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Motivated by the 1N, expansion, we present a simple modetmaf scattering as a sum ofaurrent-algebra
contact term and resonant pole exchanges. The model preserves crossing symmetry as well as unitarity up to
1.2 GeV. Key features include chiral dynamics, vector meson dominance, a broad low energy stalar (
meson, and &amsauer-Townsendechanism for the understanding of the 980 MeV region. We discuss in
detail theregularization(corresponding to rescattering effectecessary to make all these nice features work.
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[. INTRODUCTION observation was made that the real part of thed, J=0
partial wave amplitude quite soon violated the unitarity

Historically, the analysis ofrm scattering has been con- bound|RJ|<1/2 rather severely. The inclusion of the contri-
sidered an important test of our understanding of strong inbution coming from the meson exchange was observed to
teraction physic¥QCD, now at low energies. It is com- greatly improve, although not completely solve, this prob-
monly accepted that the key feature is the approximatédem. These results are shown explicitly in Fig. 1 and provide
spontaneous breaking of chiral symmetry. Of coursekthe some encouragement for the possible success of a truncation
nematicalrequirements of unitarity and crossing symmetryscheme.
should be respected. The chiral perturbation schéie In Ref. [4], it was observed that the inclusion of reso-
which improves the tree Lagrangian approach by includinghances up till and including the-wav e region enabled one
loop corrections and counterterms, can provide a description
of the scattering up to the energy region slightly above
threshold(400-500 MeV. 2.0 — — ; . .

In order to describe the scattering up to energies beyond - / ]
this region(say to around 1 Ge) it is clear that the effects  gr?
of particles lying in this region must be included and some
new principle invoked. A plausible hint comes from the large 15k / |
N approximation to QCD, in which the leading order scat- - .
tering amplitudes consist of just tree diagrams containing - 1
resonance exchanges as well as possible contact diagrams :
[2]. The method suggests that an infinite number of reso- g
nances are required and also a connection with some kind of L _
string theory[3]. - -

Some encouraging features were previously found in an - ]
approach which truncated the particles appearing in the ef- !
fective Lagrangian to those with masses up to an energy
slightly greater than the range of interest. This seems reason-
able phenomenologically and is what one usually does in
setting up an effective Lagrangian. The most famous ex-
ample is the chiral Lagrangian of only pions. In Rf] this
Lagrangian provided, as a starting point, a contact term
which described the threshold region. However, the usual \s  (GeV)
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FIG. 1. Predicted curves f&®S. The solid line which shows the

:Electronic address: mharada@npac.syr.edu current algebra+ p result for RS is much closer to the unitarity
iElectronic address: sannino@npac.syr.edu bound of 0.5 than the dashed line which showsdheent-algebra
Electronic address: schechte@suhep.phy.syr.edu result alone.
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to construct an amplitude which satisfied the unitarityespecially controversidl5]. If such resonances turn out in
bounds up to about 1.3 GeV. It was assumed that, above thtke future to be not ofjq type, their tree contributions would
point, new resonances would come in to preserve unitaritybe of higher order than Bl,. In that event the amplitude
This hypothesis was calletbcal cancellation The model  would still, of course, satisfy crossing symmetry.
produced a reasonable-looking=J=0 phase shift up to The most problematic feature involved in comparing the
about 800 MeV. In this paper we will attempt to describe andeading 1N, amplitude with experiment is that it does not
carefully compare with experiment the interesting physicssatisfy unitarity. In fact, resonance poles such as
lying between 800 and 1200 MeV in this truncated
1/N-inspired framework. Specifically, we will be concerned 1 @2.1)
with the proper inclusion of thé,(980) scalar resonance as MZ—s '
well as the opening of th€K channel. We find that a simple ) ) )
reasonable description of th,(980) region is obtained will yield a pu_rely_ real amplitude, _except_ at the smgu_larlj[y,
when the interplay of this resonance with its background igvhere they will diverge and drastically violate the unitarity
taken into account. In this approach the background ampliPeund. Thus, in order to compare theNl/amplitude with
tude is predicted by the model itself. In the region just aboveXPeriment we must regularize the denominators in some
theKK threshold we notice the feature analogous to the ela way. The usual method, as employed In Réi, IS to regu-
tic case that the severe unitarity violation of the inelastical.r'zg tr;]e prcr)]palgato”r so that tfhe resulting partial wave am-
77— KK amplitude is damped by the inclusion of vector plitude has the locally unitary form
meson and scalar meson exchange diagrams. MT

Of course, it would be wonderful if one could simply add MZ—s—iMT"
the various contributions to the tree-level amplitude and find

a good match to experiment. This is not possible for a varietyrjs js only valid for a narrow resonance in a region where
of reasons, which are discussed in Sec. Il. The neeel@d- e hackgrounds negligible. Note that the-iM T is strictly
larizations are introduced there. Section Il gives a brief speaking a higher order inl4/ effect.

overview of the model and reviews the important role of a * gor 5 very broad resonance there is no guarantee that such
broad scalar meson in the low energy 800 MeV) region. 4 form is correct. Actually, in Ref4] it was found necessary
Section IV contains a discussion of various aspects of the {, jnclude a rather broad low-lying scalar resonaftenoted

GeV region. The characteristic feature, a typeRaimsauer- ;. (550)] to avoid violating the unitarity bound. A suitable
Townsenceffect resulting from the interplay of thg(980)  torm turned out to be of the type

resonance with the predicted background, is outlined in Sec.

IV A and treated in more detail in Sec. IV B. In Sec. IV C it MG

is shown that the introduction of theext groupof reso- M2=s—iMG"’ 23
nances, located in the 1300 MeV region, does not make ma-

jor changes in therw scattering below 1200 Me\Mthe  whereG is not equal to the paramet&’ which was intro-
changes are essentially absorbed in small changes of the pduced to regularize the propagator. He®js the quantity
rameters of the broad low energy scaldn Sec. IVD itis  related to the squared coupling constant.

