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Measurement of the distribution of hadronic energy in the final state in deeply inelastic electron scattering at
DESY HERA can provide a good test of our understanding of perturbative QCD. For this purpose, we consider
the energy distribution function, which can be computed without needing final state parton fragmentation
functions. We compute this distribution function for finite transverse momeuwguiat orderag, and use the
results to sum the perturbation series to obtain a result valid for both large and small values of transverse
momentum]S0556-282(196)06015-§

PACS numbsgs): 12.38.Lg, 11.15.Bt. 11.15.Tk

[. INTRODUCTION of the hadronic final state. In principle, one can measure the
energyEg and the anglesfg,¢g) of the outgoing hadron

This paper concerns the energy distribution in the finalB. However, it is much simpler to perform a purely calori-
state of deeply inelastic lepton scattering. Using a naive pametric measurement, in which only the total energy coming
ton model, one would predict that the scattered parton apinto a calorimeter cell at angle®{, ¢g) is measured. This
pears as a single narrow jet at a certain angle, ¢, ) inthe  calorimetric measurement gives the energy distribution
detector. Taking hard QCD interactions into account, one
predicts a much richer structure for the final state energy d= _E de 1— coH)E
distribution. In a previous papét] (henceforth referred to as dE’dcos9’dcofgddsy 5 5(1~cog)Es
I), we investigated this structure, using an energy distribution
function defined in analogy to the energy-energy correlation y do(e+A—B+X)
function ine*e™ annihilation[2,3]. We studied this energy dE’dcost’ dEgdcosdgd g
distribution as a function of the angl@g, ¢g) in the detec-
tor in the region not too near to the directiofi,(,¢,). In
this region, simple QCD perturbation theory is applicable,
and we presented calculations at order In this paper, we The sum runs over all species of produced had®n$Ve
extend the analysis to the region obg,¢g) near to have included a factor (2cosfg) in the definition because
(6, ,¢,) . Here, multiple soft gluon radiation is important. this factor is part of the Lorentz invariant dot product
Thus we use a summation of perturbation theory. Pa,.Pt=EAEg(1—cop).

Notice thatdX, measures the distribution of energy in the
final state as a function of angle without asking how that
energy is split into individual hadrons moving in the same

There is extensive literature on semi-inclusive deeply in-direction[12]. For this reason, the theoretical expression for
elastic scatterinf4—10]; a brief history and complete set of dX will not involve parton decay functions that describe how
references can be found in paper I. We begin here with @artons decay into hadrons.
concise review of how the energy distribution function is
defined, and then discuss how we sum the contributions that
are important in the regionég, ¢g)=(6, ,¢,) to obtain a
result which is valid for all values off, ¢g).

The reaction that we study is+A—e+B+X at the At the Born level, the hard scattering process for the re-
DESY electron-proton collider HERAL1]. Let us describe action is electrorquark— electront-quark by means of a
the particles by their energies and angles in the HERA labovirtual photon orZ, exchange. At ordet, one can have
ratory frame, with the positive axis chosen in the direction virtual corrections to the Born graph. In addition, one can
of the proton beam and the negatiwaxis in the direction of have processes in which there are two scattered partons in
the electron beam. In completely inclusive deeply inelastidhe final state. Then the initial parton can be either a quark
scattering, one measures orl/ and ¢’, the energy and (or antiquarlk or a gluon, while the observed hadron can
angle of the scattered electron. In the semi-inclusive caseome from the decay of either of the final state partons.
studied in this paper, one also measures some basic featur@eme of these possibilities are illustrated in Figs. 1-3.

@

A. Energy distribution function

B. Partonic variables and their relation to the HERA
laboratory frame

0556-2821/96/5)/191917)/$10.00 54 1919 © 1996 The American Physical Society



1920 MENG, OLNESS, AND SOPER 54

Y

T

1
o

FIG. 1. Feynman diagrams for a quark-initiated process with a F1G- 3. Feynman diagrams for a gluon-initiated process with a
quark jet observed. The observed parton is the upper line, indicate@/a7K jét observed. The observed parton is the upper line, indicated

with a dot. with a dot.
Let us consider the effect of the emission of the addi- _Ps-Pa 3
tional, unobserved, “bremsstrahlung” parton. We can define q-Pp

the part of the vector boson momentuyt that is transverse

to the momentum of the incoming hadrdt, and to the [Thus the integration over the energy of had&in defini-
momentum of the outgoing hadré . One merely subtracts tion (1) of the energy distribution is equivalent to an integra-
from qg* its projections along P4 and P§ (taking tion overz.] The fourth variable is an azimuthal angfe To
P/ZE PZB: 0): define¢, we choose a frame, called the hadron frame, Fig. 4,
in which the incoming hadrom\ has its three-momentum
w_w APs QP b @ P, along the positivez axis and the virtual photon four-
ar=q Po-Pg A Pa-Pg B° momentumg* lies along the negative axis. Then, as long
asgr+ 0, hadronB has some transverse momentum, and we
We let gr=[ — - qr,]"2 represent the magnitude of the align thex andy axes so thaP5>0 and ngo. We now
transverse momentum. It & that is analogous to the trans- define¢ as the azimuthal angle of the incoming lepton in the
verse momentum of producatl’s andZ’s or lepton pairs in hadron frame. These variables are _desc_rlbed more fu!ly in
the Drell-Yan process. In the naive parton model, there ar@2Per |, and relevant formulas are given in the Appendix of
no bremsstrahlung partons and all parton momenta are efiS Paper.
actly collinear with the corresponding hadron momenta; so 1€ variablesjr and ¢ can be translated to the observ-
one hasqr=0. At order a., unobserved parton emission ables of the HERA Iabor_atory frame, Fig. 5. .In the naive
allows gy to be nonzero. parton model, thgloutgomg hadrd® (along with all the
In order to properly describe the parton kinematics wePther hadrons arising from the decay of the struck quark
need four more variables besidgs. Two are the standard ©Merges in the plane defined by the incoming and outgoing
variables for deeply inelastic scattering2= —q*q, and electrons at a precisely defined anglg (¢, ), which can be

x=Q?(2q-P,). The third is a momentum fraction for the computed from the incoming particle mome_nta and the mo-
outgoing hadrorB: mentum of the scattered electron. The pcnﬁt=0_corre-
sponds to @g,¢g)=(0, ,¢,). We choose oux axis such
that ¢, =0. Lines of constant positivgr are curves in the
(0g,®g) plane that encircle the pointd{ ,¢,). Lines of
constant¢ radiate out of the point{, ,, ), crossing the

Pg +X

q
P \
A—>W+z

FIG. 4. The hadron frame. The initial hadrém, lies along the
FIG. 2. Feynman diagrams for a quark-initiated process with gositive z axis, and the vector bosan lies along the negative
gluon jet observed. The observed parton is the lower line, indicatedxis. The next-to-leading order QCD corrections can give the final
with a dot. state hadrorPg a honzerax component.

o
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v . . x Proj . X
X x-z Projection Py op | *VY rojection
z Py y FIG. 5. The HERA laboratory frame for the
process e (/)+A(Py)—e (/')+B(Pg)+X.
Py N g . y I The final state leptiore™ (/) lies in the x-z
8 L

plane, and the final state hadrd@{(Pg) has a
/ K’ nonzeroy component if¢g is nonzero.
2
L V

lines of constantj;. This is illustrated in Fig. 6. The precise by a virtual photon,Z or W boson. Its momentum
formulas for the map relatingdg , ¢g) and @1 ,¢) are given  £PL+q* is in a direction ¢, , ¢, ) that can be reconstructed
in Appendix A. by knowing the lepton momenta. However, at higher orders
In paper | and in this paper, we find it convenient to of perturbation theory, the momentum of the final state par-
convert from the laboratory frame variablgg’, 0’} of the  ton is
scattered lepton andlfg,dg} of the observed hadron to
{x,Q% for the lepton andqr,¢} for the observed hadron.
We also convert froneg to z. With this change of variables,
Eqg. (1) becomes

(EPA+a*) — (ki +ky+- - +k{), (5

where thek are momenta of gluons that are emitted in the
process. In a renormalizable field theory, it is very easy to

das s J z( Q? do emit gluons that are nearly collinear to either the initial or
= dz . final parton directions. In addition, in a gauge theory such as
Y= pru s 2 p , gaug y
ddequd(ﬁ B 2XEa dXszqudd)dz 4) QCD, it is very easy to emit gluons that are sdft‘Q).

