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Motivated by the 1/Nc expansion, we present a simple model ofpp scattering as a sum of acurrent-algebra
contact term and resonant pole exchanges. The model preserves crossing symmetry as well as unitarity
1.2 GeV. Key features include chiral dynamics, vector meson dominance, a broad low energy scalars)
meson, and aRamsauer-Townsendmechanism for the understanding of the 980 MeV region. We discuss
detail theregularization~corresponding to rescattering effects! necessary to make all these nice features work
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I. INTRODUCTION

Historically, the analysis ofpp scattering has been con
sidered an important test of our understanding of strong
teraction physics~QCD, now! at low energies. It is com-
monly accepted that the key feature is the approxima
spontaneous breaking of chiral symmetry. Of course, theki-
nematicalrequirements of unitarity and crossing symmet
should be respected. The chiral perturbation scheme@1#,
which improves the tree Lagrangian approach by includi
loop corrections and counterterms, can provide a descript
of the scattering up to the energy region slightly abo
threshold~400–500 MeV!.

In order to describe the scattering up to energies beyo
this region~say to around 1 GeV!, it is clear that the effects
of particles lying in this region must be included and som
new principle invoked. A plausible hint comes from the larg
Nc approximation to QCD, in which the leading order sca
tering amplitudes consist of just tree diagrams containi
resonance exchanges as well as possible contact diagr
@2#. The method suggests that an infinite number of res
nances are required and also a connection with some kind
string theory@3#.

Some encouraging features were previously found in
approach which truncated the particles appearing in the
fective Lagrangian to those with masses up to an ene
slightly greater than the range of interest. This seems reas
able phenomenologically and is what one usually does
setting up an effective Lagrangian. The most famous e
ample is the chiral Lagrangian of only pions. In Ref.@4# this
Lagrangian provided, as a starting point, a contact te
which described the threshold region. However, the us
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observation was made that the real part of theI50, J50
partial wave amplitude quite soon violated the unitarity
bounduR0

0u<1/2 rather severely. The inclusion of the contri-
bution coming from ther meson exchange was observed to
greatly improve, although not completely solve, this prob
lem. These results are shown explicitly in Fig. 1 and provide
some encouragement for the possible success of a truncat
scheme.

In Ref. @4#, it was observed that the inclusion of reso-
nances up till and including thep-wave region enabled one

FIG. 1. Predicted curves forR0
0 . The solid line which shows the

current algebra1 r result forR0
0 is much closer to the unitarity

bound of 0.5 than the dashed line which shows thecurrent-algebra
result alone.
1991 © 1996 The American Physical Society
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to construct an amplitude which satisfied the unitar
bounds up to about 1.3 GeV. It was assumed that, above
point, new resonances would come in to preserve unita
This hypothesis was calledlocal cancellation. The model
produced a reasonable-lookingI5J50 phase shift up to
about 800 MeV. In this paper we will attempt to describe a
carefully compare with experiment the interesting phys
lying between 800 and 1200 MeV in this truncat
1/Nc-inspired framework. Specifically, we will be concerne
with the proper inclusion of thef 0(980) scalar resonance a
well as the opening of theKK̄ channel. We find that a simpl
reasonable description of thef 0(980) region is obtained
when the interplay of this resonance with its background
taken into account. In this approach the background am
tude is predicted by the model itself. In the region just abo
theKK̄ threshold we notice the feature analogous to the e
tic case that the severe unitarity violation of the inelas
pp→KK̄ amplitude is damped by the inclusion of vect
meson and scalar meson exchange diagrams.

Of course, it would be wonderful if one could simply ad
the various contributions to the tree-level amplitude and fi
a good match to experiment. This is not possible for a var
of reasons, which are discussed in Sec. II. The neededregu-
larizations are introduced there. Section III gives a bri
overview of the model and reviews the important role o
broad scalar meson in the low energy (,800 MeV! region.
Section IV contains a discussion of various aspects of th
GeV region. The characteristic feature, a type ofRamsauer-
Townsendeffect resulting from the interplay of thef 0(980)
resonance with the predicted background, is outlined in S
IV A and treated in more detail in Sec. IV B. In Sec. IV C
is shown that the introduction of thenext groupof reso-
nances, located in the 1300 MeV region, does not make
jor changes in thepp scattering below 1200 MeV~the
changes are essentially absorbed in small changes of th
rameters of the broad low energy scalar!. In Sec. IV D it is
demonstrated that the phenomenological introduction of
elastic effects associated with the opening of theKK̄ channel
does not make a significant change in our picture
pp→pp below 1200 MeV. Section IV E contains a prese
tation of theI5J50 phase shift obtained by combining o
predicted real part with unitarity. In Sec. V we discuss t
inelasticpp→KK̄ channel and show that here also the re
nance exchanges damp the unitarity bound violation du
the contact term. Section VI contains the summary and
ther discussion. Finally, Appendices A, B, and C give deta
on, respectively, the scattering kinematics, the chiral
grangian, and the unregularized amplitudes.

II. DIFFICULTIES OF THE APPROACH

In the largeNc picture the leading amplitude~of order
1/Nc) is a sum of polynomial contact terms and tree-ty
resonance exchanges. Furthermore, the resonances sho
of the simpleqq̄ type; glueball and multi-quark meson res
nances are suppressed. In our phenomenological model
is no way of knowinga priori whether a given experimenta
state is actually ofqq̄ type. For definiteness we will keep a
relevant resonances even though the status of a low-l
scalar resonance such as thef 0(980) has been considere
ity
this
rity.

nd
ics
ed
d
s
e

is
pli-
ve
las-
tic
or

d
nd
iety

ef
f a

e 1

ec.
it

ma-

e pa-

in-

of
n-
ur
he
so-
e to
fur-
ils
La-

pe
uld be
o-
there
l
ll
ying
d

especially controversial@5#. If such resonances turn out in
the future to be not ofqq̄ type, their tree contributions would
be of higher order than 1/Nc . In that event the amplitude
would still, of course, satisfy crossing symmetry.

The most problematic feature involved in comparing the
leading 1/Nc amplitude with experiment is that it does not
satisfy unitarity. In fact, resonance poles such as

1

M22s
~2.1!

will yield a purely real amplitude, except at the singularity,
where they will diverge and drastically violate the unitarity
bound. Thus, in order to compare the 1/Nc amplitude with
experiment we must regularize the denominators in som
way. The usual method, as employed in Ref.@4#, is to regu-
larize the propagator so that the resulting partial wave am
plitude has the locally unitary form

MG

M22s2 iMG
. ~2.2!

