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Time evolution of the chiral phase transition during a spherical expansion
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We examine the nonequilibrium time evolution of the hadronic plasma produced in a relativistic heavy
collision, assuming a spherical expansion into the vacuum. We study the O~4! linears model to leading order
in a large-N expansion. Starting at a temperature above the phase transition, the system expands and
finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effec
pion mass, the order parameter^s&, and the particle number distribution. We examine several different initia
conditions and look for instabilities~exponentially growing long wavelength modes! which can lead to the
formation of disoriented chiral condensates~DCC’s!. We find that instabilities exist for proper times which are
less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the
momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In compa
to particle production during a longitudinal expansion, we find that in a spherical expansion the system rea
the ‘‘out’’ regime much faster and more particles get produced. However the size of the unstable region, w
is related to the domain size of DCC’s, is not enhanced.@S0556-2821~96!02215-1#

PACS number~s!: 11.30.Qc, 05.70.Fh, 12.38.Mh, 25.75.2q
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I. INTRODUCTION

There have been many recent investigations into the
mation of disoriented chiral condensates~DCC’s! following
a relativistic heavy ion collision@1–3#. The original motiva-
tion for studying this problem was the Centauro events@1#,
rare cosmic ray events in which a deficit of neutral pions w
observed@4#. In a recent work@5#, the time evolution of the
hadronic plasma produced in such a collision was studied
using the O~4! linear s model in a longitudinal expansion
The large-N expansion was used to incorporate nonequil
rium and quantum effects into the problem. After performi
numerical simulations to solve the time-dependent equati
of motion, instabilities were found to exist for only a sho
time, and, thus, no significant amount of pion domains wo
be formed. In this work, we study the same problem usin
spherical expansion, since at late times the expansion
comes spherical. This situation produces the most rapid c
ing of the system. We would like to see if the formation
instabilities in this geometry is more pronounced than in
longitudinal expansion.

There are two questions which should be examined. F
we want to know which types of initial conditions lead to th
formation of instabilities in the system, and second, if ins
bilities do form, we want to find out if the size of the un
stable region is large enough to see significant dom
growth. To answer the first question, we examine the prop
time evolution of the system, starting a short time after
phase transition, where the linears model is appropriate. We
look for the effective mass of the pion to go negative duri
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the time evolution. This signifies the onset of growth in long-
wavelength modes, which is believed to lead to the forma
tion of DCC’s. When we have a case where instabilities
form, we then compute the momentum distribution of outgo
ing pions and compare to a hydrodynamical model calcula
tion, assuming local thermal equilibrium. We find a notice-
able enhancement of low momentum modes as compared
the hydrodynamical model. This provides an experimenta
signature which can be measured. The implication is that th
system is evolving out of thermal equilibrium, which is a
necessary condition to have significant growth of low mo
mentum modes.

We prepare the initial state of the system in local therma
equilibrium, and study the evolution using scale invarian
kinematics (v5r /t) to model the cooling of the plasma.
Scale-invariant kinematics are appropriate for a high energ
spherical expansion starting from a point source@6,7# and
imply that mean-field expectation values only depend on th
proper timet5At22r 2. We incorporate nonequilibrium and
quantum effects through the use of the large-N expansion.

The paper is organized as follows. In Sec. II we describ
the linears model to leading order in a 1/N expansion. We
then discuss in Sec. III our choice of coordinates and deriv
equations of motion for the system. We examine issues o
renormalization and choice of suitable initial conditions. We
also derive an expression for the phase space number dens
that will be used to calculate momentum distributions. In
Sec. IV we discuss the calculation of the energy-momentum
tensor and other thermodynamic relations. In Sec. V w
present numerical results of our simulation. In Appendix A
we look at properties of the radial functions used in the ex
pansion for the quantum modes. In Appendix B we discus
the transformation of the number density to physically mea
surable variables.
2213 © 1996 The American Physical Society
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II. LINEAR s MODEL

