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Measurement of the distribution of hadronic energy in the final state in deeply inelastic electron scatteri
DESY HERA can provide a good test of our understanding of perturbative QCD. For this purpose, we con
the energy distribution function, which can be computed without needing final state parton fragment
functions. We compute this distribution function for finite transverse momentumqT at orderas , and use the
results to sum the perturbation series to obtain a result valid for both large and small values of trans
momentum.@S0556-2821~96!06015-8#

PACS number~s!: 12.38.Lg, 11.15.Bt. 11.15.Tk
I. INTRODUCTION

This paper concerns the energy distribution in the fin
state of deeply inelastic lepton scattering. Using a naive p
ton model, one would predict that the scattered parton a
pears as a single narrow jet at a certain angle (u* ,f* ) in the
detector. Taking hard QCD interactions into account, on
predicts a much richer structure for the final state ener
distribution. In a previous paper@1# ~henceforth referred to as
I!, we investigated this structure, using an energy distributi
function defined in analogy to the energy-energy correlatio
function in e1e2 annihilation@2,3#. We studied this energy
distribution as a function of the angle (uB ,fB) in the detec-
tor in the region not too near to the direction (u* ,f* ). In
this region, simple QCD perturbation theory is applicabl
and we presented calculations at orderas . In this paper, we
extend the analysis to the region of (uB ,fB) near to
(u* ,f* ) . Here, multiple soft gluon radiation is important
Thus we use a summation of perturbation theory.

A. Energy distribution function

There is extensive literature on semi-inclusive deeply i
elastic scattering@4–10#; a brief history and complete set of
references can be found in paper I. We begin here with
concise review of how the energy distribution function i
defined, and then discuss how we sum the contributions t
are important in the region (uB ,fB).(u* ,f* ) to obtain a
result which is valid for all values of (uB ,fB).

The reaction that we study ise1A→e1B1X at the
DESY electron-proton collider HERA@11#. Let us describe
the particles by their energies and angles in the HERA lab
ratory frame, with the positivez axis chosen in the direction
of the proton beam and the negativez axis in the direction of
the electron beam. In completely inclusive deeply inelast
scattering, one measures onlyE8 and u8, the energy and
angle of the scattered electron. In the semi-inclusive ca
studied in this paper, one also measures some basic feat
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of the hadronic final state. In principle, one can measure the
energyEB and the angles (uB ,fB) of the outgoing hadron
B. However, it is much simpler to perform a purely calori-
metric measurement, in which only the total energy coming
into a calorimeter cell at angles (uB ,fB) is measured. This
calorimetric measurement gives the energy distribution

dS

dE8dcosu8dcosuBdfB
5(

B
E dEB~12cosuB!EB

3
ds~e1A→B1X!

dE8dcosu8dEBdcosuBdfB
.

~1!

The sum runs over all species of produced hadronsB. We
have included a factor (12cosuB) in the definition because
this factor is part of the Lorentz invariant dot product
PA,mPB

m5EAEB(12cosuB).
Notice thatdS measures the distribution of energy in the

final state as a function of angle without asking how that
energy is split into individual hadrons moving in the same
direction@12#. For this reason, the theoretical expression for
dS will not involve parton decay functions that describe how
partons decay into hadrons.

B. Partonic variables and their relation to the HERA
laboratory frame

At the Born level, the hard scattering process for the re-
action is electron1quark→electron1quark by means of a
virtual photon orZ0 exchange. At orderas , one can have
virtual corrections to the Born graph. In addition, one can
have processes in which there are two scattered partons in
the final state. Then the initial parton can be either a quark
~or antiquark! or a gluon, while the observed hadron can
come from the decay of either of the final state partons.
Some of these possibilities are illustrated in Figs. 1–3.
1919 © 1996 The American Physical Society
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Let us consider the effect of the emission of the ad
tional, unobserved, ‘‘bremsstrahlung’’ parton. We can defi
the part of the vector boson momentumqm that is transverse
to the momentum of the incoming hadronPA

m and to the
momentum of the outgoing hadronPB

m . One merely subtracts
from qm its projections along PA

m and PB
m ~taking

PA
25PB

250):

qT
m5qm2

q•PB

PA•PB
PA

m2
q•PA

PA•PB
PB

m . ~2!

We let qT5@2qT
m
•qTm#1/2 represent the magnitude of th

transverse momentum. It isqT that is analogous to the trans
verse momentum of producedW’s andZ’s or lepton pairs in
the Drell-Yan process. In the naive parton model, there
no bremsstrahlung partons and all parton momenta are
actly collinear with the corresponding hadron momenta;
one hasqT50. At order as , unobserved parton emissio
allowsqT to be nonzero.

In order to properly describe the parton kinematics
need four more variables besidesqT . Two are the standard
variables for deeply inelastic scattering,Q252qmqm and
x5Q2/(2q•PA). The third is a momentum fraction for th
outgoing hadronB:

FIG. 2. Feynman diagrams for a quark-initiated process wit
gluon jet observed. The observed parton is the lower line, indica
with a dot.

FIG. 1. Feynman diagrams for a quark-initiated process wit
quark jet observed. The observed parton is the upper line, indic
with a dot.
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z5
PB•PA

q•PA
. ~3!

@Thus the integration over the energy of hadronB in defini-
tion ~1! of the energy distribution is equivalent to an integra-
tion overz.# The fourth variable is an azimuthal anglef. To
definef, we choose a frame, called the hadron frame, Fig. 4
in which the incoming hadronA has its three-momentum
PA along the positivez axis and the virtual photon four-
momentumqm lies along the negativez axis. Then, as long
asqTÞ0, hadronB has some transverse momentum, and w
align thex and y axes so thatPB

x.0 andPB
y50. We now

definef as the azimuthal angle of the incoming lepton in the
hadron frame. These variables are described more fully i
paper I, and relevant formulas are given in the Appendix o
this paper.

The variablesqT andf can be translated to the observ-
ables of the HERA laboratory frame, Fig. 5. In the naive
parton model, the outgoing hadronB ~along with all the
other hadrons arising from the decay of the struck quark!
emerges in the plane defined by the incoming and outgoin
electrons at a precisely defined angle (u* ,f* ), which can be
computed from the incoming particle momenta and the mo
mentum of the scattered electron. The pointqT50 corre-
sponds to (uB ,fB)5(u* ,f* ). We choose ourx axis such
thatf*50. Lines of constant positiveqT are curves in the
(uB ,fB) plane that encircle the point (u* ,f* ). Lines of
constantf radiate out of the point (u* ,f* ), crossing the

h a
ted

FIG. 3. Feynman diagrams for a gluon-initiated process with a
quark jet observed. The observed parton is the upper line, indicate
with a dot.

FIG. 4. The hadron frame. The initial hadronPA lies along the
positive z axis, and the vector bosonq lies along the negativez
axis. The next-to-leading order QCD corrections can give the fina
state hadronPB a nonzerox component.
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FIG. 5. The HERA laboratory frame for the
process e2(l )1A(PA)→e2(l 8)1B(PB)1X.
The final state leptione2(l 8) lies in the x-z
plane, and the final state hadronB(PB) has a
nonzeroy component iffB is nonzero.
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lines of constantqT . This is illustrated in Fig. 6. The precise
formulas for the map relating (uB ,fB) and (qT ,f) are given
in Appendix A.

In paper I and in this paper, we find it convenient t
convert from the laboratory frame variables$E8,u8% of the
scattered lepton and$uB ,fB% of the observed hadron to
$x,Q2% for the lepton and$qT ,f% for the observed hadron.
We also convert fromEB to z. With this change of variables,
Eq. ~1! becomes

dS

dxdQ2dqT
2df

5(
B

E dzzS Q2

2xEA
D ds

dxdQ2dqT
2dfdz

.

~4!

C. Sudakov summation of logarithms ofqT

The main object of study in this paper is the distributio
of energy as a function ofqT for qT

2!Q2. In paper I, we
applied straightforward perturbation theory to analyze th
energy distribution in the regionqT

2;Q2, and as(Q
2)!1.

Here there is a rich structure as a function of the angles th
relate the hadron momenta to the lepton momenta. In fact
complete description requires nine structure functions.

