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Time evolution of the chiral phase transition during a spherical expansion
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We examine the nonequilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion
collision, assuming a spherical expansion into the vacuum. We study(#di®ar o model to leading order
in a largeN expansion. Starting at a temperature above the phase transition, the system expands and cools,
finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective
pion mass, the order parameter), and the particle number distribution. We examine several different initial
conditions and look for instabilitiegexponentially growing long wavelength modlashich can lead to the
formation of disoriented chiral condensat&sCC’s). We find that instabilities exist for proper times which are
less than 3 fmd. We also show that an experimental signature of domain growth is an increase in the low
momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison
to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches
the “out” regime much faster and more particles get produced. However the size of the unstable region, which
is related to the domain size of DCC's, is not enhan¢€0556-282(196)02215-1

PACS numbes): 11.30.Qc, 05.70.Fh, 12.38.Mh, 25.75

[. INTRODUCTION the time evolution. This signifies the onset of growth in long-
wavelength modes, which is believed to lead to the forma-
There have been many recent investigations into the forion of DCC's. When we have a case where instabilities
mation of disoriented chiral condensat&CC's) following  form, we then compute the momentum distribution of outgo-
a relativistic heavy ion collisiofl—3]. The original motiva- ing pions and compare to a hydrodynamical model calcula-
tion for studying this problem was the Centauro evddfs tion, assuming local thermal equilibrium. We find a notice-
rare cosmic ray events in which a deficit of neutral pions wasable enhancement of low momentum modes as compared to
observed4]. In a recent worK5], the time evolution of the the hydrodynamical model. This provides an experimental
hadronic plasma produced in such a collision was studied b¥jgnature which can be measured. The implication is that the
using the @4) linear o model in a longitudinal expansion. system is evolving out of thermal equilibrium, which is a
The largeN expansion was used to incorporate nonequilib-necessary condition to have significant growth of low mo-
rium and quantum effects into the problem. After performingentum modes.
numerical simulations to solve the time-dependent equations \y/q prepare the initial state of the system in local thermal
of motion, instabilities were found to exist for only a short ¢ jijiprium, and study the evolution using scale invariant
time, and, thus, no significant amount of pion domains Wou'%nematics ¢=r/t) to model the cooling of the plasma.

be for.med. In th's. Worki we study thg same problem USING & ale-invariant kinematics are appropriate for a high energy
spherical expansion, since at late times the expansion be-

comes spherical. This situation produces the most rapid Cooﬁphlerltc;]altexpansfl_o?d startm? I.rom al point TOléfﬁeﬂ gnd th
ing of the system. We would like to see if the formation of imply that mean-Tield expectation values only depend on the

instabilities in this geometry is more pronounced than in @°TOPer timer=yt“—r®. We incorporate nonequilibrium and
longitudinal expansion. guantum effects through the use of the lahgj@xpansion.
There are two questions which should be examined. First, The paper is organized as follows. In Sec. Il we describe

we want to know which types of initial conditions lead to the the linearo model to leading order in a i/ expansion. We
formation of instabilities in the system, and second, if instathen discuss in Sec. Ill our choice of coordinates and derive

bilities do form, we want to find out if the size of the un- equations of motion for the system. We examine issues of
stable region is large enough to see significant domaimenormalization and choice of suitable initial conditions. We
growth. To answer the first question, we examine the properalso derive an expression for the phase space number density
time evolution of the system, starting a short time after thethat will be used to calculate momentum distributions. In
phase transition, where the lineamodel is appropriate. We Sec. IV we discuss the calculation of the energy-momentum
look for the effective mass of the pion to go negative duringtensor and other thermodynamic relations. In Sec. V we
present numerical results of our simulation. In Appendix A
we look at properties of the radial functions used in the ex-

*Electronic address: melissa.lampert@unh.edu pansion for the quantum modes. In Appendix B we discuss
"Electronic address: john.dawson@unh.edu the transformation of the number density to physically mea-
*Electronic address: cooper@pion.lanl.gov surable variables.
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Il. LINEAR o MODEL

The Lagrangian density for the linear model in a gen-
eralized curvilinear coordinate system is given by

1
£[¢i]=¢—g<x>( 59 ([ (1[0 P;(X)]
A
—Z[¢>?<x>—u2]2], 2.0

where the mesons are in an(4p vectorCDz(a,;r). The
factor of \—g(x), where —g(x)=defg,,(x)], has been

introduced to make the Lagrangian a scalar density. The po-
tential here is the “Mexican hat,” with degenerate minima at

any values of® such that®d?=v2. We will remove this
symmetry by introducing a nonzero current term in the

direction. In this work, we use the convention of an implied

sum over a repeated indéxwhich runs from 1 taN. (Here

N=4.) The counting for the larght expansion is imple-

mented by introducing a composite fiekd=7\(¢>i2—v2).

