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Hard gluon emission from colored scalar pairs ine*e™ annihilation
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We study the QCD correction to the pair production of colored scalar particles in electron-position annihi-
lation with an emphasis on gluon emission in the final state. We discuss the usefulness of working in a
“quasi-two-body” frame and present the helicity amplitudes for the process. We compare the final-state
configuration with fermion pair production and find that the three-jet fraction for the scalars shows quantitative
differences from that for fermion$S0556-282(96)05815-9

PACS numbdrs): 12.38.Bx, 12.60.Jv, 14.80.Ly

[. INTRODUCTION ete”— (g, both of which are infrared divergent. This di-
vergence is canceled when the two contributions are added.

The known elementary particles are either spin-1/2 fermi-Essential for this cancellation is only the part of the three-
ons(quarks and leptonsr spin-1 gauge bosons. No elemen- body phase space where the gluon is goftcollinear to one
tary spin-0 particle has been found to date. Yet, scalar palf the scalars when the scalar mass goes to)z&he rest of
ticles appear in most field theory models of particles. Higgghe three-body phase space corresponds to the final state with
bosons are the key ingredient for electroweak symmetrya hard gluon, which may be observed as a separate jet
breaking in the standard model and its extensions. Supersynithree-jet” final state.
metry predicts a scalar partner for each fermion degree of The gluon emission process in scalar top quark pair pro-
freedom, thus, the existence of three generations of squarkkiction has been studied by Beenakkerpkier, and Zerwas
and sleptons. The grand unifie Brodel contains colored [4], who calculated the fully differential cross section for
scalar particles that may be interpreted either as Ieptoquarl§e’—>t tg. In the present paper, we derive the cross sec-
or diquarks. tion in a different Lorentz framé"‘quasi-two-body” frame

Many of these scalars can be pair produce@i®~ an-  in which the helicity amplitudes have a simple interpretation.
nihilation with a cross section comparable to or somewhatVe then extend their analysis and compare the three-jet cross
smaller than that for fermions. Experimental searches fosections with those for scalar and fermion pair production
these particles have been extensively perforiigd processes.

If the scalar particle is coloredike the squark and lepto- The QCD correction we calculate in this paper is just the
guark, the cross section is modified by QCD corrections.effects arising from gluon gauge interactions. In the super-
The calculation of theD(a,) correction is essentially the symmetric standard model there are additional interactions
same as the scalar QED one-loop calculation that has longith the same strength involving gluinos. The gluino cou-
been knowr. The O(«a,) correction for the scalar pair pro- pling contribution to the virtualO(es) correction is dis-
duction is numerically quite important. In the high energy cussed by Arhrib, Capdequi-Peyranere, and Djo(&aHi
limit, the total correction factor for scalar pair production is

four times larger than that for fermion pair productifsi:
Il. LOWEST-ORDER CROSS SECTION

_ Coa _
0'(e+e—>§§(g))20'0(1+3 R S), (1.1 We consider the process*e™—/{ that occurs via
m s-channely or Z exchange. Additional- or u-channel ex-
changes have to be included for selectr(r electron

where oy is the lowest-order cross section a@g is the . : e
sneutring production or a leptoquark if it couples to elec-

second-order S(3) Casimir eigenvalué4/3 for the funda- ith liaibl K .
mental representation like squarks or leptoquarkge use trons with a non-negligible Yukawa coupling.

the notatior? to represent a generic colored scalar particle in In this section we list the lowest-order amplitudp and
the representatioiR. At lower energies, especially in the cross section for completgness. The Feynmap graph is shown
n Fig. 1. The amplitude is found to besee Fig. 1 for the

threshold region, the correction factor becomes even Iarger’. .
The totalO(as) correction consists of two parts, a one- momentum assignments
loop virtual correction to the lowest-order process
ete"—¢¢ and a real gluon emission correction e?
Mo=-5 H¥(P=P)u, (2.9)

IA detailed description can be found in RE2]. A typographical
error is corrected in Ref3]. with
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FIG. 1. Feynman diagram fcnr+e‘—>§{_at the lowest order.

