body uni-
subtracted dispersion relation. Even after assuming the validarity. We should also emphasize here that the truncation to
ity of only one subtraction, a precise determinationkof “two-body unitarity” is an approximation, but it is the va-
through the dispersion relations remains extremely difficuldidity of the approximations made on top of our assumptions
(if not impossiblg. It is, therefore, interesting to see in the that we wish to test here.
framework of a simple model under what circumstances the The diagrams that can contribute to meson-nucleon scat-
two approximations to the phase discussed in the previouring with our restrictions are shown in Fig. 1, and those
section can be trusted to give reasonable resultKfav).  contributing to the half-off-shell meson-nucleon form factor
Indeed,K(w) has already been “extracted” from theN in Fig. 2. The external and internal mesons may be either
phase shifts using the Goldberger-Treiman approximatiopions or etas. As the A” interaction is separable, we can
[6], but the approximation itself has not been examinedexpress the geometric series for tiematrix in a closed
Since we will use a meson-loop model, this allows us also tdorm:
examine, e.g., the behavior of the absorptive part of the
strong form factor under field redefinitions, extending the T=A+ATA+ATATA+---=(1—AT) A, (46

(49

IV. A COUPLED-CHANNEL, UNITARY MODEL
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FIG. 1. Diagrams contributing to the on-shell meson-nucl&anatrix [Eq. (46) in text]. The dashed lines denote either a pion or an eta
meson and®) stands for a\-type coupling.

whereZ=diagZ,, Z,) is a diagonal matrix whoserm) and The half-off-shell strong vertex in our model is generated
(nm) entries are pion-nucleon and eta-nucleon loop integraldyy the series in Fig. 2, and gives

respectively. The interested reader is referred to Appendix A

for details of results stated without proof throughout this [T3(p’,p)]Tu(p)=ysG'[1-Z(W)A] *u(p)

section. The integral8, and, therefore, th& matrix, depend —T5(p",p)u(p)

only on the total center-of-mass momentum squared, '
s=w2=_(p-!-q)2, and have no angular dependence. Using =yg[1-AZ(W)] *Gu(p). (49

the projection operators defined in E&) and the standard

partial wave projections, it is easy to show tiat projects  Here, the transpose acts on the channel space indices only,
only into the f,, partial wave andP_ only into thef,_  andw=/(p+q)Z. With our assumptions, the pion-nucleon

partial wave, that is strong vertex function reads
T=T°"P,+7TYP_. 4 =Ny La(W W+M
. @7 = LR IGhe T,
1=\ Z (W) =N\, T, (W)

Taking into account the appropriate phase space faEtpits
can be showrisee Appendix Athat T=F7F, satisfies uni- where we have ignored graphs of or@(G?) and higher, as
tarity for [w|<m+M, whereM is the cutoff needed to regu- well as intermediate states with more than two particles. Me-

larize the loop integralg, son loops on the on-shell nucleon need not to be considered
since their contributions can be absorbed in the definition of
Im(TS) =TS TSHT, (48)  the on-shell vertex. The vertex functiét(w) is determined

through theP-wave on-shell scattering amplitud&®*(w),
and analogously fof °*%. Thus, theT {; may be written inthe  andK(—w) by the S-wave on-shell amplitudelS*(w). In
form given in Eq.(29) where 5',7(5',]) are the pion(eta  the examples below, the values@f andg,, will be varied to
phase shift¢S wave forl =0 andP wave forl =1) andp are  change the ratio of the on-shell form factdks,(m)/K .(m).
the corresponding inelasticitigg =1 below the eta thresh- As shown in Appendix A, the unitarity equation féf,
old, wy=m+u,). For a numerical study of these form fac- Eq. (37), is satisfied in this model below the cutoff. As men-
tors we take f0|m andu,. 0.939 GeV and 0.14 GeV, respec- tioned above, below the pion thresholey|<m+u., one
tively, and chooseu, to be 0.42 GeV, since av=1.36 has ImK=0. Between the pion and eta thresholds,
GeV=m+u,, the Py, inelasticity starts to deviate from m+pu, <|w|<m+pu,, we have
unity. The A couplings are chosen to reproduce some quali-

tative features of the physical pion-nucleon scattering phase Im K (+w)=TEUK* (+w),
shifts and inelasticity, in particular, a resonance appearing
above the inelastic threshold. While the acta® scattering Im K, (+w)=(F_ 2T K% (+w), (51)

