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We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant or
parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is comp
explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted
the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quan
that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effec
potential in the one-loop approximation is complex forall valuesof the order parameter between the maximum
and the minimum of the tree level potential, both at zero and nonzero temperatures. The imaginary pa
related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of in
states in the spinodal region, and relate the imaginary part of the effective potential to the growth rat
equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instab
may play a role in nonequilibrium processesinside the nucleating bubbles if the transition is first order.
@S0556-2821~96!05914-0#
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I. INTRODUCTION AND MOTIVATION

In this article we are concerned with the effective pote
tial in gauge theories. It was recognized very early on t
the effective potential is a gauge-dependent quantity@1# and
only a limited amount of information extracted from it i
actually physically meaningful. This gauge dependence
be understood from several equivalent points of view. T
effective potential can be identified with the generating fun
tional of one-particle irreducible Green’s functions~the ef-
fective action! at zero four-momentum transfer, and therefo
it is an off-shell quantity. Alternatively, the effective poten
tial is identified with the energy~or free energy! of a particu-
lar state~or ensemble! constrained to have an homogeneo
expectation value of the scalar field.

The energy, or the free energy, is usually calculated
fixing a particular gauge in the path integral. In a gau
theory, the~complex! scalar fields transform under gaug
transformations and their expectation value in agauge-fixed
state or ensembleis obviously a gauge-dependent quanti
Despite this shortcoming it has been recognized that cer
quantities are gauge independent. Dolan and Jackiw@1# rec-
ognized that the critical temperature is a gauge-invari
quantity and recently Metaxas and Weinberg@2# used the
Nielsen identities@3# to prove that the bubble nucleation ra
at zero temperatureis gauge invariant~we are not aware of a
similar proof at finite temperature!. The gauge invariance o
these quantities can be understood from the fact that they
associated with homogeneous and inhomogeneous extr
of the effective action, respectively; these are known to
gauge invariant.

Considerable effort has been devoted to constructin
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gauge-invariant effective action and effective potential@4#,
of which the background field method of Vilkovisky@4# and
DeWitt @4# is the most popular@5#. These formulations of
effective actions are technically formidable and do n
readily lend themselves to a manageable formulation of eq
librium or nonequilibrium descriptions. Furthermore, it ha
recently been pointed out using the pinch technique, th
despite its formal gauge invariance, implementation of t
background field method requires a gauge-fixing parame
for the fluctuations. This leads to a gauge-parameter depe
dence in finite parts of self-energies at finite temperatu
@6,7#, which in turn leads to a gauge dependence of the th
mal renormalization groupb function as discussed in detai
by Sasaki@7#.

Alternative formulations of effective potentials have bee
offered in terms of a radial and angular decomposition of t
complex scalar fields@8,9# or alternatively in terms of gauge-
invariant composite operators@10#. There are several short-
comings in the formulation of the effective potential in term
of the radial field variable@8,9# or composite operators@10#.
This variable is understood as the ‘‘square root’’ of a com
posite operator that requires asubtraction to be renormal-
ized; shortcomings of this approach had been already rec
nized @8#. Furthermore, in the path-integral evaluation the
is an ambiguous Jacobian arising from the change of va
ables to radial and angular fields. This Jacobian has to
incorporated in the perturbative expansion to obtain a co
sistently renormalized effective action@8#.

However, even when these technicalities are overcome
some renormalization scheme~such as dimensional regular
ization!, it is conceptually unclear how to interpret symmetr
breaking in terms of the radial field. At the operator level, th
1763 © 1996 The American Physical Society
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radial field variable acquires a ground-state expectation va
even in the symmetric phaseas can be seen with a simple
example of a two-dimensional isotropic harmonic oscillato
Composite bilinear operators typically require subtractions
be renormalized, and their expectation value is therefore a
biguous.

Our motivation is to obtain a gauge-invariant descriptio
of the effective potential~and eventually the effective action!
and to use it to provide some preliminary information on th
dynamics of nonequilibrium processes during the phase tr
sition in gauge theories. In view of the above discussion a
critique of previous approaches, such an enterprise is cle
worthwhile because only a truly gauge-invariant descripti
of effective potentials can be considered trustworthy in term
of extracting physical quantities such as supercooling te
perature, latent heat, and others that are very important in
quantitative description of nonequilibrium features.

Our program for the construction of an effective potenti
can be summarized in the following steps.~a! Select the
gauge-invariant states of the theory, namely, those that
annihilated by the first class constraints~such a selectionwill
not involve any gauge fixing!, ~b! recognize a gauge-
invariant order parameter that is invariant under local gau
transformations, but transforms nontrivially under the glob
symmetry that can be spontaneously broken, and~c! con-
struct the effective potential for this gauge-invariant ord
parameter. An attempt to establish a finite temperatu
framework in terms of gauge-invariant states has been
ported previously@11# within a different context and with a
different goal, but to our knowledge it has not been impl
mented or attempted within the context of the effective p
tential.