When one examines the regionqT
2!Q2, one finds that the

angular structure simplifies greatly. However, the depe
dence onqT becomes richer than the dependence onqT of
the lowest-order graphs. By summing the most importa
parts of graphs at arbitrarily high order, one finds a structu
that is sensitive to the fact that QCD is a gauge theory.

Briefly, the physical picture@13# is as follows. At the
Born level of deeply inelastic scattering, a quark in the in
coming proton enters the scattering with momentumjPA

m

that is precisely along the beam axis. This quark is scatter

FIG. 6. Contours infB and cos(uB) for Q530 GeV and
x50.02. The circular rings are contours of constantqT in steps of 3
GeV, and the radial arcs are contours of constantf in steps of
p/8.
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by a virtual photon, Z or W boson. Its momentum
jPA

m1qm is in a direction (u* ,f* ) that can be reconstructed
by knowing the lepton momenta. However, at higher orders
of perturbation theory, the momentum of the final state par
ton is

~jPA
m1qm!2~k1

m1k2
m1•••1kN

m!, ~5!

where theki
m are momenta of gluons that are emitted in the

process. In a renormalizable field theory, it is very easy to
emit gluons that are nearly collinear to either the initial or
final parton directions. In addition, in a gauge theory such a
QCD, it is very easy to emit gluons that are soft (km!Q).
Each gluon emission displacesqT by a small amount, so that
one may think of the parton as undergoing a random walk in
the space of transverse momenta. With one gluon emissio
one finds a cross section that is singular asqT→0:

ds

dqT
2 }as

a1bln~qT
2/Q2!

qT
2 . ~6!

At order as
N the 1/qT

2 singularity is multiplied by a polyno-
mial in ln(qT

2/Q2) of order 2N21. This series sums to a func-
tion of qT that is peaked atqT50 but is not singular there.
The width of this distribution is much larger than the
300 MeV that one would guess based on experience wit
soft hadronic physics. On the other hand, the width is quite
small compared to the hard momentum scaleQ.

Essentially this same physics has been studied in the tw
crossed versions of the processe1A→e1B1X that can be
studied at HERA. In electron-positron annihilation,
e1ē→A1B1X, one looks at the energy-energy correlation
function for hadronsA andB nearly back to back@14–16#.
In A1B→l 1 l̄ 1X, one studies the distribution of the lep-
ton pair as a function of its transverse momentumqT with
respect to the beam axis@14,17–22#. The same analysis ap-
plies also to the distribution of the transverse momentum o
W or Z bosons produced in hadron colliders@23–26#.

Dokshitser, D’Yakonov, and Troian@27# were the first to
sum contributions from multiple soft gluon emissons in the
three processes mentioned above. At each order of perturb
tion theory, they calculated the contribution with the most
powers of ln(qT

2/Q2). Parisi and Petronzio@13# improved this
soft gluon summation by introducing a Fourier transform to
transverse position space. Curchi, Greco, and Srivastava@28#
obtained similar results using the Fourier transform in a co
herent state formalism. These ideas were extended for jets b
Rakow and Webber@29#, for the Drell-Yan process by Chi-
appetta @30#, and for the Drell-Yan process and energy-
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energy correlations ine1e2 annihilation by Ellis, Fleishon,
and Stirling @31#. Bassetto, Ciafaloni, and Marchesini@32#
examined the effect of soft gluon summation and angula
ordering on the jet distributions.

From these studies, the following picture emerges. Firs
the leading logarithms (n52N21) can be summed to all
orders, and dominate the perturbation theory in the regio
as(Q

2)!1 andas(Q
2)ln2(Q2/qT

2)&1. Unfortunately, most of
the interesting physics, and most of the data, lies outside th
region of validity of the leading logarithm approximation.
Fortunately, one can go beyond the leading logarithm sum
mation to obtain a result that is valid even when
as(Q

2)ln2(Q2/qT
2) is large. This was first developed by Col-

lins and Soper@33# and then Collins, Soper, and Sterman
@14#, and applied to the case of theW transverse momentum
distribution by Arnold and Kauffman@25# and by Ladinsky
and Yuan@26#.

Recent work has investigated new prescriptions of dealin
with the Landau singularity present in the Sudakov form
factor. Contopanagos and Sterman@34# have introduced a
principle value prescription, and this has been applied to th
top quark production process by Laenen, Smith, and va
Neerven@35# and by Berger and Contopanagos@36#.

The plan for the remainder of the paper is as follows. In
Sec. II, we use ouras calculation in paper I to calculate the
asymptotic form of the energy distribution functions in the
qT→0 limit. In Sec. III, we introduce the Sudakov form
factor which sums the soft gluon radiation in the limit
qT→0. In Sec. IV, we compare the asymptotic form of the
energy distribution functions to extract the orderas contri-
butions to the perturbative coefficientsA, B, Cin, andCout. In
Sec. V, we address the issue of matching the smallqT region
to the largeqT region. In Sec. VI we investigate the form of
the nonperturbative corrections in the smallqT region, and
relate these to the Drell-Yan ande1e2 processes. In Sec.
VII, we review the principal steps in the calculation. In Sec.
VIII, we present results for the energy distribution functions
throughout the fullqT range. Conclusions are presented in
Sec. IX, and the Appendixes contain a set of relevant formu
las.

II. ENERGY DISTRIBUTION FUNCTIONS

In this section we review the orderas perturbative results
of paper I in order to extract the terms in
dS/dxdQ2dqT

2df that behave like 1/qT
2 times logarithms as

qT→0. In Sec. III, we display the structure of
dS/dxdQ2dqT

2df with the Sudakov summation of loga-
rithms. Then, in Sec. V, by comparing the summed form
with the orderas form of dS/dxdQ2dqT

2df, we will be able
to extract the coefficients that appear in the summed form.

A. Energy distribution formulas

The process we consider ise21A→e21B1X, and the
fundamental formula for the energy distribution is
r

t,

n

is

-

g

e
n

-

dS

dxdQ2dqT
2df

5 (
k51

9

Ak~c,f! (
V1 ,V2

(
j , j 8

S0~Q
2;V1 ,V2 , j , j 8,k!

3Gk~x,Q
2,qT

2 ; j , j 8!. ~7!

The hyperbolic boost anglec that connects the natural had-
ron and lepton frame is given by@37#

coshc5
2xs

Q2 21, ~8!

andf is the azimuthal angle in the hadron frame. The nine
angular functionsAk(c,f) arise from hyperbolicD1(c,f)
rotation matrices. The complete set ofAk(c,f) is listed in
Appendix B, but the two we shall focus on are

A1~c,f!511cosh2~c!,

A6~c,f!52cosh~c!. ~9!

We sum over the intermediate vector bosons
$V1 ,V2%5$g,Z0% or $W6%, as appropriate, and we also sum
over the initial and final partons$ j , j 8%. The factor
S0(Q

2;V1 ,V2 , j , j 8,k) contains the leptonic and partonic
couplings, the boson propagators, and numerical factors; it is
defined in Appendix B, Eq.~B2!. It is the hadronic energy
distribution functionsGk(x,Q

2,qT
2 ; j , j 8) that we shall calcu-

late.
If we expand theGk in the form of perturbative coeffi-

cients convoluted with parton distribution functions, then
two of the functionsGk , namely,G1 and G6, behave like
lnn(qT

2/Q2)/qT
2 with n>0 for qT→0. The others behave like

1/qT or 1 times possible logarithms. In this paper we are
interested in smallqT behavior, and so we concentrate our
attention onG1 andG6.

What of the less singular structure functionsG2, G3, G4,
G5, G7, G8, andG9? Fixed order perturbation theory is not
applicable for the calculation of theseGk for small qT . We
note, on the grounds of analyticity, that theseGk must be
finite or, for certaink, vanish asqT→0, even though they
have weak singularities in finite order perturbation theory.
Our perturbative results in the region of moderateqT indicate
that the fraction ofdS/dxdQ2dqT

2df contributed by these
Gk is small and dropping asqT decreases. We thus conclude
that these contributions would be hard to detect experimen
tally for small qT . For this reason, we do not address the
problem of summing perturbation theory forG2, G3, G4,
G5, G7, G8, andG9.

Applying the methods of Refs.@33,14# to deeply inelastic
scattering, we writeG1 in the form

G1~x,Q
2,qT

2 ; j , j 8!5G1
pert~x,Q2,qT

2 ; j , j 8!