That is, we add to the Lagrangian a term given[8Y
{X=N@F) —v?T}2/4n.

This gives an equivalent Lagrangian

1 1
L[ x]= ¢—g(x>[ 59 (0[P P[FD]— 5 x D7

v? 1

v -2
+ 2)(-1- X ] (2.2

We can write the action as

Sty i )= | aEL@, X+ g0l ). (23
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1 " v 1 2
EQW(X)[& dil[d"di]— §X¢i

Il ,X]=J d*xv=g(x)

U2

L iNlG‘1 : 2.4
+7X+K)( -I—?n 0 (X,X,X) s ( )

where

[O+x(X)]1Go(x,X"; x) =i 8*(x=x" )= g(x).

I'[ ¢ ,x] is theclassicalaction plus the trace-log term.

Ill. COOLING MECHANISM

A. Coordinate system

At late times following a heavy ion collision, the energy
flow becomes three dimensional. If we assume the entire
flow is spherical, then the system can be described in terms
of the fluid variables

=1,

1 [t+r

n=arctantir/t) 2In =l
wheret= 7 coshy andr = 7 sinhy. We restrict the range of
these variables to the forward light cones<@<», and
0=< <. The variables and » are useful to describe a free
spherical expansion of a plasma into the vacuum, with the
velocity of the fluid identified as =r/t=tanhy [7] when we
are at high energies so that the expansion can be thought of
as coming from a point sourdscaling limi§. Minkowski’s
line element is given by

ds?=d7r?— 72{d 5%+ sintf 5d 6?+ sinif 5 sirfod ¢},
from which we can read off the metric tensor
9,,= diag1,— 7%, — r%sinif5, — r?sintf 5 sirte),
J—g= r3sinttysine.

This can be compared to the Robertson-Walker metric for
spherical geometry, given by the line element

We consider the generating functional, given by the path

integral

2011 [ dixd [ o lexstista, i 1) =exdiwgii 1l

The largeN approximation is equivalent to integrating

out the ®; variables and then performing the remainigg

ds?=dr?—a?(7){d5?+sintt d 6>+ sinf? 5 sir?od ¢?}.

Thus the case we consider here corresponds to a cosmologi-
cal model with a fixed uniform expansion proportional to the
proper timer and zero curvature.

B. Equations of motion

We can derive the equations of motion from the effective

integration using the method of steepest descent. We the&:tion, Eq.(2.4). Varying the action with respect té; and

Legendre transform to find the effective action

P 1=WE - [ db/=g001,00 00,

where

oW
oi(X)= EE@%(X»-

We then obtain, to lowest ordéin largeN),

X gives

[0+ x(x)]di(x)=]i(X)=H &g,

[O+x()]Go(x,x")=18*(x=x")V=g(x), (3.1
and the gap equation
x(X) =N — 02+ $?(X) + NGg(X,X)}. (3.2

In order to give the pions mass, it is only necessary to have
a current in the zer¢o) direction, so thaf y(x)=H =const.
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We determine the parameters in the model by considering 1 9 5 0 g2
the vacuum sector. Spatial homogeneity then gives Barl T a7 + _72_+X(7) $s=0,
Xooo=H, 1 9 9 [(1+1)
——— — | sinfp—|+%+1— —5—|7g=
Sln|‘127] z?"/](smhzn&”/] sl Slnhzn ms1=0,
RSN 2+)\NJk2dk ! 2
Xo=—Av"+tA\og P A 1 9. 9
2k + - i DT _
Xo Sind 70 sm&aa +sin20 Py +I1(1+21)|Y,m,=0.
The PCAC(partial conservation of axial vector currgebn-  are v, (9 4) are the usual spherical harmonics, and
dition gives ¢ (7) are a complete set of functions, discussed in Appen-
dix A.
AL (X)=Hmi(x), In order to satisfy the canonical commutation relations,

we requirey(7) to satisfy the Wronskian condition

YE(T) o 7)— (D (1) = =i 7,

where the overdot means differentiation with respect-to
Therefore we find

where the axial vector current is given by
A (X)=[mi(x) "o (x) = o(x) " mi(X)],

which leads to

H=f.m2. [1.sim( D)2 b g1 (1)]=16 8(S' =) Sy S 17°
and
Since we have defined the vacuum pyoo=m?o,=H, we
then find thatoy=f,. The coupling constank is deter- [éi,slm’éjT,smm/]:5ij5(5'—5)5u/5mmf-
mined by the low-energyr-m scattering data, as described in A
[5]. We are now in a position to calculate?). We shall choose