In this article we focus on such a description for the Ab
lian Higgs model~scalar electrodynamics! and we expect to
generalize the procedure and its quantitative implementat
to Yang-Mills theories in the near future.

In Sec. II we implement the first step of the program; th
is, we select the gauge-invariant states and order param
without fixing a gauge, by requiring that the physical stat
be annihilated by the first class constraints of the theo
which are recognized as the generators of local gauge tra
formations. Gauge-invariant operators are then recognized
those that commute with these constraints, out of which
recognize the proper order parameter. In Sec. III we expl
itly construct the one-loop effective potential both at ze
and nonzero temperature and compare our results with th
obtained in popular covariant gauges. From this comparis
we establish when the gauge-fixed results lead to phys
~gauge-independent! predictions. In this section we also ar
gue that the gauge dependence of the usual~gauge-fixed!
effective potential is not relieved by hard-thermal-loop r
summation. We also provide the high-temperature expans
of the gauge-invariant effective potential and point out th
the ‘‘cubic’’ terms which are typically taken as a signal o
the strength of a first order transition are in general comp
and gauge dependent in fixed-gauge path-integral calc
tions of the effective potential.

In Sec. IV we use the gauge-invariant effective potent
to study the early time behavior of spinodal phase separat
and the instabilities associated with the spinodal line
gauge theories. We establish a correspondence between
lue
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imaginary part of the one-loop gauge-invariant effective po-
tential and the rate of growth of correlations in the spinoda
region. Two appendixes are devoted to some technical de
tails.

II. GAUGE-INVARIANT DESCRIPTION

The focus of our study is scalar electrodynamics or the
Abelian Higgs model whose Lagrangian density is

L52 1
4 F

mnFmn1Dmf†Dmf2l~f†f2m2!2, ~2.1!

Dmf5~]mf1 ieAmf!. ~2.2!

The description in terms of gauge-invariant states and op
erators is best achieved within the canonical formulation
which begins with the identification of canonical field vari-
ables and constraints. These will determine the classica
physical phase space and, at the quantum level, the physic
Hilbert space.

The canonical momenta conjugate to the scalar and vecto
fields are given by

P050, ~2.3!

P i5Ȧi1¹ iA052Ei , ~2.4!

p†5ḟ1 ieA0f, ~2.5!

p5ḟ†2 ieA0f†. ~2.6!

The Hamiltonian is, therefore,

H5E d3x$ 1
2PW •PW 1p†p1~¹W f2 ieAW f!•~¹W f†1 ieAW f†!

1 1
2 ~¹W 3AW !21l~f†f2m2!2

1A0@¹W •PW 2 ie~pf2p†f†!#%. ~2.7!

There are several different manners of quantizing a gaug
theory, but the one that exhibits the gauge-invariant state
and operators, originally due to Dirac, begins by recognizing
the first class constraints~mutually vanishing Poisson brack-
ets!. From here there are several possibilities:~i! The con-
straints become operators in the quantum theory and are im
posed onto the physical states, thus defining the physica
subspace of the Hilbert space and gauge-invariant operator
~ii ! Introduce a gauge, converting the first class system o
constraints into a second class~with nonzero Poisson brack-
ets between the constraints! and introducing Dirac brackets.
This is the popular way of dealing with the constraints and
leads to the usual gauge-fixed path integral representatio
@12# in terms of Faddeev-Popov determinants and ghosts.

We will instead proceed with the first possibility that
leads to an unambiguous projection of the physical states an
operators. Such a method has been previously used by Jam
and Landshoff within a different context@13#.

In Dirac’s method of quantization@14# there are two first
class constraints which are

P05
dL
dA0 50 ~2.8!
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and Gauss’ law

G~xW ,t !5¹ ip i2r50, ~2.9!

r5 ie~fp2f†p†!, ~2.10!

with r being the matter~complex scalar! field charge den-
sity.

Gauss’ law can be seen to be a constraint in two wa
either because it cannot be obtained as a Hamiltonian eq
tion of motion or because, in Dirac’s formalism, it is th
secondary~first class! constraint obtained by requiring tha
the primary constraint~2.8! remain constant in time. Quan
tization is now achieved by imposing the canonical equ
time commutation relations

@p0~xW ,t !,A0~yW ,t !#52 id~xW2yW !, ~2.11!

@p i~xW ,t !,Aj~yW ,t !#52 id i jd~xW2yW !, ~2.12!

@p†~xW ,t !,f†~yW ,t !#52 id~xW2yW !, ~2.13!