The Lagrangian density for the linears model in a gen-
eralized curvilinear coordinate system is given by

L@F i #5A2g~x!H 12 gmn~x!@]mF i~x!#@]nF i~x!#

2
l

4
@F i

2~x!2v2#2J , ~2.1!

where the mesons are in an O~4! vector F5(s,pW ). The
factor of A2g(x), where2g(x)[det@gmn(x)#, has been
introduced to make the Lagrangian a scalar density. The
tential here is the ‘‘Mexican hat,’’ with degenerate minima
any values ofF such thatF i

25v2. We will remove this
symmetry by introducing a nonzero current term in thes
direction. In this work, we use the convention of an implie
sum over a repeated indexi , which runs from 1 toN. ~Here
N54.) The counting for the large-N expansion is imple-
mented by introducing a composite fieldx5l(F i

22v2).
That is, we add to the Lagrangian a term given by@8#

$x2l@F i
2~x!2v2#%2/4l.

This gives an equivalent Lagrangian

L@F i ,x#5A2g~x!H 12 gmn~x!@]mF i #@]nF i #2
1

2
xF i

2

1
v2

2
x1

1

4l
x2J . ~2.2!

We can write the action as

S@F i ,x; j i #5E d4x$L@F i ,x#1A2g~x! j iF i%. ~2.3!

We consider the generating functional, given by the pa
integral

Z@ j i #5E d@x#E d@F i #exp$ iS@F i ,x; j i #%[exp@ iW@ j i ##.

The large-N approximation is equivalent to integrating
out theF i variables and then performing the remainingx
integration using the method of steepest descent. We t
Legendre transform to find the effective action

G@f i ,x#5W@ j i #2E d4xA2g~x! j i~x!f i~x!,

where

f i~x!5
dW

d j i
[^F i~x!&.

We then obtain, to lowest order~in largeN),
po-
at

d

th

hen

G@f i ,x#5E d4xA2g~x!H 12 gmn~x!@]mf i #@]nf i #2
1

2
xf i

2

1
v2

2
x1

1

4l
x21

iN

2
lnG0

21~x,x;x!J , ~2.4!

where

@h1x~x!#G0~x,x8;x!5 id4~x2x8!/A2g~x!.

G@f i ,x# is theclassicalaction plus the trace-log term.

III. COOLING MECHANISM

A. Coordinate system

At late times following a heavy ion collision, the energy
flow becomes three dimensional. If we assume the entir
flow is spherical, then the system can be described in term
of the fluid variables

t5At22r 2,

h5arctanh~r /t !5
1

2
lnH t1r

t2r J ,
where t5t coshh and r5t sinhh. We restrict the range of
these variables to the forward light cone, 0<t,`, and
0<h,`. The variablest andh are useful to describe a free
spherical expansion of a plasma into the vacuum, with the
velocity of the fluid identified asv5r /t5tanhh @7# when we
are at high energies so that the expansion can be thought
as coming from a point source~scaling limit!. Minkowski’s
line element is given by

ds25dt22t2$dh21sinh2hdu21sinh2h sin2udf2%,

from which we can read off the metric tensor

gmn5 diag~1,2t2,2t2sinh2h,2t2sinh2h sin2u!,

A2g5t3sinh2hsinu.

This can be compared to the Robertson-Walker metric fo
spherical geometry, given by the line element

ds25dt22a2~t!$dh21sinh2hdu21sinh2h sin2udf2%.

Thus the case we consider here corresponds to a cosmolog
cal model with a fixed uniform expansion proportional to the
proper timet and zero curvature.

B. Equations of motion

We can derive the equations of motion from the effective
action, Eq.~2.4!. Varying the action with respect tof i and
x gives

@h1x~x!#f i~x!5 j i~x![Hd i0 ,

@h1x~x!#G0~x,x8!5 id4~x2x8!/A2g~x!, ~3.1!

and the gap equation

x~x!5l$2v21f i
2~x!1NG0~x,x!%. ~3.2!

