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Initial studies of bound states in light-front QCD
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We present the first numerical QCD bound state calculation based on a renormalization-group-imp
light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling,
it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-tim
Schrödinger equation. This is solved for quark-antiquark constituent states, and we obtain a set o
consistent parameters by fittingB meson spectra.@S0556-2821~96!04214-2#

PACS number~s!: 12.38.Lg, 11.10.Gh, 11.10.St, 12.38.Aw
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I. INTRODUCTION

Recently, a new approach to renormalization and solv
for QCD bound states, inspired by the constituent qu
model, has been advocated@1–4#. Certainly the most suc-
cessful approach to date is provided by lattice QCD. Th
are a number of reasons, however, why it remains impor
to develop other non-nonperturbative tools for the direct
lution of QCD bound states. It is difficult~but not impos-
sible! to gain intuitions about the quark or gluon structure
hadrons from Euclidean lattice calculations. Excited sta
must be extracted from statistical noise. Experimental pre
sion for many hadron properties far exceeds that of any fo
seeable lattice calculation. States involving more than
hadron are not conveniently studied using finite lattices. T
lattice is the only tool for studying non-nonperturbative QC
with controlled errors, and we need other tools.

The new approach, in many aspects complimentary to
tice QCD, is tailored to build a bridge between QCD and
constituent quark model~CQM!. It has been argued that it i
convenient to use a light-front formulation of the theor
because on the light front it is possible to make the vacu
trivial simply by implementing a small longitudinal cutoff
As a result all partons in a hadronic state are connected to
hadron, instead of being disconnected excitations in a c
plicated medium. The price to pay is a considerably mo
complicated renormalization problem.

In this paper we briefly describe this new approach, c
centrating on aspects necessary to appreciate the simple
culation we present. The calculations of the heavy me
spectra, for systems containing one heavy and one l
quark, is intended to elucidate the approach and prov
qualitative tests of the leading terms revealed in the effec
Hamiltonian by the renormalization group. Only the first st
in this calculation is taken here, and later work will focus
the spin-dependent structure. We refer the reader to the
erature for many details@1–4#.

The new approach consists of two steps. The first ste
renormalization. The second step is a bound state calc
tion.

The aim of the first step is to find an effective renorma
ized Hamiltonian at hadronic energy scales starting with
Hamiltonian which is consistent with perturbative QCD
high energy scales. A natural starting point is the canon
light-front QCD Hamiltonian, although it cannot be comple
541/96/54~2!/1831~13!/$10.00
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— there must be other operators, which cannot be dete
mined from the perturbative behavior of the theory. Głazek
and Wilson@5# designed a similarity transformation to lower
the cutoff scale, which is tailored to make the Hamiltonian
look more like a CQM Hamiltonian~see, for example,@6#
and references in@1#!. The cutoff violates manifest gauge
invariance and Lorentz covariance, and thus these symm
tries are no longer a guide to what operators are allowed
the Hamiltonian.

Similarity transformations can be designed to bring the
Hamiltonian toward a band-diagonal form by eliminating
matrix elements between states which differ drastically in
light-front energy. Effects of couplings that are removed
have to be put directly into the Hamiltonian as new effective
interactions. One important consequence is that two-bod
potentials are generated. In fact, the similarity transformatio
generates a logarithmic confining potential already at orde
g2 @2,7#. This part of the calculation is done perturbatively. If
the similarity transformation can be done analytically, it is
easy to use a powerful method called coupling coherenc
@8,9# to determine all new terms. We will illustrate this pro-
cedure, which is straightforward to second order, in the fol
lowing sections.

The second step is the bound state calculation itself. Th
effective Hamiltonian is divided intoH0 , a part which is
solved nonperturbatively, andV, the difference between the
original Hamiltonian andH0 . The effects ofV are to be
computed using bound state perturbation theory. The criter
for choosingH0 are that it approximates the physics relevan
for hadronic bound states as closely as possible~we take a
hint from the CQM and include constituent masses and two
body potentials! and yet it must be manageable. We empha
size that the approach is tailored within limits to take advan
tage of the successful phenomenology, but it does not sto
there. We can systematically improve the calculations, bot
by computing corrections to the Hamiltonian and highe
terms in bound state perturbation theory. For example, an
terms added by hand~e.g., constituent masses! can be added
in such a way that at the physical value of the coupling the
reduce to terms in the effective QCD Hamiltonian~for de-
tails see@1,4#!.

In this paper we present one of the simplest possible ca
culations of QCD bound states based on the new approac
In the first step we find the effective Hamiltonian to order
g2 using a similarity transformation and coupling coherence
1831 © 1996 The American Physical Society
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1832 54MARTINA BRISUDOVÁ AND ROBERT PERRY
and in the second step we solve for the lowest lyingqq̄ color
singlet states with arbitrary but nonzero masses in the n
relativistic limit. These approximations are severe, but w
will see that the qualitative results are good. We will n
explicitly show operators that have zero expectation value
theqq̄ color singlet.

We wish to derive an effective Hamiltonian that acts
the hadronic scale by lowering the similarity cutoff perturb
tively as low as possible, hopefully down to the scale
which the bound state is well approximated by its two pa
ticle component,qq̄. This may not be possible for all sys
tems. The coupling may become too large for perturbati
theory to be reliable before the higher Fock components
eliminated. We know, however, that it is possible in QED
and we believe that the success of the CQM suggests
same for QCD. The most favorable systems as far as
qq̄ and nonrelativistic approximations are concerned a
heavy quarkonia. However, heavy mesons containing a li
quark provide a better tool for testing our approach quali
tively, because they have fine structure that allows us
separately test spin and orbital angular momentu
dependent operators in the Hamiltonian, in the regime wh
is dominated by the confining interaction. This means th
the scaling of momenta and energies is determined by
confining interaction. As the Coulomb part of the potenti
becomes more important, the simple scaling analysis bre
down, until the Coulomb potential dominates over the co
fining potential. Then the momenta and energies scale a
QED. We expect heavy quarkonia to be in the mixed regim
so the simple scaling analysis is probably not going to
reliable. Study of the spin and orbital angular momentum
dependent operators, which are generated by the simila
transformation to second order in the coupling, will be do
in later work.