This is only valid for a narrow resonance in a region where
thebackgroundis negligible. Note that the2 iMG is strictly
speaking a higher order in 1/Nc effect.

For a very broad resonance there is no guarantee that su
a form is correct. Actually, in Ref.@4# it was found necessary
to include a rather broad low-lying scalar resonance@denoted
s(550)# to avoid violating the unitarity bound. A suitable
form turned out to be of the type

MG

M22s2 iMG8
, ~2.3!

whereG is not equal to the parameterG8 which was intro-
duced to regularize the propagator. Here,G is the quantity
related to the squared coupling constant.

Even if the resonance is narrow, the effect of the back
ground may be rather important. This seems to be true fo
the case of thef 0(980). Demanding local unitarity in this
case yields a partial wave amplitude of the well-known form
@6#:

e2idMG

M22s2 iMG
1eidsind, ~2.4!

whered is a background phase~assumed to be slowly vary-
ing!. We will adopt a point of view in which this form is
regarded as a kind of regularization of our model. Of course
nonzerod represents a rescattering effect which is of highe
order in 1/Nc . The quantitye2id, taking d5const, can be
incorporated into the squared coupling constant connectin
the resonance to two pions. In this way, crossing symmetr
can be preserved. From its origin, it is clear that the comple
residue does not signify the existence of aghostparticle. The
nonpole background term in Eq.~2.4! and, hence,d is to be
predicted by the other pieces in the effective Lagrangian.

Another point which must be addressed in comparing th
leading 1/Nc amplitude with experiment is that it is purely
real, away from the singularities. The regularizations men
tioned above do introduce some imaginary pieces but the
are clearly more model dependent. Thus, it seems reasona
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54 1993SIMPLE DESCRIPTION OFpp SCATTERING TO 1 GeV
to compare the real part of our predicted amplitude with t
real part of the experimental amplitude. Note that the dif
culties mentioned above arise only for the direct chann
poles; the crossed channel poles and contact terms will g
purely real finite contributions.

It should be noted that if we predict the real part of th
amplitude, the imaginary part can always be recovered
assuming elastic unitarity~which is likely to be a reasonable
approximation up to about 1 GeV!. Specializing Eq.~A6! in
Appendix A to thepp channel we have for the imaginary
pieceI l

I of the I ,l partial wave amplitude

I l
I5

1

2
@16Ah l

I224Rl
I2#, ~2.5!

whereh l
I is the elasticity parameter. Obviously, this formul

is only meaningful if the real part obeys the bound

uRl
I u<

h l
I

2
. ~2.6!

The main difficulty one has to overcome in obtaining a un
tary amplitude by the present method is the satisfaction
this bound. Therefore, one sees that makingregularizations
such as Eqs.~2.2! and ~2.4!, which provide unitarity in the
immediate region of a narrow resonance, is not at all tan
mount to unitarizing the model by hand. One might glan
again at Fig. 1 for emphasis on this point.

To summarize this discussion, we will proceed by com
paring the real part of a suitably regularized tree amplitu
computed from a chiral Lagrangian of pseudoscalar mes
and resonances with the real part of the experimental am
tude deduced from the standard phase shift analysis.

III. OVERVIEW AND LOW ENERGY REGION

The amplitude will be constructed from the nonlinear ch
ral Lagrangian briefly summarized in Appendix B. To sta
with, we shall neglect the existence of theK mesons. Then,
the form of the unregularized amplitude is identical to th
one presented in Ref.@4#. The neutral resonances which ca
contribute have the quantum numbersJPC5011, 122, and
211. We show in Table I the specific ones which are in
cluded, together with their masses and widths, when av
able from the Particle Data Group~PDG! @7# listings.

Essentially, there are only three arbitrary parameters

TABLE I. Resonances included in thepp→pp channel as
listed by the PDG. Note that thes is not present in the PDG and is
not being described exactly as aBreit-Wignershape; we listed the
fitted parameters shown in column 1 of Table II whereG8 is the
analogue of theBreit-Wignerwidth.

I G(JPC) M ~MeV! G tot~MeV! B(2p)%

s(550) 01(011) 559 370 2

r(770) 11(122) 769.9 151.2 100
f 0(980) 01(011) 980 40–400 78.1
f 2(1270) 01(211) 1275 185 84.9
f 0(1300) 01(011) 1000–1500 150–400 93.6
r(1450) 11(122) 1465 310 Seen
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the whole model, these correspond to the three unknowns i
the description of a broad scalar resonance given by Eq
~2.3!. We will include only the minimal two derivative chiral
contact interaction contained in Eq.~2.7! of Appendix B.
Clearly, higher derivative contact interaction may also be
included~see, for example, Sec. III E of Ref.@4#!.

As shown in Fig. 1, although the introduction of ther
dramatically improves unitarity up to about 2 GeV,R0

0 vio-
lates unitarity to a lesser extent starting around 500 MeV.
~As noted in Ref.@4#, the I5J50 channel is the only
troublesome one.! To completely restore unitarity in the
present framework, it is necessary to include a low mass
broad scalar state which has historically been denoted as th
s. It seems helpful to recall the contribution of such a par-
ticle to the real part of the amplitude componentA(s,t,u)
defined in Eq.~A8!:

ReAs~s,t,u!5Re
32p

3H

G

Ms
3 ~s22mp

2 !2
~Ms

22s!1 iM sG8

~s2Ms
2 !21Ms

2G82
,

~3.1!

where

H5S 124
mp
2

Ms
2 D 1/2S 122

mp
2

Ms
2 D 2'1, ~3.2!

andG is related to the coupling constantg0 defined in Eq.
~B11! by

G5g0
2
3HMs

3

64p
. ~3.3!

Note that the factor (s22mp
2 )2 is due to the derivative-type

coupling required for chiral symmetry in Eq.~B11!. The total
amplitude will be crossing symmetric sinceA(s,t,u) and
A(u,t,s) in Eq. ~A8! are obtained by performing the indi-
cated permutations.G8 is a parameter which we introduce to
regularize the propagator. It can be called a width, but it
turns out to be rather large so that, after ther andp contri-
butions are taken into account, the partial wave amplitude
R0
0 does not clearly display the characteristic resonant behav

ior. In the most general situation one might imagine thatG
could become complex as in Eq.~2.4! due to higher order in
1/Nc corrections. It should be noted, however, that Eq.~2.4!
expresses nothing more than the assumption of unitarity for a
narrow resonance and hence should not really be applied to
the present broad case. A reasonable fit was found in Ref.@4#
for G purely real, but not equal toG8. By the use of Eq.
~2.5!, unitarity, is in fact, locally satisfied.