Each gluon emission displacgs by a small amount, so that
_ _ one may think of the parton as undergoing a random walk in
C. Sudakov summation of logarithms ofqr the space of transverse momenta. With one gluon emission,
The main object of study in this paper is the distributionone finds a cross section that is singulamgs-0:
of energy as a function ofi; for q%«QZ. In paper |, we

applied straightforward perturbation theory to analyze the do a+bin(q2/Q?)
energy distribution in the region?~Q?, and ay(Q?) <1. g (6)
Here there is a rich structure as a function of the angles that dar a

relate the hadron momenta to the lepton momenta. In fact,
complete description requires nine structure functions.
When one examines the regiq§1< Q?, one finds that the

At order Y the 142 singularity is multiplied by a polyno-
mial in In(q%/Qz) of order 2N—1. This series sums to a func-

angular structure simplifies greatly. However, the depenton Of dr that is peaked agr=0 but is not singular there.
dence ong; becomes richer than the dependencegerof The width of this distribution is much larger t_han th<=T
the lowest-order graphs. By summing the most importani300 MeV that one would guess based on experience W_'th
parts of graphs at arbitrarily high order, one finds a structur§©ft hadronic physics. On the other hand, the width is quite

that is sensitive to the fact that QCD is a gauge theory. ~ Small compared to the hard momentum sd@le
Briefly, the physical picturg13] is as follows. At the Essentlall)_/ this same physics has been studied in the two
Born level of deeply inelastic scattering, a quark in the in-Crossed versions of the process A—e+ B+ X that can be

coming proton enters the scattering with momentgRy: studied at HERA. In electron-positron annihilation,

that is precisely along the beam axis. This quark is scattere%j;stizr’?‘g? ;’aﬁ'ré):;k;?}'f;;;g?;%jgﬁ’ 't%nsg?:ylgf:"féaﬂon

In A+B—/+/+X, one studies the distribution of the lep-
Q=30GeV  x=0.02 ton pair as a function of its transverse momentgmwith
T ; ' ; respect to the beam axi44,17-22. The same analysis ap-
plies also to the distribution of the transverse momentum of
W or Z bosons produced in hadron collid¢23—26.
op 1 Dokshitser, D'Yakonov, and Troiai27] were the first to
] sum contributions from multiple soft gluon emissons in the
C : three processes mentioned above. At each order of perturba-
tion theory, they calculated the contribution with the most
' powers of In¢5/Q?). Parisi and Petronzifl3] improved this
-1 Cos(0p) +1 soft gluon summation by introducing a Fourier transform to
transverse position space. Curchi, Greco, and Srivagg8ja
FIG. 6. Contours ingg and cosfs) for Q=30 GeV and Obtained similar results using the Fourier transform in a co-
X=0.02. The circular rings are contours of cons]apin steps of 3 herent state formalism. These ideas were extended for jets by
GeV, and the radial arcs are contours of consianin steps of Rakow and Webbef29], for the Drell-Yan process by Chi-
m/8. appetta[30], and for the Drell-Yan process and energy-

-
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energy correlations ie*e™ annihilation by Ellis, Fleishon, das
and Stirling[31]. Bassetto, Ciafaloni, and Marchesiig2] Wzd_
. : qrdé
examined the effect of soft gluon summation and angular
ordering on the jet distributions. 9
From these studies, the following picture emerges. First, :kzl Ak(w,qb)va 2 20(Q%V1,Va.j.j" k)
the leading logarithmsn=2N—1) can be summed to all - izl
orders, and dominate the perturbation theory in the region XT(x,Q%,0%:1,j"). @
as(Q?) <1 anday(Q?)In%(Q%¢?)=<1. Unfortunately, most of
the interesting physics, and most of the data, lies outside thihe hyperbolic boost anglg that connects the natural had-
region of validity of the leading logarithm approximation. ron and lepton frame is given 47]
Fortunately, one can go beyond the leading logarithm sum-

mation to obtain a result that is valid even when _2xs
ay(Q?)INX(Q%cP) is large. This was first developed by Col- coshjy= 62'_1’ ®

lins and Sopef33] and then Collins, Soper, and Sterman

[14], and applied to the case of thé transverse momentum and ¢ is the azimuthal angle in the hadron frame. The nine

distribution by Arnold and Kauffmaf25] and by Ladinsky ~angular functionsA,(#, ¢) arise from hyperbolid(y, ¢)

and Yuan[26]. rotation matrices. The complete set.df(, ) is listed in
Recent work has investigated new prescriptions of dealind\ppendix B, but the two we shall focus on are

with the Landau singularity present in the Sudakov form

factor. Contopanagos and Stermi@#] have introduced a Ay (i, ) =1+ cosH(y),
principle value prescription, and this has been applied to the
top quark production process by Laenen, Smith, and van Ag(1,¢)=2cosli). )

Neerven[35] and by Berger and Contopanad@s].

The plan for the remainder of the paper is as follows. InwWe sum over the intermediate vector bosons
Sec. Il, we use our calculation in paper | to calculate the {V,,V,}={v,Z° or {W*}, as appropriate, and we also sum
asymptotic form of the energy distribution functions in the over the initial and final partons{j,j’}. The factor
gr—0 limit. In Sec. lll, we introduce the Sudakov form 3,(Q?%V,,V,,j,j’.k) contains the leptonic and partonic
factor which sums the soft gluon radiation in the limit couplings, the boson propagators, and numerical factors; it is
gr—0. In Sec. IV, we compare the asymptotic form of the defined in Appendix B, Eq(B2). It is the hadronic energy
energy distribution functions to extract the ordey contri-  distribution functions"(x,Q2,05;j,j’) that we shall calcu-
butions to the perturbative coefficiessB, C", andC°" In late.

Sec. V, we address the issue of matching the sgrategion If we expand thel’, in the form of perturbative coeffi-
to the largeqy region. In Sec. VI we investigate the form of cients convolute_d with parton distribution functions,_ then
the nonperturbative corrections in the smal region, and WO gf the 2fuqct|onst, namely,I’; andI's, behave like
relate these to the Drell-Yan arele” processes. In Sec. '”n(qT/Qz)/qT with n=0 for qr—0. The others behave like
VII, we review the principal steps in the calculation. In Sec.1/dr or 1 times possible logarithms. In this paper we are
VIII, we present results for the energy distribution functions'nterested in smalgy behavior, and so we concentrate our
throughout the fullg; range. Conclusions are presented inattention onl’; andl's.