amplitude exhibits this feature in both tig, andS;; chan-

nels, our model is too simple to simultaneously producewhere 791! is the 7y matrix element multiplying theP _
resonances in both channels. We therefore concentrate on thperator in Eqs(47) and (A8), in this case evaluated at an
P,4 channel, and show in Fig. 3 the phase shifts and inelassff-shell point. Although the form of Eq51) is specific to
ticity parameter obtained with_,=0.5 MeV ! andx,,=0.8  our model, it is true, in general, that Ik, is nonzero be-
MeV 2, which leads to a resonance in tRg; channel with a  tween the thresholds and in this region is related to off-shell
substantlal inelasticity. This parametrization yieldsquantities.

K,(m)/K (m)=—0.87. As mentioned, the presence of a fi- Let us now discuss the dispersion relations for the off-
nite cutoff violates unitarity fow>m-+M, and we, there- shell form factors in this model. While the presence of the

fore, use a large cutofil =10 GeV. cutoff violates unitarity, it does not affect the validity of the
q
| | | |
! 7= 1,777
= —_—— + —6—6— + ¢ 4 & +

FIG. 2. Diagrams contributing to the half-off-sh&il>=m?, p’2# m?) meson-nucleokstrong form factor[Eq. (49) in text]. The dashed
lines may denote either a pion or an eta mes@, stands for aA-type coupling, andO) for a G-type coupling.
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FIG. 3. Inelasticitiegdotted line3, the pion-nucleon phase shift FIG. 4. Various approximations for determining the pion form
in radians(solid liney, and the phase of the pion-nucleon form factor K (solid=threshold, dot dashedGoldberger Treiman
factor (dashed linesfor the S;; andP;; channels in our model with ~ compared with the model prediction fét,. for two choices ofG
parameters.,,=0.5 MeV %, \, =0.8 MeV !, g, =—g,=2. couplings corresponding  toK,(m)/K (m)=-1 (dotg and

K, (m)/K (m)=+1 (dashe}

dispersion relations. Because of the choice of a large cutoff,
the dispersion integral has largely converged by the time théhere is a resonance in the scatteringatrix, as happens in
cutoff is reached. It is well known that the functiofig and ~ reality for 7N scattering as well as with od;; phase shifts.
7, satisfy once-subtracted dispersion relati¢dg]. K, and Our model allows us to put these previous analyses into
K, have the same analytical structuresZgsandZ,,, apart perspective and to confirm our qualitative expectations. In
from possible additional poles on the first Riemann sheetFig. 4 we show the exact model results #y. with g and
Furthermore, the number of needed subtractions may be dif},, adjusted to givek ,(m)/K (m)=—1 and 1, all other pa-
ferent, but it is easy to establish in our model tikatalso  rameters as in Fig. 3. As expecteld, obtained from the
satisfies a once-subtracted dispersion relation. On the oth#treshold assumptio(solid lineg displays a rapidv varia-
hand, the existence of poles in the compleylane is more tion because of the resonance in thg channel(see Fig. 3},
difficult to assess. We have simply established their absencghile the Goldberger-Treiman approximatiddot-dashed
numerically by showing that the once-subtracted dispersiofines) leads to a rather smooth energy dependencé of
relation is satisfied to six significant figures fer2 Gev ~ Whether the Goldberger-Treiman or threshold approximation
<w<2 GeV. is better cannot be answered in general. It depends on the
In the analysis of the pion-nucleon vertex function bydetails of the dynamics. AtK,(m)/K_ (m)=-1, the
Epstein[6] and by Bog3], it was found that the Goldberger- Goldberger-Treiman approximation seems to work well,
Treiman approximation leads to a much smoother off-shelivhile at +1 it is the threshold approximation that works
behavior ofK than that in the threshold approximation. This well. We, therefore, conclude that neither approximation
can be easily explained: if one uses the threshold approximanay be trusted a priori at any. Figure 4 shows that there
tion, the phase of the form factor is given by the scatteringcan be large discrepancies between the exact model result
phase shift and we, therefore, expect the funckoto show and the phase approximations even in the vicinity of the
resonance behavior. When theNN phase shift passes on-shell point.
through #/2 the threshold approximation to Re will As shown in Fig. 3, the inelasticity deviates significantly
change sign and IrK peaks. On the other hand, using the from unity for large values ofv. That the qualitative features
Goldberger-Treiman assumptio,. is constrained to be in of the two approximations discussed above are not because
the interval —@/2<¢_<m/2. This is easily seen from Eq. of this large inelasticity was confirmed by considering an-
(36) with p<1, which impliesT . .<1. Therefore, R& will other parametrizatiofresults not shown A resonance in the
not change sign since, does not pass through/2. Thus, P;; channel can also be obtained with, exg,,=0.5 MeV !
we expect that the Goldberger-Treiman approximation willand \,,=0.05 MeV 1. Since Nyr=Nzp=VNgz\,,, this
generate a smooth off-shell dependence, while the thresholtbrresponds to a much weaker coupling between the chan-
assumption will generate a more rapid dependenc&oh  nels and the inelasticity remains close to one. The same fea-
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V. SUMMARY AND CONCLUSIONS