2G1
asym~x,Q2,qT

2 ; j , j 8!

1W~x,Q2,qT
2 ; j , j 8!. ~10!
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FIG. 7. Dominant integration regions leading to the nonperturbative contributions to~a! Drell-Yan, ~b! DIS, and~c! e1e2. These three
processes are related via a crossing symmetry.JA and JB represent the jet subgraphs associated with the collinear partons from ha
A(PA) andB(PB), respectively.S represents the subgraph of soft gluons and quarks which are connected to the rest of the process
gluons~but not soft quarks!. The double logarithms arise fromJA andJB .
ic
HereW(x,Q2,qT
2 ; j , j 8) sums the singular terms to all orde

and contains the leading behavior ofG1 as qT→0.
G1
pert(x,Q2,qT

2 ; j , j 8) is simply G1(x,Q
2,qT

2 ; j , j 8) evaluated
at a finite order (as

1 for our purpose! in perturbation theory.
G1
asym(x,Q2,qT

2 ; j , j 8) equalsW(x,Q2,qT
2 ; j , j 8) truncated at a

finite order ofas in perturbation theory. Specifically, if we
expandW(x,Q2,qT

2 ; j , j 8) in the form of perturbative coeffi-
cients convoluted with parton distribution functions, then t
coefficients have the form of lnn(qT

2/Q2)/qT
2 with n>0. There

are, by definition, no terms that behave like (qT
2/Q2)p times

possible logarithms forp.21. Such terms exist inG1, but
they are associated with (G1

pert2G1
asym) in Eq. ~10!.

The angular functionA1(c,f)511cosh2(c) that multi-
pliesW in the smallqT limit arises from the numerator facto

Tr$ l”gml”8gn%Tr$P” AgmP” Bgn%. ~11!

Here Tr$ l”gml”8gn% is associated with the lepton scatterin
and the factorP” A•••P” B gives the Dirac structure of the had
ronic part of the cut diagram in Fig. 7~b! in the limit
qT→0. We will discuss Fig. 7 further in Sec. VI.

The weak currents also containg5g
m terms. This gives

the possibility of another angular function in the smallqT
limit. With the same limiting hadronic structure,P” A•••P” B
we can have

Tr$ l”g5gml”8gn%Tr$P” Ag5g
mP” Bgn%, ~12!

which is proportional to the angular functio
A6(c,f)52cosh(c) at qT50. @Note that bothA1(c,f)
and A6(c,f) are independent of the azimuthal anglef.#
ThusG6 has the structure
rs

he

r

g,
-

n

G6~x,Q
2,qT

2 ; j , j 8!5G6
pert~x,Q2,qT

2 ; j , j 8!

2G6
asym~x,Q2,qT

2 ; j , j 8!

1~21!W~x,Q2,qT
2 ; j , j 8!, ~13!

with the same function1 W as in Eq.~10!. AgainW contains
the terms that behave like lnn(qT

2/Q2)/qT
2 in perturbation

theory, while (G6
pert2G6

asym) contain the less singular terms.
Our object now will be to study the smallqT functionW.

B. Parton level distributions

The above hadronic process takes place via the parton
subprocessV(q)1a(ka)→b(kb)1X whereV is an interme-
diate vector boson, anda andb denote parton species. The
hadron structure functionW(x,Q2,qT

2 ; j , j 8) is related to a
perturbatively calculable parton level structure function
wa( x̂,Q

2,qT
2 ; j , j 8) via

W~x,Q2,qT
2 ; j , j 8!5 f a/A^wa

5E
x

1dj

j (
a

f a/A~j,m!wa~ x̂,Q
2,qT

2 ; j , j 8!,

~14!

1The minus sign in front ofW(x,Q2,qT
2 ; j , j 8) in Eq. ~13! arises

from our convention for the functionsAk(c,f) and couplings
S0(Q

2;V1 ,V2 , j , j 8,k) that multiplyG1 andG6.
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with ja5ka
1/PA

1 and x̂5x/ja . Here f a/A is the modified
minimal subtraction scheme (MS! parton distribution func-
tion. Note that the decay distribution functiondB/b(jb ,m) is
absent since we have used the extra*zdzand the sum over
hadrons from the definition of the energy distribution to in
tegrate out thedB/b(jb ,m) via the momentum sum rule:

(
B

E djbjbdB/b~jb ,m!51. ~15!

The partonic structure functionwa( x̂,Q
2,qT

2 ; j , j 8) is ob-
tained by first computing the partonic tensor
-

wmn~ka ,kb ,q!5 1
2 (
X,s,s8

E d4xe2 iq•x^ka ,su j n~0!ukb ,s8;X&

3^kb ,s8;Xu j m~0!uka ,s&, ~16!

which is a matrix element of current operators. We the
project out the appropriate angular component~cf. paper I!
and extract the leading term in theqT→0 limit. Explicit
calculation will show that these limits~up to overall factors!
are identical for the projection of the 1 and 6 tensors. In th
smallqT limit, the energy distribution function is then given
by
otic

for
dS

dxdQ2dqT
2df

.A1~c,f! (
V1 ,V2

(
j , j 8

S0~Q
2;V1 ,V2 , j , j 8,1!(

a
f a/A~j,m! ^wa~ x̂,Q

2,qT
2 ; j , j 8!

2A6~c,f! (
V1 ,V2

(
j , j 8

S0~Q
2;V1 ,V2 , j , j 8,6!(

a
f a/A~j,m! ^wa~ x̂,Q

2,qT
2 ; j , j 8!

1plus terms less singular than 1/qT
2 . ~17!

Again, the relative minus sign is simply due to the definition ofAk(c,f) andS0(Q
2;V1 ,V2 , j , j 8,k).

C. Asymptotic energy distribution functions

We observe~from the results of paper I! that the perturbativeG1
pert(x,Q2,qT

2 ; j , j 8) and G6
pert(x,Q2,qT

2 ; j , j 8) diverge as
1/qT

2 for qT→0. To identify the singular terms, we can expand the on-shelld function for smallqT using

2pd@~qm1ka
m2kb

m!2#5
2p x̂

Q2 H lnSQ2

qT
2 D d~12 x̂!d~12 ẑ!1

d~12 ẑ!

~12 x̂!1

1
d~12 x̂!

~12 ẑ!1
J , ~18!

where the ‘‘1 ’’-prescriptions is defined as usual by

E
z

1

dy
G~y!

~12y!1
5G~1!ln~12z!1E

z

1

dy
@G~y!2G~1!#

~12y!
. ~19!

Taking theqT→0 limit for the results of paper I, we find the partonic energy distribution to be

wa
asym~ x̂,Q2,qT

2 ; j , j 8!5F16p2as

qT
2 G H da, jd~12 x̂!CFF2lnS Q2

qT
2 D 23G1da, jCFF11 x̂2

12 x̂ G
1

1da,gF x̂21~12 x̂!2

2 G J , ~20!

where we useda, j andda,g for the quark and gluon contributions, respectively. For convenience, we denote the asympt
limit qT→0 of wa by wa

asym

In this limit, we can greatly simplify this expression by identifying the QCD splitting functions. We present the result
the hadronic structure function convoluted with the parton distributions@cf., Eq. ~14!#:

Gasym~x,Q2,qT
2 ; j , j 8!5F16p2as

qT
2 G H f j /A~x!CFF2lnSQ2

qT
2 D 23G1 f j /A^Pq/q1 f g/A^Pq/gJ , ~21!
where^ represents a convolution inx̂. In the simple form
above, it is easy to identify the separate contributions. T
last two terms arise from the collinear singularities, and
proportional to the appropriate first-order splitting kern
Pq/q and Pq/g . It is the remaining term in which we are
interested as this term arises from the soft gluon proces
he
are
el,

ses.

We note thatGasym is defined such that the combination
Gpert2Gasymhas only logarithmic singularities asqT→0.

III. SUDAKOV FORM FACTOR

In this section, we display the structure of
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dS/dxdQ2dqT
2df with the Sudakov summation of loga

rithms. This provides the basis for a formula that includ
nonperturbative effects, developed in Sec. VI. In addition,
Sec. IV we compare the summed form of this section w
the orderas form of dS/dxdQ2dqT

2df from Sec. II, in order
to extract the coefficients that appear in the summed form

A. Bessel transform ofwa„ x̂,Q
2,qT

2 ; j ,j 8…

It proves convenient to introduce a Fourier transform b
tween transverse momentum space (qT) and impact param-
eter space (b):

wa~ x̂,Q
2,qT

2 ; j , j 8!5E d2b

~2p!2
eiqT•bw̃a~ x̂,Q

2,b2; j , j 8!