In order to give the pions mass, it is only necessary to hav
a current in the zero~s! direction, so thatj 0(x)[H5const.
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We determine the parameters in the model by consider
the vacuum sector. Spatial homogeneity then gives

x0s05H,

x052lv21ls0
21lNE k2dk

2p2

1

2Ak21x0

.

The PCAC~partial conservation of axial vector current! con-
dition gives

]mAi
m~x!5Hp i~x!,

where the axial vector current is given by

Ai
m~x!5@p i~x!]ms~x!2s~x!]mp i~x!#,

which leads to

H5 f pm
2.

Since we have defined the vacuum byx0s05m2s05H, we
then find thats05 f p . The coupling constantl is deter-
mined by the low-energyp-p scattering data, as described i
@5#.

We now specialize to the case whenf i andx are func-
tions oft only. We can see that Eq.~3.1! is also the equation
for a free scalar quantum field with a time-dependent ma
x(t), which is self-consistently determined by Eq.~3.2!.
Therefore we can introduce a quantum fieldF i5f i1f̂ i .
The equations forF i are

H 1

t3
]

]t S t3
]

]t D1x~t!J f i~t!5Hd i0 ,

@h1x~t!#f̂ i~x!50, ~3.3!

where the four-vectorx5(t,h,u,f). Then forG0 we find

G0~x,x8![^Tc$f̂~x,t!,f̂~x8,t8!%&,

whereTc corresponds to at-ordered product@9#, following
the closed-time-path formalism of Schwinger. Whe
^p i&50, this is the true Green’s function.

Following Parker and Fulling@10#, we expandf̂ i into a
complete set of states,

f̂ i~t,h,u,f!5E
0

`

ds(
lm

@ âi ,slmcs~t!Yslm~h,u,f!

1H.c.#, ~3.4!

with

Yslm~h,u,f!5psl~h!Ylm~u,f!, ~3.5!

and wherec, p, andY satisfy
ing

n

ss

n

F 1t3 ]

]t S t3
]

]t D1
s211

t2
1x~t!Gcs50,

F 1

sinh2h

]

]h S sinh2h ]

]h D1s2112
l ~ l11!

sinh2h Gpsl50,

F 1

sinu

]

]u S sinu ]

]u D1
1

sin2u S ]2

]f2D1 l ~ l11!GYlm50.

Here, Ylm(u,f) are the usual spherical harmonics, and
psl(h) are a complete set of functions, discussed in Appen
dix A.

In order to satisfy the canonical commutation relations
we requirecs(t) to satisfy the Wronskian condition

cs* ~t!ċs~t!2cs~t!ċs* ~t!52 i /t3,

where the overdot means differentiation with respect tot.
Therefore we find

@f̂ i ,slm~t!,f̂̇ j ,s8 l 8m8
†

~t!#5 id i jd~s82s!d l l 8dmm8 /t
3

and

@ âi ,slm ,â j ,s8 l 8m8
†

#5d i jd~s82s!d l l 8dmm8.

We are now in a position to calculate^f̂ i
2&. We shall choose

the ~Heisenberg! state vector such that the bilinear forms of
creation and destruction operators are diagonal:

^â j ,s8 l 8m8
† âi ,slm&5nsd i jd~s82s!d l l 8dmm8,

^â j ,s8 l 8m8âi ,slm
† &5~ns11!d i jd~s82s!d l l 8dmm8,

^â j ,s8 l 8m8âi ,slm&5psd i jd~s82s!d l l 8dmm8,

^â j ,s8 l 8m8
† âi ,slm

† &5ps* d i jd~s82s!d l l 8dmm8.

Herens andps are the particle and pair densities. They will
be taken to be a function ofs only. In addition, we will take
ns to be a thermal distribution in the comoving frame:

ns5
1

evs~t0!/kBT21
,

with vs5As2/t021x(t0). We can chooseps50 for all our
simulations, since one has the freedom to make a Bogoliu
bov transformation att0 so that this is true. Using the results
in Appendix A, we then find

^f̂ i
2&5E

0

`

ds~2ns11!ucs~t!u2(
lm

uYslm~h,u,f!u2

5E
0

`s2ds

2p2 ~2ns11!ucs~t!u2.

