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Strong-coupling analysis of two-dimensional @N) o models with N=3
on square, triangular, and honeycomb lattices
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Recently generated long strong-coupling series for the two-point Green'’s functions of asymptotically free
O(N) lattice o models are analyzed, focusing on the evaluation of dimensionless renormalization-group-
invariant ratios of physical quantities and applying resummation techniques to series in the inverse temperature
B and in the energ¥. Square, triangular, and honeycomb lattices are considered, as a test of universality and
in order to estimate systematic errors. Lalgjsolutions are carefully studied in order to establish benchmarks
for series coefficients and resummations. Scaling and universality are verified. All invariant ratios related to the
large-distance properties of the two-point functions vary monotonically Wijtlleparting from their largé¢
values only by a few per mille even down kb= 3. [S0556-282(96)00414-9

PACS numbe(s): 11.15.Me, 11.10 Kk, 11.15 Pg, 75.10 Hk

[. INTRODUCTION tures of four-dimensional gauge theories, such as asymptotic
freedom and spontaneous mass generation. This last state-
The properties of physical systems in the vicinity of a ment must, however, be qualified, since the above-mentioned
critical point, such as critical exponents and amplitude ratiosproperties, according to common lore, are possessed only by
can be extracted by a variety of methods, ranging from exadhose(2D) O(N) models such thai>2.
solutions to Monte Carlo simulations. We focus here on these asymptotically free models, ana-
In the absence of exact results, one of the most successflylzing their strong-coupling expansion in order to extract
approaches is based on the investigation of the strongnformation that may be relevant to the description of their
coupling series expansion, which enjoys the property of aontinuum limit (3—o), assumingB.= to be the only
finite radius of convergence, oftdbut not necessarilyco-  singularity on the real axis. This hypothesis is favored by all
inciding with the extent of the high-temperature phase. Morenumerical evidence as well as by the successful application
generally, when no singular points occur on the real axis obf the extrapolation technigues that we shall discuss in the
the complex coupling plane, it is possible to exploit strong-present paper. The analysis of our strong-coupling series for
coupling results even beyond the convergence radius by anaiodels withN<2 is presented in Ref2].
lytic continuations, which are based on appropriate resum- It is obviously quite hard to imagine that strong-coupling
mation methods. Extending the length of the strong-couplindechniques may be really accurate in describing the divergent
series and improving the accuracy of the resummations ar&ehavior of such quantities as the correlation length and the
therefore, the two most compelling tasks within this ap-magnetic susceptibility. Nevertheless, as our calculations
proach to the study of the behavior of systems in the criticalvill explicitly confirm, the strong-coupling analysis may
region. provide quite accurate continuum-limit estimates when ap-
As part of an extended program of strong-coupling calcuplied directly to dimensionless, renormalization-group-
lations we have recently computed an extended series expaimvariant ratios of physical quantities. Two basic ideas will

sion of all nontrivial two-point Green'’s functions make this statement more convincing.
R . (i) For any dimensionless, renormalization-group-
G(x)=(s(0)-s(x)) (1) invariant ratioR(B), when g is sufficiently large we may

expect a behavior

for the nearest-neighbor lattice formulation of two-
dimensional ON) o models on the square, triangular, and
honeycomb lattices, respectively up to 21st, 15th, and 30th
order in the strong-coupling expansion paramgeA com-
plete presentation of our strong-coupling computations for
O(N) o models in two and three dimensions will appear in a
forthcoming paper. A preliminary report of our calculations whereR* is the fixed point(continuum value and¢ is the
can be found in Refl1]. (diverging correlation length. Hence a reasonable estimate

The relevance of a better understanding of two-of R* may be obtained at the values Bfcorresponding to
dimensional(2D) O(N) o models cannot be overestimated. large but finite correlation lengths, where the function
They appear in condensed matter literature as prototypR(8) flattens. This is essentially the same idea underlying
models for critical phenomena that are essentially restrictetonte Carlo studies of asymptotically free theories, based on
to two-dimensional layers, including some instances of highthe identification of the so-called scaling region.
T. superconductivity. Moreover, they can be employed as (ii) On physical grounds, it is understandable tBas not
model field theories sharing some of the most peculiar feanecessarily the most convenient variable to parametrize phe-

2

1
R(B)—R ~ 25
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nomena occurring aroungl=cc. An interesting alternative is honeycomb lattices, respectively. We present as well the cal-
based on the observation that the strong-coupling series @ulation of theA parameters. Appendix C is a study of the
the internal energy, complex-temperature singularities of tHé=c partition
functions on the triangular and honeycomb lattices. In Ap-
E=B8+0(B3%, 3 pendixes D, E, and F we present, for selected valudy,of
the strong-coupling series of some relevant quantities on the
may be inverted to give8 as a series ifE. This series may Square, triangular, and honeycomb lattices, respectively.
be substituted into other strong-coupling expansions, obtain-
ing expressions for physical quantities as power series ifi. THE LARGE- N LIMIT OF LATTICE O (N) o MODELS
E. It might now be easier to reach the continuum limit, since
it now occurs at a finite value of the expansion variable, i.e.,
E—1. The nearest-neighbor lattice formulations on square, trian-
We hope to convince the reader that, by exploiting thes@ular, and honeycomb lattices are defined by the action
ideas, state-of-the-art strong-coupling calculations can be
made at least as accurate as the best Monte Carlo simulations S =—-NB8> Sy Sci SeS=1, (4)

A. The large-N saddle point equation

presently available, when applied to dimensionless finks
renormalization-group-invariant quantities.

We must stress that the analysis of the strong-couplingvhere s is an N-component vector, the sum is performed
series calculated on different lattices offers a possibility ofover all links of the lattice, and, ,x, indicate the sites at the
testing universality, and, on the other hand, once universalitgnds of each link. The coordination numbercis 4,6,3, re-
is assumed, it represents a further check for possible systergpectively, for the square, triangular, and honeycomb lattice.
atic errors and allows their quantitative estimate; this estiThe lattice spacing, which represents the length unit, is
mate is usually a difficult task in strong-coupling extrapola-defined to be the length of a link. The volume per site is then
tion_ methods_ sugh as those based on Rgmroximants and V= 1,\/5/2, and 3/§/4 (in unit of a?), respectively, for the
their generalizations. square, triangular, and honeycomb lattice.

Our physical intuition of the behavior of ®) models is Straightforward calculations show that the correct con-
strongly guided by our knowledge of their larfebehavior,  tinuum limit of O(N) o models,
and by the evidence of a very weak dependencél @i the
dimensionless ratios. In order to extend our understanding to N o . = - - -
those lattices that have not till now received a systematic S=5¢ ) dX0,8(x)-9,8(x),  s(x)-s(x)=1, ()
treatment, and also in order to establish a benchmark for the
strong-coupling analysis, we decided to start our presentatioR obtained by identifying
with a detailed comparative study of the lafyelimit of
various lattices, in the nearest-neighbor formulation. To the 1 1
best of our knowledge, only the lar@gé-solution on the tZE.\/——, B’ (6)
square lattice was already known expliciff]. 3B

thé):ﬂ?uz giggg:ftetieafafr%l?lvivrzit solution of O(N) :_especti\_/ely, for the square, triangular, and honeycomb lat-

i . __tice. Notice that

o models on the square, triangular, and honeycomb lattices,
in the nearest-neighbor formulation, calculating several 4y
physical quantities and showing explicitly the expected uni- A=tB= — 7)
versality properties. The triangular- and honeycomb-lattice ¢
_results are original, and possess some intrinsic reasons %f the distance between nearest-neighbor sites of the dual
interest. However, readers willing to focus on square-lattic

results are advised to jump to Sec. Il after reading Secs. I att\';\:/iérr: ltjr?étisrntﬁeer l?;t'f(i:; dsggzn%ne iNsper site qoes 1o
and Il B, where the notation is fixed. b b 9

Section Il is devoted to a detailed analysis of the avail—mfm'ty’ one can use a saddle point equation to evaluate the

able strong-coupling series 6f(x) and other physical quan- Partition function. Replacing the t_:onstrasﬁ= 1 by a Fou-
tities on the square, triangular, and honeycomb lattices. Modi€r integral over a conjugate variabg , we write the par-
of the results we shall show there concern Mre 3 model. fition function as
The basic motivation for this choice lies in the observation
that all depe_ndenc_e oN is_monotonic between 3 and; ZMJ H dé(é(gxz_ 1)ex;< NBE gx .gx )
hence the discussion of highMr+esults would be only a X finks 1T
boring repetition of the considerations presented here. The N
reader not interested in the analysis of triangular and honey- J X 2
comb lattices may skip most of the discussion, by focusing * er d¢xdaxex;{N(§X: ! 2 (=60
on Sec. lll B, where further definitions are introduced and
the square-lattice series are analyzed, and on Sec. Il E, _/_3 (s — by )2 @)
where all conclusions are drawn. 2fs 0 T )
Appendixes A and B provide the derivation and the tech-
nical details of the largé&¥ calculations on the triangular and Integrating out thep variables we arrive at the expression

|
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N .
me daxex’{E(E iay—TrnR| |, (9) my =2, (x3)IG(x). (18)
X X
where Straightforward calculations lead to the results
i t
ny— - TAXy+|aX5Xy, (10) XEmO:E' (19)

andA,, is a generalized Laplacian operator, such that

a=Mg’=-—=—, (20)
4 z
N (by, = b3 )?=—2 bybyydy. (11) X
links X,y
m: 1 z\ !
The largeN limit solution is obtained from the variational u=———-=—|1+ — (21
Xm4 4 16

equation with respect tax,. Looking for a translation-

invariant solution we set . . - o
Notice that in the largéd limit the renormalization constant

Vs of the fundamental field iZ=t. u is a renormalization-
lay =72 (12 group-invariant quantity.

The mass gap should be extracted from the long-distance
behavior of the two-point Green’s function, which is also
related to the imaginary momentum singularity of the Fou-

1 rier transform ofG(x). In the absence of a strict rotation
Ry =1 [~ Axy 2058y, (13)  invariance, one actually may define different estimators of
the mass gap having the same continuum limit. On the
square lattice one may consideg and iy Obtained, respec-
tively, by the equations

The matrixR then becomes

and the saddle point equation is written as

1
— i - -1 ~_ .

1_N“TstTrR , (14 G Ypy=ims,p,=0)=0,

whereNg is the number of sites. ~ M M
The largeN fundamental two-point Green's function is G| pr=i NFREEN =0. (22

obtained by

G(x—y)=R. (15) Ms and py determine, respectively, the long-distance behav-

Xy *

ior of the side and diagonal wall-wall correlations con-
In order to calculate the trace & 1, the easiest proce- Structed withG(x). In generalized Gaussian models, such as

dure consists in Fourier transforming the oper&orSuch a  the largeN limit of O(N) models, it turns out convenient to
transformation is straightforward on lattices, such as squar@€fine the quantities

and triangular lattices, whose sites are related by a translation

group, and in these cases it yields the diagonalization of the M§=2(005ms— 1),

matrix R,,. The honeycomb lattice, not possessing a full

translation symmetry, presents some complications. In this e
case a partial diagonalization Bf, can be achieved follow- M§=4 cosh—=—1]. (23
ing the procedure outlined in Re#]. V2
B. The square lattice In the continuum limit
Turning to the momentum space, the variational equation M. M
becomes — 4 (24)
Ms Md

t =p= _.(2m)? Rtz ZPS(Z)K(Ps(Z))’ (16) thereforeM4 and M4 may also be used as estimators of the
mass gap.
where In the largeN limit,

1 F d%k 1

-1 M2=M3=z=M3. (25)

ps( Z) = ’ (17)

1+ ZZ
The rotational invariance ofG(x) at large distance,

andK is the complete integral of the first kind. d>¢, is checked by the ratiogs/uq. Using the above re-
Let us define the moments @&(x), sults one can evaluate the scaling violation terms:



- In(i\Vz+ 1+ %2
2I[(12(2) 2+ 1+ £ 2]

PR
48°

Hs
M

72°+0(Z%). (26)

23040

Another test of scaling is provided by the ratio

Vz

12
2 N1tz

Ms 2
=—In

Vz

Mg 27

1 1 3 oA
ﬂZ‘f’ mz +0(2°).
27

The internal energy can be easily calculated, obtaining

4
+ —

E=(Sc Sxs ) =Rms ,=1— 7 (29

4B

Therefore

2 (Gern—50%)= — — = (29
2/3 2

where the term proportional is related to the condensate
T of the trace of the energy-momentum tengelr

B(1)

z—tz—a S(x)- 9 s(x) (30
In the largeN limit,
B()=—5—t% (31)
therefore, from expressiof28) we deduce
T 1 -
MZan (32
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Ng,= zalnz 36
9=—275" (36)
which can be made more explicit by writing
Ng =47 ——Ps _gal14 2 inZ + 2]+ O(22
O AT B M e M2t 2O
(37)

whereE is an elliptic function.

All the above results can be expressed as function8 of
by solving the saddle point equation. Concerning asymptotic
scaling, and therefore solving the saddle point equation at
large B8, one finds

2
t)

The analytic structure of the various observables has been
investigated in Ref[7]. The complex8 singularities are
square-root branch points; indeed quantities sucly amd
£2 behave as

(39

MG:4\/§ex;{

A(B)+B(B)VB—Bs

around a singular poing,, whereA(B8) andB(3) are regu-

lar in the neighborhood oBs. The singularities closest to
the origin are located g8=0.321 62¢-1+i). Such singu-
larities determine the convergence radius of the strong-
coupling expansion, which is therefofs=0.454 84, corre-
sponding to a correlation lengtfy=3.171 60.

(39

C. The triangular lattice

On the triangular lattice, using the results of Appendix A,
the saddle point equation can be written as

Another interesting quantity which can be evaluated in thgypere

largeN limit is the zero-momentum four-point renormalized

coupling constant, defined by

Xa

== (33
I X2§G
where
Xa= E <§O é’xgy'gz>c (34)
X,y,Z

g, is zero in the largeN limit, where the theory is Gaussian-
like and thusy,=0. Its value in the continuum limit,

8

o=

N+O

(39

1
ﬁz i)
can also be evaluated in the larijeexpansion of the con-

tinuum formulation of the Of) models[6]. On the square
lattice, by using the saddle point equation we find

1 7 dky (27/v3 dk; 1

T V3s= _szfzﬂ/gzwA orz 40
1 ki 3k,

A(k)=4 1—§ cok,+ ZCOSECOST (41

and the momentum integration is performed over the Bril-
louin zone corresponding to a triangular lattice. By rather
straightforward calculationgnaking use also of some of the
formulas of Ref[8]) the saddle point equation can be written
as

1 1 —-1/4
?:\/5/3:%<1+g) pi(2)K(py(2)), (42
where
Z 1/ 1 z 1 Z 1/21-1/2
pt(Z) 1+€ T§+§+E 1+€
5 3z 3 z 1/21—-1/2
X §+§_§ 1+€) (43)
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Using the results of Appendix A one can find

_ t _ 2 44

1
éEMgzzg, (45)
_m 1 14 = B 46
“xm, 4t e 49

An estimator of the mass gap can be extracted from the

CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI
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MGz4\/§exr{ - ZTW) .
Equations(38) and (53) are in agreement with the largé-
limit of the ratio of the A parameters of the square and
triangular lattice formulations calculated in Appendix|é&.