14 T T T A |

Sidewise dispersion relations have been suggested in the
literature as a method to obtain the electromagnetic and
strong half-off-shell form factors of the nucleon. These form
factors enter in calculations of, e.g., nuclear processes or of
two-step reactions on a free nucleon where one includes the
structure of the nucleon in terms of dressed vertices. We
have focused our discussion on the strong pion-nucleon ver-
I ] tex, where sidewise dispersion relations relate the half-off-
og L . 1 - L. shell strong form factor to on-shell meson-nucleon scatter-

-32 -18 16 a2 ing. Two aspects of this approach were examined, its
representation dependence and the validity of approxima-
03 — — : : tions that have been used in the literature.

The strong vertex, or three-point Green’s function, is not
uniquely defined when one or both nucleons are not on their
mass shells. They are dependent on the representation one
chooses for the intermediateff-shell) fields and, therefore,
cannot be unambiguously extracted from experimental data.
In order to illustrate this representation dependence and to
show how it enters in the sidewise dispersion relations, we
used unitarily equivalent Lagrangian models. Starting at the

. . . L , , tree level, we showed how off-shell vertices do change under
~32 -16 0.0 16 3.2 a change of representation, while the on-shell vertices are
oblivious to such changes. We then showed how in on-shell
amplitudes corresponding to two-step processes, this repre-

FIG. 5. The eta-nucleon form factor. Parameters as in Fig. 3. sentation dependence of the vertices manifests itself through
contributions of pole as well as contact terms. This means
that what one would call off-shell effects resulting from a
tures as in Fig. 4 were found, thus casting doubt on the use ofertex in an amplitude in one representation are related to
the threshold approximation in general. In fact, the thresholdontact terms in another. We then showed how the changes
approximation requirep, =1, while the Goldberger-Treiman of representations can change the asymptotic behavior of the
is too restrictive to allow for a resonant behavior of the formoff-shell form factor, thus requiring a representation-
factor. Thus, neither of these approximations can be exdependent number of subtractions in the dispersion relation.
pected to be satisfactory. In other words, representation dependence enters the side-

The above observations are not based on some specifizise dispersion analysis through the number of necessary
detail of our model, but on rather general properties such asubtractions. As the form factor is only known at the on-shell
the existence of resonances in thenatrix. The dependence point,w=m, only one subtraction constant is known and the
on the details of the underlying reaction mechanism that waidewise dispersion analysis, thus, has no predictive power
have shown with our simple model probably underestimatefor the vertex function. We showed at the one-loop level in
the real situation. In our model, the off-shell variation atperturbation theory that not only the real, but also the “ab-
positive w is mainly because of the resonance in i  sorptive” imaginary part of the half-off-shell form factor,
channel. For example, th®;; resonance inmN scattering, related to open physical channels, exhibit this representation-
absent in our model, would afflict the negatiwesector as dependent asymptotic behavior.
well. Even when one chooses a particular representdtien

