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Initial studies of bound states in light-front QCD
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We present the first numerical QCD bound state calculation based on a renormalization-group-improved
light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling, and
it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-time-like
Schralinger equation. This is solved for quark-antiquark constituent states, and we obtain a set of self-
consistent parameters by fittirgy meson spectrd S0556-282(96)04214-3

PACS numbgs): 12.38.Lg, 11.10.Gh, 11.10.St, 12.38.Aw

I. INTRODUCTION — there must be other operators, which cannot be deter-
mined from the perturbative behavior of the theory. Glazek

nd Wilson[5] designed a similarity transformation to lower
he cutoff scale, which is tailored to make the Hamiltonian

Recently, a new approach to renormalization and solvin
for QCD bound states, inspired by the constituent quar

model, has been advocatgtl-4]. Certainly the most suc- look more like a CQM Hamiltoniarfsee, for examplel6]

cessful approach to date is provided by_lattlce _QC_D. Therf?de references ifi1]). The cutoff violates manifest gauge
are a number of reasons, however, why it remains importanf ariance and Lorentz covariance, and thus these symme-
to _develop other non—nonperturb_atlvg .tools for thg direct SOties are no longer a guide to what operators are allowed in
Iu_t|on of Q.CI_D bggnd states. It is difficutout not impos-  ihe Hamiltonian.
sible) to gain intuitions about_the quark or gluon structure of  Similarity transformations can be designed to bring the
hadrons from Euclidean lattice calculations. Excited state$iamiltonian toward a band-diagonal form by eliminating
must be extracted from statistical noise. Experimental preCimatriX elements between states which differ drastica"y in
sion for many hadron properties far exceeds that of any foretight-front energy. Effects of couplings that are removed
seeable lattice calculation. States involving more than on@ave to be put directly into the Hamiltonian as new effective
hadron are not conveniently studied using finite lattices. Thénteractions. One important consequence is that two-body
lattice is the only tool for studying non-nonperturbative QCD potentials are generated. In fact, the similarity transformation
with controlled errors, and we need other tools. generates a logarithmic confining potential already at order

The new approach, in many aspects complimentary to latg? [2,7]. This part of the calculation is done perturbatively. If
tice QCD, is tailored to build a bridge between QCD and athe similarity transformation can be done analytically, it is
constituent quark mod€CQM). It has been argued that it is easy to use a powerful method called coupling coherence
convenient to use a light-front formulation of the theory, [8,9] to determine all new terms. We will illustrate this pro-
because on the light front it is possible to make the vacuuneedure, which is straightforward to second order, in the fol-
trivial simply by implementing a small longitudinal cutoff. lowing sections.
As a result all partons in a hadronic state are connected to the The second step is the bound state calculation itself. The
hadron, instead of being disconnected excitations in a conmeffective Hamiltonian is divided intd1,, a part which is
plicated medium. The price to pay is a considerably moresolved nonperturbatively, and, the difference between the
complicated renormalization problem. original Hamiltonian andH,. The effects ofV are to be

In this paper we briefly describe this new approach, concomputed using bound state perturbation theory. The criteria
centrating on aspects necessary to appreciate the simple cédr choosingH, are that it approximates the physics relevant
culation we present. The calculations of the heavy mesoffor hadronic bound states as closely as posdiie take a
spectra, for systems containing one heavy and one lightint from the CQM and include constituent masses and two-
quark, is intended to elucidate the approach and providbody potentialsand yet it must be manageable. We empha-
qualitative tests of the leading terms revealed in the effectivesize that the approach is tailored within limits to take advan-
Hamiltonian by the renormalization group. Only the first steptage of the successful phenomenology, but it does not stop
in this calculation is taken here, and later work will focus onthere. We can systematically improve the calculations, both
the spin-dependent structure. We refer the reader to the liby computing corrections to the Hamiltonian and higher
erature for many detailgl—4]. terms in bound state perturbation theory. For example, any

The new approach consists of two steps. The first step ilerms added by han@@.g., constituent massesan be added
renormalization. The second step is a bound state calculda such a way that at the physical value of the coupling they
tion. reduce to terms in the effective QCD Hamiltoniéor de-

The aim of the first step is to find an effective renormal-tails se€1,4]).
ized Hamiltonian at hadronic energy scales starting with a In this paper we present one of the simplest possible cal-
Hamiltonian which is consistent with perturbative QCD atculations of QCD bound states based on the new approach.
high energy scales. A natural starting point is the canonicaln the first step we find the effective Hamiltonian to order
light-front QCD Hamiltonian, although it cannot be complete g? using a similarity transformation and coupling coherence,
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and in the second step we solve for the lowest lygqagcolor  the lowest lying states. We may need to do a series of bound
singlet states with arbitrary but nonzero masses in the norstate calculations with small coupling, and then extrapolate
relativistic limit. These approximations are severe, but welo the physical value of the strong coupling if this is large
will see that the qualitative results are good. We will not[1]. However, we are not yet at the stage where we can carry
explicitly show operators that have zero expectation value ifPut the strategy with confidence that we have complete con-
the qq color singlet. trol over the bound state perturbation theory. The similarity
We wish to derive an effective Hamiltonian that acts attransformation generates effective operators. The primary

the hadronic scale by lowering the similarity cutoff perturba-motivation of this work is to initiate the study of these op-
tively as low as possible, hopefully down to the scale aferators. Further, the issue of chiral symmetry breaking terms,

which the bound state is well approximated by its two par_that is, what operators have to be added to the Hamiltonian
by hand to restore the effects of zero modes removed by a

ticle componentgq. This may not be possible for all sys- Lo . o
tems. The coupling may become too large for perturbatior?ma” longitudinal cutoff, is not resolved yet. Nonrelativistic
. duction provides a framework in which these and other