@p~xW ,t !,f~yW ,t !#52 id~xW2yW !. ~2.14!

In Dirac’s formulation, the projection onto the gauge
invariant subspace of the full Hilbert space is achieved
imposing the first class constraints onto the states. Phys
operators are those that commute with the first class c
straints. With the above equal-time commutation relations
is straightforward to see that the unitary operator

UL5expH i E @P0L̇1GL#d3xJ ~2.15!

performs the local gauge transformations. Thus the first cl
constraints are recognized as the generators of gauge tr
formations. In particular, Gauss’ law~2.9! is the generator of
time-independent gauge transformations. Requiring that
physical states be annihilated by these constraints is ta
mount to selecting the gauge-invariant states. Conseque
operators that commute with the first class constraints
gauge invariant.

In the Schro¨dinger representation, in terms of wave func
tionals, the canonical momenta are represented by Hermi
differential operators, and the constraints applied onto
states become functional differential equations that the wa
functionals must satisfy

d

dA0~xW !
C@A,f,f†#50, ~2.16!

F¹W x

d

dAW ~xW !
2 ieS f~xW !

d

df~xW !
2f†~xW !

d

df†~xW !
D G

3C@A,f,f†#50. ~2.17!

The first equation simply means that the Schro¨dinger wave
functional does not depend onA0 , whereas the second equa
tion means that the wave functional is only a functional
the combination of fields that is annihilated by the Gaus
law functional differential operator. It is a simple calculatio
to prove that the fields
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F~xW !5f~xW !expF ieE d3yAW ~yW !•¹W yG~yW2xW !G , ~2.18!

F†~xW !5f†~xW !expF2 ieE d3yAW ~yW !•¹W yG~yW2xW !G
~2.19!

are annihilated by Gauss’ law functional differential equation
with G(yW2xW ) the Coulomb Green’s function that satisfies

¹2G~yW2xW !50. ~2.20!

Furthermore, writing the gauge field into transverse and lon-
gitudinal components as

AW ~xW !5AW L~xW !1AW T~xW !, ~2.21!

¹W 3AW L~xW !50, ~2.22!

¹W •AW T~xW !50, ~2.23!

it is clear that

¹W x

d

dAW ~xW !
5¹W x

d

dAW L~xW !
. ~2.24!

Therefore the ‘‘transverse component’’AW T(xW ) is also annihi-
lated by the Gauss’ law operator. This analysis shows that
the wave-functional solutions of the functional differential
equations that represent the constraints in the Schro¨dinger
representation are of the form

C@AW ,f,f†#5C@AW T ,F,F†#. ~2.25!

The fieldsAW T , F, andF† aregauge invariantas they com-
mute with the constraints. The canonical momenta conjugate
to FF† are found to be

P~xW !5p~xW !expF2 ieE d3yAW ~yW !•¹W yG~yW2xW !G ,
~2.26!

P†~xW !5p†~xW !expF ieE d3yAW ~yW !•¹W yG~yW2xW !G .
~2.27!

The momentum canonical toAW ;PW , is written in terms of
‘‘longitudinal’’ and ‘‘transverse’’ components:

PW ~xW !5PW l~xW !1PW T~xW !; ~2.28!

both components are gauge invariant.
In the physical subspace of gauge-invariant wave func-

tionals, matrix elements of¹W •PW can be replaced by matrix
elements of the charge densityr. Therefore in all matrix
elements between gauge-invariant states~or functionals! one
can replace

PW L~xW !→ ie¹W xE d3yG~xW2yW !~FP2F†P†!~yW !.

~2.29!
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Finally in the gauge-invariant subspace the Hamilton
becomes

H5E d3x$ 1
2PW T•PW T1P†P

1~¹W F2 ieAW TF!

•~¹W F†1 ieAW TF
†!

1 1
2 ~¹W 3AW T!21l~F†F2m2!2%

1 1
2 E d3yE d3xr~xW !G~xW2yW !r~y!. ~2.30!

Clearly the Hamiltonian is gauge invariant, and it manifes
has the global U~1! gauge symmetry under whichF trans-
forms with a constant phase,P transforms with the opposite
phase, andAW T is invariant.

This Hamiltonian is reminiscent of the Coulomb gau
Hamiltonian, but we emphasize that we have not impos
any gauge-fixing condition. The formulation is fully gaug
invariant, written in terms of operators that commute w
the generators of gauge transformations and states tha
invariant under these transformations.

There is a definite advantage in this gauge-invariant f
mulation: The~composite! field F(xW ) is a candidate for a
locally gauge invariant order parameter. The point to stress
is the following. This operator isinvariant under local gauge
transformations generated by the unitary transformationUL

given by Eq.~2.15!, that is,

ULF~xW !UL
215F~xW !, ~2.31!

whereas it transforms as a charged operator under theglobal

gauge transformations generated byQ5*d3xr(xW ), that is,

eiaQF~xW !e2 iaQ5eieaF~xW !. ~2.32!