5E
0

` db

2p
bJ0~bqT!w̃a~ x̂,Q

2,b2; j , j 8!,

~22!

as w̃a( x̂,Q
2,b2; j , j 8) will have a simple structure@14#. Ef-

fectively, we make use of the renormalization group equat
to sum the logarithms ofQ2 and gauge invariance to sum th
logarithms ofqT;1/b. The Fourier transform also maps th
qT singularities at the origin to the largeb behavior of
w̃a( x̂,Q

2,b2; j , j 8); we will take advantage of this when w
consider nonperturbative contributions.

B. Sudakov form factor

The structure function in impact parameter spa
w̃a( x̂,Q

2,b2; j , j 8) has the factorized form

w̃a~ x̂,Q
2,b2; j , j 8!

5Cja
in ~ x̂,bm!(

a8
E dẑẑCa8 j 8

out
~ ẑ,bm!e2S~b!.

~23!

This form is from Refs.@33# and @14# applied to the deep
inelastic scattering~DIS! process and generalized to includ
vector bosons other than the photon. The last exponen
factor is the Sudakov form factor

S~b!5E
C1
2/b2

C2
2Q2dm2

m2 H lnFC2
2Q2

m2 GA„as~m!…1B„as~m!…J .
~24!

The logarithm in the exponential is characteristic of t
gauge theory. It arises from the soft gluon summation
QCD at the low transverse momentumqT

2!Q2. The arbitrary
constants$C1 ,C2% reflect the freedom in the choice of reno
malization scale. We choose$C1 ,C2% to be

C152e2gE, ~25!

C251. ~26!
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The functionsA and B and the hard scattering functions
C’s are simple power series in the strong coupling constan
as with numerical coefficients:2

A„as~m!…5 (
N51

` H as~m!

~2!p J NAN , ~27!

B„as~m!…5 (
N51

` H as~m!

~2!p J NBN , ~28!

Cja
in ~ x̂,bm!5d~12 x̂!d ja1 (

N51

`

Cja
in~N!~ x̂,bm!H as~m!

~2!p J N,
~29!

Ca8 j 8
out

~ ẑ,bm!5d~12 ẑ!da8 j 81 (
N51

`

Ca8 j 8
out~N!

~ ẑ,bm!

3H as~m!

~2!p J N. ~30!

The normalization has been chosen such that each hard sc
tering functionC equals ad function at leading order.

As noted in Ref.@14#, in the limit Q→`, all logarithms
may be counted as being equally large. Therefore, to eval
ate the cross section atqT.0 to an approximation of ‘‘de-
greeN,’’ one must evaluateA to orderas

N12 , B to order
as
N11, Cin andCout to orderas

N , and theb function to order
as
N12 . In particular, an extra order inA is necessary due to

the extra logarithmic factor in Eq.~24!. For the present cal-
culation, we evaluateA to orderas

2 , B to orderas
1 , Cin and

Cout to orderas
1 , and theb function to orderas

2 . This yields
the cross section to orderas

1 for largeqT , to orderas
0 for

smallqT , and the cross section integrated overqT to as
1 .

C. Perturbative expansion of the Sudakov form factor

We can extract theAi andBi coefficients of the Sudakov
factor by expandingw̃a( x̂,Q

2,b2; j , j 8) of Eq. ~23! in as ,
and comparing with the perturbative calculation of paper I
Here, we take a fixed momentum scalem0 in as(m0) as the
running ofas(m) contributes only to higher orders. We can
now compute the integral overm2 analytically to obtain

S~b!5E
C1
2/b2

C2
2Q2dm2

m2 H lnFC2
2Q2

m2 GA„as~m!…1B„as~m!…J
.

as~m0!

~2!p FA1

L2

2
1B1LG , ~31!

where

L5 lnFC2
2

C1
2b

2Q2G . ~32!

2Collins and Soper@14# ~CS! expand in powers ofas /p, and
Davies, Webber, and Stirling@17# ~DWS! expand in powers of
as /(2p). We carry the extra factor of 2 explicitly to facilitate com-
parison between these references.
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We expand the Sudakov exponential out to orderas
1

e2S~b!.12S~b!1O~as
2!, ~33!
and perform the Bessel transformation ofw̃a( x̂,Q
2,b2; j , j 8)

@cf., Eq. ~23!# to obtain the partonic structure function in
momentum space:
,

wa~ x̂,Q
2,qT

2 ; j , j 8!5E
0

` db

2p
bJ0~bqT!Fda, jd~12 x̂!1

as~m!

~2!p
Ca, j
in~1!~ x̂,bm!G(

a8
Fda8, j 81E

0

1

ẑdẑ
as~m!

~2!p
Ca8, j 8
out~1!

~ ẑ,bm!G
3@12S~b!1O~as

2!#, ~34!

where we have used the first-order expressions forCjk
in(N)( x̂,mb) andCjk

out(N)( ẑ,mb).
Finally, we integrate to obtain theO(as

1) terms for finiteqT :

wa~ x̂,Q
2,qT

2 ; j , j 8!.F16p2as

qT
2 G H da, jd~12 x̂!F2A1

~2! H lnSQ2

qT
2 D 22lnS egEC1

2C2
D J 1

2B1

~2! G1da, j Pq/q~x!1da,gPq/g~x!

1terms proportional tod~qT
2!J . ~35!

Here, we have used the fact that the renormalization group equation tells us the form ofCin(1)( x̂,mb) andCout(1)( ẑ,mb) must
be a splitting kernel times log@mb#, plus a function independent ofm andb. Equivalently, for the hadronic structure function
we find

W~x,Q2,qT
2 ; j , j 8!.F16p2as

qT
2 G H f j /A~x!F2A1

~2! H lnSQ2

qT
2 D 22lnS egEC1

2C2
D J 1

2B1

~2! G1 f j /A^Pq/q1 f g/A^Pq/g

1terms proportional tod~qT
2!J . ~36!
n-

-

We will compare the first-order expansions in Eq.~35! and
Eq. ~36! with the asymptotic limit of the perturbative calcu
lations of Sec. II to extract the desiredA1 and B1 coeffi-
cients.

IV. COMPARING ASYMPTOTIC AND SUDAKOV
CONTRIBUTIONS

In this section, we compare the summed form
dS/dxdQ2dqT

2df with the orderas form, and thus extrac
the coefficients that appear in the summed form.

A. Extraction of A and B

Comparing the expansion of the Sudakov expression@Eq.
~36!# with the asymptotic results@Eq. ~21!#, we obtain the
orderas

1 coefficientsA1 andB1:

A15~2!CF , ~37!

B15~2!2CFlnF C1

2C2
egE2~3/4!G . ~38!

With our particular choice of the arbitrary constan
$C1 ,C2% in Eq. ~26!, we have

A15~2!CF , ~39!
-

of
t

ts

B15~2!F23

2 GCF . ~40!

We find that the results forA1 andB1 obtained above are
identical to those found in Ref.@33# for Drell-Yan produc-
tion, as well as those found in Ref.@15# for e1e2 annihila-
tion. This apparent crossing symmetry has been demo
strated at orderas

2 by Trentadue and co-workers@38#. In
light of this result, we shall make use of theA2 coefficient
@38#:

A25~4!H 679 2
p2

3
2
10

27
Nf1

2

9
~3322Nf !lnS C1

2e2gED J .
~41!

The extra order in theAi expansion will compensate the
extra logarithmL which is not present for theBi terms.

B. Expansion ofCin and Cout

Cin andCout terms are obtained by comparing the terms in
the perturbative expansion proportional tod(qT) with the
expanded summed form. Since the virtual graphs yield con
tributions only proportional tod(qT), they will only enter
Cin andCout. The real graphs yieldboth zero and finiteqT
terms; therefore, they will contribute to bothAi , Bi , and the
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Cin and Cout coefficients. The calculation of the virtua
graphs has been performed by Meng@39#, and we make use
of those results.

