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Hard gluon emission from colored scalar pairs ine1e2 annihilation
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We study the QCD correction to the pair production of colored scalar particles in electron-position ann
lation with an emphasis on gluon emission in the final state. We discuss the usefulness of working
‘‘quasi-two-body’’ frame and present the helicity amplitudes for the process. We compare the final-s
configuration with fermion pair production and find that the three-jet fraction for the scalars shows quantita
differences from that for fermions.@S0556-2821~96!05815-8#

PACS number~s!: 12.38.Bx, 12.60.Jv, 14.80.Ly
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I. INTRODUCTION

The known elementary particles are either spin-1/2 ferm
ons~quarks and leptons! or spin-1 gauge bosons. No elemen
tary spin-0 particle has been found to date. Yet, scalar p
ticles appear in most field theory models of particles. Higg
bosons are the key ingredient for electroweak symme
breaking in the standard model and its extensions. Supersy
metry predicts a scalar partner for each fermion degree
freedom, thus, the existence of three generations of squa
and sleptons. The grand unified E6 model contains colored
scalar particles that may be interpreted either as leptoqua
or diquarks.

Many of these scalars can be pair produced ine1e2 an-
nihilation with a cross section comparable to or somewh
smaller than that for fermions. Experimental searches f
these particles have been extensively performed@1#.

If the scalar particle is colored~like the squark and lepto-
quark!, the cross section is modified by QCD correction
The calculation of theO(as) correction is essentially the
same as the scalar QED one-loop calculation that has lo
been known.1 TheO(as) correction for the scalar pair pro-
duction is numerically quite important. In the high energ
limit, the total correction factor for scalar pair production i
four times larger than that for fermion pair production@3#:

s„e1e2→zz̄~g!…5s0S 113
CRas

p D , ~1.1!

where s0 is the lowest-order cross section andCR is the
second-order SU~3! Casimir eigenvalue~4/3 for the funda-
mental representation like squarks or leptoquarks!. We use
the notationz to represent a generic colored scalar particle
the representationR. At lower energies, especially in the
threshold region, the correction factor becomes even larg

The totalO(as) correction consists of two parts, a one
loop virtual correction to the lowest-order proces
e1e2→zz̄ and a real gluon emission correction

1A detailed description can be found in Ref.@2#. A typographical
error is corrected in Ref.@3#.
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e1e2→zz̄g, both of which are infrared divergent. This di-
vergence is canceled when the two contributions are adde
Essential for this cancellation is only the part of the three
body phase space where the gluon is soft~or collinear to one
of the scalars when the scalar mass goes to zero!. The rest of
the three-body phase space corresponds to the final state w
a hard gluon, which may be observed as a separate
~‘‘three-jet’’ final state!.

The gluon emission process in scalar top quark pair pro
duction has been studied by Beenakker, Ho¨pker, and Zerwas
@4#, who calculated the fully differential cross section for
e1e2→ t̃ tDg. In the present paper, we derive the cross sec
tion in a different Lorentz frame~‘‘quasi-two-body’’ frame!
in which the helicity amplitudes have a simple interpretation
We then extend their analysis and compare the three-jet cro
sections with those for scalar and fermion pair productio
processes.

The QCD correction we calculate in this paper is just the
effects arising from gluon gauge interactions. In the supe
symmetric standard model there are additional interaction
with the same strength involving gluinos. The gluino cou
pling contribution to the virtualO(as) correction is dis-
cussed by Arhrib, Capdequi-Peyranere, and Djouadi@5#.

II. LOWEST-ORDER CROSS SECTION

We consider the processe1e2→zz̄ that occurs via
s-channelg or Z exchange. Additionalt- or u-channel ex-
changes have to be included for selectron~or electron
sneutrino! production or a leptoquark if it couples to elec-
trons with a non-negligible Yukawa coupling.

In this section we list the lowest-order amplitude and
cross section for completeness. The Feynman graph is sho
in Fig. 1. The amplitude is found to be~see Fig. 1 for the
momentum assignments!

M05
e2

s
Hm~p2 p̄!m , ~2.1!

with
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54 1909HARD GLUON EMISSION FROM COLORED SCALAR . . .
Hm52Qzv̄~ p̄e!g
mu~pe!

1
T3z2Qzsin

2uW
cos2uWsin

2uW

s

s2mZ
2 v̄~ p̄e!g

m~ve2aeg5!u~pe!.

~2.2!

Heres is thee1e2 c.m. energy squared,Qz andT3z are the
electric charge and the third component of weak isospin ofz,
and

ve52 1
41sin2uW , ae52 1

4 . ~2.3!