Therefore Eq.~3.2! becomes

x~t!52lv21lf i
2~t!1lNE

0

`s2ds

2p2 ~2ns11!ucs~t!u2,

~3.6!
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and is a function oft only. This completes the derivation o
the equations of motion.

C. Initial conditions and renormalization

The variablet does not allow for a good WKB expansio
due to the singularity at t50. The transformation
u5 ln(mt), where m is any mass scale~we choose
m5mp), maps the singularity tou52`, and allows one to
perform a WKB expansion in the usual manner.

Changing variables tou and rescaling the fields using th
substitutions

cs~u!5gs~u!e2um3/2,

f i~u!5r i~u!e2um3/2,

we get

F d2du2
1s21x~u!e2u/m2Ggs~u!50,

F d2du2
1x~u!e2u/m221Gr i~u!5Hd i0e

3u/m7/2, ~3.7!

with

x~u!52lv21l(
i
m3e22ur i

2~u!

1lNE
0

sms2ds

2p2 ~2ns11!m3e22uugs~u!u2, ~3.8!

with sm5Leu/m. Thengs(u) obeys the Wronskian

gs* ~u!
dgs~u!

du
2
dgs* ~u!

du
gs~u!52 i /m.

From Eq.~3.7!, we notice that whenx(u),0, modes satis-
fying s2/t2,x grow exponentially int. However, from Eq.
~3.8!, we see that these growing modes will quickly cau
x to become positive whenl is large, as is the case here.

We can now use a WKB ansatz forgs(u):

gs~u!5
1

A2mWs~u!
expF2 i E

u0

u

Ws~u8!du8G ,
whereWs(u) satisfies

1

2

Ws9
Ws

2
3

4 SWs8

Ws
D 21Ws

25vs
2~u!, ~3.9!
f

n

e

se

andvs(u)5As21x(u)e2u/m2. We will then take the initial
conditions

Ws~u0!5vs~u0!,

Ws8~u0!5vs8~u0!,

which correspond to the adiabatic vacuum. This allows us
introduce an interpolating number density which interpolat
betweenns(u) and the true ‘‘out’’ densitynout.

By a WKB analysis, one can show@11# thatG0(x,x) has
quadratic and logarithmic divergences. The quadratic div
gence can be removed by mass renormalization. In
vacuum sector, the mass of the pion is given by Eq.~3.6!,
with xvac[mp

25m2:

m252lv21l f p
21lNE

0

Lk2dk

2p2

1

2Ak21m2
, ~3.10!

with cutoff L. We note that if we change variables in th
integral tos5kt5keu/m, Eq. ~3.10! becomes

m252lv21l f p
21lNm2e22uE

0

sms2ds

2p2

1

2As21e2u
.

~3.11!

Subtracting this equation from Eq.~3.8!, we obtain a loga-
rithmically divergent expression forx:

x~u!5m21l(
i

@m3e22ur i
2~u!2 f p

2 #

1lNE
0

sms2ds

2p2 ~2ns11!m3e22uugs~u!u2

2lNE
0

sms2ds

2p2 m
2e22u

1

2As21e2u
. ~3.12!

Note that the last integral isindependentof u.
The coupling constant is renormalized by taking

1

l
5

1

l r
2

N

8p2E
0

L k2dk

~k21m2!3/2

5
1

l r
2

N

8p2E
0

sm s2ds

~s21e2u!3/2
. ~3.13!

One can explicitly show by using Eq.~3.13! in Eq. ~3.12!
thatx(u) is now completely finite.

We will also need the value ofẋ(u) for the initial condi-
tions:
ẋ~u!F11lNE
0

sms2ds

2p2 ~2ns11!
1

4vs
3~u!G52le22um3@r i~u!r i8~u!2r i

2~u!#1
lNL3

4p2

~2nsm11!