It is also interesting to look at the model results for the etaassumes one subtractipne still faces problems when try-
form factorK, (w). The results for the same set of couplings, ing to obtain the corresponding off-shell vertex functions.
A, G, as in Fig. 3, are shown in Fig. 5. Because of theThese difficulties arise because of the contribution of inelas-
simplicity of our “toy model,” the results again only illus- tic channels, i.e., other thanN intermediate states. These
trate some general qualitative features. At negative energieshannels contribute through the unitarity constraint that re-
we see very pronounced effect because of the pion and etates the half-off-shell vertex function to the meson-nucleon
thresholds. This effect is not visible for positivesince the T matrix, or scattering amplitude. Approximations how to
P-wave phase space suppresses the cusp. It can be seen i@l with these channels in an ad hoc fashion had been pro
K, is complex even below thg threshold and displays some posed in the literature, but their validity had not been exam-
rapid energy dependence around ththreshold. These fea- ined.
tures arise because of the branch cuts associated with the In order to study these recipes, we introduced a very
thresholds, and, therefore, should be general features of trgmple coupled-channel, unitary model for the pion-nucleon
functionK, . The magnitude of these effects will, of course, system, where the inelastic channel is represented byNan
depend on the model. Nevertheless, this casts doubt on thetermediate state. We first established that the half-off-shell
use of simple tree-level amplitudes with real coupling con-form factor in this toy model satisfies a once-subtracted side-
stants to extract theyNN coupling constant, for example wise dispersion relation and then compared this result to the
from photoproduction of etdS1]. results obtained from sidewise dispersion relations using

12

Re K

1.0




2238 R. M. DAVIDSON AND G. I. POULIS 54

thesead hocprescriptions. We found that differences among We may now writeZ,=mZ°+ (p+¢)Z:, and defining
the approximations and the exact model result for the offA,=(w?+m?— w?)2—4w?m?, we find, for the imaginary
shell vertex functions can be sizable, particularly whven parts,

lies in the vicinity of resonances of the matrix, where the

two prescriptions we tested produce very different results. 70— 1 A _

We found that which of the two prescriptions is better, i.e., is M IL=T67 w2z Q) ~[ui—-M],

closer to the exact model result, depends on details of the

dynamics assumed in the model. Therefore, neither of the .1 wrmP—ud) A

two approximations is a priori preferred, and the results one M Zy =7+~ W2 w2 0D —[ui—M],
obtains by using such recipes remain questionable. (A%)

We conclude that, in practice, sidewise dispersion rela-
tions cannot provide reliable and unique information abouwhile the real parts are given by
the structure of off-shell nucleons. The number of required

subtractions is representation dependent and thus a priori un- _ J’l 2 2 2
known. Even if one chooses a particular representation, the Rez?_l&-rz 0 dx w5+ B+ me| = [ ui—M],
inclusion of the other reaction channels cannot be dealt with

without approximations. The off-shell vertex, which has a 1 1

much more complicated structure than the free vertex, thus ReIil:W f dxx In|w?+ Bix+m?| —[ i —M],
cannot be extracted from experimental data, but should in- 0 (A5)
stead be consistently calculated within the framework of a
microscopic theory. Such a calculation will yield the dressedwith 8,=(u2—w?—m?). We now make the choica .
off-shell vertices and the concommitant contact terms. The=) =\ X, which considerably simplifies the formu-
proper interpretation of future high precision measurementgas, renderingZ of the form

of intermediate energy processes depends crucially on our

ability to carry out such consistent calculations in realistic 1
microscopic models. Tij=Ajj a+(p+4)b’ (AB)
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T= 2t wh P++a—wb P_. (A8)

APPENDIX A

As our T matrix has nox=cos# dependence, it is easy to

show using the standard partial wave projections tat

projects only into the¢®" partial wave and®_ only into the

17 partial wave. The formalism for meson-nucleon scatter-

(Zz O AL ing is well known[30] and need not be repeated here. We

1o 7, (AL) only mention that phase space factors must be included in
the T matrix, Eq.(A8), that is, in terms of the partial waves

. . (=P ; _ == P
describes the meson-nucleon loop Feynman integrals that apy ; it is the objectT;; = y[q;[|q;|f;;” (no sum ovei ) that

pear on the right-hand sid®HS) of Figs. 1 and 2. Thus, satisfies the simple unitarity equati¢®8). Including phase
space factors, we, thus, obtain

Here, we present some details of our model calculation
The integral matrix introduced in E§46):

Ti(w)=—i a' ! ! (A2) s11 1
| @m* (= ud) (p+4—k—m) T grwwbray 7 (A9
wherew= \/(p+q)2. Equation(A2) is made meaningful by P11_ 1 o (A10)
Pauli-Villars regularization of the meson propagators: b 8ww(wb—a) " "’
i i i where F =F“AF*, with F~*=diady|q,|(E,xm),
Y R e VL (A3) Vg, l(E,xm)], i.e.,
1 |
N
For simplicity, we will use the same cutoff malsk for both Fr= — . (Al
the 7 and » propagators. =t 1
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Here,f ;=\ .|q,|(E,=m) (and similarly forf}) and the
+(—) sign is associated witdS*{(771Y), respectively. We
now show that unitarity is satisfied. Notice that is of the
form 7;=+hh{ and thus (F*)’=Tr(F*)F*. Using
(W2+m?—u?)=2wE,; it is easy to inspect that Eq$A4)
and (A7) imply

—87w Im(a+wb)=f_+f = —8ww Im(a+wh)F"

=Tr(FH)FH=(F)?