Because the gauge constraints annihilate the phys
states and these constraints are the generators of local g
transformations, these states are invariant under the l
gauge transformations and any operator thatis not invariant
under these local transformationsmusthave zero expectation
an
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value. Thelocal gauge symmetry cannot be spontaneously
broken; this result is widely known in lattice gauge theory as
Elitzur’s theorem@15#. However, theglobal symmetry gen-
erated by the chargeQ canbe spontaneously broken and the
expectation value of a charged field signals this breakdown

From this discussion we clearly see that a trustworthy
order parameter must be invariant under the local gauge
transformations, thus commuting with the gauge constraints
but must transform nontrivially under the global gauge trans-
formation generated by the charge. The fieldF fulfills these
criteria and is the natural candidate for an order parameter.

III. EFFECTIVE POTENTIAL

A. Zero temperature

We are now in condition to define the gauge-invariant
effective potential. Consider the gauge-invariant state
uC;x& such that the expectation value of the gauge-invariant
order parameterF(xW ) in this state is nonzero and space-time
constant:

^C;xuF~xW !uC;x&

^C;xuC;x&
5x. ~3.1!

The effective potential is defined as the minimum of the
expectation value of the Hamiltonian density in this state:
namely,

Veff~x!5
1

V
minH ^C;xuHuC;x&

^C;xuC;x& J , ~3.2!

with H being the gauge-invariant Hamiltonian given by Eq.
~2.30! and V the spatial volume@16#. The stateuC;x& is
chosen to minimize the expectation value of the Hamiltonian
subject to the constraint that the expectation value ofF in
this state isx.

It is convenient to separate the expectation value ofF as

F~xW !5x1h~xW !. ~3.3!

The one-loop correction@formally of O(\)# to the effective
potential is obtained by keeping thequadratic terms in the
Hamiltonian:
Hq5Vl~ uxu22m2!21E d3x$ 1
2PW T

21 1
2 ~¹W 3AW !21e2AW T

2uxu21P†P1~¹W h!~¹W h†!12lh†h~ uxu22m2!1~hx†1h†x!2%

1
e2

2 E d3xd3y@P~yW !x2P†~yW !x†#G~yW2xW !@P~xW !x2P†~xW !x†#. ~3.4!
The transverse componentsAW T describe a field with mass
mT
252e2uxu2 and only two polarizations. The phase ofx can

be absorbed inP by a global phase transformation under
which the Hamiltonian is invariant.

It proves convenient to introduce real fields and canonical
momenta as
h5
1

A2
~h11 ih2!, ~3.5!

P5
1

A2
~P12 iP2!, ~3.6!
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with $P1,2,h1,2% being independent canonical pairs. Th
nonlocal part of the Hamiltonian is best treated in terms
the Fourier transform of the fields and their canonical m
menta, in terms of which the quadratic part of the Hami
tonian finally becomes

Hq5VVcl~ uxu!1
1

2(k H PW T~k!•PW T~2k!1vT
2~k!AW T

3~k!•AW T~2k!1P1~k!P1~2k!1vH
2 ~k!h1~k!h1

~2k!1P2~k!P2~2k!
vT
2~k!

k2
1h2~k!h2~2k!vg

2~k!J ,
~3.7!

where the frequencies are given in terms of the effecti
masses as

vT
2~k!5k21mT

2 , mT
252e2uxu2, ~3.8!

vH
2 ~k!5k21mH

2 , mH
2 52l~3uxu22m2!, ~3.9!

vg
2~k!5k21mg

2 , mg
252l~ uxu22m2!. ~3.10!

The last two terms can be brought to a canonical form by
Bogoliubov transformation. Define the new canonical coo
dinateQ and conjugate momentumP as

P2~k!5
k

vT~k!
P~k!, ~3.11!

h2~k!5
vT~k!

k
Q~k!, ~3.12!

in terms of which the last term of the Hamiltonian~3.7!
becomes a canonical quadratic form with theplasma fre-
quency

vp
2~k!5vg

2~k!
vT
2~k!

k2

5@k212l~ uxu22m2!#@k212e2uxu2#/k2. ~3.13!