theory to be reliable before the higher Fock components argPauct b died
eliminated. We know, however, that it is possible in QED,queStlons can be s_tu ed. . . .
and we believe that the success of the CQM suggests the The main questions answered in this calculation are the

llowing.
same for QCD. The most favorable systems as far as th . L
— Q v 4 (1) Two-body potentials generated by the similarity trans-

gq and nonrelativistic approximations are concerned ar Lo ; L
heavy quarkonia. However, heavy mesons containing a lig rmation include the Coulomb potential and a logarithmic
confining potential already at ordg?. Does this effective

quark provide a better tool for testing our approach qualita o9 . ; .
tively, because they have fine structure that allows us t6-|a_mllton|an contain enough structure to provide a starting
separately test spin and orbital angular momentumPONt for studying bound states in QCD? For the spin-

dependent operators in the Hamiltonian, in the regime whicj’déPendent part of the effective Hamiltonian, which we

is dominated by the confining interaction. This means thaptudy here, 'th('a answer Is yes. .
the scaling of momenta and energies is determined by the (2) T_he similarity transf_ormatlon generates new effective
confining interaction. As the Coulomb part of the potential'meraa'Ons1;fIS there a95|\r(nple way to see how these new
becomes more important, the simple scaling analysis brea@oeéatlors % ect spectra hes. . . h
down, until the Coulomb potential dominates over the con- (3) In or er to answer the previous questions, one has to
fining potential. Then the momenta and energies scale as akg some S|mpllf|§:at|ons of the or|g|r!al Hamll_toman, n-
QED. We expect heavy quarkonia to be in the mixed regime® uding but not restricted to nonrelativistic reductidar de-

so the simple scaling analysis is probably not going to b ails see Sec. I)l We do not focus on quantitative analysis,
reliable. Study of the spin and orbital angular momentum- ut we want to ask whether the calculation is at all reason-
dependent operators, which are generated by the similarietgble; that is, can we fit any data with a set of reasonable

. ; . . ?
transformation to second order in the coupling, will be don arameters’ \_(es. . .
in later work. The paper is organized as follows. In the second section

In heavy-light systems there is only one heavy quark, butve briefly review the general strategy, sketching the similar-

we do not yet know whether the light degrees of freedom caHY transformation and coupling coherence. The third section

. — 2 . .
be approximated by just one constituent in our approach‘%"ves.Our calqulat!on —4qto orQe(g : First, we fmd. the
Further, as we show below, heavy-light mesons are qua"taeffect_we Hamiltonian using the S|m_|lar|ty transform_atlo_n and
tively different from heavy quarkonia, but there are similari- coupllng co_herence. Then we Sp“t_ the Hamlltonlan into a
ties with other mesonic systems: strange mesons and isospd't Which is treated nonperturbatively in the bound state
1 light mesons. So some of what we learn from heavy meg:alculatlon and a part which is treated perturbatively. In this

sons may be generalized to light mesons. We will choos®aber, we solve the leading order problem, and show that it

B mesons to check whether we can fit spectra with reasor{-educes to a simple Schiimger equation in the nonrelativ-

able parameters. Istic Iimit._ We shpw a simplg way to qualit_atively analyze
After bringing the cutoff down to the hadronic scale, we the physics behm_d this Schdimger equation. Then we
do bound state calculations. We have to decide which term@resent the numencal_ results. The last section contains our
will be treated as the dominant interactions and put in theummary and conclusions.
unperturbed Hamiltonian, and which ones will be treated as
perturbations. Il. TWO STEPS TO SOLVING QCD—
In order to gain qualitative insight it is useful to study the GENERAL STRATEGY
nonrelativistic limit and to rewrite the bound state equation ] ) ) ) )
in position space. It turns out that in the nonrelativistic limit !N this section we briefly review the general strategy, first
light-front dynamics naturally reduce to equal-time dynam_outlmed m_Ref_.[l]._ W_e start with the c+anon|cal Ilg_ht—front
ics, which implies that angular momenta become kinematiQCD Hamiltonian in light-cone gaugé,, =0. We will not
cally defined. It is possible to transform light-front coordi- €xplicitly show terms that are not important for the specific
nates to equal-time coordinates by a specific change galculations presented in the next section. For a detailed dis-
variables[10] without taking the nonrelativistic limit. How- cussion of the light-front Hamiltonian s¢,11] and refer-
ever, the point we want to make here is that in the nonrelagnces therein. Ignoring purely gluonic terms that do not af-
tivistic limit equal-time dynamics arise naturally. This will fect the effectiveqq Hamiltonian until fourth order iy,
become clearer below.
Nonrelativistic reduction can be justified at best only for H=Hjeet Vi+ Vs, D
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whereH;. is the free light-front Hamiltonian: erence to symmetries. The basic idea of coupling coherence
is that in the Hamiltonian restricted by symmetries, the

H _2 f d*p p f bb.+did ) strengths of all operators are not independent but depend

free™ & (2m2p"  p* (beby+dsdy), only on a finite number of independent canonical parameters;

so that under a transformation, the Hamiltonian reproduces
where there is a sum over flavorsy; is a quark mass, itself in form exactly, apart from the change of the explicit
b;,d; are quark and antiquark annihilation operators, and cutoff and the running of those few independent couplings.
All dependence on the cutoff is absorbed into the indepen-

_ - 120 7 dent running couplings. Once one obtains a Hamiltonian that
Vl_gf dxd, A © reproduces itself as the cutoff is lowered, any initial cutoff

can be sent to infinity.