demonstrated that the phenomenological introduction of in- Even if the resonance is narrow, the effect of the back-
elastic effects associated with the opening ofklie channel  ground may be rather important. This seems to be true for
does not make a significant change in our picture ofthe case of thd,(980). Demanding local unitarity in this
77— mar below 1200 MeV. Section IV E contains a presen- case yields a partial wave amplitude of the well-known form
tation of thel =J=0 phase shift obtained by combining our [6]:
predicted real part with unitarity. In Sec. V we discuss the ois
inelasticm— KK channel and show that here also the reso- e”'MI
nance exchanges damp the unitarity bound violation due to M?—s—iMT
the contact term. Section VI contains the summary and fur- )

ther discussion. Finally, Appendices A, B, and C give detailsVhered is a background phasassumed to be slowly vary-

on, respectively, the scattering kinematics, the chiral LalN@- We will adopt a point of view in which this form is
grangian, and the unregularized amplitudes. regarded as a kind of regularization of our model. Of course,

nonzeros represents a rescattering effect which is of higher
order in 1N,. The quantitye??, taking 5=const, can be
incorporated into the squared coupling constant connecting
the resonance to two pions. In this way, crossing symmetry
In the largeN. picture the leading amplitudéof order  can be preserved. From its origin, it is clear that the complex
1/N;) is a sum of polynomial contact terms and tree-typeresidue does not signify the existence @testparticle. The
resonance exchanges. Furthermore, the resonances shouldrimmpole background term in E(R.4) and, hence§ is to be
of the simpleqq type; glueball and multi-quark meson reso- predicted by the other pieces in the effective Lagrangian.
nances are suppressed. In our phenomenological model there Another point which must be addressed in comparing the
is no way of knowinga priori whether a given experimental leading 1N, amplitude with experiment is that it is purely
state is actually ofjq type. For definiteness we will keep all real, away from the singularities. The regularizations men-
relevant resonances even though the status of a low-lyingoned above do introduce some imaginary pieces but these
scalar resonance such as thg980) has been considered are clearly more model dependent. Thus, it seems reasonable

(2.2

+e'%sing, (2.9

Il. DIFFICULTIES OF THE APPROACH
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TABLE I. Resonances included in thew— 7 channel as
listed by the PDG. Note that the is not present in the PDG and is
not being described exactly asBaeit-Wignershape; we listed the
fitted parameters shown in column 1 of Table Il wh&é is the
analogue of théBreit-Wignerwidth.

16(3P%) M(MeV) T(MeV) B(27)%
a(550) 0 (0% ™) 559 370 -
p(770) 17(177) 769.9 151.2 100
f0(980) 0 (0% ™) 980 40-400 78.1
f,(1270) 07 (2™Y) 1275 185 84.9
fo(1300)  0°(0**) 1000-1500  150-400 93.6
p(1450) (1) 1465 310 Seen

SIMPLE DESCRIPTION OFrm SCATTERING TO 1 GeV

1993

the whole model, these correspond to the three unknowns in
the description of a broad scalar resonance given by Eqg.
(2.3). We will include only the minimal two derivative chiral
contact interaction contained in E¢R.7) of Appendix B.
Clearly, higher derivative contact interaction may also be
included(see, for example, Sec. Il E of Rd#]).

As shown in Fig. 1, although the introduction of tpe
dramatically improves unitarity up to about 2 Geﬁg vio-
lates unitarity to a lesser extent starting around 500 MeV.
(As noted in Ref.[4], the I=J=0 channel is the only
troublesome ong.To completely restore unitarity in the
present framework, it is necessary to include a low mass
broad scalar state which has historically been denoted as the
o. It seems helpful to recall the contribution of such a par-
ticle to the real part of the amplitude componé(ts,t,u)

to compare the real part of our predicted amplitude with thedefined in Eq(A8):

real part of the experimental amplitude. Note that the diffi-
culties mentioned above arise only for the direct channelpa (s,t,u)=R 32m
poles; the crossed channel poles and contact terms will give 7 '

purely real finite contributions.

It should be noted that if we predict the real part of the
amplitude, the imaginary part can always be recovered b
assuming elastic unitaritfwhich is likely to be a reasonable
approximation up to about 1 GeVSpecializing Eq(A6) in
Appendix A to thew# channel we have for the imaginary
piecelf of thel,l partial wave amplitude

1
I1=5[1=7?—4R?],

where 7;} is the elasticity parameter. Obviously, this formula
is only meaningful if the real part obeys the bound

(2.9

T
IR|= 5 (2.6

The main difficulty one has to overcome in obtaining a uni-

tary amplitude by the present method is the satisfaction o

this bound. Therefore, one sees that makiagularizations
such as Eqgs(2.2) and(2.4), which provide unitarity in the

immediate region of a narrow resonance, is not at all tanta-

mount to unitarizing the model by hand. One might glanc
again at Fig. 1 for emphasis on this point.
To summarize this discussion, we will proceed by com

aring the real part of a suitably regularized tree amplitude .
paring P y reg P ’_E‘arrow resonance and hence should not really be applied to
e

computed from a chiral Lagrangian of pseudoscalar meso
and resonances with the real part of the experimental amp
tude deduced from the standard phase shift analysis.

Ill. OVERVIEW AND LOW ENERGY REGION

e
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andG is related to the coupling constapg defined in Eq.
(B11) by

,3HM?
~ 07 64r

(3.3

Note that the factors(—meT)2 is due to the derivative-type
coupling required for chiral symmetry in E(B11). The total
amplitude will be crossing symmetric sina(s,t,u) and
A(u,t,s) in Eg. (A8) are obtained by performing the indi-
cated permutation$s’ is a parameter which we introduce to
iegularize the propagator. It can be called a width, but it
urns out to be rather large so that, after thand = contri-
butions are taken into account, the partial wave amplitude
Rg does not clearly display the characteristic resonant behav-
jor. In the most general situation one might imagine Bat
could become complex as in E@.4) due to higher order in
1/N, corrections. It should be noted, however, that E34)
xpresses nothing more than the assumption of unitarity for a

e present broad case. A reasonable fit was found in[REf.
or G purely real, but not equal t&'. By the use of Eq.
(2.5, unitarity, is in fact, locally satisfied.

A best overall fit is obtained with the parameter choices;
M_,=559 MeV, G/G'=0.29, andG'=370 MeV . These

The amplitude will be constructed from the nonlinear chi-have been slightly fine tuned from the values in Réi.in
ral Lagrangian briefly summarized in Appendix B. To startorder to obtain a better fit in the 1 GeV region. The result for
with, we shall neglect the existence of tkemesons. Then, the real partRg due to the inclusion of the- contribution
the form of the unregularized amplitude is identical to thealong with them andp contributions is shown in Fig. 2. It is
one presented in Reff4]. The neutral resonances which can seen that the unitarity bound is satisfied and there is a rea-
contribute have the quantum numb@f§=0*", 17 -, and sonable agreement with the experimental poiB{S] up to
2**. We show in Table | the specific ones which are in-about 800 MeV. Beyond this point the effects of other reso-
cluded, together with their masses and widths, when availnancesgmainly the f(980)] are required. From Eq$3-1)d
able from the Particle Data GrofDG) [7] listings. (A9), and (A11), we see that the contribution ef to R,
Essentially, there are only three arbitrary parameters iurns negative wheB>M§. This is the mechanism which
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change sign and hence does not satisfy the unitarity bound
above the 450 MeV regiofi0Q].