We will neglect the electron mass throughout the paper.
For longitudinally polarized electrons with polarizationP

colliding with unpolarized positrons, the cross section can b
written

ds5
11P

4
ds11

12P

4
ds2 , ~2.4!

where ds6 denotes the cross section for theeR
2eL

1 and
eL

2eR
1 initial states. We find

ds6

d cosu
5

pdRa2b3

2s
H6
2 sin2u, ~2.5!

with

H652Qz1
~ve7ae!~T3z2Qzsin

2uW!

cos2uWsin
2uW

s

s2mZ
2 . ~2.6!

Here,dR is the dimension of the color SU~3! representation
of z ~3 is for the fundamental representation!, and

b5A124m2/s, ~2.7!

with m being thez mass. Theb3 factor reflects theP-wave
threshold. The total cross section is

s65
2pdRa2b3

3s
H6
2 , ~2.8!

which we will denote bys06.

III. O„as… CORRECTION

A. Virtual one-loop correction

Feynman diagrams for the processe1e2→zz̄ at O(as)
are depicted in Fig. 2. The diagrams~a!–~c! are the one-
particle-irreducible vertex corrections. The mixed four-poin
vertex in ~b! and ~c! appears because the scalar kinetic ter

FIG. 1. Feynman diagram fore1e2→zz̄ at the lowest order.
e

t
m

has two covariant derivatives. The diagrams~d! and~e! arez
self-energy corrections, and the diagrams~f!–~h! show the
counterterm contribution.

We regularize the ultraviolet divergence by dimensiona
reduction2 with D5422e, and the infrared singularity by an
infinitesimal gluon massl. This procedure does not cause
problems with gauge invariance since the diagrams do n
contain non-Abelian gauge vertices.

We adopt the on-shell renormalization scheme to dete
mine the counterterms. The mass and wave function reno
malization constants forz are found to be

dm2

m2 52
CRas

4p F3S 1e2gE1 ln4p D23 ln
m2

m2 17G ,
~3.1!

Zz215
CRas

4p F2S 1e2gE1 ln4p D22 ln
l2

m2G , ~3.2!

wherem is the renormalization scale andgE is the Euler
constant.

2Naive dimensional regularization gives the same physical result
although the finite parts of the renormalization constants differ.

FIG. 2. Feynman diagrams fore1e2→zz̄ atO(as).
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We write thezz̄g vertex function in the form2ieQzLm
with

Lm5F~q2!~p2 p̄!m . ~3.3!

~See Fig. 2 for the definition of the momenta.! Up to the
order we work, thezz̄Z vertex can be written as

2 ie~T3z2Qzsin
2uW!

cosuWsinuW
Lm ~3.4!

with the sameLm . At the lowest order we haveF(q2)51.
The counterterm for the vertex can be found using th

Ward identity. The same result is obtained by requiring n
O(as) correction atq

250, i.e.,F~0!51. Expanding the form
factor as

F~q2!511
CRas

2p
f ~q2!, ~3.5!

we find, forq2.4m2,

f ~q2!5S 2
11b2

2b
ln
11b

12b
11D ln m2

l2

1
11b2

b FLi2S 12b

11b D2 ln
2b

11b
ln
11b

12b

2 1
4 ln

2
11b

12b
1

p2

3 G1
11b2

b
ln
11b

12b
22

1 ip
11b2

2b S ln m2

l2 1 ln
4b2

12b222D . ~3.6!

Here Li2(x) is the dilogarithm ~Spence! function3

Li2(x)52* 0
xdt ln(12t)/t. At O(as), the lowest-order cross

section is multiplied by the factor

11
CRas

p
Re f ~s!. ~3.7!

The infrared singularity is canceled by real gluon emissio
to which we now turn.

B. Real gluon emission

The Feynman diagrams for the processe1e2→zz̄g at the
lowest order are shown in Fig. 3. The amplitudes are foun
to be

M5
e2gsT

a

s
HmF ~p2 p̄1k!mpa

p•k
2

~p2 p̄2k!mp̄a

p̄•k

22gmaGe* a. ~3.8!

HereTa is the SU~3! generator in the representationR.
We calculate the cross section for this process in tw

methods, with agreeing results. One is the conventional tra

3For a convenient expansion for numerical evaluation of diloga
rithm, see Ref.@6#.
e
o

n,

d

o
ce

technique. The other method is a helicity amplitude tech
nique described in Appendix A.

The differential cross section may be parametrized b
four variables. We find it convenient to use the following
four: t, zz̄ c.m. energy squared normalized to
s,t5(p1 p̄)2/s; Q, angle between thee2 and the gluon in
thee1e2 c.m. frame;u, angle between thez and the gluon in
thezz̄ c.m. frame;f azimuthal angle between thee2 and the
z with respect to the gluon, measured from thee2 to the z
direction ~common to both frames!.