Eqg. (A13)] using perturbation theory.

We have investigated the analytic structure in the com-
plex B8 plane. Details of such study are presented in Appen-
dix C. As on the square lattice, the singularities are square-
root branch points. Those closest to the origin are placed at

ﬂ_z 0.206 711-i 0.181 627, leading to a convergence radius

|Ong-distance behavior of the wall-wall correlation function for the Strong_coup"ng expansi(ﬁ’}:O_Z?S 169, which cor-

defined in Eq(A7); indeed, forx>1,

G (x)xe” Hv. (47)

In the largeN limit one finds

8 3
Mfzg(cosh\/z—_m—l)=z=Mé. (48)

A test of scaling is provided by the ratio
pme 2 3| 1 9 3

M—G—Earccos%lJr §Z =1 3—22+ MZ +0(2°),
(49)

responds to a correlation lengélay =2.989 25.

D. The honeycomb lattice

The analysis of models defined on the honeycomb lattice
presents a few subtleties caused by the fact that, unlike
square and triangular lattices, not all sites are related by a
translation, not allowing a straightforward definition of a
Fourier transform. Nevertheless, observing that sites at even
distance in the number of lattice links form triangular lat-
tices, one can define a Fourier-like transformation that par-
tially diagonalizes the Gaussian propagdigp to 2xX2 ma-
trices [4]. In this section we present the relevant results;
some details of their derivation are reported in Appendix B.

Using the expression dR™! of Eq. (B4) we write the

where scaling violations are of the same order as those fourshddle point equation in the form
on the square lattice for the corresponding quantity; cf. Eq.

(27).

The internal energy is given by the expression

.- 1
E=(S, ) =1- (50

66"

leading again to the resul82) for the condensate of the trace

of the energy-momentum tensor, in agreement with univer-

sality.

We calculatedy, on the triangular lattice, finding the ex-
pression(in the derivation we made use of the saddle poin
equation(40)]

2 Jdinz

Ng,=——=—, 51
which can be written in a more explicit form using E¢2):
1\"1 E(pt) dpt
Ngr=477(1+€2> E 1—pt25
1 1 -1 -1
—5a11t 52 PKip)
=8 1+Z|Z+11+o2 52

where the continuum value &g, , obtained forz—0, is in
agreement with the resul{85) and (37).

In the weak-coupling regioh— 0 the saddle point equa-
tion leads to the asymptotic scaling formula

1 B FWB dklfw/ﬁ dk;, 1+ 3z
t 3 J-2me27) w327 A(K)+2(1+ L 2)
(54)
where
8 V3 3 V3
A(k)=§ 2—0037k2(co§k1+0037k2) , (55
{and integrating over the momentum we arrive at
1 £ 1 1 2| K 56
tT B 2n +7] Pn(2K(pn(2)), (56)
where
z 1/2 3z -3/2 z —-1/2
ph(Z)=(1+Z 1+§ (14‘5) . (57)
From Eq.(B4) we also derive
_ t 4 58
X=42" 382 (58)
E=Mg?==, (59
1 1 2™ 60
u=711*15 (60)
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The two orthogonal wall-wall correlation functions 12
GM™(x) and G{")(x) defined in Eqs(B6) and (B7) allow

one to define two estimators of the mass gap from their long-  (}+ honeycomb
distance behavior: L1 —— square
\ —-—-- triangular

GV (x)ore ™,

G\ (x) e X, (61) §

wherex is the distance between the two walls in units of the
lattice spacing. In the continuum limjit, = u, and they both ‘
reproduce the physical mass propagating in the fundamental osf; /
channel. As on the square and triangular lattices, it is conve- ¥
nient to define the quantities

0.0 20 4.0 6.0 8.0 10.0

8/ 3pu,
Mfzg(coshzi—l), E"G

FIG. 1. The largeN limit of the ratio betweenMg and the

8 \/§Mh corresponding weak-coupling asymptotic formulas for the square
2_ l
Mh_§( cosh 2 1], (62) triangular, and honeycomb lattices.
which, in the continuum limit, are also estimators of the 1 z 1 Mé
mass gap. In the largs-limit one finds E=1- 3B t77 1- 38 T (67)
Mf=z 1+§ , where the term proportional lMé again verifies universal-
ity.
) In the weak-coupling regiob— 0 the saddle point equa-
Mip=2. (63 tion leads to the asymptotic scaling formula
Notice that in the continuum largs-limit the result 2
MG:4ex;{ - —) . (68
M t
—=1, (64)
Mg Equations(38) and (68) are in agreement with the largé-

limit of the ratio of the A parameters of the square and
triangular lattice formulations calculated in AppendiX &.

Eq. (B12)], using perturbation theory.

In Fig. 1 we compare asymptotic scaling from the various

whereM is any mass-gap estimator, is found for all lattice
formulations considered.
On the honeycomb lattice the maximal violation of full

rotational symmetry occurs for directions differing by & |attices considered, plotting the ratio betweldy; and the

/6 angle, and therefore, taking into account its discrete roborresponding asymptotic formu[af. Egs. (38), (53), and
tational symmetry, also by ar/2 angle. So a good test of (68)]. Notice that in the larg®¥ limit corrections to asymp-

rotation invariance of5(x) at large distance is provided by totic scaling areO(Mé), in that correction©(1/INMg) are

the ratiou, / un: suppressed by a factorN/
0 1 We have investigated the analytic structure in the
My arccospl+ 52(1+ 52)] 14 izero(zg) complex-temperature plane of ti= model on the hon-
Mh J3arccospl+ £ z] 640 ' eycomb lattice(details are reported in Appendix)CAs on
(65) the square and triangular lattices, singularities are square-
root branch points, and those closest to the origin are placed
As expected from the better rotational symmetry of the hon-on the imaginary axis g8= +i0.362 095. The convergence
eycomb lattice, rotation invariance is set earlier than for theadius for the strong-coupling expansion is associated with a
square lattice; indeed, th@(z) scaling violation is absent.  quite small correlation lengthé;=1.000 02.
A test of scaling is provided by the ratio

1 IIl. CONTINUUM RESULTS FROM STRONG COUPLING

—1_ 2 3 . .
1 322+ 10 2402 +0(z°), A. Analysis of the series

= ——=arccoshl+ -z

M_G‘@ 8

Mh 2 % 3

(66) In this section we analyze the strong-coupling series of

some of the physical quantities which can be extracted from

where scaling violations are of the same order as those fouritie two-point fundamental Green’s function. We especially
on the square lattice for the corresponding quantity; cf. Eqconsider dimensionless renormalization-group-invariant ra-
(27). tios, whose value in the scaling region, i.e., their asymptotic
The internal energy is given by value for B—o, concerns the continuum physics. Some



1788 CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI 54

strong-coupling series for selected values\ofire reported We recall that arffl/m] PA usesn=1+m terms of the

in Appendixes D, E, and F, respectively, for the square, triseries, while arjl/m] DIn-PA requiresn=1+m+1 terms.
angular, and honeycomb lattices. The series in the energy af@ontinuum estimates are then obtained by evaluating the ap-
obtained by inverting the strong-coupling series of the enproximants of the energy seriesit 1, and those of th@

ergy E=8+0(8%) and substituting into the original series series at a value oB corresponding to a reasonably large
in B. correlation length.

Our analysis of the series of dimensionless As final estimates we take the average of the results from
renormalization-group-invariant ratios of physical quantitiesthe quasidiagonali.e., with I=m) PA’s using all available
such as those defined in the previous section, is based derms of the series. The errors we will display are just indica-
Padeapproximant(PA) techniques. For a review on the re- tive, and give an idea of the spread of the results coming
summation techniques, see REd]. from different PA’s. They are the square root of the variance

PA’s are expected to converge well to meromorphic anaaround the estimate of the results, using also quasidiagonal
lytic functions. More flexibility is achieved by applying the PA'’s constructed from shorter series. Such errors do not al-
PA analysis to the logarithmic derivati¥®In-PA analysig,  ways provide a reliable estimate of the uncertainty, which
and therefore enlarging the class of functions which can benay be underestimated especially when the structure of the
reproduced to those having branch-point singularities. Théunction(or of its logarithmic derivativeis not well approxi-
accuracy and the convergence of the PA’'s depend on howated by a meromorphic analytic function. In such cases a
well the function considered, or its logarithmic derivative, more reliable estimate of the real uncertainty should come
can be reproduced by a meromorphic analytic function, androm the comparison of results from the analysis of different
may change when considering different representations cferies representing the same quantity, which in general are
the same quantity. By comparing the results from differentnot expected to have the same analytic structure.
series representations of the same quantity one may check In the remainder of this section we present the main re-
for possible systematic errors in the resummation procedursults obtained from our strong-coupling analysis. Most of
employed. them will concern theN=3 case.

In our analysis we constructgd/m] PA’s and DIn-PA’s
of both the series i8 and in the energyl andm are the
orders of the polynomials, respectively, at the numerator and B. The square lattice

at the denominator of the ratio forming them] PA of the On the square lattice we have calculated the two-point
series at hand, or of its logarithmic derivatiyBIn-PA). Green’s function up tdO(8%Y), from which we have ex-
While [1/m] PA’s directly provide the quaptlty at hand, in a tracted strong-coupling series of the quantit@s y, 5(23,
DIn—PA analyqs one gets.e[rilm] approximant by recon-—, M2, andM3, already introduced in Sec. Il B, and of the
structing the original quantity from thjg¢/m] PA of its loga- ratioerMglM";, andssMi/Mé. Some of the above series

thm_c gerlvait|ye, €., all/m] Din-PA of the series for selected values ol are reported in Appendix D. Our
(X)=Z;_,a;x' is obtained from : : : .
strong-coupling series represent a considerable extension of
X the 14th order calculations of R¢fL0], performed by means
A,,m(x)zaoexp( f dx’ DIn,,mA(x’)), (69 of a linked cluster expansion, which have been reelaborated
0 and analyzed in Refl11]. We also mention recent works
where the linked cluster expansion technique has been fur-
where DIn,,A(X) indicates thd|/m] PA of the logarithmic  ther developed and calculations of series up to 18th order
derivative of A(x). [12] and 19th ordef13] for d=2,3,4 have been announced.

TABLE I. Summary of the largeN calculations in ON) o models on the square, triangular, and honeycomb lattices. All quantities
appearing in this table have been defined in Sec. Il.

Square Triangular Honeycomb
c 4 6 3
vs 1 V3/2 3/3/4
t dvglcB dvglcB dvglcB
X 4/cBz 4/cBz 4/cBz
M2 z z z
u 1 1\t 1 1 \71 1 1 \71
Z(1+1_62 Z(1+1—62 Z(1+1—62
1 1 1
, 21—1/(c,8)+ 17 1-1/(cB)+ 22 1-1/(cB)+ 27
M Ms=2[costus—1]=2 M2= g(cosh(\/§,ut/2)—l)=z M2= g[cosh(\/ﬁ,uhIZ)—l]=z
MZ=4[cosh(uq/\2)~1]=2 8 3 1
Mfzé cos}‘(z,uv) -1 :z(1+ 52

Aws/AL 42 43 4
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TABLE II. For various values oN we report the singularity closest to the origin on the square, triangular,
and honeycomb lattices, as obtained by a DIn-PA analysis of the strong-coupling sexiggf and §é
(B¢), and the corresponding convergence radius of the strong-coupling expghsidine errors we display
are related to the spread of the results coming from different quasidiagdéndl DIn-PA’s using all avail-
able terms of the series, or a few less, while the difference betygeand 3, should give an idea of the
systematic error in the procedure.

Lattice N FX Fg B
Square 3 0.590(Hi 0.156(1) 0.586(1¥i 0.157(1) 0.61

4 0.557(10)-i 0.226(4) 0.555(53 i 0.225(5) 0.60

8 0.467(4)+i 0.298(3) 0.467(3¥i 0.293(1) 0.55

® 0.32162 ... (1*i) 0.32162 . .. (1*i) 0.45484 ...
Triangular 3 0.3582(2%i 0.085(1) 0.357(1xi 0.089(4) 0.37

4 0.343(1)-i 0.121(1) 0.341(2%i 0.124(2) 0.36

8 0.2901(1)-i 0.1654(1) 0.283(4Xi 0.163(4) 0.33

o 0.206711.. *i 0.181627. .. 0.206711. i 0.181627. .. 0.275%...
Honeycomb 3 +i 0.459(1) +i 0.461(1) 0.46

4 +i 0.4444(1) +i 0.445(2) 0.44

8 +i 0.4161(1) +i 0.4169(2) 0.42

oo +i 0.362095. .. +i 0.362095. .. 0.3620D. ..

In order to investigate the analytic structure in theestimate continuum physical quantities. In the lakgémit
complexf plane we have performed a study of the singu-r=1 at all values of3. This is not true anymore at finite
larities of the DIn-PA’s of the strong-coupling series pf N, where the strong-coupling series M§ and Mﬁ differ
and £%. As expected by asymptotic freedom, no indicationfrom each other, as shown in Appendix D. Fr@fx) up to
of the presence of a critical point at a finite real valuegof O(B%") we could calculate the ratio up to O(3'). The
emerges from the strong-coupling analysis\of 3 models, resu]ts of our analysis of the seriesrofor N=3 are sum-
confirming earlier strong-coupling studi¢l]. The singu- marized in Table IIl. There we report the values of the PA’s
larities closest to the origin emerging from the DIn-PA 222£'2£8PA’8 é); tr\]/\?rﬁcﬁecrzlc?rsrezfo:néys ?cr)]dat:]eoasseor?;t:lrﬁarge
analysis ofy and &g are located at a pair of complex conju- O
gateypoi_nté(, rathi? close to the rear axis in MQS casé correlation lengthié=25. We considered PA’s and DIn-PA’s

) . . . with |+m=11 andm=1=5. The most precise determina-
(where =0.59+10.16) and moving, on increasiry, to- tions ofr*, the value ofr at the continuum limit, come from

ward theN=cc limiting points 8=0.321 62(1-i). In Table  pjn.pA’'s, whose final estimates aré =1.0000(12) from

Il such singularities are reported for some valuedNofThe  theE approximants, and* = 1.0002(6) from the3 approxi-

singularity closest to the origin determines the convergencghants(at 8=0.55). The precision of these results is remark-

radius of the corresponding strong-coupling series. For exaple.

ample, for N=3 the strong-coupling convergence radius  For all N=3 the violation of rotation invariance in the

turns out to beB,=0.61, which corresponds to a quite large |large-distance behavior of(x), monitored by the ratio

correlation lengti¥=65. We recall that the partition function ,./uy, turns out quantitatively very close to that Mt=c

on the square lattice has the symmesry — 8, which must  when considered as a function ¢ (in a plot theN=3

also be realized in the locations of its complex singularitiescurve of u/uy versuség as obtained from the strong-
By rotation invariance the ratic=M2/Mj should goto 1  coupling analysis would be hardly distinguishable from the

in the continuum limit. Therefore the analysis of such a ratioexactN=c« one. u¢/uy is 1 within about 1 per mille al-

should be considered as a test of the procedure employed teady até=4.