H#=—Q.v(pe) ¥u(pe)

coZOysif by, S—m2 v(Pe) Y*(ve—aeYs)U(Pe).-

(2.2

Heres is thee™e™ c.m. energy square®@, and Ty, are the

electric charge and the third component of weak isospifj of

and

Ve=— 3 +SiMfly, a,=-— 1. (2.3
We will neglect the electron mass throughout the paper.
For longitudinally polarized electrons with polarizatién

colliding with unpolarized positrons, the cross section can be

written

1_
4

_1+P

d Pd
o= o_,

do, + (2.9

where do.. denotes the cross section for tlege,” and
e ey initial states. We find

do. wdga®B®

2 .
Tood - 25 HZ sirfe, (2.5
with
He=—Q,+ coS6y,Sirt Oy, s—m2’ 2.6

Here,dy is the dimension of the color SB) representation
of ¢ (3 is for the fundamental representatipand

B=+\1—4m?/s, (2.7

with m being the mass. Thes® factor reflects thé>-wave
threshold. The total cross section is

27TdRa2,83 2
or=—3- HI, (2.9
which we will denote byoy...

Ill. O(as) CORRECTION
A. Virtual one-loop correction

Feynman diagrams for the procees%e‘ﬂgg_at O(ay)
are depicted in Fig. 2. The diagrania—(c) are the one-
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FIG. 2. Feynman diagrams fe e — ¢ at O(ay).

has two covariant derivatives. The diagrafdsand(e) are(
self-energy corrections, and the diagraffis-(h) show the
counterterm contribution.

We regularize the ultraviolet divergence by dimensional
reductiorf with D=4—2¢, and the infrared singularity by an
infinitesimal gluon masa.. This procedure does not cause
problems with gauge invariance since the diagrams do not
contain non-Abelian gauge vertices.

We adopt the on-shell renormalization scheme to deter-
mine the counterterms. The mass and wave function renor-
malization constants fof are found to be

o' Crs[of el s ™ 47
T g | S et m3in a4,
(3.1
7,-1=R% o1 s 2|K2 3.2
¢ = A P YE naar nIu/2, ()

where u is the renormalization scale ang is the Euler
constant.

particle-irreducible vertex corrections. The mixed four-point 2Naive dimensional regularization gives the same physical results,
vertex in(b) and (c) appears because the scalar kinetic termalthough the finite parts of the renormalization constants differ.
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We write thegZ/ vertex function in the form-ieQ.A, et (p.)
with

AL=F(@)(p=p),- 3.3

(See Fig. 2 for the definition of the momentalp to the
order we work, the/{Z vertex can be written as

COosh\,Sinbdyy w

e (pe)

(3.9

with the sameA ,. At the lowest order we have(g?)=1.

The counterterm for the vertex can be found using the
Ward identity. The same result is obtained by requiring no
O(ay) correction ag?=0, i.e.,F(0)=1. Expanding the form
factor as

Crasg

(b) \ (c)

F(g®)=1+ = f(q?), (3.5 FIG. 3. Feynman diagrams fe e” — {{g.
we find, for g?>4m?, tgchnique. The gther methpd is a helicity amplitude tech-
nigue described in Appendix A.
1+82 1+8 m?2 The differential cross section may be parametrized by
f(g®)=| — 5 In T+1)|n — four variables. We find it convenient to use the following
B -8 A four: 7, {{ c.m. energ d lized
I .m. y squared normalize
1+8%]  [1-8 2B 1+ s,7=(p+p)?/s; O, angle between the™ and the gluon in
+ B Li, 1+,6') =1 1+8 In 1-8 thee"e™ c.m. frame;¢, angle between th&and the gluon in
the c.m. frame;¢ azimuthal angle between tlee and the
L L 1tB w1+ 1+ £ with respect to the gluon, measured from #ieto the ¢
—z1In mﬂL 3 8 In m_z direction(common to both frames
The use of these variables is motivated by the fact that the
C1+B7 ) mP 432 amplitude can be split into two subprocesses
T3 In <z +In 1_—32_2 B8  efe  V*(V*=4,2) andV* —{{g, and the latter process

can be most conveniently evaluated in thé& c.m. frame.

Here Li(x) is the dilogarithm (Spence functio®  The detail and the result for the helicity amplitudes may be

Liy(x)=—f§dtIin(1—t)/t. At O(a), the lowest-order cross found in Appendix A.

section is multiplied by the factor The polarized cross section is
1+ SRYS ot 3 dos
x Ref(s) S dr dcosddcosd de

The infrared singularity is canceled by real gluon emission,
to which we now turn.

