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Rederivation of the spin-dependent next-to-leading order splitting functions
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We perform a new calculation of the polarized next-to-leading order splitting functions, using the method
developed by Curci, Furmanski, and Petronzio. We confirm the results of the recent calculation by Mertig and
van Neerven[S0556-282(96)05215-(

PACS numbd(s): 13.88+¢e, 12.38.Bx, 13.60-r

I. INTRODUCTION relation[18], but were in disagreement with the first calcu-
lation [13] for the NLO gluon-to-gluon splitting function.
The past few years have seen much progress in oufhe controversy was resolved by a recalculafib® of this
knowledge about the nucleon’s spin structure due to the exsplitting function in the OPE which confirmed the result of
~gN(x,Q?)/FN(x,Q?) (N=p,n,d) in deep-inelastic scatter- [14,19 to rederive the spin-dependent next-to-leading order

- ; o ; litting functions. To deal withys and thee tensor we use
ing (DIS) with longitudinally polarized lepton beams and sp X .79 .
nucleon targets. Previous data Af by the SLAC-Yale Col- the 't Hooft-Veltman—Breitenlohner—Maisor(HVBM)

laboration( 11 h b ded b d scheme[20], which still seems to be the most consistent
aboration[1] ave been succeeded by more aczcurate at6‘rescription[21]. Section Il sets the framework for the cal-
from [2—4], which also cover a wider range ix,Q°), and

\ | . . culation, some details of which are then given in Sec. Ill. In
results onA; and A; have been published I5] and[6,7],  sec. IV we present our results.

respectively.
On the theoretical side, it has become possible to perform
a fully consistent study of longitudinally polarized DIS in
next-to-leading ordefNLO) of QCD, since recently com- |n this section we outline the framework for our calcula-
plete results for the spin-dependent two-loop anomalous dition. We mainly focus on the new features in the polarized
mensions, needed for the NLO evolution of polarized partorcase; more details on the method itself can be found in the
distributions, have been presented for the first tif8e], original works[16,14]. We reserve a more detailed descrip-
calculated within the operator product expansi@PB. A  tion of our calculation to a future publication.
first phenomenological NLO study has been presented in The general strategy consists of a rearrangement of the
[11], later followed by the analyses [12]. perturbative expansion which makes explicit the factoriza-
The calculation of the NLO anomalous dimensions ortion into a part which does not contain any mass singularity
splitting functions is in general very complicated. This is trueand another one which contains &ind only mass singu-
in particular for the polarized case, where the Dirac matrixlarities. Figure 1 represents the matrix element squared for
vs and the antisymmetric Levi-Ci\iitBansoreM,,pU enter the polarized virtual (spacelik¢ photon-quark scattering. The
calculation as projectors on to definite helicity states of thédlob AM is expanded into two particle irreducib(2Pl) ker-
involved particles. Thes@enuinelyfour-dimensionalquan-  nelsCy and Ky. In the axial gauge these 2PI kernels have
tities lead to certain complications when dimensional regubeen proveri16] to be finite as long as the external legs are
larization, which probably represents the only viable methodkept unintegrated, such that all collinear singularities origi-
of regularization in such a calculation, is used. In fi&),  nate from the integrations over the momenta flowing in the
was recently revised since an error related to the treatment dihes connecting the various kernels. The generalized ladder
vs was found. Although the results §8] now fulfill a rela-  in Fig. 1 can be written agl4,22
tion motivated from supersymmetry, which appears to be an
important constraint, it seems necessary to perform an inde-
pendent calculation of the polarized two-loop splitting func-

Il. FRAMEWORK

tions to check the results ¢8]. This is the purpose of this %77 § ZL% <
paper. N L G | 4 L G I+ _
In the unpolarized case, two different methods have been ol | R N

used to obtain the next-to-leading order splitting functions.
The first calculation[13] was performed within the OPE. ) N
Afterwards Curci, Furmanski, and PetronZib4,15 used a
technique which is as close as possible to parton model in-

tuition since it is based explicitly on the factorization prop-

erties of mass singularities in the lightlike axial galdé| FIG. 1. The matrix element squared for polarized photon-quark
and on the generalized ladder expandid®]. Note that the interaction, its expansion in terms of 2PI kern€lsandK,, and its
results of{ 15] satisfied the above-mentioned supersymmetridinal factorized form.
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5 1 for the nonsingle{NS) case. The final NLO expression for
AM=A[Co(1+Ko+ Ko+ --)]=A]Cor— —|=ACAL. the (physica) spin-dependent nucleon structure functipn
0 (1)  then reads