There are four physical degrees of freedom. The mod
with frequencyvT(k) are the two transverse degrees of free
dom, and the mode with frequencyvH(k) is identified with
the Higgs mode. In absence of electromagnetic interactio
(e50) the mode with frequencyvp(k) represents the Gold-
stone mode whereasin equilibrium, namely, at the minimum
of the tree level potential, whenuxu5m, it represents the
plasma mode which is identified as the screened Coulom
interaction, and the transverse and plasma modes all sh
the same mass. However, when the expectation value of
order parameter acquires a nonequilibrium value, away fro
the minimum of the tree level potential~at this order!, this
collective mode does not describe a particle with a Lorent
covariant dispersion relation. The frequency clearly show
the combination of the Goldstone dispersion relation and t
long-range Coulomb interaction typical of a description i
terms of the dynamical degrees of freedom.
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The lack of manifest Lorentz covariance in the dispersion
relation can be understood as follows. Although the comple
field f in the original Lagrangian density is a Lorentz scalar
the gauge-invariant combinationF given by Eq.~2.18! is
not, although it is a rotational scalar. A particular Lorentz
frame has already been chosen in making the transverse a
longitudinal decomposition of the vector potential~2.21!.
The state of lowest available energy is expected to be Lo
entz invariant, but for arbitraryx there is a constraint in the
space of functions and these constrained states are not
lowest-energy states in the functional space. In a scala
theory these states are manifestly Lorentz invariant, simpl
because all fields are Lorentz scalars. With vector fields th
situation is more complicated and the constrained, gaug
invariant states are in general not manifestly Lorentz invari
ant. However, the lowest-energy equilibrium states~at this
order corresponding tox5m) aremanifestly Lorentz invari-
ant. We will see in detail in Sec. IV that forxÞm these
states are not stationary states of the Hamiltonian; therefor
the lack of Lorentz covariance for these states is reconcile
with their nonequilibrium evolution.

The quadratic Hamiltonian is now diagonalized in terms
of creation and destruction operators for the quanta of eac
harmonic oscillator. The ground state is the vacuum for eac
oscillator and is the state of lowest energy. Therefore th
one-loop @O(\)# contribution to the effective potential is
obtained from the zero point energy of the oscillators. There
fore accounting for the two polarizations of the transvers
components we find

Veff~ uxu!5Vcl~ uxu!1
1

2E d3k

~2p3!
@2vT~k!1vH~k!1vp~k!#.

~3.14!

The normalized wave functional that satisfies Eq.~3.1!
and gives the minimum expectation value of the Hamil-
tonian, thus determining effective potential via Eq.~3.2! is
given by

C@AT ,F
†,F#

5NexpH 2
1

2E d3xE d3yAW T~xW !•AW T~yW !KT~xW2yW !J
3expH 2

1

2E d3xE d3yh1~xW !h1~yW !KH~xW2yW !J
3expH 2

1

2E d3xE d3yh2~xW !h2~yW !Kp~xW2yW !J ,
~3.15!

N5PkFvT
2~k!vH~k!vp~k!

p4 G1/4, ~3.16!

KT~xW2yW !5E d3k

~2p!3
vT~k!eik

W
•~xW2yW !, ~3.17!

KH~xW2yW !5E d3k

~2p!3
vH~k!eik

W
•~xW2yW !, ~3.18!



tro-
wo

ri-
-
eous

1768 54D. BOYANOVSKY, D. BRAHM, R. HOLMAN, AND D.-S. LEE
Kp~xW2yW !5E d3k

~2p!3
k2vp~k!

vT
2~k!

eik
W
•~xW2yW !. ~3.19!

This Gaussian wave functional is clearly gauge invaria
and it has the correct limits: Fore50 (vT5k; vp5vg)
gives the~gauge-invariant! wave functional of free electro-
magnetism times the Gaussian wave functional of a comp
scalar with the U~1! global symmetry spontaneously broken
which for uxu25m2 corresponds to the Higgs and a Gold
stone mode. Writing the fluctuation fieldsh1 andh2 in terms
of F andF†, we clearly see that this wave functional de
scribes a broken symmetry state since under the global U~1!
transformation the wave functional is changed into an o
thogonal wave functional in the infinite volume limit.
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The unbroken phase, withx50, 2m25m2.0, corre-
sponds to the ground state wave functional for free elec
magnetism times the ground-state wave functional of t
free real scalar fields with equal massmA2l. It is straight-
forward to see that the expectation value of the radial va
abler5AF†F is different from zero in this phase and can
not be used as an order parameter to signal spontan
global symmetry breaking as discussed previously.

The k integrals in the effective potential~3.14! are per-
formed with an upper momentum cutoffL. Neglecting a
x-independent term proportional toL4 as well as terms that
vanish in theL→` limit, and introducing a renormalization
scalek we obtain the~unrenormalized! expression
e

Veff~ uxu!5Vcl~ uxu!1
1

4p2 H L2

4
@3mT

21mH
2 1mg

2#1
1

16
lnS k2

4L2D @3mT
41mH

4 1mg
422mT

2mg
2#

1
1

16F2mT
4lnSmT

2

k2 D 1mH
4 lnSmH

2

k2 D 1~mg
22mT

2!2lnSmT
21mg

212Amg
2mT

2

k2 D G1
1

32
@3mT

41mH
4 1mg

416mg
2mT

2#J .
~3.20!