B. Real gluon emission

The Feynman diagrams for the proceésa‘ﬂgg_g at the
lowest order are shown in Fig. 3. The amplitudes are found
to be where

e 89T L[ (P=PHK)Pe (P=P—K),Pa
S p-k p-k

—2Q,4|€" " (3.9

HereT? is the SU3) generator in the representatién
We calculate the cross section for this process in two

methods, with agreeing results. One is the conventional trace C=

3For a convenient expansion for numerical evaluation of diloga-
rithm, see Ref[6].

dra?H2 C
= RE 7= RYs (11— I{A(L+co20)

8s T
+B(1—3 cog0)+C sin® codd cosp
+D sirf® cos2p}, (3.9
B 2B%1v2sint g
A= o1 =0%c0g0)? (3.103
27v%sirfg cos o
(3.10b

B= A= 921=v%c020)?"

4\[rv2sind codd[ B2—v2+ (1+ 7)v2sirt 6]

(1-7)°(1—v°cos6)? ’
(3.100

_ 27’sirf( B2 v?cos0)
D=- (1-7)2(1—v%c0g6)? (3.109
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Here C. Total correction
The O(a,) corrected cross section fer e’—>§§_(g) can,
=V1-4m/rs (3.1)  thus, be written as
is the velocity of{ in the gg_c.m. frame. _ Cras
If one integrates the cross section over the whole three- o=0o 1+ Al (3.19
body phase space, one encounters infrared divergence com-
ing from the soft-gluon region. We separate this region fromwhere
the rest by the condition that the gluon enekdy<w, where 1 1 148
the cutoff w is infinitesimally small. A== A(B)+ —=(—3+1082+58%)In
In this region, we regularize the divergence by giving an B (B) 4[33( 3 ) 1-8
infinitesimal mass\ to the gluon, which satisfies<w. We 3
recalculate the amplitude with finite mass. The amplitude + = (1482 (3.16
factorizes into the lowest-order part and the soft gluon factor. B
Since a very soft gluon does not alter the kinematics of the
(¢ state, we can also integrate over the soft-gluon phas¥ith
space ignoring momentum conservation. Integrating over 1-8 1-8
this soft-gluon region, we find the cross section = 2 i —= TN
g g A(B)=(1+p8 )[4 Li, 178 +2 L|2< 1+,3)
Cras (1+32 1+ ) 4w? 2 1+ +B
Osoft= 00 Ing—51]/In—= =3I In7—z-2IBn }
+1+,82{L_ —,3) | 28 | 1+8 4
[ —In n _
B 21+ 1+8 1-p 3B In 7= =g P Ins. (3.17
2
— 12 18 T ! In 1+ B] (3.12  This may be compared with the corresponding formulas for
1-p 6 ,3 1-p the pair production of a colored fermion pair via vector and
axial vector currentgthe detail on the latter may be found in
whereay is the lowest-order cross section. Appendix O:
For the rest of the phase space, we can set the gluon mass ) . X
to zero. We first integrate ové®, ¢ to find A 1 AB)+ 33+22p°-1pB 0 1+8 3(5-3p9)
B 8B(3-8) 1-B 4(3-pB)°
do. Crasv(l—1) (3.18
drd co® 7%* " & ,8E 1 1 14
28270 2sirR0 AA:E A(B)+ 3233(21+59/32+ 1984—3.5%)In 15
X .
iz vkeoge) BB ,
+ 1eg2 (~ 7+108%+ B%). (3.19
which we will use to study the event configuration in the B
next section. The integrated cross section is The dependence of of the cross section normalized to
’ ’ its lowest-order value is shown in Fig. 4. The corresponding
P Cras | [1+5 In 1+,8_1 In m~ quantities for fermion pair production are also shown for
hard™ 0 28 1-8 4w? comparison. The correction for scalars is larger than that for
14 52 1- 1— fermions via vector current for all values @f The correc-
B 2 Li,| —— P +2 le( — ﬁ) tion for fermions via axial current is equal to that for vector
B 1+p 1+ current at the high-energy limitwhich reflects the chiral
5 14 2 symmetry in this limij, but approaches the scalar curve at
—In In 1+p 12 Hp } In——, small 3. This latter behavior reflects the fact that spin does
1+ 1-p 1-p 6 1-B not play an important role in the nonrelativistic region. The
+B difference of the vector current result is due to $svave
—41In B— —3 (3+B%)(1—- B2 )In dynamics in contrast with the-wave behavior of the others.
4/3 1-8 At the high energy limit3—1, one finds
1
top (3+7ﬁ2)]. (3.14 A=3, Ay=Aa= (3.20