In heavy-light systems there is only one heavy quark, b
we do not yet know whether the light degrees of freedom c
be approximated by just one constituent in our approa
Further, as we show below, heavy-light mesons are qual
tively different from heavy quarkonia, but there are similar
ties with other mesonic systems: strange mesons and iso
1 light mesons. So some of what we learn from heavy m
sons may be generalized to light mesons. We will choo
B mesons to check whether we can fit spectra with reas
able parameters.

After bringing the cutoff down to the hadronic scale, w
do bound state calculations. We have to decide which ter
will be treated as the dominant interactions and put in t
unperturbed Hamiltonian, and which ones will be treated
perturbations.

In order to gain qualitative insight it is useful to study th
nonrelativistic limit and to rewrite the bound state equatio
in position space. It turns out that in the nonrelativistic lim
light-front dynamics naturally reduce to equal-time dynam
ics, which implies that angular momenta become kinema
cally defined. It is possible to transform light-front coord
nates to equal-time coordinates by a specific change
variables@10# without taking the nonrelativistic limit. How-
ever, the point we want to make here is that in the nonre
tivistic limit equal-time dynamics arise naturally. This wil
become clearer below.

Nonrelativistic reduction can be justified at best only fo
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the lowest lying states. We may need to do a series of bou
state calculations with small coupling, and then extrapola
to the physical value of the strong coupling if this is large
@1#. However, we are not yet at the stage where we can ca
out the strategy with confidence that we have complete co
trol over the bound state perturbation theory. The similarit
transformation generates effective operators. The prima
motivation of this work is to initiate the study of these op
erators. Further, the issue of chiral symmetry breaking term
that is, what operators have to be added to the Hamiltoni
by hand to restore the effects of zero modes removed by
small longitudinal cutoff, is not resolved yet. Nonrelativistic
reduction provides a framework in which these and othe
questions can be studied.

The main questions answered in this calculation are th
following.

~1! Two-body potentials generated by the similarity trans
formation include the Coulomb potential and a logarithmi
confining potential already at orderg2. Does this effective
Hamiltonian contain enough structure to provide a startin
point for studying bound states in QCD? For the spin
independent part of the effective Hamiltonian, which w
study here, the answer is yes.

~2! The similarity transformation generates new effectiv
interactions. Is there a simple way to see how these ne
operators affect spectra? Yes.

~3! In order to answer the previous questions, one has
make some simplifications of the original Hamiltonian, in
cluding but not restricted to nonrelativistic reduction~for de-
tails see Sec. III!. We do not focus on quantitative analysis
but we want to ask whether the calculation is at all reaso
able; that is, can we fit any data with a set of reasonab
parameters? Yes.

The paper is organized as follows. In the second sectio
we briefly review the general strategy, sketching the simila
ity transformation and coupling coherence. The third sectio
gives our calculation —qq̄ to orderg2. First, we find the
effective Hamiltonian using the similarity transformation and
coupling coherence. Then we split the Hamiltonian into
part which is treated nonperturbatively in the bound sta
calculation and a part which is treated perturbatively. In th
paper, we solve the leading order problem, and show that
reduces to a simple Schro¨dinger equation in the nonrelativ-
istic limit. We show a simple way to qualitatively analyze
the physics behind this Schro¨dinger equation. Then we
present the numerical results. The last section contains o
summary and conclusions.

II. TWO STEPS TO SOLVING QCD—
GENERAL STRATEGY

In this section we briefly review the general strategy, firs
outlined in Ref.@1#. We start with the canonical light-front
QCD Hamiltonian in light-cone gauge,Aa

150. We will not
explicitly show terms that are not important for the specifi
calculations presented in the next section. For a detailed d
cussion of the light-front Hamiltonian see@1,11# and refer-
ences therein. Ignoring purely gluonic terms that do not a
fect the effectiveqq̄ Hamiltonian until fourth order ing,

H5H free1V11V2, ~1!
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whereH free is the free light-front Hamiltonian:

H free5(
f
E d3p

~2p!32p1

p'21mf
2

p1 ~bf
†bf1df

†df !, ~2!

where there is a sum over flavors,mf is a quark mass,
bf ,df are quark and antiquark annihilation operators, and

V15gE dx2d2x'c̄ A” c ~3!

contains the standard orderg quark-gluon coupling. Herec
andAm[(a Aa

mTa are free light-front fields:

c5S c1

c25
1

]1 ~2 iaW'
•]W'1bm!c1

D
and

Am5SA150, A25
2

]1]W'
•AW', AW'D .

The constrained fields,c2 andA2, are replaced by functions
of the physical degrees of freedom resulting in new terms
the canonical Hamiltonian, among which

V2522g2E dx2d2x'~c1
† Tac1!S 1

]1D 2~c1
† Tac1! ~4!

is the instantaneous gluon exchange between two fermion
We regulate the Hamiltonian with cutoffs on the chang

in free energy at each interaction vertex and a cutoff o
longitudinal momentum fractions that is taken to zero at th
end of the calculation. Then we use a similarity transform
tion. The similarity transformations form a renormalizatio
group. Repeated transformations generate a sequence
Hamiltonians with decreasing cutoff. A Hamiltonian in the
sequence is related to the previous one by

HLn21
5U21~Ln21!HLn

U~Ln21!. ~5!