IV. THE 1 GeV REGION

A. The main point

Reference to Fig. 2 shows that the experimental data for
Rg lie considerably lower than ther+p+ o contribution
between 0.9 and 1.0 GeV and then quickly reverse sign
above this point. We will now see that this distinctive shape
is almost completely explained by the inclusion of the rela-
tively narrow scalar resonandg(980) in a suitable manner.
One can understand what is going on very simply by starting
from the real part of Eq(2.4):

(M?2=s)cog268)—MTI'sin(26) 1

MT (M2—5)2+ M2I2 +§sm(25). 4.9

\'s  (GeV)

This expresses nothing more than the restriction of local uni-

tarity in the case of a narrow resonance in the presence of a
background. We have seen that the difficulty in comparing

$he tree-level M. amplitude to experiment is enhanced in

spond toRY . (CJ) are extracted from the data of RE8] while the neighborhood of a direct channel pole. Hence it is prob-

(A) are extracted from the data of R¢f)]. The predictedR) is ably most re“_at?'e to ideontify the bac_:kgrou_nd teéssin(?b)
small around the 1 GeV region. with our prediction forR;. In the region of interest, Fig. 2

shows thath is very small so that one expectsto be
roughly 90° (assuming a monotonically increasing phase
shift). Hence, the first pole term is approximately

FIG. 2. The solid line is theurrent algebra+ p+ o result for
RS. The experimental points, in this and suceeding figures, ar
extracted from the phase shifts using E46) and actually corre-

leads to satisfaction of the unitarity bouif. Fig. 1). For

s<M?2, one gets a positive contribution R}. This is help-

ful to push the predicted curve upwards and closer to the

experimental results in this region, as shown in Fig. 3. The (M2=s)MT

four-derivative contribution in the chiral perturbation theory T (M2=)2+M?T2 (4.2)

approach performs the same function; however, it does not

which contains a crucial reversal of sign compared to the real
part of Eq.(2.2). Thus, just below the resonance there is a

0-60 L T T suddennegativecontribution which jumps to a positive one
R® r above the resonance. This is clearly exactly what is needed
° os0L to bring experiment and theory into agreement up till about

1.2 GeV, as is shown in Fig. 4. The actual amplitude used for
’ this calculation properly contains the effects of the pions’
0.40- derivative coupling to thé,(980) as in Eq(3.1).
L It is interesting to contrast this picture with Fig. 10 in Ref.
[4]. There, the interaction with the background was not taken
0301 into account and there was no reversal of sign. Thus, al-
- though the unitarity bound was obeyed, the experimental
0.20 - phase shifts could only be properly predicted up to about 0.8
GeV. If the f4(980) contribution in that Fig. 10 is flipped in
i sign it is seen to agree with the present Fig. 4.
010 The above mechanism, which leads to a sharp dip in the
. | =J=0 partial wave contribution to them-scattering cross
section, can be identified with the very oRamsauer-
00 T o0 040 050 oo Townsendeffect [11] which concemed the scattering of

0.7eV electrons on rare gas atoms. The dip occurs because
\s™ (Gew) the background phase of/2 causes the phase shift to go
through 7 (rather thanw/2) at the resonance position.

FIG. 3. A blowup of the low energy region. The solid line is the [Of course, the cross section Is proportional  to
current algebra+ p contribution toR3. The dashed line includes 2423+ 1)3”\2(5]])-] This simple mechanism seems to be all
the o and has the effect of turning the curve down to avoid unitaritythat is required to understand the main featureref scat-
violation while boosting it at lower energies. tering in the 1 GeV region.
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FIG. 4. (a) The solid line is thecurrent algebra+ p+ o+ f,(980) results fong obtained by assuming column 1 in Table Il for the
o andf,(980) parameterB(fo(980)— 27)=100%). (b) The solid line is thecurrent algebra+ p+ o+ f4(980) results foR) obtained by
assuming column 2 in Table [B(f(980)— 27)=78.1%).

B. Detailed analysis 7f2 am2
0T T
Here, we will compare with experimental data, the real I'(fo(980 —mm)= o7 m 1= (mfzo_zmi)z-
part of thel=J=0 partial wave amplitude which results 0 fo 4
from our crossing symmetric model. First, we will consider 4.9

the sum of the contributions of theurrent-algebra  we will not considers to be a new parameter but shall
p-meson o, and f,(980) pieces. Then, we will add pieces predict it as

corresponding to theext groupof resonances; namely, the
f,(1270), thep(1450), and thd(1300). In this section we
will continue to neglect th& K channel.

The current-algebra plup contribution to the quantity ~0 .
A(s,t,u) defined in Eq(A8) ist whereR; is computed as the sum of the current algebra,
and sigma pieces. Since tK&K channel is being neglected,

1sin(25)=ﬁ°(s= m? ) (4.9
2 — 0 fo/? .

S— mf, gﬁm B one might want to set theegularization parametef ' ;o(f()
Acasp(SLU) =2—=5—+ 57 (4m; = 39) in the denominator td"(f,(980)— 7). We shall try both
i P this possibility as well as the experimental one
9 u—s I'(fo(980)— 7 )T o fo) ~ 78.1%.
T2 [(mE=t)—im,T,0(t—4m?) A best fit of our parameters to the experimental data re-
p P i sults in the curves shown in Fig. 4 for both choices of
t—s branching ratio. Only the three paramet&5G’, G', and

+ (m?—u)—im,[,0(u—4m?)|’ (4.3 M, are essentially free. The others are restricted by experi-
? e i ment. Unfortunately, the total widtR,,(f,) has a large un-
Note that for thd =J=0 channel this will yield a purely real Certainty; itis claimed by the PDG to lie in the 40-400 MeV

contribution to the partial wave amplitude. The contribution'@19€. Hence, this is effectively a new parameter. In addi-
of the low-lying o meson was given in Eq3.1). For the tion, we have considered the precise valuemqg to be a

importantf,(980) piece, we have parameter for fitting purposes. The parameter values for each
fit are given in Table Il together with the? values. It is clear
ReAs (980(S,t,U) that the fits are good and that the parameters are stable

against variation of the branching ratio. The predicted back-
ground phase is seen to be close to 90° in both cases. Note
; that the fitted width of thé(980) is near the low end of the
experimental range. The low-lying sigma has a mass of
(4.4 around 560 MeV and a width of about 370 MeV. As ex-
plained in Sec. Ill, we are not using exactly a conventional
where § is a background phase parameter and the real colBreit-Wignertype form for this very broad resonance. The

pling constanty; . is related to the o(980)— rr width by numbers characterizing it do, however, seem reasonably con-
0 sistent with other determination$s,12,13.