Ny
AC andAT have been decoupled by projectors which for the 2y_ 1 2] A 2y 4 AGQ(x.02
longitudinally polarized case read\( B being two kernels 9:(%.Q%) 2% €| A9 Q7 +AA(x.Q%)
2
. (y V])kl ag(Q*) —
A(AAPFB)=(AA'J(ky5)ij)[PFf|<ﬁABk| 2 +——|AC®(Aq+Aq)
1
for polarized quarks and + N—fACg®Ag (x,Q%) ¢, @)
k,n k,n i i i
_ wvpo PO aBys Vo whereN; is the number of active flavors and where in the
A(AAPGB) (AA””G 2kn)[PH( € kn AB“ﬁ) full singlet case two short-distance cross sectidii, and

&) AC, for scattering off incoming polarized quarks or gluons,
respectively, exist. Here, the polarized parton distributions

for polarized gluons, setting?=0 in the part containing the Ap=p'—p' (p=q,g) are to be evolved according to the
kernelAA and taking the pole pa[PP| of the projection on spin-dependent Altarelli-Paris{23] evolution equations
kernel AB. In Egs.(2) and (3) i,j,k,I are spinor and the which to NLO read(see, e.g.[24])
greek letters are Lorentz in(:tin%%.is the vector to be intro- q
duced in the axial gauge with=0 for the lightlike gauge. — ., A=
The last expression in Edql) displays the factorization of dan2(Aq+Aq—Aq —Aq)
mass singularitie§14], which in dimensional regularization
(d=4-2¢) appear as poles in d/More explicitly, the con- _ Gs v % AN AT
tribution to the (partonig spin-dependent deep-inelastic B ZW(Aqu+APqE)®(Aq+Aq Ag'-4d),
structure functiorg, reads 8)

®AT

2 1 2
gl(Q—z,X,as,—) =AC(%,X,aS

1 d
X! 1_1 4 —_— —ﬁ V_ V —
P c s ) @ oz (A4-Aa) =52 (AP~ AP ®(Ag-AT)

(€)

where the convolutiom® is defined as usual by
for the NS quark densities and

1dz X
<f®g>(x)zf 7f(z)g(;). (5) d (A3
X [—
dIan( Ag)
In Eq. (4 we have introduced the virtuality of the photon v v s
Q?, the unit of massu in dimensional regularization, the _ s Aqu+APqE+Aqu APyqq A
Bjdérken variablex=Q?/2pq, and the strong couplings. 2@ APgyq APgq Ag

Equation (4) has a clear partonic interpretation: (10)
AT (x,as,1/€) describes the density of partons in the parent

quark, is independent of the hard process considered, arm the singlet sector, wherAEEEq(quLA@ and the ar-

contains all the collinear singularitigpoles in€), whereas 2 ; I

. i gument &,Q<) has been omitted from all parton densities.
A.C(QZ/'“z’X'“S) IS t.he(process-dependerpolarlzed short- T, NLO, all splitting functions in Eqs(8)—(10) have the
distance cross section. As was showr{14], AT" does not perturbative expansion

depend onQ?, which is a consequence of the finiteness of
the kernelK, in the axial gauggd16] and allows for the a

derivation of a “renormalization group” equation fakC AP =APD+ ﬁAPi(jl). (11)
with AT related to the “anomalous dimension.” Thud",

to be convoluted with baré‘unrenormalized”) parton den-
sities which must cancel its d/poles, is equivalent to the
respective Altarelli-Paridi23] kernels: e.g.,

The entriesA P;’q—andA Pﬁq start to be nonzero only beyond
leading order. For future reference it is convenient to intro-
duce the NLO combinations

@ +.(1)_ A pVi(1) V,(1)
(ﬁ)APfo(x) APgq =APgg AP (12)