U is a unitary matrix and can be written asU5eiR, where
R is Hermitian and has an expansion in powers of the no
diagonal part of the Hamiltonian. We have chosenn so that
it decreases as the cutoff decreases.

The similarity transformation is designed to bring the cu
off Hamiltonian to a band-diagonal form, while avoiding
problems of small energy denominators in perturbative e
pansions@5#. In particular, the transformed Hamiltonian is
required to be band diagonal relative to the new scale. Th
means that the matrix elements between states that diffe
energy by more than the new cutoff must be zero for th
simple step function cutoffs we employ here. This require
ment has implications for the matrix elements ofR. Given
R, one can find the transformed Hamiltonian.

The initial cutoff destroys manifest symmetries and one
the criteria for the renormalized Hamiltonian is that it re
stores the symmetries, albeit not necessarily in manife
form. If the similarity transformation can be done analyti
cally, it is possible to use coupling coherence@8,9# to com-
pletely fix the renormalized Hamiltonian without explicit ref-
in
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erence to symmetries. The basic idea of coupling coherenc
is that in the Hamiltonian restricted by symmetries, the
strengths of all operators are not independent but depen
only on a finite number of independent canonical parameters
so that under a transformation, the Hamiltonian reproduce
itself in form exactly, apart from the change of the explicit
cutoff and the running of those few independent couplings
All dependence on the cutoff is absorbed into the indepen
dent running couplings. Once one obtains a Hamiltonian tha
reproduces itself as the cutoff is lowered, any initial cutoff
can be sent to infinity.

In order to use coupling coherence we need to study how
the Hamiltonian changes when the cutoff changes. Le
HLn

5H free1v, where H free is a free Hamiltonian and

v[V11V2 is cut off so that

^f i uvuf j&50, ~6!

if uE0i2E0 j u.Ln
2/P1, whereH freeuf i&5E0i uf i&. The simi-

larity cutoff, Ln
2/P1 with the dimension of light-front en-

ergy, consists ofLn
2 , which carries a dimension of transverse

mass squared, and an arbitrary longitudinal momentum ref
erence scaleP1. If this cutoff is lowered toLn21

2 /P1 by the
similarity transformation, the new Hamiltonian matrix ele-
ments toO(v2) are @7#

HLn21ab
5^fauH free1vufb&

2(
k
vakvkbF uS uDaku2

Ln21
2

P1 D u~ uDaku2uDbku!

E0k2E0a

1

uS uDbku2
Ln21
2

P1 D u~ uDbku2uDaku!

E0k2E0b

G , ~7!

whereD i j5E0i2E0 j and uE0a2E0bu,Ln21
2 /P1, and there

are implicit cutoffs in this expression because the matrix el-
ements ofv have already been cut off so thatv i j50 if
uE0i2E0 j u.Ln

2/P1.
To this order, a coupling coherent Hamiltonian repro-

duces itself, with the only change beingLn→Ln21 . At the
third order one begins to see the quark-gluon coupling run. I
the Hamiltonian reproduces itself, the indexn becomes irrel-
evant. The solution is found by noting that we need the par
tial sum above to be added to an interaction inv that is
expressed as a sum, so that the transformation mere
changes the limits on the sum in a simple fashion~for details
see@2#!. There are two possibilities. The first is

Hab5^fauH free1vufb&

2(
k
vakvkbF uS uDaku2

Ln21
2

P1 D u~ uDaku2uDbku!

E0k2E0a

1

uS uDbku2
Ln21
2

P1 D u~ uDbku2uDaku!

E0k2E0b

G , ~8!

and the second is
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Hab5^fauH free1vufb&

1(
k
vakvkbF uS Ln21

2

P1 2uDaku D u~ uDaku2uDbku!

E0k2E0a

1

uS Ln21
2

P1 2uDbku D u~ uDbku2uDaku!

E0k2E0b

G . ~9!

Note thatv in these expressions is the same as that abo
only to first order. The coupling coherent interaction inH is
written as a power series inv which reproduces itself under
the transformation, except the cutoff changes. In higher
ders the canonical couplings also run. To decide which
these equations to use one must in principle go to high
orders, but in practice it is usually obvious which choice
correct. For example, the first solution provides effectiv
two-body interactions from one-gluon exchange, while t
second provides the relevant part of the quark self-energy
chosen otherwise, the new terms would make the effect
Hamiltonian divergent.

At the end of this first step, the Hamiltonian is renorma
ized and the scale relative to which it is band diagonal is
hadronic scale.1 The effective Hamiltonian contains compli
cated potentials, which result from eliminating the couplin
between high and low energy states. It still contains emiss
and absorption interactions, but these no longer mix state
high and low energies.

In the second step, the Hamiltonian which is now given
an expansion ing is regrouped from the point of view of
what is important in the bound state. Based on the succes
the CQM, we believe that emission and absorption pr
cesses, which would mix different Fock states, are su
pressed with respect to interactions that do not change p
ticle number for low-lying states and sufficiently low cutoff
Thus the particle number changing interactions will b
treated perturbatively using bound state perturbation theo
This is clearly justified if the gluons are massive@1#, but
even for massless gluons one can argue that the interac
gluon effectively acquires mass related to the confining sc
@2#. It is therefore plausible to assume that adding an ex
constituent is suppressed even in this case.

Next, we use constituent masses. It is possible to add
constituent mass at zeroth order and subtract it at a hig
order in bound state perturbation theory, as outlined in@1#.
This issue starts to be important when the effective Ham
tonian is calculated to higher orders and one tries to see
the approximations in the leading order bound state calcu
tion lead to convergent results.

