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Topological defects inside domain walls
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We investigate the presence of topological defects inside domain walls in a specific system of coupled re
scalar fields. This system belongs to a general class of systems of coupled real scalar fields, and presents so
interesting properties in 111 dimensions. The potential that identifies the system is defined with two param-
eters, and we show that this is enough to implement the idea concerning the presence of defects inside defe
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The idea we want to investigate in this paper was bo
from the investigations already presented in some rec
works @1–3#. It is motivated by the recent investigation in
troduced in@4#, in which the possibility of domain walls
having internal structure is nicely explored.

This idea of topological defects to present internal stru
ture was originally introduced in@5#, and has also been con
sidered by other authors@6–8#. A feature of these works is
that the potential that specifies the system in general cont
several parameters. In this case, one can play with these
rameters in order to implement the idea of introducing int
nal structure to topological defects.

In the course of our investigations@1–3#, we have realized
that one can present systems that have everything one n
to implement the above-mentioned idea. This appears to
interesting since our system is constrained to obey some
ditions, and this makes the system to be defined by a redu
number of free parameters. This reduced set of param
may then guide us toward some clearer understanding of
physical properties the system can perhaps comprise.

Since our former investigations rely on systems
coupled real scalar fields, in this paper we shall follow t
investigation done in@4# to comment on topological defect
inside domain walls. Before doing this, however, let us fi
briefly review the idea presented in@1–3#. In this case we
investigate systems of coupled real scalar fields in bidim
sional spacetime.

A general Lagrangian density describing a relativistic s
tem of two coupled real scalar fields in bidimensional spa
time is given by

L5 1
2 ]af]af1 1

2 ]ax]ax2U~f,x!, ~1!

whereU5U(f,x) is the potential, which specifies the pa
ticular system one is interested in. Our notation is usual:
are using natural units, in which\5c51, and the metric
tensorgab is diagonal, withg0052g1151.

In the standard way of searching for soliton solutions o
considers static field configurations, and sof5f(x) and
x5x(x). In this case, the equations of motion become

d2f

dx2
5

]U

]f
~2!
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d2x

dx2
5

]U

]x
. ~3!

In the above system, the potentialU(f,x) in general is a
nonlinear function of the fields, and so the equations of mo
tion ~2! and ~3! constitute a system of nonlinear coupled
second-order differential equations. To circumvent the prob
lem of working with second-order differential equations, we
constrain the potential in some specific way@1–3#, as we are
going to show, and this will certainly restrict our investiga-
tion. This is the price one has to pay, although we yet get
large class of systems which can be investigated in a simpl
way.

To do this, we consider the potential in the form

U~f,x!5 1
2 V

2~f,x!1 1
2 W

2~f,x!, ~4!

in which the functionsV(f,x) andW(f,x) are in principle
arbitrary but continuous twice differentiable functions of the
fieldsf andx. In this case, the equations of motion describ-
ing static field configurations become

d2f

dx2
5V

]V

]f
1W

]W

]f
~5!

and

d2x

dx2
5V

]V

]x
1W

]W

]x
, ~6!

and this seems to give no good answer to the above referr
problem; but this is not so, as we are now going to show.

Here we follow the procedure introduced in@1–3#—see
also Ref.@9#. In this case one investigates the energy corre
sponding to static field configurations. For the system give
by Eqs.~1! and ~4! the energy can be written as

E5
1

2E2`

`

dxH S df

dx D
2

1S dx

dxD
2

1V21W2J . ~7!
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This expression for the energy can be rewritten in the fo
E5E81E9, whereE8 is given by

E85
1

2E2`

`

dxH S df

dx
2VD 21S dx

dx
2WD 2J ~8!

andE9 reads

E95E
2`

`

dxHVdf

dx
1W

dx

dx J . ~9!

We now introduce a general functionH5H(f,x) to
write a new quantityEM is the form

EM5E
2`

`

dx
dH

dx
5H@f~`!,x~`!#2H@f~2`!,x~2`!#.

~10!

