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Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects
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We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order
parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed
explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with
the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities
that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective
potential in the one-loop approximation is complex &tirvaluesof the order parameter between the maximum
and the minimum of the tree level potential, both at zero and nonzero temperatures. The imaginary part is
related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial
states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of
equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities
may play a role in nonequilibrium processeside the nucleating bubbles if the transition is first order.
[S0556-282196)05914-0

PACS numbd(s): 11.10.Wx, 11.15.Ex

[. INTRODUCTION AND MOTIVATION gauge-invariant effective action and effective potenfi|
of which the background field method of Vilkoviskg¢] and

In this article we are concerned with the effective poten-DeWitt [4] is the most populaf5]. These formulations of
tial in gauge theories. It was recognized very early on thaeffective actions are technically formidable and do not
the effective potential is a gauge-dependent quafitiiyand  readily lend themselves to a manageable formulation of equi-
only a limited amount of information extracted from it is librium or nonequilibrium descriptions. Furthermore, it has
actually physically meaningful. This gauge dependence carecently been pointed out using the pinch technique, that
be understood from several equivalent points of view. Thedespite its formal gauge invariance, implementation of the
effective potential can be identified with the generating func-background field method requires a gauge-fixing parameter
tional of one-particle irreducible Green'’s functiofthe ef-  for the fluctuations This leads to a gauge-parameter depen-
fective action at zero four-momentum transfer, and thereforedence in finite parts of self-energies at finite temperature
it is an off-shell quantity. Alternatively, the effective poten- [6,7], which in turn leads to a gauge dependence of the ther-
tial is identified with the energyor free energyof a particu- mal renormalization grou function as discussed in detail
lar state(or ensembleconstrained to have an homogeneousby Sasaki7].
expectation value of the scalar field. Alternative formulations of effective potentials have been

The energy, or the free energy, is usually calculated byoffered in terms of a radial and angular decomposition of the
fixing a particular gauge in the path integral. In a gaugecomplex scalar fieldg3,9] or alternatively in terms of gauge-
theory, the(comple® scalar fields transform under gauge invariant composite operatof40]. There are several short-
transformations and their expectation value igaaige-fixed comings in the formulation of the effective potential in terms
state or ensemblés obviously a gauge-dependent quantity. of the radial field variabl§¢8,9] or composite operatofd 0].
Despite this shortcoming it has been recognized that certailhis variable is understood as the “square root” of a com-
guantities are gauge independent. Dolan and Jafkjwec-  posite operator that requiressaibtractionto be renormal-
ognized that the critical temperature is a gauge-invarianized; shortcomings of this approach had been already recog-
guantity and recently Metaxas and Weinb¢®j used the nized[8]. Furthermore, in the path-integral evaluation there
Nielsen identitie$3] to prove that the bubble nucleation rate is an ambiguous Jacobian arising from the change of vari-
at zero temperatures gauge invarianfwe are not aware of a ables to radial and angular fields. This Jacobian has to be
similar proof at finite temperatureThe gauge invariance of incorporated in the perturbative expansion to obtain a con-
these guantities can be understood from the fact that they asistently renormalized effective acti¢8].
associated with homogeneous and inhomogeneous extremaHowever, even when these technicalities are overcome by
of the effective action, respectively; these are known to besome renormalization schentguch as dimensional regular-
gauge invariant. ization), it is conceptually unclear how to interpret symmetry

Considerable effort has been devoted to constructing areaking in terms of the radial field. At the operator level, the
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radial field variable acquires a ground-state expectation valugnaginary part of the one-loop gauge-invariant effective po-
even in the symmetric phass can be seen with a simple tential and the rate of growth of correlations in the spinodal
example of a two-dimensional isotropic harmonic oscillator.region. Two appendixes are devoted to some technical de-
Composite bilinear operators typically require subtractions tdails.

be renormalized, and their expectation value is therefore am-
biguous. Il. GAUGE-INVARIANT DESCRIPTION

of 'ggrerf?gélt\i/\?élogt:asntt? aﬂg?]ﬁlzvzngsgﬁe:hnevzgztigescrt'igr"on The focus of our study is scalar electrodynamics or the
Hve poter ually the €ac Abelian Higgs model whose Lagrangian density is
and to use it to provide some preliminary information on the

dynamics of nonequilibrium processes during the phase tran- L=—YFMF, +D ™D d—N(dTp— )2, (2.0

sition in gauge theories. In view of the above discussion and - a '

critique of previous approaches, such an enterprise is clearly D, b=(d,b+ieA,d) (2.2)
Jz ® wr :

worthwhile because only a truly gauge-invariant description
of effective potentials can be considered trustworthy in terms The description in terms of gauge-invariant states and op-
of extracting physical quantities such as supercooling temerators is best achieved within the canonical formulation,
perature, latent heat, and others that are very important in thehich begins with the identification of canonical field vari-
guantitative description of nonequilibrium features. ables and constraints. These will determine the classical
Our program for the construction of an effective potentialphysical phase space and, at the quantum level, the physical
can be summarized in the following stefs) Select the Hilbert space.
gauge-invariant states of the theory, namely, those that are The canonical momenta conjugate to the scalar and vector
annihilated by the first class constraifgsich a selectiowill  fields are given by
not involve any gauge fixing (b) recognize a gauge-
invariant order parameter that is invariant under local gauge 1°=o0, (2.3
transformations, but transforms nontrivially under the global S A
symmetry that can be spontaneously broken, @ndcon- II'=A"+V'A°= —E', 2.9
struct the effective potential for this gauge-invariant order )
parameter. An attempt to establish a finite temperature m'=¢+ieA’q, (2.9
framework in terms of gauge-invariant states has been re- )
ported previously11] within a different context and with a m=¢'—ieA'9'. (2.6
different goal, but to our knowledge it has not been imple-
mented or attempted within the context of the effective po-
tential.
In this article we focus on such a description for the Abe- H= f BT+ 7 7+ (Vop—ieAp) (Vo +ieAgh)
lian Higgs model(scalar electrodynamigsind we expect to
generallze_the proc_edu_re and its quantitative implementation %(V*XA)2+}\(¢T¢_M2)2
to Yang-Mills theories in the near future.
In Sec. Il we implement the first step of the program; that +A[V-Ti—ie(mp—m N} 2.7
is, we select the gauge-invariant states and order parameter
without fixing a gauge, by requiring that the physical states There are several different manners of quantizing a gauge
be annihilated by the first class constraints of the theoryheory, but the one that exhibits the gauge-invariant states
which are recognized as the generators of local gauge tranand operators, originally due to Dirac, begins by recognizing
formations. Gauge-invariant operators are then recognized dise first class constraintsnutually vanishing Poisson brack-
those that commute with these constraints, out of which wets. From here there are several possibilitié$: The con-
recognize the proper order parameter. In Sec. lll we explicstraints become operators in the quantum theory and are im-
itly construct the one-loop effective potential both at zeroposed onto the physical states, thus defining the physical
and nonzero temperature and compare our results with thoseibspace of the Hilbert space and gauge-invariant operators.
obtained in popular covariant gauges. From this comparisofii) Introduce a gauge, converting the first class system of
we establish when the gauge-fixed results lead to physicalonstraints into a second cla@gith nonzero Poisson brack-
(gauge-independenpredictions. In this section we also ar- ets between the constraipsnd introducing Dirac brackets.
gue that the gauge dependence of the uggalige-fixedd  This is the popular way of dealing with the constraints and
effective potential is not relieved by hard-thermal-loop re-leads to the usual gauge-fixed path integral representation
summation. We also provide the high-temperature expansioi2] in terms of Faddeev-Popov determinants and ghosts.
of the gauge-invariant effective potential and point out that We will instead proceed with the first possibility that
the “cubic” terms which are typically taken as a signal of leads to an unambiguous projection of the physical states and
the strength of a first order transition are in general complexperators. Such a method has been previously used by James
and gauge dependent in fixed-gauge path-integral calculsand Landshoff within a different contekt3].
tions of the effective potential. In Dirac’s method of quantizatiofil4] there are two first
In Sec. IV we use the gauge-invariant effective potentialclass constraints which are
to study the early time behavior of spinodal phase separation
and the instabilities associated with the spinodal line in %= oL -0 2.9

