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Rederivation of the spin-dependent next-to-leading order splitting functions

Werner Vogelsang
Rutherford Appleton Laboratory, Chilton DIDCOT, Oxon OX11 0QX, England

~Received 4 December 1995!

We perform a new calculation of the polarized next-to-leading order splitting functions, using the met
developed by Curci, Furmanski, and Petronzio. We confirm the results of the recent calculation by Mertig
van Neerven.@S0556-2821~96!05215-0#

PACS number~s!: 13.88.1e, 12.38.Bx, 13.60.2r
I. INTRODUCTION

The past few years have seen much progress in
knowledge about the nucleon’s spin structure due to the
perimental study of the spin asymmetriesA1

N(x,Q2)
'g1

N(x,Q2)/F1
N(x,Q2) (N5p,n,d) in deep-inelastic scatter

ing ~DIS! with longitudinally polarized lepton beams an
nucleon targets. Previous data onA1

p by the SLAC-Yale Col-
laboration@1# have been succeeded by more accurate d
from @2–4#, which also cover a wider range in (x,Q2), and
results onA1

n andA1
d have been published in@5# and @6,7#,

respectively.
On the theoretical side, it has become possible to perf

a fully consistent study of longitudinally polarized DIS
next-to-leading order~NLO! of QCD, since recently com
plete results for the spin-dependent two-loop anomalous
mensions, needed for the NLO evolution of polarized par
distributions, have been presented for the first time@8,9#,
calculated within the operator product expansion~OPE!. A
first phenomenological NLO study has been presented
@11#, later followed by the analyses in@12#.

The calculation of the NLO anomalous dimensions
splitting functions is in general very complicated. This is tr
in particular for the polarized case, where the Dirac ma
g5 and the antisymmetric Levi-Civita` tensoremnrs enter the
calculation as projectors on to definite helicity states of
involved particles. These~genuinelyfour-dimensional! quan-
tities lead to certain complications when dimensional re
larization, which probably represents the only viable meth
of regularization in such a calculation, is used. In fact@8#,
was recently revised since an error related to the treatme
g5 was found. Although the results of@8# now fulfill a rela-
tion motivated from supersymmetry, which appears to be
important constraint, it seems necessary to perform an in
pendent calculation of the polarized two-loop splitting fun
tions to check the results of@8#. This is the purpose of this
paper.

In the unpolarized case, two different methods have b
used to obtain the next-to-leading order splitting functio
The first calculation@13# was performed within the OPE
Afterwards Curci, Furmanski, and Petronzio@14,15# used a
technique which is as close as possible to parton mode
tuition since it is based explicitly on the factorization pro
erties of mass singularities in the lightlike axial gauge@16#
and on the generalized ladder expansion@17#. Note that the
results of@15# satisfied the above-mentioned supersymme
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relation @18#, but were in disagreement with the first calcu-
lation @13# for the NLO gluon-to-gluon splitting function.
The controversy was resolved by a recalculation@19# of this
splitting function in the OPE which confirmed the result of
@15#. In this paper we exploit the method and results of
@14,15# to rederive the spin-dependent next-to-leading order
splitting functions. To deal withg5 and thee tensor we use
the ’t Hooft–Veltman–Breitenlohner–Maison~HVBM !
scheme@20#, which still seems to be the most consistent
prescription@21#. Section II sets the framework for the cal-
culation, some details of which are then given in Sec. III. In
Sec. IV we present our results.

II. FRAMEWORK

In this section we outline the framework for our calcula-
tion. We mainly focus on the new features in the polarized
case; more details on the method itself can be found in the
original works@16,14#. We reserve a more detailed descrip-
tion of our calculation to a future publication.