We now specialize to the case whe# and y are func-  the (Heisenberystate vector such that the bilinear forms of
tions of 7 only. We can see that E(.1) is also the equation creation and destruction operators are diagonal:
for a free scalar quantum field with a time-dependent mass

x(7), which is self-consistently determined by E@.2). <é;’5r|rmrai,s|m>:ns5ij5(5/_5)5”’5mm',
Therefore we can introduce a quantum figdid= ¢;+ ¢; . R -
The equations fofb; are (@)1 m' @ gim) = (Nt 1) 8 5(S" —9) 81+ Sy »

1 9 3 9 <éj,s'|'m'ai,s|m>:ps5ij5(3'_3)5||'5mmm
B\ " ar

[O+x(7)1di(x)=0, (3.3 Heren, andps are the particle and pair densities. They will
be taken to be a function afonly. In addition, we will take
where the four-vectox=(r,7,6,®). Then forG, we find ns to be a thermal distribution in the comoving frame:

+X(7')]¢i(7')=H5io, N y
(&) 11/ @i, sim) = P& 6 8(S" =) 81+ Sy -

1
s— ews( 7o)/ kgT _ 1 ’

Go(X,X ) =(Te{ b(x,7), (X", 7)}), n

where T, corresponds to a-ordered producf9], following . _ \/2—27 _
the closed-time-path formalism of Schwinger. WhenWith @s=VS"/ 7o+ x(7o). We can choosg,=0 for all our

(m)=0, this is the true Green’s function. simulations, since one has the freedom to make a Bogoliu-

. . ~ bov transformation at, so that this is true. Using the results
Following Parker and Fulling10], we expand¢; into a in Appendix A, we then find
complete set of states,

~ *© " <%i2>:fwds(2ns+l)|¢s(7')|22 |yslm(77101¢)|2
(0,0, = j 4SS, [8; amtrel Vel 7,0,8) 0 o

0 Im

»52ds )
+H.c], (3.4 = jo 5.2 (2nst D we(7)]%.
with Therefore Eq(3.2) becomes
Vsl 7,6,8) = 75i(0) Y i1n( 6,), (3.5 =s’ds

X(D)= NN AN [ S nat Dlp P,

and wherey, 7, andY satisfy (3.6
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and is a function ofr only. This completes the derivation of
the equations of motion.

C. Initial conditions and renormalization

The variabler does not allow for a good WKB expansion
due to the singularity at7=0. The transformation
=In(m7), where m is any mass scale(lwe choose
m=m,), maps the singularity ta= —, and allows one to
perform a WKB expansion in the usual manner.
Changing variables ta and rescaling the fields using the
substitutions

Ps(u)=gs(u)e "m?,

$i(u)=pi(u)e "m3?

we get

2

qE*s 2+ x(u)e?/m?|gy(u)=0,

d

1(pi(u)=Hsee>/m™? (3.7

2
2u 2__
[W+X(u)e /m
with

—2u 2()

X(U)Z—)\vz-l—)\zi m3e~2!p;

+)\NJ'SmSZdS
0 2’7T2

with s,,= Ae'/m. Thengg(u) obeys the Wronskian

dgg(u) dgs< )
du

(2ng+HmPe~?|gy(u)[?, (3.9

gs (u) gs(U)=—

From Eq.(3.7), we notice that whery(u)<0, modes satis-
fying s%/ < x grow exponentially inr. However, from Eq.

(3.8), we see that these growing modes will quickly cause

x to become positive wheR is large, as is the case here.
We can now use a WKB ansatz fgg(u):

gs(u) =

1 H Y ! !
mex;{—lfuows(u )dl.l ,

whereW(u) satisfies

(3.9

. ms2ds
(u) 1+)\NJ Sz(2net1);

3(U)

ANFmszdsz +1)m2e—2u
o 2n2(2nstme TS0
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=2xe"2m py(u)p] (u)— pE(U) ]+

and wg(u) = s>+ x(u)e®/m?. We will then take the initial

conditions
Ws(Ug) = ws(Up),
W (Ug) = wg(Up),

which correspond to the adiabatic vacuum. This allows us to
introduce an interpolating number density which interpolates
betweenng(u) and the true “out” densityn,.