The Hamiltonian is, therefore,

gauge theories. We establish a correspondence between the S5AY
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and Gauss’ law - - R - -
<I)(x)=¢(x)ex+ef d3yA(y)-V,G(y—x)|, (2.18
G(x,H)=V'7'—p=0, (2.9
p=ie(¢pm—o'm"), (210 <I>*<x*>=¢*<>2>exp[—ie f dyA(y)-V,G(y—x)
with p being the mattefcomplex scalarfield charge den- (2.19
sity. are annihilated by Gauss’ law functional differential equation

Gauss’ law can be seen to be a constraint in two ways: .
either because it cannot be obtained as a Hamiltonian equ&’—'
tion of motion or because, in Dirac’s formalism, it is the
secondary(first clas$ constraint obtained by requiring that
the primary constrain(2.8) remain constant in time. Quan-
tization is now achieved by imposing the canonical equal
time commutation relations

th G(y—x) the Coulomb Green’s function that satisfies
V2G(y—x)=0. (2.20

Furthermore, writing the gauge field into transverse and lon-
‘gitudinal components as

[P(X0),AF D)= —16(~y), (213 ABI=ALLOT AR, (2.2
(w40, Ay0]=—i815(-y), (212 XALX=0, (222
(X0, 67(Y.0]=—16(-y), (213 V- AT)=0, (223
- - e it is clear that
[7(x,1),p(y,)]=—i8(x—y). (2.14
R 1) N 1)
In Dirac’'s formulation, the projection onto the gauge- Vi—=—==Vy——=. (2.29
invariant subspace of the full Hilbert space is achieved by SA(X) SAL(X)

imposing the first class constraints onto the states. Physical . I .
operators are those that commute with the first class contherefore the “transverse componeny(x) is also annihi-

straints. With the above equal-time commutation relations itated by the Gauss’ law operator. This analysis shows that
is straightforward to see that the unitary operator the wave-functional solutions of the functional differential

equations that represent the constraints in the Sibhger

B p[ J o 3 ] representation are of the form

Uy=expi | [TI°A+GA]d"x (2.15
VA, b, 1=V[A;,® 0. (2.25

performs the local gauge transformations. Thus the first class
constraints are recognized as the generators of gauge trange fieIdsﬂT, ®, and®' aregauge invariantas they com-
formations. In particular, Gauss’ lai@.9) is the generator of mute with the constraints. The canonical momenta conjugate
time-independent gauge transformations. Requiring that they ®® 1 are found to be
physical states be annihilated by these constraints is tanta-
mount to selecting the gauge-invariant states. Consequentl - - . N - -
operators that co?nmutg wigt]h the first class constrair?ts arey H(X):W(X)eXF{_'ef d*yA(Y)-V,G(y—X)
gauge invariant. (2.26

In the Schrdinger representation, in terms of wave func-
tionals, the canonical momenta are represented by Hermitian - - . e - -
differential operators, and the constraints applied onto the HT(X):WT(X)eXF{'eJ d3yA(y)~VyG(y—x)
states become functional differential equations that the wave (2.2
functionals must satisfy

The momentum canonical t&;I1, is written in terms of
“longitudinal” and “transverse” components:

. A‘s( 7 W[A,¢,6'=0, (2.16
X
° i(X) = 1T, (X) + T (X); (2.28

. 6 ) .. 0
[VXT—ie( d(X) —=—"(x) = ) both components are gauge invariant.
SA(X) 6¢(x) 8¢ (x) In the physical subspace of gauge-invariant wave func-
XW[A, ¢, ¢T1=0. (2.17  tionals, matrix elements oF - 11 can be replaced by matrix
_ elements of the charge density Therefore in all matrix

The first equation simply means that the Schinger wave elements between gauge-invariant stgtesunctional$ one
functional does not depend @y, whereas the second equa- can replace
tion means that the wave functional is only a functional of
the combination of fields that is annihilated by the Gauss’ = 2 S NP P
law functional differential operator. It is a simple calculation HL(X)_)'eVXf d*y G(x—y) (@I - (y).
to prove that the fields (2.29
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Finally in the gauge-invariant subspace the Hamiltoniarvalue. Thelocal gauge symmetry cannot be spontaneously
becomes broken; this result is widely known in lattice gauge theory as
Elitzur's theorem[15]. However, theglobal symmetry gen-
_ 3 i T3 + erated by the charg® canbe spontaneously broken and the
H _f 2y T+ T expectation value of a charged field signals this breakdown.
- - From this discussion we clearly see that a trustworthy
H(VO—ieArd) order parameter must be invariant under the local gauge
-(Vﬁ)’% ieAd') transformations, thus cor_n_muting with the gauge constraints,
T but must transform nontrivially under the global gauge trans-

L LT XA 2N (DTD— 42)2 formgtion generated by the cha}rge. The fiddulfills these
2( 7 ( ~)% criteria and is the natural candidate for an order parameter.
1 3 3 " v\
+2f d yf d*xp(X)G(x=y)p(y).  (2.30 Ill. EFFECTIVE POTENTIAL
Clearly the Hamiltonian is gauge invariant, and it manifestly A. Zero temperature
has the global (1) gauge symmetry under which trans- We are now in condition to define the gauge-invariant
forms with a constant phasH, transforms with the opposite effective potential. Consider the gauge-invariant state
phase, andKT is invariant. |W; x) such that the expectation value of the gauge-invariant

This Hamiltonian is reminiscent of the Coulomb gaugeorder paramete®(x) in this state is nonzero and space-time
Hamiltonian, but we emphasize that we have not impose@onstant:
any gauge-fixing condition. The formulation is fully gauge
invariant, written in terms of operators that commute with (W x|®(X)|¥; x)
the generators of gauge transformations and states that are (VX x) =X 3.0
invariant under these transformations.

There is a definite advantage in this gauge-invariant forThe effective potential is defined as the minimum of the
mulation: The(compositg field ®(x) is a candidate for a expectation value of the Hamiltonian density in this state:
locally gauge invariant order parametefhe point to stress namely,
is the following. This operator iswariantunder local gauge

transformations generated by the unitary transformaitin Vei(x)= 1 min w , (3.2
given by Eq.(2.15), that is, Q (W5 x W5 x)
U, &(X)U =D (%), (2.3  with H being the gauge-invariant Hamiltonian given by Eq.

(2.30 and Q the spatial volumd16]. The state|V¥;y) is
whereas it transforms as a charged operator undegltim®l  chosen to minimize the expectation value of the Hamiltonian

gauge transformations generated @y [d3xp(X), that is, subject to the constraint that the expectation valugboin
. o ' R this state isy.

e Qp(x)e 19 Q=¢'®P(x). (2.32 It is convenient to separate the expectation valud® ads

Because the gauge constraints annihilate the physical d(X)= x+ 7(X). (3.3

states and these constraints are the generators of local gauge

transformations, these states are invariant under the locdlhe one-loop correctiofformally of O(%)] to the effective
gauge transformations and any operator thatotinvariant  potential is obtained by keeping tlyiadratic terms in the
under these local transformatiomaisthave zero expectation Hamiltonian:

Hq=m<|x|2—u2>2+f d3x{ 3112+ 3(V X A)2+ A2 x |2+ TTTTT+ (V) (V ) + 20 T (| x| 2— ) + (9x T+ 2T x) %}

2
5| - 16—~ TGN 64

The transverse componenfer describe a field with mass 1 _
m3=2e2?|x|? and only two polarizations. The phaseyotan n= E( n1ti72), (3.9
be absorbed idl by a global phase transformation under
which the Hamiltonian is invariant.