The general strategy consists of a rearrangement of the
perturbative expansion which makes explicit the factoriza-
tion into a part which does not contain any mass singularity
and another one which contains all~and only! mass singu-
larities. Figure 1 represents the matrix element squared for
polarized virtual ~spacelike! photon-quark scattering. The
blobDM is expanded into two particle irreducible~2PI! ker-
nelsC0 andK0. In the axial gauge these 2PI kernels have
been proven@16# to be finite as long as the external legs are
kept unintegrated, such that all collinear singularities origi-
nate from the integrations over the momenta flowing in the
lines connecting the various kernels. The generalized ladder
in Fig. 1 can be written as@14,22#

FIG. 1. The matrix element squared for polarized photon-quark
interaction, its expansion in terms of 2PI kernelsC0 andK0, and its
final factorized form.
2023 © 1996 The American Physical Society
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DM5D@C0~11K01K0
21••• !#5DFC0

1

12K0
G[DCDG.

~1!

DC andDG have been decoupled by projectors which for th
longitudinally polarized case read (A, B being two kernels!

D~ADPFB!5„DAi j ~k”g5! i j …@PP#S ~g5n” !kl

4kn
DBklD ~2!

for polarized quarks and

D~ADPGB!5S DAmnemnrs
krns

2kn D @PP#S eabgd
kgnd

kn
DBabD

~3!

for polarized gluons, settingk250 in the part containing the
kernelDA and taking the pole part@PP# of the projection on
kernel DB. In Eqs. ~2! and ~3! i , j ,k,l are spinor and the
greek letters are Lorentz indices.n is the vector to be intro-
duced in the axial gauge withn250 for the lightlike gauge.
The last expression in Eq.~1! displays the factorization of
mass singularities@14#, which in dimensional regularization
(d5422e) appear as poles in 1/e. More explicitly, the con-
tribution to the ~partonic! spin-dependent deep-inelasti
structure functiong1 reads

g1SQ2

m2 ,x,as ,
1

e D5DCSQ2

m2 ,x,asD ^ DGS x,as ,
1

e D , ~4!

where the convolution̂ is defined as usual by

~ f ^g!~x![E
x

1dz

z
f ~z!gS xzD . ~5!

In Eq. ~4! we have introduced the virtuality of the photo
Q2, the unit of massm in dimensional regularization, the
Bjo”rken variablex5Q2/2pq, and the strong couplingas .
Equation ~4! has a clear partonic interpretation
DG(x,as,1/e) describes the density of partons in the pare
quark, is independent of the hard process considered,
contains all the collinear singularities~poles ine), whereas
DC(Q2/m2,x,as) is the~process-dependent! polarized short-
distance cross section. As was shown in@14#, DG does not
depend onQ2, which is a consequence of the finiteness
the kernelK0 in the axial gauge@16# and allows for the
derivation of a ‘‘renormalization group’’ equation forDC
with DG related to the ‘‘anomalous dimension.’’ ThusDG,
to be convoluted with bare~‘‘unrenormalized’’! parton den-
sities which must cancel its 1/e poles, is equivalent to the
respective Altarelli-Parisi@23# kernels: e.g.,

DGS x,as ,
1

e D5d~12x!2
1

e F S as

2p DDPqq
~0!~x!

1
1

2 S as

2p D 2DPqq
~1!~x!1••• G1OS 1e2D

~6!
e

c

n

:
nt
and

of

for the nonsinglet~NS! case. The final NLO expression for
the ~physical! spin-dependent nucleon structure functiong1
then reads

g1~x,Q
2!5 1

2(
q

Nf

eq
2H Dq~x,Q2!1Dq̄~x,Q2!

1
as~Q

2!

2p FDCq^ ~Dq1Dq̄!

1
1

Nf
DCg^ DgG~x,Q2!J , ~7!

whereNf is the number of active flavors and where in the
full singlet case two short-distance cross sectionsDCq and
DCg for scattering off incoming polarized quarks or gluons,
respectively, exist. Here, the polarized parton distributions
Dp[p↑2p↓ (p5q,g) are to be evolved according to the
spin-dependent Altarelli-Parisi@23# evolution equations
which to NLO read~see, e.g.,@24#!

d

dlnQ2 ~Dq1Dq̄2Dq82Dq̄8!