L2+ 2

contains the star;dard ordgrquark-glugn coupling. Heres In order to use coupling coherence we need to study how
andA*=3, A;T" are free light-front fields: the Hamiltonian changes when the cutoff changes. Let
W HAn: Hfeet v, Where Hyee is a free Hamiltonian and
W 1 ’ v=V;+V, is cut off so that
= _ _ i _)l . N
Yo=_r(—ia-a.+pmg, (bio] b =o0, ©

if |Egi—Eqj|>A2/P", whereHyed ¢y =Eqi| ¢;). The simi-
larity cutoff, A%/P* with the dimension of light-front en-
ergy, consists o2, which carries a dimension of transverse
mass squared, and an arbitrary longitudinal momentum ref-
erence scal@" . If this cutoff is lowered toA2_,/P" by the
The constrained fieldg; . andA™, are replaced by functions similarity transformation, the new Hamiltonian matrix ele-
of the physical degrees of freedom resulting in new terms irments toO(v?) are[7]
the canonical Hamiltonian, among which

HAn,lab:<d’aleree+U|¢b>

and

2. . .
A"=<A+=O, A_=&—+¢9L-Ai, Al).

1 2
V,=—2¢° f dxd2xl<¢1Taw+>(a—+) (WiT%) (4 A2,
0 |Aak|_T (| Aarl —[Apil)
is the instantaneous gluon exchange between two fermions. —Ek Valkb E _E
ok~ Fo0a

We regulate the Hamiltonian with cutoffs on the change

in free energy at each interaction vertex and a cutoff on A2

longitudinal momentum fractions that is taken to zero at the 0| |Apl — n—f) 0(|Apd —[Aak)

end of the calculation. Then we use a similarity transforma- + P )
tion. The similarity transformations form a renormalization Eok—Eob ’

group. Repeated transformations generate a sequence of

— _ . _ 2 +
Hamiltonians with decreasing cutoff. A Hamiltonian in the WNereédij=Eqi—Eo and|Eqga— Egp| <Aj_,/P", and there
sequence is related to the previous one by are implicit cutoffs in this expression because the matrix el-

ements ofv have already been cut off so thafj=0 if
=U"H(Ap-2)Hy U(Ap-). (8)  [Eoi—Eo[>AyP".
_ To this order, a coupling coherent Hamiltonian repro-

U is a unitary matrix and can be written &=€'R, where  duces itself, with the only change being,— A,_;. At the
R is Hermitian and has an expansion in powers of the nonthird order one begins to see the quark-gluon coupling run. If
diagonal part of the Hamiltonian. We have choseso that  the Hamiltonian reproduces itself, the indexecomes irrel-
it decreases as the cutoff decreases. evant. The solution is found by noting that we need the par-

The similarity transformation is designed to bring the cut-tial sum above to be added to an interactionvirthat is
off Hamiltonian to a band-diagonal form, while avoiding expressed as a sum, so that the transformation merely
problems of small energy denominators in perturbative exchanges the limits on the sum in a simple fashifmn details
pansions[5]. In particular, the transformed Hamiltonian is see[2]). There are two possibilities. The first is
required to be band diagonal relative to the new scale. This
means that the matrix elements between states that differ in Hab=(¢alHrect v )
energy by more than the new cutoff must be zero for the A2
simple step function cutoffs we employ here. This require- 6’( |Aad — n—+1) 0| Aol — | Apil)
ment has implications for the matrix elementskf Given _2 DD P
R, one can find the transformed Hamiltonian. o akvke Eox—Eoa

The initial cutoff destroys manifest symmetries and one of )
the criteria for the renormalized Hamiltonian is that it re- ol |Ap — A 0(1Apd — A ad)
stores the symmetries, albeit not necessarily in manifest bkl p+ bk ak
form. If the similarity transformation can be done analyti- + E-—E , ®
cally, it is possible to use coupling cohereri&®9] to com- Ok =0b
pletely fix the renormalized Hamiltonian without explicit ref- and the second is

Ha,

1
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Hap= < ¢a| Hfeet v | ¢b>

A2,
0| —+ —1Aad | 0(|Aad —[Apkl) —_—

D
+
; UakUkb Esk—Eoa 0| @ —_—_—m_ - —_—
Asy
0 o —[Apil | 0| Apl = [Aakl)

9
Eok—Eob ©

Note thatv in these expressions is the same as that above
only to first order. The coupling coherent interactiorHnis
written as a power series in which reproduces itself under
the transformation, except the cutoff changes. In higher or- fermmion in a high energy state - - -
ders the canonical couplings also run. To decide which of gluon in a high energy state -« -
these equations to use one must in principle go to higher
orders, but in practice it is usually obvious which choice is
correct. For example, the first solution provides effective FIG. 1. Diagrams representing similarity transformation to order
two-body interactions from one-gluon exchange, while theg? for qqg. The top line represents new effective one-body opera-
second provides the relevant part of the quark self-energy. tbrs, the bottom line are two-body operators. We use untypical lines
chosen otherwise, the new terms would make the effectivéor gluons and fermions to emphasize that these represent new op-
Hamiltonian divergent. erators, not Feynman diagrams.