It proves convenient to introduce real fields and canonical M= i(Hl—iHZ), (3.6)
momenta as \/5
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with {II, ,,7;,} being independent canonical pairs. The

1767

The lack of manifest Lorentz covariance in the dispersion

nonlocal part of the Hamiltonian is best treated in terms ofrelation can be understood as follows. Although the complex
the Fourier transform of the fields and their canonical mo-field ¢ in the original Lagrangian density is a Lorentz scalar,
menta, in terms of which the quadratic part of the Hamil-the gauge-invariant combinatiof given by Eq.(2.18 is

tonian finally becomes
1 - - 9w
Ha=QVallx])+ 520 | T+(k) Tir(— k) + 0f(k) Ay

X (K) - Ar(=K) + T4 (K) Ty (—K) + wd(K) 72(K) 71

w3(K)

(=K + (k) Io( = k) — 7=+ 72(K) 75( — K wg(k) |,
(3.7)

where the frequencies are given in terms of the effectiv

masses as

wf(K)=k*+mf, mi=2e?y|?, (3.8
wf()=K+mg, mi=2\@[x[*-x?, (3.9
wi(k)=k2+mZ,  mi=2\(|x|?- (3.10

not, although it is a rotational scalar. A particular Lorentz
frame has already been chosen in making the transverse and
longitudinal decomposition of the vector potenti@.21).

The state of lowest available energy is expected to be Lor-
entz invariant, but for arbitrary there is a constraint in the
space of functions and these constrained states are not the
lowest-energy states in the functional space. In a scalar
theory these states are manifestly Lorentz invariant, simply
because all fields are Lorentz scalars. With vector fields the
situation is more complicated and the constrained, gauge-
invariant states are in general not manifestly Lorentz invari-
ant. However, the lowest-energy equilibrium states this

Srder corresponding t9= u) are manifestly Lorentz invari-

ant. We will see in detail in Sec. IV that fop# u these
states are not stationary states of the Hamiltonian; therefore,
the lack of Lorentz covariance for these states is reconciled
with their nonequilibrium evolution.

The guadratic Hamiltonian is now diagonalized in terms
of creation and destruction operators for the quanta of each
harmonic oscillator. The ground state is the vacuum for each
oscillator and is the state of lowest energy. Therefore the

The last two terms can be brought to a canonical form by &ne-loop[O(#)] contribution to the effective potential is
Bogoliubov transformation. Define the new canonical coor-pbtained from the zero point energy of the oscillators. There-

dinateQ and conjugate momentuf as

IT,(k) = ——+P(k), (3.12)

k
w7(k)

w7(k)

m(k)=—1—Q(K), (312

in terms of which the last term of the HamiltonidB.7)
becomes a canonical quadratic form with thasmafre-
guency

T()

fore accounting for the two polarizations of the transverse
components we find

1 d3k
veﬁ<|x|>=vc|<|x|>+§f 2ot e+ oy(k)].
(3.19
The normalized wave functional that satisfies E8}.1)
and gives the minimum expectation value of the Hamil-

tonian, thus determining effective potential via E§.2) is
given by

\P[AT 'q)’r,q)]

02(K)= w2(K)

1 e o - -
e 2)\(|X|2—,u2)][k2+ 262 x|2)/K2. (313 :NeXp[ B EJ dsXJ dsyAT(X)'AT(y)KT(X_y)}
There are four physical degrees of freedom. The modes
with frequencyw+(k) are the two transverse degrees of free-
dom, and the mode with frequenayy(k) is identified with
the Higgs mode. In absence of electromagnetic interactions
(e=0) the mode with frequency (k) represents the Gold-

stone mode whereas equilibrium, namely, at the minimum

! o " - >
XEXF{ - Ef d3xf dSYm(X) nl(y)KH(X_y)}

1 .
Xexn[—zf d3Xf dsynz(X)nz(y)Kp(x—y)],

of the tree level potential, whefy|=pu, it represents the (3.195
plasma mode which is identified as the screened Coulomb 2 14

interaction, and the transverse and plasma modes all share N=1T, “’T(k)“’H(“k)‘*’p(k)} (3.16
the same mass. However, when the expectation value of the ™ ’

order parameter acquires a nonequilibrium value, away from

the minimum of the tree level potentiét this ordey, this o

collective mode does not describe a particle with a Lorentz- Kr(x—y)= J (—ng (ke ), (3.1
covariant dispersion relation. The frequency clearly shows

the combination of the Goldstone dispersion relation and the

long-range Coulomb interaction typical of a description in vy O iK-(x—y)

terms of the dynamical degrees of freedom. Kn(x y)_f (2w)ng(k)e 7 (318
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) The unbroken phase, witly=0, —M?=m2>0, corre-
23 Z_IQ_T)E . (3.19 sponds.to thg ground state wave functional for_free electro-
magnetism times the ground-state wave functional of two
This Gaussian wave functional is clearly gauge invariantfree real scalar fields with equal mass/2\. It is straight-
and it has the correct limits: Fag=0 (w7=K;, w,=wy) forward to see that the expectation value of the radial vari-
gives the(gauge-invariantwave functional of free electro- ablep=\®T® is different from zero in this phase and can-
magnetism times the Gaussian wave functional of a compleXot be used as an order parameter to signal spontaneous
scalar with the 1) global symmetry spontaneously broken, giohal symmetry breaking as discussed previously.
which for |x|?=u? corresponds to the Higgs and a Gold- = The i integrals in the effective potenti#B.14 are per-
stone mode. Writing the fluctuation fields and», in terms formed with an upper momentum cuto. Neglecting a

of ® and®T, we clearly see that this wave functional de- . . 4
scribes a broken symmetry state since under the glotiBl U x-independent term proportional #o" as well as terms that

transformation the wave functional is changed into an orVanish in theA — e limit, and introducing a renormalization
thogonal wave functional in the infinite volume limit. scalex we obtain the(unrenormalizefiexpression

. d®k k2w, (k
Kp(X—Y)ZJ “pl9

1 A2 2 2 > 1 K? 4 4 4 2.2
Veﬁ(le):VcI(|X|)+m — [3mT+mig+mg]+ aln| 77 | [3mr+my + mg—2memg

2 24 2
ms my+mg+2 \/mgzmT2
K2

2
2min| —
T K2

H 2
7|+

g

+miIn m3)2In

1
+ 3—2[3m$+ mi+mg+6mimi] .

" 16
(3.20

The cutoff-dependent terms can be absorbed in a renormalizatiget ferms of O(A?) and O(In(A)) proportional to
|x|?] and the quartic coupling [terms ofO(In(A)) proportional to| x|*]. Using this renormalization prescription we find the
following result for the renormalized and gauge-invariant one-loop effective potential:

1 1
Verr,r(| X)) =N(| x[>— w?)?+ m{ 3—2[3m$+ My +mg+6mgm7]

2 2 2 2 22

m m ms+mg+2ymgm
+ 76 2m‘T‘In(K—g +mﬁ|n(K—g +(m;—mf)2In i ng g T) ] (3.21)

|
In this expressiorn and x and all masses are renormal- Vi(x)=—TIn(Trp), (3.22
ized with the above prescription.