We have defined theC( x̂,mb) coefficients such that a
leading order they are

Cjk
in~0!~ x̂,mb!5d jkd~12 x̂!,

Cjk
out~0!~ ẑ,mb!5d jkd~12 ẑ!,

Cjg
in~0!~ x̂,mb!5Cgk

out~0!~ ẑ,mb!50. ~42!

~Here, j andk denote quarks and antiquarks, andg denotes
gluons.! At next to leading order, we find thatCin(1)( x̂,mb)
match those calculated by CS for the Drell-Yan process@33#:

Cjk
in~1!~ x̂,mb!5d jkH 2

3 ~12 x̂!1Pq/q~ x̂!lnS l

mbD1d~12 x̂!

3F2CFln
2SC1e

23/4

C2l
D1

p2

3
2
23

12G J , ~43!

Cjg
in~1!~ x̂,mb!5 1

2 x̂~12 x̂!1Pj /g~ x̂!lnS l

mbD . ~44!

The Cout(1)( ẑ,mb) are simply those fore1e2 as given in
Ref. @15#:

Cjk
out~1!~ ẑ,mb!5d jkH 2

3 ~12 ẑ!1Pq/q~ ẑ!lnS l

mbD1d~12 ẑ!

3F2CFln
2SC1e

23/4

C2l
D1

p2

3
2
29

12G J , ~45!

Cgk
out~1!~ ẑ,mb!5 2

3 ẑ1Pg/k~ ẑ!lnS l

mbD , ~46!

where we definel52e2gE to simplify the notation. Note
thatCin andCout are only a function of the ratioC1 /C2.

C. Complete expression

Now that we have obtainedA1, A2, andB1, we can sub-
stitute these into Eq.~24! to obtain the complete Sudako
contribution @including the full as(m) dependence#. We
choose to perform them integration analytically, as the
Bessel transform would be prohibitively CPU intensive if w
did not. To facilitate this computation we provide an integ
table in Appendix G including all the necessary terms. W
are now ready to combine the separate parts of the calc
tion.

V. MATCHING

We now have computed the contributions to the ene
distribution functions for the perturbativeGk

pert in paper I, the
summed~or Sudakov! W(x,Q2,qT

2 ; j , j 8) in Eq. ~23!, and the
asymptoticGk

asym in Eq. ~21!. We can simply assemble thes
pieces to form the total structure functions via
l

t

v

e
ral
e
ula-

rgy

e

G1~x,Q
2,qT

2 ; j , j 8!5G1
pert~x,Q2,qT

2 ; j , j 8!

1W~x,Q2,qT
2 ; j , j 8!

2G1
asym~x,Q2,qT

2 ; j , j 8!,

G6~x,Q
2,qT

2 ; j , j 8!5G6
pert~x,Q2,qT

2 ; j , j 8!

1~21!W~x,Q2,qT
2 ; j , j 8!

2G6
asym~x,Q2,qT

2 ; j , j 8!. ~47!

Here, Gk
pert and Gk

asym are evaluated at orderas
1 while W

contains a summation of perturbation theory. In the limit
qT→0, Gk

pert andGk
asymwill cancel each other, leavingW as

we desire. In the limitqT.Q, W andGk
asym will cancel to

leading order inas ; however, the finite difference may not
be negligible. To ensure that we recover the proper resu
(Gk

pert) for largeqT , we define the total energy distribution
function (Gk) to be

G1~x,Q
2,qT

2 ; j , j 8!5G1
pert~x,Q2,qT

2 ; j , j 8!

1T S qTQ D $W~x,Q2,qT
2 ; j , j 8!

2G1
asym~x,Q2,qT

2 ; j , j 8!%,

G6~x,Q
2,qT

2 ; j , j 8!5G6
pert~x,Q2,qT

2 ; j , j 8!

1T S qTQ D $~21!W~x,Q2,qT
2 ; j , j 8!

2G6
asym~x,Q2,qT

2 ; j , j 8!%, ~48!

where we introduce the arbitrary function

T S qTQ D5
1

11~rqT /Q!4
. ~49!

The transition functionT(qT /Q) serves to switch smoothly
from the matched formulas to the perturbative formula, and
r is an arbitrary parameter which determines the details o
the matching. Figure 8 displaysT(qT /Q) for a range ofr
values. We will chooser55 which ensures thatGk.Gk

pert

for qT /Q>0.4, a conservative value.

FIG. 8. The matching functionT(qT /Q) vs (qT /Q) for
r5$1,3,5,7,9%. r51 is the top curve, andr59 is the bottom curve.
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VI. NONPERTURBATIVE CONTRIBUTIONS

In analogy with Eq.~14! and Eq.~23!, the Bessel trans-
form of the hadronic structure function is defined as

W~x,Q2,qT
2 ; j , j 8!5E d2b

~2p!2
eiqT•bW̃~x,Q2,b2; j , j 8!.

~50!

Whenb is small, we have

W̃~x,Q2,b2; j , j 8!5E
x

1dj

j (
a

f a/A~j,m!Cja
in ~ x̂,bm!

3(
a8

E dẑẑCa8 j 8
out

~ ẑ,bm!e2S~b!. ~51!

The perturbative calculation ofW̃(x,Q2,b2; j , j 8) is not reli-
able forb*1/L. However, the integration overb in Eq. ~50!
runs to infinitely largeb2, and the regionb*1/L is impor-
tant for values ofQ2 andqT

2 of practical interest. In order to
deal with the largeb2 region, we follow the method intro-
duced in Refs.@33,14#. We define a valuebmax such that we
can consider perturbation theory to be reliable forb,bmax.
~In our numerical examples, we take 1/bmax52 GeV.! Then
we define a functionb* of b such thatb*'b for smallb and
b*,bmax for all b:

b*5
b

A11b2/bmax
2

. ~52!

We define a version ofW̃(x,Q2,b2; j , j 8) for which per-
turbation theory is always reliable byW̃(x,Q2,b

*
2 ; j , j 8).

Note that for smallb the difference betweenW̃(b* ) and
W̃(b) is negligible becauseb*'b. Conversely, perturbation
theory is always applicable for the calculation ofW̃(b* )
becauseb* is small even whenb is large.

Next, we define a nonperturbative functio
exp@2SNP(b)# as the ratio ofW̃(b) andW̃(b* ):

W̃~x,Q2,b2; j , j 8!5W̃~x,Q2,b
*
2 ; j , j 8!e2SNP~x,Q

2,b2; j , j 8!.
~53!

Ultimately, we will have to use nonperturbative informatio
to determineSNP(b). However, some important informatio
is available to us. From Eq.~51!, we see that

] ln@W̃~x,Q2,b2; j , j 8!#

] lnQ2 ~54!

is independent ofx, j , j 8 andQ2. This result is derived in
perturbation theory, but at arbitrary order, and so we p
sume that it holds even beyond perturbation theory. The

]SNP~x,Q
2,b2; j , j 8!

] lnQ2 ~55!

is also independent ofx, j , j 8,k, andQ2. That is,SNP has the
form
n

n
n

re-
n

SNP~x,Q
2,b2; j , j 8!5 ln~Q2/Q0

2!g1~b!1DSNP~x,b
2; j , j 8!.

~56!

~HereQ0 is an arbitrary constant with dimensions of mass
inserted to keep the argument of the logarithm dimension
less.! Furthermore, inW̃, thex and j dependence occurs in a
separate factor from thej 8 dependence. Thus the second
term in Eq.~56! above can be simplified to

SNP~x,Q
2,b2; j , j 8!5 ln~Q2/Q0

2!g1~b!1gA~x,b2; j !

1gB~b2; j 8!. ~57!

~Recall, we have integrated overẑ.!
Perturbation theory is not applicable for the calculation o

the functionsg1(b), gA(x,b
2; j ), and gB(b

2; j 8) for large
b. For smallb, perturbation theory tells us only that these
functions approach 0 asb→0. This follows from Eq.~53!
and the fact thatb* /b→1 whenb→0. ~See Ref.@14# for
further discussion.! Since we learn little from perturbation
theory, we turn to nonperturbative sources of information
Fortunately, the analogous functions ine1e2 annihilation
and in the Drell-Yan process have been fit using experimen
tal results@33,17,26#.