The correction for the scalar pair is four times larger. Near
The » dependence cancels out when these two cross sethe threshold, one has
tions are summed. The infrared divergence is canceled by ) )
adding the virtual one-loop correction discussed in the pre- A=A 7" 2 Ay~ 77 4 (3.21)
vious subsection. Y] V2B '
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2.0 m - . ' m2dga? n?— 1
\\ - = %g#lglrongvector) 7= 1R H (CRaS) E 5(8 Mn)
\ = === fermion (axial)
1.8F ! 1 (324
whereM,,=2m~— C %a 2m/4n?. This Coulombic approxima-
161 tion ignores the effect of confinement and is not adequate
%0 espe"cially for higher bound states. One needs to solve the
Schralinger equation with a realistic color-force potential to
14} obtain the cross section in the resonance region.
If £ has a short lifetime witl'=a2m, it does not live long
enough to form a bound state. There will be only a smooth
121 bump or shoulder instead of the resonances at the threshold.

The situation will be similar to the case for the top quark pair
production[8] and the cross section can be calculated quite
1.0 . . . . reliably within perturbative QCD.

B IV. JET CONFIGURATION

In this section we study the shape of the three-body final
stateZ{g when the gluon is “visible.” We compare various
fermion pair via axial curreniotted. All curves are for particles in ?'St”_bunon.s Wllth thoTe for the more familiar final state of a
the fundamental color representati@g=4/3) and the strong cou- ermion p,a'r plus ,a giuon. . . o .

; _ To define the final-state configuration, it is convenient to
pling constantas=0.12. . ; : . 8
use Lorentz-invariant kinematic variables. We use the fol-
lowing Dalitz variables

FIG. 4. TotalO(«g) correction to the pair production cross sec-
tion of scalar pair(solid); fermion pair via vector currenfdash;

The terms proportional to B/are the consequence of Cou-
lomb gluon exchange. _
It is well known that perturbation expansion df breaks Y= 2p_k vl 2p_k
down very near the threshold and one has to sum over ladder s s ’
Coulomb gluon diagram$2]. For the case of scalar pair
production with theP-wave threshold behavior, the lowest-
order cross section is proportional 8, which is modified to
B by the O(ay) correction. The nonperturbative contribu-
tion further enhances the cross section and leads to a constant

(4.2

for which the phase-space density is constant. ZI'J_gacross
section is(we drop the subscript from here on

cross section at the threshdld]. In the nonrelativistic ap- do  Cgas 1 [3_(£ 4} 1+p i
proximation with the Coulomb potentiglone gluon ex- dxdx ° w7 B|pB? 2 XX
change approximatignthe cross section is )
1= ,B 1
(—2 —) (4.2

2mdga® Cras(B?+ § Chal 3.2
7= 3s *[1—exp —7mCras/B)] .22 The infrared singularity arises when the gluon energy is very
small,x~x~0. At the high-energy limit, additional singular-
ity arises from the region of the phase_space in which the
gluon momentum is parallel to that gfor {. This collinear
region is characterized as~0 or x~0. In these singular

which gives at the threshold

2022 regions, it is practically impossible to observe the existence

ar Ras . .

A= 4—,83 (3.23 of the extra gluon in the final hadron system. We therefore
(=) (=) (=)

treat the ¢ + gluon system as al jet when the { g
invariant mass is sufficiently close to tljanass.
This effect becomes important only at very near threshold, e thus divide the three-body phase space into the two-

B~0.1, however. jet and three-jet regions. The two-jet region is defined as
If one approaches closer to the threshold, one will en-

counterP-wave / bound states, similar to charmonium and
bottomonium resonances. These states are expected to be
less pronounced than the fermion bound states, since the
resonance formation cross section is proportional to the deand the rest is the three-jet region. The two-jet cross section
rivative of the wave function at the origin and is suppresseds the sum of the{ cross section and th&/g cross section

by a factor ofa? compared to the fermion bound states. Inin the two-jet region.

the Coulomb potential approximation, this subthreshold In the high-energy limitB—1, the integrated three-jet
cross section is given biy7] cross section is found to be