1 Im(a+wb)
= 8aw |a+wb|?

1 1
~(87w)? [a+wb|2 (F)*=Im(T>

— TSll( TSll) T

(A12)

and analogously for”'%. Notice that, forw=M +m, the
extra terms 1;— M] contribute to the RHS of EqA4). As

a result, Eq(A12) is spoiled and unitarity is violated. How-
ever, we will takeM large enough so that this violation of
unitarity is of no practical consequence.
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Im K(+w)=8zw(F ) * Im(TP*)(F )" 'A~1G
=87TW(F_)_1(TP11)TTP11(F_)_lA_1G
=8aw(F 1) " YTPIYTF~(F )1

XTPYFT)7IATG
=(F ) HT"HTF K(+w)

=(F) " HTPYHFK*(+w), (A16)
where, in the last step, we have taken the complex conjugate
of Eq. (A16) and used the fact that is symmetric so as to
cast Eq.(A16) in the form of Eq.(32). Similar equations are
found for K(—w) with F~—F" and TP T Notice

that we have tacitly assumed thathas an inverse, but we
have chosen\ such that this is not the case. However, we
have explicitly checked that E¢37) remains valid.

APPENDIX B

Here, we study the effect of field transformations on the
absorptive(imaginary part of the strong form factor. To do
this, we must go beyond the tree level. Ideally, we would
like to perform the transformation, Eq8), to the one-

Let us next consider the unitarity constraint for the strongchannel version of our model, E¢43), checking that the

half-off-shell vertexI®u(p) given by Eq.(49). Writing 7'in
terms of the unitaryl matrix,

T=87wW[(F ") 'TS(F)~'P,

+(F) TP E) P, (A13)

and using the definition of; Eq. (46), we obtain

I°u(p)=y5(1-AZ) *AA~'Gu(p) = ys7TA " 'Gu(p)
=8awys[(F") 'TSHF) 1P,
+(F7)71TP11(F7)71P_]AflGu(p)
=8mw[(F) ITSHF*) 1P
+(FT)TITPHET) TP AT G ysu(p),
(A14)

where we have usegsP. =P~ ys. Using Eq.(3), we find
K(+w)=87wW[F ™ (w)] *T"Y(w)[F~(w)] A 1G,

K(—w)=8mw[F " (w)] TS*(w)[F*(w)] A 1G.
(A15)

Thus, K(w) is related to theP-wave on-shell amplitude
TP(w) and K(—w) to the S-wave on-shellT-matrix am-
plitude TS*(w). Taking the imaginary parts of both sides,
we obtain

off-shell form factor shows a different asymptotic behavior
while remaining invariant on shell. To first order | we
obtain

_ _ A —
L' =Li=i(g+2mpB)hysdpit Burys(d )yt 5 v

+iBNYysd®y, (B1)
whereL; represents the fregkinetic) part of the Lagrangian.
However, the equivalence theorgmepresentation indepen-
dence of on-shell form factorenly holds if all diagrams to

a given order are included. In particular, diagrams that we
have omitted because they do not contribute to the imaginary
part, as for example diagrams with meson loops that dress
the on-shell nucleon as well as reducible diagrams with
closed loops, have to be included as well. Unfortunately, that
means that it is impossible to make a nonperturbative com-
parison since we would have to solve both theories exactly,
without being able to restrict ourselves to an infinite subset
of diagrams as in the previous section.