The use of these variables is motivated by the fact that th
amplitude can be split into two subprocesses
e1e2→V* (V*5g,Z) andV*→zz̄g, and the latter process
can be most conveniently evaluated in thezz̄ c.m. frame.
The detail and the result for the helicity amplitudes may b
found in Appendix A.

The polarized cross section is

ds6

dt dcosQdcosu df

5
dRa2H6

2

8s

CRas

p
v~12t!$A~11cos2Q!

1B~123 cos2Q!1C sinQ cosQ cosf

1D sin2Q cos2f%, ~3.9!

where

A511
2b2tv2sin2u

~12t!2~12v2cos2u!2
, ~3.10a!

B5
2tv4sin2u cos2u

~12t!2~12v2cos2u!2
, ~3.10b!

C52
4Atv2sinu cosu@b22v21~11t!v2sin2u#

~12t!2~12v2cos2u!2
,

~3.10c!

D52
2tv2sin2u~b22v2cos2u!

~12t!2~12v2cos2u!2
. ~3.10d!-

FIG. 3. Feynman diagrams fore1e2→zz̄g.



54 1911HARD GLUON EMISSION FROM COLORED SCALAR . . .
Here

v5A124m2/ts ~3.11!

is the velocity ofz in the zz̄ c.m. frame.
If one integrates the cross section over the whole thre

body phase space, one encounters infrared divergence c
ing from the soft-gluon region. We separate this region fro
the rest by the condition that the gluon energyk0,v, where
the cutoffv is infinitesimally small.

In this region, we regularize the divergence by giving a
infinitesimal massl to the gluon, which satisfiesl!v. We
recalculate the amplitude with finite mass. The amplitud
factorizes into the lowest-order part and the soft gluon facto
Since a very soft gluon does not alter the kinematics of th
zz̄ state, we can also integrate over the soft-gluon pha
space ignoring momentum conservation. Integrating ov
this soft-gluon region, we find the cross section

ssoft5s0

CRas

p H S 11b2

2b
ln
11b

12b
21D ln 4v2

l2

1
11b2

b FLi2S 12b

11b D2 ln
2b

11b
ln
11b

12b

2 1
4 ln

2
11b

12b
2

p2

6 G1
1

b
ln
11b

12b J , ~3.12!

wheres0 is the lowest-order cross section.
For the rest of the phase space, we can set the gluon m

to zero. We first integrate overQ,f to find

ds6

dtd cosu
5s06

CRas

p

v~12t!

b3

3F11
2b2tv2sin2u

~12t!2~12v2cos2u!2G , ~3.13!

which we will use to study the event configuration in the
next section. The integrated cross section is

shard5s0

CRas

p H S 11b2

2b
ln
11b

12b
21D ln m2

4v2

1
11b2

b F2 Li2S 12b

11b D12 Li2S 2
12b

11b D
2 ln

2

11b
ln
11b

12b
1 1

2 ln
2
11b

12b
2

p2

6 G23 ln
4

12b2

24 ln b2
1

4b3 ~31b2!~12b2!ln
11b

12b

1
1

2b2 ~317b2!J . ~3.14!

Thev dependence cancels out when these two cross s
tions are summed. The infrared divergence is canceled
adding the virtual one-loop correction discussed in the pr
vious subsection.
e-
om-
m

n

e
r.
e
se
er

ass
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C. Total correction

TheO(as) corrected cross section fore
1e2→zz̄(g) can,

thus, be written as

s5s0F11
CRas

p
DG , ~3.15!

where

D5
1

b
A~b!1

1

4b3 ~23110b215b4!ln
11b

12b

1
3

2b2 ~11b2!, ~3.16!

with

A~b!5~11b2!F4 Li2S 12b

11b D12 Li2S 2
12b

11b D
23 ln

2

11b
ln
11b

12b
22 lnb ln

11b

12b G
23b ln

4

12b224b lnb. ~3.17!

This may be compared with the corresponding formulas for
the pair production of a colored fermion pair via vector and
axial vector currents~the detail on the latter may be found in
Appendix C!:

DV5
1

b
A~b!1

33122b227b4

8b~32b2!
ln
11b

12b
1
3~523b2!

4~32b2!
.

~3.18!

DA5
1

b
A~b!1

1

32b3 ~21159b2119b423b6!ln
11b

12b

1
3

16b2 ~27110b21b4!. ~3.19!