In the region|x|?<u?/3 the Higgs “mass” is purely Tr(IJ(;);B

imaginary, whereas fofy|?<u2 m;<0. Therefore we see X=——, (3.23

that the logarithmic contributions to the effective potential Trp

from Higgs and plasma modes amaginary [the last two
logarithms in Eq.(3.21)], whereas the contribution of the
gauge boson is real. The region in which the effective poten
tial is imaginary is a region of unstable stafd¥,18, and
the imaginary part of the effective potential disguises a non- H
equilibrium situation whose dynamics will be addressed in [)=exy{ )
Sec. IV. This region of instabilities for homogeneous con-

figurations is known as the spinodal region. In this region the
system is unstable to phase separation, and the imaginar
part of the effective potential appears as a result of attemp
ing to describe an intrinsically time-dependent state as a st
tionary state via analytic continuation.

with p the ensemble density matrix. In equilibrium and when
zero conserved charge is considered the density matrix is
given by

T/ (3.29
In a gauge theory, however, the trace over states in Eq.
.22 must be defined properly in terms of gauge-invariant

tates. Either the physical states are selected and only these

are used in the trace or alternatively a projection operator
must be introduced in the definition of the trdde].
In our approach we select the states as those annihilated
by the set of first class constraints, which are therefore gauge
The finite temperature effective potential is identified with invariant as described in the previous section.

the free energy density under the constraint that the ensemble To one-loop order, we have seen that the Hamiltonian is

average of the field be given by a space-time independemjuadratic in terms of gauge-invariant operators that describe

configurationy. That is the physical degrees of freedom. Therefore, to this order the

B. Finite temperature
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physical partition function is that of a collection of un- which is the focus of the next section. We find the density

coupled harmonic oscillators for each degree of freedom. matrix elements in the Schdger representation to be
We find the free energy density, which is identified as thegiven by

finite temperature effective potential, to bg=€ 1/T)

1 d3k <¢1¢T1AT|13|A'T1(13'T=¢’>:<¢,¢T|ﬁ¢|‘p'Taq”>
F=V ;TH)=V ;T=0 +—J—g SN
efi( | X[ T) = Ver(| x| ) B) (2m) ®{ArlpalA’T),  (3.26

x{2In[1—e Aot +In[1—e Aon®) . . . .
{2in I+inf ] where the density matrices are of the harmonic oscillator

+In[1—e Aep0]L, (3.25  type, the full expression is given in Appendix A.
where V(| x|; T=0) is the zero temperature effective po- )
tential given by Eq.(3.14), and arises from the zero point C. Large T expansion
energy of the oscillators. The contributions to the free energy from the transverse

Just as our gauge-invariant approach in terms of gaugeand Higgs modes are straightforward to obtain by applying
invariant operators and functionals allowed us to obtain thehe methods developed by Dolan and Jackiw However,
ground-state constrained wave functional, E3j15, simi-  the contribution from the “plasma” mode is nonstandard
larly we can obtain the density matrix elements in the Schroand requires a more detailed analysis which is presented in
dinger representatioftb, ® ', A|p|A},®'T,®"). Thisrepre- Appendix B. We find the leading high-temperature behavior
sentation for the density matrix is very useful to studyto the finite temperature contribution to the effective poten-
nonequilibrium aspects and time-dependent phenorf2Gja  tial to be given by

214 2
T T T
_ 2 2 2 27312 2\3/2 2,3/
Veff,T(|X|)__4W+ﬁ[3mT+mH+mg]_m[3(mT) + (M)~ (mg) ?]
1 mZ+m2+2ym-m? m?2 m?
g T g'''T T H
—Wl(mg—mﬁ)zln T2 +2m$ln ?2' +mﬁ|n ?2— +eey (327}

where the dots stand for terms©{T°) or smaller. Remark- at worst disguises other nonequilibrium processes which may
ably, the logarithmic terms cancel similar terms of the zerdbe equally importanfsee Sec. IV.

temperature part, and although this feature is well known in

the standard casewith standard dispersion relations for the D. Comparison with gauge-fixed results

degrees of freedojnit is a new result for the plasma mode. In thi : r . |
An important feature of this expression is that the terms lin- n this section we compare our gauge-invariant resuit to
ear inT, which are nonanalytic, areomplex Whereas the the one-qup effective potentla! obtained in the usual s_tgn—
term from the gauge boson mass is real, the terms originatingard path-integral representation for several gauge-fixing

in the Higas counlinas given by the contributions frcmﬁ, rocedures. The purpose is ¢tontrastour results with the
2 99 pliings given by . . suggestion of Fukuda and Kud@5] that there is a large
and mg are purely imaginary on the spinodal regions

Ix|2< w213 for md, and |y|?<u? for m?. These “cubic” class of “good gauges” for which the effective potential is
H g-

¢ A - ~ gauge invariant. These authors suggested that covariant
terms are usually identified as those responsible for a fir auges(including Landau with zero gauge paramgtd,
order phase transition and used to compute quantities rek,

' 4 nd other specific gauge-fixing schemes are such “good”
evant to the transitiofi21,22,1Q. In particular these terms pgices.

determine the supercooling tem'per_atu.re and the Ia}tent heat | order to make a distinction from the gauge-invariant
when they are taken as the leading indicators for a first ordegormylation, we write the original complex field (not to be

transition. In their study of the electroweak effective poten-.qniused with the gauge-invariant fielg) in the Lagrangian
tial Anderson and Hall23] neglected the terms involving the density, Eq(2.1), as

Higgs self-coupling keeping only the contributions from the

gauge boson and top quark Yukawa couplings which are . 1 . . .
gauge invariant and real to one loop. Arguably such an ap- d(X,1)= —=[ Pr(X,t) +id(X,1)]+ ¢, (3.28
proximation is justified for very weak Higgs couplings. Boyd V2

et al. [24] recognized that the terms arising from the Higgs ) _ )
sector lead to contributions that are imagindeyen after and ¢ is taken as thécompley expectation value. To dis-
these terms to compute the latent heat, supercooling temperdlasSses
tures, and even approximate dynamics is at best a crude ap-

>, an AR . M2=2\(|¢|?— u?) (3.29
proximation(even when the imaginary parts are igngradd g Pl .
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Mz=2€’¢|?, (3.30

(3.3)

At this point one would be tempted to identity with

=2\ (3|p|*~

X, because the effective tree level masses seem to be the
same as in the gauge-invariant case under the replacement
x— ¢. However, we make a distinction between these two
expectation values becaugés a truly gauge-invariant quan-
tity, whereas ¢ is the expectation value of a gauge-

transforming field in a fixed gauge.
The one-loop effective potential is given by

d3k 27
2 f @m" (_

=Vt Vi,

_ gj d*k 2
le—Ej‘, > (zw)g\/k +M?,

+K2+M?