A best overall fit is obtained with the parameter choices;
Ms5559 MeV, G/G850.29, andG85370 MeV . These
have been slightly fine tuned from the values in Ref.@4# in
order to obtain a better fit in the 1 GeV region. The result for
the real partR0

0 due to the inclusion of thes contribution
along with thep andr contributions is shown in Fig. 2. It is
seen that the unitarity bound is satisfied and there is a rea
sonable agreement with the experimental points@8,9# up to
about 800 MeV. Beyond this point the effects of other reso-
nances@mainly the f 0(980)# are required. From Eqs.~3.1!,
~A9!, and ~A11!, we see that the contribution ofs to R0

0

turns negative whens.Ms
2 . This is the mechanism which
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leads to satisfaction of the unitarity bound~cf. Fig. 1!. For
s,Ms

2 , one gets a positive contribution toR0
0 . This is help-

ful to push the predicted curve upwards and closer to
experimental results in this region, as shown in Fig. 3. T
four-derivative contribution in the chiral perturbation theo
approach performs the same function; however, it does

FIG. 2. The solid line is thecurrent algebra1r1s result for
R0
0 . The experimental points, in this and suceeding figures,

extracted from the phase shifts using Eq.~A6! and actually corre-
spond toR0

0/h0
0 . (h) are extracted from the data of Ref.@8# while

(n) are extracted from the data of Ref.@9#. The predictedR0
0 is

small around the 1 GeV region.

FIG. 3. A blowup of the low energy region. The solid line is th
current algebra1r contribution toR0

0 . The dashed line includes
thes and has the effect of turning the curve down to avoid unitar
violation while boosting it at lower energies.
the
he
ry
not

change sign and hence does not satisfy the unitarity bound
above the 450 MeV region@10#.

IV. THE 1 GeV REGION

A. The main point

Reference to Fig. 2 shows that the experimental data for
R0
0 lie considerably lower than thep1r1s contribution

between 0.9 and 1.0 GeV and then quickly reverse sign
above this point. We will now see that this distinctive shape
is almost completely explained by the inclusion of the rela-
tively narrow scalar resonancef 0(980) in a suitable manner.
One can understand what is going on very simply by starting
from the real part of Eq.~2.4!:

MG
~M22s!cos~2d!2MGsin~2d!

~M22s!21M2G2 1
1

2
sin~2d!. ~4.1!

This expresses nothing more than the restriction of local uni-
tarity in the case of a narrow resonance in the presence of a
background. We have seen that the difficulty in comparing
the tree-level 1/Nc amplitude to experiment is enhanced in
the neighborhood of a direct channel pole. Hence it is prob-
ably most reliable to identify the background term12sin(2d)
with our prediction forR0

0 . In the region of interest, Fig. 2
shows thatR0

0 is very small so that one expectsd to be
roughly 90° ~assuming a monotonically increasing phase
shift!. Hence, the first pole term is approximately

2
~M22s!MG

~M22s!21M2G2 , ~4.2!

which contains a crucial reversal of sign compared to the real
part of Eq.~2.2!. Thus, just below the resonance there is a
suddennegativecontribution which jumps to a positive one
above the resonance. This is clearly exactly what is needed
to bring experiment and theory into agreement up till about
1.2 GeV, as is shown in Fig. 4. The actual amplitude used for
this calculation properly contains the effects of the pions’
derivative coupling to thef 0(980) as in Eq.~3.1!.

It is interesting to contrast this picture with Fig. 10 in Ref.
@4#. There, the interaction with the background was not taken
into account and there was no reversal of sign. Thus, al-
though the unitarity bound was obeyed, the experimental
phase shifts could only be properly predicted up to about 0.8
GeV. If the f 0(980) contribution in that Fig. 10 is flipped in
sign it is seen to agree with the present Fig. 4.

The above mechanism, which leads to a sharp dip in the
I5J50 partial wave contribution to thepp-scattering cross
section, can be identified with the very oldRamsauer-
Townsendeffect @11# which concerned the scattering of
0.7eV electrons on rare gas atoms. The dip occurs because
the background phase ofp/2 causes the phase shift to go
through p ~rather thanp/2) at the resonance position.
@Of course, the cross section is proportional to
( I ,J(2J11)sin2(dI

J).# This simple mechanism seems to be all
that is required to understand the main feature ofpp scat-
tering in the 1 GeV region.

are
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FIG. 4. ~a! The solid line is thecurrent algebra1r1s1 f 0(980) results forR0
0 obtained by assuming column 1 in Table II for the

s and f 0(980) parameters@B„f 0(980)→2p…5100%#. ~b! The solid line is thecurrent algebra1r1s1 f 0(980) results forR0
0 obtained by

assuming column 2 in Table II@B„f 0(980)→2p…578.1%#.
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B. Detailed analysis

Here, we will compare with experimental data, the re
part of the I5J50 partial wave amplitude which results
from our crossing symmetric model. First, we will conside
the sum of the contributions of thecurrent-algebra,
r-meson, s, and f 0(980) pieces. Then, we will add pieces
corresponding to thenext groupof resonances; namely, the
f 2(1270), ther(1450), and thef 0(1300). In this section we
will continue to neglect theKK̄ channel.

The current-algebra plusr contribution to the quantity
A(s,t,u) defined in Eq.~A8! is1

Aca1r~s,t,u!52
s2mp

2

Fp
2 1

grpp
2

2mr
2 ~4mp

223s!

2
grpp
2

2 F u2s

~mr
22t !2 imrGru~ t24mp

2 !

1
t2s

~mr
22u!2 imrGru~u24mp

2 !G . ~4.3!

Note that for theI5J50 channel this will yield a purely real
contribution to the partial wave amplitude. The contributio
of the low-lying s meson was given in Eq.~3.1!. For the
important f 0(980) piece, we have

ReAf0~980!~s,t,u!

5
1

2
ReF g f0pp

2 e2id~s22mp
2 !2

mf0
2 2s2 imf0

G tot~ f 0!u~s24mp
2 !G ,
~4.4!

whered is a background phase parameter and the real co
pling constantg f0pp is related to thef 0(980)→pp width by

1We introduced the step functionu(s24mp
2 ) in the propagator

and have checked that its inclusion does not make much differen
in the results.
al

r

n

u-

G„f 0~980!→pp…5
3

64p

g f0pp
2

mf0
A12

4mp
2

mf0
2 ~mf0

2 22mp
2 !2.