Sec. IX, and the Appendixes contain a set of relevant formu-, Vhat of the less singular structure functiahg, T's, T's,
las. I's, I';, T'g, andT'g? Fixed order perturbation theory is not

applicable for the calculation of thedg for smallg;. We
note, on the grounds of analyticity, that thelSg must be
finite or, for certaink, vanish asg;—0, even though they
have weak singularities in finite order perturbation theory.
) ) . ] Our perturbative results in the region of modemgténdicate

In this section we review the ordess perturbative results  hat the fraction ofdS, /ddequ$d & contributed by these

Il. ENERGY DISTRIBUTION FUNCTIONS

of paper '2 in order to extract the terms in s small and dropping ag: decreases. We thus conclude
d=/dxdQ’dqgrd¢ that behave like B times logarithms as  that these contributions would be hard to detect experimen-
gr—0. In Sec. Ill, we display the structure of tally for small gr. For this reason, we do not address the

d3/dxd@dg?d¢ with the Sudakov summation of loga- problem of summing perturbation theory fdt,, I's, Ty,
rithms. Then, in Sec. V, by comparing the summed form['s, I';, I'g, andTy.

with the ordera, form of d%/dxd@dg3d ¢, we will be able Applying the methods of Ref$33,14] to deeply inelastic
to extract the coefficients that appear in the summed form. scattering, we writd’; in the form

I'1(x,Q%0%;],i")=T%"x,Q%,93:j,j")
_risyntxiniq?l';j vj ’)

A. Energy distribution formulas

The process we consider & + A—e~ +B+ X, and the o 2,
fundamental formula for the energy distribution is +W(x,Q%ar;j.]"). (10
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Drell-Yan DIS ete-

FIG. 7. Dominant integration regions leading to the nonperturbative contributiof@s Brell-Yan, (b) DIS, and(c) e"e™. These three
processes are related via a crossing symmeftyand Jg represent the jet subgraphs associated with the collinear partons from hadron
A(P,) andB(Pg), respectivelyS represents the subgraph of soft gluons and quarks which are connected to the rest of the process by soft
gluons(but not soft quarks The double logarithms arise frody andJg .

HereW(x,QZ,qi;j ,J') sums the singular terms to all orders Fe(x,Qz,q$ i ')=Fge"(x,Q2,q$ .0
and contains the leading behavior df; as g;—0. as P
IPe(x,Q2,g%;j.j') is simply T';(x,Q%,03;j,j') evaluated —IE¥Mx,Q%a7;:i.i")

at a finite order (ué for our purposgin perturbation theory.
I'$Mx,Q%,0%;j,j") equalsw(x,Q?%,g3:j,j’) truncated at a
finite order of e in perturbation theory. Specifically, if we

expandW(x,Qz,qi;j ,J") in the form of perturbative coeffi- . . . . .
cients convoluted with parton distribution functions, then theWIth the same functiohW as in Eq.(10). Again W contains

, 20N 2 i -
coefficients have the form of o2/Q?)/g? with n=0. There the terms that behave like Yur/Q7)/qy in perturbation

are, by definition, no terms that behave likg2(Q?)" times theory, while (Fgen__rgsy") contain the less singular terms.
possible logarithms fop>—1. Such terms exist ilh';, but Our object now will be to study the smally function W.
they are associated witd §*"-T'5%") in Eq. (10).

The angular functiond, (i, ¢) =1+ cost(y) that multi-
pliesW in the smallgy limit arises from the numerator factor

+(—DW(x,Q%0%:i,i"), (13

B. Parton level distributions

The above hadronic process takes place via the partonic
Tty v, } TH{PAy*Pey'}. (1D subproces¥(q) +a(k,)— b(ky) + X whereV is an interme-
diate vector boson, anal andb denote parton species. The
Here T{ly,l"y,} is associated with the lepton scattering, hadron structure functiokN(x,Q%q%;j,j ') is related to a
and the factoi,- - - Pg gives the Dirac structure of the had- perturbatively calculable parton level structure function
ronic part of the cut diagram in Fig.() in the limit  wy(%,Q%q%;j.,j’) via
gr— 0. We will discuss Fig. 7 further in Sec. VI.
The weak currents also contaipyy* terms. This gives
the possibility of another angular function in the smafl ~ W(x,Q%,g2;j,j")=f a®W,
limit. With the same limiting hadronic structur@®,- - - Pg
we can have

1d - C
:fx ?gz Faa(£,)Wa(X,Q2,07:1.) "),

14
Tr{lysy " v, } THPAYs Y Py}, (12 (14

which is proportional to the angular function

Ag(,¢)=2coshfy) at gr=0. [Note that both.A;(y, ) The minus sign in front ofV(x,Q2,g2;j,j’) in Eq. (13) arises
and Ag(¢,¢) are independent of the azimuthal angie] from our convention for the functionsi,(#,4) and couplings
ThusT'g has the structure 30(Q%V,V,,j,i',k) that multiplyT'; andT.
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with &,=k;/P, and x= X/ €, Here g4 is the modified o L
minimal subtraction schemeMS) parton distribution func- w*(ka Ky, Q)= 3 XE,
tion. Note that the decay distribution functiog,,(&y,x) is 'S8

d*xe™'*(ka,8j"(0)[ky,S'; X)

absent since we have used the extralzand the sum over X(kp,s"; X|j*(0)|Ka,S), (16)
hadrons from the definition of the energy distribution to in-
tegrate out thelg,,(&,, ) via the momentum sum rule: which is a matrix element of current operators. We then

project out the appropriate angular compon@ifit paper )
and extract the leading term in theg— 0 limit. Explicit
calculation will show that these limitap to overall factors
are identical for the projection of the 1 and 6 tensors. In the
The partonic structure functiowa(%,Qz,q$ ij.j") is ob-  smallgy limit, the energy distribution function is then given

EB: f dépépdep(ép,u)=1. (15

tained by first computing the partonic tensor by
d
= 30(Q% Ve, Vo i ) 2, f BW,(X,Q?
dxdQFdeEds 1(¢¢)122§ o(QEVL V2D 2 faal€m) 8 Wa(R,Q%073,]7)

— Ag(4, ) 2 2, 2o(Q%V1 V2. 6)2 faal& 1) ®WL(X,Q%,0%;],i")

lZJJ

+plus terms less singular than qEJ a7
Again, the relative minus sign is simply due to the definitionq{, ¢) and2,(Q?V;,V,,j,j’ k).

C. Asymptotic energy distribution functions

We observe(from the results of papen Ithat the perturbativd ?*(x,Q2,q2;j,j’) and I'8*(x,Q2,g2;j,j’) diverge as
1/q$ for qr—0. To identify the singular terms, we can expand the on-shdlinction for smallg; using

281 (qF+KE— k)] = In(QZ) S(1—-%)8(1-2)+ -2 , 1% (18)
q Q o 1-%), (1-2),
where the '+ "-prescriptions is defined as usual by
(y) ~ ([, [G(y)-G()]
J’ dy(1 —G(l)ln(l z)JrjZ dy—(l—y) . (29

Taking thegr— 0 limit for the results of paper I, we find the partonic energy distribution to be
Q? X2+ (1-%)2

2In| —| -3 —F, (20
( of 2

where we use, j and J, 4 for the quark and gluon contributions, respectively. For convenience, we denote the asymptotic
limit g—0 of w, by w3>™

In this limit, we can greatly simplify this expression by identifying the QCD splitting functions. We present the result for
the hadronic structure function convoluted with the parton distributiohsEq. (14)]:

2
2In( Q—z) -3
at

2

. o 167«
wgsy"tx,Qz,q%J,J’):[—z :

S‘(Z

+04,iCr| —= a.g

{53,,-5(1—5()&

+

as 2 2.5 s 16772&5
F yW(X,Q ,qT;J,] ): —q2 +fj/A®Pq/q+fg/A®Pq/g y (21)
T

[fj/A(X)CF

where® represents a convolution & In the simple form  we note thatl'®Y™ is defined such that the combination

above, it is easy to identify the separate contributions. ThePen—Ta¥mhas5 only logarithmic singularities ag—0.