AL21x~u!

2lNE
0

sms2ds

2p2 ~2ns11!m2e22uF x~u!e2u

2m2vs
3~u!

1
1

vs~u!G . ~3.14!
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D. Phase space interpolating number density

In the expansion~3.4!, we can also use a time-depende
set of creation and annhilation operators, with first ord
adiabatic mode functions:

f̂ i~u,h,u,f!5E
0

`

ds(
lm

@ âi ,slm~u!cs
0~u!Yslm~h,u,f!

1H.c.#, ~3.15!

where

cs
0~u!5gs

0~u!e2um3/2

and

gs
0~u!5

1

A2mvs~u!
expF2 i E

u0

u

vs~u8!du8G .
We can define the first order adiabatic number density a

ns~u!5^âs
†~u!âs~u!&, ~3.16!

where, for simplicity, we have suppressed the angular in
ces onâs and âs

† .
One can show@12# thatns(u) is an adiabatic invariant an

would be the true number density in a slowly varying expa
sion. We then choose

âs5âs~u0!,

gs~u0!5gs
0~u0!,

so that the initialâ and â† are the adiabatic ones. Whe
x(u)→m2, then ns(u)→n out, which is the true out-state
phase space number density.

The time-dependent creation and annihilation opera
satisfy

dâs
du

gs
01

dâs
†

du
g0*50. ~3.17!

The time-dependent operators can be connected to
time-independent operators via a Bogoliubov transformat

âs~u!5a~s,u!âs1b~s,u!â2s
† , ~3.18!

wherea andb are determined by

a~s,u!5 i S gs0* dgsdu
2
dgs

0*

du
gsD ,

b~s,u!5 i S gs0dgsdu
2
dgs

0

du
gsD . ~3.19!

We then find

ns~u!5ns~u0!1ub~s,u!u2@112ns~u0!#. ~3.20!

Notice that at u5u0 , b(s,u0)50, and so
ns(u)5ns(u0)[ns . Sincens(u0) is the initial phase spac
number density and, at late times, becomes the out-s
number density, it is an interpolating number density.
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IV. ENERGY-MOMENTUM TENSOR

The energy-momentum tensorTmn is defined by

dS52
1

2E d4xA2gTmn~x!dgmn~x!, ~4.1!

with the action given by Eq.~2.3!. Performing the variations,
we find the ‘‘improved’’ energy-momentum tensor@13#

Tmn~x!5~]mF i !~]nF i !2gmnL

1
1

6
@gmng

abF i ;a;b
2 2F i ;m;n

2 #, ~4.2!

where the Lagrangian density is given by Eq.~2.2!. We fol-
low the standard practice@7# and define the energy density
and pressures by

Tmn5diag~e,pht2,put2sinh2h,pft2sinh2hsin2u!.

Next, we take expectation values of the energy-
momentum tensor. One can easily show all the pressures a
equal,p5ph5pu5pf , and thatTmn is diagonal.

The energy-momentum tensor obeys a conservation law

T;m
mn5

1

A2g

]

]xm ~A2gTmn!1Gml
n Tml50. ~4.3!

One can easily verify that the energy conservation equation
the n50 component of~4.3! takes the form

]e

]t
1
3

t
~e1p!50. ~4.4!

In thermal equilibrium, this would become the entropy con-
servation equation. Then we havede5Tds and e1p5Ts.
In an ultrarelativistic fluid expansion, withc0

25 1
3, p5 1

3e and
et4 5 const.

In our simulations we have verified that the local energy
conservation~4.4! is valid.