~4.5!

We will not considerd to be a new parameter but shall
predict it as

1

2
sin~2d![R̃0

0~s5mf0
2 !, ~4.6!

whereR̃0
0 is computed as the sum of the current algebra,r,

and sigma pieces. Since theKK̄ channel is being neglected,
one might want to set theregularization parameterG tot( f 0)
in the denominator toG„f 0(980)→pp…. We shall try both
this possibility as well as the experimental one
G„f 0(980)→pp…/G tot( f 0)'78.1%.

A best fit of our parameters to the experimental data re
sults in the curves shown in Fig. 4 for both choices of
branching ratio. Only the three parametersG/G8, G8, and
Ms are essentially free. The others are restricted by exper
ment. Unfortunately, the total widthG tot( f 0) has a large un-
certainty; it is claimed by the PDG to lie in the 40–400 MeV
range. Hence, this is effectively a new parameter. In add
tion, we have considered the precise value ofmf0

to be a
parameter for fitting purposes. The parameter values for ea
fit are given in Table II together with thex2 values. It is clear
that the fits are good and that the parameters are stab
against variation of the branching ratio. The predicted back
ground phase is seen to be close to 90° in both cases. No
that the fitted width of thef 0(980) is near the low end of the
experimental range. The low-lying sigma has a mass o
around 560 MeV and a width of about 370 MeV. As ex-
plained in Sec. III, we are not using exactly a conventiona
Breit-Wigner-type form for this very broad resonance. The
numbers characterizing it do, however, seem reasonably co
sistent with other determinations@5,12,13#.

C. Effect of the next group of resonances

Going up in energy we encounterJPC5211, 011, and
122 resonances in the 1300 MeV region. The properties o
ce
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TABLE II. Fitted parameters for different cases of interest.

With next group Nor(1450)
B„f 0(980)→2p…% 100 78.1 78.1 78.1 100 78.1 78.1 78.1 100
h0
0 1 1 0.8 0.6 1 1 0.8 0.6 1

M f0(980)
~MeV! 987 989 990 993 991 992 993 998 992

G tot ~MeV! 64.6 77.1 75.9 76.8 66.7 77.2 78.0 84.0 64.6
Ms ~MeV! 559 557 557 556 537 537 535 533 525
G8 ~MeV! 370 371 380 395 422 412 426 451 467
G/G8 0.290 0.294 0.294 0.294 0.270 0.277 0.275 0.270 0.263
d ~deg! 85.2 86.4 87.6 89.6 89.2 89.7 91.3 94.4 90.4
x2 2.0 2.8 2.7 3.1 2.4 3.2 3.2 3.4 2.5
y
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the 211 state f 2(1270) are very well established. For th
others, there is more uncertainty but the PDG lists
f 0(1300) andr(1450) as established states. However,
mass of thef 0(1300) can apparently lie anywhere in th
1000–1500 MeV range. In Ref.@4# it was noted that the
contributions of thesenext groupparticles tended to cance
among themselves. Thus, we do not expect their inclusio
significantly change the previous results in the range of
terest up to about 1.2 GeV.

In Fig. 5 we display the contribution of thenext group
particles by themselves toR0

0 . ~The amplitudes are summa
rized in Appendix C!. The dashed curve is essentially a r
production of Fig. 6 of Ref.@4#. The somewhat positive ne
contribution of these resonances toR0

0 is compensated by
readjustment of the parameters describing the low-ly
sigma. It may be interesting to include the effect of the ba
ground phase for thef 0(1300) as we have just seen that
was very important for the proper understanding of
f 0(980). To test this possibility we reversed the sign of t
f 0(1300) contribution and show the result as the solid cu
in Fig. 5. This sign reversal is reasonable since our mo
suggests a background phase of about 270° in the vicinit

FIG. 5. Contribution from thenext groupof resonances; the
solid curve is obtained with the reverse sign of thef 0(1300) piece.
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the f 0(1300). It can be seen that there is now a significantl
greater cancellation of thenext groupparticles among them-
selves up to about 1.2 GeV. The resulting total fits are show
in Fig. 6 for both 100% and 78.1% assumedf 0(980)→pp
branching ratios and the parameters associated with the fi
are shown in Table II. It is clear that the fitted parameter
and results up to about 1.2 GeV are very similar to the cas
where thenext groupwas absent. Above this region, there is
now, however, a positive bump inR0

0 at around 1.3 GeV.
This could be pushed further up by choosing a higher mas
~within the allowable experimental range! for the f 0(1300).
Resonances in the 1500 MeV region, which havenot been
taken into account here, would presumably also have an im
portant effect in the region above 1.2 GeV. Clearly, there i
not much sense, at the present stage, in trying to produce a
above 1.2 GeV.

The analysis above assumed that ther(1450) decays pre-
dominantly into two pions since the PDG listing does no
give any specific numbers. On the other hand, th
K* (1410), which presumably is in the same SU~3! multiplet
as ther(1450), has only a 7% branching ratio intoKp.
Thus, it is possible thatr(1450) actually has a small cou-
pling to pp. To test this out we redid the calculation with
the complete neglect of ther(1450) contribution. The result-
ing fit is shown in the last column of Table II and it is seen
that it leaves the other parameters essentially unchanged.

It thus seems that the results are consistent with the h
pothesis oflocal cancellation, wherein the physics up to a
certain energyE is described by including only those reso-
nances up to slightly more thanE and it is, furthermore,
hypothesized that the individual particles cancel in such
way that unitarity is maintained.