TABLE lll. Analysis of the 14th order strong-coupling seriesrt#Mﬁ/Mfj for N=3 on the square
lattice, expressed in powers Bfand 8. The first two lines report the values of thém] PA’s and DIn-PA’s
(DLPA’s) atE=1. The last two lines report the values[¢fm] PA’s and DIn-PA’s a{3=0.55 correspond-
ing to £=25. We show data for PA’s and DIn-PA’s with- m=11 andm=1=5. Asterisks mark defective
PA’s, i.e., PA’s with spurious singularities close to the real axisHet1 in the energy series case, or for
B=0.55 in theB series case.

5/6 6/6 5/7 6/7 5/8 "7 6/8 5/9
E=1 PA * 0.9965 0.9967 0.9955 1.0126 0.9980 1.0007 1.0120
DLPA 1.0002 1.0011 1.0023 1.0005 0.9995
B=0.55 PA 0.9986 0.9996 1.0015 1.0007 1.0010 1.0007 1.0007 1.0012

DLPA  0.9996 1.0007 0.9993 1.0006 0.9999
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TABLE IV. Analysis of the 16th order strong-coupling seriessef M2/M2 for N=3 on the square lattice. The first two lines report the
values of thg1/m] PA’s and DIn-PA’s aE=1. The last two lines report the values[défm] PA’s and DIn-PA’s a{3=0.55. We show data
for PA’s and DIn-PA’s withl + m=13 andm=1=5. Asterisks mark defective PA'’s.

6/7 5/8 717 6/8 5/9 7/8 6/9 5/10 8/8 7/9 6/10 5/11

E=1 PA 0.9947 0.9938 0.9941 0.9942 * 0.9944 1.0020 * 0.9961 1.0028 1.0028 *
DLPA 0.9941 0.9971 * 0.9992 0.9978 0.9951 0.9973 0.9984
B=0.55 PA * 0.9971 0.9972 0.9974 * 0.9976 0.9988 0.9998 0.9980 1.0023 0.9996 0.9995

DLPA 0.9971 0.9980 0.9974 0.9992 0.9985 0.9977 0.9982 0.9976

Calculating a few more components Gf(x) at larger Another dimensionless renormalization-group-invariant
orders[i.e., those involved in the wall-wall correlation func- quantity we have considered lir‘ﬁm%/(xm4), whose large-
tion at distances 6 and 7, respectively, upQ9s?? and N limit has been calculated in the previous sectioh Eq.
0(%%], we computed the ratio (21)]. At finite N its continuum limitu* is not known. From
the expression of the self-energy calculated u(d./N),

M2 :
s= M_; (70 [16,17,19 one can obtain
G
1 0.006 198 1
up to O(B9), by applying the technique described in Refs. =71l tolNe | (72)

[14,15. We recall that atN=« we founds=1 indepen-

dently of 8. No exact results are known about the continuumyt s interesting to notice that th@(1/N) correction in Egs.
limit s* of the ratios, except for its largeN limit: s*=1.  (71) and(72) is very small.

Both largeN and Monte Carlo estimates indicate a value At N=3 the analysis of th@( 82} strong-coupling series

very close to 1. From a W expansior{16,17: of u detected a simple pole close to the origin at
Bo=—0.085 545 for theB series, and aEy=—0.086 418
* _ _0'006 450 i for the energy series, corresponding k%= —16.000,
s*=1 +0| 5z]- (72) . o > G| :
N N which, within the precision of our strong-coupling estimate,

is also the location of the pole in the correspondig «©

Monte Carlo simulations ai=3 [18] gaves=0.9988(16) expressior(21). Being a simple pole, this singularity can be
at p=1.7/3=0.5666... €=35), and s=0.9982(18) at perfectly reproduced by a standard PA analysis, and, indeed,
B=0.6 (£=65), leading to the estimat =0.9985(12). we found PA’s to be slightly more stable than DIn-PA’s in

In Table IV we report, foN=3, the values of PA’s and the analysis oli. The results concerniny=3, reported in
DIn-PA’s of the energy angB series ofs, respectively, at Table V (for PA’s with | + m=16 andm=1=8), lead to the
E=1 and at3=0.55. We considered PA’s and DIn-PA’s estimatesu* =0.2498(6) from the energy analysis, and
with |+m=13 andm=|=5. Combining PA and DIn-PA u*=0.2499(5) from the3 analysis(at 3=0.55). The agree-
results, our final estimates as&=0.998(3) from theE ap-  ment with the largeN formula (72) is satisfactory. In Fig. 2
proximants, ands*=0.998(1) from theB approximants the curveu(E) as obtained from th¢10/10] PA and the
evaluated af3=0.55, in full agreement with the estimates exact curvau(E) atN=x [cf. Eq.(21)] are plotted, showing
from the 1N expansion and Monte Carlo simulations. With almost no differences.

increasing\N, the central estimate & tends to be closer to In Table VI we give a summary of the determinations of

1. r*, s*, andu* from PA’s and DIn-PA’s of the energy and
The scaling-violation pattern of the quantitys/Mg for g series.

N =3 is similar to the pattern faN=c [cf. Eq.(27)]; i.e., it We mention that we also tried to analyze series in the

is stable within a few per mille fo£=5. variable

TABLE V. Analysis of the 20th order strong-coupling series Bf u(E) and 8 'u(B), where
usm%/(xm4), for N=3 on the square lattice. The first two lines report the valuas a$ obtained from the
[I/m] PA’s and DIn-PA’s atE=1. The last two lines report the valueswfrom [I/m] PA’s and DIn-PA’s
at 3=0.55. The analysis detected a poleegt= —0.086 418 in the energy series, ang3gt —0.085 545 in
the B series, corresponding Mé: —16.000. We show data for PA’s and DIn-PA’s with-m=16 and
m=|=8. Asterisks mark defective approximants.

8/8 8/9 9/9 9/10 8/11 10/10 9/11 8/12
E=1 PA 0.2491 0.2502 0.2495 0.2488 0.2491 0.2495 0.2504 0.2496
DLPA  0.2497 0.2524 0.2510 0.2486  0.2492
B=0.55 PA 0.2493 0.2496 0.2488 0.2496  0.2500 * 0.2495  0.2503

DLPA  0.2493 0.2495 0.2491 0.2498  0.2500
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TABLE VII. The strong-coupling estimates @, are compared
with the available Monte Carlo results on the square lattice for
various values ofN. The strong-coupling estimates @f come
from the plain series of%, and from ([9/10],(8/11],[9/9],[8/10])
DIn-PA’s of ,B’lgé. The N=3,4,8 Monte Carlo(MC) data are
0.20 - 1 taken, respectively, from Reff28,29, and[24]. The asterisk indi-
cates that the number concerfig,, and notés .

025 —

> 015
N B Plain series DIn-PA’s MC
010 f - m:g"PA 3 1.4/3 6.567 6.869) 6.901)*
1one 0.5 9.939 11.03@) 11.051)*
005 | 1 1.6/3 15.429 18.9@) 19.002)*
1.7/3 24.300 33@) 34.446)*
000 ‘ . ‘ ‘ 0.6 38.459 61.0Y 64.73)*
00 02 “og % 08 1o 4 0.45 4.665 4.672) 4.671)
0.5 7.845 7.81) 7.831)
FIG. 2. uzmgl(xm4) versusk for N=3 (as obtained by the 0.55 13.879 13.88) 13.993)
[10/10] PA) andN= (exac}, on the square lattice. 0.575 18.701 18@) 18.915)
0.6 25.329 24.8) 25.52)
8 0.5 5.432 5.45a) 5.461(5)*
In2(NB)
=" (73 0.525 6.584 6.651)
Iniz-1(NB) 0.55 7.981 8.13@)
0.575 9.659 10.00) 9.88413)*

which is the character coefficient of the fundamental repre-
sentation. As for th& series, the continuum limit should be
reached at a finite value— 1, and estimates af*, s*, and  mation by integral approximan{0] provides results sub-
u* may be obtained by evaluating the approximants of thestantially equivalent to those of DIn-PA’s. Fdi=3 DIn-
correspondingz series atz=1. We obtained results much PA'’s follow Monte Carlo data reasonably well up to about
less precise than those from the analysis of Eheeries. the convergence radiy8,=0.6 of the strong-coupling ex-
Maybe because of the thermodynamical meaning of the inpansion, but they fail beyong,. On the other hand, it is
ternal energy, resummations by PA’s and DIn-PA’s of thewell known that forN=3 the asymptotic scaling regime is
E series turn out much more effective, providing rather presset at larger3 values[21]. More sophisticated analyses can
cise results even at the continuum lirkit=1. be found in Refs[11,22, but they do not seem to lead to a
The strong-coupling approach turns out to be less effeceonclusive result about the asymptotic freedom prediction in
tive for the purpose of checking asymptotic scaling. In Tablethe Q3) o model. At largerN, the convergence radius de-
VII, we compare, foN=3, 4, and 8£ as obtained from the creases, but on the other hand the asymptotic scaling regime
plain 21st order series of3 and from its DIn-PA’'s with  should be reached earlier. Ai=4 andN=8 the 21st order
some Monte Carlo results available in the literature. Resumplain series of¢3 provides already quite good estimates of
&g within the convergence radius when compared with
TABLE VI. In this table we summarize our strong-coupling Monte Carlo results. Again, Padgpe resummation fails for
results forN=3, giving the estimates af*, s*, andu* fromthe 8> 3,. We mention that aN=4 the convergence radius
PA and DIn-PA analyses of both the energy ghderies ofr, s, B,=0.60 corresponds téz=25, and aN=8 8,=0.55 cor-
and u. For all lattices considered the values Bfwhere thep responds tctg=38.
approximants have been evaluated correspond to a correlation | order to check asymptotic scaling we consider the ratio
length £=20. As/A, , whereAy is the effectiveA parameter which can
be extracted by

r* s* u*
Square E=1 PA 1.0048) 1.0005) 0.24986) A= (E) M = M (74
DLPA 1.000G12 0.9972) 0.2492) s M Rs,

B=055 PA 1.00066) 1.00q2) 0.24996) . . .
DLPA 1.00026) 0.99788) 0.24995) whereM is an estimator of the mass gag, is the massh

Triangular E=1 PA 1.0004) 0.249715) parameter ratio in the square lattice nearest-neighbor formu-

DLPA 0.0973) 02482  laton[23],
B=0.33 PA 0.998613) 0.25043) Awis
DLPA 0.998@9) 0.24994) Rs=RysX¥ A—)
Honeycomb E=1 PA 1.014) 0.9994) 0.25Q2) S
DLPA 0.991(13) 0.9993) 0.2472) g\ UN=2) T
p=085 PA 1.0002) 0.99875) 0.249G3) =<5> m\/ﬁexl{m},

DLPA 1.00098) 0.99875) 0.24913)

(75
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15 . ‘ ; : : . ; — u, andMZ, already introduced in Sec. Il C, and of the ratios
S s=M?Z/MZ. Some of the above series fi=3 are reported
in Appendix E.

Like O(N) o models on the square lattice, no indication
of the presence of a critical point at a finite real valueBof
Lt e 1 emerges from the strong-coupling analysis foe=3. By a

& e DIn-PA analysis of theD(B*® strong-coupling series of
< /;r;,f' = and gé atN=3, we found that the singularity closest to the
L ///,/_,v’ | origin is 8=0.358+10.085, giving rise to a convergence ra-
/ s N=3 dius B,=0.37 which should correspond to a rather large cor-
07t S N=4 | relation length:£;=70. On increasingN, such singularities
/ e move toward theiN=c limit S=0.206 711i 0.181 627.
, Some details of this analysis are given in Table II.
%0 20 30 40 50 60 70 80 90 100 In our analysis of dimensionless quantities we considered,
= as on the square lattice, the series both in the energy and in

B. The estimates concerning the continuum limit are ob-
FIG. 3. Asymptotic scaling test from the strong-coupling deter-tained by evaluating the approximants of the energy series at
minations of £& on the square lattice. We show curves of E=1, and those of thes series at aB8 associated with a
Ag/Ay . defined by Egs(75) and (76), for N=3,4,8, and for  reasonably large correlation length. Fbr=3 we chose
N=oo (exac). B=0.33, whose corresponding correlation length should be

— - o ~ §=22, according to a strong-coupling estimate.

scheme and\, is the corresponding two-loop formula orders][i.e., those involved in the wall-wall correlation func-
YN-2) tion at distancey3/2x5 up to O(5%)], we computed the
A =(@ﬁ> exp( 3 ﬂﬂ) (76 ratio s=M?2/M2 up toO(B) [14,15. For N=3 the analy-
A7IN=-2 N—2")" sis of the strong-coupling series fsome details are given

in Table VIII) leads to the estimats® =0.998(3) from the

The ratio A;/A, should go to 1 in the continuum limit, energy approach, arsf =0.998(1) evaluating the approxi-
according to asymptotic scaling. The available series ofnants at3=0.33 (we considered PA’s and DIn-PA’s with
MZ are longer than any series of the mass-gap estimators;-m=8 andm=|=4). Such results are in perfect agree-
therefore, neglecting the very small difference betwbkgn  ment with those found for the square lattice.
andM [we have seen that f&d=3 (Mg—M)/M=<10 2 in PA’s and DIn-PA’s(with | +m=11 andm=1=5) of the
the continuum limi, for which formula(75) holds, we use strong-coupling series af expressed in terms of the energy,
Mg as estimator oM. In Fig. 3 we plotA¢/A, for various evaluated atE=1, lead to the estimate*=0.249(1) at
values ofN, N=3,4,8, and for comparison the exact curveN=3. The analysis of the series ing gives
for N=«. As already noted in Ref24] by a Monte Carlo  u*=0.250Z4). Again universality is satisfied.
study, forN=3,4 at¢=10 the asymptotic scaling regime is A summary of the results on the triangular lattice can be
still far away (about 50% off atN=3 and 15% aiN=4), found in Table VI.
while for N=8 it is verified for £=4 within a few percent. As on the square lattice we checked asymptotic scaling by
Notice also that the convergence radi@s=0.55 corre- looking at the ratioA;/A, where A, is the effectiveA
sponds to&=8. Anyway, with increasingN curves of Pparameter on the triangular lattice, defined in analogy with
A/ A, clearly approach the exabt=c limit. Eqg. (74). In addition to the formulas concerning asymptotic
scaling given for the square lattice cdsé Egs.(74)-(76)],
we need here tha -parameter ratid\;/ A ¢ calculated in Ap-
pendix A, [cfr. Eqg. (A13)]. We again used ¢ as approxi-

On the triangular lattice we have calculated the two-pointmate estimator of the mass gih Figure 4 shows curves of
Green’s function up taO(B%, from which we have ex- A/ A, for various values oN, N=3,4,8, and for compari-
tracted strong-coupling series of the quantities y, gé, son the exact curve foN=c«. Such results are similar to

C. The triangular lattice

TABLE VIII. Analysis of the 11th order strong-coupling seriessst M?/M3 for N=3 on the triangular
lattice. The first two lines report the values of fiém] PA’s and DIn-PA’s aE=1. The last two lines report
the values of [/m] PA’s and DIn-PA’s ai3=0.33 corresponding t§=22. Asterisks mark defective PA'’s.