last two terms arise from the collinear singularities, and are

proportional to the appropriate first-order splitting kernel,
Pgiq and Pgq. It is the remaining term in which we are

interested as this term arises from the soft gluon processes. In this section, we display the structure of

Ill. SUDAKOV FORM FACTOR
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d3/dxd@dgid¢ with the Sudakov summation of loga- The functionsA and B and the hard scattering functions
rithms. This provides the basis for a formula that includesC’s are simple power series in the strong coupling constant

nonperturbative effects, developed in Sec. VI. In addition, inas With numerical coefficient$:
Sec. IV we compare the summed form of this section with

the ordera form of d%/dxd@dg3d¢ from Sec. Il, in order B §: ag(pw) |\
to extract the coefficients that appear in the summed form. A(as(,U«))—Nzl 2D An, (27)
A. Bessel transform ofw,(X,Q%,g%;j,j") “ (ag(w) |
It proves convenient to introduce a Fourier transform be- B(aS(M)):,\,E:l (2)m B (28
tween transverse momentum spagg)(and impact param-
eter spacelf): % L
Cla(X,bp)=8(1-%)8ja+ 2, C}“;W,bm[ e ] ,
db N=1 (2)m
W% Q20114 = | G W QR ) 29
~db W.(X.0%b% i’ CH(2,bu)=8(1-2)6 +§) cM(z,b
= | 57Pdo(barWa(X,Q%,0b% ], "), arj (20p)=8(1=2) 8y e Cary (z,bp)
o =
(22) ag(p) |
X 2| (30

asW,(x,Q2,b%j,j’) will have a simple structurgl4]. Ef- o
fectively, we make use of the renormalization group equatiorf "€ normalization has been chosen such that each hard scat-
to sum the logarithms dd? and gauge invariance to sum the tering functionC equals a5 function at leading order.

logarithms ofgr~ 1/b. The Fourier transform also maps the _AS noted in Ref[14], in the limit Q—cs, all logarithms
g; singularities at the origin to the large behavior of may be counted as being equally large. Therefore, to evalu-

W,(%,Q2.b%].j'); we will take advantage of this when we ate the”cross section gt=0 to an appr?\‘xlTatlon of “de-
consider nonperturbative contributions. greeN,” one must evaluate to orderas ", B to order

adtt C"andC®'to orderal, and theB function to order
al"2. In particular, an extra order iA is necessary due to
the extra logarithmic factor in Eq24). For the present cal-
The structure function in impact parameter spaceculation, we evaluaté to ordera?, B to orderag, C" and

B. Sudakov form factor

W,(X,Q%,b%j,i’) has the factorized form C°to ordera’, and theB function to ordera?. This yields
the cross section to orderé for largeqr, to orderag for
WL(X,Q2,b%].i") smallgr, and the cross section integrated ogerto a..

C. Perturbative expansion of the Sudakov form factor

—_cin g 2~ ~out o —S(b)
Cja(x’b“)g j d2zCqrj (2.bu)e We can extract thé; andB; coefficients of the Sudakov
(23  factor by expandingv,(X,Q2,b%j,j") of Eq. (23) in as,
and comparing with the perturbative calculation of paper |I.
Here, we take a fixed momentum scalg in as(ug) as the
running of ag(x) contributes only to higher orders. We can
How compute the integral over? analytically to obtain

This form is from Refs[33] and[14] applied to the deep
inelastic scatteringDIS) process and generalized to include
vector bosons other than the photon. The last exponenti
factor is the Sudakov form factor

202d 2 C2Q2
2 stb)= [ S0 2 A+ Bla( )
_ [ckedn®] [CzQZ Ay 1))+ B(ag( ) ar s g
S(b)= Lglbz L | =S A w)) + Bl | ol L2
(24 = )7 A17+BlL . (32

The logarithm in the exponential is characteristic of thewhere

gauge theory. It arises from the soft gluon summation in

QCD at the low transverse momentuff<Q?Z. The arbitrary T

constant{C,,C,} reflect the freedom in the choice of renor- L=In Eib Q7. (32
malization scale. We chood4€,,C,} to be !

C,=2e 7, (25) 2Collins and Sopef14] (CS) expand in powers ofxs/7, and
Davies, Webber, and Stirlingl7] (DWS) expand in powers of
ag/(27). We carry the extra factor of 2 explicitly to facilitate com-

C,=1. (26)  parison between these references.
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We expand the Sudakov exponential out to ordér and perform the Bessel transformationvaf(x,Q?,b%;j,j")
[cf., Eqg. (23)] to obtain the partonic structure function in
e Sb~1_ S(b)+0(a§), (33) momentum space:

5a,j5(1—§() (;()Iu’)cln(l)( b )}2{ " ’+f 5d3 C:;()M) out(_l)( b )

X[1-S(b)+O(as)], (34

$ 2 N2.5 i =db
Wa(X!Q vqT;J7J ): OZbJO(qu)

where we have used the first-order expressmnsCfQ(rN)(x ub) and CH"™(z, ub).
Finally, we integrate to obtain th@(as) terms for finiteqy:

Q2 eeC, 2B,
<2>{ ( ) 2'”( zcz)] @

+terms proportional td(q%)] . (35

+ 5a ) Pq/q(x) + 5a qu/g( )

e oo, 1677
Wo(X,Q%,07;],]") = q—T 8,,0(1—X%)

Here, we have used the fact that the renormalization group equation tells us the fefffHi§k, ub) and Co"*)(Z, ub) must
be a splitting kernel times I¢gb], plus a function independent @f andb. Equivalently, for the hadronic structure function,

we find
, o, [167%ag 2A, Q2 eeC, 2B
W(X:Q :QT;LJ ): q—‘2|' f]/A( ) (2) | 2|n 2C2 (2) +f1/A®Pq/q+fg/A®Pq/g
+terms proportional to5(q$)}. (36)

We will compare the first-order expansions in Eg85) and -3
Eq. (36) with the asymptotic limit of the perturbative calcu- B1=(2)| 5 |Cr. (40)
lations of Sec. Il to extract the desired, and B; coeffi-

cients.
We find that the results foA; and B, obtained above are

identical to those found in Ref33] for Drell-Yan produc-

tion, as well as those found in RgfL5] for e e~ annihila-

tion. This apparent crossing symmetry has been demon-
In this section, we compare the summed form ofstrated at ordew’ by Trentadue and co-worke{88]. In

d>/dxd@Pdg2d¢ with the orderag form, and thus extract light of this result we shall make use of tihe coefficient

the coefficients that appear in the summed form. [38:

IV. COMPARING ASYMPTOTIC AND SUDAKOV
CONTRIBUTIONS

i 67 =* 10 C
A. Extraction of A and B A,=(4) s 27N s (33 2Nf)|n( _17E ]
Comparing the expansion of the Sudakov expresgian

(36)] with the asymptotic resultfEq. (21)], we obtain the
order a! coefficientsA; andB:

(42)

The extra order in théd; expansion will compensate the

A1=(2)Ck, 37) extra logarithmL which is not present for thB; terms.
B,=(2)2C¢ln %eyE(M)}_ (39) B. Expansion of C" and C°!
2

C" andC°“ terms are obtained by comparing the terms in
the perturbative expansion proportional &q;) with the
With our particular choice of the arbitrary constants expanded summed form. Since the virtual graphs yield con-
{C1,C5} in Eq. (26), we have tributions only proportional tas(qy), they will only enter

C" and C°“ The real graphs yielthoth zero and finiteq;
A;=(2)Cg, (390  terms; therefore, they will contribute to bo#y, B;, and the
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C" and C°“ coefficients. The calculation of the virtual
graphs has been performed by Mdi39], and we make use
of those results.