1 1
AF(X,aS,E)I(S(l—X)—; q

as

1 2
| = (1)
+2(27T> AP (x)+

1 which according to Eqg8) and(9) govern the NLO part of
+0 —2)
€

the evolution in the NS sectoAPgq is called the “pure
singlet” splitting function since it only appears in the singlet
(6) case.
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Ill. THE CALCULATION

Before giving some details of the calculation, we note that / _
the use of the lightlike = 0) axial gauge in practical cal- :
culations has been a matter of debate for a long time now »’ "'
[25,26. The great computational advantage and success it
has brought for, e.g., perturbative NLO QCD calculations in
DIS [14,15,27 or jet calculus[28] has not always been b ;
matched by the theoretical understanding of why it worked
so well[14,29. The problems connected with the lightlike

axial gauge are due in the first place to the presence of spu-
rious singularities in loop and phase space integrals coming ¢ - - : :
from the vector propagator in this gauge, which are neither

of ultraviolet nor of infrared origin. We will follow{14,15
to use the Cauchy principle valifV) prescription to deal
with such 1/6-1) terms(wherel is some momentujn d

m—>(|n)2+5z(pn)7' (13 e

! In i
[

All the resulting divergencies of this type can then be trans-
formed into the basic integrals ¢ -

_ ld y|niy i=0.1) (14) FIG. 2. Some representative Feynman graphs to be evaluated in
= [, Wy (=01, the calculation of(a) (A)PY™, (b) (A)PLY, (A)PSY (0

(A)PLY, () (A)PLY, and(e), (f) (A)Py . Subtraction of “doubly
collinear” graphs is indicated.

o and I, have to cancel out in the final answer. As was
discussed if14], use of the PV prescription entails renor-

malization “constants” which depend di and the infinite- p=(P,0xy,P,04-4),
momentum-frame&IMF) variablex [30].

Some representatives of the graphs to be evaluated in the pn pn
calculation of theA P{") are shown in Fig. 2. As indicated by n:(ﬁ,oxy,— ﬁ,0d4).

the dashed lines in Fig. 2, some graphs possess real and
virtual cuts. We do not need to calculate the contributions

from genuine two-loop graph@ot shown in Fig. 2to the B k2+k 2 . k2+k 2 ”»)

diagonal splitting functions\Py:" and AP{), which are k= XPt ke XP= 5K
~8(1—x). These are the same as for the unpolarized case,

where they were determined via constraints from momentum N N

conservation if14,15,37 and also explicitly calculated in =(19,1Y,1%,1y), (15

[13,8].

The calculation of the real emission graphs is rather inwherex=kn/pn is interpreted as the IMF momentum frac-
volved. This is true in particular for the polarized case whention of the incoming momentunp carried by k, and
using the HVBM scheme since in this method thek2=k2+ k§+k25k$+k2 is the total transverse momentum
(d=4-2¢)-dimensional space-time is explicitly decom- squared ok relative to the axis defined hy,n. We split the
posed into the usual four dimensions in whigh anticom-  (4— 4)-dimensional components bf into a partl| parallel
mutes with the other Dirac matrices and thei, those ofk and a transverse part . According to our
(—25)-d|men§|onal part, where it commutes. Thus thedefinitions, onlyk, 1,, andl,=p—k—1, possess such com-
squared matrix elements of the graphs will depend on th@onents. When performing the phase space integrations one
usual “d-dimensional” scalar products such &g 1, etc.  has to carefully take into account thel-4)-dimensional
[see Fig. 2a) for notation of the momeniabut also on terms. The contribution of each real graphA® (x, ag,1/€)