4/4 4/5 5/5 4/6 5/6 417
E=1 PA 0.9993 0.9972 1.0005 0.9927 0.9954 1.0039
DLPA 0.9963 1.0014 0.9948 *
B=0.33 PA 0.9993 0.9989 1.0005 0.9969 0.9974 0.9995

DLPA 0.9987 * 0.9972 0.9975
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Again we analyzed the series both in the energy and in
B. The estimates concerning the continuum limit are ob-
tained by evaluating the approximants of the energy series at
E=1, and those of the8 series at3=0.85 for theN=3
case, which should correspond §e-22.

By rotation invariance the ratio=M?2/M? should go to 1
in the continuum limit. FromG(x) up to O(8%%) we ex-
tracted the ratioa up to O(B82%. Again, PA’s and DIn-PA’s
of the energy series evaluatedEa&=1 and of theB series
evaluated a{3=0.85 (some details are given in Table) X
give the correct result in the continuum limit: respectively,
r*=1.00(1) andr*=1.001(1) atN=3 (we considered
PA’s and DIn-PA’s withl + m=16 andm=1=7).

Calculating a few more components Gf(x) at larger
orders[i.e., those involved irG{\")(x), defined in Eq(B7),
at distancec=\/3/2x9 andx=/3/2x 10, respectively, at
B%) andO(B%)], we computed the ratie=MZMZ up
to O(B%° [14,15. For N=3 the analysis of the strong-
coupling series o$ givess* =0.999(3) from theE approxi-
mants ands* =0.9987(5) from theB approximants evalu-

those found on the square lattice: fdr= 3,4 the asymptotic ated at3=0.85 (some details are given in Table )Xlin
scaling regime is still far away &s=10, but it is verified
within a few percent aN=8, where the correlation length considered PA’'s and Din-Pa’'s withl+m=22 and
corresponding to the strong-coupling convergence radius i§1=1=10.

£=8.

D. The honeycomb lattice

On the honeycomb lattice we have calculated the two

point Green’s function up t@(B%%), from which we ex-
tracted strong-coupling series of the quantities y, fé,

u, M2, andM2, already introduced in Sec. Il D, and of the

agreement with the result found on the other lattices. We

The analysis of the energy serieswtonfirms universal-
ity: PA’s and DIn-PA’s(with <m, | +m=26,|=12) of the
energy series evaluated Bt=1 give u*=0.2493), and
those of theB series a{3=0.85 andu* =0.24913). As for
the square lattice, the curt€E) obtained from the PA’s at
N=3 and the exact curvel(E) at N=< [cf. Eq. (60)],
would be hardly distinguishable if plotted together.

As noted above, the convergence radgsis small in

ratiosr=MZ/M{ ands=M{/M& . Some of the above series terms of the correlation length for all values Wf it goes
for N=3 are reported in Appendix F.

At N=3 a DIn-PA analysis of theO(B%%) strong-
coupling series of andé3 detected two couples of complex mates ofég even beyongB, (apparently up to about the next
conjugate singularities, one on the imaginary axis atsingularity closest to the originin Fig. 5 we show curves of
B=+i0.460, quite close to the origin, and the other atAn/Az, whereAy is the effectiveA parameter on the hon-

ﬁ_:0.93ti0.29. The singularity on the imaginary axis leads
to a rather small convergence radius in terms of correlatio

length; indeed, a8=0.46 we estimaté¢=2.6. AtN=4 we
found B=+*i0.444, andB=0.88ti0.41. At largerN the

singularities closest to the origin converge toward the
N=o0 value 8= =i 0.362 095. Notice that, as on the square

from £=1.0 atN= to {=2.6 atN=3. Nevertheless, in this
case DIn-PA resummations seem to give reasonable esti-

eycomb lattice, for various values of, N=3,4,8, and for

;gomparison the exact curve foi=c. The necessary ratio of

parameters has been calculated in AppendikcB Egs.
(B11) and(B12)].

E. Conclusions

lattice, the partition function on the honeycomb lattice enjoys We have shown that quite accurate continuum limit esti-

the symmetry8— — 3.

mates of dimensionless renormalization-group-invariant

TABLE IX. Analysis of the 14th order strong-coupling series Bf 'u(E) and 8~ u(B), where
usm%/(xm“), for N=3 on the triangular lattice. The first two lines report the values af obtained from
the [I/m] PA's and DIn-PA’'s atE=1. The last two lines report the values offrom [I/m] PA’s and
DIn-PA’s at 8=0.33 corresponding t§=22. A pole has been detectedE&j= —0.050 655, corresponding
to M4=—16.000. Asterisks mark defective PA’s.

5/6 6/6 5/7 6/7 5/8 "7 6/8 5/9
E=1 PA 0.2442 0.2502 0.2533 0.2483 0.2492 0.2494 0.2500 0.2497
DLPA  0.2433 0.2521 0.2502 0.2477 0.2491
B=0.33 PA 0.2521 0.2500 0.2500 0.2502 0.2502 0.2504 0.2505 0.2502
DLPA  0.2496 0.2494 0.2494 0.2496  0.2502
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TABLE X. Analysis of the 19th order strong-coupling series 8, wherer=MZ/M2, for N=3 on the
honeycomb lattice, expressed in powerdofnd 8. The first two lines report the values of them] PA'’s
and DIn-PA’s atE=1. The last two lines report the values[¢fm] PA’s and DIn-PA’s at3=0.85 corre-
sponding toé=22. Asterisks mark defective PA’s, i.e., PA’s with spurious singularities close to the real axis
for E<1 in the energy series case, or =0.85 in theB series case.

8/8 719 8/9 7/10 9/9 8/10 7/11 9/10 8/11 7112

E=1 PA  1.070 0.963 1.006 1.035 * 0.981 1.035 0.980 0.980 1.080
DLPA 1.007 0.996 0.977 1.010 0.993 0.989 *

=085 PA 1.0039 * 1.0020 1.0031 * 0.9988 * 0.9996 0.9997 1.0024
DLPA 1.0006 0.9992 1.0019 1.0009 1.0009 1.0014 1.0005

quantities, such as andu [cfr. Egs.(70) and (21)], can be  |(y) parametrizes the difference from a generalized Gaussian
obtained by analyzing their strong-coupling series and applypropagator. One can easily relate the coefficientsf the
ing resummation techniques both in the inverse temperaturgxpansion (78) to dimensionless renormalization-group-
variable 8 and in the energy variabl&. In particular, in  invariant ratios involving the momentay; of G(X).
order to get continuum estimates from the analysis of the |t is worth observing that
energy series, we evaluated the corresponding PA’s and DIn-
PA’'s at E=1, i.e., at the continuum limit. This idea has . 1
already been applied to the calculation of the continuum u T 4(1-c,)’ (79)

2
limit of the zero-momentum four-point couplirg} , obtain-
ing accurate resul{$]. These results look very promising in In the largeN limit the functionl(y) is depressed by a factor
view of a possible application of such strong-coupling analy-1/N. Moreover, the coefficients of its low-momentum expan-

sis to four-dimensional gauge theories. sion are very small. They can be derived from thi ®x-
The summary in Table VI of ouN=3 strong-coupling pansion of the self-enerdyt6,17,19. In the leading order in
results for the continuum values®, s*, and u*, for all the 1N expansion one finds

lattices we have considered, shows that universality is veri-
fied within a precision of a few per mille, leading to the final
estimates* =0.9985 andi* =0.2495 with an uncertainty of
about 1 per mille. The comparison with the exbtt o« re-
sults,s* =1 andu* = 1/4, shows that quantities lik¢* and ~0.00023845...
u*, which describe the small-momentum universal behavior Ca= N ’
of G(p) in the continuum limit, change very little and ap-

parently monotonically fronN=3 to N=o, suggesting that 0.00001344...

0.006 198 16. . .

CZ_ - N ’

atN=3 G(p) is essentially Gaussian at small momentum. Ca= N '
Let us make this statement more precise. In the critical
region one can expand the dimensionless renormalization- 0.000 000 90...
group-invariant function Cs=—N (80)
L(pZ/Mé)E E(_O) 77 etc. For sufficiently largéN we then expect
G(p) ci<cy,<1l for i=3. (81

aroundy=p*/Mg=0, writing As a consequence, since the zerd_¢f) closest to the ori-

L(y)=1+y+1(y) gin isyy= —s*, the value ofs* is substantially fixed by the
’ term proportional to 92)? in the inverse propagator, through
the approximate relation

(y)=2, ey (78) §* —1=c,=4u* —1. (82)

TABLE XI. Analysis of the 25th order strong-coupling seriessef MZ/MZ for N=3 on the honeycomb
lattice. The first two lines report the values of fiém] PA’s and DIn-PA’s aE=1. The last two lines report
the values of I/m] PA’s and DIn-PA’s ai3=0.85 corresponding t§=22. Asterisks mark defective PA'’s.

11/11  10/12 11/12 10/13 12/12 11/13 10/14 12/13 11/14 10/15

E=1 PA 0.9956 1.0001 1.0052 0.9983 * * * * * *
DLPA * 0.9964 0.9994 0.9963 1.0023 * 0.9972

B=0.85 PA 0.9978 0.9984 0.9983 0.9982 * 0.9983 0.9991 0.9982 0.9989 0.9989
DLPA 0.9989 0.9982 * 0.9982 * 0.9992 0.9983
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L5 ; ; : : : : : : ized coupling, whose definition involves the zero-momentum
four-point correlation function(34) [6]. However, monoto-
nicity in N seems to be a persistent feature.

13 1 Our strong-coupling calculations allow also a check of
asymptotic scaling for a relatively large range of correlation
lengths. For all lattices considered, the ratio between the ef-
fective A parameter extracted from the mass gap and its

< ,,,,‘;;1:15"‘ two-loop approximatiom\/A,,, when considered as a func-
RPN et ] tion of £&5, shows similar patterns with changimdg, Con-
P firming earlier Monte Carlo studies, large discrepancies from
S N=3 asymptotic scaling are observed fr=3 in the range of
o7t ST N=4 correlation lengths we could reliably investigate, i.e.,
’ ~ N8 £<50. At N=8 and for all lattices considered, asymptotic
—— N=inf . s . e
; scaling within a few percent is verified fgf=4, and on
%0 20 30 40 50 60 70 80 90 100 increasing N the ratio A/A, smoothly approaches its
S N=oo limit.
FIG. 5. Asymptotic scaling test from the strong-coupling deter- ACKNOWLEDGMENTS
minations ofgé on the honeycomb lattice. Curves af,/A,, for ) ) )
N=23,4,8 and folN=c (exac} are shown Vs . Itis a pleasure to thank B. Alles for useful and stimulating
discussions.
Indeed, in the larg& limit one finds, from Eqs(71) and
(72), APPENDIX A: THE TRIANGULAR LATTICE
s*—4u*=_0'000 252 O(i) 89 The sitesx of a finite periodic triangular lattice can be
N N2/’ represented in Cartesian coordinates by

where the coefficient of the I/ term is much smaller than
those ofs* andu*.

From this largeN analysis one expects that even at
N=3 the functionl(y) will be small in a relatively large
region around/= 0. This is confirmed by the strong-coupling
estimate of u*, which, using Eg. (79, leads to ;]1:(1,0),
c,=—0.002. Furthermore, the comparison of the estimates
of s* andu* shows thas* —4u* =0 within the precision of
our analysis, consistently with E@81). It is interesting to We seta=1, where the lattice spaeeis the length of a link.
note that similar results have been obtained for the model$he total number of sites, links, and triangles is, respectively,
with N<2, and in particular for the Ising model, i.e., for Ns=LiL5, N;=3Ng, andN;=2Ns. Taking into account pe-
N=1, where the strong-coupling analysis turns out to pbaiodic boundary conditions, a finite lattice Fourier transform
very precisg2]. can be defined by

We can conclude that the two-point Green’s function for
all N=3 is almost Gaussian in a large region around
p?=0, i.e.,|p?MZ|=<1, and the small corrections to Gauss-
ian behavior are essentially determined by tp&)f term in
the expansion of the inverse propagator. R 1

Differences from Gaussian behavior will become impor- d(X)=
tant at sufficiently large momenta, as predicted by simple
weak-coupling  calculations  supplemented by a . )
renormalization-group resummation. Indeed, the asymptoti¥herevs=1/3/2 is the volume per site, and the set of mo-
behavior ofG(x) for x<1/M (whereM is the mass ggp Mentalis
turns out to be

X(I1,12) =117+ 1572,

1Jﬂ_

2=\ 5 % (A1)

> ek (k) (A2)

. 27 . 2™ .
1 \7mo 5 N-1 k(my,my) = —Mypa+ —Mypa,
G(x)~| In— , = (84) 1 2
XM by N—-2
m]_:l, ,Ll, m2:1, ,L2,

by and y, are the first coefficients of th@ function and of

the anomalous dimension of the fundamental fﬁaldespec-

. . ) . 1 2

tively. Let us recall that a free Gaussian Green’s function pi=|1——=|, p,=|0—]. (A3)
behaves like In(X). Important differences are present in V3 V3

other Green’s functions even at small momentum, as shown

in the analysis of the four-point zero-momentum renormal-Notice that
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.. 27 21 Comparing the above results with the two-point Green’s
Kex=malyt 7-mala. (A4)  function renormalized in th#1S scheme,
To begin with, let us discuss the Gaussian model on the Grs(xu=2e" %) =1+0(t?),
triangular lattice, which is defined by the action
Gl X Nl o) (A11)
MS| LT TN 12 r) 1
So=5> (¢~ )’ (A5) # Nk

and following a standard procedure, one can determine the
wherex, andx; indicate the sites at the ends of each link. ratio of theA parameters:
Performing the Fourier transforngA2) one derives the
propagator

1
—4\/§ X[<(N 5 \/_) (A12)

where A, is the A parameter of the Qf) o models on the
triangular lattice. Furthermore, comparing with the Green'’s

s 1
<¢<k>¢(q>>=ﬁmak+q,o,

1 kq \/§k2 function calculated on the square lattit25] one can also
A(k)=4|1- 3 cok, + 2cosgcosT . (AB) derive
From these formulas one can easily obtain the laidanit, Ag \F T 1 1 AL3
since the model becomes GaussianNor . A, V2 AIN=2 ﬁ_g , (A13)

In the massive Gaussian model one may define an expo-
nentiated wall-wall correlation function by

V3

7'2) =|2 G(ly71+1575). (A7) APPENDIX B: THE HONEYCOMB LATTICE
1

where A is the A parameter on the square lattice.