X<Xe OF X<X, (4.3
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w2 available phase space and from the structure of the gluon-
[ZLiZ(Xc)_HnZXc_ 5 217X emission vertex. The large QCD enhancement near the
threshold can be attributed to the two-jet configuration and
one can assume that most events in the threshold region have
' (4.4 no extra jets in experimental searches for new colored scalar
particles.
whereas for fermiongboth vector and axialwe have Toward the threshold region, the three-jet fraction in Fig.
6 for scalar pairs becomes similar to that for fermion pairs
) ) from the axial current. The fermion pair from the vector
2Liz(Xe) +In" X = = current shows a different behavior. This again reflects the
fact that spin of the particle is not important in the nonrela-
tivistic region.
' In jet analyses ire" e~ physics, one normally uses a jet-
defining algorithm by combining momentum of hadrons and
(4.5 compares the result with the corresponding quantity in the
In Fig. 5, we show the three-jet fraction as a functioxpf ~ duark-gluon system. A commonly adopted prescription uses
(Here and in the following figures, we plet; normalized to the invariant mass of the hadron system to define a jet. To

the O(a,) total cross section, not to the lowest-order crossconform with this algorithm, we may use the invariant mass
section) The three-jet fraction for the scalar is larger thanvariables
that for the fermion at largg, but becomes smaller at small

Cras

0'3j/0'0:

1-x,

XIn +(3—2x.)(1—-2x.)

c

Cras 2

0'3]'/0'0:

1-—X¢
XC

— 2 (1—x%o)(1—3xy)In + 2 (1-2x,)

2 " 2
X.=0.1. The approximate form for smai, is y= (pJ;k) . y= (pJ;k) , (4.9
CRaS 2 772 _
o3jlog= "X+ 21X +3- &= (4.6 instead ofx andx. These variables are related by
2 2
for scalars, and =x+ m V=x1 m (4.9
y= S’ = s .
il _ Cras In2x+§lnx+5—ﬂ-—2 (4.7)
T390 ¢’ 2 ¢4 6 ' The definition of three-jet events in terms yfis
for fermions. These predictions are not reliable at very small y>y. andy>y.. (4.10

X¢ since higher-order contributions become important.

The three-jet fraction for finiten has a very complicated The three-jet fraction as a function @f is shown in Fig. 7.
expression and we do not write down the analytic expression So far we have assumed that we can somehow distinguish
here. Instead, we show the numerical result égf/c for  a{jet and a gluon jet. If this is not the case, we need to treat
several values of3 in Fig. 6. For a fixed value ok, the the three final particles in a democratic way and define the
three-jet fraction rapidly decreases gsbecomes smaller. three-jet region as
Hard gluon emission is greatly suppressed when one ap-

proaches the threshold. This suppression comes from the y>y. andy>y. andyg>y., (4.11
1 i T 1 T T T T T T T T
= - = %gfrlnairon \ - - ?g?giron vector)
-=-=-- fermion Eaxial) ]
o1t 0.1}
% %5 001}
G 001} o
0.001
0.001 ¢
0.0001
0.0001
0.01

Xe
Xe

FIG. 6. Three-jet fraction for scala¢solid), fermion-vector
FIG. 5. Three-jet fraction for scalésolid) and fermion(dasheg (dashed, and fermion-axialdotted for 5=0.4, 0.6, 0.8, and 1.0,
at the high-energy limit, forrsz=0.12 andCr=4/3. as=0.12 andCg=4/3.
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( — “guasi-two-body” frame in the latter -3 subprocess al-
calar lows one to take advantage of the strong constraints of rota-
=03 LT fgrmion (vecton tional invariance on two-body states.

- --~ fermion (axial)
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APPENDIX A: HELICITY AMPLITUDES FOR e*e™—{{g

A number of formulation$9] for calculating helicity am-
. L . plitudes[10] are found in the literature. Most of them are
0 0.1 0.2 0.3 0.4 0.5 particularly suited for many-body final states and numerical
evaluation of the amplitudes. The technique we employ here
Ye is a method11] based on the spherical-vector basis, which is
well-suited for manual analytic calculations and gives ampli-
tudes with clear physical interpretations. The method is most
useful for 2-2 body processe&lso 1-2, 2—1). In these
processes, angular momentum conservation strongly con-
strains the form of the amplitudes. In our technique, this
constraint can be explicitly extracted in the form of a Wigner
D function that depends on the scattering angles. This part

0.0001

FIG. 7. Same as Fig. 6, but as a function of a jet-defining vari-
abley..