“( d—4)-dimensional” ones, denoted by: 1 ,, k?, etc.[32]. is given by the integration of the squared matrix elements
It is most convenient to work in the IMF parametrization of [with the projectors in Eqs(2) and (3) being acted upan
the momentd14] which in our case takes the form over the phase space
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[ d% ( kn) ddl, dd, 4 0 o s
R=f(2—ﬂ_)d)(5 X~ on f(zﬂ)dflf (27)(171(2#) oV (p—k=l1=12)5(17)8(13), (16)
which is conveniently written as
xf(l—x)l—kf_oqzdkz(—kz)l—szoldw[w(l—w)]—Efold;[’;(l—k‘)]—efoldv[v(l—u)]—1’2—f( (—e)foldfu}_l_5>
X (—%—e)fld)&()\l)‘w‘f) (%Jld)\”[)\(l—)\)]‘m), (17)
0 0

where we have omitted trivial prefactors and defined
k?=—Kk2(1-X) XX,

k2= —K¥(1-X)%,
I4n
I(1)+I§=2P(1—X)W=ZPE,

IO

1
V2= (D?=cito(cz—cy)=p(11+1D)(11p),

(

I VRS USRS W)

(I1)2=v(1—v)(ci+Ccp) AL, (18)

with
—K%(1—
v N [ W TR ],

M= 5 e [0D2-(1DP-crc)

F(ci+c)V(1—k)(1—N)v(1—v).

Note that the last three integrals in Ef7) are all unity if no

dependence ond(—4)-dimensional scalar products occurs
which of course is always the case in the unpolarized situ
tion. If present, suchd—4)-dimensional terms only give
contributions proportional te after the last three integrals in

Eq. (17) have been performed. One also sees from the def

nition of 19+1% in Egs. (18) that the divergences from the
gauge propagator 14n) appear aiv—0 [and atw—1 for
1/(1,n)].

axial gauge before the integration ovéris performed. After
integrating the matrix element for threal part of the graph
over all variables in Eq(17) except forw (andk?), it con-
tains terms~1/w from the 1/(,n) gauge propagator, but
also, as it turns out, from quantities
~1[(I1p)(I41,)] in the original matrix element. In principle,
the liv terms from the latter should be treated in dimen-
sional regularization, where they give rise (iofrared 1/e
[see Eq.(17)] and eventually(together with 1¢ poles from
thex integration to 1/? poles, to be canceled from similar
terms in the virtual contributions. In contrast to this, the
1Av terms from the gauge propagator are subject to the PV
prescription(13). If one now treatsall terms ~1/w in the
same way according to E{L3), the result is that the real part
of the graph becomes entiréfiyite in itself. This means that
the virtual part(vertex correction of the graph is finite as
well in this regularizatior{34], apart of course from the ul-
traviolet poles which are removed by renormalization. One
can then make an ansatz for the unrenormalized vertex cor-
rection

VH*

Ao
ZHA

y*+2 B,
1

where the sum runs over the possible Lorentz and Dirac
structureD!* of the vertex which is not proportional to the
tree vertexy”. The coefficientAy is known from the renor-

' malization constant for thgqg vertex in the lightlike axial
ag';auge as given if14]. Inserting the verte¥/* into the un-
derlying LO graph one finds after renormalization that its
contribution to the NLO splitting function depends @,

'Al, and a certain combinatiof{B;) of the B;, which, cru-
cially, is thesamein the unpolarized and the polarized cases.
Thus, subtracting the sum of all real-emission graphs in the
unpolarized case from the corresponding final results listed

If we are only interested in the final answer, it is satisfac-jy 114,15, one can straightforwardly read off; and the
tory that it turns out to be possible to quite easily infer thecombinationf(Bi), which makes the transfer to the polarized

effective contributions of the nontrividB3] virtual, in par-

case directly possible. Note that when insertig into the

ticular the vertex correction, graphs to the polarized splitting graph in the polarized case, the HVBM scheme intro-

functions from the known resul{44,15 for the unpolarized
P{" such that these contributions need not be calculated

duces dependence of the result on tie-@)-dimensional

allcalar produclf(z. One finds that after integration, effec-

over again. Considering, for instance, the last graph in Figtively

2(c) (which contributes taA P{Y), the strategy for this goes

as follows. The final result for the graph is the sum of the

real-cut and the virtual-cut contributions, as indicated by the
dashed lines. Since the graph is 2PI, the sum is finite in the