D. Effects of inelasticity

Up to now we have completely neglected the effects o
coupled inelastic channels. Of course, the 4p channel opens
at 540 MeV, the 6p channel opens at 810 MeV, and, prob-
ably most significantly, theKK̄ channel opens at 990 MeV.
We have seen that a nice undestanding of thepp elastic
channel up to about 1.2 GeV can be gotten with complet
disregard of inelastic effects. Nevertheless, it is interesting t
see how our results would change if experimental data on th
elasticity parameterh0

0 are folded into the analysis. Figure 7
illustrates the results forh0

0(s) obtained from an experimen-
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FIG. 6. Prediction forR0
0 with the next groupof resonances.~a! assumes~column 5 in Table II! @B„f 0(980)→2p…5100%# while ~b!

assumes~column 6! @B„f 0(980)→2p…578.1%#.
i-

ch
f

tal analysis@14# of pp→KK̄ scattering. For simplicity, we
approximated the data by a constant valueh0

050.8 above the
KK̄ threshold. Figure 8~a! shows the effect of this choice on
R0
0(s) computed without the inclusion of thenext groupof

resonances, while Figs. 8~b! shows the effect when thenext
group is included. Comparing with Fig. 4~b! and 6~b!, we see
that settingh0

050.8 has not made any substantial chang
The parameters of the fit are shown in Table II as are
parameters for an alternative fit withh0

050.6. The latter
choice leads to a worse fit forR0

0 .
We conclude that inelastic effects are not very importa

for understanding the main features ofpp scattering up to
about 1.2 GeV. However, we will discuss the calculation
h0
0(s) from our model in Sec. 5.

E. Phase shift

Strictly speaking, our initial assumption only entitles us
compare, as we have already done, the real part of the p
dicted amplitude with the real part of the amplitude deduc
from experiment. Since the predictedR0

0(s) up to 1.2 GeV
satisfies the unitarity bound~within the fitting error!, we can
calculate the imaginary partI 0

0(s), and hence the phase shif
d0
0(s) on the assumption that full unitarity holds. This i
implemented by substitutingR0

0(s) into Eq.~2.5! and resolv-
ing the discrete sign ambiguities by demanding thatd0

0(s) be
continuous and monotonically increasing~to agree with ex-
periment!. It is also necessary to knowh0

0(s) for this pur-
pose; we will be content with the approximations abov
which seem sufficient for understanding the main features
pp scattering up to 1.2 GeV.

In this procedure there is a practical subtlety already d
cussed at the end of Sec. IV of Ref.@4#. In order ford0

0(s) to
increase monotonically it is necessary that the sign in fro
of the square root in Eq.~2.5! changes. This can lead to a
discontinuity unless 2uR0

0(s)u precisely reachesh0
0(s). How-

ever, the phase shift is rather sensitive to small deviatio
from this exact matching. Since the fitting procedure do
not enforce thatuR0

0(s)u go precisely toh0
0(s)/2'0.5, this
e.
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results in some small discontinuities.~These could be
avoided by trying to fit the phase shift directly.!

Figure 9 shows the phase shiftd0
0(s) estimated in this

manner for parameters in the first column of Table II. As
expected, the agreement is reasonable. A very similar est
mate is obtained when~column 3 of Table II! h0

0 is taken to
be 0.8 while considering thepp-branching ratio of
f 0(980) to be its experimental value of 78.1%. It appears
that these two parameter changes are compensating ea
other so that one may again conclude that the turning on o
the KK̄ channel really does not have a major effect. When
thenext groupof resonances is included~column 7 of Table
II ! the estimatedd0

0(s) is very similar up to about 1.2 GeV.
Beyond this point it is actually somewhat worse, as we
would expect by comparing Fig. 8~b! with Fig. 8~a!.

FIG. 7. An experimental determination ofh0
05A124uT12,0

0 u2

~Ref. @14#!.
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FIG. 8. Predictions with phenomenological treatment of inelasticity (h0
050.8) aboveKK̄ threshold.~a! withoutnext group, ~b! with next

group.
-

V. pp˜KK̄ CHANNEL

We have seen thatpp→pp scattering can be understoo
up to about 1.2 GeV with the neglect of this inelastic cha
nel. In particular, a phenomenological description of the
elasticity did not change the overall picture. However, w
would like to begin to explore the predictions of the prese
model for this channel also. The whole coupled chan
problem is a very complicated one so we will be satisfi
here to check that the procedure followed for thepp elastic
channel can lead to an inelastic amplitude which also sa
fies the unitarity bounds. Specifically, we will confine o
attention to the real part of theI5J50 pp→KK̄ amplitude,
R12;0
0 defined in Eq.~A11!.
In exact analogy to thepp→pp case, we first conside

the contribution of the contact plus theK* (892) plus the
s(550) terms. It is necessary to know the coupling stren

FIG. 9. Estimated phase shift using the predicted real part
unitarity relation.
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of thes to KK̄, defined by the effective Lagrangian piece

2
gsKK̄

2
s]mK̄]mK. ~5.1!

If the s is ideally mixed and there is no Okubo-Zweig-Iizuka
~OZI! rule-violating piece, we would havegsKK̄5g0 as de-
fined in Eq.~B11!. For definiteness, we shall adopt this stan-
dard mixing assumption. The appropriate amplitudes are
listed in Appendix C. Figure 10 shows the plots ofR12;0

0 for
the current-algebra part alone, the current-algebra plusK* ,
and the current algebra plusK* plus s parts. Notice that
unitarity requires

uR12;0
0 u<

A12h0
02

2
<
1

2
. ~5.2!

and
FIG. 10. Contributions topp→KK̄ (R12;0

0 ). The solid line
shows the current-algebra result; the dashed line represents the in
clusion ofK* (892); the dotted line includes thes(550) too.
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The current-algebra result already clearly violates this bou
at 1.05 GeV. As before, this is improved by theK* vector
meson exchange contribution and further improved by th
very important tail of thes contribution. The sum of all
three shows a structure similar to the corresponding Fig. 2
thepp→pp case. The unitarity bound is not violated unti
about 1.55 GeV.

Next, let us consider the contribution of thef 0(980)
which, since the resonance straddles the threshold, is
pected to be important. We need to know the effective co
pling constant of thef 0 to pp and toKK̄. As we saw in Eq.
~4.4!, and the subsequent discussion, the effectivepp cou-
pling should be taken asg f0ppe

ip/2. Experimentally, only

the branching ratios forf 0(980)→pp and f 0(980)→KK̄ are
accurately known. We will adopt for definiteness the valu
of g f0pp corresponding to the fit in the third column of Table

II @G tot„f 0(980)…576MeV#. It is more difficult to estimate
the f 0(980)→KK̄ effective coupling constant since the cen
tral value of the resonance may actually liebelowthe thresh-
old. By taking account2 of the finite width of thef 0(980), we
get the rough estimateug f0KK̄

u510 GeV21'4ug f0ppu for
the choice in the third column,M f0(980)

5990 MeV. Of
course, this estimate is very sensitive to the exact value us
for M f0(980)

. It seems reasonable to takeg f0KK̄
to be purely

real. The results of including thef 0(980) contribution, for
both sign choices ofg f0KK̄