5
as

2p
~DPqq

V 1DPq q̄
V ! ^ ~Dq1Dq̄2Dq82Dq̄8!,

~8!

d

dlnQ2 ~Dq2Dq̄!5
as

2p
~DPqq

V 2DPq q̄
V ! ^ ~Dq2Dq̄!

~9!

for the NS quark densities and

d

dlnQ2 S DS

Dg D
5

as

2p S DPqq
V 1DPq q̄

V 1DPqq
S DPqg

DPgq DPgg
D ^ S DS

Dg D
~10!

in the singlet sector, whereDS[(q(Dq1Dq̄) and the ar-
gument (x,Q2) has been omitted from all parton densities.
To NLO, all splitting functions in Eqs.~8!–~10! have the
perturbative expansion

DPi j5DPi j
~0!1

as

2p
DPi j

~1! . ~11!

The entriesDPq q̄
V andDPqq

S start to be nonzero only beyond
leading order. For future reference it is convenient to intro-
duce the NLO combinations

DPqq
6,~1!5DPqq

V,~1!6DPq q̄
V,~1! , ~12!

which according to Eqs.~8! and~9! govern the NLO part of
the evolution in the NS sector.DPqq

S is called the ‘‘pure
singlet’’ splitting function since it only appears in the singlet
case.
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III. THE CALCULATION

Before giving some details of the calculation, we note t
the use of the lightlike (n250) axial gauge in practical cal
culations has been a matter of debate for a long time n
@25,26#. The great computational advantage and succes
has brought for, e.g., perturbative NLO QCD calculations
DIS @14,15,27# or jet calculus@28# has not always been
matched by the theoretical understanding of why it work
so well @14,29#. The problems connected with the lightlik
axial gauge are due in the first place to the presence of
rious singularities in loop and phase space integrals com
from the vector propagator in this gauge, which are neit
of ultraviolet nor of infrared origin. We will follow@14,15#
to use the Cauchy principle value~PV! prescription to deal
with such 1/(n• l ) terms~wherel is some momentum!:

1

ln
→

ln

~ ln !21d2~pn!2
. ~13!

All the resulting divergencies of this type can then be tra
formed into the basic integrals

I i[E
0

1

dy
ylni y

y21d2
~ i50,1!. ~14!

I 0 and I 1 have to cancel out in the final answer. As w
discussed in@14#, use of the PV prescription entails reno
malization ‘‘constants’’ which depend onI 0 and the infinite-
momentum-frame~IMF! variablex @30#.

Some representatives of the graphs to be evaluated in
calculation of theDPi j

(1) are shown in Fig. 2. As indicated b
the dashed lines in Fig. 2, some graphs possess real
virtual cuts. We do not need to calculate the contributio
from genuine two-loop graphs~not shown in Fig. 2! to the
diagonal splitting functionsDPqq

V,(1) andDPgg
(1) , which are

;d(12x). These are the same as for the unpolarized c
where they were determined via constraints from momen
conservation in@14,15,31# and also explicitly calculated in
@13,8#.

The calculation of the real emission graphs is rather
volved. This is true in particular for the polarized case wh
using the HVBM scheme since in this method t
(d5422e)-dimensional space-time is explicitly decom
posed into the usual four dimensions in whichg5 anticom-
mutes with the other Dirac matrices and t
(22e)-dimensional part, where it commutes. Thus t
squared matrix elements of the graphs will depend on
usual ‘‘d-dimensional’’ scalar products such asl 1• l 2 etc.
@see Fig. 2~a! for notation of the momenta#, but also on
‘‘( d24)-dimensional’’ ones, denoted byl̂ 1• l̂ 2, k̂