1 Vi mn€ (5= 2m2)>
2

27 mf —s—imy Ty fo) O(s—4m?)

'We introduced the step functioﬁ(s—4m727) in the propagator C. Effect of the next group of resonances

and have checked that its inclusion does not make much difference Going up in energy we encountdf®=2**, 0**, and
in the results. 17~ resonances in the 1300 MeV region. The properties of



1996 HARADA, SANNINO, AND SCHECHTER 54

TABLE II. Fitted parameters for different cases of interest.

With next group Nop(1450)
B(f((980)—2m)% 100 78.1 78.1 78.1 100 78.1 78.1 78.1 100
778 1 1 0.8 0.6 1 1 0.8 0.6 1
M (089 (MeV) 987 989 990 993 991 992 993 998 992
It (MeV) 64.6 77.1 75.9 76.8 66.7 77.2 78.0 84.0 64.6
M, (MeV) 559 557 557 556 537 537 535 533 525
G’ (MeV) 370 371 380 395 422 412 426 451 467
G/G’ 0.290 0.294 0.294 0.294 0.270 0.277 0.275 0.270 0.263
S (deg 85.2 86.4 87.6 89.6 89.2 89.7 91.3 94.4 90.4
)(2 2.0 2.8 2.7 3.1 2.4 3.2 3.2 34 2.5

the 2" * statef,(1270) are very well established. For the the f,(1300). It can be seen that there is now a significantly
others, there is more uncertainty but the PDG lists thegreater cancellation of theext groupparticles among them-
fp(1300) andp(1450) as established states. However, theselves up to about 1.2 GeV. The resulting total fits are shown
mass of thefy(1300) can apparently lie anywhere in the in Fig. 6 for both 100% and 78.1% assumig980)— 7
1000-1500 MeV range. In Refd] it was noted that the branching ratios and the parameters associated with the fits
contributions of thes@ext groupparticles tended to cancel are shown in Table II. It is clear that the fitted parameters
among themselves. Thus, we do not expect their inclusion t@nd results up to about 1.2 GeV are very similar to the cases
significantly change the previous results in the range of inyyhere thenext groupwas absent. Above this region, there is
terest up to about_ 1.2 Gev. I now, however, a positive bump iﬁg at around 1.3 GeV.

In Fig. 5 we display the contribution of theext group This could be pushed further up by choosing a higher mass

parucl.es by themselves . (The amp"“.’des are summa- (within the allowable experimental rangfor the f,(1300).
rized in Appendix @. The dashed curve is essentially a re- Resonances in the 1500 MeV region, which hawe been

production of Fig. 6 of Ref[4]. The somewhat positive net Ken i h | v also h .
contribution of these resonances Rg is compensated by taken into accpunt ere, wou d presumably also have an m-
ortant effect in the region above 1.2 GeV. Clearly, there is

readjustment of the parameters describing the Iow-lyingflot much sense, at the present stage, in trying to produce a fit
sigma. It may be interesting to include the effect of the back- ' P 9¢, yingtop

: .. above 1.2 GeV.
ground phase for thé,(1300) as we have just seen that it .
was very important for the proper understanding of the The analysis above assumed that f#i&450) decays pre-

f,(980). To test this possibility we reversed the sign of thedominantly into two pions since the PDG listing does not

f,(1300) contribution and show the result as the solid curvegi’\k’e any specific numbers. On the other hand, the
in Fig. 5. This sign reversal is reasonable since our modéf” (1410), which presumably is in the same SUmultiplet

suggests a background phase of about 270° in the vicinity S thep(1450), has only a 7% branching ratio inkor.
Thus, it is possible thap(1450) actually has a small cou-

pling to 7. To test this out we redid the calculation with
1.5 . T — — T the complete neglect of th&1450) contribution. The result-
i ing fit is shown in the last column of Table Il and it is seen
that it leaves the other parameters essentially unchanged.

It thus seems that the results are consistent with the hy-
pothesis oflocal cancellation wherein the physics up to a
certain energyE is described by including only those reso-
nances up to slightly more thald and it is, furthermore,
hypothesized that the individual particles cancel in such a
way that unitarity is maintained.

D. Effects of inelasticity

- Up to now we have completely neglected the effects of
r ] coupled inelastic channels. Of course, the ghannel opens
at 540 MeV, the Gr channel opens at 810 MeV, and, prob-
- . ably most significantly, th&K channel opens at 990 MeV.

~0.5 bl e We have seen that a nice undestanding of #he elastic
0.80 1.00 1.20 1.40 1.60 v
channel up to about 1.2 GeV can be gotten with complete
s (GeV) disregard of inelastic effects. Nevertheless, it is interesting to

see how our results would change if experimental data on the

FIG. 5. Contribution from thenext groupof resonances; the elasticity parameteryq are folded into the analysis. Figure 7
solid curve is obtained with the reverse sign of fige1300) piece. illustrates the results f0f;8(s) obtained from an experimen-
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FIG. 6. Prediction f0|R8 with the next groupof resonanceda assumegcolumn 5 in Table Il [B(fy(980)— 27)=100%)] while (b)
assumescolumn 6§ [B(fy(980)—27)=78.1%).

tal analysig[14] of m7— KK scattering. For simplicity, we results in some small discontinuitiegThese could be
approximated the data by a constant vahe=0.8 above the ~aveided by trying to fit the phase shift direclly.