We therefore ask whether the functionsg1(b),
gA(x,b

2; j ), andgB(b
2; j 8) in deeply inelastic scattering are

related to the analogous functions in the other two processe
Consider firstg1(b), the coefficient of ln(Q

2/Q0
2). According

to the analysis of Ref.@33#, this function receives contribu-
tions from the two-jet subdiagrams in Fig. 7~b!. ~In this fig-
ure, we use a spacelike axial vector gauge.! The soft gluon
connections in Fig. 7~b! affect gA(x,b

2; j ) and gB(b
2; j 8),

but do not contribute ‘‘double logarithms,’’ and thus do not
affectg1(b). Thus

g1~b![g1
dis~b!5g1

in~b!1g1
out~b!, ~58!

whereg1
in(b) is associated with the incoming beam jet@the

lower subdiagram in Fig. 7~b!# while g1
out(b) is associated

with the outgoing struck-quark jet@the upper subdiagram in
Fig. 7~b!#. In the Drell-Yan process, depicted in Fig. 7~a!,
there are two incoming beam jets and one has

g1
DY~b!52g1

in~b!. ~59!

In e1e2 annihilation, depicted in Fig. 7~c!, there are two
outgoing quark jets and one has

g1
e ē~b!52g1

out~b!. ~60!

Thus

g1~b![g1
dis~b!5~1/2!g1

DY~b!1~1/2!g1
e ē~b!. ~61!

In the following section, we show numerical results using
Ref. @33# for g1

e ē(b) and Ref.@17# for g1
DY(b).

The situation forgA(x,b
2; j ) and gB(b

2; j 8) is not so
simple. Let us write

SNP
DY~x,Q2,b2; j , j 8!5 ln~Q2/Q0

2!g1
DY~b!1g2

DY~xA ,b
2; j !

1g2
DY~xB ,b

2; j 8! ~62!
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FIG. 9. Comparison of the nonperturbative
functione2SNP(b) vs b for the Drell-Yan~Davies,
Webber, and Stirling@17#! ~upper line! and
e1e2 ~Collins and Soper@33#! ~lower line!, for
Q530 GeV @Fig. ~a!# and Q5100 GeV @Fig.
~b!#.
ll

o

for the Drell-Yan process and

SNP
ēe~x,Q2,b2; j , j 8!5 ln~Q2/Q0

2!g1
ēe~b!1g2

ēe~b2; j !

1g2
ēe~b2; j 8! ~63!

for the energy-energy correlation function ine1e2 annihila-
tion ~cf. Fig. 9!. One might like to assume thatgA(x,b

2; j ) is
the same function asg2

DY(x,b2; j ) while gB(b
2; j 8) is the

same function asg2
ēe(b2; j 8). However, this may not be true

because all of these functions get contributions from the s
gluon exchanges that link the two jets in Fig. 7@represented
by the functionU(b) in Ref. @33##. Furthermore, the depen
dence of the functionsg2

DY(x,b2; j ) and g2
ēe(b2; j 8) on the

flavors j and j 8 has not been determined from experimen
data. What we know are flavor-averaged functio
g2
DY(x,b2) andg2

ēe(b2). Thus the best we can do is propos
a model for the functions we need

gA~x,b2; j !1gB~b2; j 8!5tg2
DY~x,b2!1~12t !g2

ēe~b2!,
~64!

where 0,t,1, with g2
ēe(b2) taken from Ref.@33# and

g2
DY(x,b2) taken from Ref.@17#. We vary the parametert
between 0 and 1 to get an estimate of the uncertainty
volved ~cf. Fig. 10!.

For comparison, we present the above parametrizati
for the nonperturbative contributions with the recent fit
Ladinsky and Yuan@26# for W production in Fig. 11. Lad-
insky and Yuan introduce an extra degree of freedom
allowing for a t5xAxB dependence. We present the com
parison for a range oft; this allows one to gauge the effec
of different nonperturbative estimates, and correlate
Ladinsky-Yuan parametrization with that presented in E
~56! and Eq.~64!.

VII. REPRISE

For the benefit of the reader, we review the principal ste
in the calculation of the energy distribution. The energy d
tribution is given by
oft

-

tal
ns
e

in-

ons
by

by
-

ts
the
q.

ps
is-

dS

dxdQ2dqT
2df

5 (
k51

9
dSk

dxdQ2dqT
2df

5 (
k51

9

Ak~c,f!

3 (
V1 ,V2

(
j , j 8

S0~Q
2;V1 ,V2 , j , j 8,k!

3Gk~x,Q
2,qT

2 ; j , j 8!, ~65!

whereAk(c,f) are the nine angular functions arising from
hyperbolicD1(c,f) rotation matrices. The sum onV1 and
V2 runs over vector boson types$g,Z% or $W6% as appropri-
ate. The sums overj and j 8 include all quark flavors
$u,ū,d,d̄, . . . %; for neutral currents, this sum is diagonal
( j5 j 8). The functionS0(Q

2;V1 ,V2 , j , j 8,k) includes factors
for the coupling of the electron to the vector bosons as we
as factors for the propagation of the vector bosons.~See
Table I.! The energy distribution function that we have com-
puted isGk(x,Q

2,qT
2 ; j , j 8).

In the limit qT→0, theG1 andG6 will contain the domi-
nant singularities as their angular structure is proportional t
the Born process. We define

G1~x,Q
2,qT

2 ; j , j 8!5G1
pert~x,Q2,qT

2 ; j , j 8!

1T S qTQ D $W~x,Q2,qT
2 ; j , j 8!

2G1
asym~x,Q2,qT

2 ; j , j 8!%,

G6~x,Q
2,qT

2 ; j , j 8!5G6
pert~x,Q2,qT

2 ; j , j 8!

1T S qTQ D $~21!W~x,Q2,qT
2 ; j , j 8!

2G6
asym~x,Q2,qT

2 ; j , j 8!%, ~66!

where the matching functionT(qT /Q) @Eq. ~49!# is provided
to ensure proper behavior asqT→Q. Gk

pert represents the per-
turbative results of paper I calculated at orderas

1, Gk
asym

represents the asymptotic limit (qT→0) of Gk
pert
FIG. 10. Interpolation of the nonperturbative
function e2SNP(b) vs b as a function of thet pa-
rameter$t50,1/4,1/2,3/4,1% for Q530 GeV@Fig.
~a!# and Q5100 GeV @Fig. ~b!#. Note that the
variation ofe2SNP(b) ast ranges over@0,1# is nar-
rower than the full range between the Drell-Yan
ande1e2 cases~cf. Sec. VI!.
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FIG. 11. Comparison of the nonperturbative
function e2SNP(b) vs b for the case of Drell-Yan
~Davies, Webber, and Stirling@17#! ~upper
dashed line!, e1e2 ~Collins and Soper@33#!
~lower dashed line!, andW production~Ladinsky
and Yuan @26#! ~five solid lines!. ~a! is for
Q510 GeV ~left!, and ~b! is for Q5100 GeV
~right!. The fits toW production include an extra
parametert5 ŝ/s; we allow t to range over the
values t5$1023,1022.75,1022.5,1022.25,1022.0%
wheret51022 is the upper curve andt51023 is
the lower curve inb space.
@Eq. ~21!#, and W(x,Q2,qT
2 ; j , j 8) represents the summed

~Sudakov! term@Eq. ~23!# which is finite asqT→0. Note that
the functionW(x,Q2,qT

2 ; j , j 8) is the same for bothG1 and
G6.

The form of the Sudakov structure function is particular
simple in impact parameter space:

W~x,Q2,qT
2 ; j , j 8!5E d2b

~2p!2
eiqT•bW̃~x,Q2,b2; j , j 8!.

~67!

To ensure that the calculation is reliable for largeb ~small
qT), we introduce

W̃~x,Q2,b2; j , j 8!5W̃~x,Q2,b
*
2 ; j , j 8!e2SNP~x,Q

2,b2; j , j 8!,
~68!

whereb*P@0,bmax# for bP@0,̀ #.
The perturbative functionW̃(x,Q2,b

*
2 ; j , j 8) is given by

W̃~x,Q2,b
*
2 ; j , j 8!5E

x

1dj

j (
a

f a/A~j,m!Cja
in ~ x̂,b*m!