V. NUMERICAL RESULTS

To choose the initial conditions, we start the system at a
temperature above the phase transition in thermal equilib
rium, with all particle masses positive. The equations are
solved self-consistently at the starting time to obtain the val
ues of thex, ^s&, and^pW & fields. We fixed the value ofx at
the initial time as the solution of the gap equation in the
initial thermal state. We also required that the initial expec-
tation values of thes andpW fields satisfy

p2~t0!1s2~t0!5sT
2,

wheresT is the equilibrium value ofF at the initial tem-
perature T. We choose T5 200 MeV, which gives
sT50.3 fm21. We compute the time evolution of these
fields, starting at a proper timet051fm. The value off p

used in all the simulations is 92.5 MeV, andl r is 7.3 ~see
@5#!. Below we show results for several sets of initial condi-
tions. Once the initial values are chosen, we have the free
dom to vary the first derivative of theF field. The results
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with ṗÞ0 were similar to those withṡÞ0, and so we only
show results for the latter case. We find there is a wide ra
of values which will allow the system to become unstab
0.15,uṡu,4.95. This can be compared with the longitudin
expansion@5#, where the regime of instability was muc
smaller, 0.25,uṡu,1.3. This is because the spherical expa
sion leads to a much larger negative gradient forx than the
longitudinal case.

Figures 1 and 2 show the results of the numerical sim
lation for the proper time evolution of the system. We d
play the auxiliary fieldx in units of fm22, the classical
fieldsF i in units of fm21, and the proper time in units o
fm. At proper times greater than'10 fm, the auxiliary field
reaches its vacuum value ofmp

2 , thes field approaches its
vacuum value offp , and thep field its value of zero. This is
in distinction to the longitudinal expansion, where even
t530 fm, one had not yet reached the ‘‘out’’ regime.

For all of our initial conditions, the size of the unstab
region (x,0) is at most 2–3 fm. Thus we find that th

FIG. 1. Proper time evolution of thex field for the following
initial conditions: Solid line is fors(t0)5sT , p i(t0)50, and
ṡ(t0)521. Dashed line is fors(t0)5sT , p i(t0)50, and
ṡ(t0)51. Dotted line is for s(t0)5sT , p i(t0)50, and
ṡ(t0)50. Dot-dashed line is fors(t0)50, p1(t0)5sT , and
ṡ(t0)521. At T5200 MeV,sT50.3 fm21.

FIG. 2. Proper time evolution of thês& and^p1& fields for the
same initial conditions as Fig. 1.
nge
le,
al
h
n-

u-
is-

f

at

le
e

spherical expansion does not produce larger domains th
the longitudinal case. We also see that when we start t
initial expectation value ofF i in the p1 direction that the
system becomes slightly more unstable. We notice that if th
derivative of the field is positive or zero that this is insuffi-
cient to generate instabilities.

In Fig. 3, we show the effect of the initial temperature on
the evolution of the auxiliary field. We see that varying the
initial temperature has little effect. In Fig. 4, we show the
evolution of thex field for different values of the cutoff
L. We can see thatx is independent ofL, which shows that
the renormalization has been carried out correctly. In ou
simulations we use the valueL5 800 MeV, sinceL5 1
GeV is too close to the Landau pole~see @5#!. When one
chooses a cutoff too close to the Landau pole the late tim
behavior becomes unstable.

Figures 5 and 6 show the number density calculated fro
Eq. ~3.20!, for several different proper times. Figure 5 is a
case where instabilities have arisen in the system, and th
is a large amount of particle production during the time tha
x has gone negative. Figure 6 is a case with no instabilitie

FIG. 3. Proper time evolution of thex field for three different
initial thermal distributions withT 5 200, 164, and 150 MeV for
the initial conditionss(t0)5sT , p i(t0)50, andṡ(t0)521.

FIG. 4. Proper time evolution of thex field for three different
values of the cutoffL, with L5600, 800, and 1000 MeV for the
initial conditionss(t0)5sT , p i(t0)50, andṡ(t0)521.
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and there is very little particle production as a function
proper time.