where ygz(p+ﬁls. Since the region y,—0 (or
yg—>4m2/s) contains no singularity, this definition does not
lead to significant modification of the result for smgjl. In
the high-energy limit3—1, the three-jet fraction is found to

be represents the variation of the amplitude that is imposed by
kinematics. The rest of the amplitude contains purely dy-
Cras Ve —y, w2 namical information.
T3 /00=T 2Li2( -y +1In? y 5 In general, the helicity amplitude for the process
Cc Cc
1-2y, a(Pa:Na) +b(Pp,Ap) = C(Pe Ne) +d(Pg . Na)
—2(1-2y¢)In +3(1-y)(1-3yd) | : . : :
c (\4 is the helicity of the particla, etc) in the c.m. frame can
(4.12 be written as
whereas for fermiongboth vector and axialwe have M=/’\v/l(Ec_m_,coa9;{)\})df\?yM(a)e‘(“i‘“f)da, (A1)
2
0'3'/0'0:% 2L|2( yC )+In2 ﬂ_w— Where)\i:)\a_)\b’)\f:)\C_)\d"]O:rr_laXO\i1)\f)1and(0a¢)
! T 1-vy, Ye 6 are the scattering anglés the framep, is along thez axis,
3 1-2y P, is in the direction(6,¢)]. Thedf\w is the Wignerd func-
—=(1-2yy)In S+ 1 (1-3y.)(5+3y.)|. tion. The last two factors in this formula represent the “mini-
2 c mal” angular distribution imposed by the kinematics. The

(4.13 physical meaning od, is the smallest allowed angular mo-
mentum for the process. The céslependence oM comes
from higher partial waves with>J,. If the process has only
one partial waveJ (e.g., for two-body decays or

We have studie®(as) QCD correction to colored scalar e*e”—u*u”), the whole angular dependence can be ex-
pair production inete™ annihilation. Emphasis is put on tracted in the form ofi? and the¢-dependent phase factor.
gluon emission in the final state. We compared the configu- This technique can be applied to the process we consider
ration of the three-jet final state with those in fermion pairif we note the following two points.

production and found that the two cross sections are quanti- (1) The amplitude can be decomposed into two pags:

tatively quite different. This has to be taken into account inproduction of a virtual vector bosow*, e"e” —V* (V=1

the search and study of production of scalar particles such ag Z); (b) the virtual vector boson decaying #'g. The

squarks and leptoquarks at the CERNe™ collider LEP 2 helicity amplitude for the whole process is the product of the

and future linear colliders. _ two amplitudes with a fixed/* helicity (\,==*1,0), which

In calculating the helicity amplitudes™e™ — (g, we  are then summed over:

found that it is convenient to decompose the amplitude into

two subprocesses'e” — V* (V* =y,Z) andV* — ({g. The M=— >

amplitudes take a simple form if one works in two different CF s—min o

Lorentz frames, the"e™ c.m. frame for the former and the _

¢ c.m. frame in the latter. In particular, working in the X M(V*—=¢L9). (A2)

V. CONCLUSIONS

M(e et —=V*)
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[Note that we need three polarization states for bgtrand 101+ A coPd AM=lul=1
Z*. A fourth (scalaj polarization state need not be included 1 2( K ) IM=lul=1,
sinceV* couples to a conserved currdnt. dy (@)= A . (A9)

(2) The helicity amplitude for the second—I3 process B ‘E Sin®  [A|=1, =0

V*(q)—Z(p)+ ¢(p) + g(k) can be treated in the same way
as 2-2 processes if one works in the “quasi-two-body”
frame, the c.m. frame dfvo of the final particlege.qg., ), APPENDIX B: THREE-BODY PHASE SPACE
not in theV* c.m. frame. This frame is related to tk€e™
c.m. frame by a boost along the gluon direction.

First, we list the  helicity amplitudes for
V*(g,My)—Z(p) + Z(p) +a(k,\) (note that the scalar par-
ticles have zero helicitigsWe take theV* (andg) direction
as thez axis, and thel direction as(6,¢). We follow the

The differential cross section can be calculated from the
helicity amplitudes with the Lorentz-invariant three-body
phase space

ddz=(2m)*5%q—p—p—k)