(3.32

d—gln{l exf — BVK2+ M1},
(3.33

Vir= 2%

where the sum are over all particlgswith g; degrees of
freedom ;<0 for ghosty and masse;(|¢|), and we

have used a result given ji].
The zero temperature contribution is divergent, khie-
tegrals being performed with an ultraviolet cutoff. Dis-

carding a field-independent quartic divergence we find the

result

M{ (M7 AZME MY
Vlo:; gj[ In <—J)+ +—'] (3.39

4 A? 4 32

The finite temperature contribution can be written as

T M;

_ i
VlT_ﬁ; g]|(?) . (335
The high-temperature expansion|dgfy) is given by[1]

4 71_2

+ Dy I
Y 6(y

2)3/2

I(y)=

4

y 3
—3—2[|n(y2)—§—0]+0(y6), (3.36

where we defined=2In(4m)—2y=3.9076. The Inf¥) term
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The resulting masses and effective degrees of freedom are

MZ (@)= 3 [M5=Mg—4aMiMg], g.=1, (3.39
Mi=2\(le|?~u?), gg=1, (3.39
Mi=2€?¢%, ga=3. (3.40

Thus the zero temperature part of the one-loop effective
potential in Lorentz gauge is given by

Vincllelio)= 3 [ (o 100400 300k
+0.(ka)+Q_(ka)],  (3.4)
Q% (k;a)=k2+MZ(a), (3.42
Q;(K=\k+M?, j=H,A. (3.43

The gauge dependent@ependence on the gauge param-
eter a) of the above result is explicit. Even for Landau
gauge, that is¢= 0, expressiori3.41) describedive degrees
of freedom, rather than the four physical degrees of freedom
described by the gauge-invariant req@It14). With the same
renormalization prescription leading to the gauge-invariant
result, Eq.(3.21), we find in the Landau gauge the result

V(e,a=0)

1 1
=x<|<p|2—ﬂz>+m[3—2[3Mi+Mﬁ+Mg]

st

(3.49

2 2

1 ms
+— 3M In| —

M
+M3 gin| —

which is obviously very different from the gauge-invariant
result given by Eq(3.2)) if ¢ is identified with the gauge-
invariant order parametey.

The effective potential3.41) becomes independent of the
gauge parameter for the valuesp=0 and|¢|?= u2. These
are the value of the extrema of tlree levelpotential. The
gauge dependence appears at one-loop order and is therefore
formally of O(#) since the extrema of the effective potential
will acquire O(%) corrections. We identify the values ofat
which the gauge dependence cancels out as the extrema of
the effective actiono this order Up to an irrelevant constant

cancels against the similar term in the zero temperature conhe gauge-invariant effective potentié8.14 and the one-

tribution V.

1. Lorentz gauge

loop effective potential in general covariant gaugetl) are
the same fol x|?=u?, i.e., at the extrema of the effective

action. This equality is a consequence of the known result

Dolan and Jackiw1] calculate the one-loop effective po- that the extrema of the effective. action are gauge indepen-
tential both at zero and nonzero temperature in the Lorentgent. At zero temperature gauge independence at the extrema

gauge, which is ghost free, with gauge parameierThe
scalar determinant is diagonalized by solving

In[k*+MZk?+ aMIM3]=In{[k*+ M3 () [[K*+ M2 ()]}
(3.37)

is also a consequence of the Nielsen identitids Therefore
we find that the suggestion of R¢R5] is only valid at the
extrema of the effective action.

At finite temperature we find that th®(T?) is gauge
parameter independent and given by
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T2 +&e(il2)(¢pTpT— ). A piece from the photon determi-
V(lgr):ﬁ[3|\/|i+ MZ+MZ]. (3.45  nant cancels off half the ghost contribution, and so we will
treat the ghosts as havimg=—1. In bothR, andR; cases
This term coincides with that from the gauge-invariant effec-we find the following masses and degrees of freedom:
tive potential with the identificatiofyp|=|x|. This contribu-

tion determinesto this ordey the critical temperature which Mi, 0a=3, (3.49
is therefore a gauge-independent quantity, whereas the
O(T) andO(In(T)) contributions are gauge parameter depen- M§= EM2, g.=-—1, (3.50
dent.
The O(T) contribution is given by Mﬁ, gy=1, (3.51)
T
V=~ 5 {3(M2)P2+(ME)?? ME=M3+EMR, ge=1. (352
+[Mi(a)]3’2+[M2_(a)]3’2}. (3.46 The degree of freedom witM, is a (gauge-dependent

linear combination of the Goldstone mode and the vector

For =0, M3 =M}, andM? =0 and thisO(T) term coin- ~ boson. At the tree level minimurftp|*= u? when M?=0
cides with theO(T) contribution from the gauge-invariant this mode cancels the remaining ghost contribution, leaving a
effective potential given by Eq3.27 if |¢| is identified  £-independent result, calculable just from the photon and the
with the gauge-invariant order parameh&t_ HIggS terms. At the tree level maximum=0 the gauge

This contribution is of particular importance because it isdependence cancels out completely and the ghost decouples.
usually taken as a signal for a first order transition and deAway from the minimum, however, the one-loop effective
termines its strength, and sometimes used in phenomenolodiotential is§ dependent.
cal equations to describe the dynani2zg,22. In the case of At finite temperature we find that tf@(T?) term is again
first order phase transitions, this term is sometimes used tgauge parameter independent and given by the same expres-
compute the latent heat and the supercooling temperatugion as in Eq(3.45.
[10]. Clearly, quantities calculated solely from this term  However, the nextQ(T), term is explicitly gauge param-
would be physically meaningless because of the gauge d&ter dependent and given by
pendence. Furthermore, this contribution is complex for

|o|?< u?; only the contribution from the gauge boson is real __T 2032 2.3/ 21302 2 2.3/
and gauge invariant. Therefore our conclusion is that this 107 L 3(MA) ™= (EMR) ™ (M) ™"+ (Mg + EM) 2.
term is provides the correct gauge-invari&@(T) contribu- (3.53

tion only in the Landau &=0) gauge and with the identifi- _ s _

cation |¢|=|x|. However, this equivalence only holds to This term depends og (unlesse=0 or le[*=p?) and is

leading order in the high-temperature expansioniambta ~ complex for [¢|<u? In the Landau gaugeéE0), it is

general feature to all orders, as displayed explicitly bygiven by

higher-order finite temperature corrections and also by the
-T

zero temperature part. E[3(Mi)3lz+(Mﬁ)3/2+(M§)3/2] (Landay

2. Rg and Eg gauges (3.59

In the R, gauge the following gauge-fixing and ghost

terms are added to the Lagrangian density: and coincides with thé©(T) contribution to the highF ex-

pansion of the gauge-invariant effective potenti@l2?) if

1 Ay ¢ is identified with the gauge-invariant order parameger

Lor=— 2—‘§(%A“+ Eepd))”, Since to this order only th@©(T?) term enters in the
estimate of the critical temperature, we see thatis a

Lepe=cl[— #— t€20( o+ dr)]cC. (3.47) gauge-invariant quantityto this orde). But comparing the

O(T) term with that in Lorentz gauges should convince the

Kastening[32] describes a useful variant call@ gauge, reader that this term is gauge dependent and complex in gen-

in which ¢ and ¢x are treated more symmetrically. Its €@l and one musL be very cqrefufl in a:ct_taching an%/ physical
gauge-fixing and ghost terms are meaning to it, such as a criterion for a first order phase tran-

sition, its strength, and the ensuing latent heat and supercool-
1 R ing temperature. Only in the Landau gauge do we find that
Ler=— 2—5[3MA“+ ge(o+dr) d 1%, this term is the same as in the gauge-invariant formulation,
although even in this gauge, the higher-order finite tempera-
Lt 2 5 a2 SN2 52 ture corrections and the zero temperature part are gauge pa-
Lepg=CH— 0"~ e[(etdr)*—¢llc. (3.4 rameter dependent.
The ghost term is derived as usual by looking at the
response of the gauge-fixing functional under a gauge
transformation. The corresponding gauge-fixing functional In unitary gauge, even the leading term\bf; (calculated
for the R; gauge fixing procedure isf[A*]=4,A*  to one loop is incorrect[1]:

3. Unitary gauge
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TZ e2T2

5a[3(MR)+ME. (3.55 ME=M,§+T, M2=M2. (3.58

In this gauge, higher-loop corrections affect the leading term  With these hard-thermal-loop resummed masses, the
and must be included in the calculation to obtain the correcH(g) term in theR; or R; gauge becomes

answer(and gauge independeribr the O(T?) term. Arnold,

Braaten, and VokoR26] showed that a two-loop calculation —

restores the correct leading te®145). o 2ME+(1- )| MA+——

3
312

eZT2> 32

2

4. Higher-loop resummation 5 T
Mg+ ﬂ[6e2+ 8\ ]

+

We have seen that the one-loop effective potential, calcu-
lated in various gauge-fixing schemes, is explicitly gauge
parameter dependent. One might argue that a resummation of +
higher-loop diagrams would eliminate this dependence. Here
we will show that this is not the ca$é7].