2, etc.@32#.
It is most convenient to work in the IMF parametrization
the momenta@14# which in our case takes the form
hat
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p5~P,0W xy ,P,0W d24!,

n5S pn2P ,0W xy ,2 pn

2P
,0W d24D ,

k5S xP1
k21 k̃ 2

4xP
,kWT ,xP2

k21 k̃ 2

4xP
,kŴ D ,

l 15~ l 1
0 , lW1

xy ,l 1
z ,lŴ1!, ~15!

wherex5kn/pn is interpreted as the IMF momentum frac-
tion of the incoming momentump carried by k, and
k̃25kx

21ky
21 k̂2[kT

21 k̂2 is the total transverse momentum
squared ofk relative to the axis defined byp,n. We split the
(d24)-dimensional components ofl 1 into a partl̂ 1

i parallel
to those ofk and a transverse partl̂ 1

' . According to our
definitions, onlyk, l 1, and l 25p2k2 l 1 possess such com-
ponents. When performing the phase space integrations on
has to carefully take into account the (d24)-dimensional
terms. The contribution of each real graph toDG(x,as,1/e)
is given by the integration of the squared matrix elements
@with the projectors in Eqs.~2! and ~3! being acted upon#
over the phase space

FIG. 2. Some representative Feynman graphs to be evaluated
the calculation of~a! (D)Pqq

V,(1) , ~b! (D)Pq q̄
V,(1) , (D)Pqq

S,(1) ~c!
(D)Pqg

(1) , ~d! (D)Pgq
(1) , and~e!, ~f! (D)Pgg

(1) . Subtraction of ‘‘doubly
collinear’’ graphs is indicated.
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R[E ddk

~2p!d
xdS x2

kn

pnD E ddl 1
~2p!d21E ddl 2

~2p!d21 ~2p!dd~d!~p2k2 l 12 l 2!d~ l 1
2!d~ l 2

2!, ~16!

which is conveniently written as

xe~12x!122eE
2Q2

0

dk2~2k2!122eE
0

1

dw@w~12w!#2eE
0

1

dk̃@ k̃~12k̃ !#2eE
0

1

dv@v~12v !#21/22eS ~2e!E
0

1

dk̂k̂212eD
3S ~2 1

22e!E
0

1

dl'~l'!23/22eD S 1pE01dl i@l i~12l i!#21/2D , ~17!
where we have omitted trivial prefactors and defined

k̂252k2~12x!k̂k̃,

k̃252k2~12x!k̃,

l 1
01 l 1

z52P~12x!w52P
l 1n

pn
,

~ l 1
0!22~ l 1

z!25c1
21v~c2

22c1
2!5

1

P
~ l 1
01 l 1

z!~ l 1p!,

l̂ 1
i 5l11l i~l22l1!,

~ l̂ 1
'!25v~12v !~c11c2!

2l', ~18!

with

c1,2[A2k2~12x!w

x @A~12w!~12k̃ !7Axwk̃# ,

l1,252
1

2

k̂

k̂w
@~ l 1

0!22~ l 1
z!22c1c2#

7~c11c2!A~12k̂ !~12l'!v~12v !.

Note that the last three integrals in Eq.~17! are all unity if no
dependence on (d24)-dimensional scalar products occur
which of course is always the case in the unpolarized sit
tion. If present, such (d24)-dimensional terms only give
contributions proportional toe after the last three integrals in
Eq. ~17! have been performed. One also sees from the d
nition of l 1

01 l 1
z in Eqs. ~18! that the divergences from th

gauge propagator 1/(l 1n) appear atw→0 @and atw→1 for
1/(l 2n)#.