The dependence onb of the cross section normalized to
its lowest-order value is shown in Fig. 4. The corresponding
quantities for fermion pair production are also shown for
comparison. The correction for scalars is larger than that for
fermions via vector current for all values ofb. The correc-
tion for fermions via axial current is equal to that for vector
current at the high-energy limit~which reflects the chiral
symmetry in this limit!, but approaches the scalar curve at
small b. This latter behavior reflects the fact that spin does
not play an important role in the nonrelativistic region. The
difference of the vector current result is due to itsS-wave
dynamics in contrast with theP-wave behavior of the others.

At the high energy limitb→1, one finds

D53, DV5DA5 3
4 . ~3.20!

The correction for the scalar pair is four times larger. Near
the threshold, one has

D.DA.
p2

2b
22, DV.

p2

2b
24. ~3.21!
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The terms proportional to 1/b are the consequence of Co
lomb gluon exchange.

It is well known that perturbation expansion inas breaks
down very near the threshold and one has to sum over la
Coulomb gluon diagrams@2#. For the case of scalar pa
production with theP-wave threshold behavior, the lowes
order cross section is proportional tob3, which is modified to
b2 by theO(as) correction. The nonperturbative contribu
tion further enhances the cross section and leads to a con
cross section at the threshold@7#. In the nonrelativistic ap-
proximation with the Coulomb potential~one gluon ex-
change approximation!, the cross section is

s65
2p2dRa2

3s
H6
2

CRas~b21 1
4 CR

2as
2!

@12exp~2pCRas /b!#
, ~3.22!

which gives at the threshold

D5
p2CR

2as
2

4b3 . ~3.23!

This effect becomes important only at very near thresho
b;0.1, however.

If one approaches closer to the threshold, one will
counterP-wavezz̄ bound states, similar to charmonium an
bottomonium resonances. These states are expected
less pronounced than the fermion bound states, since
resonance formation cross section is proportional to the
rivative of the wave function at the origin and is suppress
by a factor ofa s

2 compared to the fermion bound states.
the Coulomb potential approximation, this subthresh
cross section is given by@7#

FIG. 4. TotalO(as) correction to the pair production cross se
tion of scalar pair~solid!; fermion pair via vector current~dash!;
fermion pair via axial current~dotted!. All curves are for particles in
the fundamental color representation~CR54/3! and the strong cou-
pling constantas50.12.
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s65
p2dRa2

12
H6
2 ~CRas!

5(
n52

`
n221

n5
d~s2Mn

2!,

~3.24!

whereMn52m2CR
2a s

2m/4n2. This Coulombic approxima-
tion ignores the effect of confinement and is not adequat
especially for higher bound states. One needs to solve th
Schrödinger equation with a realistic color-force potential to
obtain the cross section in the resonance region.

If z has a short lifetime withG*a s
2m, it does not live long

enough to form a bound state. There will be only a smoot
bump or shoulder instead of the resonances at the thresho
The situation will be similar to the case for the top quark pai
production@8# and the cross section can be calculated quit
reliably within perturbative QCD.

IV. JET CONFIGURATION

In this section we study the shape of the three-body fina
statezz̄g when the gluon is ‘‘visible.’’ We compare various
distributions with those for the more familiar final state of a
fermion pair plus a gluon.

To define the final-state configuration, it is convenient to
use Lorentz-invariant kinematic variables. We use the fol
lowing Dalitz variables

x5
2p•k

s
, x̄5

2p̄•k

s
, ~4.1!

for which the phase-space density is constant. Thezz̄g cross
section is~we drop the subscript6 from here on!

ds

dxdx̄
5s0

CRas

p

1

b F 2b22S 1x1
1

x̄D1
11b2

2

1

xx̄

2
12b2

4 S 1x2 1
1

x̄2D G . ~4.2!

The infrared singularity arises when the gluon energy is ver
small,x; x̄;0. At the high-energy limit, additional singular-
ity arises from the region of the phase space in which th
gluon momentum is parallel to that ofz or z̄. This collinear
region is characterized asx;0 or x̄;0. In these singular
regions, it is practically impossible to observe the existenc
of the extra gluon in the final hadron system. We therefor

treat the z
(2)

1 gluon system as az
(2)

jet when the z
(2)

g
invariant mass is sufficiently close to thez mass.

We thus divide the three-body phase space into the two
jet and three-jet regions. The two-jet region is defined as

x,xc or x̄,xc ~4.3!

and the rest is the three-jet region. The two-jet cross sectio
is the sum of thezz̄ cross section and thezz̄g cross section
in the two-jet region.

In the high-energy limitb→1, the integrated three-jet
cross section is found to be

c-
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s3 j /s05
CRas

p F2Li2~xc!1 ln2xc2
p2

6
22~12xc!