The cutoff-dependent terms can be absorbed in a renormalization ofm2 @terms ofO(L2) andO„ln(L)… proportional to
uxu2# and the quartic couplingl @terms ofO„ln(L)… proportional touxu4#. Using this renormalization prescription we find th
following result for the renormalized and gauge-invariant one-loop effective potential:

Veff,R~ uxu!5l~ uxu22m2!21
1

4p2 H 1

32
@3mT

41mH
4 1mg

416mg
2mT

2#

1
1

16F2mT
4lnSmT

2

k2 D 1mH
4 lnSmH

2

k2 D 1~mg
22mT

2!2lnSmT
21mg

212Amg
2mT

2

k2 D G J . ~3.21!
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In this expressionl andm and all masses are renorma
ized with the above prescription.

In the region uxu2,m2/3 the Higgs ‘‘mass’’ is purely
imaginary, whereas foruxu2,m2,mg

2,0. Therefore we see
that the logarithmic contributions to the effective potent
from Higgs and plasma modes areimaginary @the last two
logarithms in Eq.~3.21!#, whereas the contribution of the
gauge boson is real. The region in which the effective pot
tial is imaginary is a region of unstable states@17,18#, and
the imaginary part of the effective potential disguises a n
equilibrium situation whose dynamics will be addressed
Sec. IV. This region of instabilities for homogeneous co
figurations is known as the spinodal region. In this region
system is unstable to phase separation, and the imagi
part of the effective potential appears as a result of attem
ing to describe an intrinsically time-dependent state as a
tionary state via analytic continuation.

B. Finite temperature

The finite temperature effective potential is identified wi
the free energy density under the constraint that the ensem
average of the field be given by a space-time independ
configurationx. That is
-
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VT~x!52Tln~Trr̂ !, ~3.22!

x5
TrF~xW !r̂

Trr̂
, ~3.23!

with r̂ the ensemble density matrix. In equilibrium and when
zero conserved charge is considered the density matrix
given by

r̂5expS 2
H

T D . ~3.24!

In a gauge theory, however, the trace over states in E
~3.22! must be defined properly in terms of gauge-invarian
states. Either the physical states are selected and only the
are used in the trace or alternatively a projection operato
must be introduced in the definition of the trace@19#.

In our approach we select the states as those annihilat
by the set of first class constraints, which are therefore gau
invariant as described in the previous section.

To one-loop order, we have seen that the Hamiltonian
quadratic in terms of gauge-invariant operators that describ
the physical degrees of freedom. Therefore, to this order th
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physical partition function is that of a collection of un
coupled harmonic oscillators for each degree of freedom

We find the free energy density, which is identified as t
finite temperature effective potential, to be (b51/T)

F5Veff~ uxu;T!5Veff~ uxu;T50!1
1

bE d3k

~2p!3

3$2ln@12e2bvT~k!#1 ln@12e2bvH~k!#

1 ln@12e2bvp~k!#%, ~3.25!

whereVeff(uxu;T50) is the zero temperature effective po
tential given by Eq.~3.14!, and arises from the zero poin
energy of the oscillators.

Just as our gauge-invariant approach in terms of gau
invariant operators and functionals allowed us to obtain
ground-state constrained wave functional, Eq.~3.15!, simi-
larly we can obtain the density matrix elements in the Sch¨-
dinger representation̂F,F†,ATur̂uAT8 ,F8†,F8&. This repre-
sentation for the density matrix is very useful to stu
nonequilibrium aspects and time-dependent phenomena@20#,
i
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which is the focus of the next section. We find the densit
matrix elements in the Schro¨dinger representation to be
given by

^F,F†,ATur̂uA8T ,F8†,F8&5^F,F†ur̂FuF8†,F8&

^ ^ATur̂AuA8T&, ~3.26!

where the density matrices are of the harmonic oscillato
type, the full expression is given in Appendix A.