KK threshold. Figure @) shows the effect of this choice on " '9uré 9 shows the phase s_hyfg(s) estimated in this
Rg(s) computed without the inclusion of theext groupof manner for parameters in the first column of Table Il. As

resonances, while Figs(l8 shows the effect when theext expegted, thg agreement is reasonable. A \C/)e_ry similar esti-
groupis included. Comparing with Fig.(8) and &b), we see mate is obtained wheftolumn 3 of Table II 7, is taken to

that settingngzo.S has not made any substantial change.be 0.8 while considering ther-branching ratio of

. . o
The parameters of the fit are shown in Table Il as are th 10(980) to be its experimental value of 78.1%. It appears

. 0 $hat these two parameter changes are compensating each
pargmeters for an alterngnveo fit witho=0.6. The latter other so that one may again conclude that the turning on of
choice leads to a worse fit far,. v

the KK channel really does not have a major effect. When
tthe next groupof resonances is includgdolumn 7 of Table

II) the estimatedag(s) is very similar up to about 1.2 GeV.
Beyond this point it is actually somewhat worse, as we
would expect by comparing Fig(® with Fig. 8a).

for understanding the main features #fr scattering up to
about 1.2 GeV. However, we will discuss the calculation of
73(s) from our model in Sec. 5.

E. Phase shift

Strictly speaking, our initial assumption only entitles us to
compare, as we have already done, the real part of the pre- | - 1
dicted amplitude with the real part of the amplitude deduced Mo 1ok |
from experiment. Since the predictét@(s) up to 1.2 GeV ' wu®
satisfies the unitarity boun@vithin the fitting erroj, we can + ™ . " up ¥
calculate the imaginary par§(s), and hence the phase shift 0.8# | +—‘ Lk ., L
58(3) on the assumption that full unitarity holds. This is | T
implemented by substitutin3(s) into Eq.(2.5) and resolv- ' + +
ing the discrete sign ambiguities by demanding #f{s) be 0.6 =
continuous and monotonically increasiftg agree with ex- - 1
perimenj. It is also necessary to knowg(s) for this pur-
pose; we will be content with the approximations above
which seem sufficient for understanding the main features of
77 scattering up to 1.2 GeV. 0.2 —

In this procedure there is a practical subtlety already dis-
cussed at the end of Sec. IV of RE4]. In order for83(s) to | | | | | |
increase monotonically it is necessary that the sign in front 0.0 : ' ' ‘ ‘ '
of the square root in )Iéc(Z.S) changes)f This can Igad to a 0.8 109 19 128 199 149 159
discontinuity unless [RJ(s)| precisely reacheg)(s). How- \'s  (GeV)
ever, the phase shift is rather sensitive to small deviations

from this exact matching. Since the fitting procedure does FIG. 7. An experimental determination ofo= ‘/174\T°12,[12
not enforce thatRJ(s)| go precisely ton3(s)/2~0.5, this  (Ref.[14]).

0.4 _
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FIG. 8. Predictions with phenomenological treatment of inelastiobﬁf:(O.S) aboveKK_threshold.(a) without next group (b) with next
group.

V. mm—KK CHANNEL of the o to KK, defined by the effective Lagrangian piece
We have seen that7— 7 scattering can be understood _
up to about 1.2 GeV with the neglect of this inelastic chan- _ Yok od Kd. K. (5.1
nel. In particular, a phenomenological description of the in- 2 e

elasticity did not change the overall picture. However, we o . ) o
would like to begin to explore the predictions of the presentf the o is ideally mixed and there is no Okubo-Zweig-lizuka
model for this channel also. The whole coupled channe(OZl) rule-violating piece, we would have, k= yo as de-
problem is a very complicated one so we will be satisfiedfined in Eq.(B11). For definiteness, we shall adopt this stan-
here to check that the procedure followed for the elastic ~ dard mixing assumption. The appropriate amplitudes are
channel can lead to an inelastic amplitude which also satidisted in Appendix C. Figure 10 shows the plotsR,., for
fies the unitarity bounds. Specifically, we will confine our the current-algebra part alone, the current-algebra Kfus
attention to the real part of tHe=J=0 w7—KK amplitude, ~and the current algebra plus* plus o parts. Notice that
R0 defined in Eq(A11). unitarity requires
In exact analogy to therm— 77 case, we first consider
the contribution of the contact plus th€*(892) plus the

1
o(550) terms. It is necessary to know the coupling strength = 2" (52

| I:222;O| =

o 280

240

200

160

120

0.0

80

40

1.00 1.10 1.20 1.30 1.40 1.50 1.60

\s (GeV)

Vs (Gev)

FIG. 10. Contributions torm—KK (R%,.0). The solid line
FIG. 9. Estimated phase shift using the predicted real part andhows the current-algebra result; the dashed line represents the in-
unitarity relation. clusion ofK* (892); the dotted line includes the(550) too.
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The current-algebra result already clearly violates this bound
at 1.05 GeV. As before, this is improved by tKé vector
meson exchange contribution and further improved by the-RTz-o
very important tail of thes contribution. The sum of all '
three shows a structure similar to the corresponding Fig. 2 in
the wm— armr case. The unitarity bound is not violated until
about 1.55 GeV.

Next, let us consider the contribution of thg(980)
which, since the resonance straddles the threshold, is ex-
pected to be important. We need to know the effective cou-
pling constant of thd, to =7 and toKK. As we saw in Eq.
(4.4), and the subsequent discussion, the effective cou-
pling should be taken asfowe'”’z. Experimentally, only
the branching ratios foiy(980)— 7 andf,(980)— KK are
accurately known. We will adopt for definiteness the value
of Yigmm corresponding to the fit in the third column of Table
Il [Tfo(980))=76MeV]. It is more difficult to estimate
the f;(980)— KK effective coupling constant since the cen-
tral value of the resonance may actuallyielowthe thresh-
old. By taking accounitof the finite width of thef ,(980), we
get the rough estimatéyfo,(ﬂ:lo GeV‘1w4|yf0W| for
the choice in the third columnM¢ 9s0=990 MeV. Of
course, this estimate is very sensitive to the exact value use

-0.20

-0.40
0.98
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0.60

1999

0.40

0.20

LI N B T T LA R R N R |

0.00

I IR S S N P BT BRI |

1.22 1.30

\'s

1.38
(GeV)

1.06 1.14

FIG. 11. Effect offy(980) onmm— KK. The solid curve cor-
responds to a negativyafo,&and the dashed one to a positive sign.

for My (980)- It seems reasonable to talyeoK?to be purely
real. The results of including th&,(980) contribution, for
both sign choices of; «x, are shown in Fig. 11. The uni-
tarity bounds are satisfied for the positive signwg&but
slightly violated for the negative sign choice. o
Finally, let us consider the contributions tor— KK
from the members of the multiplets containing thext