G

The sitesx of a finite periodic honeycomb lattice can be

In the ON) o models, in order to evaluate the ratio be- represented in Cartesian coordinates by

tween theA parameter of theviS renormalization scheme
and the triangular nearest-neighbor lattice regularization, we
calculated the correlation functio®(x) in perturbation
theory. In thex space we obtainefheglectingO(a?) termg

)Zz)Z’er;;p,
X' =l171+157m2,
N—1 5
G(x)=1+ ——tF(@x)+0(t), l,=1,...L;, l,=1,...L,, p=0.1,
R (3 J3

F(a/x)—l(ln——y In2—%|n3). (A8) 7= 5:7), 72=(0,/3), 7,=(10. (BY)

In the p space, We seta=1, where the lattice spaeeis the length of a link.
The total number of sites, links, and hexagons is, respec-

_N-1t t 1 ) tively, Ng=2L,L,, N;=3L,L,, andN,=L,L,. The coor-
(k) N K2 1+ N D(ak)+ 23 +0(t) |, dinatep can be interpreted as the parity of the corresponding
lattice site: sites with the same parity are connected by an
1 even number of links.
D(ak)= 5| Inak—2In2— —In3) (A9) The two sublattices identified by, (I1,1,)=x(l1,1,,0)

and x_(I1,1,)=x(l,,1,,1) form a triangular lattice. Each
The above results required the calculation of the integral link of the honeycomb lattice connects sites belonging to
o different sublattices. Triangular lattices have a more sym-
j dklf2”/ 3 dk; e _1=F(a/x)+0(a/x) metric structure, in that their sites are characterized by a
2 20i\3 27 A(K) ' group of translations. It is then convenient to rewrite a field

¢(>Z)E¢(I1,I2,p) in terms of two new fields
f dklfzqr/\? dk, A(q)—A(K)—A(k+q) b (X:)=p(Xs) and ¢_(x_)=¢(x_) defined, respec-
—w 2T ) 271327 A(k)A(k+q) tively, on the sublatticex, andx_ . Taking into account

periodic boundary conditions, a finite lattice Fourier trans-
=2D(aq)+0O(aq), (A10)  form can be consistently defingd]:

where the extremes of integration are chosen to cover the . . .
appropriate Brillouin zone, which can be determined from ¢¢(k)=vh2 ek X=gh (X.),
the finite lattice momentéA3).
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- 1 icx . extracted from the long-distance behaviors of two orthogonal
$(X:)= oL, © X (K), (B2)  wall-wall correlation functions constructed witB(x), such
k
asu,/pn.

In the ON) o models, in order to evaluate the ratio be-

wherev,=3+/3/2 is the volume of a hexagon, and the set of o
vn=3y3 g tween theA parameters of th#S renormalization scheme

momenta is . ; o
and the honeycomb nearest-neighbor lattice regularization.
20 . 2w We calculated, in perturbation theory, the correlation func-
k= —m1p1+ _mzpz, tion
Ly Lo
G(X;—y4)=(5.-S, ). B8
m=1,...L;, my=1,...L,, (=Y ) =86,y (B8)

In the x space we obtainefheglectingO(a?) termg

. (2 i 11
p1= —,O), p Z(——,—). (B3) _
' (3 R AN G(x)=1+¥tF(a/x)+O(t2),

Using the results reported in Rd#] one can find the
X . it ) 1
following expression for the matriR™ " [cf. Eq. (13)]: F(a/x)— (In——y In2). (B9)
R—l<£;§)=R‘1<i',px&'.py)
In the p space

1
-y -
vsNg 1 ~ N—1 t 1
Al +2(1+52) G-~ 1+ D(ak+ =] +o?).
1+ iz e MH(k)*
K 1 (B4) 1
e¥H(k) 1+ 32 D(ak)= 5 (Inak—2In2). (B10)
where The relevant formulas required by the above calculations can
be found in Ref[4].
A= 2] 2-co \/§k co 3 K+ \/§k Comparing the above results with the two-point Green’s
(k)= 9 S5 K2| COS KT COSHKy function renormalized in th8S schemdcf. Eq.(A11)], one
can obtain the ratio o\ parameters:
1 . 3
H(k)=e""1§ 1+ 2e'3k1’zcos—\/2—k2). (B5) Afs T 2
M dexd —— ——— B11

In the largeN limit R™Y(x;y) represents the two-point
Green'’s function. whereA,, is the A parameter of the honeycomb lattice, and
In Ref.[14], guided by the analysis of the Gaussian modelalso
on the honeycomb lattice, two wall-wall correlation func-
tions were defined: A { T
2ex

h p—
T 3 (B12)

1 2
2 33/
We also give a few orders of the perturbative expansion

. . ) » ) . of the internal energy
with the sum running over sites of positive parity forming a

vertical line, N—1 t N—1 t?

=1— _ 3
E=1-— TG W 570, (B

egw><g|1>:|z G(l171+1,72), (B6)
2

(W(1\31)= EG[(I—ZI )+ lame+pmpl, (BY)

APPENDIX C: COMPLEX-TEMPERATURE
where the sum is performed over all sites having the same SINGULARITIES AT N=w« ON THE TRIANGULAR
coordinatex,. G")(x) and G\ (x) allow the definition of AND HONEYCOMB LATTICES
two estimators of the mass gap, and uy,, whose ratio In this appendix we will compute the complex-
must go to 1 in the continuum limit by rotation invariance. temperature singularities for tié=< model on the various
On the honeycomb lattice the maximal violation of full rota- lattices we considered. We will follow closely the analysis of
tional symmetry occurs for directions differing by @/6 Ref.[7] for the square lattice. The=c solution is written
angle, and therefore, taking into account its discrete rotain all cases in terms of a variablg related to the inverse
tional symmetry, also by ar/2 angle. So a good test of temperature3 by the gap equation, which has the generic
rotation invariance is provided by the ratio between massefrm
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B=h(w)p(W)K(p(w))=b(w) (C1 function of w?; indeed, it has a representation in terms of
hypergeometric functions 48,27]
for suitable analytic functionb(w) and p(w) and variable 11
w, which will be defined below. Her& (w) is the complete _m PP )
elliptic integral of the first kind. In generah(w) will be K(w) 22':1(2’2’1 w ) (€9
defined on the complex plane with suitable cuts. For the
purpose of computing the singularities of the inverse funcFrom this representation one may see #éw) is analytic
tion w(B) we will be forced to consideb(w) on its Rie- in thew? plane cut along the real axis from 1 to infinity. We
mann surface&k. Moreover, our discussion will be only local want now to discuss the extension K{w) to its Riemann
and thus we will determine all singularities which appear insurface. First of all, let us introduce titfunction
the Riemann surface ofi(8). Notice that not all of them "
will necessarily appear in the principal sheetv(f3). _ i (M2t 2m
Let us now consider a poimye R and letBy=b(wy). 93(U|T)_m;_m e - (Co)
To studyw(gB) in the neighborhood of3, let us expand
b(w) aroundw,. If b’(wp) is different from zero, then 65(v|7) is an entire function of- andv for Im7>0. More-
w(B) is obviously analytic in the neighborhood gf and  over, it satisfies the propertig¢sf. Ref.[26], Chap. 5
admits an expansion of the form

O3(v|7+2)=05(v|7), (C7)
W=Wg+ ( )(:8 :80)+O((,B ,80)2) (CZ) 93(U/T|—1/T): /—iTeWiU2/793(U|T). (C8)
Instead, ifb’ (wo) =0, B, is a singular point. Indeed, l&tbe  In terms of §5(v|7) we define the modular function
the smallest integer such th&®(wy)+#0. Then in the .
neighborhood of3, we have N i 05(— 112 7)
(n)=e""—F——— (C9
63(0]7)
k! He 1k 2/k
W=Wo+ b® (wo) (B=Bo) ™+ OB~ B0)™), which is also an entire function af for Im7>0. The func-
(c3)  tion N (7) has several important properti¢sf. Ref. [26],
Chap. 7.
and thereforeB, is akth-root singular point ofv(3). Thus, (i) Consider the group’, of transformations
in order to determine the singularities @af(b), we must
determine the zeros df' (w) on the Riemann surface of the . artb
function b(w). T=rd (C10

In addition to the expansion i we will be interested in
expanding our observables in terms of the enediEgyWe  with
want thus to study the singularities of the various observ-
ables when expressed in terms Bf In practice, we must
study the functionsv(E) and 8(E). M=

For all lattices we consider we have

a b a b 1 0
¢ d]eSk22), c dl= 0 1 mod 2.

(C1y
a
E= /—3+e(w) (w) +e(w) (C4H  The function \(7) is invariant under I',, i.e.,
N(7)=\(7"). Let us notice thal', is generated by the trans-

whereq is a constant and(w) an analytic function. We will formations
verify in each specific case that the zero®6fv) do not give b2 (C12
rise to any singularity. Then by an argument completely '
analogous to the one given fov(B), the singularities of ,
w(E) are determined by the zeros d&/dw over the Rie- 7= (C13

mann surface of the functiok(w), which, because of the 27+1°

fact thate(w) is a simple rational function ofv, coincides N )

with the R(iel?nann surfgce df(w). (ii) Let D be the domain of the complex plane bounded by
Finally, let us discuss3(E). Of course, locally we can (he lines Re==1 and the circle$r=1/2=1/2, including

rewrite it as B(W(E)). We shall show thatdg/dw and the ’boundanes ywth Re<_0. Then for everyr wnh

dE/dw never vanish at the same point. Then it is simple to/M7 >0 there exists a uniquec D and a transformation

convince oneself that the singularities ®(E) coincide with (€10 connectingr and 7'. ThusD is the fundamental do-
those ofw(E). main of the groupl’,.
(iii) If c is a complex number different from 0 and 1, the

equation\ (7) = ¢ has one and only one solutionih More-
over,\(x+io)=0 for realx.

The analytic properties of the functiok(w) are well Using the functiom\ (7) we obtain a complete parametri-
known (cf., e.g., Refs[26,27]). First of all, K(w) is really a  zation of the Riemann surface &f(w). Indeed, because of

1. Analytic structure of the complete elliptic integral K(w)
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the last property, we can perform the change of variablesvheres is a sign depending ol .

w?=\(7), e D; then it can be shown th#27] Finally, let us notice thatk(yz*)=K(y2)* so that
Kida.o)(NVZ¥) =K(d,_c)(\/2)*. This observation will allow us
T .
KN ()= §9§(0|7')- (C14) to consider only the cas# c>0.

The complete Riemann surface is then obtained by letting 2. Location of the singularities

7 vary in the whole upper complex plane. Notice that since The singularities ofv(8) on the square lattice have been

65(0| 7) never vanishes for Iat>0, the analytic extension of studied in Ref[7]. Here we will restrict our attention to the

K(w) is always nonzero. case of triangular and honeycomb lattices. Let us first sim-
We want now to express the analytic extensiork¢fv)  plify the expression$42) and(56) by introducing new vari-

on every Riemann sheet in terms of functions defined on thables

principal sheet. This will allow us to go back using as

fundamental variable. This is easily accomplished using the w=|1+ z 1/2on the triangular lattice, (C21)
second property of (7). Indeed, ifr' is a generic point with 6 '
positive imaginary part, there exists a unigueD such that
(C10 holds for suitable integera, b, ¢, andd satisfying z )
Eq. (C11). Thus w=(1+ Z)on the honeycomb lattice. (C22
ar+b
03017 = 63 0| — . (c1y  Then

. . : 1 1 . .
To compute the right-hand sid®HS), let us notice that the B=5——=—pK(p)on the triangular lattice,(C23
transformations(C10) are generated by EqC12 and 27 \[3w

(C13. Then, using Eq(C7) and

1 :
B= E\/?)WpK(p)On the honeycomb lattice(C24)

63 0

T 2 .
i27_+1)—(93(0|T)i2I03(0|—1/T), (C16

. , ) where, for both lattices,
which can be derived from Eq&C7) and(C8), we get easily,

by induction, 4w
= . c2
62(0|7')=s[d63(0| ) +ich3(0|—1/r)],  (C17) P~ Bw—DFAw+ 1) (€29

wheres assumes the values1. The presence of this sign is The gap equation has an important property: as
due to the fact that the matrix in E§C11) which corre-

2
sponds to the transformati@@10) is defined up to a sign. If w2 p(w)
we define p(=w) p(w)?—1 (€26
(1 2 (1 0 and the elliptic integral satisfies the property
= o 1/’ 2=\o 1) (C18 K(iz/N1-7z%)=J1-7%K(z), we can immediately derive

that 8(—w) = = 8(w) where the uppeflower) sign refers to
and fix the signs ifM so thatM is a product ofT; andT, the triangularthoneycomb lattice.

and their inverses only, thens=1. Finally, using Let us now discuss the Riemann surfacé@f). As p? is
A(—1/7)=1—\(7) which easily follows from Eq(C8), we  a meromorphic function with two poles in the plane for
get w=1/2 andw= —1, we can apply the discussion of the pre-

vious paragraph. We must then consider the prefactor in

front, which contains a square root with two branching

points and which has thus a double-sheeted Riemann surface.

The Riemann surface is then labeled by two integdrs)(as

with w?=\(7'). As we shall see, the sighplays no role in  we discussed in the previous paragraph, and a sighich

the subsequent discussion. specifies the sheet of the Riemann surface of the prefactor.
We have thus reached the following resii: the Rie-  Thus we have

mann surface oK(w) is obtained by considering matrices

g0§(O|T’)=s[dK(w)+icK(\/1—W2)] (C19

M generating transformations belonginglig: asM is de- 1 1

fined modulo a sign we can always assutre0. Then each Bsac=S5 - T=rKc(p)onthe triangular lattice,
sheet of the Riemann surface is labeled by the paic)( of ™ 3w

one row.[We write (d,c) instead of ¢,d) to use the same (€27

notation as in Ref[7].] The extensionK 4 (W) on this

g 1
sheet is given by Bs.a.c=55\3WpK q,)(p)on the honeycomb lattice.

s[dK(w) +icK(y1—w?)] (C20 (C28
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TABLE XIl. Analysis of the 29th order strong-coupling series Bf 'u(E) and 8 'u(B), where
usm%/(xm4), for N=3 on the honeycomb lattice. The first two lines report the valuesasf obtained from
the [I/m] PA’s and DIn-PA’s atE=1. The last two lines report the values offrom [I/m] PA’s and
DIn-PA’s at 3=0.85 corresponding té=22. A pole has been detectedej= —0.114 04, corresponding to
MZ=—16.000. Asterisks mark defective PA'’s.

13/13 13/14 12/15 14/14 13/15 12/16 14/15 13/16 12/17

E=1 PA 0.2511 0.2484 0.2498 * * * 0.2482 0.2495 0.2526
DLPA 0.2465 0.2469 0.2485 0.2467 0.2467 *

£=0.85 PA 0.2490 0.2490 0.2490 0.2489 0.2482 0.2488 0.2489 0.2490 0.2490
DLPA 0.2493 0.2494 0.2488 * * *

To identify the singularities we must then find the zeros inhave found more than one zero with®e0 and InB3>0 on
the complex plane of each sheet. The principal sheet is an exception, as it is free of
singularity for the triangular lattice, while it contains a pair
of purely imaginary singularities for the honeycomb lattice.
We stress that our search for zeros of E§29 has been
done numerically and thus we cannot exclude the possibility
that some zeros have been overlooked. However, we are con-
fident that at least in the regidgm| <2 our list is exhaustive
for the values of §,c) we have examined.