We have defined th€(X,ub) coefficients such that at
leading order they are

T (q;/0)

O (%, ub) = 8 8(1=%),

0.2 0.4 0.6

qr/Q

FIG. 8. The matching function7(q;/Q) vs (g7/Q) for
p={1,3,5,7,9. p=1 is the top curve, and=9 is the bottom curve.

CR"%(z,ub) = 8 5(1-2), 08 1

O G =CPGub)=0. @2

(Here,j andk denote quarks and antiquarks, apdienotes
gluons) At next to leading order, we find th@™)(x, ub)

match those calculated by CS for the Drell-Yan prod&&k I1(%,Q%,0%:).i)=T5"x,Q%0%:j.j")
\ +W(x,Q%a7:].]")

(D3 by s | 2 (1% lnl - —3
Cjk (Xvﬂb) 5]|(r 3(1 X)+Pq/q(X)|n(Mb)+5(1 X) _FisyﬂtX’QZ’q?r;j'j/)'

C.e

o T'e(x,Q%,0%:j,i") =T8"(x,Q%,0%:j.,i")
+(—1)W(x,Q%,0%:j,i")

—T2Mx,Q%,02:j,j").

X

3
] NS

—3/4 2
5%

- Cplnz(

v
?_

Ciat (X, ub)= %)”((1—)”()+Pj,g(§<)ln(L). (44) 47

ub
Here, TP°" and I'2Y™ are evaluated at orderl while W
contains a summation of perturbation theory. In the limit
ar—0, IR and 2™ will cancel each other, leaving/ as
we desire. In the limigr=Q, W and I'§>™ will cancel to

The Co1)(Z, ub) are simply those foe™e™ as given in
Ref.[15]:

CH"(z,ub) = 5jk[ 2(1-2)+ Pq,q(i)ln(Lb +8(1-2) leading order inag; however, the finite difference may not
H be negligible. To ensure that we recover the proper result
, e 72 29 (Fﬁe"_) for large g1, we define the total energy distribution
X| = Cgln ( o )‘*‘?—1—2”, (45 function (I') to be
N I1(x.Q%a7:].J") =T"(x,.Q%a%:j.")
Coi V(2. ub) = § 2+ Pg/k(iﬂn(ﬁ), (46)

+7

a7 S
5>{W(x,Q2,q$;1,J )
where we define\ =2e™ & to simplify the notation. Note asy g 2,
that C"™ and C°" are only a function of the rati€, /C,. -TI'P¥Mx,Q%a7:i,i ")}

C. Complete expression I'e(x,Q%,0%:j.i") =TB"(x,Q%a%;j.i")
Now that we have obtaine#l;, A,, andB;, we can sub-
stitute these into Eq(24) to obtain the complete Sudakov

contribution [including the full () dependence We

+7

%){(—1>W<X,Q2,q$;j,j'>

choose to perform the. integration analytically, as the —T3¥Mx,Q%,0%:j,i" )} (48
Bessel transform would be prohibitively CPU intensive if we
did not. To facilitate this computation we provide an integralyhere we introduce the arbitrary function
table in Appendix G including all the necessary terms. We
are now ready to combine the separate parts of the calcula- aqr 1
tion. — = —
° T( Q) 1+ (pqr/Q)" 49

V. MATCHING N _ _
The transition functiorZ{q;/Q) serves to switch smoothly

We now have computed the contributions to the energyfrom the matched formulas to the perturbative formula, and

distribution functions for the perturbatiigl®"in paper I, the
summedor Sudakoy W(x,Q?%,g2;j,j’) in Eq.(23), and the

p is an arbitrary parameter which determines the details of
the matching. Figure 8 displayfq+/Q) for a range ofp

asymptoticI'2¥™in Eq. (21). We can simply assemble these values. We will choose =5 which ensures thaf,=T}"

pieces to form the total structure functions via

for qr/Q=0.4, a conservative value.
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VI. NONPERTURBATIVE CONTRIBUTIONS

In analogy with Eq.(14) and Eq.(23), the Bessel trans-
form of the hadronic structure function is defined as

W(x,Q%,0%:,j") = f—ze"“ W(x,Q%,b%],j").

(50)
Whenb is small, we have
Wix,Q2b%] ] )—J TS fun(EmChibp)
><2 f dzCy) (zbu)e™S®.  (51)

The perturbative calculation of/(x,Q2,b%;j,j’) is not reli-
able forb=1/A. However, the integration ovérin Eq. (50)
runs to infinitely largeb?, and the regiorb=1/A is impor-
tant for values ofQ? and q% of practical interest. In order to
deal with the largeb? region, we follow the method intro-
duced in Refs[33,14]. We define a valud,,,, such that we
can consider perturbation theory to be reliablefgrb,,,,-
(In our numerical examples, we takebl,,=2 GeV) Then
we define a functio, of b such thab, ~b for smallb and
b, <bn. for all b:

b

b -
N T

We define a version oiv(x,Q2,b?;j, j’) for WhICh per-
turbation theory is always reliable bW(x Q2 ).
Note that for smallb the difference betweeldV(b ) and
W(b) is negligible becausk, ~b. Conversely, perturbation
theory is always applicable for the calculation (b, )
becausé, is small even wheib is large.

Next, we define a nonperturbative

exd —Syp(b)] as the ratio oW(b) andW(b, ):

(52

W(x,oz,b%j,j'>=\7v<x,Q2,bi;jJ')e‘S“P“'QZ’bZW( )
53
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54

Swe(x,Q%,b%],j ") =IN(Q?/Q3)g1(b) + ASyp(x,b%].] ’(>- )
56

(Here Qg is an arbitrary constant with dimensions of mass,
inserted to keep the argument of the logarithm dimension-
less) Furthermore, inV, thex andj dependence occurs in a
separate factor from th¢' dependence. Thus the second
term in Eq.(56) above can be simplified to

Sup(X,Q%b%,i ") =IN(Q%Q5)g1(b) +ga(x,b%])
+gs(b%]").

(Recall, we have integrated ove)

Perturbation theory is not applicable for the calculation of
the functionsg,(b), ga(x,b?j), and gg(b?j’) for large
b. For smallb, perturbation theory tells us only that these
functions approach 0 ds—0. This follows from Eq.(53)
and the fact thab, /b—1 whenb—0. (See Ref[14] for
further discussion.Since we learn little from perturbation
theory, we turn to nonperturbative sources of information.
Fortunately, the analogous functions éie~ annihilation
and in the Drell-Yan process have been fit using experimen-
tal results[33,17,24.

We therefore ask whether the functiong,(b),
ga(x,b%j), andgg(b?;j’) in deeply inelastic scattering are
related to the analogous functions in the other two processes.
Consider firstg,(b), the coefficient of InQZ/Qé). According
to the analysis of Ref.33], this function receives contribu-
tions from the two-jet subdiagrams in Figby. (In this fig-
ure, we use a spacelike axial vector gaudée soft gluon
connections in Fig. (b) affect ga(x,b?;j) and gg(b?;j"),
but do not contribute “double logarithms,” and thus do not
affectg,(b). Thus

91(b)=g7(b)=g7(b) +g3"(b),

whereg '(b) is associated with the incoming beam [tie
lower subdiagram in Fig. (B)] while g$“{b) is associated

(57)

(58)

function with the outgoing struck-quark j¢the upper subdiagram in

Fig. 7(b)]. In the Drell-Yan process, depicted in Fig(ay,
there are two incoming beam jets and one has

2Y(b)=2g7(b). (59)

Ultimately, we will have to use nonperturbative information In €"e” annihilation, depicted in Fig. (¢), there are two
to determineSyps(b). However, some important information outgoing quark jets and one has

is available to us. From Ed51), we see that

IIN[W(x,Q2,b2;j,i")]
9lnQ?