Jacob-Wick convention to fix the phase of the fermion- d3p d3p d3k
vector wave functions. The amplitudes can be written as X(zﬂ_)gzpo (2m)32p0 (2m)32K°" (BY)
* o) — anr,
MV*—{{9)=019sT" M, (A3) which in terms of the kinematic variables defined in Section
Il is
with
sv(l—7
| Qe for V=y, dq)3:#4n_4) d7 dcos® dcosd de, (B2)
9= (T3, — Q,sirOy)/singycosddy, for V=2,
A4
(A4) where 1 B2<7<1, andv = (1—4m?/ 7s)*? is the ¢ velocity
and M given by in the ¢ c.m. frame.(We have integrated over one azi-
muthal angle on which the cross section has trivial depen-
An=Ay—A=£2 dence)
Two of the kinematic variables;and 6, specify the final-
_ 2 10 2sirk 6 state configuration and the other two determine the orienta-
M= 2o gitnd, (A5) tion of the configuration with respect to the initial beam axis.
(1=7)(1-v"cos0) Integrating over® and ¢ one has
M a0, =277 4 doos B3
) T 7 dcosh. (B3)
~ 2+/27v2siné cow o
M:I 1 1 2 320 el n¢, (AG)
(1=7)(1-v"cos o) For analytic integration over the three-body phase space
for m#0, it is easier to usécos#,v) as the integration vari-
Ap=Ay—A=0 ables, for which the integration region is@ <3,—1<cos#

<1:
21v2sinf o

(1-7)(1—v2cos6)

./—\U/l:_ 2. (A7) s(l_BZ) UZ(BZ_UZ)

dPs= 1287° (1—02)3

dvdcos. (B4)

The helicity amplitude foe~e™ — V* is simpler. We take
the V* direction as the axis and thee™ direction lying on
the xz plane (with a positivex component The angle be-
tween the two directions is denoted 6% This choice is
made to relate the two frames by the boost alongzthais, s
under which the helicity o¥/* does not change. The ampli- ddy=-——— dxdx (B5)
tude conserves electron chirality so that only 128w
Ni=\(e7)—\(eT)==*1 is allowed:

The variables X,x) have a special property for which the
phase-space density is constédbalitz variables:

The translation is made using
M=(=1)Mvg\2sd, (0),

1-x-% v cose— X (B6)
7=1—X—X, v CO¥Y=——=—
with X+X
—e for V=y, \=x1, The physical phase-space region is bounded by the inequal-
97 e(v,Fay)/sindycody, for V=2, \=+1. ity
(A8)

(x(1 U +x)2>0 B7

The explicit form of thed functions needed is XX(1=x=X) s (x+x) ' B7)
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APPENDIX C: FORMULAS FOR FERMION PAIR cause of electroweak gauge symmetry. In particufeg(0)
PRODUCTION deviatesfrom unity. The axial form factors are found to be

We collect results for the familiar process of fermion pair

2 2 2
productione*e” —FF(g) [2,12,13 in this Appendix. These fA=| — 1+8 In 1+B +1lIn M I 1+8 Li 1-8
results have been independently calculated by us.FAhg ! 2B 1-3 AN B 21+
andFFZ vertices in the lowest order have the form
1+ 1+ | ,1+p
ie +1In 25 Inl—ﬁ Zlnl,B
—ieQry, and - ————— ¥,(ve—ar¥s), (CD)
COH\ySindyy 2 ) )
+2+3 | 1+,3_2+_ +B mF+| ap?
vE=3[T3(FL) +T3(Fr)]— Qgsirf by, (C2 2+ B?
T 28 (C10
ap=3[T3(F )~ T3(FR)]. (ox)
At O(ag), the correction factor is common for the photon A 1- 2 5 1+8
and the vector part of th& current. The axial part of th& fo=—75 |(2TBI)| ~Ing—gHim|+2B).
current is modified differently iimz#0. We write the gen- (C1))
eral Lorentz structure of the vector and axial vertices for
on-shell fermions, The second form factdf 5 represents the pseudoscalar part
. of the axial current and does not contribute to the reaction we
T,=F{(a?) v, +F3(0))io,,q"/me (C4

are interested in as long as the electron mass is neglected.
The differential cross section for the three-bdelyg final

for the v r current, an ;
or the vector current, and state is for the vector current

I =F}a) y,vs+F5(a%)d,vs/me (CH

for the axial vector current. We have retained only terms
appearing aiO(«y), i.e., terms allowed byCP invariance

1+v%co<o
1-v?coso

da\:{ v Cras v(l-1)

drdco® 7°* "7 B(3—-p?