, are shown in Fig. 11. The uni-

tarity bounds are satisfied for the positive sign ofg f0KK̄
but

slightly violated for the negative sign choice.
Finally, let us consider the contributions topp→KK̄

from the members of the multiplets containing thenext
groupof particles. There will be a crossed channel contribu
tion from the strange excited vector mesonK* (1410). How-
ever, it will be very small sinceK* (1410) predominately
couples toK*p and has only a 7% branching ratio toKp.
In addition, there will be a crossed channel scala
K0* (1430) diagram as well as a direct channel scal
f 0(1300) diagram contributing topp→KK̄. The f 0(1300)
piece is small becausef 0(1300) has a very small branching
ratio toKK̄. Furthermore, theK0* (1430) piece turns out also
to be small; we have seen that the crossed channel sca
gave a negligible contribution topp→pp. The dominant
next groupdiagrams involve the tensor mesons. Near thres

2With G tot„f 0(980)…576 MeV, we would have
G„f 0(980)→KK̄…516.6 MeV. Then,g f0KK̄

is estimated from the
formula:

16.6 MeV5ug f 0KK̄
u2E

2mk

`

r~M !uA„f 0~M !→KK̄…u2F~M !dM,

whereA„f 0(M )→KK̄… is the reduced amplitude for anf 0 of mass
M to decay toKK̄, F(M ) is the phase space factor, andr(M ) is
the weighting function given by

r~M !5A2

p

1

G tot
expH 22F ~M2M0!

2

G tot
2 G J .

Here,M0 is the central mass value of thef 0(980).
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old, the crossed channelK2* (1430) diagram is the essential
one since the direct channelf 2(1270) contribution for the
J50 partial wave is suppressed by a spin-2 projection op
erator. Above 1270 MeV, thef 2(1270) contribution be-
comes increasingly important although it has the opposit
sign to the crossed channel tensor piece. Figure 12 shows t
net prediction forR12;0

0 obtained with the inclusion of the
main next group contributions from theK2* (1430) and
f 2(1270). Both assumed signs forg f0KK̄

are shown and other
parameters correspond to column 3 of Table II. Clearly, ther
is an appreciable effect. Figure 13 shows the magnitude o
uR12;0

0 u together with one experimental determination@14# of
uT12;0

0 u5A(R12;0
0 )21(I 12;0

0 )2. The positive sign ofg f0KK̄
is

FIG. 11. Effect off 0(980) onpp→KK̄. The solid curve cor-
responds to a negativeg f 0KK̄

and the dashed one to a positive sign.

FIG. 12. Effects onpp→KK̄ due to thenext groupof reso-
nances for the two different sign choices in Fig. 11.



e

n-
n
f-
nd

f

g
ere
t-
n-
ot
r-
ost
s
-

-
e

-

-

as
ct

st

d

h
c-
t

e
ally
by
he
k-

a
p-
ic

d

2000 54HARADA, SANNINO, AND SCHECHTER
favored but, considering the uncertainty inug f0KK̄
u among

other things, we shall not insist on this. It seems to us that
main conclusion is that the unitarity bound can be satisfied
the energy range of interest.

VI. SUMMARY AND DISCUSSION

We have obtained a simple approximate analytic form f
the real part of thepp-scattering amplitude in the energy
range from threshold to about 1.2 GeV. It satisfies bo
crossing symmetry and~more nontrivially! unitarity in this
range. Inspired by the leading 1/Nc approximation, we have
written the amplitude as the sum of a contact term and po
Of course, the leading 1/Nc amplitude cannot be directly
compared with experiment since it is purely real~away from
the direct channel poles! and diverges at the pole positions
Furthermore, an infinite number of poles, and higher deriv
tive interactions are, in principle, needed. To overcome the
problems we have employed the following procedure.

~a! We specialized to predicting the real part of the am
plitude.

~b! We postulated that including only resonances fro
threshold to slightly more than the maximum energy of i
terest is sufficient. We have seen that thislocal cancellation
appears stable under the addition of resonances in the 1
MeV range. Beyond this range we would expect still high
resonances to add in such a way so as to enforce unitarit
still higher energies.

~c! In the effective interaction Lagrangian we include
only terms with the minimal number of derivatives consi
tent with the assumed chiral symmetry.

~d! The most subtle aspect concerns the method for re
larizing the divergences at the direct channel resona
poles. In the simplest case of a single resonance domina
a particular channel~e.g., ther meson!, it is sufficient to add
the standardwidth term to the denominator@e.g., the real part
of Eq. ~2.2!#. For an extremely broad resonance~such as a

FIG. 13. uR12;0
0 u together with one experimental determinatio

@14# of uT12;0
0 u5A(R12;0

0 )21(I 12;0
0 )2. Signs forg f 0KK̄

as in Fig. 11.
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needed low energy scalar isosinglet!, the concept ofwidth is
not so clear and we employed the slight modification of th
Breit-Wigner amplitude given in Eq.~2.3!. Finally, for a
relatively narrow resonance in the presence of a no
negligible background, we employed the regularization give
in Eq. ~2.4! which includes the background phase. Sel
consistency is assured by requiring that the backgrou
phase should be predicted by the model itself.

All the regularizations introduced above are formally o
higher than leading order in the 1/Nc expansion~i.e., of order
1/Nc

2 and higher! and correspond physically to rescatterin
effects. In the case of non-negligible background phase, th
is an interesting difference from the usual tree-level trea
ment of pole diagrams. The effective squared coupling co
stant gRpp

2 of such a resonance to two pions, is then n
necessarily real positive. Since this regularization is inte
preted as a rescattering effect it does not mean that gh
fields are present in the theory. This formulation maintain
crossing symmetry which is typically lost when a unitariza
tion method is employed.

In this analysis, the most nontrivial point is the satisfac
tion of the unitarity bound for the predicted real part of th
partial wave amplitude:

uRl
I u<

h l
I

2
, ~6.1!

whereh l
I<1 is the elasticity parameter. The well-known dif

ficulty concernsR0
0 . If h l

I(s) is known or calculated, the
imaginary partI l

I(s) can be obtained, up to discrete ambigu
ities, by Eq.~2.5!.