(54

is independent ok,j,j’ and Q2. This result is derived in

95%(b)=2g%"(b). (60)

Thus

91(b)=9%%(b)=(1/2g2¥(b) +(1/2g5%b). (61

perturbation theory, but at arbitrary order, and so we pret the followmg section, we show numerlcal results using
sume that it holds even beyond perturbation theory. Then Ref. [33] for g2(b) and Ref[17] for g Y(b)

ISyp(X,Q%,b%j,j")
JlnQ?

(55

is also independent of,j,j’,k, andQ?. That is,Syp has the
form

The situation forga(x,b?;j) and gB(bZ;j’) is not so
simple. Let us write

SNe(X,Q%,0%1,i")=In(Q¥Q{) gt (b) + 93" (Xa . b% )
+95(xg,b%j") (62)
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1 1
§ 08 D-Y = 08 FIG. 9. Comparison of the nonperturbative
& 06 g— 0.6 functione™SveP) ys b for the Drell-Yan(Davies,
3 04 -é 04 Webber, and Stirling[17]) (upper ling and
o 5 ete™ (Collins and Sopef33]) (lower ling), for
0% gt 02 Q=30 GeV [Fig. (@] and Q=100 GeV [Fig.
05 1 15 2 25 3 05 1 15 2 25 3 (0]
b (1/GeV) b (1/GeV)
for the Drell-Yan process and ds 29 ds, 29
_ _ _ = =2, Ay, ¢)
2 7 K
SSS(X,QZ,bZ,J,J/):|n(Q2/Q%)gfe(b)+g§e(b2,J) dXszqudd) k=1 dXdQquTd¢ k=1
+gzee(b2'1,) (63) X E E EO(Qz;Vl,VZ,j,j,,k)

V1.Vy i

for the energy-energy correlation functiongfie™ annihila- L

tion (cf. Fig. 9. One might like to assume thgi(x,b%;j) is XFK(X,QZ,q-%,j,] ): (65
the same function agj"(x,b%]) while gg(b%j’) is the
same function ags®(b?;j’). However, this may not be true , : X
because all of thezse functions get contributions from the so yperbolicD'(y, ¢) rotation matrices. The+sum Oy anq
gluon exchanges that link the two jets in Fig[répresented "2 runs over vector bpson tyeéy,Z} or {W=} as appropri-
by the functionU (b) in Ref.[33]]. Furthermore, the depen- at€- The sums ovef and j’ include all quark flavors
dence of the functiong2”(x,b%]) and gge(bz”-,) on the {u,u,d,d, ...}; for neutral currents, this sum is diagonal

T —! H 2. HE R H
flavorsj andj’ has not been determined from experimental(J =]'). The functlonEO(Q :V1,V2,],]",K) includes factors
data. What we know are flavor-averaged functions'o" ':che cou?cllnghof the electron tofthﬁ vector bo;onsﬂa; well
e as factors for the propagation of the vector bosdigee
95" (x,b?) andg$®(b?). Thus the best we can do is propose propagati v a

a model for the functions we need

where A (¢, ¢) are the nine angular functions arising from

Table |) The energy distribution function that we have com-
puted isT"(x, Q%7 :j.j").
. . o6 In the limit gt—0, thel’; andT"g will contain the domi-
2. 2.:1\ _+~DY 2 _ ee 2 T ’ 1 6
9a(X,b%]) +08(b% ") =gz " (x,b%) + (1= 1)g5(b%), ) nant singularities as their angular structure is proportional to
the Born process. We define

where 0<t<1, with g5%(b?) taken from Ref.[33] and

gZDY(x,bZ) taken from Ref[17]. We vary the parameter Fl(X’Qz’qi;J’]/):Fgen(x’Qz’q%J’J/)

between 0 and 1 to get an estimate of the uncertainty in- s

volved (cf. Fig. 10. +7 —){W(x,QZ,qi;j,j')
For comparison, we present the above parametrizations Q

for the nonperturbative contributions with the recent fit by —T3Mx,Q2%,02:j,i)},

Ladinsky and Yuarj26] for W production in Fig. 11. Lad-
insky and Yuan introduce an extra degree of freedom by 2 2. i) be 9 2. i)
allowing for a 7=x,xg dependence. We present the com- 16(X,Q%a7:j,j")=Ig x.Q%a1:i.i")

parison for a range of; this allows one to gauge the effects q

of different nonperturbative estimates, and correlate the +7 —T){(— 1)W(x,Q2,q$;j J")

Ladinsky-Yuan parametrization with that presented in Eq. Q

(56) and Eq(64) _ngyntx,QZ,q_IZ_;j,j r)}1 (66)
Vil. REPRISE where the matching functiof{q+/Q) [Eq. (49)] is provided

For the benefit of the reader, we review the principal step$0 ensure proper behavior gg— Q. I'R"represents the per-
in the calculation of the energy distribution. The energy dis-turbative results of paper | calculated at ordey', I'f™>™
tribution is given by represents the asymptotic limit gf—0) of TI'P*"

FIG. 10. Interpolation of the nonperturbative
function e Sve(®) ys b as a function of the pa-
rametef{t=0,1/4,1/2,3/4,} for Q=30 GeV([Fig.
()] and Q=100 GeV [Fig. (b)]. Note that the
variation ofe™ S\e(®) ast ranges ovef0,1] is nar-
rower than the full range between the Drell-Yan

05 1 15 2 25 3 " 05 1 15 2 25 3 ande®e” casedcf. Sec. V).
b (1/GeV) b (1/GeV)

Exp[-S(b)]
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FIG. 11. Comparison of the nonperturbative
function e~ Sve(® ys b for the case of Drell-Yan

§ § (Davies, Webber, and Stirling17]) (upper
Y & dashed ling e*e” (Collins and Soper[33])
%'_ 'é'_ (lower dashed ling andW production(Ladinsky
b} i and Yuan [26]) (five solid lines. (a) is for
‘ Q=10 GeV (left), and (b) is for Q=100 GeV

0 0E 115 2 25 3 15 (right). The fits toW production include an extra

b (1/GeV) b (1/GeV) parameterr=5s/s; we allow 7 to range over the
values 7={10"310"2751025102%,10°2%
wherer=10"2 is the upper curve ang=10"2 is

the lower curve inb space.
[Eg. (21)], and W(x,QZ,q$;j,j’) represents the summed a’=g,u,u,d,d, ..., andthere are perturbative coefficients

(Sudakoy term[Eqg. (23)] which is finite aggt— 0. Note that
the functionW(x,QZ,qi;j ,j") is the same for both'; and
I.
The form of the Sudakov structure function is particularly
simple in impact parameter space:

d2b eiqT-b\Tv(X Q2 bZJ J/)
(271_)2 i ’ 1) .

(67)
To ensure that the calculation is reliable for latyésmall
dt), we introduce

W<x,Q2,q%;j,j'>=f

g .., —~ . . _ 2 2 .y
W(X,Qz,bz;j,] ):W(X,Qz,bi,J.J )e Snp(X,Q%,b%3] 4] ),
(68)

whereb, €[0,0p,] for be[0].
The perturbative functioNV(x,Qz,bi;j ,j") is given by

- 1d o
W(Xszibi;j!jl):fx ;; fa/A(f,M)C}g(X,b*ﬂ)

out
a/j !