At the end of this first step, the Hamiltonian is renormal- ) o
ized and the scale relative to which it is band diagonal is &alculations. At least for now, we choose the confining po-
hadronic scalé.The effective Hamiltonian contains compli- tential such that it does not yield any corrections in first order
cated potentials, which result from eliminating the couplingPound state perturbation theory. The corrections which come
between high and low energy states. It still contains emissioffOM the rotationally noninvariant terms are not suppressed
and absorption interactions, but these no longer mix states & powers of the coupling, despite the fact that they enter at
high and low energies. the second order of bo_und state pertur_batlon theo_ry._ This is

In the second step, the Hamiltonian which is now given aghe same order at which one has to include emission and
an expansion irg is regrouped from the point of view of ab;orptlon processes, unless those are suppressgq nonpertur-
what is important in the bound state. Based on the success Bgtively (e.g., if the gluons are massiv& herefore, it is not
the CQM, we believe that emission and absorption pro_clear whether it is mean!ngful to cons!der th(_e correct@s due
cesses, which would mix different Fock states, are supl© rotationally noninvariant terms without includingqg.
pressed with respect to interactions that do not change paNevertheless, we evaluated these corrections for t_he ground
ticle number for low-lying states and sufficiently low cutoff. State and they are of order a few percent in a region where
Thus the particle number changing interactions will bethe confining potential dominates over the Coulomb poten-
treated perturbatively using bound state perturbation theor)}!aL
This is clearly justified if the gluons are massilg], but

even for massless gluons one can argue that the interacting lll. THE SIMPLE QCD CALCULATION —

gluon effectively acquires mass related to the confining scale qq TO ORDER g?

[2]. It is therefore plausible to assume that adding an extra

constituent is suppressed even in this case. In this section we discuss mesons, i.e., color singlet QCD

Next, we use constituent masses. It is possible to add thieound states whose valence constituents are a quark and an
constituent mass at zeroth order and subtract it at a highemtiquark. The masses of the constituents are arbitrary but
order in bound state perturbation theory, as outlinefilin  nonzero. We expect that the qualitative aspects of the study
This issue starts to be important when the effective Hamil-are relevant to altjq systems with a possible exception of
tonian is calculated to higher orders and one tries to see théight isospin zero mesorfsWe fit B mesons.
the approximations in the leading order bound state calcula- To orderg?, the similarity transformation is represented
tion lead to convergent results. by a few diagrams, as shown in Fig. 1, so it is possible to

In the calculation presented here we also use a nonreldind the effective Hamiltonian analytically. Let us work out
tivistic reduction and we choose a rotationally symmetricin detail one of the operators, and then list the results for the
Ho. We want to minimize higher order corrections, but weremaining ones.
do not yet know what restores the rotational symmédrg., Let us consider matrix elements involving one gluon ex-
adding extra gluons or terms of higher ordergin The an- change between a quark and an antiqu@de the bottom
swer to this question may change our choiceHgfin future  two diagrams in Fig. L If the Hamiltonian is band diagonal

A specific value of the “hadronic scale” is to be specified by 2For light mesons witH =0 we expect that operators &f(g*)
fitting spectra. will play an important role.
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relative to a scaletAZ/P+ then only those matrix elements in — gA

which the energy difference is less than this value are non-
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U(pz ,02) Y*U(P1,01)v(Kz,N2) ¥'v(Ky N 1){TaTp)

e 0(|D Ao )0<|D |~ 1D2))
B B (q ) ( ) 1 'P+ 1 2
— 03 U(p2,02) y*u(p1,0)v(kp, \2) "0 (Ky A ){TaTp) g D D;
A2 Afy
oq) (P+ |D1|>0(|D |—|D,)) 0| 1D = — 2| 6(]D,| D)
+
q+ ,Lw( ) Dl D2
2 (—a")
0 P—E—IDZ|)0<|D2|—|D1|> g7 Pwl-®)
+ D, 2
A2 0| | =Da| - 73+ =] 6(|D4]—[D3))
o(—q") a(P—I—|—Dll)a<|D1|—|D2|> x ~Db,
+ _q+ DMV(_Q) _Dl A2
2 |_ 2|_ 7)+ 0(|D2| |D1|)
o P_£_|_D2|)9(|Dz|_|D1|) * -D, (12
+ 5 , (10 o _ _
2 This will repeat as the cutoff is lowered. Once the inter-

action reproduces itself in form the initial cutoff can be sent
consntuentsn, , \; are thelr light- front helicitiesu(p,o),  However, as the cutoff decreases, the coupling increases and
v(k,\) are their spinor$12] indexi=1,2 refers to the ini- at some point it becomes invalid to use perturbation theory to
tial and final states, respectlvelmw(q) (o /q )W% further lower the cutoff scale. The interaction in the effective

+(1/q* )(mq 0.0 M) gw is the gluon propagator in Hamiltonian at the hadronic scale is, thus,

light-front gauge{13], 7,,= (0, o 1,0,0);4=p;~ P is the —g3u(pz,2) y*u(p1,o1)v(Kz, \2) Y0 (K A 1)(TaTp)
exchanged momenturg, =q* /q D,, D, are energy de-
nominatorsD,;=p; —p, — 4~ andDZ— > —ki—q . A?
It is convenient to use Jacobi momenta. Setting the total 1 0| [D4|— P 0(|D4|=D2])
transverse momentum to be zero, the momenta of the con- X q—+DM(CI) D
stituents are !
A2
4| 1Dl 55 (10 - ID2)
piJr:XiPJri plizKll’ P
+ D, . (13
ki=(1-x)P", ki=—«i.