By a WKB analysis, one can shdw1] that Gy(x,x) has
quadratic and logarithmic divergences. The quadratic diver-
gence can be removed by mass renormalization. In the
vacuum sector, the mass of the pion is given by €g6),

With xyac=m2=m?:

, o A2k 1
m?=—\o +>\f7,+>\Nf (3.10

0 27 2\kZ+m?’

with cutoff A. We note that if we change variables in the
integral tos=kr=ke"/m, Eq. (3.10 becomes

2
sms“ds 1
2 __ 2 2 2 —2u
me=—Nv°+AfS+AXNmM-e f —_— .
T 0 27 2 /P+ el
(3.11)

Subtracting this equation from E¢B.8), we obtain a loga-
rithmically divergent expression foy:

x(U)=m2+1Y, [mie 2p2(u)—f2]

sms?ds - )
+)\Nf F(an—l)m e u|gS(U)|
0

sms?ds
—)\Nf ——mle 2 (3.12

1
moe M ——m——.
0o 27 2/s?+e?
Note that the last integral imdependenbf u.
The coupling constant is renormalized by taking

1 1 N (A k2dk
N N 872 (K24 m?)32
1 N (sm s%ds a1
N 82, (sZ+elI 313

One can explicitly show by using E¢3.13 in Eq. (3.12
that y(u) is now completely finite.

We will also need the value gf(u) for the initial condi-
tions:

ANA3 (2ng +1)
4 JAZ+ x(u)

x(u)e?! 1
2530 o) |

(3.19
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D. Phase space interpolating number density IV. ENERGY-MOMENTUM TENSOR

In the expansior3.4), we can also use a time-dependent  The energy-momentum tensdt” is defined by
set of creation and annhilation operators, with first order

adiabatic mode functions: 1
8S=— EJ d*x\—gT#"(x)89,,,(X), 4.1

;ﬁi(ua 7,0, ¢)= J:dsz [éi,slm(u) ¢g(u)yslm( 7,0, d’)

m with the action given by Eq2.3). Performing the variations,
we find the “improved” energy-momentum tensidr3]

+H.cl], (3.19
where T(X)=(3,91)(3,P;) —g,,L
1 aBd 2 2
lpg(u):gg(u)e7Um3/2 + g[g,uvg cI)i;a;ﬁ_cI)i;,u,;V]v (42)
and where the Lagrangian density is given by E2.2). We fol-

low the standard practick’] and define the energy density

wyu)du’ and pressures by
S

NI S ;{_. u
gs(W) V2Mmog(u) & Ifuo

We can define the first order adiabatic number density as

T,,=diag €,p, 7%, py7sintt n,p ,72sintf 7sin? 6).

Next, we take expectation values of the energy-
ns(u)=<é;r(u)és(u)>, (3.19 momentum tensor. One can easily show all the pressures are
equal,p=p,=py=p,, and thatT ,, is diagonal.
where, for simplicity, we have suppressed the angular indi- The energy-momentum tensor obeys a conservation law:
ces onag anda/ .
One can shoW12] thatng(u) is an adiabatic invariant and ) J N _
would be the true numbersdensity in a slowly varying expan- T = — W( \/—_ng‘ HFMTM_O' (4.3
sion. We then choose

Nk

- One can easily verify that the energy conservation equation,

as=ay(Uo), the »=0 component of4.3) takes the form
gs(uO)=92(Uo), de 3
2 Z(et+p)=0. (4.4)
or T

so that the initiala and a' are the adiabatic ones. When
x(u)—m?, then ng(u)—n,,, Which is the true out-state
phase space number density.