&d, the crossed channil; (1430) diagram is the essential
one since the direct chann&}(1270) contribution for the
J=0 partial wave is suppressed by a spin-2 projection op-
erator. Above 1270 MeV, thd,(1270) contribution be-
comes increasingly important although it has the opposite
sign to the crossed channel tensor piece. Figure 12 shows the
net prediction forR‘l’z;O obtained with the inclusion of the
main next group contributions from theK%(1430) and

group of particles. There will be a crossed channel contribu-f,(1270). Both assumed signs fwo,(?are shown and other

tion from the strange excited vector mes¢f(1410). How-
ever, it will be very small sinc&k* (1410) predominately
couples toK* 7+ and has only a 7% branching ratio kor.

parameters correspond to column 3 of Table Il. Clearly, there
is an appreciable effect. Figure 13 shows the magnitude of
|R(1’2;O| together with one experimental determinat[dd] of

In addition, there will be a crossed channel scalan0 |— (RO Y21 (19 32 The positive sign ofy; «x i
_ : : : 07 Yt kK IS
K5 (1430) diagram as well as a direct channel scalar| 12:d v 120 120 ol

fo(1300) diagram contributing term— KK. The f(1300)
piece is small becausig(1300) has a very small branching
ratio toKK. Furthermore, th&{ (1430) piece turns out also

to be small; we have seen that the crossed channel scalar

gave a negligible contribution term— 7. The dominant

next groupdiagrams involve the tensor mesons. Near thresh-

With  T(fo(980)=76  MeV, we would have
I'(fp(980)—~KK)=16.6 MeV. Then,nyKIis estimated from the
formula:

©

16.6 MeV=|yf0Kﬂ2J p(M)|A(Fo(M)—KK)[?D(M)dM,

2my

whereA(fo(M) —_>KK—) is the reduced amplitude for dg of mass
M to decay toKK, ®(M) is the phase space factor, apfM) is
the weighting function given by

" \F 1 p{ )
=\/——exp —
P 7 gy

Here,My is the central mass value of ttig(980).

(M_Mo)2“

2
r tot

o
12,0 -

0.40

0.00

1 |
1.22

ST B R

1.30 1.38

\'s Gev)

1.06 1.14

L
L1

0.98

FIG. 12. Effects onmm—KK due to thenext groupof reso-
nances for the two different sign choices in Fig. 11.
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needed low energy scalar isosingléhe concept ofidth is

| not so clear and we employed the slight modification of the
r 1 Breit-Wigner amplitude given in Eq(2.3). Finally, for a
relatively narrow resonance in the presence of a non-
negligible background, we employed the regularization given
in Eq. (2.4 which includes the background phase. Self-
consistency is assured by requiring that the background
phase should be predicted by the model itself.

All the regularizations introduced above are formally of
higher than leading order in theNl/ expansiori.e., of order
1/N§ and higher and correspond physically to rescattering
effects. In the case of non-negligible background phase, there
is an interesting difference from the usual tree-level treat-
ment of pole diagrams. The effective squared coupling con-
stantga, . of such a resonance to two pions, is then not
necessarily real positive. Since this regularization is inter-
preted as a rescattering effect it does not mean that ghost

T T T T T T T T T T

| Riz,| 0.60

0.40

0.20

voggg' ' '1 ge‘ ' '1 '1 4' : '1 ;2' : ‘1 '30' ' '1 ‘38 fields are present in the theory. This formulation maintains
' ' : ‘ crossing symmetry which is typically lost when a unitariza-
s (GeV) tion method is employed.

In this analysis, the most nontrivial point is the satisfac-
FIG. 13. |R},.o| together with one experimental determination tion of the unitarity bound for the predicted real part of the

[14] of [ T3,/ = V(RS9 7+ (175,07 Signs fory; cas in Fig. 11, Partial wave amplitude:

favored but, considering the uncertainty|imf0K?| among

other things, we shall not insist on this. It seems to us that the

main conclusion is that the unitarity bound can be satisfied in

the energy range of interest. wherep|<1 is the elasticity parameter. The well-known dif-
ficulty concernsRJ. If #/(s) is known or calculated, the

VI. SUMMARY AND DISCUSSION imaginary part|(s) can be obtained, up to discrete ambigu-

. . . . ities, by Eq.(2.5).

thevigar;ap\)/aerto gtfat'g:;sségggir?gp;(r)g(;)mﬁgeeaiﬂam:g?]rer?g];)r The picture ofm scatter_ing in the threshold_to slightly
more than 1 GeV range which emerges from this model has

range from threshold to about 122. Gev. .It s_atl_sﬂes_ bOthfour parts. Very near threshold the current-algebra contact
crossing symmetry an¢@more nontrivially unitarity in this term approximatesRY(s) very well. The imaginary part

range. Inspired by the leadingN/ approximation, we have o P )

written the amplitude as the sum of a contact term and poleép(.s)’.Wh'(?h IS form_ally of order N, can be obtained fr_om

Of course, the leading W amplitude cannot be directly umtanty. directly using Eq(2.5 or, e:quwalently,'by chiral

compared with experiment since it is purely réalvay from pertu_rbtlon theory.. At somewhat hlgher energies the most

the direct channel pole¢@nd diverges at the pole positions. prcl)mu?]ent feature 'fl the rlnesohn pole'ln t|h¢=J=1 Chlan.'

Furthermore, an infinite number of poles, and higher derival’€!- The crossed channglexchange is also extremely im-
gortant in taming the elastic unitarity violation associated

tive interactions are, in principle, needed. To overcome thesg: . .
problems we have employed the following procedure. with the current-algebra contact teliffig. 1). Even with the

(a) We specialized to predicting the real part of the am-P present, Fig. 1shows t'hat unitarity is still violated', though
plitude. _much less drastically. This problem is overcome by introduc-

(b) We postulated that including only resonances fromind & low mass=550 MeV, extremely broad sigma meson. It
threshold to slightly more than the maximum energy of in-&/S0 has another desirable featURg(s) is boostedsee Fig.
terest is sufficient. We have seen that flisal cancellation 3 closer to experiment in the 400-500 MeV range. The
appears stable under the addition of resonances in the 13¢ree parameters characterizing this particle are essentially
MeV range. Beyond this range we would expect still higherthe only unknowns in the model and were determined by
resonances to add in such a way so as to enforce unitarity H#aking a best fit. In the 1 GeV region it seems clear that the
still higher energies. f,(980) _resonance, interacting with the predicted back-