Here we summed the two terms corresponding to the two
time-ordered diagrams in Fig. 1.
Similarly, one can find effective one-body operat(slf-

Let the mass of the constituent with momentprbe m, and | ' 1€-D
energies (see the top two diagrams in Fig) 1

the mass of the other constituent lvg. The denominators
in terms of Jacobi momenta are

P+
x2—A?
a,C P* P* * P
1 124 m2 L1242 1 1N2 A™F T A2 2
D=t K1 a K2 a_(Kl K7) | pprra 273+A In o 7DJrA In 5T 5
P X1 X2 X1— X2 XFA +m?
+
Dye k(KM _mitmy (o)) + A2
27ptl 1-x, 1-x; X1— Xy | 3P .. 1 P
2 P* 2 P* A2e
X—=F m
When the scale is lowered th2_,/P" by the similarity P
transformation, all matrix elements in which the energy jump
is larger than the new cutoff are zeroed. The effects of cou- m2 2
pIing_s which are removed_ ha_ve to pe put directly in the +3—In 57 (14)
Hamiltonian as new effective interactions. In this case, the A2+ m2
L ) ) -
new effective interactions according to EH§) are P
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Herem andx stand for eithem, andx,, ormy andx,. The  where

first term is infrared divergente(is an infinitesimal cutoff on

a longitudinal momentum taken to zero at the end of calcu-

lation) but it exactly cancels with the infrared divergence in Opelon™= 0(

the effective two-body operator (13), if thegg pair is in a

color singlet[2]. ]
By finding these counterterms we have completed the firsf'™@m ___now on, ~we drop the  omnipresent

step of the calculation. Let us summarize the effectivevX1(1—X1)X2(1—Xy), because it cancels exactly with the
Hamiltonian: same factor in the definition of the wave functifsee Eq.

(30) in the next sectioh
Heir=Hpeet Vi + Vot Vaer, (15) ~ Adding this to a canonical term of ordegr which has a
similar structure, namely, the instantaneous interaction

P PHlag)

whereHj,. is the kinetic energyV, is O(g) emission and
absorption with nonzero matrix elements only between states
with energy difference smaller than the hadronic scale
A2IP*; V, is O(g?) instantaneous interaction aiq in-
cludes the effective interactions, al®gg?), given in previ-  |eads to the interaction

ous formulas.

This brings us to the second step: we have to regroup and 402CM2.  402CM2.qt2
approximate the Hamiltonian for the purpose of bound state _x Fab_ g*F Qabq
calculations. As mentioned above, the emission and absorp- q? q%q2
tion are not included irHy. We include kinetic energy, in-
stantaneous fermion exchange, self-energies, and the mophe first term is the Coulomb potential. The scale dependent
infrared divergent piece of the effective interaction arisingpart of the interactiorti.e., the second termeads to a loga-
from one gluon exchange. Even this is still quite complicatedithmic confining potentia2,7].
as a starting point to gain intuition, so we consider a nonrel-  Similarly, one can show that the kinetic energy in the
ativistic limit of this Hamiltonian. As before, we derive in nonrelativistic limit reduces to
detail results for a specific operator and list the results for the

1 M2,
—402Cr——— > =—4g3C —, 19
O F e 17)? 0ACr 7 (19

z

ebelow (20)

remaining ones. 12, 2 12, 2 =,
: . . . +m +m
Let us consider the most infrared divergent piece of the “ 2 4 X b—>2Mabk—, (21)
effective interaction arising from one gluon exchange in a Xa Xp 2m
color singlet:

wherem is the reduced mass, and that the self-energy pro-
—Q,Z\Cpu_(pz,tfz)7+u(p1,Ul)v_(kz,)\z) vy oKy Ng) duces only a constant shift:

2

A aCeM gL * L) 1 m
6| |D4|— =] 6(|D4|—|D Fab - __a
i q-2 (| 1l 77+> (ID1/=[D2)) Sat2p— [ZIn( s -|—2In(|vIab +4 .
q" QW Dy
1 m 3m m
A2 Lz b / n a a
¢ |D2|—F)9(|D2|—|D1|) 4£+mb\1 az | £+m,
+ .
B, (16)
3mb my 3
_ _ + 1+—)In )——}, (22
Let us denoteM ,,=m,+my, introduce a new variable AL ) \L+my) 2
for the longitudinal momentum fractionp such that
X,=(my /M) — 7, X,=1—X, and then make an expansion where
in powers of .
To the lowest order in momenta, both energy denomina- A2 P
tors reduce to L= 7 M
ab
1 (KL—KL 2 . . . . P . . .
D,=D,=— —| M2 (1~ 7,)+ r 2l (17) carries dimension of mass and in the nonrelativistic limit
A R G | replaces the light-front cutofA?/P". Note that we did not

assume anything about the relation between masses and the
Here (k1—«3)%>=q*2 If we further identify cutoff £. The assumption that momenta are small in com-
quMgb( 71— 1,)2, then the expression (16) reduces to paris_on tp masses is equivalent to assumi'ng that' the wave
function is peaked at small momenta, which typically re-
q-2 quires thatg, is sufficiently small.
4gﬁJxl(l—xl)xz(l—xz)Mgbﬁ(l— Opeiow), (18 It is more intuitive to_wqu in position space. The Fourier
z transform of the potential is
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- 2M,Cra 2M 4 ,Cral The expansion of the confining potential in Legendre
2MgpV(r)=— PR g polynomials has only even terms:
1 1_t - aC,:E
x f it {costLr)[Jo( Vi~ Lr.) V()= "= Val1)Pyy(cos), (24)
0
+J(\Nt—t2Lr )]-1} with
N ZMabCFaﬁfwdtdwe 2 Vel o 4Si(R) 2(1—coSR)
- o 24w ( w) 0=2INR—2Ci(R) + R =2
% _ sink
{costLr,)Io(VwLr ) -1}, (23 P 25
wherer, is thez component of the separation between the 5 5S(R) 10  5Si(R)
quarks and | =|r | is the transverse separation between the Vo= — gt T w2t oR2
quarks. Integration variabldsandw are dimensionless. The ) )
first term in the expression is the Coulomb potential, the rest 4 Scosk 15 n 5C°SR+ SSIMR + SSIMR " 20
is the confining potential normalized to zero at the origin. As R? R 2R3 RE 2R* R
mentioned above, for the color singlet states, the infrared
divergence in this two-body operator precisely cancels with _ 20cosk (26)
the infrared divergence in the self-energies, making the con- R
fining potential finite at the origin. Any finite terms required
to make the confining potential vanish at the origin are suband
tracted from the self-energies. L _1
The confining potential is not rotationally invariant, be- :(4k+1)f+ dx aCeL V(F)P (X)
cause the cutoff violates rotational symmetry. Also, recall % 2 -1 ™ AT

that rotations on the light front are not kinematic, so as long

as the gluon emission and absorption is allowed, completevhere R= Lr; Ci(x), Si(x) are cosine and sine integrals,
rotational invariance requires states containing arbitrarilyrespectively; andy is the Euler constant.