The time-dependent creation and annihilation operator

In thermal equilibrium, this would become the entropy con-
servation equation. Then we hade=Tdsande+p=Ts.
Tn an ultrarelativistic fluid expansion, wit= 3, p=3e and

satis
b et = const.
dag dal In our simulations we have verified that the local energy
g2+ —g% =0. (3.17  conservation4.4) is valid.
du du
The time-dependent operators can be connected to the V. NUMERICAL RESULTS

time-independent operators via a Bogoliubov transformation: To choose the initial conditions, we start the system at a

(3.18 temperature above the phase transition in thermal equilib-
rium, with all particle masses positive. The equations are
wherea and 8 are determined by solved self-consistently at the starting time to obtain the val-
. ues of they, (o), and() fields. We fixed the value of at
| ox 90s dgc* the initial time as the solution of the gap equation in the
a(s,u)=i| ¥ —— —2—g|, initial i initi i
du  du initial thermal state. We also required that the initial expec

tation values of ther and 7 fields satisfy

[ odgs dgg
B(S,U)=I(ggd—i—mgs)- (3.19 w(70) + 0%(70) = 0¥,

a4(U)=a(s,u)as+ B(s,u)a’

where o1 is the equilibrium value ofb at the initial tem-
perature T. We chooseT= 200 MeV, which gives
ng(U)=ng(Ug) +|B(s,u)|A1+2n4(ug)]. (3.20 ©01=03 fm 1. We compute the time evolution of these
fields, starting at a proper time,=1fm. The value off ,
Notice that at u=ug,, B(s,Uug)=0, and so used in all the simulations is 92.5 MeV, and is 7.3 (see
ng(u)=ng(ug)=ns. Sinceng(uy) is the initial phase space [5]). Below we show results for several sets of initial condi-
number density and, at late times, becomes the out-stateons. Once the initial values are chosen, we have the free-
number density, it is an interpolating number density. dom to vary the first derivative of thé field. The results

We then find
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FIG. 1. Proper time evolution of thg field for the following FIG. 3. Proper time evolution of the field for three different

initial conditions: Solid line is foro() =07, mi(79)=0, and jnitial thermal distributions withl = 200, 164, and 150 MeV for
o(79)=—1. Dashed line is foro(ro)=or, mi(7)=0, and the initial conditionso (7o) =0, m(70)=0, ando (o) = —1.

o(mp)=1. Dotted line is for o(7g)=01, mi(7)=0, and
o(719)=0. Dot-dashed line is foto(75)=0, 7 (79)=07, and

()= —1. At T=200 MeV, 01=0.3 fm L. spherical expansion does not produce larger domains than

the longitudinal case. We also see that when we start the
with 77#0 were similar to those witlr+ 0, and so we only initial expectation value ofb; in the 7, direction that the
show results for the latter case. We find there is a wide rangsystem becomes slightly more unstable. We notice that if the
of values which will allow the system to become unstable derivative of the field is positive or zero that this is insuffi-
0.15<|o|<4.95. This can be compared with the longitudinal cient to generate instabilities.
expansion[5], where the regime of instability was much  In Fig. 3, we show the effect of the initial temperature on
smaller, 0.25 |o|<1.3. This is because the spherical expan-the evolution of the auxiliary field. We see that varying the
sion leads to a much larger negative gradientyfahan the initial temperature has little effect. In Fig. 4, we show the
longitudinal case. evolution of they field for different values of the cutoff
Figures 1 and 2 show the results of the numerical simu/. We can see tha is independent ol\, which shows that
lation for the proper time evolution of the system. We dis-the renormalization has been carried out correctly. In our
play the auxiliary fieldy in units of fm~2, the classical Simulations we use the valué= 800 MeV, sinceA= 1
fields ®; in units of fm~*, and the proper time in units of GeV is too close to the Landau polsee[5]). When one
fm. At proper times greater thar 10 fm, the auxiliary field chooses a cutoff too close to the Landau pole the late time

reaches its vacuum value of?, the o field approaches its Pehavior becomes unstable.

vacuum value of _, and ther field its value of zero. This is Figures 5 and 6 show the number density calculated from
in distinction to the longitudinal expansion, where even atEd- (3.20, for several different proper times. Figure 5 is a
7=30 fm, one had not yet reached the “out” regime. case where instabilities have arisen in the system, and there

For all of our initial conditions, the size of the unstable iS @ large amount of particle production during the time that
region (x<0) is at most 2—3 fm. Thus we find that the X has gone negative. Figure 6 is a case with no instabilities,

= = 1.0
0.4
£
A 00 g ]
9 \ /'/' 05 ¢
\ ‘ —
0.4 E
® — A=1.0GeV
—_ S \\\ 0.0 A=0.8GeV
< 02 | | ——- A=0.6GeV
\ AN -~
é" 00 B A\ // N N /'/’/
v \ /// —05 ) ) )
02 . \,; ‘ ‘ 0 5 10 15 20
) 5 10 15 20 25 T (fm)
T (fm)