A~ €
k2—> rekz(l—X). (19)
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We found that our strategy for determining the contributiong38]. Keeping in mind that the first moment of the unpolar-
from virtual graphs, which relies on the success of the unpoized P;d(l) vanishes already due to fermion number conser-
larized calculatiori14,15, worked in all cases. It makes the vation [14], it becomes obvious that the additional term
whole calculation considerably simpler and is sufficient if we —23,C(1—x) in Eq. (21) spoils theQ? independence of
are just interested in providing a check on the results3¢f  the first moment ofA Az(x,Q?). It is therefore necessary to
We reserve a presentation of a full-fledged calculation of alberform a factorization scheme transformation to the results
(realand virtual) contributions to a future publication. in Egs.(21) and(22) in order to remove this additional term
We finally note that whenever considering a genuine ladwhich, as pointed out ifi39,35,37, is typical of the HVBM
der graph with two parallel rungs, subtraction of the “doubly scheme with its not fully anticommutings and trivially
collinear” graph(see Fig. 2is required within the method of \would not be present in a scheme with a fully anticommuting
[14]. The result for this is given by convoluting the ,. since then the twoys matrices appearing in the relevant
d-dimensional leading order splitting function standing forgraphs could be removed by anticommuting them towards
the upper part with the four-dimensional one representing theach other and usingz=1 [cf. Fig. 2a)]. We note that all
lower part of the diagram and including a factor{%) "©  these observations were already made in the original calcu-
from phase space in the convolution. Ir-Ze dimensions  |ation of[8] in the OPE where, however, the removal of the
the polarized LO splitting functions read, for#1 in the  additional term~ (1—x) corresponds to a finite renormaliza-

HVBM scheme[35], tion rather than a factorization scheme transformation. It is
1452 nice to recover this anal_ogy between our results an_d those of
O)(x, €)= CF( +3e(1—x)), [8,40]. The factorization scheme transformation for
1-x APZ: ™M also affects the singlet sector since, according to Eq.

(10), AP M+APZ™® occurs in the evolution of the NLO
quark singletA3.. The transformation reads, in gene(sée,
egy[8141:|)1

AP (x,€)=2TgN{[2x—1—2€(1-x)],
AP(x,€)=Cg[2—x+2€(1-X)],
AP (1) AP (1) 2[30qu,

1
— —2x+1+2e(1-%)|, (20

Apg%>(x,e):2cA( T

APSV=APSL)
whereCg=4/3, C,=3, Tg=1/2, andN; is the number of 4 4
active flavors. Equatiofil9) is needed to derive these results. 1) 1 0)
APgq AP g T429q® AP,
IV. RESULTS
D ApD)_

In the normalization of14,15 our modified minimal sub- APgq=APgq— 4qu®AP9q '

traction schemeNIS) results read

AP =APL (23)

+ - g9’
AP M) =PV ()= 2BoCe(1-x), (2D

where theA P(l) now are the NLO splitting functions on the
left-hand S|des of Eq421) and (22) and theAP{" are the

1) 1) _ (0) newsplitting functions after the scheme transformauon One
APgg(X)=AP4g () T4CE(1=X)® APgg(X), immediately sees that the choice

APS V() =APSM(x),

Dy = APDy) — _ (0)
AP (X)=APgq(X) =4CE(1=X)® APy (X), o= —Cr(1-%) (24
AP (x)= AP (x), (22)
leads toAP;™M=P::™ and thus now yields the required
where Bo=11C,/3—4TgNy/3 and APP(x)=AP{’(x,0)  vanishing of the first moment akPg ;™. Even more, the
[see Eq(20)]. TheAP(l) [36] are the results dfs], and the transformation23) and(24) removesall additional terms on
unpolarlzequq(l) can be found in[14]. As was already the right-hand sides of Eq$21) and (22) simultaneously,
discussed i11,37 and indicated in E¢(21), the “+” and bringing our final result into complete agreement with the
“ —" combinations of the NS splitting functions as defined revised one of8]. We finally note that the above factoriza-
in Eq. (12) interchange their role in the polarized case, sucHion scheme transformation also changes the quark short-
that, according to Eqg8), (12), and(21), the combination distance cross sectidieoefficient function AC, in Eq. (7),
AI?;q'(lE Pad(l)—ZﬁOCE(l—x) would govern the_Q2 evo-  since the combination
lution of, e.g., the polarized NS quark combination
— 24P ;Y
AA(X,Q%)=(Au+Au—Ad—Ad)(x,Q?). Cq— B—
0
Since the first momentx(integra) of the latter corresponds
to the nucleon matrix element of the NS axial vector currentmust be independent of the choice of the factorization
qy“7ysh3q which is conserved, it has to g2 independent scheme conventiofd1]. As was shown ir{39,42,37, only
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after the transformatiorf23) and (24) doesAC, in the MS 1 1
scheme take the form fo dzf(2)[g(2)]+= fo d4 f(2)—1(1)]g9(2).