large numbers of gluons. The renormalized Hamiltonian re- When the separation between the quarks is purely in the
stores rotational symmetry, but only @(g?), while in the  z direction, i.e.,r, =0, the potential has its minimum value
bound state calculation the confining interaction is treated tovith respect to the anglé. Integrals in Eq(21) can be done

all orders. analytically leading to

1.6 I I ] I I I T I I

14 + in transverse direction — =
averaged over angle § —
in z direction —

FIG. 2. Violation of rotational
symmetry in the confining poten-
1F — tial. At small distances, the viola-

tion of rotational symmetry is

small. At any fixed value ofR,

the confining potential is maximal

when quarks are separated in
) purely transverse direction. It is
0.6 ] minimal when the separation be-
tween quarks is in purely longitu-
dinal direction. We also show the
0.4 . strength of the potential averaged
over the angles.

[Oszﬁ] 0.8
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2M,Cral _ SifR) Si(R) masses are not equal. In the nonrelativistic limit they both
— - |NR)=Ci(R)+ ——+ ———(2=7)|. agree to the leading order in powers of momenta. The main
point we want to make here is that in the nonrelativistic limit
@27 the dynamics naturally lead to equal-time dynamics.

The potential is maximal in the purely transverse direction (4) For the leading order bound state calculation, we in-
(i.e., r,=0). For large separations, the difference betweerflude only the rotationally invariant moment of the confining
the potential in purely transverse and purely longitudinal di-Potential[i.e., Vo given in Eq.(25] in Ho.
rections is a factor of 2. At very short distances, even the This givesH, which we choose for the purposes of the
confining potential is rotationally invariagsee Fig. 2 This  bound state calculation:
is of no help though, because at very short distances, the

; ; 1 .. ~ Cra Cral
Coulomb part of the potential d.omlnates. 0=2M,y — —V2+3— F= L =F VO(L‘r)},
For the bound state calculation, we want to choose a ro- 2m r ™
tationally invariant confining interaction fd# ;. This is mo- (28

tivated partly by phenomenology and partly by our desire to o _ ~ ) .
find a tool to qualitatively analyze the effective operators inWhereVo(Lr) is given in Eq.(25) and> contains the finite
the Hamiltonian. Restoration of rotational symmetryHg ~ Shift produced by self-energies after subtracting terms
provides such a tool in the form of a simple scaling analysisNeeded to make the confining potential vanish at the origin:
It is not clear how we should choose the leading rotation-

ally invariant interaction at ordeg?, because we do not gzaCF‘c 1+ 3ma)|n Ma )+(1+ 3mb)|n My

know yet how rotational symmetry is restored. 2m AL )\ L+my 4L ]\ L+my
It is clear from Eq.(24) that it is convenient to use the

' ; - . . 1 m, 1 my 5

first term in the expansion in Legendre polynomials. It is the += - _} (29)

only choice that does not lead to any corrections to the 4L+my 4 L+m, 2

ground state in the first order of bound state perturbation

theory. The corrections which come from the rotationally A. Schradinger equation
noninvariant terms enter at second order in bound state per- We now want to find the mass of a bound state and its
turbation theory; that is, at the same order as the emissionave functiony( - ,x):
and absorption processes. We have to mention that thed¥ Pl x):
corrections are not suppressed by powers of the coupling, 2 1
) . . d“k—dx N -
and that the problem does not disappear in the low-lying |P)= e (k- x)bTd0). (30
bound states as the coupling decreases. It all returns to the 2(27)°\Xx(1—Xx)
issue of how rotational symmetry is recovered in this ap- . o
proach — an issue that extends beyond our simple |eadin@/e use Lorentz-invariant normalization for the states
order calculation.

We will conclude this section with a list of approxima- (P'|Py=2(2m)°P* 8*(P—P"),
tions we make in the second step of the calculation. o ) _
(1) We do not include emission and absorptiorHg. and the wave function is normalized to one:

(2) We replacex,, Xp=1—X, by x,=(my/M ) — 7,
1—x,=(my/M,y) + 7; and Taylor expand &/ 1/(1—x) in
powers of .

In energy denominators, we neglect terms that are highe -
than second order in momenta. The same approximation isne bound state satisfies
made in the arguments of step functions. This leads to a 42
“new " cutoff £, which carries only one power of trans- HolP)=M"|P), (3Y)
verse mass. It should be emphasized that the new cutoffhere 42 is the invariant mass of the bound state. Let the
arises only in the second step, that is, in the nonrelativisti¢, 555 of the bound state be
approximation to the light-front effective Hamiltonian. Only
in this context does it replace the original cutoff/P*. M?=(my+my)2+2(m,+my)E, (32
Elsewhere we have to work with?/P* (e.g., the coupling
runs withA2/P"). Itis A2 which has to be at hadronic mass which definesE.
scales. In the self-energies we keep only the leading constant Substituting forH, and M? in Eq. (31), after some
shift, which is independent of momenta. This is because thetraightforward algebra one obtains a bound state equation
self-energies are already(g?). for the wave functiony:

(3) We introduce the third component of the “equal-
time” momentum:k,= +M,,7, and extend the integration =~ 1 - —aCg
limits on g, from (=M, ,+ M) to (—o0,+). It is easy Mab( E-3+ ﬁﬁ) ‘/’(r):Mab{ r
to show that this third component of the equal-time momenta
coincides with thez component of equal-time momentum in aCp - R
the lowest order inx. As mentioned earlier, it is possible to + Tvconf(‘cr):| W(r),
introduce a third component without nonrelativistic reduc-
tion [10], but it does not yield any simplifications if the (33

d?ktdx N -
f WW(K X)|*=1.

d2
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where m is the reduced mass and we choose This form is advantageous for numerical study, but more-
Veonl( £7) = Vo(Lr) given in EqQ.(25). We choose the confin-  OVer, it is quite gener_al—one obtains an equation of this
ing potential for the leading order bound state calculation tdorm for any quark-antiquark systems and any choice of the

be rotationally invariant, but other choices are possible. T@onfining potential in the nonrelativistic limit, regardless of
remind the reader of this possibility and to keep the discusthe masses, providing they are nonzero. For different sys-

sion as general as possible, we ®as the argument of the

confining potential.

It is convenient to use a dimensionless separatio
R=Lr that naturally arises in the confining piece of the
potential, and to absork-X into a definition of the eigen-

tems L, c, e would differ, but the resulting dimensionless

Schralinger equation will be the same. Thus in the leading
[prder, qualitative characteristics of spectra depend only on
one particular combination of the masses and the coupling.

value E of the Schidinger equation. When extracting the

bound state mass; >, has to be subtracted. The bound state

equation in the dimensionless separation is

B. Bohr analysis

The purpose of this analysis is to gain a qualitative under-
standing of the physics described by the Sdimger equa-

2 2
G EVed R+ Voo R) | [ (R tion (37).
2m gR2 e o Since this is only a qualitative analysis, we will neglect
- the finite terms in the confining potential, but keep in mind
=E¢(R). (34  that at small distances the confining potential vanishes. Since

Multiplying both sides of the equation byn# £? and intro-
ducing a dimensionless coupling and eigenvalue

the Schrdinger equation is dimensionless, all quantities in
this analysis are dimensionless also. The eigenvanergy

e) is given by a sum of the kinetic energy, which in our case
is simply p2, p being dimensionless, and the potential en-

c= 2maCe , (35) ergy. We use the uncertainty principle to replace the momen-
L tum by 1/R.
~ Let us consider the ground state
2mE
&= 36 : !
ey~p +V(R)~ﬁ+c 2InR ﬁ)' (38

we obtain a Schidinger equation, which depends only on

dimensionless variables:

+cC

1 o o o
;Vconf(R) +Veoul(R) ) } H(R)=ey(R).
(37

2
{_dﬁz

Now we find R which minimizes the energy:

deo_

iR 0.

0.25 T - T -
0.2
0.15

0.1

J=0 -+~ -
=1 —
ground state —

FIG. 3. Dimensionless eigen-
value e for the ground state, the

T

lowest-lying P state (=1), and
the lowest-lying excitedS state
(1=0).

0.2 0.4 0.6

0.8 1
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(a) c=0.1

T

Coulomb -+~
full solution ——

T 0.25 T T T

0.2

0.15

0.1

0.05

10 15 20 25 30 35 40 45 50 15 20
R
(¢)c=0.1
T T T T T T T T
FIG. 4. Ground state wave function compared
d state —— to the Coulomb ground state wave function at the
r-_ groun Sla_(i L N same coupling(a) For c=0.1, the ground state
1:0 . wavefunction differs significantly from the Cou-

lomb ground state wavefunction, whilg) for
¢=1.0 they are similarc) Wave functions of the
ground state, the lowest-lying state (=1), and
the lowest lying excitedS state (=0) for

Similarly, we find thel =1 excited state, for which

— c=0.1.
i | I.. ! ! i 1 1
10 15 20 25 30 35 40 45 50
R
_\/cz+3><80—c
1 2c '
Jc2+8c—c
T We now consider two limiting cases: wheris small and

whenc is large.
¢ small.In this case, in the ground stafe,~ 1/\/c, and
the energyeg~c+ cin(1/yc). In the lowestl=1 state
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: | T T T
1000 k =
i :
L+ |
_+ -
+
100 b Ty -
; . ]
i + .
2
(R?) + )
+ FIG. 5. Expectation value of
e i R? in the ground state as a func-
+e G.. .. tion of ¢c. Dotted lines are con-
10 | -+ N é— necting the data points.
1 1 1 | |
0 0.2 0.4 0.6 0.8 1
c

R,IR,~+/3, and the splitting in the energy between thesewheree stands for any of the dimensionless energies under

two states i®; —ey~cln/3. consideration, an& for any of the “real” bindings:
Of course, we are interested in “real world” energies and )
not the dimensionless results. If we “unwrap” the dimen- E~a’m, (42

sionless results )
which depend only on the reduced mass but not on the con-

m fining scale.
e,— ey~ F(El_ Eo) Similarly, £ drops out also of the expression for the size.
In summary, whert is small, the spectra are determined
m by the logarithmic part of the potential; whenis large, the
~C~—a, (39 spectra are Coulombic. Recall thatis proportional to the