Although resummation would naturally be invoked to re- This term is still§-dependent. We see that resummafitm
store gauge invariance in a particular calculation, clearly reO(/8)] does not render the effective potential gauge param-
summation does nothing to restore gauge parameter indepe@ter independent.
dence atT=0, since higher-loop diagrams are all higher
order in\ or €2, Thus it is clear that the gauge dependence IV. NONEQUILIBRIUM ASPECTS

will remain in any calculation that includes the zero tempera- ) o . . -
ture contribution. The main motivation for studying an effective potential is

At finite (but large T it is a little less obvious, since there {0 address the issue of symmetry breaking and phase transi-

is an additional expansion parametst/T (with M any of tions accounting for quantum and thermal corrections. By its

the masses In fact, we have already mentioned that resum-VerY definition, the effective potential is aequilibrium

mation in unitary gaugeloesrecover the correct, gauge- quz_intity because the expectation valqe of the _scalf'ir field,
independentT? term. We now show explicitly iR, and which serves as the order parameter, is space-time indepen-

R, gauges that 10 trm remain: ceperdent even afer $87% A ZE10 emperare e quantum iave functions =
resummation of hard thermal loopa7]. y ' P '

& Expansion parametrn s sectonwe take®-), 150 S PerOmEG Wi e el perton tneion.
andM can representl or M. Terms inVy are described P y

anb. v L oo describe the equilibrium aspects associated with the phase
?23702(%' A”y") with respect to the leading”M* term, where transition. The only equilibrium states correspond to the ex-

trema of the effective action which for homogeneous con-
a=ATYm?, B=AT/m, y=¢%T2 (3.56 figurations coincide with the extrema of the effective poten-

tial. Thus quantities such as the critical temperature defined
We will take a~1 and y~1 but B<1, so that as the value at which the minima of the effective potential
{2, \}=0(B2) andM/T=0(g). Our one-loop highF ex- become a maximum, as well as expectatlon_values of the
pansion is then seen to be an expansiongirinot to be _scalar field _that extremize the effective potentlal, are mean-
confused with inverse temperature here ingful quantities that are useful to q§term|ne whether there is

We want to resum t®() (given by daisy diagrams with @ Symmetry-breaking phase transition.

hard thermal loops The simplest approach is the tadpole  For values of the order parameter away from the extrema,
method (for a more comprehensive discussion, see Refthe effective potential is simplyota reliable tool to describe
[27]), replacing theM;’s by thermal masses, which need the situation and py its very.defmmon it is not meant to be.
only be calculated t®(3%). We then integrate with respect In using ‘t‘he effeg:twe pote”ntlal to address dynamical issues,
to ¢, adding constants as needed, to gite. The leading such as th_e rolllng_down_ of the order_ parameter_towards
(T?) term is unaffected, and remains gauge independent. the equilibrium configuration, the hope is that the time evo-

b. Thermal masseThe O(B%) thermal masses are unam- lution is rather slow and the use of the “instantaneous” ef-
biguous and gauge independent. For the scalars we can utfé:t“_’e pptentlal IS justified as some sort of adiabatic ap-
proximation. This expectation, however, conceals the

. N2 2 " Na2 2 ’
the relationsMi,=Mi+Vir(e) and Mi=Mg+Vir(e)/¢ physics of the dynamical processes during the phase transi-

(3.59

T2 3/2
2 2 2
Mg+ EMA+ 5 l6e +8)\]) .

(the former is true to all orders iR, gauge. We get tion [18].
T2 In second order phase transitions, if the order parameter is
M a = MEWL ﬂ[6e2+ 8\ ], initially very small and the system is evolving from an initial

disordered(high-temperaturephase with short-range corre-
lations towards a final equilibrium broken symmetry state
with long-range correlations, the dynamical process is that of
phase separation and growth of correlated domains. This dy-
namics is not captured solely by the time evolution of the
Only the longitudinal part of the photon gets a thertfedéc-  expectation value of the scalar field, but the growth of fluc-
tric screening, plasmanass(given byII9) to leading order: tuations will be manifest in the time dependence of the cor-

£ 2 2 2 Tz 2
MZ=Mg+EM3+ 54667+ 8)]. (3.57)



54 GAUGE-INVARIANT EFFECTIVE POTENTIAL: ... 1773
relation functions of this field. During the early stages of a A. Imaginary part
second order phase transjtion, when the or(_jer parameter IS \we notice that in the “classical spinodal” region, where
very small (near the maximum of the effective potentjal 2 0<|x|< /\/5 the Hi de h band of
small-amplitude, long-wavelength fluctuations become un:"H or X|=pivs, Ihe HIggs mode has a band o
stable and grovj29]. The two-point correlation functions of ugstalgle Wa;/e vectors with imaginary frequencies for
the scalar field reflect this instability and grow exponentially,K”<#°—3|x|*. The plasma mode has a band gf unsztable
as the order parameter “rolls down” the potential hill. wave vectors with imaginary frequencies fiof< u®—|x|

If the phase transition is of first order, then there are fredn the spinodal region €|x|?<u?. This new spinodal line
energy barriers that the system has to overcome to reach tfi@nges from the maximum to the minima of the tree level
equilibrium state and the phase transition is driven by nuclepotential.
ation, in which large-amplitude configurations become un- When the gauge coupling is switched off, in the absence
stable and grow. However, if the first order transition is veryof long-range forces, this is recognized as the “spinodal”
weak (that is to say that there is a substantial amount ofregion for the would be Goldstone mode&®]. However, in
phase mixing nucleation and phase separation occur orthe presence of long-range forces, the instabilities are much
similar spatial and time scales and the long-wavelength inmore severe for long-wavelength fluctuations, as can be seen

stabilities will still be important. from the infrared behavior of the plasma frequency, Eq.
The information on thermodynamic instabilities that lead(3.13.

to phase separation isontainedin the effective potential As a consequence of these unstable modes, both the zero

both at zero and finite temperature in the form ofiamagi-  and finite temperature effective potentials acquire an imagi-

nary part nary part forall valuesof | x| between the maximum and the

Weinberg and Wy17] have shown in a beautiful paper minima of the tree level potential. Therefore we see that
that the imaginary part of the effective potential in scalarunlike the case of a scalar order parameter in which there is
theories determines the growth rate of the scalar-field twoa thermodynamically stable region in the phase diagifaen
point correlation function for Gaussian states centered at zerwveen the classical spinodal and the coexistence, linghis
expectation valuéin field spaceé Boyanovsky and de Vega case the unstable region covers the whole of the phase dia-
[18] have studied how this growth of correlations affects thegram below the coexistence curve.
time evolution of the order parameter and concluded that the Thus we here obtain one of the important conclusions of
use of the effective potential to describe the time evolutiorthis work: The gauge-invariant effective potential to one-
of the expectation value of the scalar field is not only unwardoop order iscomplexfrom the maximum to the minimum of
ranted but completely misleading and unreliable whenevethe tree level potential. There are no homogeneous configu-
the initial value of the expectation value is in the “spinodal rations corresponding to quasiequilibrium states away from
region” (the region in the tree level potential where the secthe minimum. Explicitly, the imaginary part of the gauge-
ond derivative is negatiye invariant effective potential at zero temperature is given by

