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Topological defects inside domain walls
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We investigate the presence of topological defects inside domain walls in a specific system of coupled real
scalar fields. This system belongs to a general class of systems of coupled real scalar fields, and presents some
interesting properties in#1 dimensions. The potential that identifies the system is defined with two param-
eters, and we show that this is enough to implement the idea concerning the presence of defects inside defects.
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The idea we want to investigate in this paper was borrand
from the investigations already presented in some recent
works [1-3]. It is motivated by the recent investigation in- d’>x U
troduced in[4], in which the possibility of domain walls W:E' &)
having internal structure is nicely explored.

This idea of topological defects to present internal struc- |n the above system, the potenti&( ¢, ) in general is a
ture was originally introduced ifb], and has also been con- nonlinear function of the fields, and so the equations of mo-
sidered by other authof$—8|. A feature of these works is tion (2) and (3) constitute a system of nonlinear coupled
that the potential that specifies the system in general containgecond-order differential equations. To circumvent the prob-
several parameters. In this case, one can play with these pgm of working with second-order differential equations, we
rameters in order to implement the idea of introducing interconstrain the potential in some specific way-3|, as we are
nal structure to topological defects. going to show, and this will certainly restrict our investiga-

In the course of our investigatiops-3|, we have realized tion. This is the price one has to pay, although we yet get a

that one can present systems that have everything one neeggge class of systems which can be investigated in a simpler
to implement the above-mentioned idea. This appears to bgay.
interesting since our system is constrained to obey some con- To do this, we consider the potential in the form
ditions, and this makes the system to be defined by a reduced
number of free parameters. This reduced set of parameter U(d,x)=1V2(,x)+ L W2, x), ()
may then guide us toward some clearer understanding of the
physical properties the system can perhaps comprise.
Since our former investigations rely on systems of
coupled real scalar fields, in this paper we shall follow th
investigation done if4] to comment on topological defects
inside domain walls. Before doing this, however, let us first
briefly review the idea presented ja—3]. In this case we ) oV oW
investigate systems of coupled real scalar fields in bidimen- —=V—+W— (5)
sional spacetime. dx g I
A general Lagrangian density describing a relativistic sys-
tem of two coupled real scalar fields in bidimensional spaceiind
time is given by

in which the functions/( ¢, x) andW(¢,x) are in principle
arbitrary but continuous twice differentiable functions of the
efields<;5 andy. In this case, the equations of motion describ-
ing static field configurations become

dzx_vﬁv W 6
£=1 0,07+ .x0"x—U($x), ) a2 Vax W ©)

whereU=U(¢,x) is the potential, which specifies the par-
ticular system one is interested in. Our notation is usual: W

are using natural units, in which=c=1, and the metric .
tensorg®® is diagonal, withg®= — g1=1 Here we foIIovx{ the procedyre mftroduced [ih—3]—see
' i also Ref[9]. In this case one investigates the energy corre-

In the standard way of searching for soliton solutions O ponding to static field configurations. For the system given
considers static field configurations, and &e ¢(x) and P g 9 - y 9
. X . . by Egs.(1) and(4) the energy can be written as
x=x(x). In this case, the equations of motion become

d’¢ U 1= {d_d)
CTars @ SETR

éand this seems to give no good answer to the above referred
problem; but this is not so, as we are now going to show.
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This expression for the energy can be rewritten in the formfunction H=H(¢,x) satisfying Eq.(12). Therefore, for the

E=E'+E", whereE’' is given by

1 (= d z2 /d 2
E'=§fwdx{(d—f—v) +(d—§—w) } ®

andE” reads

o [ d¢  dx
E —f de(V&'i‘W&]. 9

We now introduce a general functiod=H(¢,yx) to
write a new quantityg,, is the form

> dH
EM:f,mdxﬁ:H[W‘”),X(”)]_H[¢(_°°),X(_°°)]-

(10
We use the chain rule to get
dH oH d oH d
dn_dMde + X (11)
dx d¢ dx dy dx
Then, if we introduce the conditions
dH v dH W 12
ﬁ_ ) E_ ] ( )

we obtainE"=E), in an obvious way. Moreover, from Egs.

(8), (9), and(12) we recognize thak,, is the minimum value

for the energy, which is achieved when we impose the con

ditions

d¢é

ax \Y (13
and

dx

X W, (14

since in this case the contributi@i given in Eq.(8) is zero.
The above equation&l3d) and (14) are first-order equa-
tions, and we can use them to verify that
d’¢p oV 4V

W—Vﬁ"‘wax (15

and

dzx_vé?W+WﬁW 16

ae Ve Wy (19
We now compare Ed5) to Eq.(15), and Eq.(6) to Eq.(16),
to easily see that we can make the first-order equatib®s
and(14) solve the second-order equations of mot{épand
(6), when we impose the condition

r?V_r?W
ax 0

Here we note that the above conditi@iy) is just the condi-

17

tion for the existence of a continuous twice differentiable

general systenfl), when the potential has the specific form
(4), the second-order differential equations of mot{enpand
(6) are solved by the first-order differential equatioii)
and (14), if one imposes conditiof17).