To check the value of the zero with lowesgt| we can
compare with a direct determination of the singularity from

dﬁ d, Sp 1
djN f=— AW (3W)¢1/2[ *Ka,e(p)
E (3w—1)2
TEeoP) Burw—1)

. (C29

where the uppeflower) sign refers to the trianguldhoney-

comb lattice and
an analysis of the high-temperature seriegddy DIn-PA’s
E(dyc)(W)ZdE(W)-HC[K(\/1—W2)—E(\/1—W2)]. or first order inhomogeneous integral approximafhéss).
(C30 In Table XIV we report the results of such an analysis. These
) ] _numbers are in very good agreement with the exact results,
The zeros of Eq(C29) have been studied numerically as in githough the spread of the DIn-PA’s largely underestimates
Ref.[7]. In Table XIIl we report the solutions with positive the true error. This is probably due to the fact that DIn-PA'’s
real and imaginary parts we have found for the lowest valuegre unable to reconstruct the exact singularity. Indeed, for
of (d,c). We have verified that in all casef s g ./dw? B— Bsing We havex = xo+ x1(B— Bsing 2+ -+ as xo#0
#0 at the singularity: thus all points are square-root branchhis behavior can be reproduced by IA’'s but not by Din-
points. Notice that if8 is a singularity— 8 and =B* are  PA's.
also singularities. Our results are somewhat different from Let us also notice that for the triangular lattice only the
those of Ref[7] on the square lattice. Indeed, in our case wesingularities with positive real part appear in our analysis.

TABLE XIIl. Singularities in the complexs plane for the triangular and honeycomb latticedNat o
with positive real and imaginary parts for the lowest valuesdy€). The singularity on the real axis for the
honeycomb lattice #=0.627 168) does not appear on the principal sheew@) as the corresponding
w-value is 0.962 998

(d,c) Triangular Honeycomb

(1,0) 0.3620955338
(1,£2) 0.206711+ 0.181628i 0.482696+ 0.628020i
0.685669+ 0.749077i 0.449772+ 0.583632i

0.627168

(3,x4) 0.240692+ 0.486530i 0.566020+ 1.476842i
0.564118+ 0.203430i 0.946032+ 1.663513i
1.469137+ 2.118380i 1.237526+ 0.266631i
(5,£6) 0.260362+ 0.780732i 0.627495+ 2.353352i
0.920774+ 0.210433i 1.413547+ 2.691806i
2.244964+ 3.482094i 1.836347+ 0.535158i
(5,£8) 0.662428+ 0.858005i 1.502252+ 2.655737i
0.980284+ 0.576976i 1.907210+ 2.926524i
2.847075+ 3.621622i 2.022490+ 1.997953i
2.500324+ 0.265750i
(7,£8) 0.274172+ 1.072281i 0.669817+ 3.225087i

1.763190+ 0.911108i
3.019312+ 4.844833]

1.881646+ 3.718975i
2.432118+ 0.804519i
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TABLE XIV. For N=« we report the zeros closest to the origin as obtained by an analysis of the
strong-coupling series of by DIn-PA’s and IA’'s. We consider the series at 15th and 30th order on the
triangular lattice, and 30th and 60th order on the honeycomb latticis. the exponent corresponding to the
singularity B in the IA analysig20] (its exact value isy;=—1/2). The DIn-PA analysis does not provide
stable estimates of;. The values we quote are average and maximum spread of the DIn-mAg with
5<m=9 (series with 15 terms 12<m=<17 (30 term3, and 2&<m=232 (60 termg; for the IA we use in all
cases six quasidiagonal approximants.

Lattice n Bs (DIn-PA) Bs (I1A) vs (1A)
Triangular 15 0.214(4Xi0.1838(2) 0.206(1¥i0.1811(6) 0.54(7Fi 0.07(6)

30 0.2084(2)-i0.1821(2) 0.206712(1)i0.181628(1) —0.4997(4)i 0.0001(2)
Honeycomb 30 +i0.3648(8) +i0.36211(3) —0.50(2)+i 0.001(6)

60 +i0.36270(4) +i10.3620955327(5) —0.500001(1}i0.000001(1)

With series with 30 terms or more it is also possible to get (1) square lattice:8 series, &.,n=3.171 60; E series,
an estimate of a second singularity. For the triangular latticé&,,,,=1.384 03,
the series with 30 terms has a second singularity at (2) triangular lattice:8 series,&qom=2.989 25;E series:
B=—-0.698(6)-i0.77€5), which corresponds to the sec- ¢.,,,=1.667 06,
ond point in the sheet witd=1 andc=2. For the honey- (3) honeycomb lattices series &.on=1.000 02;E series:
comb lattice we get-0.449(13)ti0.610(17)(30 termgand  &.,,,=2.434 50.
+0.4504(7)i0.5909(25) (60 term3. The IA’'s are less
stable and the 30-term series do not yield any result. With 60’he series converge thus in a very smalldisk: however
terms on the honeycomb lattice ~we  getPA’s and IA’s are quite successful in providing good esti-
+0.449(3)+i0.5852), which is in perfect agreement with mates in a larger domain of thg plane: indeed, for the
the exact result. squaregtriangular, honeycomHattice, series with 2115,30

As well as considering the series ghwe have also con- terms give estimates which differ from the exact result by
sidered series with the ener@yas variable. In this case we |ess than 1% tillé~10 (5,15.
must consider the zeros dfE/dw. Explicitly, for the three

lattices we havéfor the square lattice we take=p.): 3. Conformal transformations

dE_ 1 dg 1 latti c3 Once the singularities are known one can use a conformal
dw Wd_w w2’ square lattice, ~ (C3D) transformation to get rid of the nearest orle§, e.g.[9],)
and thus accelerate the convergence of the approximants.

dE 1 dp ] . Let us first consider the triangular lattice which has two

aw 6g2aw 3w, triangular lattice, (C32  gingularities located at B=pe*’ with
p=0.275169 111 05/=0.720 896 055. As in Ref7] we

dE 1 dg consider a transformation of the form

-—=——+1, honeycomb lattice. (C33
dw 34 dw B=pW[1+P(W)Q(W)+uQW)?]  (C34
It is evident from these formulas thatE/dw+#0 where
dB/dw=0. Thus, as we said at the beginning of this appen
dix, the analysis ofdE/dw provides all singularities of

w(E) and B(E). We get for the nearest singularities:

where Q(w)=1—2wcos#+Ww? is a polynomial which van-
ishes forw=e"'?. P(w) is determined by requiring that
dB/dw=0 for w=e*'?. The simplest polynomial with this
property is given by

E=+0.330261 131 6741 square lattice,

1
E=—-0.290 013 856 190 P(w)=— m(cos%—wcosﬁ). (C3H

+0.138 180553 789 triangular lattice,
We will also consider a second possibility given by

E=*=0.303 078 379 027

Lt
4

cos46 cot260

S35 mwz) (1—2w?cos20+w?)
For the square and honeycomb lattices the singularity ap-
pears on the principal sheet B{w) while for the triangular + u(1—2w2cos20+w#)2
lattice it belongs to the sheet withlc) =(1,2).

From the position of the singularities we can now com-

pute the convergence radius of the high-temperature seriéhis transformation would also work if we had four singu-
on the real axis. In terms of the correlation length, we findlarities at 3=+ pe™'?. It is easy to see that fof=n/4 it
that the series converge up §g,, Where reduces to the transformation used[# for the square lat-

+0.402 035415796 honeycomb lattice. B=pw

. (C36)
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tice. For the honeycomb lattice the nearest singularities are If we use the series witlw#0 the stability of the PA’s

B=*ip with p=0.362 095533 3. We can thus use Eq.decreases and singularities on the real axis begin to appear

(C34) with 6=m/2: i.e., near the origin. Forw=0.1, the PA’s are still reasonably
stable and we get, fo=0.33, y=57.036). The PA’s
agree within 1% till 3=0.41 (¢=12.55), where we get

1 ) -~ x=257.9(2.4), to be compared with the estimate with
B=pw| 1+ 5 (14w +u(l+w)7. (C37)  ,=0, y=255.832), and theexact valuey = 256.02.
An analogous analysis can be done for the honeycomb

lattice. In this case we have considered th&4/14],

In all casesu is a free parameter which can be used to[ 13/16], [14/15], [15/14], and[16/13] DIn-PA’s, excluding
optimize the transformation. in each case those having a singularity on the positive real
In order to compare the series with and without conformaf@Xis with 8<3. We find that PA’s of the standard series

transformation we have compared the results for the mag@9dreée within - 1% till g=1.15 ((=16.23), where

netic susceptibility for series with 15 and 30 terms on the’(i303'2(2'8)h o 28 coanparedf with the exact result
triangular lattice and honeycomb lattice, respectively. x=305.53. The conformally transformed PA’s give instead

For the triangular lattice we have considered fisé7], X~ 305.14(69) foru=0 and y=305.84(63) foru=0.3.

' - : The conformally transformed PA’'s agree within 1% till
[7/6], [6/8], [7/7], and[8/6] DIn-PA’s. For the series with- - o > -
out conformal transformation we have found that all PA'sA=1:35 (5_33'5(% where we get=1100(15) for,u.—O
have singularities on the real axis or with a small imaginary2"d 1114(12) fop.=0.3. This should be compared with the
part (Im3=<0.2) with 0.4<ReB=0.6. Excluding only the exact valuey=1108.13 and with the estimate from the stan-
PA with the nearest singularity [6/7] for which dard seriesy=1073(47).
Ban=0.414), we find that the estimates agree within 1% il From this analysis it emerges that the conformal transfor-
/3“%-33 (£=5.31) where we gey=57.69(56)(this value is mation is extremely useful, especially for the triangular lat-
the average of the estimates of the various PA's, while thdiC&: Where one gets results which are better by a factor of

error is the maximum difference between two differentlo_.loo' Of course, thg i_nteresting problem would be to gen-
PA’s), which must be compared with the exact Valueerahze the method to finite values Nf There are two prob-

x=56.9837. Let us now consider the series obtained froniems here. First of all, the exact location of the singularities

the conformal transformatioiC34). The results are now 'S NOt known. Moreover the exact nature of the singularity
much more stable: §8=0.33 the series with.=0 gives must also be determined from the series. The first problem is

v=56.978(25) while foru=0.5 we gety=56.9804(24) probably not a very serious one: indeed if we redo the analy-
The e;stimates of the serlLiLes Wimzo agree wit.hin 1% tili sis we have presented using the values of the zeros obtained

from a DIn-PA analysis of the series itself, the results are
=0.46 (£=21.58), where we =672(6) (exact value . : ’
f= 674.8(6) , While) for the casﬁgf%s the(s;me is true till €Ssentially unchanged. The really serious problamleast

B=0.61 (¢=110.27). In this last case, however, the ﬂuctua_for low values ofN) is the nature of the singularity: indeed,

tons of the approximants are not a good estimate of [ TETTIEA T8 TR SRR TURY O D
error: indeed, we gety=12 861126) to be compared with q P ' 9 y

the exact valueg=13 290. The estimates agree within 1% transformations must be used.
with the exact result only till5=0.56 (=64.00). APPENDIX D: STRONG-COUPLING SERIES ON THE

Let us now consider the secon.d tran;formatlon. The D.In— SQUARE LATTICE
PA’s for x=0 do not have any singularity on the real axis
for B<3 and their estimates are extremely stable. For the A complete presentation of our strong-coupling series is
value we have considered befor@=0.33, they give beyond the scope of the present paper. A forthcoming pub-
x=56.98085), which is in excellent agreement with the lication will include all the relevant “raw” series. In order to
exact value although the error bar is clearly underestimatedtnable the interested readers to perform their own analysis,
The five different PA’'s agree within 1% till3=0.72  we present here just the series for the internal en&rgghe
(£=365.05), where the estimate is=110 2001100 to be  magnetic susceptibility,, the three mass scaléss, M2,
compared with the exact valyg=123 387. Again, the error and Mg, and the renormalization-group-invariant quantity
bar is underestimated and the true error is 11%. Indeed, the, on the square lattice, for the most interesting values of
estimate from the PA’s agrees with the exact value withinN, i.e., N=3,4,8. The following appendixes will be devoted
1% only till 3=0.53 (£=46.18). to the triangular and honeycomb lattice.

1.N=3

— 7 p3__ 24 p5_ 3439 7 _ 21872 59 287616363611, 236181936513 9960909191551,15, 2128364407641312517
E_B+5B SSB 875ﬁ 1925B 153278125 + 21896875[3 + 65143203125% + 4665255546875

3474632508732006696H19 | 4200734968250456939%21 23
+ 366922348761718753 + 548000910488281ZSB +O(ﬁ )! (Dla)
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168 3 428 1448 5 84144 6 942864 2055588 8 6845144 9 3478216992,10, 643017322016,11
X= 1+4ﬂ+123 +%5 B B += B +57 B B + ﬂ 1375 B 336875 + 30655625

+ 915294455744, 12+ 1255061271212%134_ 12089227663025?_}14+ 389699208857012%15_{_ 50948877169965252316+ 567066643800341320%,17
21896875 :8 153278125 766390625 13028640625 91200484375 5513483828125

622436864722762566774418 , 61258005351838945645574419 , 108064804693243741727169620_, 4321920010959667155801531321 2
+ B+ B+ B2+ B*+0(8%),

3335657716015625 183461174380859375 183461174380859375 4219607010759765625
(D1b)
1 638 p3_ 32 pd_ 212 p5_ 8256 6 2392562 _ 8932488 6761450459 1315441408,10_ 305969023608,11
B 4+ IB+ 175B B 875B 875B + 336875 336875 30625B + 1393437 + 11790625 766390625
4 515730116144,12_ 129453356216124,13__ 3824849435660%14_’_ 1592389687592532689%15_ 102727516154055776,16
766390625 456002421875 26823671875 3335657716015625 25080133203125
_1197771736981212340%17_, 87200950966791406585518_ 1212926522306617224307180419 2!
1467689395046875 E + 26208739197265625 274274455699384765625 % +O(B 0)1 (ch)
-1 638 p3__ 32 772 p5_ 912 H6_ 1730018 790736 p8 _ 2267373729 1892118016,10__ 280950072668,11
:B 4+ B+ 175ﬁ 875:8 l75ﬁ 336875 153125:3 13934375 + 58953125 3831953125
642095551792,12  451334756421336,13_; 1890027233038144514_ 269818891521799734h15 16
+ 3831953125 2280012109375% + 4694142578125 12829452753906252; +O(18 )l (Dld)