3 ln
12xc
xc

1~322xc!~122xc!G , ~4.4!

whereas for fermions~both vector and axial! we have

s3 j /s05
CRas

p F2Li2~xc!1 ln2 xc2
p2

6

2 1
2 ~12xc!~123xc!ln

12xc
xc

1 5
4 ~122xc!G .

~4.5!

In Fig. 5, we show the three-jet fraction as a function ofxc .
~Here and in the following figures, we plots3 j normalized to
theO(as! total cross section, not to the lowest-order cros
section.! The three-jet fraction for the scalar is larger tha
that for the fermion at largexc but becomes smaller at small
xc&0.1. The approximate form for smallxc is

s3 j /s0.
CRas

p F ln2xc12 lnxc132
p2

6 G ~4.6!

for scalars, and

s3 j /s0.
CRas

p F ln2xc1 3
2 ln xc1

5
42

p2

6 G ~4.7!

for fermions. These predictions are not reliable at very sma
xc since higher-order contributions become important.

The three-jet fraction for finitem has a very complicated
expression and we do not write down the analytic expressi
here. Instead, we show the numerical result fors3 j /s for
several values ofb in Fig. 6. For a fixed value ofxc , the
three-jet fraction rapidly decreases asb becomes smaller.
Hard gluon emission is greatly suppressed when one a
proaches the threshold. This suppression comes from

FIG. 5. Three-jet fraction for scalar~solid! and fermion~dashed!
at the high-energy limit, foras50.12 andCR54/3.
s
n

ll

on

p-
the

available phase space and from the structure of the gluon
emission vertex. The large QCD enhancement near the
threshold can be attributed to the two-jet configuration and
one can assume that most events in the threshold region hav
no extra jets in experimental searches for new colored scala
particles.

Toward the threshold region, the three-jet fraction in Fig.
6 for scalar pairs becomes similar to that for fermion pairs
from the axial current. The fermion pair from the vector
current shows a different behavior. This again reflects the
fact that spin of the particle is not important in the nonrela-
tivistic region.

In jet analyses ine1e2 physics, one normally uses a jet-
defining algorithm by combining momentum of hadrons and
compares the result with the corresponding quantity in the
quark-gluon system. A commonly adopted prescription uses
the invariant mass of the hadron system to define a jet. To
conform with this algorithm, we may use the invariant mass
variables

y5
~p1k!2

s
, ȳ5

~ p̄1k!2

s
, ~4.8!

instead ofx and x̄. These variables are related by

y5x1
m2

s
, ȳ5 x̄1

m2

s
. ~4.9!

The definition of three-jet events in terms ofy is

y.yc and ȳ.yc . ~4.10!

The three-jet fraction as a function ofyc is shown in Fig. 7.
So far we have assumed that we can somehow distinguis

a z jet and a gluon jet. If this is not the case, we need to trea
the three final particles in a democratic way and define the
three-jet region as

y.yc and ȳ.yc and yg.yc , ~4.11!

FIG. 6. Three-jet fraction for scalar~solid!, fermion-vector
~dashed!, and fermion-axial~dotted! for b50.4, 0.6, 0.8, and 1.0,
as50.12 andCR54/3.
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where yg5(p1 p̄)/s. Since the region yg→0 ~or
yg→4m2/s! contains no singularity, this definition does n
lead to significant modification of the result for smallyc . In
the high-energy limitb→1, the three-jet fraction is found to
be

s3 j /s05
CRas

p F2Li2S yc
12yc

D1 ln2
12yc
yc

2
p2

6

22~122yc!ln
122yc
yc

13~12yc!~123yc!G ,
~4.12!

whereas for fermions~both vector and axial! we have

s3 j /s05
CRas

p F2Li2S yc
12yc

D1 ln2
12yc
yc

2
p2

6

2
3

2
~122yc!ln

122yc
yc

1 1
4 ~123yc!~513yc!G .

~4.13!

V. CONCLUSIONS

We have studiedO(as) QCD correction to colored scala
pair production ine1e2 annihilation. Emphasis is put o
gluon emission in the final state. We compared the confi
ration of the three-jet final state with those in fermion p
production and found that the two cross sections are qua
tatively quite different. This has to be taken into account
the search and study of production of scalar particles suc
squarks and leptoquarks at the CERNe1e2 collider LEP 2
and future linear colliders.