3E dẑẑ(
a8

Ca8 j 8
out

~ ẑ,b*m!e2S~b*
!,

~69!

where x̂5x/j. For the incoming particles, there is an inte
gration over a parton momentum fractionj, a sum over par-
ton typesa5g,u,ū,d,d̄, . . . , aparton distribution function
f a/A , and a set of perturbative coefficientsCin . For the out-
going partons, there is an integration over parton moment
fraction ẑ, weighted by ẑ, a sum over parton types

TABLE I. Boson-fermion couplings.

Fermions gv(g) ga(g) gv(Z) ga(Z)

e2 2e 0
2e

124sin2uW
4cosuWsinuW

1e
1

4cosuWsinuW

u,c,t 2
3 e 0

1e
12

8
3sin

2uW

4cosuWsinuW
2e

1

4cosuWsinuW

d,s,b 2
1
3 e 0

2e
12

4
3sin

2uW

4cosuWsinuW
1e

1

4cosuWsinuW
ly

-

um

a85g,u,ū,d,d̄, . . . , andthere are perturbative coefficients
Cout associated with the outgoing states. The heart of the
formula is the Sudakov factor exp@2S(b* )#, defined as:

S~b* !5E
C1
2/b
*
2

C2
2Q2dm2

m2 H lnFC2
2Q2

m2 GA„as~m!…1B„as~m!…J .
~70!

The functionsA andB, as well asCin andCout, have pertur-
bative expansions in powers ofas . We choose the arbitrary
constants$C1 ,C2% as in Eqs.~25! and ~26!.

The nonperturbative contribution is parametrized in terms
of the fits toe1e2 and Drell-Yan data@15,33,17#:

SNP~x,Q
2,b2; j , j 8!5 lnFQ2

Q0
2G H g1DY~b!1g1

e ē~b!

2 J
1tg2

DY~x,b2!1~12t !g2
ēe~b2!.

~71!

The arbitrary parametertP@0,1# interpolates between the
e1e2 and Drell-Yan form.

VIII. RESULTS

We present numerical results of the energy distribution
function for representative values of$x,Q2% using the
CTEQ3 parton distributions@40#. We present results only for
theG1 set of structure functions, as theG6 set has the iden-
tical qT→0 structure~up to a sign!. Recall that the structure
functions are given by

G1~x,Q
2,qT

2 ; j , j 8!5G1
pert~x,Q2,qT

2 ; j , j 8!

1T S qTQ D $W~x,Q2,qT
2 ; j , j 8!

2G1
asym~x,Q2,qT

2 ; j , j 8!%. ~72!

Making use of Eq.~7!, we have a parallel relation for the
energy distribution function:
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dS1~x,Q
2,qT

2 ; j , j 8!

dxdQ2dqT
2df

5
dS1

pert~x,Q2,qT
2 ; j , j 8!

dxdQ2dqT
2df

1T S qTQ D H dS1
sum~x,Q2,qT

2 ; j , j 8!

dxdQ2dqT
2df

2
dS1

asym~x,Q2,qT
2 ; j , j 8!

dxdQ2dqT
2df J , ~73!

where we use the ‘‘sum’’ superscript to denote the summ
Sudakov contribution derived fromW. We will examine
both the individual terms as well as the total in the followin
We will use the shorthanddS1[dS1(x,Q

2,qT
2 ; j , j 8)/

(dxdQ2dqT
2df).

A. qT distributions

In Fig. 12 and Fig. 13, we show the separate contributi

FIG. 13. The contributions to the energy distribution functi
qT
2dS1 /(dxdQ

2dqT
2df) as a function ofqT , for Q530 GeV,

x50.1. ~Recall thatdS1 anddS6 are independent off.! Perturba-
tive ~thin line!, asymptotic~dashed line!, and summed~thick line!.
Note how the perturbative and asymptotic cancel asqT→0. For
qT→Q, the asymptotic and summed cancel to leading order o
~A zero reference line is indicated.! dS1 is in units of GeV25, and
is multiplied by 106 for clarity of the plot.

FIG. 12. The contributions to the energy distribution functi
qT
2dS1 /(dxdQ

2dqT
2df) as a function ofqT , for Q5100 GeV,

x50.3. ~Recall thatdS1 anddS6 are independent off.! Perturba-
tive ~thin line!, asymptotic~dashed line!, and summed~thick line!.
Note how the perturbative and asymptotic cancel asqT→0. For
qT→Q, the asymptotic and summed cancel to leading order o
~A zero reference line is indicated.! dS1 is in units of GeV25, and
is multiplied by 109 for clarity of the plot.
ed

g.

ons

to dS1 as a function ofqT for two choices of$x,Q2%.3 We
have included an extra factor ofqT

2 to make the features of
the plot more legible. As anticipated, we see tha
dS1

pert.dS1
asym as qT→0 leaving dS1.dS1

sum. For large
qT , we find dS1

sum2dS1
asym.0, but this cancellation is not

as precise as the above because the relatio
Gsum2Gasym.0 holds only to first order. Therefore, in the
following figures we shall include theT(qT2/Q2) factor to
ensure thatdS1

sum2dS1
asym is smoothly turned off at large

qT . The fact thatdS1
sum and dS1

asym become negative for
largeqT reminds us that these expressions were approxim
tions valid only forqT!Q.

Having examined the separate terms, we now turn ou
attention to the energy distribution functiondS1. Again, we
have included an extra factor ofqT

2 in Fig. 14~a! and Fig.
15~a! to make the features of the plot more legible. In Fig
14~b! and Fig. 15~b!, we plot dS1 in the smallqT region
~without an extraqT

2 factor! to demonstrate that the summed
results approach a finite limit asqT→0. We present the re-
sults for three choices of the nonperturbative function
SNP(x,Q

2,b2; j , j 8) as parametrized in Eq.~64!. The choice
t50 corresponds to thee1e2 limit @33#, while t51 corre-
sponds to the Drell-Yan limit@17# andt51/2 corresponds to
an even mix of the above. The difference due to the nonpe
turbative contribution is quite significant for lowqT . The
t50 (e1e2) nonperturbative function, which is much nar-
rower inb space, yields a broader energy distribution; this i
clearly evident in the figures as we see the peak move
lower qT values as we shift from thet50 (e1e2) to t51
~Drell-Yan!. At largeqT , dS1 is independent of the nonper-
turbative contributions, since it is dominated bydS1

pert.
Clearly, the HERA data should be able to distinguish be

tween this range of distributions, particularly in the smal
qT regime where the span of the nonperturbative contribu
tions is significant@11,41#.

IX. CONCLUSIONS

Measurement of the distribution of hadronic energy in the
final state in deeply inelastic electron scattering at HERA ca
provide a good test of our understanding of perturbativ
QCD. Furthermore, we can probe nonperturbative physic
because the the energy distribution functions are sensitive
the nonperturbative Sudakov form factorSNP(b) in the small
qT region.

We have evaluated the energy distribution function fo
finite transverse momentumqT at orderas in paper I. Be-
cause the distribution is weighted by the final state hadro
energy, this physical observable is infrared safe, and ind
pendent of the decay distribution functions. In this paper, w
sum the soft gluon radiation into a Sudakov form factor to
evaluate the energy distribution function in the smallqT
limit. By matching the small and largeqT regions, we obtain
a complete description throughout the kinematic range. Th
result is significant phenomenologically as a the bulk of th
events occur at smallqT values, where perturbation theory

3In the smallqT region, dS1 and dS6 are independent off;
therefore, we need not specify it.

on

nly.

on

nly.
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FIG. 14. The total contribution to the energy distribution functiondS1 /(dxdQ
2dqT

2df) as a function ofqT for different choices of the
nonperturbative function,SNP(b) for Q5100 GeV,x50.3. ~a! has an extra factor ofqT

2 to make the plot more legible.~b! demonstrates that
the summed contribution has a finite limit asqT→0. We vary thet parameter fromt51 ~thick line! corresponding to the Drell-Yan case,
to t51/2 ~dashed line! corresponding to the mixed case, tot50 ~thin line! corresponding to thee1e2 case. ForqT→Q, we use the function
T(qT /Q) with r55 to smoothly switch between large and smallqT . dS1 is in units of GeV25, and is multiplied by 109 for clarity of the
plot.
by itself is divergent. This technique can provide an incis
tool for the study of deeply inelastic scattering. Additionall
crossing relations allow us to relate the nonperturbative c
tribution in deeply inelastic scattering energy distributions
analogous quantities in the Drell-Yan ande1e2 annihilation
processes.
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APPENDIX A: KINEMATIC RELATIONS

We present some basic kinematic relations to facilitate
calculation. First we give the expressions to relate$E8,u8% to
$x,Q2%:

Q252q•q52EE8~12cosu8!, ~A1!

x5
Q2

2q•PA
5

EE8~12cosu8!