If we are only interested in the final answer, it is satisfa
tory that it turns out to be possible to quite easily infer t
effective contributions of the nontrivial@33# virtual, in par-
ticular the vertex correction, graphs to the polarized splitt
functions from the known results@14,15# for theunpolarized
Pi j
(1) such that these contributions need not be calculated

over again. Considering, for instance, the last graph in F
2~c! ~which contributes toDPqg

(1)), the strategy for this goes
as follows. The final result for the graph is the sum of t
real-cut and the virtual-cut contributions, as indicated by
dashed lines. Since the graph is 2PI, the sum is finite in
s,
ua-
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he
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the
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axial gauge before the integration overk2 is performed. After
integrating the matrix element for thereal part of the graph
over all variables in Eq.~17! except forw ~andk2), it con-
tains terms;1/w from the 1/(l 1n) gauge propagator, but
also, as it turns out, from quantities
;1/@( l 1p)( l 1l 2)# in the original matrix element. In principle,
the 1/w terms from the latter should be treated in dimen-
sional regularization, where they give rise to~infrared! 1/e
@see Eq.~17!# and eventually~together with 1/e poles from
the k̃ integration! to 1/e2 poles, to be canceled from similar
terms in the virtual contributions. In contrast to this, the
1/w terms from the gauge propagator are subject to the PV
prescription~13!. If one now treatsall terms;1/w in the
same way according to Eq.~13!, the result is that the real part
of the graph becomes entirelyfinite in itself. This means that
the virtual part~vertex correction! of the graph is finite as
well in this regularization@34#, apart of course from the ul-
traviolet poles which are removed by renormalization. One
can then make an ansatz for the unrenormalized vertex cor-
rection

Vm[SA0

e
1A1Dgm1(

i
BiDi

m ,

where the sum runs over the possible Lorentz and Dirac
structureDi

m of the vertex which is not proportional to the
tree vertexgm. The coefficientA0 is known from the renor-
malization constant for theqqg vertex in the lightlike axial
gauge as given in@14#. Inserting the vertexVm into the un-
derlying LO graph one finds after renormalization that its
contribution to the NLO splitting function depends onA0,
A1, and a certain combinationf (Bi) of theBi , which, cru-
cially, is thesamein the unpolarized and the polarized cases.
Thus, subtracting the sum of all real-emission graphs in the
unpolarized case from the corresponding final results listed
in @14,15#, one can straightforwardly read offA1 and the
combinationf (Bi), which makes the transfer to the polarized
case directly possible. Note that when insertingVm into the
LO graph in the polarized case, the HVBM scheme intro-
duces dependence of the result on the (d24)-dimensional
scalar productk̂2. One finds that after integration, effec-
tively,

k̂2→
e

12e
k2~12x!. ~19!
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We found that our strategy for determining the contributio
from virtual graphs, which relies on the success of the un
larized calculation@14,15#, worked in all cases. It makes th
whole calculation considerably simpler and is sufficient if w
are just interested in providing a check on the results of@8#.
We reserve a presentation of a full-fledged calculation of
~realand virtual! contributions to a future publication.

We finally note that whenever considering a genuine la
der graph with two parallel rungs, subtraction of the ‘‘doub
collinear’’ graph~see Fig. 2! is required within the method o
@14#. The result for this is given by convoluting th
d-dimensional leading order splitting function standing f
the upper part with the four-dimensional one representing
lower part of the diagram and including a factor (12x)2e

from phase space in the convolution. In 422e dimensions
the polarized LO splitting functions read, forxÞ1 in the
HVBM scheme@35#,

DPqq
~0!~x,e!5CFS 11x2

12x
13e~12x! D ,

DPqg
~0!~x,e!52TRNf@2x2122e~12x!#,

DPgq
~0!~x,e!5CF@22x12e~12x!#,

DPgg
~0!~x,e!52CAS 1

12x
22x1112e~12x! D , ~20!

whereCF54/3, CA53, TR51/2, andNf is the number of
active flavors. Equation~19! is needed to derive these result

IV. RESULTS

In the normalization of@14,15# our modified minimal sub-
traction scheme (MS) results read

DPqq
6,~1!~x!5Pqq

7,~1!~x!22b0CF~12x!, ~21!