We use the chain rule to get

dH

dx
5

]H

]f

df

dx
1

]H

]x

dx

dx
. ~11!

Then, if we introduce the conditions

]H

]f
5V,

]H

]x
5W, ~12!

we obtainE95EM in an obvious way. Moreover, from Eqs
~8!, ~9!, and~12! we recognize thatEM is the minimum value
for the energy, which is achieved when we impose the c
ditions

df

dx
5V ~13!

and

dx

dx
5W, ~14!

since in this case the contributionE8 given in Eq.~8! is zero.
The above equations~13! and ~14! are first-order equa-

tions, and we can use them to verify that

d2f

dx2
5V

]V

]f
1W

]V

]x
~15!

and

d2x

dx2
5V

]W

]f
1W

]W

]x
. ~16!

We now compare Eq.~5! to Eq.~15!, and Eq.~6! to Eq.~16!,
to easily see that we can make the first-order equations~13!
and~14! solve the second-order equations of motion~5! and
~6!, when we impose the condition

]V

]x
5

]W

]f
. ~17!

Here we note that the above condition~17! is just the condi-
tion for the existence of a continuous twice differentiab
rm

.

n-

le

functionH5H(f,x) satisfying Eq.~12!. Therefore, for the
general system~1!, when the potential has the specific form
~4!, the second-order differential equations of motion~5! and
~6! are solved by the first-order differential equations~13!
and ~14!, if one imposes condition~17!.

On the other hand, in this case the energy is bounded fro
below, and gets to its minimum value given by Eq.~10!,
where the functionH(f,x) can be obtained from conditions
~12!. This same functionH(f,x) can be used to define to-
pological sectors. Here we follow@10# and introduce the to-
pological current

JT
a5eab]bH~f,x!, ~18!

which is trivially conserved, thanks to the asymmetry of the
Levi-Civita tensor:e0152e1051 ande005e1150. The cor-
responding topological charge is given by

QT5E
2`

`

dxJT
05H@f~`!,x~`!#2H@f~2`!,x~2`!#.

~19!

In this case the topological charge is equal to the energy o
the static field configurations. The vacuum sector, which i
identified by time- and space-independent field configura
tions, has zero topological charge. We use the topologic
charge, which is conserved, to introduce topological sector
Nonvanishing different topological charges define differen
topological sectors.

Despite the above general result, we have shown explic
itly in @2,3# that the soliton solutions we can find in this
general class of systems are all stable, from the point of vie
of classical or linear stability.

Let us now examine a specific system. Here we conside
V andW as

V~f,x!5l~f22a2!1mx2 ~20!

and

W~f,x!52mfx. ~21!

In this case the potential can be written in the form

U~f,x!5 1
2 l2~f22a2!21lm~f22a2!x21 1

2 m2x4

12m2f2x2, ~22!

and the first-order differential equations are given by

df

dx
5l~f22a2!1mx2 ~23!

and

dx

dx
52mfx. ~24!

This system was already investigated in@1#, and some soli-
ton solutions were presented. Here, the functionH which
obeys conditions~12! has the form

H~f,x!5l~ 1
3f22a2!f1mx2f. ~25!
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At this stage we recall that to investigate internal structu
of defects, we must play with the spatial part of spacetim
Then, we must change from the~111!-dimensional space-
time we have being working with to a~311!-dimensional
spacetime. Thus, in the rest of this paper we shall be con
ering spacetime with 311 dimensions. Furthermore, sinc
we are working with real scalar fields, we follow@4# to in-
troduce internal structure to domain walls.

As a first point we note that, because of the constraints
need to make the potential to belong to the class of syst
we have already introduced, the above potential~22! con-
tains only two free parameters, namely,l andm. And this is
in contrast to Ref.@4#, in which several parameters are intr
duced. In spite of this fact, the above system has everyth
one needs to implement the idea related to internal struc
to domain walls.

To see this explicitly, let us consider the parametersl and
m real and positive, withm>l. In this case we see that

U~f,0!5 1
2 l2~f22a2!2, ~26!

and so a massm(a,0) for thef field can be introduced; it is

m2~a,0!54 l2a2. ~27!