We can still, however, make a perturbative comparison.
First of all, we can check t®(B8\) that the on-shell form
factors are the same betwekerandL’. That will provide an
example of the representation in-dependence of on-shell
form factors beyond the tree-level result of Sec. IIl. To show
this, we need to take into account all diagrams in Fig. 6.
Notice that diagranjFig. &f)] is present only in the trans-
formed Lagrangian, EdB1). The comparison is most easily
made by examining how the terms proportional to the “tad-
pole” integral

d*k 1
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FIG. 6. Feynman diagrams for Lagrangiah of Eq. (B1) contributing to the form factor at ordegA.

compare for the on-shell matrix elemeftence theu(p’)
spinor to the left as wellbetween the two models. From the the imaginary part? The on-shell form factor has no imagi-
transformed Lagrangiah’, we obtain for the tadpole graphs nary part. For the half-off-shellp?=m?) form factor, the

BNT __
(d')=(d)+ = U(p") ys(2m-+4)

1
5 u(P)

BNT __
=(d)—7u(p’)y5u(p),

AT __

(e')=(e)+ '87 u(p’) gr—, vs(2m+@u(p)

j(—

()~

1

u(p’)ysu(p),

(f")=3Bx7u(p’) ysu(p).

The B-dependent contribution from thHg') and(c’) graphs
can also be cast in terms eby using the Dirac equation for

the on-shell spinors

) d*k i
(b")=iN

(27T)4 kZ_MZ U(p,) p_k_m

X ys(g+2mB— Bkju(p)

1 1

) d*k
:(b)_lﬁ)\j (271_)4 k2

X (m—p+K)ysu(p)

=(b)=BN7u(p’) ysu(p),

_/Lz u(p,) lé—k—m

(B3)

(B4)

(B5)

(B6)

and similarly for(c’). From Eqs.(B3)—(B6), it is clear that

the overall coefficient
Atu(p’) ysu(p) vanishes

1
2 2

of

the B-dependent

1
—>—>+3-1-1|=0,

terms

(B7)

That completes the proof of on-shell invariance. What about

tadpole contributions are real. Tik') contribution is also
real, since, fow=m, A=—u%(4m?—u?)<0 [cf. Eq. (Ad)].
Thus, the only diagrams that can generate an imaginary part
are (¢’) and (c) [obtained from(c’) by taking —0]. We

find

(¢)'=ys{[g+2mB]Z+ BITrAU(P), (B8)

where J is a Feynman integral resulting from the
“pseudovector” coupling and is defined analogously fo
[Eq. (A2) and Fig. 2:

N dk 1 ¢ 1

) em k=2 prg—k-m
o d% (p'—m) (p'—Kk+m)
~) @t -

Jp')=

[ d%
IRET s
=(p'-mZ(p') -, (B9)

wherer is a realc number(i.e., independent of the off-shell
variablew), and, therefore, does not contribute to the once-
subtracted dispersion relation. Thus,

(€)' ={(g—B[p'—mD)I-B7}ysu(p).  (B10O)

We clearly see that the same off-shell operatgr,m),
multiplies both the real and imaginary parts of the intedral
We conclude that the imaginary part of the off-shell form



54 SIDEWISE DISPERSION RELATIONS AND TH.. .. 2241

factor shows a higher power asymptotic behaviowithat is 5 1
representation dependent, in agreement with our arguments  T2u(p)=7ys 77 {G+B(p"+m)— BA7U(P).
based on unitarity. (B13)

As a last exercise that clarifies the points made in this
work, consider the half-off-shell vertex function in the two- Projecting as in Eq2), we see that, since the imaginary part

channel Lagrangians comes solely from the-2AZ term (related to thel matrix),
1 the same line of arguments leading to E415) shows that
Ly=Lp+ > YDAD y, (B11) bothK,, ae{l1,2, satisfy
Im(K,) =F TFK?%, (B14)
1
L2:L+§ YPADY. (B12)  with the sameT matrix. As with K;(w), we renormalize

_ K,(w) such that it is equal to th@hysica) G\ coupling
Here,Lp is given by Eq(7) andL by Eq.(9). KeepingO(B)  atw=m, i.e., the two form factorK,(w) and K,(w) are
terms only(whereg is now a two-component vector such as equal at the on-shell point=m. However, they have a dif-
G), L, is our original Lagrangian, Ed43), whereas the sec- ferent asymptotic behavior in the off-shell variable and,
ond is a different “model,” not unitarily equivalent tb,, therefore, require a different number of subtractions in the
but, nevertheless, generating the sanmatrix (in the sense dispersion relation. Thus, this example shows that knowl-
of Fig. 1). To O(G, B), the off-shell form factor generated by edge of thel matrix cannot uniquely determine the off-shell

L, is [cf. Eq. (49)] form factor.
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