FIG. 4. Proper time evolution of thg field for three different
FIG. 2. Proper time evolution of thgr) and(r,) fields for the  values of the cutoff\, with A=600, 800, and 1000 MeV for the
same initial conditions as Fig. 1. initial conditionso (7o) = o1, 7i(79) =0, ando(7p) = —1.
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400.0
n(s,c) — n(p)
——- nylp,7), T, = 140 MeV
200.0 .
—— 1=12fm 300.0 |
.......... 1=45fm
-~~~ 1=985fm
150.0 [ ——- 1t=20.0fm
0 200.0 |
100.0 |
100.0
50.0 |
0.0 - :
0.0 2.0 4.0 6.0
/m
0.0 P K
0.0 . . 2.0
s FIG. 7. n(p,7) computed from Eq(B2) andny,(p,7) computed
from Eq. (B3), for the same initial conditions as Fig. 5.
FIG. 5. ng(7) computed from Eq( 3.20), for the initial condi- VI. CONCLUSIONS

tions o(7p) = o1, 7i(79)=0, ando (7o) = —1.
In this paper we have performed numerical simulations to

and there is very little particle production as a function of€Xamine the chiral phase transition during a uniform spheri-
proper time. cal expansion of the hadronic plasma. We used the ligear

Figures 7 and 8 show the same distributions transforme{nn_OOIeI to Ieadm_g _o_rder In a _Iarg\e-expginsmn and StUd'e.d. a
to the physical momenturp, as discussed in Appendix B. wide range of initial conditions starting above the critical

The momentuno is plotted in units ofm. . We compare temperature for the phase transition. We found initial condi-
mp 1S P ™ Par€  ions which drove the system to instabilities that lead to the

Yormation of disoriented chiral condensates. Because of the
[see Eq(BB)]‘,‘thre vv_e have agsume_d that \./vhe.n the SySt?rﬂecessity of a rather large renormalized coupling constant,
reaches the “out” regime, the final distribution is & combi- e formation of instabilities lasted only a short time because
nation of a thermal distribution in the comoving frame at ¢ the large exponentially growing quantum corrections in
Tc=m, boosted to the center of mass frame using the boostq. (3.8), and no significant amount of domain formation
variable(r,t) (see[7]). For comparison purposes, we have was observed. However, we find that the phase space number
renormalized the thermal distributions to give the same cendensity for our nonequilibrium evolution is significantly dif-
ter of mass energyH=100 Ge\} as the corresponding non- ferent from one which would result from an evolution in
thermal distributions. We see that as a result of the nonequinermal equilibrium. The experimental signature for domain
librium evolution, there is an enhancement at lowformation is an increase in the pion particle production rate
momentum independent of whether or not there are instabiliat low momentum. Our calculations were done in a mean-
ties; however, the effect of instabilities is to greatly magnify field approximation, where all the mode coupling is due to
this low momentum enhancement. the presence of this mean field. In next order in lahge
scattering in the background mean field occurs, and the pos-
sibility for reequilibrization exists. These effects will be in-

n(s,t) corporated in a future calculation. In comparison to particle

production during a longitudinal expansion, we find that in a

3.0 ' ' ‘ spherical expansion the system reaches the “out” regime
............ aem much faster and more particles get produced. However, the

= ---- 1=95fm size of the unstable region, which is related to the size of the

RN ——-1=20.0fm

domain of DCC's, is not enhanced.
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APPENDIX A: PROPERTIES OF THE 5 FUNCTIONS

FIG. 6. Same as Fig. 5, but for the initial conditions In this appendix, we discuss properties of the functions
a(ro)=o7, m(70)=0, anda (7o) =0. 7s1(77), which arereal solutions of the equation:
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35.0 |

30.0 |

25.0 |

200 F

15.0 |

10.0

0.0 2.0 4.0 6.0
p/m,

FIG. 8. n(p,7) computed from Eq(B2) andny,(p,7) computed
from Eq. (B3), for the same initial conditions as Fig. 6.