1 kq(Ix])
lm(veﬁ>=rm“0 k2N~ 2 (142~ 3[x|?)

ka(| X))
+fo kdkyka(|x|) —k2J2e? x[*+ k% O (u?=|x|?) |,

kKi(xD)=2N(?=3|x?), K(|xD=2n(u?~|x]?), (4.2)

where the=x is determined by the direction of the analytic restricted information on dynamical processes. As discussed
continuation in the frequencies. in Refs.[17,18 this imaginary part determines the decay rate
The presence of an imaginary part of the effective poteneof unstable Gaussian states.
tial has been sometimes justified as a failure of the loop In the one-loop approximation, the Hamiltonian for the
expansion and “corrected” by the Maxwell construction modes with wave vectors in the unstable bands corresponds
which yields a convex free energy. However, just as the varo inverted harmonic oscillatorgor which the analysis of
der Waals loop in the equation of state for liquid-gas systemfefs.[17,18,20,30 can be applied. The effective potential
is a signal of thermodynamic instabilities, the imaginary part(3.14) is complex because the modes corresponding to in-
of the effective potential signals the presence of similar in-verted harmonic oscillators were treated as ordinary har-
stabilities in the quantum system. monic oscillators, i.e., byanalytically continuingthe zero
The flat region of the Maxwell constructed free energypoint energy for these oscillators. The Gaussian wave func-
indicates that the system will be found in a coexistence ofionals and density matrix have complex kernels for the
phases but offers no information on the nonequilibrium pro-ields #, , reflecting this analytic continuation.
cesses leading to phase separation. In this respect the effec-In terms of the shifted fields; and 7, with zero expec-
tive potential with its imaginary part at least provides sometation value, the Gaussian wave functioridl15 and the
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density matrix(see Appendix A are “centered” at the ori- KY(k,t=0) din[|V,(t)|2]
gin in field space, and for the wave vectors in the unstable Kfjl)(k,t)= pv 5 —I d , (4.7
bands, they are not stationary states of the Hamiltonian. [Vi(1)] t
In this one-loop approximation we can use the results of KO(K t=0
previous investigations of similar situatiofik7,18,20,30to (2 __p (k,t=0)
Ky (k1) N2 4.9

study the early time evolution of initially prepared nonequi-
librium states.
where the mode functiondJ,(t)=U,(t)+iU,(t) and

B. Early time evolution of nonequilibrium states Va(t) +1V2(t) obey the evolution equatiof&0]

From the previous discussion it is clear that the imaginary 2

part of the effective potential conceals a dynamical nonequi- [W +kZ+ 2N (3 xoll *(t) — MZ)} U(t)=0,

librium situation associated with the instabilities towards

phase separation. This is a dynamical situation thastbe

treated as a time-dependent problem. The quantum states th

lead to the effective potentidghnd free energyare not sta-

tionary states. q2
Since only the Higgs and plasma modes have un_stat_):%l_z+[k2+2)\(|Xc||2(t)—,uz)][kz‘*'292|Xc||2(t)]/k2}vk(t)

bands, we will focus only on these. Consider the situation i t

which an initial Gaussian density matrix has been prepared -0

such that the gauge-invariant scalar fidlchas initial expec- ’

tation value in this ensemble given lyy and that the kernels

Yu(0)=1, Uz(0)=0, Uy(0)=0, Uz(0)=Wy(k),
4.9

Vi(0)=1, Vp(0)=0, Vy(0)=0, Vy(0)=Wp(k),

have positive frequencies. That is, the density matrix in the 4.10
Schralinger representation is given by the expression in Ap- :
pendix A but with the real kernels wherey,, is the classical evolution of the “zero modé20].
Obviously the mode functiond,(t) andV,(t) grow almost
1 1 Wy (k) 4 d X
K (k,t=0)=— = Wy(k)cot , exponentially for wave vectors in the respective unstable
2 T bands wheny|(t) is in the corresponding spinodal regions.
W (K) Consider the equal-time two-point correlation functions of
-. . 1—
K(Hz)(k,t=0)= _ H , (4.2) the gauge-invariantoperatorsy and »':
sinf Wy (k)/T]
(%0750 = | e eik'-<§9>[ |Uk(t)|2"ot)’{WH(k)}
1 We(k AR NP W0 T
KM (k,t=0)= - EWp(k)cotl{ "T( )}, (2m) H(K)

IViDI?  [Wp(k)

+ cot . (4.11

2Wp(k) T
2 WP(k)
K&)(k,IZO)ZW 4.3
sinf Wp(K)/T] When x(t) remains in the spinodal, it is clear that the
= T = . . .
WA (K)>0, WA(K)>0. 4.4 growth rateof {7(0,t) »'(0,t)) is related to the imaginary

part of the effective potential given by E@L.1) at zero tem-
perature.

At this point we recognize an important payoff of the
can now use the results of Refd.7,18,20,30to determine gauge-mvanant 'descr|pt|'on. In order to compgte gauge-
the time evolution of this initial state. The early time evolu- '”Va”af‘t correlation functions from the gauge-variant opera-
tion of the expectation valug will be determined by the fOr #(x,t) we would have to append a line integral of the
classical equations of motion with small quantum and ther{time-dependentgauge field, with the ensuing path ambigu-
mal corrections. However, at longer times the growth of thdlti€s and complications. The formulation in terms of gauge-
unstable modes makes the one-loop approximation to th@variant order parameters from the start overcomes these
dynamics unreliable as in the problem of domain growth indifficulties and allows one to extract physically meaningful
scalar theorief20,29. Clearly, the most important dynamics correlation functions that provide dynamical information on
is described by the evolution of the unstable modes and ddienequilibrium processes. _ .
termined by the time evolution of the kernels. We now use Just as in the case of a scalar field theory undergoing
the method discussed in RdR0] to obtain the following SPinodal decompositior{29] this equal-time correlation

The frequenciesVy (k) andWp(k) determine the initial con-
ditions on the state as discussed in Rg15,18,20,30 We

time evolution of the kernels: function will grow exponentially at early times because of
the unstable modes. This growth of is the hallmark of the

KD (k,t=0) din[|U(0)?] dynamics of phase separatifitiz,18,29.
Kﬁ)(k,t)z U0 —i T , (4.5 If the phase transition is weakly first order in the sense

that a considerable amount of phase separation and mixing
occurs during nucleation, then the growth of correlations de-

2 _
K(Z)(k t)= KL '(k,t=0) (4.6) scribed by the dynamics of the unstable modes will be also a
ne U2 ' dominant process.
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As noted before, unlike the case of a scalar field transgeneral these cannot be taken as trustworthy quantities to
forming under a discrete symmetry, in this case the spinodadxtract information on the strength of the transition and its
region reaches all the way to the minimum of the potentiaffeatures, such as latent heat and supercooling temperature,
(at least in the one-loop approximatiomnd the long- although the contributions of the gauge boson magses
wavelength instabilities are enhanced by the long-rangéid not study fermionsare gauge independent and real to
forces. This feature provides interesting possibilities if thethis order. . .
phase transition is strongly first order and nucleation is the The imaginary part of the one-loop effective potential de-
dominant mechanism. Typically after nucleation of a critical®®rmines the spinodal lines, which identify the region of
bubble, the order parameter inside the bubble is very close [légng—wavele.ngth instabilities. Unlike the case of a scalar
its equilibrium value. If this value is smaller in magnitude to '€/d with discrete symmetries, the spinodal line encom-

that of the equilibrium configuration, spinodal instabilities passes all values of the homogeneous order parameter rang-

may be still preseninsidethe bubble. ing between the maximum and the minimum of the tree level