C. Large T expansion

The contributions to the free energy from the transvers
and Higgs modes are straightforward to obtain by applyin
the methods developed by Dolan and Jackiw@1#. However,
the contribution from the ‘‘plasma’’ mode is nonstandard
and requires a more detailed analysis which is presented
Appendix B. We find the leading high-temperature behavio
to the finite temperature contribution to the effective poten
tial to be given by
Veff,T~ uxu!524
p2T4

90
1
T2

24
@3mT

21mH
2 1mg

2#2
T

12p
@3~mT

2!3/21~mH
2 !3/21~mg

2!3/2#

2
1

64p2 H ~mg
22mT

2!2lnFmg
21mT

212Amg
2mT

2

T2
G12mT

4lnSmT
2

T2
D 1mH

4 lnSmH
2

T2
D J 1•••, ~3.27!
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where the dots stand for terms ofO(T0) or smaller. Remark-
ably, the logarithmic terms cancel similar terms of the ze
temperature part, and although this feature is well known
the standard cases~with standard dispersion relations for th
degrees of freedom!, it is a new result for the plasma mode
An important feature of this expression is that the terms l
ear inT, which are nonanalytic, arecomplex. Whereas the
term from the gauge boson mass is real, the terms origina
in the Higgs couplings given by the contributions frommH

2

and mg
2 are purely imaginary on the spinodal region

uxu2,m2/3 for mH
2 and uxu2,m2 for mg

2 . These ‘‘cubic’’
terms are usually identified as those responsible for a
order phase transition and used to compute quantities
evant to the transition@21,22,10#. In particular these terms
determine the supercooling temperature and the latent
when they are taken as the leading indicators for a first or
transition. In their study of the electroweak effective pote
tial Anderson and Hall@23# neglected the terms involving th
Higgs self-coupling keeping only the contributions from th
gauge boson and top quark Yukawa couplings which
gauge invariant and real to one loop. Arguably such an
proximation is justified for very weak Higgs couplings. Boy
et al. @24# recognized that the terms arising from the Hig
sector lead to contributions that are imaginary~even after
resummation! precisely as pointed out above. Thus usi
these terms to compute the latent heat, supercooling temp
tures, and even approximate dynamics is at best a crude
proximation~even when the imaginary parts are ignored! and
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at worst disguises other nonequilibrium processes which m
be equally important~see Sec. IV!.

D. Comparison with gauge-fixed results

In this section we compare our gauge-invariant result
the one-loop effective potential obtained in the usual sta
dard path-integral representation for several gauge-fixi
procedures. The purpose is tocontrastour results with the
suggestion of Fukuda and Kugo@25# that there is a large
class of ‘‘good gauges’’ for which the effective potential i
gauge invariant. These authors suggested that covar
gauges~including Landau with zero gauge parameter!, Rj ,
and other specific gauge-fixing schemes are such ‘‘goo
choices.

In order to make a distinction from the gauge-invarian
formulation, we write the original complex fieldf ~not to be
confused with the gauge-invariant fieldF) in the Lagrangian
density, Eq.~2.1!, as

f~xW ,t !5
1

A2
@f̂R~xW ,t !1 i f̂ I~xW ,t !#1w, ~3.28!

andw is taken as the~complex! expectation value. To dis-
tinguish from the gauge-invariant case we also introduce t
masses

Mg
252l~ uwu22m2!, ~3.29!
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MA
252e2uwu2, ~3.30!

MH
2 52l~3uwu22m2!. ~3.31!

At this point one would be tempted to identifyw with
x, because the effective tree level masses seem to be
same as in the gauge-invariant case under the replace
x→w. However, we make a distinction between these t
expectation values becausex is a truly gauge-invariant quan
tity, whereas w is the expectation value of a gauge
transforming field in a fixed gauge.

The one-loop effective potential is given by

V15(
j

gj
2b(

n
E d3k

~2p!3
lnF S 2pn

b D 21k21M j
2G

5V101V1T ,

V105(
j

gj
2 E d3k

~2p!3
Ak21M j

2, ~3.32!

V1T5(
j

gj
b E d3k

~2p!3
ln$12exp@2bAk21M j

2#%,

~3.33!

where the sum are over all particlesj with gj degrees of
freedom (gj,0 for ghosts! and massesM j (uwu), and we
have used a result given in@1#.

The zero temperature contribution is divergent, thek in-
tegrals being performed with an ultraviolet cutoffL. Dis-
carding a field-independent quartic divergence we find
result

V105(
j

gj
4p2 H M j

4

16
ln SM j

2

L2 D 1
L2M j

2

4
1
M j

4

32J . ~3.34!

The finite temperature contribution can be written as

V1T5
T4

2p2(
j
gj I SM j

T D . ~3.35!

The high-temperature expansion ofI (y) is given by@1#

I ~y!5
2p4

45
1

p2

12
y22

p

6
~y2!3/2

2
y4

32
@ ln~y2!2 3

22C#1O~y6!, ~3.36!

where we definedC[2ln(4p)22g53.9076. The ln(m2) term
cancels against the similar term in the zero temperature c
tribution V10.