In(l—x)) 3 1

AC4(X)=C¢| (1+x?)

1—x 2 (1-X) . For completeness we note that the NL@S gluonic short-
distance cross sectiahCy in Eq. (7) remains unaffected by
the transformatiorf23) and (24) and readgsee, e.9.[8])

2
— | (1=x)|,

X2
InX+2+x—
X

5 (29

1—

(26)

ACy(x)=2TgN;¢ (2x—1)(|n¥—1)+2(1—x) .
i.e., does it become the previously calculafd®] O(«y)

guark correction tay; giving rise to, e.g., the correct first _
order correction (* ag/m) to the Bjrken sum rule. In Eq. Our final results for the polarizedMS NLO splitting

(25, functions are given by

AP P (x) =P P (x), (27)
AP (%) =2CETRN{[ (1 - %) — (1—3x)Inx— (1+X)In>x], (28)
AP (%)= CETRN{ — 22+ 27x— 9Inx+ 8(1—X)IN(1—X) + 8Pgqg(X)[ 2IN*(1—x) — 4In(1—x)Inx+In?x— 4£(2) ]}
+CATRNf{2(12—11x)—8(1—x)|n(1—x)+2(1+8x)|nx—2[In2(1—x)—§(2)]5pqg(x)
—[2S5(x) = 3IN°x] Spqg( —X)}, (29
APS(x)=CeTrN([ — § (X+4) = 3 8pg(X)IN(1=X)]+CEH — 3 — 3 (4—X)INX— 8Ppgqe( —X)IN(1—X) +[ —4—In*(1-x)
+ 2 IN?X]8Pgq(X)} + CACE{(4—13X)InX+ 5 (10+X)IN(1—X) + § (41+35X) + 3 [ —2S,(X) +3In*X] 5Py —X)
+[IN?(1=x) = 2In(1—=x)InX— £(2)]8pgqe(X)}, (30
APglg)(x)z—CATRNf[4(1—x)+ (1+x)Inx+ & 0pgg(X)+ 5 8(1—X)]— CeTrN{10(1—X) +2(5—X)Inx+2(1+x)In*x
+5(1—x)]+Cf\{%(29—67x)lnx— (1—x)+4(1+x)In?x— 2S,(X) dpgg( —x) + 8 —4In(1—x)Inx+Inx

—2{(2)]18pgqg(x)+[34(3) + §18(1—-x)}, (31

where, as mentioned above, the unpolarized NS pieces Sy(x)=—2Lio(—x)— 2InxIn(1+x) + & In?x—£(2)
Py can be found irf14]. We have define@44]: 2
is needed, where kLix) is the dilogarithm45]. In Eq. (31),

SPgg(X)=2x—1, the contributions~ §(1—x) to AP(l) are the same as those
for the unpolarized(y) [31]; they lead to satisfaction of the
SPgg(X)=2-X, constraini46]
(1) 'B_z 1702 _5
50 ()= (1_1)() 1 32 f dxAP} 7 = & CA—CeTrNi— § CaTeN,
+
] 5 valid in the MS scheme.
Furthermore, we have, in EQd27)—(31), {(2)=m/6, In conclusion, our calculation, which was based on the
¢(3)~1.202 057, and approach 0f16,14 and on using the HYBM20] prescrip-
tion for ys, has confirmed the recent results [8f for the
S,(x EJ’l/(l+x>d_z|n(1 Z) spin-dependent two-loop splitting functiodsP{"(x). Our
xI(1+x) Z z results also once more demonstrate the usefulness and appli-

cability of the method of14] and the lightlike axial gauge in
For relating our results to those [8] the relation perturbative QCD calculations.
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