The picture ofpp scattering in the threshold to slightly
more than 1 GeV range which emerges from this model h
four parts. Very near threshold the current-algebra conta
term approximatesR0

0(s) very well. The imaginary part
I 0
0(s), which is formally of order 1/Nc

2 , can be obtained from
unitarity directly using Eq.~2.5! or, equivalently, by chiral
perturbtion theory. At somewhat higher energies the mo
prominent feature is ther meson pole in theI5J51 chan-
nel. The crossed channelr exchange is also extremely im-
portant in taming the elastic unitarity violation associate
with the current-algebra contact term~Fig. 1!. Even with the
r present, Fig. 1 shows that unitarity is still violated, thoug
much less drastically. This problem is overcome by introdu
ing a low mass'550 MeV, extremely broad sigma meson. I
also has another desirable feature:R0

0(s) is boosted~see Fig.
3! closer to experiment in the 400–500 MeV range. Th
three parameters characterizing this particle are essenti
the only unknowns in the model and were determined
making a best fit. In the 1 GeV region it seems clear that t
f 0(980) resonance, interacting with the predicted bac
ground in the manner of theRamsauer-Townsendeffect,
dominates the structure of theI5J50 phase shift. The in-
elasticity associated with the opening of theKK̄ threshold
has a relatively small effect. However, we also presented
preliminary calculation which shows that the present a
proach satisfies the unitarity bounds in the inelast
pp→KK̄ channel.

Other recent works@5,12,13,15,16#, which approach the
problem in different ways, also contain a low mass broa

n
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sigma. The question of whether the lighter scalar mesons
of qq̄ type ormeson-mesontype has also been discusse
@5,12,13#. In our model it is difficult to decide this issue. O
course, it is not a clean question from a field theoretic stan
point. This question is important for understanding wheth
the contributions of such resonances are formally leading
the 1/Nc expansion. We are postponing the answer as well
the answer to how to derive the rescattering effects that w
used to regularize the amplitude near the direct channe
poles as higher order in 1/Nc corrections. Presumably, the
rescattering effects could some day be calculated as l
corrections with a~very complicated! effective Wilsonian ac-
tion. This would be a generalization of the chiral perturb
tion scheme of pions. Another aspect of the 1/Nc picture
concerns the infinite number of resonances which are
pected to contribute already at leading order. One may ho
that the idea oflocal cancellationwill help in the develop-
ment of a simple picture at high energies which might g
patched together with the present one. Is the simple h
energy theory a kind of string model?

It is clear that the deduction of thepp-scattering ampli-
tude from fundamental QCD is a long way off. Hence, th
subject can be profitably approached from various differe
approximate models. In our paper we have presented a~lead-
ing 1/Nc-motivated! crossing symmetric amplitude whos
I5J50 partial wave projection was consistent with unitarit
and which gave a reasonable description of the experime
situation. In@5#, Törnqvist presented an interesting approac
for the I5J50 partial wave amplitude in which unitarity
was exactly imposed by a kind ofs-channel bubble summa-
tion but no account was taken of crossing symmet
Roughly speaking, the predictions of the two models a
similar. Hence, it would seem to be very worthwhile in fu
ture to attempt to combine aspects of the two approache

The emphasis, in the present approach, was to see
leading order largeNc-motivated amplitude which satisfied
manifest crossing symmetry and chiral symmetry could, w
a suitable interpretation, provide a realistic description
pp scattering in the energy range up to around 1 GeV. F
this purpose, we restricted attention to the real part of t
amplitude, employed a phenomenologically reasona
crossing symmetric regularization at the pole positions a
postulated that only particles with energies up to and inclu
ing the next groupwere dominant. The interesting featur
observed was that the unitarity bound could be satisfied wi
out forcing global unitarity by hand. The limitations of thi
approach arise from these assumptions. One might attemp
improve the picture by deriving rather than postulating th
regularizations. This might be done by summing a suitabl
set of crossing symmetric bubble-type diagrams, but it wou
be extremely complicated. A practical way to start on th
problem would be to project into theI5J50 partial wave
channel and demand unitarity, following the approach of@5#.
In this case our contact terms as well as our crossed cha
exchange terms would be lumped together into a singleef-
fective contact term. It is expected that the detailed descrip
tion of the energy dependence just above theKK̄ threshold
could be improved in this manner. Another interesting dire
tion for further work would be to apply our analysis to othe
are
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flavor channels such aspK. In this way, information about
the full SU~3! multiplet structure of the resonances can be
obtained.

From a practical standpoint~without worrying about all
the theoretical issues involved in making a comparison with
the 1/Nc expansion! we have demonstrated that it is possible
to understandpp scattering up to the 1 GeV region by shoe-
horning together poles and contact term contributions em
ploying a suitable regularization procedure. It seems likely
that any crossing symmetric approximation will have a simi-
lar form. This is in the spirit ofmean-fieldtheories.
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APPENDIX A: SCATTERING KINEMATICS

The general partial wave scattering matrix for the multi-
channel case can be written as

Sab5dab12iTab . ~A1!

For simplicity, the diagonal isospin and angular momentum
labels have not been indicated.

By requiring the unitarity conditionS†S51, one deduces
for the two channel case the relations

Im~T11!5uT11u21uT21u2

Im~T22!5uT22u21uT12u2, ~A2!

Im~T12!5T11* T121T12* T22,

whereT125T21. In the present case we will identify 1 as the
pp channel and 2 as theKK̄ channel. In order to get the
relations between the relative phase shifts and the amplitud
we need to consider the parametrization of the scatterin
amplitude

S5S he2idp 6 iA12h2eidpK

6 iA12h2eidpK he2idK D , ~A3!

where dpK5dp1dK and 0,h,1 is the elasticity param-
eter. By comparing Eq.~A3! and~A1!, one can easily deduce

h25124uT12u2. ~A4!

Analogously, forTaa we have

Taa; l
I ~s!5

h l
I~s!e2ida; l

I
~s!21

2i
, ~A5!

where l and I label the angular momentum and isospin, re-
spectively. Extracting the real and imaginary parts via

Raa; l
I 5

h l
Isin~2da; l

I !

2
,

I aa; l
I 5

12h l
Icos~2da; l

I !

2
~A6!
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leads to the very important bounds

uRaa; l
I u<

1

2
, 0<I aa; l

I <1. ~A7!

The unitarity also requiresuT12;l
I u,1/2.