1 0 A s 2 |(|+1)
sint? 7 %(smhzn an )+[ 1= sint? 7 s =0
or
&g 2 oy [(1+1)
+ +is?+1— — =
an® ' tanhy dn siney | 7! 0,

for # in the range 6 p<<. With the substitution

(1) = Ug)( 7)/sinhy,

we find thatug(#) satisfies

4
sl

D)

= ity Vs

The general solution is given Hy4]

sinHy/ d &%)
msi(7)= M—S|<dCOSh?7) cogsy),

where the normalizatioM g, is given by

Mo = (7/2)sX(s2+12)- - - (S2+12).

The completeness relation is given by
fo dsmg(n) 7 (n')=86(n—n')/[sinhysinhy'].

For the functiong),, defined in Eq(3.5), the addition for-
mula is[10]

2 V71, 61,80) Veim( 72, 62.,62)

H 2 2
S sin(s S s°+1
= Ii](?]):j 1— 72+,
27° sinhp 27 6

where  is defined by
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coshy= coshy, coshy, — sinhy,sinhy,co,

COS9 = c0H,COH, + Sind;SiNG,CO Ppq— b,).
Therefore, taking the limit §4,601,d1)—(75,65,¢,) or
7n—0, we find

2

S
2 Veim 7, 0,0)P=5 7.

By differentiating both sides of the addition formula, we can
show that

2

ayslm( 7, 0, ¢)
an

2 s

s?+ 1)
Im '

SZ

2
272

ﬁyslm( 7, 0!¢)
a0

w

Im

Vsim( 7,0, 6)
d¢

sintf 7 sirfé.

2§ [s?+1
“2m?\ 3

Im

APPENDIX B: TRANSFORMATION
TO PHYSICAL VARIABLES

In terms of the initial distribution of particles,(7,) and
B we have

Ng(U) =ng(Uo) +|B(s,u)|[1+2n4(up)],

where ng(u) is the adiabatic-invariant interpolating phase
space number density which becomes the actual particle
phase space number density in the comoving frame when
interactions have ceased. We now need to relate this quantity
to the physical spectrum of particles measured in the labora-
tory. At late 7= 7=~ 10 fm our system relaxes to the vacuum
andy becomes the square of the physical pion nra&sThe
comoving center of mass energy of outgoing particles can
then be identified with

s° )
wg(T5)= ?+m .

f

The actual distribution of momenta in the laboratory
frame is a combination of the collectivéfluid” ) motion
described by the boosy from the comoving frame to the
center of mass frame and the comoving particle distribution.
Here, the spacelike hypersurface on which one is counting
particles is at fixed proper timg . This distribution is given
by the Cooper-Frye formulfl5] which is

dN dN
EdTZE

zf f(x,p)p“do,.

We identify the relativistic phase space distribution func-
tion f(x,p) with ng(7:). The dependence &f on the space
time variablex and the outgoing momentumis found from
the relationship

2
S
HU,= wg(7)= +m?
pPTu,= wg( Ty P .
t
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We choose the measured momentprto be in thez direc-
tion e; of our spherical coordinate system. We have that

u#=(coshy,sinhye,),
p“=(E,pes),
so that

p*u,= Ecoshy— pcosfsinhy.

The surface on which one is counting particles is the time-

like surfacer= 7; with

ats .
—fer)dsr.

dchZ ( 1,- ar

Changing variables from to # at fixed » we then obtain

Emzn(p,r)

= f f(x,p)dndcosdrisintt yp u,,, (B2)
where

p*“u, = Ecoshy— pcossinhy

and we have used the isotropy assumption and chpsas
the z axis. HereE= \/p?+m?.
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The calculation that EqB2) needs to be compared with
is a hydrodynamical model calculation for a local thermal
equilibrium flow. In a hydrodynamical model of heavy ion
collisions [6,7], the final spectrum of pions is given by a
combination of the fluid flow and a local thermal equilibrium
distribution in the comoving frame. One calculates this spec-
trum at the critical temperatuie.(x,t) when the energy den-
sity goes below

1
(hime)®"

€Ec=
This defines the breakup surfagg, after which the particles
no longer interact so that this distibution is frozen at that
temperature. For an ultrarelativistic gas of pions, this occurs
whenT.=m. The covariant form for the spectra of particles
is again given by the Cooper-Frye formuibs]

N
= 3qi “
Em ff(x,p)dndcos%csmhznp U,, (83)

but nowf(x,p) is the single particle relativistic phase space

distribution function for pions in local thermal equilibrium at

a comoving temperaturé.(7y):
f(x,p)={exd p*u, /Tc]—1}"*.

We have identified the left-hand side of E@B3) as
Nen(P, 7).
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