On the other hand, in this case the energy is bounded from
below, and gets to its minimum value given by EGO),
where the functioH (¢, x) can be obtained from conditions
(12). This same functioH (¢, x) can be used to define to-
pological sectors. Here we follojl0] and introduce the to-
pological current

3= ePagH(,x), (18)

which is trivially conserved, thanks to the asymmetry of the
Levi-Civita tensor:e®= — €1°=1 ande®= *'=0. The cor-
responding topological charge is given by

Qr= Jldxﬁ=H[¢<oc),x<oo)]—H[¢<—oo>,x<—oc)].
(19

In this case the topological charge is equal to the energy of
the static field configurations. The vacuum sector, which is
identified by time- and space-independent field configura-
tions, has zero topological charge. We use the topological
charge, which is conserved, to introduce topological sectors:
Nonvanishing different topological charges define different
topological sectors.

Despite the above general result, we have shown explic-
itly in [2,3] that the soliton solutions we can find in this
general class of systems are all stable, from the point of view
of classical or linear stability.

Let us now examine a specific system. Here we consider
V andW as

V(¢ x)=N($p*—a%)+ px? (20)
and
W(d,x)=2udx. (21
In this case the potential can be written in the form
U(g.x) =3 \(p*—a®)?+hu(p?—a’) x*+ 3 u’x*
+2uPP?x?, (22)

and the first-order differential equations are given by

d
d—‘f =N(¢?—a®)+ ux’ (23
and
d
=2udy. (24)

This system was already investigated[ i, and some soli-
ton solutions were presented. Here, the functibrwhich
obeys conditiong12) has the form

H($.x)=N(5¢°—a%) ¢+ ux>¢. (29
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At this stage we recall that to investigate internal structure Everything works in the same way the investigation given
of defects, we must play with the spatial part of spacetimein [4] has already advanced. The only point which calls our

Then, we must change from th&+1)-dimensional space-
time we have being working with to &+ 1)-dimensional

attention concerns evaporation of the domain ribbon. Here
we refer to the fact that ifd] the author adjusts some of the

spacetime. Thus, in the rest of this paper we shall be considrvailable parameters to introduce the assumption that domain
ering spacetime with 31 dimensions. Furthermore, since ribbons evaporate into elementagy mesons, which are

we are working with real scalar fields, we follgw] to in-
troduce internal structure to domain walls.

ejected to the surrounding domain wall vacuum. This as-
sumption simplifies the calculation since it circumvents back

As a first point we note that, because of the constraints weeactions inside the domain wall.
need to make the potential to belong to the class of systems In the above system, however, evaporation of domain rib-

we have already introduced, the above poteni®) con-
tains only two free parameters, namelyand . And this is

bons into elementary mesons occursnly insidethe do-
main wall, for w>X\, or both inside and outsidthe domain

in contrast to Refl4], in which several parameters are intro- wall, for = X\. In the first case, fop>\ back reactions are
duced. In spite of this fact, the above system has everythingnavoidably present and the results presentdd jimust be
one needs to implement the idea related to internal structunecalculated. In the second case, fot \ back reactions are

to domain walls.
To see this explicitly, let us consider the parameteend
u real and positive, withu=\. In this case we see that
U(4,0=2\(¢?*—a%)?, (26)

and so a massi(a,0) for the ¢ field can be introduced; it is

m?(a,0)=4 \?a?. (27
Moreover, we can write
A 2
U(O,X)—zuz(xz— —a?|, (29

and so a mas®|(0,a\\/ ) for the y field can be introduced;
it is given by

m2(0,a\\ ) =4\ ua?. (29
We can also write
U(a,x)=2 u2a®x*+3 u2x*, (30

and so another mags(a, y) for the y field can be intro-
duced; it has the form

m2(a,x) =4 u?a’. (31

present, but we believe that their effects are negligible, be-
cause of the smallness of the probability of findjpgnesons
inside the wall, and so the result is essentially the one pre-
sented in[4]. We think of this as an interesting point, since
the system we have just introduced can be seen as the
bosonic portion of a supersymmetric theddyl], and one
knows that supersymmetry in general is a important mecha-
nism to control the underlying physics the system can com-
prise.

The supersymmetric theory whose real bosonic sector
gives the system we have introduced can be constructed with
two chiral superfields, as was already done by Mditl, in
a calculation that follows the lines of RdfL3]. In this case
the general functioH (¢, x) we have introduced becomes
the superpotential of the corresponding supersymmetric
theory, and so supersymmetry introduces no further restric-
tions on the parameters and w. Within this context, it
follows that the probability of findinge mesons inside and
outside the domain wall, which depends on the valueks of
and u, is not controlled by supersymmetry.

As we have shown, models belonging to the above gen-
eral class of systems may be best suitable to develop the idea
related to internal structure of topological defects. We have
introduced a simple model, containing only two coupling
constants, which is still sufficiently complicated for internal
structure to be present inside domain walls.

A natural extension of the system we have just investi-
gated is to consider thé field as a complex field. In this
case we can gauge the corresponding continuum symmetry
to reach the string territory. Furthermore, we can choose to
work in a(2+1)-dimensional spacetime, and so we can also
introduce a Chern-Simons term to the kinetic part of the
gauge action to further enlarge the scope of the problem.

We then see that for>\ the vacuum states are given by Regarding this specific point, we note that the Maxwell-
(¢p?>=a? x=0). However, foru=\ the vacuum states are Chern-Simons system considered ih4]—see also Ref.

(¢p?>=a? x=0) and (»=0,x>=a?). In the first case the sys-

[15]—can be seen as a natural extension of the method we

tem present a discref®, symmetry, and in the second case have introduced ii1-3] to the case of planar systems that

the discrete symmetry i&,.
From the above results we see that, if one usesftfield
to generate a domain wall, as one can see from2g), then

require a complex and a real scalar fields to be described.
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