In the calculation presented here we also use a nonr
tivistic reduction and we choose a rotationally symmetr
H0 . We want to minimize higher order corrections, but w
do not yet know what restores the rotational symmetry~e.g.,
adding extra gluons or terms of higher order ing). The an-
swer to this question may change our choice ofH0 in future

1A specific value of the ‘‘hadronic scale’’ is to be specified b
fitting spectra.
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calculations. At least for now, we choose the confining po
tential such that it does not yield any corrections in first orde
bound state perturbation theory. The corrections which com
from the rotationally noninvariant terms are not suppresse
by powers of the coupling, despite the fact that they enter
the second order of bound state perturbation theory. This
the same order at which one has to include emission a
absorption processes, unless those are suppressed nonpe
batively ~e.g., if the gluons are massive!. Therefore, it is not
clear whether it is meaningful to consider the corrections du
to rotationally noninvariant terms without includingqq̄g.
Nevertheless, we evaluated these corrections for the grou
state and they are of order a few percent in a region whe
the confining potential dominates over the Coulomb pote
tial.

III. THE SIMPLE QCD CALCULATION —
qq̄ TO ORDER g2

In this section we discuss mesons, i.e., color singlet QC
bound states whose valence constituents are a quark and
antiquark. The masses of the constituents are arbitrary b
nonzero. We expect that the qualitative aspects of the stu
are relevant to allqq̄ systems with a possible exception of
light isospin zero mesons.2 We fit B mesons.

To orderg2, the similarity transformation is represented
by a few diagrams, as shown in Fig. 1, so it is possible t
find the effective Hamiltonian analytically. Let us work out
in detail one of the operators, and then list the results for th
remaining ones.

Let us consider matrix elements involving one gluon ex
change between a quark and an antiquark~see the bottom
two diagrams in Fig. 1!. If the Hamiltonian is band diagonal

y 2For light mesons withI50 we expect that operators ofO(g4)
will play an important role.

FIG. 1. Diagrams representing similarity transformation to orde
g2 for qq̄. The top line represents new effective one-body opera
tors, the bottom line are two-body operators. We use untypical lin
for gluons and fermions to emphasize that these represent new
erators, not Feynman diagrams.
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relative to a scaleLn
2/P1, then only those matrix elements in

which the energy difference is less than this value are no
zero:

2gLn

2 ū~p2 ,s2!g
mu~p1 ,s1!v̄~k2 ,l2!g

nv~k1 ,l1!^TaTb&

3F u~q1!

q1 Dmn~q!S uS Ln
2

P1 2uD1u D u~ uD1u2uD2u!

D1

1

uS Ln
2

P1 2uD2u D u~ uD2u2uD1u!

D2

D
1

u~2q1!

2q1 Dmn~2q!S uS Ln
2

P1 2u2D1u D u~ uD1u2uD2u!

2D1

1

uS Ln
2

P1 2u2D2u D u~ uD2u2uD1u!

2D2

D G , ~10!

where pi , ki are light-front three-momenta carried by the
constituents;s i , l i are their light-front helicities;u(p,s),
v(k,l) are their spinors@12#; index i51,2 refers to the ini-
tial and final states, respectively;Dmn(q)5(q'2

/q12
)hmhn

1 (1/q1) (hmq
'

n1hnq
'

m)2gmn
' is the gluon propagator in

light-front gauge@13#, hm5(0,h151,0,0);qW 5pW 12pW 2 is the
exchanged momentum,q25q'2

/q1; D1 , D2 are energy de-
nominators:D15p1

22p2
22q2 andD25k2

22k1
22q2.

It is convenient to use Jacobi momenta. Setting the tot
transverse momentum to be zero, the momenta of the co
stituents are

pi
15xiP

1, pi
'5k i

' ;

ki
15~12xi !P

1, ki
'52k i

'.

Let the mass of the constituent with momentump bema and
the mass of the other constituent bemb . The denominators
in terms of Jacobi momenta are

D15
1

P1 S k1
'21ma

2

x1
2

k2
'21ma

2

x2
2

~k1
'2k2

'!2

x12x2
D ,

D25
1

P1 S k2
'21mb

2

12x2
2

k1
'21mb

2

12x1
2

~k1
'2k2

'!2

x12x2
D . ~11!

When the scale is lowered toLn21
2 /P1 by the similarity

transformation, all matrix elements in which the energy jum
is larger than the new cutoff are zeroed. The effects of cou
plings which are removed have to be put directly in the
Hamiltonian as new effective interactions. In this case, th
new effective interactions according to Eq.~8! are
-

l
n-

-

e

2gLn21

2 ū~p2 ,s2!g
mu~p1 ,s1!v̄~k2 ,l2!g

nv~k1 ,l1!^TaTb&

3F u~q1!

q1 Dmn~q!S uS uD1u2
Ln21
2

P1 D u~ uD1u2uD2u!

D1

1

uS uD2u2
Ln21
2

P1 D u~ uD2u2uD1u!

D2

D
1

u~2q1!

2q1 Dmn~2q!

3S uS u2D1u2
Ln21
2

P1 D u~ uD1u2uD2u!

2D1

1

uS u2D2u2
Ln21
2

P1 D u~ uD2u2uD1u!

2D2

D G . ~12!

This will repeat as the cutoff is lowered. Once the inter-
action reproduces itself in form the initial cutoff can be sent
to infinity and we can lower the cutoff to the scale of interest.
However, as the cutoff decreases, the coupling increases an
at some point it becomes invalid to use perturbation theory to
further lower the cutoff scale. The interaction in the effective
Hamiltonian at the hadronic scaleL is, thus,

2gL
2 ū~p2 ,s2!g

mu~p1 ,s1!v̄~k2 ,l2!g
nv~k1 ,l1!^TaTb&

3F 1

q1 Dmn~q!S uS uD1u2
L2

P1D u~ uD1u2uD2u!