If the critical droplet has rather small radius, it will have potential in .th? one-loop approximation. L
to grow to a size~1/(| x| — w), with |x| the value of the Nonequilibrium dynamical aspects were then studied in

order parameter inside the bubble, before any instability determs of gauge-invariant correlation functions. It is in these

velops inside the bubble. Therefore the fact that the spinodzﬂyr""l.m'caI 5|tuat|pns out of equmbrlt_Jm that _the gauge-
line reaches to the minimum may lead to the tantalizing posl_nvarlant formulation has the greatest impact, since, in gen-

o o : eral, correlation functions involve nonlocal line integrals of
sibility that for large critical bubbles there may still be non- ' . . . .
equilibrium processemside the bubble if the order param- the gauge field. We obtained the early time behavior of the

eter inside is smaller in magnitude than the equilibriumgauge-invariamt correlation functions for initial conditions in

value which the order parameter is in the spinodal region; these
Clearly all these possibilities will have to be studied in correlation functlons_grow _e_x_ponentlally at early times as a

deeper detail and we expect a strong dependence on the vaPnsequence of the |nstab|I|t|es._ . -

ues of the gauge and Yukawa couplin@s the case of fer- We conjectureq th_at these spinodal '”Stf"?b"'“e? may play

miong. Furthermore, our analysis of the time evolution of an important role in first order phase transitions, in that they

the spinodal instabilities only holds at very early times after®Y be responsible for nonequilibrium dynaminside the

the preparation of the initial state. At longer times a nonper_nucleating bubbles. Clearly this possibility will have to be
: tudied further.

turbative gauge-invariant scheme will have to be used t& There are several important avenues to pursue: higher-
determine the dynamics. We hope to be able to implement P p - g

the variational schemes of RdB1] to the gauge-invariant order calculations and the implementation of variational or
formulation Hartree-like approximations in the gauge-invariant formula-

tion to address the long time behavior and to obtain a more

solid understanding of nonequilibrium processes. Further-

V. CONCLUSIONS more, it is important to generalize the resummation program

to the gauge-invariant effective potential, and to generalize

In this article we have presented a formulation of the ef-these new methods and results to non-Abelian gauge theo-

fective potential in terms of a gauge-invariant order paramries, in particular, the electroweak theory. Study of these
eter for the case of the Abelian Higgs model. The gaugeissues is underway.

invariant states of the theory are those annihilated by the first

class constraints and gauge-invariant operators are those that ACKNOWLEDGMENTS
commute with these constraints. We recognized an order pa-
rameter that is invariant under the local gauge transforma-
tions but transforms as a charged operator under global pha
rotations; its expectation value in the lowest-energy stat
therefore signals the breakdown of the glob&LUsymme-
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invariant effective potential both at zero and nonzero tem-
perature and obtained its high-temperature expansion. We
found that the effective potential is complex both at zero and
nonzero temperature and that the spinodaérmodynami- As shown in Sec. Il, in the one-loop approximation the
cally unstablg region extends from the maximum to the Hamiltonian becomes a sum of independent harmonic oscil-
minimum of the tree level potentidn this approximation lators for the gauge-invariant normal modes and in this case
The gauge-invariant effective potential was compared to théhe explicit form of the density matrix in the Scliiager
effective potential obtained in several covariant gauges, ancepresentation is availablsee[20] and references thergin
we found that the dependence on gauge parameter cancdlkis form of the density matrix is particularly convenient to
only at the extrema, but for all other values of the orderstudy real-time dynamics, since the Liouville equation be-
parameter the gauge-fixed effective potentials are gauge paemes a functional differential equation, which in this case
rameter dependent at zero and nonzero temperature. In paran be solved explicitly for the time dependenh28].
ticular in a high-temperature expansion only BET?2) con- The equilibrium density matrix that describes the system
tribution is gauge invariant, whereas ti@&(T),O(In(T)), at temperaturd = 1/8 is given in the Schidinger represen-

. depend on the gauge parameter and are complex. kation by

APPENDIX A
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<<I>,<I>T,AT|£>IA+,®'*.<I>’>=N[T]exp[ f d®x f d*y[Ar(x)- Ar(y) + AT - Ar(y) IKF (X y)
A4 Ay KEG-3)|
xexp[ | @ | GPYEna) )+ w4 KE )+ 90 nl<§)K<H2><i—§>]

xexp[ f d3x f d3y[ 72(X) m2(Y) + 75(X) () IKE(X—y) + 75(X) n2(§>Kg2><i—§>],

(A1)
k k k)\ Y2
N[T]=N[O0]II,| tantf orl ))tanl‘( nl ))tan)'(wp—()” , (A2)
T T T
SN 1 d%k or(k)] - - -
Wg—gy=— — | — T ik-(x=y)
K:(x—y) zf (27)3wT(k)cotr{ T € , (A3)
- o d3k wt(k) oo -
(2)(g— )= T ik- (x=y)
Ky (x=y) J(zw)\’3 SN @ (K)/T]© : (A4)
- o 1 dk ou(K)| .+ - -
Mgy — | — = H ik-(x=y)
Ky’ (x—y) 5 (ZW)3wH(k)cotr{ T € , (A5)
- d3k wy (k) s -
(2) (%)= H ik- (x—y)
K (=) f(27r)3sinr[wH(k)/T]e ’ (A6)
- o 1 &k K2wy(k) Kwy(K)] - - -
Dy V= — — p c P ik-(x—y)
K" =9="3 ]| Zm® W2 ”{m%(k)}e ' (A7)
- - d3k wy(k)K? ooe -
(D (g_v)= P ik (x=y)
Ky (x=y) j(277)3 o2 (K)SINH Ko (K) I Tw2(K)] ' (A8)
|
The trace of this density matrix gives the gauge-invariant m? m%
one-loop partition function, whose logarithifdivided by y§=_|_79, y§=?. (B1
— B) gives the one-loop effective potential at finite tempera-
ture. The functionl (y3,y3) can be written as
APPENDIX B V2 [y2 d
2 2y Y1 |Y2 e
In this appendix we provide the essential ingredients to H(y1,y2)= fo fo dadbda dbl(a’b)
obtain the high-temperature expansion of the contribution of ) 5
the plasma mode to the finite temperature effective potential. +1(0y3) +1(y1,00—1(0,0. (B2

The first two terms in the free energy density given by Eq.
(3.29 (the transverse and Higgs moglemre of the usual The last three terms are of standard form and can be calcu-
form with dispersion relations of the forma(k) = \k%+m? lated following the procedures of Réfl]. Using the identity
and their asymptotic high-temperature expansion can be ot3.11) of Ref.[1] we find
tained by following the steps described[i]. The third term

requires special attention because of the unusual dispersiofl d b= 1dd (A W s A 24
relation of the plasma mode. This term can be written as ga db' @~ "2 da db o JOX (x*+a)(x*+b)+ o X
d3k T *© 2 7lx 2
In[1—e A“p0]= 1(y3,y3), il
J 2m)° 272 Y12 AN D
I(yf,y§)= J'wxzdxln[l—e* (l/x)\/(x2+yi)(x2+y§)], Whe_re we introduced an upper momentum cutoff to regulate
0 the individual terms. The integral in the first term is the same
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as the plasma contribution to the zero temperature effectivexactly cancelqupon integration ora,b) that of the first
potential in Eq.(3.14) but in terms of the variables,b. This  term. The remaining series is both ultraviolet and infrared
integral has a logarithmic cutoff dependence. The secondafe. Finally only the finite terms from theero temperature
term does not have infrared divergencesddn=0 and can effective potential but in terms of the variablgé andy3

be expanded in power series afb. In this series, the first contribute tol (yi,y%) and we obtain the result quoted in Eq.
term, witha=b=0, has a logarithmic cutoff dependence that(3.27).
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