Now, we relate these partial wave amplitudes to the
variant amplitudes. The invariant amplitude fo
p i(p1)1p j (p2)→pk(p3)1p l(p4) is decomposed as

d i jdklA~s,t,u!1d ikd j l A~ t,s,u!1d i ld jkA~u,t,s!,
~A8!

wheres, t, andu are the usual Mandelstam variables. No
that the phase of Eq.~A8! corresponds to simply taking the
matrix element of the Lagrangian density of a four-poi
contact interaction. Projecting out amplitudes of defini
isospin, yields

T11
0 ~s,t,u!53A~s,t,u!1A~ t,s,u!1A~u,t,s!,

T11
1 ~s,t,u!5A~ t,s,u!2A~u,t,s!,

T11
2 ~s,t,u!5A~ t,s,u!1A~u,t,s!. ~A9!

The neededI50 pp→KK̄ amplitude can be gotten as

T12
0 ~s,t,u!52A6 A„p0~p1!p

0~p2!,K
1~p3!K

2~p4!….
~A10!

We then define the partial wave isospin amplitudes acco
ing to the formula

Tab; l
I ~s![

1

2
ArarbE

21

1

dcosu Pl~cosu!Tab
I ~s,t,u!,

~A11!

whereu is the scattering angle and

ra5
1

S16p
As24ma

2

s
u~s24ma

2!. ~A12!

S is a symmetry factor which is 2 for identical particle
(pp case! and 1 for distinguishable particles (KK̄ case!.

APPENDIX B: CHIRAL LAGRANGIAN

In the low energy physics of hadrons, it is important
take account of the spontaneous chiral symmetry-break
structure. We start here with the U~3! L3U~3!R / U~3!V non-
linear realization of chiral symmetry. The basic quantity is
3 3 3 matrixU, which transforms as

U→ULUUR
† , ~B1!

whereUL,RPU(3)L,R . ThisU is parametrized by the pseu
doscalarf as

U5j2, j5e2if/Fp, ~B2!

whereFp is a pion decay constant. Under the chiral tran
formation Eq.~B1!, j transforms nonlinearly:

j→ULjK
†~f,UL ,UR!5K~f,UL ,UR!jUR

† . ~B3!
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The vector meson nonetrm is introduced as agauge field
@17# which transforms as

rm→KrmK
†1

i

g̃
K]mK

†, ~B4!

where g̃ is a gauge coupling constant. ~For an alternative
approach see, for a review, Ref.@18#.! It is convenient to
define

pm5
i

2
~j]mj†2j†]mj!,

vm5
i

2
~j]mj†1j†]mj!, ~B5!

which transform as

pm→KpmK
†,

vm→KvmK
†1 iK ]mK

†. ~B6!

Using the above quantities we construct the chiral Lagrang
ian including both pseudoscalar and vector mesons:

L52
1

2
mv
2TrF S rm2

vm

g̃
D 2G2

Fp
2

2
Tr@pmpm#

2
1

4
Tr@Fmn~r!Fmn~r!#, ~B7!

where Fmn5]mrn2]nrm2 i g̃@rm ,rn# is a gauge field
strengthof vector mesons.

In the real world, chiral symmetry is explicitly broken by
the quark mass term2m̂q̄Mq, wherem̂[(mu1md)/2, and
M is the dimensionless matrix:

M5S 11y

12y

x
D . ~B8!

Here,x andy are the quark mass ratios:

x5
ms

m̂
, y5

1

2 Smd2mu

m̂
D . ~B9!

These quark masses lead to mass terms for pseudoscalar m
sons. Moreover, in considering the processes related to th
kaon ~in this paper we will considerpp→KK̄ scattering
amplitude!, we need to take account of the large splitting of
the s quark mass from theu and d quark masses. These
effects are included as SU~3! symmetry-breaking terms in
the above Lagrangian, which are summarized, for example
in Refs.@19,20#. Here, we write the lowest order pseudosca-
lar mass term only:

Lf mass5d8Tr@MU†1M†U#, ~B10!

whered8 is an arbitrary constant.
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We next introduce higher resonances into our Lagrangi
First, we write the interaction between the scalar nonet fie
S and pseudoscalar mesons. Under the chiral transformat
this S transforms asS→KSK†. A possible form which in-
cludes the minimum number of derivatives is proportional
Tr@Spmpm#. The coupling of a physical isosinglet field to
two pions is then described by

Ls52
g0

A2
s]mpW •]mpW . ~B11!

Here, we should note that the chiral symmetry requir
derivative-type interactions between scalar fields and ps
doscalar mesons. Second, we represent the tensor nonet
by Tmn ~satisfying Tmn5Tnm , and Tmm50), which trans-
forms asTmn→KTmnK

†. The interaction term is given by

LT52g2Fp
2Tr@Tmnpmpn#. ~B12!

The heavier vector resonances such asr(1450) can be intro-
duced in the same way asr in Eq. ~B7!.

APPENDIX C: UNREGULARIZED AMPLITUDES

A. Amplitudes for the pp˜pp channel

The current-algebra contribution toA(s,t,u) is

ACA~s,t,u!52
~s2mp

2 !

Fp
2 . ~C1!

The amplitude for the vectors can be expressed in the fo

Ar~s,t,u!52
grpp
2

2mr
2 F t~u2s!

mr
22t

1
u~ t2s!

mr
22u G , ~C2!

wheregrpp is the coupling of the vector to two pions.
For the scalar particle, we deduce

Af0
~s,t,u!5

g0
2

2

~s22mp
2 !2

mf0
2 2s

. ~C3!

To calculate the tensor exchange diagram, we need
spin-2 propagator@21#

2 i

mf2
2 1q2 F12 ~um1n1

um2n2
1um1n2

um2n1
!2

1

3
um1m2

un1n2G ,
~C4!

where

umn5dmn1
qmqn

mf2
2 . ~C5!

A straightforward computation then yields thef 2 contribu-
tion to thepp-scattering amplitude:
n.
ld
on,

to

s
u-
field

m

the
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2

2~mf2
2 2s! S 2

16

3
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41
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2s2
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3
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1
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2
~ t21u2!2
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3
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2s2

mf2
2 2
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2 1

s4
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4 D .

~C6!

B. Amplitudes for p0p0
˜K1K2

Current-algebra amplitude:

ACA~p0p0,K1K2!5
s

2Fp
2 . ~C7!

Vector-meson contribution:
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gK* Kp
2
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1
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1
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2
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Direct channel contribution for the scalar:
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1

4
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2 !~s22mk

2!

mf0
2 2s
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Cross channel contribution for the scalar:
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Direct channel tensor contribution:
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2 1
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Cross channel tensor contribution:
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