EA@2E2E8~11cosu8!#
. ~A2!
ive
y,
on-
to

d
tig
-
e
Dr.
lso
ork
gy,

the

Next, we give the expression for the Born scattering angle
u* :

cotS u*
2 D5

2xEA
Q F12

Q2

xsG
1/2

. ~A3!

The corresponding azimuthal anglef* is trivial and can be
defined to be zero. Finally, we give the expressions to com-
pute the natural variables of the Breit frame$qT ,f%:

qT
25

8E224E8~2E2E8!~11cosu8!

12cosuB
H sin2FuB2u*

2 G
1sinuBsinu* sin

2FfB2f*
2 G J , ~A4!

cos~f!5
Q

2qT
F12

Q2

xsG
21/2H 12

Q2

xs
1
qT
2

Q2

2S Q

2xEA
D 2cotS uB

2 D J . ~A5!

APPENDIX B: ENERGY DISTRIBUTION FORMULAS

We now give some explicit formulas for computation of
the structure functions and energy distribution contributions.
The process we consider is the hadronic process
e21A→e21B1X, and the fundamental formula for com-
FIG. 15. The total contribution to the energy distribution functiondS1 /(dxdQ
2dqT

2df) as a function ofqT, for different choices of the
nonperturbative functionSNP(b) for Q530 GeV,x50.1. ~a! has an extra factor ofqT

2 to make the plot more legible.~b! demonstrates that
the summed contribution has a finite limit asqT→0. We vary thet parameter fromt51 ~thick line! corresponding to the Drell-Yan case,
to t51/2 ~dashed line! corresponding to the mixed case, tot50 ~thin line! corresponding to thee1e2 case. ForqT→Q, we use the function
T(qT /Q) with r55 to smoothly switch between large and smallqT . dS1 is in units of GeV25, and is multiplied by 106 for clarity of the
plot.
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putation of the structure functions and energy distributi
contributions is

dS

dxdQ2dqT
2df

5 (
k51

9

Ak~c,f!

3 (
V1 ,V2

(
j , j 8

S0~Q
2;V1 ,V2 , j , j 8,k!

3Gk~x,Q
2,qT

2 ; j , j 8!, ~B1!

with

S0~Q
2;V1 ,V2 , j , j 8,k!

5
Q6

26px3s2EA

Gk
q~V1 ,V2 ; j , j 8!Gk

l ~V1 ,V2!

~Q21MV1
2 !~Q21MV2

2 !
. ~B2!

Ak(c,f) represents the nine angular functions arising fro
the hyperbolic1D(c,f) rotation matrices.Gk

q(V1 ,V2 ; j , j 8)
andGk

l (V1 ,V2) are the combinations of couplings from th
leptonic and hadronic tensors, respectively, as defined in
per I. (Q21MVi

2 ) arise from the boson propagators, an

Gk(x,Q
2,qT

2 ; j , j 8) are the hadronic energy distribution func
tion. We sum over the intermediate vector boso
$V1 ,V2%5$g,Z0% or $W6%, as appropriate, and the parto
species$ j , j 8%:

A1~c,f!5~11!@11 cosh2~c!#,

A2~c,f!5~22!,

A3~c,f!5~21!cos~f! sinh~2c!,

A4~c,f!5~11!cos~2f!sinh2~c!,

A5~c,f!5~12!sin~f! sinh~c!,

A6~c,f!5~12!cosh~c!,

A7~c,f!5~22!cos~f! sinh~c!,

A8~c,f!5~21!sin~f!sinh~2c!,

A9~c,f!5~11!sin~2f!sinh2~c!.

Note, for instance, the analogy between the angular co
ficientA1511cosh2(c), which appears in the orderas

0 en-
ergy distribution, and the corresponding coefficient in t
case of the Drell-Yan energy correlation, 11cos2(u) @37#.

APPENDIX C: DAVIES-WEBBER-STIRLING
PARAMETRIZATION

The form of the nonperturbative Sudakov functio
SNP(b), used by Davies, Webber, and Stirling to introdu
the transverse momentum smearing in the Drell-Yan proc
is

SNP~b!5b2Fg11g2lnS bmaxQ2 D G , ~C1!

with
on

m

e
pa-
d

-
ns
n

ef-

he

n
ce
ess

g150.15 GeV2, ~C2!

g250.40 GeV2, ~C3!

bmax5~2 GeV!21. ~C4!

APPENDIX D: COLLINS-SOPER PARAMETRIZATION

The form of the nonperturbative function used by Collins
and Soper to introduce the transverse momentum smearing
in thee1e2 process is

SNP~b!5AH 4A1

as~m!

p
lnFC2Qbmax

C1
G lnS b

b*
D J

1D f 1~b!lnSQ2

Q0
2D 1D f 2~b!, ~D1!

with

D f 1~b!5A11b1A12b
2,

D f 2~b!5A21b1A22b
2. ~D2!

While the functional form allowed here is quite general, in
practice, it was possible to obtain a good fit to the data using
only theA andA21 parameters. Specifically,

A51.33,

A2151.5,

A115A125A2250. ~D3!

Additional parameters and relations necessary are

bmax5~2 GeV!21,

Q0527 GeV,

m5C1 /b* ,

A152CF . ~D4!

APPENDIX E: LADINSKY-YUAN PARAMETRIZATION

The form of the nonperturbative Sudakov function
SNP(b) used by Ladinsky and Yuan to introduce the trans-
verse momentum smearing in the Drell-Yan process is

SNP~b!5Fg1b21g1g3bln@100t#1g2b
2lnS Q

2Q0
D G ,

~E1!

with
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g150.11 GeV2,

g250.58 GeV2,

g3521.5 GeV21,

Q051.60 GeV,

bmax5~2 GeV!21. ~E2!

APPENDIX F: as AT ONE-LOOP AND TWO-LOOP

To properly compute them2 integral in the Sudakov form
factor, it will be necessary to use the complete result for th
running coupling at both one and two loops. The two-loo
result foras is

as~m2!5
4p

b1ln~m2/L2!
2
4pb2ln@ ln~m2/L2!#

b1
3ln2~m2/L2!

, ~F1!

where

b15
~11Nc22Nf !

3
[

~3322Nf !

3
, ~F2!

b25S 1022 38Nf

3 D . ~F3!

The one-loop result is simply obtained by takingb2→0.

APPENDIX G: INTEGRAL TABLE

For simplicity and completeness, we list the integrals w
shall encounter in the Sudakov form factor at the one- an
two-loop level. We consider the logarithmic terms (Ai) and
the constant terms (Bi) using the two-loop expression for
as ; the one-loop expressions are easily recovered in t
,

e
p

e
d

he

limit b2→0. It will be convenient to define the quantities

L15 lnF C1
2

b2L2G ,
L25 lnF C1

2

b2C2
2Q2G[L12L3 , ~G1!

L35 lnFC2
2Q2

L2 G .
First, theA1 term with the two-loop expression foras ,

E
C1
2/b
*
2

C2
2Q2dm2

m2 lnFC2
2Q2

m2 Gas~m;2!

~2!p
A1

5
4A1

~2!b1
S L21L3lnFL3L1G D 1

4A1b2

~2!b1
3 H 1

L2
L1

2
L3ln@L1#

L1

1 ln@L3#1
ln@L3#

22 ln@L1#
2

2 J . ~G2!

TheB1 term with the two-loop expression foras ,

E
C1
2/b
*
2

C2
2Q2dm2

m2

as~m;2!

~2!p
B15

4B1

~2!b1
lnFL3L1G1

4b2B1

~2!b1
3L1L2

3~L12L31L1ln@L3#

2L3ln@L1# !. ~G3!

TheA2 term with the one-loop expression foras ,

E
C1
2/b
*
2

C2
2Q2dm2

m2 S as~m;1!

~2!p D 2A25
16A2

~4!b1
2L1

S 2L22L1lnFL3L1G D .
~G4!
r
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