£ reduced mass. Let us set aside questions on Bpwr the

original light-front A2, depends on the masses of constitu-
ents. There is a natural distinction between heavy quarkonia
and other mesonic systems. In the case of heavy quarkonia
E;,—Ey~al. (40)  the reduced mass is always proportional to the heavy mass,
while in all other systems it is related to the light mass. This
The splitting between the ground state and the Iow¢=:st-|yingi”eanS that |sblarge.r ﬁ)r the hec::ivquu%r.konlﬁ,_lanﬁ thuﬁ these
P state is independent of masses. tates .arel sdu_ sta;]nUa y more Coulombic, w |ft|at e og %r syk;s-
Similarly one can show that what sets the scale for indi-tem]f” Including (Iaavy mesons, are more influenced by the
vidual energies isC and that the size of the syster®, cor_:_Lr_ung_ pofer:tlah . b dt timat tati
depends both o and the reduced mass. | IS sf|mpg ec mqui can tehuse 0 SS Itmta € expectation
c large In this caseR, scales like &, the ground state values of various operators in the ground state.
energyey~ — c¢?/4, while R,~6/c ande;~ — (c?/4)x.
Unwrapping shows that the scafedrops out:

which implies that

C. Numerical results

The numerical results are in agreement with the simple
Bohr analysis. Figure 3 presents the numerical results for the
dimensionless eigenvalue. It confirms that wheis small,

5 the spectra are dominated by the log potential. A#-
~c2~(ma) (41) creases, the Coulomb potential becomes more important, es-
' pecially for the ground state.
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Note that in the logarithmic regim@e., whenc is smal)  quarks of arbitrary masses. Then we split the Hamiltonian to
the ground state dimensionless energy is always larger or &t,, treated to all orders, anW, included perturbatively,
least comparable to the splitting between the ground statehoosing the spin-independent and rotationally invariant part
and thel =1 state. For heavy mesons the splitting is a fewof its nonrelativistic reduction foH,. In the nonrelativistic
hundred MeV, which would imply that the binding in the Iimit__the bound state equation leads to a dimensionless
ground state is also large. However, recall that we had t&chralinger equation. Its scaling provides a powerful tool to
absorb a constant shift from the self-energies into the definiclassify the operators and estimate their expectation values.

tion of the eigenvalue and that the self-energy may be fine- We solve the leading order problem, and find that our
tuned at low energies. calculation is acceptable f& mesons, which we can fit with

Figure 4 shows a few typical wave functions for the & Set of reasonable, self-consistent parameters. We show that
ground state and lowest-lying excited states. In Figs.and ~ neavy mesons are qualitatively different from heavy quarko-
4(b) we compare the exact solution of the Satirger equa- Ni&, but there are similarities with other mesonic systems:
tion (37) to the ground state wave function of the Coulombstrange mesons and isospin 1 light mesons. Our approach
problem at the same value of the coupling When ¢ is enables us to relate different mesonic systems and use quali-
small, the wave function is quite different from the Coulom- tative features of specti@.g., almost constant mass squared
bic wave function. Asc increases, it becomes closer and SPIitting in the lowest-lying pseudoscalar and vector states,
closer to Coulombic, in agreement with the Bohr analysisordering of the lowest-lying 0 and 2" state as a check of
presented above. Wave functions of the lowest two excite@Ur effective operators. In this paper we present the leading
states forc=0.1, which we later use to fit data, are shown in Order problem, study of spin and angular momentum-
Fig. 4(c) together with the ground state wave function. depende_nt_op_erators genera_ted to this order of the coupling

Knowing the wave functions, one can calculate expectaby the similarity transformation will follow. We hope that
tion values of various operators. For example, Fig. 5 show&esults for heavy mesons can be generalized to lighter me-
the expectation value oR2. Even thoughR?>>1 in the SONS, at least qualitatively, although it is not clear due to
entire range of, it does not mean that the nonrelativistic Violation of rotational symmetry. _
approximation is valid. Recall thatis related to the dimen- We manage to postpone the problem of lack of manifest
sionlessR and is measured in units @, so the expectation rotational invariance in the confining potential to an order of
value ofmr depends on the relation aﬁ to the mass. bound state perturbation theory where there are additional

We now attempt to unwrap the dimensionless results foforrections beyond the current calculation. Nevertheless, the

B mesons. There is not enough experimental data, but mor&P!Tections are not suppressed by powers of the coupling and

over, the leading order results are too crude to justify a pre'ghis raises a serious warning that we do not yet know what is

cise fit. Instead we use qualitative arguments and try to fin'€€ded to recover rotational invariance. There are several
a set of parameters that is reasonable. options — one might be that in our second order light-front

We know from the heavy quark effective theory that in calculation thegq approximation is insufficient. Since these
heavy mesons the splittings should be independent of th(éorrections enter at the same order of bound state perturba-
heavy massefl4]. We also know that the spectra are not flon theory as the emission and absorption processes, it is

Coulombic. Both requirements are satisfied if we choose POSSible that rotational invariance requires thajgg com-
small. For example, witit=0.1, which is on the border of ponent be included to compensate for a rotationally nonin-

the logarithmic regime, we find that we can fit the splitting V&"1antdd component. Another option is that this is not re-
between the two lowest-lying doublets with=0.32 GeV ally an issue in the “real world” — the states which would
«=0.35 andA=0.98 GeV. At this value of barametérs be mixed are well separated in energy. In this case the pres-
S _'0 ?’)7 GeV Iéading toé /m=0.8. This shows(to ence of rotationally noninvariant long range interactions

e ’ con ~ would be merely a nuisance because they make it difficult to
gether with the expectation value ohr=1.1) that the

) S C . construct a simple scaling analysis that reveals the qualita-
ground state is not nonrelativistic, which is not surprising. .
. . tive features of meson spectra. The resolution of these and
For systems consisting of lighter quarks,would be

other issues must await further calculations.
smaller because the reduced mass decreasasdAsreases,
the state becomes more and more sensitive to the confining
potential at larger distancé®. At some distances we expect
the potential to become stronger than logarithmic, but with- ACKNOWLEDGMENTS
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