D1

1

uS uD2u2
L2

P1D u~ uD2u2uD1u!

D2

D G . ~13!

Here we summed the two terms corresponding to the two
time-ordered diagrams in Fig. 1.

Similarly, one can find effective one-body operators~self-
energies! ~see the top two diagrams in Fig. 1!

aLCF

2pP1 H 2
P1

P1 L2lnS P1

eP1D12
P1

P1 L2ln

x2
P1

P1 L2

x
P1

P1 L21m2

2
3

2

P1

P1 L21
1

2

m2
P1

P1 L2

x
P1

P1 L21m2

13
m2

x
ln

m2

x
P1

P1 L21m2J . ~14!
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Herem andx stand for eitherma andxa , ormb andxb . The
first term is infrared divergent (e is an infinitesimal cutoff on
a longitudinal momentum taken to zero at the end of cal
lation! but it exactly cancels with the infrared divergence
the effective two-body operator (13), if theqq̄ pair is in a
color singlet@2#.

By finding these counterterms we have completed the fi
step of the calculation. Let us summarize the effect
Hamiltonian:

Heff5H free1V11V21V2eff, ~15!

whereH free is the kinetic energy;V1 is O(g) emission and
absorption with nonzero matrix elements only between sta
with energy difference smaller than the hadronic sc
L2/P1; V2 is O(g

2) instantaneous interaction andV2eff in-
cludes the effective interactions, alsoO(g2), given in previ-
ous formulas.

This brings us to the second step: we have to regroup
approximate the Hamiltonian for the purpose of bound st
calculations. As mentioned above, the emission and abs
tion are not included inH0 . We include kinetic energy, in-
stantaneous fermion exchange, self-energies, and the
infrared divergent piece of the effective interaction arisi
from one gluon exchange. Even this is still quite complica
as a starting point to gain intuition, so we consider a non
ativistic limit of this Hamiltonian. As before, we derive in
detail results for a specific operator and list the results for
remaining ones.

Let us consider the most infrared divergent piece of
effective interaction arising from one gluon exchange in
color singlet:

2gL
2CFū~p2 ,s2!g

1u~p1 ,s1!v̄~k2 ,l2!g
1v~k1 ,l1!

3F 1

q1

q'2

q12
S uS uD1u2

L2

P1D u~ uD1u2uD2u!

D1

1

uS uD2u2
L2

P1D u~ uD2u2uD1u!

D2

D G . ~16!

Let us denoteMab[ma1mb, introduce a new variable
for the longitudinal momentum fractionh such that
xa5(ma /Mab)2h, xb512xa and then make an expansio
in powers ofh.

To the lowest order in momenta, both energy denomi
tors reduce to

D15D252
1

P1 SMab
2 ~h12h2!1

~k1
'2k2

'!2

~h12h2!
D . ~17!

Here (k1
'2k2

')25q'2. If we further identify
qz
2[Mab

2 (h12h2)
2, then the expression (16) reduces to

4gL
2Ax1~12x1!x2~12x2!Mab

2 q'2

qz
2qW 2

~12ubelow!, ~18!
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where

ubelow[uS L2

P1 2
MabqW

2

P1uqzu
D .

From now on, we drop the omnipresent
Ax1(12x1)x2(12x2), because it cancels exactly with the
same factor in the definition of the wave function@see Eq.
~30! in the next section#.

Adding this to a canonical term of orderg2 which has a
similar structure, namely, the instantaneous interaction

24gL
2CF

1

~h12h2!
2 524gL

2CF

Mab
2

qz
2 , ~19!

leads to the interaction

2
4g2CFMab

2

qW 2
2
4g2CFMab

2 q'2

qz
2qW 2

ubelow. ~20!

The first term is the Coulomb potential. The scale depende
part of the interaction~i.e., the second term! leads to a loga-
rithmic confining potential@2,7#.

Similarly, one can show that the kinetic energy in the
nonrelativistic limit reduces to

k'21ma
2

xa
1

k'21mb
2

xb
→2Mab

kW2

2m
, ~21!

wherem is the reduced mass, and that the self-energy pro
duces only a constant shift:

Sa1Sb→
aCFMabL

p F2lnS P1

eP1D12lnS LMab
D1

1

4

ma

L1ma

1
1

4

mb

L1mb
S 11

3ma

4L D lnS ma

L1ma
D

1S 11
3mb

4L D lnS mb

L1mb
D2

3

2G , ~22!

where

L[
L2

P1

P1

Mab

carries dimension of mass and in the nonrelativistic limit
replaces the light-front cutoffL2/P1. Note that we did not
assume anything about the relation between masses and
cutoff L. The assumption that momenta are small in com
parison to masses is equivalent to assuming that the wa
function is peaked at small momenta, which typically re-
quires thatgL is sufficiently small.

It is more intuitive to work in position space. The Fourier
transform of the potential is
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2MabV~rW !52
2MabCFa

r
2
2MabCFaL

p

3E
0

1

dt
12t

t
$cos~ tLr z!@J0~At2t2Lr'!

1J2~At2t2Lr'!#21%

1
2MabCFaL

p E
0

`dtdw

t21w
u~ t2t22w!

3$cos~ tLr z!J0~AwLr'!21%, ~23!

where r z is the z component of the separation between t
quarks andr'5urW'u is the transverse separation between
quarks. Integration variablest andw are dimensionless. Th
first term in the expression is the Coulomb potential, the r
is the confining potential normalized to zero at the origin.
mentioned above, for the color singlet states, the infra
divergence in this two-body operator precisely cancels w
the infrared divergence in the self-energies, making the c
fining potential finite at the origin. Any finite terms require
to make the confining potential vanish at the origin are s
tracted from the self-energies.