In calculating the helicity amplitudese1e2→zz̄g, we
found that it is convenient to decompose the amplitude i
two subprocessese1e2→V* (V*5g,Z) andV*→zz̄g. The
amplitudes take a simple form if one works in two differe
Lorentz frames, thee1e2 c.m. frame for the former and th
zz̄ c.m. frame in the latter. In particular, working in th

FIG. 7. Same as Fig. 6, but as a function of a jet-defining v
ableyc .
ot

r
n
gu-
air
nti-
in
h as

nto

nt
e
e

‘‘quasi-two-body’’ frame in the latter 1→3 subprocess al-
lows one to take advantage of the strong constraints of rota
tional invariance on two-body states.
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APPENDIX A: HELICITY AMPLITUDES FOR e1e2
˜zz̄g

A number of formulations@9# for calculating helicity am-
plitudes @10# are found in the literature. Most of them are
particularly suited for many-body final states and numerica
evaluation of the amplitudes. The technique we employ her
is a method@11# based on the spherical-vector basis, which is
well-suited for manual analytic calculations and gives ampli-
tudes with clear physical interpretations. The method is mos
useful for 2→2 body processes~also 1→2, 2→1!. In these
processes, angular momentum conservation strongly con
strains the form of the amplitudes. In our technique, this
constraint can be explicitly extracted in the form of a Wigner
D function that depends on the scattering angles. This pa
represents the variation of the amplitude that is imposed b
kinematics. The rest of the amplitude contains purely dy-
namical information.

In general, the helicity amplitude for the process

a~pa ,la!1b~pb ,lb!→c~pc ,lc!1d~pd ,ld!

~la is the helicity of the particlea, etc.! in the c.m. frame can
be written as

M5M̃~Ec.m.,cosu;$l%!dl i ,l f

J0 ~u!ei ~l i2l f !f, ~A1!

wherel i5la2lb , l f5lc2ld , J05max(l i ,l f), and~u,f!
are the scattering angles@in the framepW a is along thez axis,
pW c is in the direction~u,f!#. Thedll8

J is the Wignerd func-
tion. The last two factors in this formula represent the ‘‘mini-
mal’’ angular distribution imposed by the kinematics. The
physical meaning ofJ0 is the smallest allowed angular mo-
mentum for the process. The cosu dependence ofM̃ comes
from higher partial waves withJ.J0. If the process has only
one partial wave J ~e.g., for two-body decays or
e1e2→m1m2!, the whole angular dependence can be ex
tracted in the form ofdJ and thef-dependent phase factor.

This technique can be applied to the process we conside
if we note the following two points.

~1! The amplitude can be decomposed into two parts:~a!
production of a virtual vector bosonV* , e1e2→V* ~V5g
or Z!; ~b! the virtual vector boson decaying tozz̄g. The
helicity amplitude for the whole process is the product of the
two amplitudes with a fixedV* helicity ~lV561,0!, which
are then summed over:

M52(
V

1

s2mV
2 (

lV561,0
M~e2e1→V* !

3M~V*→zz̄g!. ~A2!

ari-
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@Note that we need three polarization states for bothg* and
Z* . A fourth ~scalar! polarization state need not be include
sinceV* couples to a conserved current.#

~2! The helicity amplitude for the second 1→3 process
V* (q)→z(p)1 z̄( p̄)1g(k) can be treated in the same wa
as 2→2 processes if one works in the ‘‘quasi-two-body
frame, the c.m. frame oftwo of the final particles~e.g.,zz̄!,
not in theV* c.m. frame. This frame is related to thee1e2

c.m. frame by a boost along the gluon direction.
First, we list the helicity amplitudes for

V* (q,lV)→z(p)1 z̄( p̄)1g(k,l) ~note that the scalar par
ticles have zero helicities!. We take theV* ~andg! direction
as thez axis, and thez direction as~u,f!. We follow the
Jacob-Wick convention to fix the phase of the fermio
vector wave functions. The amplitudes can be written as

M~V*→zz̄g!5gfgsT
aM̃, ~A3!

with

gf5 HQze for V5g,
e~T3z2Qzsin

2uW!/sinuWcosuW for V5Z,
~A4!

andM̃ given by

ln[lV2l562

M̃5
2tv2sin2u

~12t!~12v2cos2u!
eilnf, ~A5!

ln[lV2l561

M̃57
2A2tv2sinu cosu

~12t!~12v2cos2u!
eilnf, ~A6!

ln[lV2l50

M̃52
2tv2sin2u

~12t!~12v2cos2u!
22. ~A7!

The helicity amplitude fore2e1→V* is simpler. We take
theV* direction as thez axis and thee2 direction lying on
the xz plane ~with a positivex component!. The angle be-
tween the two directions is denoted byQ. This choice is
made to relate the two frames by the boost along thez axis,
under which the helicity ofV* does not change. The ampl
tude conserves electron chirality so that on
l i5l(e2)2l(e1)561 is allowed:

M5~21!lVgiA2sdl ilV

1 ~Q!,

with

gi5 H 2e for V5g, l i561,
e~ve7ae!/sinuWcosuW for V5Z, l i561.

~A8!