(2,b, w)e™ S0,

X f dz>, C
a/
(69)
whereX=x/£. For the incoming particles, there is an inte-
gration over a parton momentum fractigna sum over par-

ton typesa=g,u,u,d,d, ..., aparton distribution function
fua, and a set of perturbative coefficier@s'. For the out-

going partons, there is an integration over parton momentuqnu

fraction z, weighted by z, a sum over parton types

TABLE |. Boson-fermion couplings.

Fermions g,(y)  da(7) 9.,(2) 9a(2)
e” —-e 0 1-4sirféy 1
T acoBsinGy | Cacosiysindy
2
u,c,t e 0 . 1— %Sinzﬂw e 1 |
e—4cos9wsin6w Acosinby
d.s,b -3e 0 S 3sirtay, e 1 _
e4cosﬂwsin6\,\, 4coshsinty

C°U associated with the outgoing states. The heart of the
formula is the Sudakov factor ekpS(b, )], defined as:

| [CﬁQZ
n
uZ

The functionsA andB, as well asC™ andC°", have pertur-
bative expansions in powers ef. We choose the arbitrary
constantC,,C,} as in Eqs(25) and(26).

The nonperturbative contribution is parametrized in terms
of the fits toe*e~ and Drell-Yan dat415,33,17:

+195Y(x,b2) + (1—1)g5e(b?).
(72)

ca2dp?

b= |
S(b) 22 p

Alas(u))+Blas(n)) |
(70

2

|

92Y(b) +gS%(b)
oY

2

SNP(XyQZ,bZ?J- )= In[

The arbitrary parametere[0,1] interpolates between the
e"e” and Drell-Yan form.

VIIl. RESULTS

We present numerical results of the energy distribution
nction for representative values di,Q?} using the
CTEQ3 parton distributions10]. We present results only for
theI'; set of structure functions, as thg set has the iden-
tical gt— 0 structure(up to a sign. Recall that the structure
functions are given by

T'1(x,Q%,0%;),i ) =T%x,Q%03;j.j")

+7

%>{W(x,Q2,Q$;j,j’)

-IPMx,Q%0%:i.i)} (72

Making use of Eq.7), we have a parallel relation for the
energy distribution function:
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to d3; as a function ofg; for two choices of{x,Q?}.2 We

- %0 have included an extra factor gf to make the features of
% 20 Summed the plot more legible. As anticipated, we see that
d3Pe=d3 3™ as qr—0 leaving d3,=d35"". For large
g: 10 Pert dr, we findd2$"™-d25¥™=0, but this cancellation is not
Asym === - as precise as the above because the relation
0 = e ——— rsum_rasym=Q holds only to first order. Therefore, in the
10 20 30 40 50 following figures we shall include thé(q%/Qz) factor to
qr (GeV) ensure thadX{"™—d3 %M is smoothly turned off at large

gr. The fact thatd=3"™ and d3 %™ become negative for
FIG. 12. The contributions to the energy distribution function large g+ reminds us that these expressions were approxima-
g%dY, /(dxdQdgide) as a function ofqr, for Q=100GeV,  tions valid only forgr<Q.
x=0.3. (Recall thatdX, anddZ. are independent ab.) Perturba- Having examined the separate terms, we now turn our
tive (thin line), asymptotic(dashed ling and summedthick line).  gttention to the energy distribution functioiX ;. Again, we
Note how the perturl_natlve and asymptotic cancelq_as»o. For have included an extra factor qﬁ in Fig. 14 and Fig.
gr— Q, the asymptotic and summed cancel to leading order 0n|y15(a) to make the features of the plot more legible. In Fig
(A zero reference line is indicatedi3; is in units of GeV °, and . . - )
is multiolied by 18 for clarity of the plot. 14(b) and Fig. 1%b), we plotdX, in the smallgs region
p y y p . 2
(without an extrag; factor) to demonstrate that the summed

dS,(%,Q%02:),j")  d=P*(x,Q2,62:j.i") results approach a finite limit agr— 0. We present the re-
dxdPdg?d — dCPdcAd sults for three choices of the nonperturbative function
X qrdé X qrdé Snp(x,Q?,b%:j,j') as parametrized in Eq64). The choice

— ~ sponds to the Drell-Yan limitl7] andt=1/2 corresponds to
Q dxdQPdard¢ an even mix of the above. The difference due to the nonper-
dSaMx Q2.92:j.i’ turbative contribution is qune S|gn_|f|cant for !owT. The
-1 ™x.Q 2T L1 ,  (73) t=0 (e"e”) nonperturbative function, which is much nar-
dxdQdgrde rower inb space, yields a broader energy distribution; this is
where we use the “sum” superscript to denote the summe

learly evident in the figures as we see the peak move to
Sudakov contribution derived froV. We will examine

ower gt values as we shift from the=0 (e"e™) to t=1
both the individual terms as well as the total in the following.

T(qT)‘ dS5x,Q2,02:),j") t=0 corresponds to the*e™ limit [33], while t=1 corre-

(Drell-Yan). At largeqy, d% is independent of the nonper-
: _ 2 2. i1 turbative contributions, since it is dominated & 5"
\(/Zidggqgj:;) the - shorthandd,=d2,(x,Q%q7:1.1")/ Clearly, the HERA data should be able to distinguish be-
T tween this range of distributions, particularly in the small
gt regime where the span of the nonperturbative contribu-
tions is significan{11,41].
In Fig. 12 and Fig. 13, we show the separate contributions

A. gy distributions

IX. CONCLUSIONS

Measurement of the distribution of hadronic energy in the
final state in deeply inelastic electron scattering at HERA can
provide a good test of our understanding of perturbative

o5 QCD. Furthermore, we can probe nonperturbative physics
because the the energy distribution functions are sensitive to
20 the nonperturbative Sudakov form fac®yp(b) in the small
% 15 Summed gy region.
o 10 We have evaluated the energy distribution function for
o 5 e Pert finite transverse momentuip; at orderag in paper |. Be-
Asynr~ cause the distribution is weighted by the final state hadron
N —— energy, this physical observable is infrared safe, and inde-
5 10 15 20 5 pendent of the decay di'str'ibut_ion functions. In this paper, we
q; (GeV) sum the soft gluon radiation into a Sudakov form factor to

evaluate the energy distribution function in the smafl

FIG. 13. The contributions to the energy distribution function limit. By matchlng_ the small and larggy regions, we obtain .
q2d3, /(dxdPd2de) as a function ofgy, for Q=30 GeV, a complet_e d_e_scrlptlon throughout_the kinematic range. This
x=0.1. (Recall thatd3 ; andd3., are independent ab.) Perturba- result is significant phenomenologically as a the_ bulk of the
tive (thin line), asymptotic(dashed ling and summedthick line). ~ €VeNts occur at smatly values, where perturbation theory
Note how the perturbative and asymptotic cancelqas>0. For
gr— Q, the asymptotic and summed cancel to leading order only.