The confining potential is not rotationally invariant, b
cause the cutoff violates rotational symmetry. Also, rec
that rotations on the light front are not kinematic, so as lo
as the gluon emission and absorption is allowed, comp
rotational invariance requires states containing arbitra
large numbers of gluons. The renormalized Hamiltonian
stores rotational symmetry, but only toO(g2), while in the
bound state calculation the confining interaction is treated
all orders.
he
the
e
est
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d
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e-
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The expansion of the confining potential in Legendre
polynomials has only even terms:

V~rW !5
aCFL

p (
k
V2k~r !P2k~cosu!, ~24!

with

V052lnR22Ci~R!14
Si~R!

R 22
~12cosR!

R2

12
sinR
R 2512g, ~25!

V252
5

3
1
5Si~R!

R 2
10

R2 1
5Si~R!

2R2

1
5cosR
R2 2

15

R3 1
5cosR
2R3 1

5sinR
R3 1

5sinR
2R4 1

20

R5

2
20cosR
R5 , ~26!

and

V2k5
~4k11!

2 E
21

11

dxFaCFL
p G21

V~rW !P2k~x!,

whereR5Lr ; Ci(x), Si(x) are cosine and sine integrals,
respectively; andg is the Euler constant.

When the separation between the quarks is purely in th
z direction, i.e.,r'50, the potential has its minimum value
with respect to the angleu. Integrals in Eq.~21! can be done
analytically leading to
FIG. 2. Violation of rotational
symmetry in the confining poten-
tial. At small distances, the viola-
tion of rotational symmetry is
small. At any fixed value ofR,
the confining potential is maximal
when quarks are separated in
purely transverse direction. It is
minimal when the separation be-
tween quarks is in purely longitu-
dinal direction. We also show the
strength of the potential averaged
over the angleu.
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2MabCFaL
p F ln~R!2Ci~R!1

sin~R!

R 1
Si~R!

R 2~22g!G .
~27!

The potential is maximal in the purely transverse directio
~i.e., r z50). For large separations, the difference betwe
the potential in purely transverse and purely longitudinal d
rections is a factor of 2. At very short distances, even t
confining potential is rotationally invariant~see Fig. 2!. This
is of no help though, because at very short distances,
Coulomb part of the potential dominates.

For the bound state calculation, we want to choose a
tationally invariant confining interaction forH0 . This is mo-
tivated partly by phenomenology and partly by our desire
find a tool to qualitatively analyze the effective operators
the Hamiltonian. Restoration of rotational symmetry inH0
provides such a tool in the form of a simple scaling analys

It is not clear how we should choose the leading rotatio
ally invariant interaction at orderg2, because we do not
know yet how rotational symmetry is restored.

It is clear from Eq.~24! that it is convenient to use the
first term in the expansion in Legendre polynomials. It is th
only choice that does not lead to any corrections to t
ground state in the first order of bound state perturbati
theory. The corrections which come from the rotational
noninvariant terms enter at second order in bound state p
turbation theory; that is, at the same order as the emiss
and absorption processes. We have to mention that th
corrections are not suppressed by powers of the coupli
and that the problem does not disappear in the low-lyi
bound states as the coupling decreases. It all returns to
issue of how rotational symmetry is recovered in this a
proach — an issue that extends beyond our simple lead
order calculation.

We will conclude this section with a list of approxima
tions we make in the second step of the calculation.

~1! We do not include emission and absorption inH0 .
~2! We replacexa , xb512xa by xa5(ma /Mab)2h,

12xa5(mb /Mab)1h; and Taylor expand 1/x, 1/(12x) in
powers ofh.

In energy denominators, we neglect terms that are hig
than second order in momenta. The same approximation
made in the arguments of step functions. This leads to
‘‘new ’’ cutoff L, which carries only one power of trans
verse mass. It should be emphasized that the new cu
arises only in the second step, that is, in the nonrelativis
approximation to the light-front effective Hamiltonian. Onl
in this context does it replace the original cutoffL2/P1.
Elsewhere we have to work withL2/P1 ~e.g., the coupling
runs withL2/P1). It is L2 which has to be at hadronic mas
scales. In the self-energies we keep only the leading cons
shift, which is independent of momenta. This is because
self-energies are alreadyO(g2).

~3! We introduce the third component of the ‘‘equa
time’’ momentum:kz56Mabh, and extend the integration
limits on qz from (2Mab ,1Mab) to (2`,1`). It is easy
to show that this third component of the equal-time momen
coincides with thez component of equal-time momentum in
the lowest order ina. As mentioned earlier, it is possible to
introduce a third component without nonrelativistic redu
tion @10#, but it does not yield any simplifications if the
n
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masses are not equal. In the nonrelativistic limit they both
agree to the leading order in powers of momenta. The main
point we want to make here is that in the nonrelativistic limit
the dynamics naturally lead to equal-time dynamics.

~4! For the leading order bound state calculation, we in-
clude only the rotationally invariant moment of the confining
potential@i.e.,V0 given in Eq.~25!# in H0 .

This givesH0 which we choose for the purposes of the
bound state calculation:

H052MabF2
1

2m
¹W 21S̃2

CFa

r
1
CFaL

p
V0~Lr !G ,

~28!

whereV0(Lr ) is given in Eq.~25! and S̃ contains the finite
shift produced by self-energies after subtracting terms
needed to make the confining potential vanish at the origin:

S̃5
aCFL
2p F S 11

3ma

4L D lnS ma

L1ma
D1S 11

3mb

4L D lnS mb

L1mb
D

1
1

4

ma

L1ma
1
1

4

mb

L1mb
1
5

2G . ~29!