Figures 7 and 8 show the same distributions transform
to the physical momentump, as discussed in Appendix B
The momentump is plotted in units ofmp . We compare
these distributions to a hydrodynamical model calculat
@see Eq.~B3!#, where we have assumed that when the sys
reaches the ‘‘out’’ regime, the final distribution is a comb
nation of a thermal distribution in the comoving frame
Tc5mp boosted to the center of mass frame using the bo
variableh(r ,t) ~see@7#!. For comparison purposes, we ha
renormalized the thermal distributions to give the same c
ter of mass energy (E5100 GeV! as the corresponding non
thermal distributions. We see that as a result of the none
librium evolution, there is an enhancement at lo
momentum independent of whether or not there are insta
ties; however, the effect of instabilities is to greatly magn
this low momentum enhancement.

FIG. 5. ns(t) computed from Eq.~ 3.20!, for the initial condi-
tionss(t0)5sT , p i(t0)50, andṡ(t0)521.

FIG. 6. Same as Fig. 5, but for the initial condition
s(t0)5sT , p i(t0)50, andṡ(t0)50.
of

ed
.

ion
tem
i-
at
ost
ve
en-
-
qui-
w
bili-
ify

VI. CONCLUSIONS

In this paper we have performed numerical simulations t
examine the chiral phase transition during a uniform spher
cal expansion of the hadronic plasma. We used the linears
model to leading order in a large-N expansion and studied a
wide range of initial conditions starting above the critical
temperature for the phase transition. We found initial condi
tions which drove the system to instabilities that lead to the
formation of disoriented chiral condensates. Because of th
necessity of a rather large renormalized coupling constan
the formation of instabilities lasted only a short time becaus
of the large exponentially growing quantum corrections in
Eq. ~3.8!, and no significant amount of domain formation
was observed. However, we find that the phase space numb
density for our nonequilibrium evolution is significantly dif-
ferent from one which would result from an evolution in
thermal equilibrium. The experimental signature for domain
formation is an increase in the pion particle production rat
at low momentum. Our calculations were done in a mean
field approximation, where all the mode coupling is due to
the presence of this mean field. In next order in largeN,
scattering in the background mean field occurs, and the po
sibility for reequilibrization exists. These effects will be in-
corporated in a future calculation. In comparison to particle
production during a longitudinal expansion, we find that in a
spherical expansion the system reaches the ‘‘out’’ regim
much faster and more particles get produced. However, th
size of the unstable region, which is related to the size of th
domain of DCC’s, is not enhanced.
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APPENDIX A: PROPERTIES OF THE psl FUNCTIONS

In this appendix, we discuss properties of the function
psl(h), which arereal solutions of the equation:

s

FIG. 7. n(p,t) computed from Eq.~B2! andnth(p,t) computed
from Eq. ~B3!, for the same initial conditions as Fig. 5.
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1

sinh2h

]

]h S sinh2h ]psl

]h D1H s2112
l ~ l11!

sinh2h J psl50

or

]2psl

]h2 1
2

tanhh

]psl

]h
1H s2112

l ~ l11!

sinh2h J psl50,

for h in the range 0<h<`. With the substitution

psl~h!5usl~h!/sinhh,

we find thatusl(h) satisfies

usl9 1Fs22 l ~ l11!

sinh2h Gusl50.

The general solution is given by@14#

psl~h!5
sinhlh

Msl
S d

dcoshh D ~11 l !

cos~sh!,

where the normalizationMsl is given by

Msl5A~p/2!s2~s2112!•••~s21 l 2!.

The completeness relation is given by

E
0

`

dspsl~h!psl~h8!5d~h2h8!/@sinhhsinhh8#.

For the functionsYslm defined in Eq.~3.5!, the addition for-
mula is @10#

(
lm
Yslm* ~h1 ,u1 ,f1!Yslm~h2 ,u2 ,f2!

5
s

2p2

sin~sh!

sinhh
5

s2

2p2 H 12
s211

6
h21•••J ,

whereh is defined by

FIG. 8. n(p,t) computed from Eq.~B2! andnth(p,t) computed
from Eq. ~B3!, for the same initial conditions as Fig. 6.
coshh5coshh1coshh22sinhh1sinhh2cosu,

cosu5cosu1cosu21sinu1sinu2cos~f12f2!.