(c) In the effective interaction Lagrangian we included ground in the manner of th&amsauer-Townsendffect,
only terms with the minimal number of derivatives consis-dominates the structure of the=J=0 phase shift. The in-
tent with the assumed chiral symmetry. elasticity associated with the opening of tK& threshold

(d) The most subtle aspect concerns the method for reguhas a relatively small effect. However, we also presented a
larizing the divergences at the direct channel resonancereliminary calculation which shows that the present ap-
poles. In the simplest case of a single resonance dominatingfoach _satisfies the unitarity bounds in the inelastic
a particular channdk.g., thep meson, it is sufficient to add 77— KK channel.
the standaravidth term to the denominatde.g., the real part Other recent work$5,12,13,15,1§ which approach the
of Eq. (2.2)]. For an extremely broad resonan@eich as a problem in different ways, also contain a low mass broad

IR|<— (6.1)
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sigma. The question of whether the lighter scalar mesons aféavor channels such asK. In this way, information about
of gqg type or meson-mesotype has also been discussedthe full SU3) multiplet structure of the resonances can be
[5,12,13. In our model it is difficult to decide this issue. Of obtained.

course, it is not a clean question from a field theoretic stand- From a practical standpoiritvithout worrying about all
point. This question is important for understanding whethetthe theoretical issues involved in making a comparison with
the contributions of such resonances are formally leading ithe 1N expansionwe have demonstrated that it is possible
the 1N, expansion. We are postponing the answer as well a9 understandr scattering up to the 1 GeV region by shoe-

the answer to how to derive the rescattering effects that werB0rning together poles and contact term contributions em-
used toregularize the amplitude near the direct channel ploying a suitable regularization procedure. It seems likely

poles as higher order in N, corrections. Presumably, the that any crossing symmetric approximation will have a simi-

rescattering effects could some day be calculated as IooIﬁ‘r form. This is in the spirit omean-fieldheories.

corrections with dvery complicatetleffective Wilsonian ac-
tion. This would be a generalization of the chiral perturba-
tion scheme of pions. Another aspect of théldjpicture This work was supported in part by U.S. DOE Contract
concerns the infinite number of resonances which are exNo. DE-FG-02-85ER40231.
pected to contribute already at leading order. One may hope
that the idea ofocal cancellationwill help in the develop- APPENDIX A: SCATTERING KINEMATICS
ment of a simple picture at high energies which might get ] ] ) ]
patched together with the present one. Is the simple high The general partial wave scattering matrix for the multi-
energy theory a kind of string model? channel case can be written as

It is clear that the deduction of thew-scattering ampli- _ ;
tude from fundamental QCD is a long way off. Hence, the Sav=dap* 21T ap- A
subject can be profitably approached from various differenEor simplicity, the diagonal isospin and angular momentum
approximate models. In our paper we have presentéghd- labels have not been indicated.
ing 1N, -motivated crossing symmetric amplitude whose By requiring the unitarity conditiols'S=1, one deduces
| =J=0 partial wave projection was consistent with unitarity for the two channel case the relations
and which gave a reasonable description of the experimental ) )
situation. In[5], Torngvist presented an interesting approach IM(T 1) =Tyl *+ T2
for the I=J=0 partial wave amplitude in which unitarity
was exactly imposed by a kind stchannel bubble summa- IM(T20) =[Tod *+[T1dl", (A2)
tion but no account was taken of crossing symmetry.
Roughly speaking, the predictions of the two models are

similar. Hence, it Would_ seem to be very worthwhile in fu- whereT,,=T,;. In the present case we will identify 1 as the
ture to attempt to combine aspects of the two approaches. ;.. channel and 2 as th€K channel. In order to get the
The emphasis, in the present approach, was to see if @jations between the relative phase shifts and the amplitude,

leading order largeN.-motivated amplitude which satisfied \we need to consider the parametrization of the scattering
manifest crossing symmetry and chiral symmetry could, withamplitude

a suitable interpretation, provide a realistic description of

ACKNOWLEDGMENTS

IM(T 1) =T71T12F T2 22,

7rar Scattering in the energy range up to around 1 GeV. For ne?on +iy1— 7?e'dn
this purpose, we restricted attention to the real part of the S= +j \/ﬁzei 8.k 77e2i5K , (A3)

amplitude, employed a phenomenologically reasonable

crossing symmetric regularization at the pole positions angvhere 5, =6, + 8¢ and 0<7<1 is the elasticity param-
postulated that only particles with energies up to and includeter. By comparing EA3) and(Al), one can easily deduce
ing the next groupwere dominant. The interesting feature
observed was that the unitarity bound could be satisfied with- 7’=1-4]T)%. (A4)
out forcing global unitarity by hand. The limitations of this
approach arise from these assumptions. One might attempt
improve the picture by deriving rather than postulating the [ 2i6 (s)_

o . ) . . 7,(s)e %l 1
regularizations This might be done by summing a suitable T (5)= — (A5)
set of crossing symmetric bubble-type diagrams, but it would 2i
be extremely complicated. A practical way to start on this
problem would be to project into the=J=0 partial wave
channel and demand unitarity, following the approacfbef
In this case our contact terms as well as our crossed channel

tﬁbnalogously, forT,, we have

wherel and| label the angular momentum and isospin, re-
spectively. Extracting the real and imaginary parts via

| i |
exchange terms would be lumped together into a siefle Lm:M,
fective contact termit is expected that the detailed descrip- ’ 2
tion of the energy dependence just above ki€ threshold | |
could be improved in this manner. Another interesting direc- I 1—nco825;,)

tion for further work would be to apply our analysis to other aal ™~ 2 (A6)
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leads to the very important bounds The vector meson nonet, is introduced as @auge field
[17] which transforms as

I <
|Raa;l|\

> 0<Ij,=<1. (A7) :
p,—Kp, K"+ =Ka KT (B4)
The unitarity also requiref,,| <1/2. 9

Now, we relate these partial wave amplitudes to the in- _ . .
variant amplitudes. The invariant amplitude for whereg is a gauge coupling constantFor an alternative