DPqq
S,~1!~x!5D P̃qq

S,~1!~x!,

DPqg
~1!~x!5D P̃qg

~1!~x!14CF~12x! ^ DPqg
~0!~x!,

DPgq
~1!~x!5D P̃gq

~1!~x!24CF~12x! ^ DPgq
~0!~x!,

DPgg
~1!~x!5D P̃gg

~1!~x!, ~22!

where b0511CA/324TRNf /3 and DPi j
(0)(x)[DPi j

(0)(x,0)
@see Eq.~20!#. TheD P̃i j

(1) @36# are the results of@8#, and the
unpolarizedPqq

6,(1) can be found in@14#. As was already
discussed in@11,37# and indicated in Eq.~21!, the ‘‘1 ’’ and
‘‘ 2 ’’ combinations of the NS splitting functions as define
in Eq. ~12! interchange their role in the polarized case, su
that, according to Eqs.~8!, ~12!, and ~21!, the combination
DPqq

1,(1)5Pqq
2,(1)22b0CF(12x) would govern theQ2 evo-

lution of, e.g., the polarized NS quark combination

DA3~x,Q
2!5~Du1Dū2Dd2Dd̄!~x,Q2!.

Since the first moment (x integral! of the latter corresponds
to the nucleon matrix element of the NS axial vector curre
q̄gmg5l3q which is conserved, it has to beQ2 independent
ns
po-
e
e

all

d-
ly
f
e
or
the

s.

d
ch

nt

@38#. Keeping in mind that the first moment of the unpolar-
izedPqq

2,(1) vanishes already due to fermion number conser
vation @14#, it becomes obvious that the additional term
22b0CF(12x) in Eq. ~21! spoils theQ2 independence of
the first moment ofDA3(x,Q

2). It is therefore necessary to
perform a factorization scheme transformation to the result
in Eqs.~21! and~22! in order to remove this additional term
which, as pointed out in@39,35,37#, is typical of the HVBM
scheme with its not fully anticommutingg5 and trivially
would not be present in a scheme with a fully anticommuting
g5 since then the twog5 matrices appearing in the relevant
graphs could be removed by anticommuting them toward
each other and usingg5

251 @cf. Fig. 2~a!#. We note that all
these observations were already made in the original calcu
lation of @8# in the OPE where, however, the removal of the
additional term;(12x) corresponds to a finite renormaliza-
tion rather than a factorization scheme transformation. It is
nice to recover this analogy between our results and those o
@8,40#. The factorization scheme transformation for
DPqq

6,(1) also affects the singlet sector since, according to Eq
~10!, DPqq

1,(1)1DPqq
S,(1) occurs in the evolution of the NLO

quark singletDS. The transformation reads, in general~see,
e.g.,@8,41#!,

DPqq
6,~1!5D P̂qq

6,~1!22b0zqq ,

DPqq
S,~1!5D P̂qq

S,~1! ,

DPqg
~1!5D P̂qg

~1!14zqq^ DPqg
~0! ,

DPgq
~1!5D P̂gq

~1!24zqq^ DPgq
~0! ,

DPgg
~1!5D P̂gg

~1! , ~23!

where theD P̂i j
(1) now are the NLO splitting functions on the

left-hand sides of Eqs.~21! and ~22! and theDPi j
(1) are the

newsplitting functions after the scheme transformation. One
immediately sees that the choice

zqq52CF~12x! ~24!

leads toDPqq
6,(1)5Pqq

7,(1) and thus now yields the required
vanishing of the first moment ofDPqq

1,(1) . Even more, the
transformation~23! and~24! removesall additional terms on
the right-hand sides of Eqs.~21! and ~22! simultaneously,
bringing our final result into complete agreement with the
revised one of@8#. We finally note that the above factoriza-
tion scheme transformation also changes the quark shor
distance cross section~coefficient function! DCq in Eq. ~7!,
since the combination

DCq2
2DPqq

6,~1!

b0

must be independent of the choice of the factorization
scheme convention@41#. As was shown in@39,42,37#, only
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after the transformation~23! and ~24! doesDCq in the MS
scheme take the form

DCq~x!5CFF ~11x2!S ln~12x!