The explicit form of thed functions needed is
d

y
’’

-

n-

i-
ly

dlm
1 ~Q!5H 1

2 ~11lm cosQ! ulu5umu51,

2
l

&
sinQ ulu51, m50

. ~A9!

APPENDIX B: THREE-BODY PHASE SPACE

The differential cross section can be calculated from the
helicity amplitudes with the Lorentz-invariant three-body
phase space

dF35~2p!4d4~q2p2 p̄2k!

3
d3p

~2p!32p0
d3p̄

~2p!32p̄0
d3k

~2p!32k0
, ~B1!

which in terms of the kinematic variables defined in Section
III is

dF35
sv~12t!

1024p4 dt dcosQ dcosu df, ~B2!

where 12b2,t,1, andv5(124m2/ts)1/2 is thez velocity
in the zz̄ c.m. frame.~We have integrated over one azi-
muthal angle on which the cross section has trivial depen-
dence.!

Two of the kinematic variables,t andu, specify the final-
state configuration and the other two determine the orienta-
tion of the configuration with respect to the initial beam axis.
Integrating overQ andf one has

dF35
sv~12t!

256p3 dt dcosu. ~B3!

For analytic integration over the three-body phase space
for mÞ0, it is easier to use~cosu,v! as the integration vari-
ables, for which the integration region is 0,v,b,21,cosu
,1:

dF35
s~12b2!

128p3

v2~b22v2!
~12v2!3

dvdcosu. ~B4!

The variables (x,x̄) have a special property for which the
phase-space density is constant~Dalitz variables!:

dF35
s

128p3 dxdx̄. ~B5!

The translation is made using

t512x2 x̄, v cosu52
x2 x̄

x1 x̄
. ~B6!

The physical phase-space region is bounded by the inequal
ity

xx̄~12x2 x̄!2
m2

s
~x1 x̄!2.0. ~B7!
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APPENDIX C: FORMULAS FOR FERMION PAIR
PRODUCTION

We collect results for the familiar process of fermion pa
productione1e2→FF̄(g) @2,12,13# in this Appendix. These
results have been independently calculated by us. TheFF̄g
andFF̄Z vertices in the lowest order have the form

2 ieQFgm and 2
ie

cosuWsinuW
gm~vF2aFg5!, ~C1!

with

vF5 1
2 @T3~FL!1T3~FR!#2QFsin

2uW , ~C2!

aF5 1
2 @T3~FL!2T3~FR!#. ~C3!

At O(as), the correction factor is common for the photon
and the vector part of theZ current. The axial part of theZ
current is modified differently ifmFÞ0. We write the gen-
eral Lorentz structure of the vector and axial vertices fo
on-shell fermions,

Gm5F1
V~q2!gm1F2

V~q2!ismnq
n/mF ~C4!

for the vector current, and

Gm
55F1

A~q2!gmg51F2
A~q2!qmg5 /mF ~C5!

for the axial vector current. We have retained only term
appearing atO(as), i.e., terms allowed byCP invariance
and vector current conservation. We normalize the vertic
such thatF 1

V,A51 at the lowest order.F 2
V,A do not appear in

this order.
We write theO(as) corrected vertices as

F1
V,A~q2!511

CRas

2p
f 1
V,A~q2!, ~C6!

F2
V,A~q2!5

CRas

2p
f 2
V,A ~q2!. ~C7!

We find the renormalized vector form factors forq2.4mF
2:

f 1
V5S 2

11b2

2b
ln
11b

12b
11D ln mF

2

l2 1
11b2

b FLi2S 12b

11b D
1 ln

11b

2b
ln
11b

12b
2 1

4 ln
2
11b

12b
1

p2

3 G
1
112b2

2b
ln
11b

12b
221 ipF11b2

2b S ln mF
2

l2

1 ln
4b2

12b2D 2
112b2

2b G , ~C8!

f 2
V5

12b2

4b S 2 ln
11b

12b
1 ip D , ~C9!

where b5~124mF
2/q2!1/2. We have used on-mass-shel

renormalization condition such thatF 1
V~0!51. Once the pre-

scription for the vector vertex is fixed, there is no freedom
choose a renormalization condition for the axial vertex b
ir

r

s

es

l

to
e-

cause of electroweak gauge symmetry. In particular,F 1
A~0!

deviatesfrom unity. The axial form factors are found to be

f 1
A5S 2

11b2

2b
ln
11b

12b
11D ln mF

2

l2 1
11b2

b FLi2S 12b

11b D
1 ln

11b

2b
ln
11b

12b
2 1

4 ln
2
11b

12b
1

p2

3 G
1
21b2

2b
ln
11b

12b
221 ipF11b2

2b S ln mF
2

l2 1 ln
4b2

12b2D
2
21b2

2b G , ~C10!

f 2
A5

12b2

4b F ~21b2!S 2 ln
11b

12b
1 ip D12bG .