(1) + m5(P2) — m(Pa) + m(pa) is decomposed as ggﬁrr](;ach see, for a review, R¢fL8].) It is convenient to
ij OA(S,1,U) + 6 65| A(L,s,U) + 6 5jkA(uLt,S), )
A8 :
(A9 D=5 (E0,6"— £1,8),
wheres, t, andu are the usual Mandelstam variables. Note
that the phase of EqA8) corresponds to simply taking the i
matrix element of the Lagrangian density of a four-point v,=5(£d,+¢E%9,8), (B5)
contact interaction. Projecting out amplitudes of definite 2
isospin, yields which transform as
T, (s,t,u)=3A(s,t,u) +A(t,s,u) +A(u,t,s),
11! p#—>KpMKT,
Ti(s,t,u)=A(t,s,u)—A(U,t,s), .
u(SLYZAGSWZAWLS v,— Ko, K +iKa K", (B6)
2 = + .
Tu(SLW=ALs,W +AULS) (A9) Using the above quantities we construct the chiral Lagrang-
The needed=0 77— KK amplitude can be gotten as 1" including both pseudoscalar and vector mesons:

_ 2 2
T2As,t,u)=— 6 A(m%(p1) 7%(p2) K ¥ (p3)K ™ (pa)). 1 v F?
(AL0) L==gmiT | pum g | |2 TMPuPsl
We then define the partial wave isospin amplitudes accord- 1
ing to the formula - ZTr[FW(p)FW(p)], (B7)
| 1 ! |
Tab;|(S)E§VPan£1dCOSH Pi(cos) TS t,u), where F,,=d,p,—d,p,—iG[p,.p,] is a gauge field

(A11) strengthof vector mesons.

In the real world, chiral symmetry is explicitly broken by
where 6 is the scattering angle and the quark mass term mg Mg, wherem=(m,+mgy)/2, and
M is the dimensionless matrix:

1 [s—4m? )
. - N : M= 1-y - (B8)
S is a symmetry factor which is 2 for identical particles "

(77 case and 1 for distinguishable particle&KK casg.

Here,x andy are the quark mass ratios:
APPENDIX B: CHIRAL LAGRANGIAN

(B9)

In the low energy physics of hadrons, it is important to Mg 1 ( md_mu>
m

take account of the spontaneous chiral symmetry-breaking m 2
structure. We start here with the®), X U(3)g / U(3)y non-

linear realization of chiral Symmetry. The basic quantity is aThese quark masses |ead to mass terms for pseudosca|ar me-
3 X 3 matrixU, which transforms as sons. Moreover, in considering the processes related to the

o kaon (in this paper we will considerrm— KK scattering
U—U,UUg, (B1) amplitudeg, we need to take account of the large splitting of
whereU, re U(3), . This U is parametrized by the pseu- the s quark_mass from ther and d quark masses. The_se
doscalardE as ' effects are included as $8) symmetry-breaking terms in
. the above Lagrangian, which are summarized, for example,
U=¢?, ¢=ed%Fa (B2)  in Refs.[19,20. Here, we write the lowest order pseudosca-

lar mass term only:
whereF . is a pion decay constant. Under the chiral trans-

formation Eq.(B1), ¢ transforms nonlinearly: L s mass= ' TTMUT+ MU, (B10)

£-U EKT(¢,U UR=K(¢, U ,Ug)éUL. (B3  wheres' is an arbitrary constant.
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We next introduce higher resonances into our Lagrangian. Y5 16 10 1
First, we write the interaction between the scalar nonet field A (s,t,u)=5—>——| — §m1+ gmis— 552

S and pseudoscalar mesons. Under the chiral transformation, 2(mf2—s)
this S transforms asS—KSK'. A possible form which in- 1 m?2s2 s St
cludes the minimum number of derivatives is proportional to ()5 — o t —|.
Tr[Sp,p,]. The coupling of a physical isosinglet field to 2 3 mi,  6mi 6mf
two pions is then described by o)
L,=— 203#7}. ,9#7}_ (B11) B. Amplitudes for m°m’—K*K~
V2 Current-algebra amplitude:

Here, we should note that the chiral symmetry requires 00wt

derivative-type interactions between scalar fields and pseu- Aca(m m KTK™) = TR (C7)
doscalar mesons. Second, we represent the tensor nonet field ’T

by T,, (satisfyingT,,=T,,, andT,,=0), which trans-

. ¢ L Vi r-meson contribution:
forms asTW—>KTWKT. The interaction term is given by ector-meson contributio

2
Ogxkr|t(S—U) u(s—t
_ Gkeka[t(sm0) u(s—D)

‘CT: - YZFfrTr[T,u,Vp,upv]' (812) AveCtOI(WOWO,K+K7)

- 8m§* mi*—t mﬁ*—u
The heavier vector resonances such@s450) can be intro-
duced in the same way asin Eq. (B7). +(mﬁ—mf,)2( -
m2. —
K*
APPENDIX C: UNREGULARIZED AMPLITUDES N 1 ) 8
2
A. Amplitudes for the @7— 7 channel My — U
The current-algebra contribution #(s,t,u) is . S
g B ) Direct channel contribution for the scalar:
(s—m2) , ,
Aca(StU)=2—7—. €y 6 0t 1 _(s—2m%)(s—2my)
m Aro(mm KTKT) = 2 Vgmr Vi m s .
0
The amplitude for the vectors can be expressed in the form (C9
A et gim t(u—s) u(t—s) o Cross channel contribution for the scalar:
Sl lu = 1
p(SLW="2 2wt T =y €2 )
P p P Vos > 2 2
K&K | (Mg +ms—t)
. . . A (070 KTK )= 5
whereg,, . is the coupling of the vector to two pions. 0 8 M. —t
For the scalar particle, we deduce 0
(M +mZ—u)?
A (s,t,u)= % —2—(5_2m§7)2 (C3) i Mo, —u ' (€10
fo 1% 2 mfo_s . KO

] Direct channel tensor contribution:
To calculate the tensor exchange diagram, we need the

spin-2 propagatof21] YszYZKﬁ( 2 t (mi4+md)\2

A 0 0,K+K7 — 4+ ——
L Ak ) 2(mfz—s){ 4mf22 2 2
mf22+q2 5(0“1V19"2V2+0"1”20“2V1)_§9“1“26V1”2' . s? Lu (m2+m2)\ 2
(C9 am7 " 2 2
where 2 s s,
—|——=+
3\amg 27
o =5 4l (C5)
e my, S S c11
2 —— —+mZ | |.
4m$2 2 K (€LY

A straightforward computation then yields tlie contribu-
tion to the wwr-scattering amplitude: Cross channel tensor contribution:
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*
K2
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K2

1
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K*
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1
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2mK;
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