12x D
1

2
3

2

1

~12x!1

2
11x2

12x
lnx121x2S 921

p2

3 D d~12x!G , ~25!

i.e., does it become the previously calculated@43# O(as)
quark correction tog1 giving rise to, e.g., the correct first
order correction (12as /p) to the Bjo”rken sum rule. In Eq.
~25!,
E
0

1

dz f~z!@g~z!#1[E
0

1

dz@ f ~z!2 f ~1!#g~z!.

For completeness we note that the NLOMS gluonic short-
distance cross sectionDCg in Eq. ~7! remains unaffected by
the transformation~23! and ~24! and reads~see, e.g.,@8#!

DCg~x!52TRNfF ~2x21!S ln12x

x
21D12~12x!G . ~26!

Our final results for the polarizedMS NLO splitting
functions are given by
DPqq
6,~1!~x!5Pqq

7,~1!~x!, ~27!

DPqq
S,~1!~x!52CFTRNf@~12x!2~123x!lnx2~11x!ln2x#, ~28!

DPqg
~1!~x!5CFTRNf$222127x29lnx18~12x!ln~12x!1dpqg~x!@2ln2~12x!24ln~12x!lnx1 ln2x24z~2!#%

1CATRNf$2~12211x!28~12x!ln~12x!12~118x!lnx22@ ln2~12x!2z~2!#dpqg~x!

2@2S2~x!23ln2x#dpqg~2x!%, ~29!

DPgq
~1!~x!5CFTRNf@2 4

9 ~x14!2 4
3 dpgq~x!ln~12x!#1CF

2$2 1
2 2 1

2 ~42x!lnx2dpgq~2x!ln~12x!1@242 ln2~12x!

1 1
2 ln

2x#dpgq~x!%1CACF$~4213x!lnx1 1
3 ~101x!ln~12x!1 1

9 ~41135x!1 1
2 @22S2~x!13ln2x#dpgq~2x!

1@ ln2~12x!22ln~12x!lnx2z~2!#dpgq~x!%, ~30!

DPgg
~1!~x!52CATRNf@4~12x!1 4

3 ~11x!lnx1 20
9 dpgg~x!1 4

3 d~12x!#2CFTRNf@10~12x!12~52x!lnx12~11x!ln2x

1d~12x!#1CA
2$ 1

3 ~29267x!lnx2 19
2 ~12x!14~11x!ln2x22S2~x!dpgg~2x!1@ 67

9 24ln~12x!lnx1 ln2x

22z~2!#dpgg~x!1@3z~3!1 8
3 #d~12x!%, ~31!
e

ppli-
where, as mentioned above, the unpolarized NS pie
Pqq

6,(1) can be found in@14#. We have defined@44#:

dpqg~x![2x21,

dpgq~x![22x,

dpgg~x![
1

~12x!1
22x11. ~32!

Furthermore, we have, in Eqs.~27!–~31!, z(2)5p2/6,
z(3)'1.202 057, and

S2~x![E
x/~11x!

1/~11x!dz

z
lnS 12z

z D .
For relating our results to those of@8# the relation
ces S2~x!522Li2~2x!22lnxln~11x!1 1
2 ln

2x2z~2!

is needed, where Li2(x) is the dilogarithm@45#. In Eq. ~31!,
the contributions;d(12x) to DPgg

(1) are the same as those
for the unpolarizedPgg

(1) @31#; they lead to satisfaction of the
constraint@46#

E
0

1

dxDPgg
~1!~x!5

b1

4
[ 17

6 CA
22CFTRNf2

5
3 CATRNf ,

valid in the MS scheme.
In conclusion, our calculation, which was based on th

approach of@16,14# and on using the HVBM@20# prescrip-
tion for g5, has confirmed the recent results of@8# for the
spin-dependent two-loop splitting functionsDPi j

(1)(x). Our
results also once more demonstrate the usefulness and a
cability of the method of@14# and the lightlike axial gauge in
perturbative QCD calculations.
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