(A zero reference line is indicatedi2; is in units of GeV °, and 3In the smallgy region, d3; and dXg are independent ot;
is multiplied by 16 for clarity of the plot. therefore, we need not specify it.
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- =0 (ete)
g 125 t=1/2  (Mix) 3
10 t=1 (DY) -

t=0 (ete”)
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FIG. 14. The total contribution to the energy distribution funclﬂﬁﬂ(dxd(qu%d@ as a function ofy; for different choices of the
nonperturbative functior§yp(b) for Q=100 GeV,x=0.3.(a) has an extra factor aﬁ to make the plot more legibléb) demonstrates that
the summed contribution has a finite limit gg— 0. We vary thet parameter fromi=1 (thick line) corresponding to the Drell-Yan case,
to t=1/2 (dashed lingcorresponding to the mixed case tte0 (thin line) corresponding to the* e~ case. Fog— Q, we use the function
T(0+/Q) with p=5 to smoothly switch between large and snegil. d3 4 is in units of GeV ®, and is multiplied by 1 for clarity of the
plot.

by itself is divergent. This technique can provide an incisiveNext, we give the expression for the Born scattering angle
tool for the study of deeply inelastic scattering. Additionally, 6, :
crossing relations allow us to relate the nonperturbative con-

tribution in deeply inelastic scattering energy distributions to Oy | 2XEa Q%=
analogous quantities in the Drell-Yan aade™ annihilation co 2/ Q " Xs (A3)
processes.
The corresponding azimuthal angle is trivial and can be
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APPENDIX A: KINEMATIC RELATIONS Q 2 05
. . . . - — - A
We present some basic kinematic relations to facilitate the <2xEA CO[( 2 ] (A5)
calculation. First we give the expressions to re{dié, 6’} to
21 -
Q% APPENDIX B: ENERGY DISTRIBUTION FORMULAS
Q*=-q-q=2EE'(1-co¥’), (A1) We now give some explicit formulas for computation of
) , , the structure functions and energy distribution contributions.
Q EE'(1—-cos’) The process we consider is the hadronic process

X (A2)

- 29-Pa - EA[2E—E’(1+cos9’)]’ e +A—e” +B+X, and the fundamental formula for com-

t=0 (e*e”)

5

10 15 20 25 1 2 3 4 5
qr (GeV) qr (GeV)

FIG. 15. The total contribution to the energy distribution funcM/(dxdddq$d¢) as a function ofyy, for different choices of the
nonperturbative functioSys(b) for Q=30 GeV,x=0.1.(a) has an extra factor af? to make the plot more legibléb) demonstrates that
the summed contribution has a finite limit ag— 0. We vary thet parameter fromt=1 (thick line) corresponding to the Drell-Yan case,
to t=1/2 (dashed lingcorresponding to the mixed casette0 (thin line) corresponding to the*e™ case. Fogr— Q, we use the function
(g7 /Q) with p=5 to smoothly switch between large and snegll. d3; is in units of GeV °, and is multiplied by 1®for clarity of the
plot.
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putation of the structure functions and energy distribution g;=0.15 GeV, (C2)
contributions is
@S 9 g,=0.40 GeV, (C3)
T = 2 Al d)
dxd@dgide &1 -
T brmax=(2 GeV) . (C4)
X 2 E EO(QZ;Vl,VZ,j,j,,k)
Vi.Va i’ APPENDIX D: COLLINS-SOPER PARAMETRIZATION
XTe(x,Q%,0%:j.i"), (B1) The form of the nonperturbative function used by Collins

and Soper to introduce the transverse momentum smearing
in thee®e™ process is

SNp(b):A[ 4A, “S;“ ) |n[C2Qbmax} |n<b3) ]

with
2O(QZ;V11V21j vj’vk)

Q°  GU(V1V2iiii" )GV, V) Cy
= 56732 T2 2 2 . (B2
2°m°s’Ea (Q°+MP)(Q?+MY) Q?
+Af1(b)|n(—2 +Af,(b), (DY)
Aw(, @) represents the nine angular functions arising from Qo
the hyperbolic'D (i, ¢) rotation matricesG(Vy,Vs;j,j") _
and G((vl,vz) are the combinations of couplings from the With
leptonic and hadronic tensors, respectively, as defined in pa-
per I. (Q%*+ M\Z,i) arise from the boson propagators, and Afy(b)=Ab+A 0%
Fk(x,QZ,q$ ;],j") are the hadronic energy distribution func-
tion. We sum over the intermediate vector bosons Afy(b)=Ayb+A,0% (D2)
V1, Vol ={,2°% or {W~}, as appropriate, and the parton
specied]j,j’}: While the functional form allowed here is quite general, in
_ practice, it was possible to obtain a good fit to the data using
Ar(,¢)=(+ D)1+ cosk(y)], only the A and A,, parameters. Specifically,
A dp)=(=2),
A=1.33,
As(¢h,¢)=(—1)coq ¢) sinh(2¢),
A21: 15,

Ag(ih,¢p)=(+1)cog2¢)sintF (),
As(,¢)=(+2)sin(¢) sinh(¢), A=A;,=A=0. (D3)
As(,¢p)=(+2)cosi ),
A7 (¢, ¢)=(—2)cog @) sinh(¢),
Ag(¢,¢) = (= 1)sin($)sinh(2¢),
Ag(h, )= (+1)sin(2¢)sintP ().

Note, for instance, the analogy between the angular coef- u=Cy/b, ,
ficient A4; =1+ costf(y), which appears in the orde@ en-
ergy distribution, and the corresponding coefficient in the
case of the Drell-Yan energy correlation to(6) [37].

Additional parameters and relations necessary are
Bmax= (2 Ge\/)‘l,

Qu=27 GeV,

APPENDIX C: DAVIES-WEBBER-STIRLING APPENDIX E: LADINSKY-YUAN PARAMETRIZATION

PARAMETRIZATION . .
The form of the nonperturbative Sudakov function

The form of the nonperturbative Sudakov function Syp(b) used by Ladinsky and Yuan to introduce the trans-
Sye(b), used by Davies, Webber, and Stirling to introduceverse momentum smearing in the Drell-Yan process is
the transverse momentum smearing in the Drell-Yan process
is

Snp(b)=|g;b?+ g1g3bln[1001-]+g2b2|n(%>
0

Sup(b)=b? (Cy (ED)

Bm
01+ 92'“( ZXQ”

with with
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9;=0.11 GeV, limit B8,—0. It will be convenient to define the quantities
9,=0.58 Ge, ] e
L= pzaz)
g;=—1.5 GeV 1,
2
Q,=1.60 GeV, Lo=In Wng}ELl_LSu (G
Pmax= (2 GeV)‘l. (E2) C2Q2
Lz=In % .
APPENDIX F: a@g AT ONE-LOOP AND TWO-LOOP

To properly compute th@? integral in the Sudakov form ~ First, theA; term with the two-loop expression far;,
factor, it will be necessary to use the complete result for the

2 22 .
running coupling at both one and two loops. The two-loop CngdL CoQ7 as(p;2)
result foraq is 22 p uw? | 27 1
A 4mBoIn[In(u?/A?)] 4A, al\ 4A18.[ L, Lgin[Ly]
ag(u?)= - . (F1 =——|LytLsn—| |+ =Tzt —— ——
AT O R P G R DT e Ty APy R Wi
where In[Lg]?—In[L{]?
+In[L3]+—[ . 5 LLs] ] (G2
 (1INg—2Np)  (33-2Ny) 2
r 3 3 The B, term with the two-loop expression fars,
38N, c202du? ay(u;2) 4B, [Ls 43,8,
BZZ ( 102_ _) . (F3) f 22 2—2 s 1= n| — ——m——
3 w2 po (2)m (2)B1 |L1] (2)BiLiLs
The one-loop result is simply obtained by takifg— 0. X(Li—Lz+L4In[L3]
APPENDIX G: INTEGRAL TABLE ~Laln[Ly]). G3

For simplicity and completeness, we list the integrals weThe Az term with the one-loop expression fex,
shall encounter in the Sudakov form factor at the one- and 2 a2
two-loop level. We consider the logarithmic term&; and fczdei<M) A :LA?( —L,—L4n Ls
the constant termsB(;) using the two-loop expression for cib? pw?\ (2w 2 2 UL

(4)BiL, )

ag; the one-loop expressions are easily recovered in the (G4
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