Therefore, taking the limit (h1 ,u1 ,f1)→(h2 ,u2 ,f2) or
h→0, we find

(
lm

uYslm~h,u,f!u25
s2

2p2 .

By differentiating both sides of the addition formula, we can
show that

(
lm

U ]Yslm~h,u,f!

]h U25 s2

2p2 S s211

3 D ,
(
lm

U ]Yslm~h,u,f!

]u U25 s2

2p2 S s211

3 D sinh2h,
(
lm

U ]Yslm~h,u,f!

]f U25 s2

2p2 S s211

3 D sinh2h sin2u.

APPENDIX B: TRANSFORMATION
TO PHYSICAL VARIABLES

In terms of the initial distribution of particlesns(t0) and
b we have

ns~u!5ns~u0!1ub~s,u!u2@112ns~u0!#,

where ns(u) is the adiabatic-invariant interpolating phase
space number density which becomes the actual partic
phase space number density in the comoving frame whe
interactions have ceased. We now need to relate this quant
to the physical spectrum of particles measured in the labor
tory. At latet>t f'10 fm our system relaxes to the vacuum
andx becomes the square of the physical pion massm2. The
comoving center of mass energy of outgoing particles ca
then be identified with

vs~t f !5As2

t f
2 1m2.

The actual distribution of momenta in the laboratory
frame is a combination of the collective~‘‘fluid’’ ! motion
described by the boosth from the comoving frame to the
center of mass frame and the comoving particle distribution
Here, the spacelike hypersurface on which one is countin
particles is at fixed proper timet f . This distribution is given
by the Cooper-Frye formula@15# which is

E
dN

d3p
5E

dN

4pp2dp
5E f ~x,p!pmdsm. ~B1!

We identify the relativistic phase space distribution func-
tion f (x,p) with ns(t f). The dependence ofs on the space
time variablex and the outgoing momentump is found from
the relationship

pmum5vs~t f !5As2

t f
2 1m2.
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We choose the measured momentump to be in thez direc-
tion e3 of our spherical coordinate system. We have that

um5~coshh,sinhhê r !,

pm5~E,pê3!,

so that

pmum5Ecoshh2pcosusinhh.

The surface on which one is counting particles is the tim
like surfacet5t f with

dsm5S 1,2 ]t f
]r

ê r Dd3r .
Changing variables fromr to h at fixedt we then obtain

E
dN

4pp2dp
5n~p,t!

5E f ~x,p!dhdcosut f
3sinh2hpmum, ~B2!

where

pmum5Ecoshh2pcosusinhh

and we have used the isotropy assumption and chosenp as
the z axis. HereE5Ap21m2.
e-

The calculation that Eq.~B2! needs to be compared with
is a hydrodynamical model calculation for a local therma
equilibrium flow. In a hydrodynamical model of heavy ion
collisions @6,7#, the final spectrum of pions is given by a
combination of the fluid flow and a local thermal equilibrium
distribution in the comoving frame. One calculates this spec
trum at the critical temperatureTc(x,t) when the energy den-
sity goes below

ec5
1

~\/mc!3
.

This defines the breakup surfacetc , after which the particles
no longer interact so that this distibution is frozen at tha
temperature. For an ultrarelativistic gas of pions, this occur
whenTc5m. The covariant form for the spectra of particles
is again given by the Cooper-Frye formula@15#

E
dN

4pp2dp
5E f ~x,p!dhdcosutc

3sinh2hpmum , ~B3!

but now f (x,p) is the single particle relativistic phase space
distribution function for pions in local thermal equilibrium at
a comoving temperatureTc(t f):

f ~x,p!5$exp@pmum /Tc#21%21.

We have identified the left-hand side of Eq.~B3! as
nth(p,t).
lo
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