Moreover, we can write

U~0,x!5 1
2 m2S x22

l

m
a2D 2, ~28!

and so a massm(0,aAl/m) for thex field can be introduced;
it is given by

m2~0,aAl/m!54lma2. ~29!

We can also write

U~a,x!52m2a2x21 1
2 m2x4, ~30!

and so another massm(a,x) for the x field can be intro-
duced; it has the form

m2~a,x!54m2a2. ~31!

We then see that form.l the vacuum states are given b
(f25a2,x50). However, form5l the vacuum states ar
(f25a2,x50) and (f50,x25a2). In the first case the sys
tem present a discreteZ2 symmetry, and in the second cas
the discrete symmetry isZ4 .

From the above results we see that, if one uses thef field
to generate a domain wall, as one can see from Eq.~26!, then
inside this domain wall the fieldf can be approximated to
zero. In this case thex field can generate a domain ribbon, a
one can see from Eq.~28!. Here we recall that domain wal
and domain ribbon are time-independent defects obtained
the standard time-independent kink in 111 dimensions, em-
bedded in a 311 and 211 spacetime, respectively.
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Everything works in the same way the investigation give
in @4# has already advanced. The only point which calls ou
attention concerns evaporation of the domain ribbon. He
we refer to the fact that in@4# the author adjusts some of the
available parameters to introduce the assumption that dom
ribbons evaporate into elementaryx mesons, which are
ejected to the surrounding domain wall vacuum. This a
sumption simplifies the calculation since it circumvents bac
reactions inside the domain wall.

In the above system, however, evaporation of domain ri
bons into elementaryx mesons occursonly inside the do-
main wall, form.l, or both inside and outsidethe domain
wall, for m5l. In the first case, form.l back reactions are
unavoidably present and the results presented in@4# must be
recalculated. In the second case, form5l back reactions are
present, but we believe that their effects are negligible, b
cause of the smallness of the probability of findingx mesons
inside the wall, and so the result is essentially the one pr
sented in@4#. We think of this as an interesting point, since
the system we have just introduced can be seen as
bosonic portion of a supersymmetric theory@11#, and one
knows that supersymmetry in general is a important mech
nism to control the underlying physics the system can com
prise.

The supersymmetric theory whose real bosonic sect
gives the system we have introduced can be constructed w
two chiral superfields, as was already done by Morris@12#, in
a calculation that follows the lines of Ref.@13#. In this case
the general functionH(f,x) we have introduced becomes
the superpotential of the corresponding supersymmet
theory, and so supersymmetry introduces no further restr
tions on the parametersl and m. Within this context, it
follows that the probability of findingx mesons inside and
outside the domain wall, which depends on the values ofl
andm, is not controlled by supersymmetry.

As we have shown, models belonging to the above ge
eral class of systems may be best suitable to develop the id
related to internal structure of topological defects. We hav
introduced a simple model, containing only two coupling
constants, which is still sufficiently complicated for interna
structure to be present inside domain walls.

A natural extension of the system we have just invest
gated is to consider thef field as a complex field. In this
case we can gauge the corresponding continuum symme
to reach the string territory. Furthermore, we can choose
work in a ~211!-dimensional spacetime, and so we can als
introduce a Chern-Simons term to the kinetic part of th
gauge action to further enlarge the scope of the proble
Regarding this specific point, we note that the Maxwell
Chern-Simons system considered in@14#—see also Ref.
@15#—can be seen as a natural extension of the method
have introduced in@1–3# to the case of planar systems tha
require a complex and a real scalar fields to be described

We would like to thank John R. Morris for several inter-
esting discussions, and for sending us explicit calculation
in which he constructs the supersymmetric theory whose re
bosonic sector gives the system we have introduced in th
paper. D. B. is grateful to Conselho Nacional de Desenvolv
mento Cientı´fico e Tecnolo´gico, CNPq, Brazil, for partial
support.
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