~C11!

The second form factorF 2
A represents the pseudoscalar part

of the axial current and does not contribute to the reaction we
are interested in as long as the electron mass is neglected.

The differential cross section for the three-bodyFF̄g final
state is for the vector current

ds6
V

dt d cosu
5s06

V CRas

p

v~12t!

b~32b2! F11v2cos2u
12v2cos2u

1
2~32b2!tv2sin2u

~12t!2~12v2cos2u!2G , ~C12!

and for the axial vector current

ds6
A

dt d cosu
5s06

A CRas

p

v~12t!

2b3 F22b21v2cos2u
12v2cos2u

1
4b2tv2sin2u

~12t!2~12v2cos2u!2G , ~C13!

with the lowest-order cross sections

s06
V 5

8pdRa2

3s
HV6
2 b~32b2!

2
, ~C14!

s06
A 5

8pdRa2

3s
HA6
2 b3. ~C15!

HereHV6 andHA6 are given by

HV652QF1
~ve7ae!vF
cos2uWsin

2uW

s

s2mZ
2 , ~C16!

HA65
~ve7ae!aF
cos2uWsin

2uW

s

s2mZ
2 . ~C17!

In terms of the Dalitz variables, we have for the vector
current
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ds6
V

dxdx̄
5s06

V CRas

p

1

b F 1

32b2 S x̄x1
x

x̄D2S 1x1
1

x̄D
1
11b2

2

1

xx̄
2
12b2

4 S 1x21 1

x̄2D G . ~C18!

and for the axial vector current

ds6
A

dxdx̄
5s06

A CRas

p

1

b F32b2

4b2 S x̄x1
x

x̄D1
12b2

2b2 2S 1x1
1

x̄D
1
11b2

2

1

xx̄
2
12b2

4 S 1x2 1
1

x̄2D G . ~C19!

The totalO(as) correction can be written as the sum of
the three contributions, virtual, soft, and hard corrections
We list each correction term for the scalar-pair productio
for comparison:

Dvirtual5
1

b
Av~b!1

11b2

b
ln
11b

12b
22, ~C20!

Dsoft5
1

b
As~b!1

1

b
ln
11b

12b
, ~C21!

Dhard5
1

b
Ah~b!2

1

4b3 ~31b2!~12b2!ln
11b

12b

1
1

2b2 ~317b2!, ~C22!

where we have collected the ‘‘dilogarithmic’’ part~diloga-
rithm and double log terms! into the functionsAi( i5v,s,h):

Av~b!5S 2
11b2

2
ln
11b

12b
1b D ln m2

l2 1~11b2!

3FLi2S 12b

11b D2 ln
2b

11b
ln
11b

12b

2 1
4 ln

2
11b

12b
1

p2

3 G , ~C23!

As~b!5S 11b2

2
ln
11b

12b
2b D ln 4v2

l2 1~11b2!

3FLi2S 12b

11b D2 ln
2b

11b
ln
11b

12b
.
n

2 1
4 ln

2
11b

12b
2

p2

6 G , ~C24!

Ah~b!5S 11b2

2
ln
11b

12b
2b D ln m2

4v2 1~11b2!

3F2 Li2S 12b

11b D12 Li2S 2
12b

11b D
2 ln

2

11b
ln
11b

12b
1 1

2 ln
2
11b

12b
2

p2

6 G
23b ln

4

12b224b ln b. ~C25!

The functionA~b! in Eq. ~3.17! is the sum of these three:

A~b!5Av~b!1As~b!1Ah~b!. ~C26!

Turning to the fermion-pair production, it is found that the
dilogarithmic terms are exactly the same as for the scalar
pair production. For the vector part we find

Dvirtual
V 5Re f 1

V1
6

32b2 Re f 2
V

5
1

b
Av~b!1

b~42b2!

32b2 ln
11b

12b
22, ~C27!

Dsoft
V 5

1

b
As~b!1

1

b
ln
11b

12b
, ~C28!

Dhard
V 5

1

b
Ah~b!1

922b21b4

8b~32b2!
ln
11b

12b
1
39217b2

4~32b2!
,

~C29!

and, for the axial vector part,

Dvirtual
A 5

1

b
Av~b!1

21b2

2b
ln
11b

12b
22, ~C30!

Dsoft
A 5

1

b
As~b!1

1

b
ln
11b

12b
, ~C31!

Dhard
A 5

1

b
Ah~b!1

1

32b3 ~2125b213b423b6!ln
11b

12b

1
1

16b2 ~221162b213b4!. ~C32!
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