2_p-1 122 3 _ 4086 p5_ 16737807,7 _ 18994322761,9 , 2150756228311, 7336555515481743,13 15
Md_B _4+ ﬁ"’ ,8 875:8 T 1684375/ ~ 1532781250 +3831953125,3 + 79800423828125% +O(,3 ), (Dle)

— _ 2, 2808 p3_ 32832 4, 2686616,5_ 1570295046 , 9178202064,7 _ 107291190016,8 ; 13796318675224,9  5644659282845824,10
U—4ﬂ 4SB + 5 B 5 B + 35 ﬂ 175 B + 875 B 875 ﬂ + 9625 ﬁ 336875

+ 3002310463099766953p11 3190578136105647244312+ 315591420176616436544/13_ 23979770066652616150374414
153278125 13934375 11790625 766390625

4 23827057358881356280288187315 194973200358391029673944879?16_*_ 3331130440560593125866977671}217
65143203125 456002421875 666465078125

_ 19489567025124572887718011335312%48_’_ 25061170219697648827983687405821973369_ 146479827799664519145353950407208628
3335657716015625 36692234876171875 183461174380859375

393833021024027186025718070228473498642_;125 2
+ 4219607010759765625 +O(B 2) (le)

2.N=4

_ 403 4.5 28,7 472 59 344 11, 256324 513, 1215025615, 1884524817 6851031299619  339976954532,21 23
E_13+§,8 _5,3 _?/3 _4_5,8 945 + 2835 + 33525 + “o1125 763149625 T T 63149625 2,3 +O(ﬁ( ),a)
D2

_ 2, 100 3 4 596 35 | 1348 g6 | 14564 91132 8 549332 9, 213868310 8483180 11, 7764378812
x=1+4p+128°+ 5 B>+ 84"+ 5" B>+ 5= "+ :3 + 55587+ B+ =B+ B+ 72835

138079108 13, 356964103614, 1786793887615, 106623715616, 7440898302817 992250411932,18_ , 45911479386812,19
2835 B + 42525 B + 127575 :8 + 4725 :8 + 212625 B + 1913625 % + 63149625

11071698881708,20_, 69463206903148,21 2
+ oo B0+ SR B2+ O(8), (D2b)

2 _p—-1_ 11 34 n3__ 4 224 p5__ 80 6, 4 544 8 __ 58150 9 75032 10__ 7465004 511, 20575936,,12 , 20423280813
_B 4+ 3 B+ 9 B BB 135ﬁ 9 B +81B B 1701B + o5 B 18225 + 42525 + 382725

_ 35990485614, 3457531424615 938720152,16_ 3116875126738,17_, 47791394648,18_ 128064328183586,19 2
127575 + 5740875 382725 189448875 % + 1148175 3978426375 (;B +O(ﬂ 0)1 (DZC)

2_ p-1 11 34 n3__ 44 3145 14 n6__ 836 7 404 p8_ 21531859 4700 10_ 443038 511, 2441073812 2473212813
Ms=B "—4+5B+ 5B — 3B — 130 3B — 81 B + 2058 8505 B + 81 B 6075 BT 127575 382725

139715614 14, 3172203256/,15 16
114817SB + 5740875 B +O(B )! (D2d)

2_ p— 3_ 3341 55 _ 6781 p7_ 10260079, 76323223511, 6716460083513 15
Md_:B ﬁ"' :8 54018 ~ 540 — 1360808 T 2041200 + “367a1600 +O(,8 ): (D2(—:-)

_ 2, 168453 4} 22994035 _ 26865766 | 5231586857 _ 183375007658 | 10282731726839 _ 2252963981724310
u=4p—-48p°+ =3~ °—65603"+ B>—=3 AR - + 35 B 135 B

61420977655724511  2152899064881952,12 , 3593447617956212H13_ 146948464442518836%H14 , 735824012558754763p515
+ 315 % 945 % + 135 ig 4725 E + 2025 B

180542287366848925273[316_'_ 31641414417552707526348417__ l109079895846lB965235149i§18+ 47513820514244813388178689219

42525 637875 1913625 7016625
_4996295906224666012396341020%20 , 5837593383329001061729539430521 2
63149625 ga + 63149625 ﬁ@ +O(IB 2) (DZf)
3.N=8

_ 6 p3_ 38 p5_ 19924 57 | 908 p9 , 10303237611 284005868,13_ 801343307824,15_ 74654425999556,17__ 5113078463377748,19
E=B+5B"— 18 2625 B' T 525" T 1771875 Bt “1771875 3410859375 30697734375 1995352734375

+ LRSI 062, (032
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_ 2 164 3, 404 548 5 9708 6 2023244 1258836 8 65976289 ;, 16051164410, 43355484411
X_1+4B+1ZB +5 IB +755 B +5 B B + 2625 B + ﬁ 2625 B + 39375 + 70875 B

+ 4869604484[812+ 17075166692’813+ 180200884868’814+ 407707485308,15_ 18904178053196,16_ 861976694991428,17_ 2351633289032404,18

590625 1771875 20671875 136434375 2046515625 30697734375 51162890625
 42141726587765018%,19 2
Soreaeseriore B+ O(5%), (D3b)
-1 298 H3_ 28 pA_ 5254 o5 2128 p6_ 654656 57 , 98032 8 9588855450 | 5421752510 1465956704511
=B -4+ BB+ B - R - B - SR B S B+ e B — Tt B+ aig 20671875
— 2887857152312 | 21729605024744313_ 3782033207144314 | 35422426041370315, 72788687225044316_ 20419392441040942317
8850375 O 10232578125 930234375 153488671875 7308984375 4655823046875
4043451880059999%,18  7755263425304938820,19 2
+ s B e seaonise B+ O(5%), (D30
2_ -1 29853 284 514455 18206 85331647 | 34311238 2550743839 4 10063732310 4 7958412578311
Mi=B"1—4+ B+ TR 8B — T B~ T B°— Sosrs B+ Saaos B2 — Bsra B+ Riess B0+ Tosssoare
637810442512 | 24367739089468,13  22983973787546,514 , 828277050985928,15 16
+ %azs6875 8+ “51162890625 assbesosrs B+ B esre B+ O(B8Y), (D3d)

1 19 3__ 10121955 159833757 , 304215343959 , 716944244341,11 , 668912806018181,513 15
IB —4+% 18+ 18 1050018 ~ 787500 + 141750000 + 496125000018 + 2728687500000B +O(ﬁ )! (Dge)

— _ 2, 2804 32736 1146292 5_ 22299088 273288276447 _ 106327225472»,8 ;, 1241049893108,9_ 72427584678352,10
U—4B 486 + 5 ﬂ B + B + 2625 875 + 875 4375

+ 4891090976313941H11 19029581667472131&124_ 4664373194358953862313_ 2117208265068678482703144_ 8321396192774133643283p15
253125 84375 1771875 6890625 23203125

_ 1427770122064083058341150%164_ 1499842148419950279160077842817  29176894061659017382005099377$18
3410859375 30697734375 51162890625

4 1328153956920099509461959475168349 8612330157422214090212163723949320+ 211098292286l14752398400491787924%21_’_ o) 22
1995352734375 1108529296875 23279115234375 (IB )

(D3f)
APPENDIX E: STRONG-COUPLING SERIES ON THE TRIANGULAR LATTICE

We present here the series for the internal en&gthe magnetic susceptibility, the two mass scale!\il(z3 andM2, and
the renormalization-group-invariant quantity on the triangular lattice, fo=3,4,8.

1.N=3
— 24 17 n3 44 132 p5 352 6__ 53833 7 _ 2460728 __ 38879794,9 6397316,10__ 881516653611 6389696707212
E—ﬁ‘l‘ZB + 5 B +4IB + 175B B 875 B 1225 B 67375 4375 2786875 11790625
_ 8172901366413, 23710274924992,14 , 41524371116654853315 16
15640625 ﬂ + 2360483125 % + 5016026640625 2'3 +O(B )1 (Ela)

— 2 672 p3 2802 4 388452 5 1478784 6 3891432 7 6831135068 , 131380789212,9 , 449739783516,10
X_1+6B+3013 B +55 B + ﬁ + + + 6125 + 336875 + 336875

1249493817705 9071627491989 3682059712773914 906785743172594068 243022592645489762193
+ %11+ %12—’_ 2_313_’_ El4+ ﬁlS_’_ o) Blﬁ)

2786875 6131125 766390625 59012078125 5016026640625
(Elb
—2p-1_ 56 32 p2 , 4552 2176 __ 40312 55 _ 288944 H6_ 135456887 _ 3726210088 _ 3383415563689 3305311062410
- SB 4+ 15B+ ﬁ + 525 ﬁ + 525 2625 3675 67375 1010625 459834375 18393375
_ 5766016722184,11 , 279009107673392,12 , 7247233792292676%H13 14
2299171875 % + 59012078125 i; + 2149725703125 ﬁ + O(B )! (Elc)

2_2 1_ 32 2 4496 n3_, 11944 H4 13836 p5_ 6627032 ,6_ 33704260257 _ 1079483686,8 _ 408531412013,9
- ﬁ 4+ B+ ﬂ 525B + 2625B 875 ﬁ 91875 1684375 2358125 459834375

— Sserrisrs B+ O(BM), (E1d

—Rra_ 2.4 9552 4} 10489150205 _ 37157193636 4 1645394925637 _ 2039980956200438  283898649830711%39
u=68—-1086"+ == ﬁ —3384(B" + B s Bt 875 B 6125 B+ 48125

_ 5028470298780379ﬁlo+ 40524703698342044241511_ 502447223156962979880%12+ 444972341414657282512936813

48125 21896875 153278125 766390625
_86695841094600255837962548814 , 18273333816361359876191993226/25 16
8430296875 %9 + 1003205328125 BZL +O(B ) (Ele
2N=4
3 238 p6__ 4312 7_ 12316 p8_ 30212 9 _ 60434 10_ 157929211, 2436340412, 869521126,13
E= B—'—Zﬁ + :3 ﬁ B 45 B 45 B 45 ﬁ 945 + 14175 + 42525
3674593642514, 3484011084815 16
+ 42525 B + 127575 18 +O(IB )1 (Eza)

X= 1+ 6B+ 30B2+ 134ﬁ3+ 554ﬂ4+ 216235+ 24§GGBB+ 14%242B7+ 149165254 8+ 1504355566 9+ 326:?594310_{_ 361;[[853026B11

5006402279812 , 45073416590613_; 439170936682,14 , 11246618825102515 16
+ 4725 B + 14175 ﬁ + 4725 % + 42525 % +O([)) )a (E2b)
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—2p-1_ 248 3 _ 9268 p5_ 14024 6 _ 323204 198104 8__ 197038489 _ 4589738810, 35780153611
- SB B+ B + B 405 B 135 B 1215 B 25515 B 42525 + 382725
2167022524512 | 8305767793613 14
+ 127575 + 1148175 + O(B )l (EZC)
-1 245 3 107 _ 18581 p5_ 40037 p6_ 324218 7 _ 27729538 _ 189804947,9 _ 493593379510 11
3:8 4+ B+ B + ﬁ + 810 ﬁ 405 B 1215 4860 204120 765450 +O(ﬂ )1

(E2d)

u= 6,8_ 108B2+ 19]_%3_ 3382%44' 59907&35_ 1060938@64' 2818555)7806ﬂ7_ 49912210532 8+ 265162261173%9

_ 4696030590199?31O+ 1746454581043171311_ 220920665969769292312_’_ 8216043352873821270313_ 145502282416479263432814
45 945 75 14175

14175
515355464403657870400515 16
+ 2835 B*>+0(BY). (E29
3.N=8
5_ 238 p6_ 4312 57 _ 12316 58 _ 30212 59 _ 60434 510_ 157929211, 2436340412, 869521126,13
E= ﬂ+2,8 +% ,8 + ,8 9 45 T35 P T 745 745 ,3 T T 945 + “1a175 + =42555 ,8
3674593642514, 3484011084815 16
+ 22525 B + = 127575 ,3 +O(ﬂ )1 (E3a)

X= 1+ 6B+ 30ﬁ2+ 134;83+ 554)84+ 2162,35+ 24§66ﬁ6+ 14é242ﬁ7+ 149165254 8+ 1504355566 9+ 326§594ﬁlo+ 361;.(())53026B11

5006402279812, 450734165906,13_ 439170936682,14 , 11246618825102,15 16
+ 4725 ,3 + 14175 ,3 + 4725 2,3 + 42525 %3 +O(,3 ), (E3b)
1 34 24 248 34 32 p4_ 9268 p5_ 14024 56_ 323204 7 _ 198104 58 _ 1970384839 45897388510, 357801536511
3/3 —4+75 ,3+ /3 ,3 ,3 - 405,8 ~ 7135 /3 T 1215 /3 T 7405 /3 ~ 725515 42525 ,3 + 382725
4 2167022524512 | 8305767793613 14
127575 ,3 + =11a8175 /8 +O(ﬁ ), (E3C)

1 34 2 245 3 107 4 _ 18581 p5_ 40037 6 _ 324218 57 _ 27729538 _ 189804947,9 49359337910 11
,8 —4+ ,8+ ,8 +57 ,3 +57 ,B 810 ,8 7405 ,B - 1215,8 74860 T 7204120 765450 ,B +O(ﬁ ),

(E3d

u= 6,8_ 10882+ 191(133_ 3382%44‘ 59907895_ 1060938@64‘ 2818;1507806ﬂ7_ 499129510532 8+ 265162261173%9

_ 4696030590199%10+ 17464545810431712311_ 22092066596976929@124_ 8216043352873821270B13_ 145502282416479263432814
45 945 675 14175 14175

+ 515355462@%@65787040%15_’_ O(Blﬁ) (E3e

APPENDIX F: STRONG-COUPLING SERIES ON THE HONEYCOMB LATTICE

We present here the series for the internal endtgyhe magnetic susceptibility, the three mass scalés? , Mf, and
M2, and the renormalization-group-invariant quantityon the honeycomb lattice, foi=3,4,8.