A. Schrödinger equation

We now want to find the mass of a bound state and its
wave functionc(k',x):

uP&5E d2k'dx

2~2p!3Ax~12x!
c~k',x!b†d†u0&. ~30!

We use Lorentz-invariant normalization for the states

^P8uP&52~2p!3P1d3~PW 2P8W !,

and the wave function is normalized to one:

E d2k'dx

2~2p!3
uc~k',x!u251.

The bound state satisfies

H0uP&5M2uP&, ~31!

whereM2 is the invariant mass of the bound state. Let the
mass of the bound state be

M25~ma1mb!
212~ma1mb!E, ~32!

which definesE.
Substituting forH0 andM2 in Eq. ~31!, after some

straightforward algebra one obtains a bound state equation
for the wave functionc:

MabS E2S̃1
1

2m

d2

drW2
Dc~rW !5MabF2aCF

r

1
aCFL

p
Vconf~LrW !Gc~rW !,

~33!
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where m is the reduced mass and we choo
Vconf(LrW)5V0(Lr ) given in Eq.~25!. We choose the confin-
ing potential for the leading order bound state calculation
be rotationally invariant, but other choices are possible.
remind the reader of this possibility and to keep the disc
sion as general as possible, we useRW as the argument of the
confining potential.

It is convenient to use a dimensionless separat
R5Lr that naturally arises in the confining piece of th
potential, and to absorb2S̃ into a definition of the eigen-
value Ẽ of the Schro¨dinger equation. When extracting th
bound state mass,2S̃ has to be subtracted. The bound sta
equation in the dimensionless separation is

F2
L2

2m

d2

dRW 2
1LaCFS 1p Vconf~RW !1VCoul~R! D Gc~RW !

5Ẽc~RW !. ~34!

Multiplying both sides of the equation by 2m/L2 and intro-
ducing a dimensionless coupling and eigenvalue

c[
2maCF

L , ~35!

e[
2mẼ

L2 , ~36!

we obtain a Schro¨dinger equation, which depends only o
dimensionless variables:

F2
d2

dRW 2
1cS 1p Vconf~RW !1VCoul~R! D Gc~RW !5ec~RW !.

~37!
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This form is advantageous for numerical study, but more
over, it is quite general—one obtains an equation of thi
form for any quark-antiquark systems and any choice of th
confining potential in the nonrelativistic limit, regardless of
the masses, providing they are nonzero. For different sy
temsL, c, e would differ, but the resulting dimensionless
Schrödinger equation will be the same. Thus in the leading
order,qualitative characteristics of spectra depend only on
one particular combination of the masses and the coupling

B. Bohr analysis

The purpose of this analysis is to gain a qualitative unde
standing of the physics described by the Schro¨dinger equa-
tion ~37!.

Since this is only a qualitative analysis, we will neglect
the finite terms in the confining potential, but keep in mind
that at small distances the confining potential vanishes. Sin
the Schro¨dinger equation is dimensionless, all quantities in
this analysis are dimensionless also. The eigenvalue~energy
e) is given by a sum of the kinetic energy, which in our case
is simply p2, p being dimensionless, and the potential en
ergy. We use the uncertainty principle to replace the mome
tum by 1/R.

Let us consider the ground state

e0'p21V~R!'
1

R2 1cS 2lnR2
1

RD . ~38!

Now we findR which minimizes the energy:

de0
dR50.
-
FIG. 3. Dimensionless eigen
value e for the ground state, the
lowest-lying P state (l51), and
the lowest-lying excitedS state
( l50).
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FIG. 4. Ground state wave function compared
to the Coulomb ground state wave function at the
same coupling.~a! For c50.1, the ground state
wavefunction differs significantly from the Cou-
lomb ground state wavefunction, while~b! for
c51.0 they are similar.~c! Wave functions of the
ground state, the lowest-lyingP state (l51), and
the lowest lying excitedS state (l50) for
c50.1.
The solution is

R05
Ac218c2c

2c
.

Similarly, we find thel51 excited state, for which
R15
Ac21338c2c

2c
.

We now consider two limiting cases: whenc is small and
whenc is large.

c small. In this case, in the ground stateR0'1/Ac, and
the energye0'c1cln(1/Ac). In the lowest l51 state
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FIG. 5. Expectation value of
R2 in the ground state as a func-
tion of c. Dotted lines are con-
necting the data points.
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R1 /R8
'A3, and the splitting in the energy between the

two states ise12e0'clnA3.
Of course, we are interested in ‘‘real world’’ energies an

not the dimensionless results. If we ‘‘unwrap’’ the dimen
sionless results

e12e0'
m

L2 ~E12E0!

'c'
m

L a, ~39!

which implies that

E12E0'aL. ~40!

The splitting between the ground state and the lowest-lyi
P state is independent of masses.

Similarly one can show that what sets the scale for ind
vidual energies isL and that the size of the system,R,
depends both onL and the reduced massm.

c large. In this case,R0 scales like 2/c, the ground state

energye0'2c2/4, whileR1'6/c ande1'2(c2/4) 16.
Unwrapping shows that the scaleL drops out:

e'
m

L2E

'c2'SmL a D 2, ~41!
se

d
-

ng
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wheree stands for any of the dimensionless energies und
consideration, andE for any of the ‘‘real’’ bindings:

E'a2m, ~42!

which depend only on the reduced mass but not on the co
fining scale.