and vector current conservation. We normalize the vertices 2(3— B%) 1v3sirte
such thaf {"*=1 at the lowest ordefF 3 do not appear in (1= A1=-02c020)2|’ (C12
this order.
We write theO(«,) corrected vertices as and for the axial vector current
VA2 Cras ya A 2. .2
F17(q ):1+Ffl' (a%), (C6) do.  , Crasv(l-7)|2-B"+v cos'f
drdcos 0= 7 288 1—v?%cos’d
R 2 2 .
( 2)_ s fVA (qz). (C7) N 4B°Tv Sha) (13
(1-7)%(1—v2%cos6)?|’
We find the renormalized vector form factors fgf>4m2: ) _
with the lowest-order cross sections
1+8° 148 FoL1+p -8
v_| _ i - P
fY= % In - B+1 In 2+ 3 2\ 175 v :87TdRa2H2 B(3—B?) €14
L 1 L ) 0+ 3s V+ 2 ’
+ + + T
+In A In i 1 In? i +—=
28 " 1-8 1-8 3 . 8rdga? . (
Ty = Ha. B> C1
1+2,32I 145 .. 1+ B2 | mZ 0+~ g5 Hash K
26 "1-8 M2 17 .
HereH,. andH,. are given by
432 1+232 s
nl—ﬂz 28 | 8 Hys = —Qp + (veFag)vE s (16
V= P coSOysif by s—m3’
v 1-p5° 1+8
fy= —In +im|, (C9
4B 1-p (veFag)ar S
Ha (C17

+= T 7.
where B=(1-4m2/g?)Y2. We have used on-mass-shell cos Bysint 6y s—m3
renormalization condition such th&t) (0)=1. Once the pre-
scription for the vector vertex is fixed, there is no freedom to In terms of the Dalitz variables, we have for the vector

choose a renormalization condition for the axial vertex be-current
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d(r+ o

dxdx 7%= "7 B

Crasl|[ 1
3-p?

X X
— =1
X X

1 i}
_+_
X X

1+82 1 1-p2 1
T X 4 x2+§2 (€18
and for the axial vector current
do-@_ . Cras1[3-p2 x_+x +1—ﬁ2 1+1
dxdx 7% 7 p| 4B \x X 287 Ix X
1+ 1 1-p2
2 XX 4 W;—z : (€19

The totalO(«g) correction can be written as the sum of

1917
. 21-1—[*3 A 5
LU el (C249
1+,32 1+ m? )
(ﬁ) |nm ﬁ)“’] m‘f’(l‘i—ﬁ)
(1-B . 1-p8
X 2L|2(m +2 L|2<—m
2 1+8 , L,1+B =°
—In 1+,8In—'8+gln E—E}
—-381In 1_32—4,3 In 8. (C2H

the three contributions, virtual, soft, and hard correctionsThe functionA(gB) in Eq. (3.17) is the sum of these three:
We list each correction term for the scalar-pair production

for comparison:

1+8%2 148
AvirtuaI:lE A, (B)+ 3 In m—z, (C20
A —EA +£I s C21)
soft_ﬁ s(ﬁ) ﬁ n 1_Ba ( )
1 +8
Ahard:EAh(B) ,8 (3+B )(1— B )In—ﬂ
1 2
T2 BB, (C22

where we have collected the “dilogarithmic” paftiloga-

rithm and double log termsnto the functionsA(i=v,s,h):
A=~ g T 1)
x| Li, ;/; ~In ffﬁ In i/;
— 12 i“; } (c23
As(B)= ( 'le g— )'nA;\—CfﬂL(lJfﬁz)
x| Li, i;ﬁ ~In 12+BB In iz

A(B)=A,(B)+As(B)+An(B). (C26)

Turning to the fermion-pair production, it is found that the
dilogarithmic terms are exactly the same as for the scalar-

pair production. For the vector part we find

Alia=Re 1+ 3= 7 Re f)
1 B(4—pBd) 1+
=3 A, (B)+ 3- 32 In 1-3 2, (C27)
AY +— ! L'B Cc28
SOft B S(B) B _Bl ( )
9-2B%2+pB* 1+pB 39-17B°
Ahard_,B Ah(IB) 8B(3_B2) In 1_,B + 4(3_,82) ’
(C29
and, for the axial vector part,
2+ B 1+8
Awrtual B A (,8)+ ,B E_Z, (CSO)
AR + i I 1+—'B C31)
soft— ,3 s(,B) ﬂ nl—,B’ ( )
AR An(B)+ ! (21-5B%+3B*—3° )In 1+A
hard_’B h 233 ,8
+L(—21+62 2+3B8% (C32
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