1.N=3

—Q2_ 3723885 1761 7 14902 9 _ 343976959611 , 2045078768,13_ 5158924941321,15 , 28899507590512836517
E_IB SB +3 B 175B + 385 :8 21896875B + 3128125 1861234375% + 2425932884375

17255214090401389825ﬁlg+ 41575349384710551448821 8715968136265162257048579BZ3+ 29732321039349858643579317625
3335657716015625 1835409748046875 872691449952587890625 67130111534814453125

_9389694609610593504525644828%7 |, 63279830065119090614868976513086489389 31
4757152640718994140625 W—’_ 71634557740672624383232421875 % +O(B )! (Fla)

3 978 p5_ 7128 p6_ 345 12018 8 23923859, 52831068,10, 1370148342511, 3651943212
X= 1+3B+6B + B B + B + 1756 +5 B + 75 175 B + 1925 B + 336875 + 21896875 + 398125

+ 2120228676, 13_|_ 8169611344814  4005762392397,515__ 555470667608%164_ 52225040704319314B17+ 2855703683699567510418
3128125 B 109484375 2605728125 3648019375 60648322109375 3335657716015625

_843085319831957400419__ 56834171107033542544BZO+ 6099722297292932770738}%214_ 2621398456210907069421578422
2382612654296875 16678288580078125 383600637341796875 174538289990517578125

__3225449543529644513975711423 437156352862041729063753%24_’_ 5465804094055611367040244%25_’_ 249537893334926131378222303226
45931128944873046875 67130111534814453125 174538289990517578125 872691449952587890625

_6822201093677774297326014846213427 72810432624124873092865192589568&8_,{_ 562809908853468932757594137982353385
48718000193603218994140625 57712092537037659423828125 8954319717584078047904052734375

8519985565279875808402224146574969010@&) 31
+ 152223435198929326814368896484375 + O(ﬁ )1 (Flb)
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2 _4p-1_ 52 n_ 316 p3_ 5472 H5_ 64 p6_ 191227247 , 47808 p8 , 13167326169 _ 7823616,10_ 472105313248,11
M _SB 4+ 15 175ﬂ + 875ﬂ 25ﬂ 1010625ﬁ + 437SB + 21896875B 153125 2299171875

1973349088 12+ 46661184606992,13__ 26076544910176,14 178369699121319845[3154_ 372414563245884%16_’_ 5630519133419621985h17

+ 8421875 65143203125 26823671875 667131543203125 938828515625 526682797265625
_1467822695658549241518__ 233077224556285651308070%19_{_ 13163520454113838182320+ 1493121392058392285737668821
877804662109375 523614869971552734375 1796123385546875 79335586359326171875
_1249031595300110935557020822__ 26817351815203811277958490032;23_’_ 130364007901873589434462035224
37943106519677734375 335986208231746337890625 872691449952587890625
+ 380437489424332726018109178706225_ 351634528568071510150949534888p/26_ 32741212467941707889297214938863984773
11242615429293050537109375 5174187606768893603515625 2283351527983939902215533447265625
15384441727626719160553041955953213328 2!
+ 49801555715150600933837890625 % + O(B 9)! (FlC)

2_2p— 38 1418 2804 4877702 83484008 510322072076, 24152172651335 3555705908233625837
M2=25"2- 38 141832 280434 285+ 88— 10, 12_ 14

1575 7875 303187 2189687 34487578125 4104021796875 15010459722070312
365675974210054786082316 18
+ 37526149305175781253 +O(B )1 (qu)

2_4p-1 52 316 3 15296 5 64 H6__ 665185257 , 1088 n8 , 450203141659 203936 »10__ 192671527632511 , 1013665088712
ME=3p71— 4+ 35— HEp7+ SELE0— S50 s+ 1RE°+ - - B

175 2625 125 336875 4375 65690625 459375, 766390625 294765625

+ 1306699165544048,13_ 1577414046048,14 18724970213532263004315_’_ 2798355080092%16_’_ 1974060261022003997117
1368007265625 13411835937 50034865740234375 670591796875 13167069931640625

_ 56105757177387251218__ 94202359765476620058833%19_,_ 171831994279491802664&3/920+ 33146319869019734063983916 1
4389023310546875, 154004373521044921875 43780507522705078125 13090371749288818359375

_168852804149176727760950422 53446974337526905393761571889ﬁ23+ 710002489923384145123709548%@24_‘_ 0] 25) (Fle
1328008728188720703125i 5039793123476195068359375 17639275932166682739257812 (ﬁ ’

_ _ 2, 1176 3 _ 10233 h4 , 6234185 271290066 ; 94443967 _ 821967038 ; 983643153048,9  299630551162554,10
U_SB ZYB + 5 B 5 B + 35 B 175 + 7 B 7 + 9625 336875

+ 1695039837819376911 1475232154782748903124_ 987637288715664985H13_ 5079238558843461814&14_{_ 8266481125207736925838815
21896875 21896875 1684375 9953125 1861234375

_ 352530924091759238382209ﬁ16+ 156948067759986942258686999%17_ 199317942770230693670063257315518

91200484375 4665255546875 68074647265625
+ 1700015701697756797672977113296349 7397813830453458326408000754198%Q0+ 74042606580284578369030516156672152321
667131543203125 3335657716015625 383600637341796875

_ 1172825899888916586985509963759764004%722_’_ 1275921695053691221896293444849460211245
6981531599620703125 872691449952587890625

_ 15863771397300216952075977176428886904093%14_ 96646235832092490263933098748637598311624,
124670207136083984375 872691449952587890625

_221351162997126072386711604146938113185602 4 40867173106509863680617768142562577165996081315
229655644724365234375 48718000193603218994140625

_27387083348707117480742015654033833178820851936404 2 5689559760891835362935463361457661566503603613628700393294
3751286014907447862548828125 8954319717584078047904052734375

_420899151335376486671627090542727720822562453261794820086530 31
761117175994646634071844482421 g a_o(ﬁ ) (Flf)

2.N=4
—P_ 223 8p5_ 512,57, 6254 9 112352 511, 495496 p13_ 501611216,15, 11453817058,17_ 748041961864,19 , 4879081930372,521
E_B 3ﬁ + 3ﬂ 45 B + 135 B 567 B + 567 B 127575 + 637875 9021375 ﬁ + 12629925
__46880597896675134423 , 516437554336035675%H25_ 330837721420645868940827_; 525605940197465816169429 31
258597714375 B + 603394666875 81458280028125 B + 27152760009375 3 +O(B )! (an)

_ 2 3 4 5 110 6, 598 n7, 752 p8, 4492 9, 1114 510 21976 pll_ 18344 12, 622724 513
X_1+3,3+6,3 +10,3 +16,3 +26,3 +TIB +ﬁ,3 +ﬁ,8 +T,3 +T,3 ~ 7945 B 7315 ,3 + ~%2s ,3

11892428514 102416012515 19192244 16+ 10289936317+ 9473001266,18_ 1147872224624519__ 28540481460?820_’_ 5401807541912,21
875

+ ~1a17s 42525 6075 637875 21049875 4209975 21049875
4 138663144738428322  1493811779630351%23 12602798691673344B24+ 3861907623895482%25_1_ 137926516150927962226
442047375 12314176875 86199238125 67043851875 201131555625
_ 74569264559322901136%27_ 87823797831818956641328_, 356775453663918490943529 , 178390269549069274163830 31
27152760009375 27152760009375 B + 27152760009375 B + 11636897146875 /% +0(8%), (F2b)
2 _4pp-1_ 32 5 56 p3 2944 55 8 H6_ 30136 57, 376 58, 2169952 ,9 27872 510_ 1736417611, 139568 512 1403817608,13
MGc=38 4+ 278"+ o5 3B 1215 8+ 37 B+ 5515 205 54675 + %05 Bt “i1zsi7s

__206305088,14_ 12041211784, 15+ 44783968 16+ 2327367655528,17_ 5538622408,18__ 105680572779579%19_{_ 2704092978728,20
127575 2460375 6075 :B 113669325 164025 11935279125 17222625

+ 909455600757890632,21 _ 4903884524065528,22 8527248147610711290323_'_ 1905577595994800?324+ 82183692719025324516825
2327379429375 6630710625 48874968016875 5425126875 104732074321875
__780299573396206856%26__ 1560734543129797466010427_, 1960853043815067827377528 2
465475885875 439874712151875 /% + 244374840084375 B +O(ﬁ 9)1 (cm)

2_2p—2_ 22, 82, 494 p4 8284 6 | 161257 8 3197867510 , 40478257512 2335174787814 , 2016622630922,16 1
Mv_§,3 _ﬁ+§ﬁ + 1215ﬁ _3645ﬁ + 25515ﬁ - 127575,3 + 382725 " 751667875 /3 + “1023023925 % +O(B 8),
(F2d
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2_4p-1 32 56 3 2764 p5_ 16 p6_ 30376 7, 64 p8_ 2357776,9_ 184 p10_ 1978223611, 76984 p12 , 1686885896,13
Mi=$87"— 4+ ¥ B— 5 5%+ 5 °— 10— A7+ 1 8%+ BEEHEB — TR BB TR

405 1215 25515 135 54675 10935 1148175
__ 2132936 14__ 5039762128 15+ 76496944 16+ 2987093529676p17_ 22231013972,/18 5055999705874?19_}_ 775676060228,20
76545 820125 IB 688905 :8 113669325 51667875 442047375 465010875
39176459815129866%21_ 512747827960696,22  11024253827181324810%23 | 43888147443715136524 25
+ 775793143125 76726794375 48874968016875 B + 1611262681875 B + O(B )1 (er

u= 3ﬂ_ 27B2+ 235ﬁ3_ 204%4_’_ 1776%5_ 15447%6+ 201f§303ﬁ7_ 584(%3373 8+ 4570[&7052739_ 1324?-%3848%10

7257685461779,11_ 4207327698821,12 , 548778458844239,13_ 3408540645268981,14_, 186727586384271805315_ 5154628692464036%H16
+ 945 % 63 B + 945 % 675 B + 42525 ﬁ %

4 23531854113870161454H17 6138706350282887902913184_ 528459258075001987577277319__ 510585477771942777352297920
70875 212625 21049875 2338875

4 39958614815379909782046386321 243224837462191744533424410gZZ+ 12372664736690708607654766850515P3
21049875 147349125 86199238125

717251463309460504958719584064BE4+ 218292565181483807934668345217598325_ 56945532197086522197893685138659615236
5746615875 201131555625 603394666875

4 2228289567155043434572724885037134776977 13181163564610119027733292785978467EZ8+ 16848860749534433639413131084425510515
27152760009375 184712653125 27152760009375

__7751900574990317997553504614055155997%230 31
143665396875 Z?a + O(ﬂ )

(F2f)

3.N=8

E=8— 4 3+ 46 p5_ 7552 7+ 2302 H9_ 555317288 1l+ 274633328813 __ 178578078620%15_'_ 49727658484666,17__ 42228377663113775219
- B 5 IB B 525 B B 1771875 1771875 227390625 1227909375 1995352734375

+ 2601468609804874652%21 1510472378691238392445%234_ 1052874744700162027154302625_ 5472231864702145478944709627
23279115234375 25383189111328125 329981458447265625 318009342041015625

1412545713039080727861779028%;29 31
+ 151461489427294921875 W—Foﬂ ) (F3a)

34 12p44 1255, 746 6 170 3392 8 2392 9, 1330922,,10_ 1205290411 3829297612
X= 1+3B+63 + 2 B B +?,8 B += ﬂ + 175ﬂ + 55 B + 3125 784375 T 7118125

+ 50969477 509694772 13+ 3525532386814 _ 201482297164,15_ 118543195079%164_ 3395098539992%174_ 2298488652590486718
590625 :8 20671875 45478125 136434375 1461796875 51162890625

_409115403009898784H19_ 781623089480829242_3204_ 218402725483187599@214_ 18575830815990900847522_ 3528125823191445415662423
3325587890625 3325587890625 3325587890625 149651455078125 9999438134765625

_ 7266174831391645629212%244_ 239589836193155833785325_’_ 55603793910929494504473426__ 48351662683996592676214722 7

109993819482421875 125707222265625 15713402783203125 46747373280029296875
_76375110913709387715443574828 ; 71129901215879973419911799653f 29 , 1002625224890767081865824273065830 31
4006917709716796875 g + 1262179078560791015625 g2+ 97187789049180908203125 B@_l_o([)) ) (ng)

2 _4p-1_ 56 »_ 608 p3 , 8544 h5 56 H6__ 690104 57, 30632 »8 , 895240544,9 2698048 ,10__ 1533777300811 , 7823315212
MG_SB 4+ 5 225:8 + 875:8 ﬂ 16875:8 + 1875B + 5315625 28125 20671875 ﬂ + 10625 140625

4 1503306115426413_ 4635778697614 150246501082986?315+ 1149293041212%164_ 111162415388707285¢17_ 3450172284172424,18
4385390625 14765625 92093203125 664453125 13967469140625 36544921875

373486055385271640958319_,{_ 829541588725967562320_,{_ 198267523317313816362504821_ 30912524758208765332445622
9428041669921875 16116310546875 989944375341796875 109993819482421875

_ 169100288276830188591699%234_ 16910969702026167023252%244_ 668400150657865805039880757}325_ 4634564526474535644388800826
1649907292236328125 109993819482421875 1262179078560791015625 549969097412109375

_12061641759848944305115914511547927 , 5726239075305055128359156583§28 2
4373450507213140869140625 B + 123743046917724609375 W +O(B 9)1 (F3C)
- 568 + 1378 69604 6+ 2410411918 _ 185964672997, lO+ 1392084587186p12_ 10666554935618557,14
QB 675B 2362 16875ﬁ 15946875 2790703125 4385390625 6906990234375
12027299726668823992A16 18
+ 15713402783203125 B +O(B ) (F30)

2_4p-1_ 56 608 p3 ;| 24652 5 224 H6_ 6731367, 10976 n8_, 899887928,9 _ 480088 p10__ 5216665892511 , 53139224512
h_3lB 4+ ZZSB + 262518 375B 16875ﬁ + 562518 + 5315625 84375:8 6890625 B + 2109375

4 15464225123456,13__ 888898050414 38922396533024102315+ 578914267374%164_ 32467756338289108,17_ 3641291779914748,18
4385390625 73828125 2302330078125 9966796875 391904296875 1279072265625

_ 194678098131525680405%19_’_ 8532770650741901231&20_’_ 1033054820623615461103687621_ 11713325634025698161672822
47140208349609375 6043616455078125 4949721876708984375 1649907292236328125

__800007541792723235190667623_, 165643021747773639427620824 25
749957860107421875 B + 4583075811767578125 % +O(IB )! (F3e
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_ _ 2, 1173 p3_ 10179 p4 | 88357 p5_ 38349276 _; 9320831,7_ 404542143,8 , 8778965784159 _ 3810245382897,10
U_BB 27ﬂ + 5 ﬂ 5 ﬁ + 5 ﬂ 25 B + 7 ﬁ 35 B + 875 ﬁ 4375 B

+ 4465049407354747511_ 4306488725191522312+ 33643826215590264,»13__ 378572635206615921&14_*_ 975989677351826678344815
590625 18 65625 590625 765625 227390625

_ 282399241870210137123%16_'_ 3309305429419614279750651317__ 16120136279273916822653%18+ 16207996051281750382556862302§19

75796875 10232578125 57421875 665117578125
_ 142l12959749089988290419381@0_’_ 4274412982994845258282610301403521_ 252405435089165054087419869757P2
6718359375 23279115234375 158361328125

+ 1521799394161625379316216629188532792623 146775799365247069031550755820556182?2.44_ 11466649049267256355352323832429180274
109993819482421875 12221535498046875 109993819482421875

_ 55297254904420195051495336139745677825ggﬁ+ 367201599583278031923778483847484819042846327
61107677490234375 46747373280029296875

_ 106248514450339317349386363340101798271761%28_'_ 57465089834508188027065801793670434250632397829
15582457760009765625 97090698350830078125

_ 27739920954571742507804904815147743769371756056%&3 31
53993216138433837890625 +O(B )

(F3f)
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