Similarly, L drops out also of the expression for the size
In summary, whenc is small, the spectra are determine

by the logarithmic part of the potential; whenc is large, the
spectra are Coulombic. Recall thatc is proportional to the
reduced mass. Let us set aside questions on howL, or the
original light-front L2, depends on the masses of constitu
ents. There is a natural distinction between heavy quarko
and other mesonic systems. In the case of heavy quarko
the reduced mass is always proportional to the heavy ma
while in all other systems it is related to the light mass. Th
means thatc is larger for the heavy quarkonia, and thus thes
states are substantially more Coulombic, while the other s
tems, including heavy mesons, are more influenced by
confining potential.

This simple technique can be used to estimate expectat
values of various operators in the ground state.

C. Numerical results

The numerical results are in agreement with the simp
Bohr analysis. Figure 3 presents the numerical results for
dimensionless eigenvalue. It confirms that whenc is small,
the spectra are dominated by the log potential. Asc in-
creases, the Coulomb potential becomes more important,
pecially for the ground state.
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Note that in the logarithmic regime~i.e., whenc is small!
the ground state dimensionless energy is always larger o
least comparable to the splitting between the ground s
and thel51 state. For heavy mesons the splitting is a f
hundred MeV, which would imply that the binding in th
ground state is also large. However, recall that we had
absorb a constant shift from the self-energies into the de
tion of the eigenvalue and that the self-energy may be fi
tuned at low energies.

Figure 4 shows a few typical wave functions for th
ground state and lowest-lying excited states. In Figs. 4~a! and
4~b! we compare the exact solution of the Schro¨dinger equa-
tion (37) to the ground state wave function of the Coulom
problem at the same value of the couplingc. When c is
small, the wave function is quite different from the Coulom
bic wave function. Asc increases, it becomes closer a
closer to Coulombic, in agreement with the Bohr analy
presented above. Wave functions of the lowest two exc
states forc50.1, which we later use to fit data, are shown
Fig. 4~c! together with the ground state wave function.

Knowing the wave functions, one can calculate expec
tion values of various operators. For example, Fig. 5 sho
the expectation value ofR2. Even thoughR2..1 in the
entire range ofc, it does not mean that the nonrelativist
approximation is valid. Recall thatr is related to the dimen
sionlessR and is measured in units ofL; so the expectation
value ofmr depends on the relation ofL to the mass.

We now attempt to unwrap the dimensionless results
B mesons. There is not enough experimental data, but m
over, the leading order results are too crude to justify a p
cise fit. Instead we use qualitative arguments and try to
a set of parameters that is reasonable.

We know from the heavy quark effective theory that
heavy mesons the splittings should be independent of
heavy masses@14#. We also know that the spectra are n
Coulombic. Both requirements are satisfied if we choosc
small. For example, withc50.1, which is on the border o
the logarithmic regime, we find that we can fit the splittin
between the two lowest-lying doublets withm50.32 GeV,
a50.35, andL50.98 GeV. At this value of parameter
S̃.20.37 GeV, leading toE0 /m.0.8. This shows~to-
gether with the expectation value ofmr.1.1) that the
ground state is not nonrelativistic, which is not surprising

For systems consisting of lighter quarks,c would be
smaller because the reduced mass decreases. Asc decreases
the state becomes more and more sensitive to the confi
potential at larger distancesR. At some distances we expe
the potential to become stronger than logarithmic, but w
out a calculation to a higher order ing we cannot decide
whether those distances will manifest themselves in
spectra. Also, as one deals with lighter systems, the ques
of restoration of rotational symmetry becomes crucial.

IV. SUMMARY AND CONCLUSION

Starting with the canonical light-front Hamiltonian wit
no zero modes, we use a similarity transformation to find
effective Hamiltonian which is band diagonal with respect
a hadronic energy scale. We calculate the effective Ham
tonian to orderg2 for qq̄ color singlet states with massiv
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quarks of arbitrary masses. Then we split the Hamiltonian t
H0 , treated to all orders, andV, included perturbatively,
choosing the spin-independent and rotationally invariant pa
of its nonrelativistic reduction forH0 . In the nonrelativistic
limit the bound state equation leads to a dimensionles
Schrödinger equation. Its scaling provides a powerful tool to
classify the operators and estimate their expectation value

We solve the leading order problem, and find that ou
calculation is acceptable forB mesons, which we can fit with
a set of reasonable, self-consistent parameters. We show t
heavy mesons are qualitatively different from heavy quarko
nia, but there are similarities with other mesonic systems
strange mesons and isospin 1 light mesons. Our approa
enables us to relate different mesonic systems and use qua
tative features of spectra~e.g., almost constant mass squared
splitting in the lowest-lying pseudoscalar and vector states
ordering of the lowest-lying 01 and 21 states! as a check of
our effective operators. In this paper we present the leadin
order problem, study of spin and angular momentum
dependent operators generated to this order of the couplin
by the similarity transformation will follow. We hope that
results for heavy mesons can be generalized to lighter m
sons, at least qualitatively, although it is not clear due to
violation of rotational symmetry.

We manage to postpone the problem of lack of manifes
rotational invariance in the confining potential to an order o
bound state perturbation theory where there are addition
corrections beyond the current calculation. Nevertheless, th
corrections are not suppressed by powers of the coupling a
this raises a serious warning that we do not yet know what i
needed to recover rotational invariance. There are sever
options — one might be that in our second order light-fron
calculation theqq̄ approximation is insufficient. Since these
corrections enter at the same order of bound state perturb
tion theory as the emission and absorption processes, it
possible that rotational invariance requires that aqq̄g com-
ponent be included to compensate for a rotationally nonin
variantqq̄ component. Another option is that this is not re-
ally an issue in the ‘‘real world’’ — the states which would
be mixed are well separated in energy. In this case the pre
ence of rotationally noninvariant long range interactions
would be merely a nuisance because they make it difficult t
construct a simple scaling analysis that reveals the qualit
tive features of meson spectra. The resolution of these an
other issues must await further calculations.
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