1. Lorentz gauge

Dolan and Jackiw@1# calculate the one-loop effective po
tential both at zero and nonzero temperature in the Lore
gauge, which is ghost free, with gauge parametera. The
scalar determinant is diagonalized by solving

ln@k41Mg
2k21aMT

2Mg
2#5 ln$@k21M1

2 ~a!#@k21M2
2 ~a!#%.

~3.37!
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The resulting masses and effective degrees of freedom are

M6
2 ~a!5 1

2 @Mg
26AMg

424aMT
2Mg

2#, g651, ~3.38!

Mg
252l~ uwu22m2!, gg51, ~3.39!

MA
252e2uwu2, gA53. ~3.40!

Thus the zero temperature part of the one-loop effectiv
potential in Lorentz gauge is given by

V10LG~ uwu;a!5
1

2E d3k

~2p!3
@VH~k!13VA~k!

1V1~k;a!1V2~k;a!#, ~3.41!

V6~k;a!5Ak21M6
2 ~a!, ~3.42!

V j~k!5Ak21M j
2, j5H,A. ~3.43!

The gauge dependence~dependence on the gauge param
eter a) of the above result is explicit. Even for Landau
gauge, that is,a50, expression~3.41! describesfivedegrees
of freedom, rather than the four physical degrees of freedom
described by the gauge-invariant result~3.14!. With the same
renormalization prescription leading to the gauge-invarian
result, Eq.~3.21!, we find in the Landau gauge the result

V~w,a50!

5l~ uwu22m2!1
1

4p2 H 1

32
@3MA

41MH
4 1Mg

4#

1
1

16F3MA
4 lnSmT

2

k2 D 1MH
4 lnSMH

2

k2 D 1Mg
4lnSMg

2

k2 D G J ,
~3.44!

which is obviously very different from the gauge-invariant
result given by Eq.~3.21! if w is identified with the gauge-
invariant order parameterx.

The effective potential~3.41! becomes independent of the
gauge parametera for the valuesw50 anduwu25m2. These
are the value of the extrema of thetree levelpotential. The
gauge dependence appears at one-loop order and is theref
formally ofO(\) since the extrema of the effective potential
will acquireO(\) corrections. We identify the values ofw at
which the gauge dependence cancels out as the extrema
the effective actionto this order. Up to an irrelevant constant
the gauge-invariant effective potential~3.14! and the one-
loop effective potential in general covariant gauge~3.41! are
the same foruxu25m2, i.e., at the extrema of the effective
action. This equality is a consequence of the known resu
that the extrema of the effective action are gauge indepe
dent. At zero temperature gauge independence at the extre
is also a consequence of the Nielsen identities@3#. Therefore
we find that the suggestion of Ref.@25# is only valid at the
extrema of the effective action.

At finite temperature we find that theO(T2) is gauge
parameter independent and given by
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V1T
~2!5

T2

24
@3MA

21MH
2 1Mg

2#. ~3.45!

This term coincides with that from the gauge-invariant effe
tive potential with the identificationuwu[uxu. This contribu-
tion determines~to this order! the critical temperature which
is therefore a gauge-independent quantity, whereas
O(T) andO„ln(T)… contributions are gauge parameter dep
dent.

TheO(T) contribution is given by

V1T
~1!52

T

12p
$3~MA

2 !3/21~MH
2 !3/2

1@M1
2 ~a!#3/21@M2

2 ~a!#3/2%. ~3.46!

For a50, M1
2 5Mg

2 , andM2
2 50 and thisO(T) term coin-

cides with theO(T) contribution from the gauge-invarian
effective potential given by Eq.~3.27! if uwu is identified
with the gauge-invariant order parameteruxu.

This contribution is of particular importance because it
usually taken as a signal for a first order transition and
termines its strength, and sometimes used in phenomeno
cal equations to describe the dynamics@21,22#. In the case of
first order phase transitions, this term is sometimes use
compute the latent heat and the supercooling tempera
@10#. Clearly, quantities calculated solely from this ter
would be physically meaningless because of the gauge
pendence. Furthermore, this contribution is complex
uwu2,m2; only the contribution from the gauge boson is re
and gauge invariant. Therefore our conclusion is that
term is provides the correct gauge-invariantO(T) contribu-
tion only in the Landau (a50) gauge and with the identifi
cation uwu[uxu. However, this equivalence only holds
leading order in the high-temperature expansion andis nota
general feature to all orders, as displayed explicitly
higher-order finite temperature corrections and also by
zero temperature part.

2. Rj and R̄j gauges

In the Rj gauge the following gauge-fixing and gho
terms are added to the Lagrangian density:

LGF52
1

2j
~]mA

m1jewf̂ I !
2,

LFPG5c†@2]22je2w~w1f̂R!#c. ~3.47!

Kastening@32# describes a useful variant calledR̄j gauge,
in which f and f̂R are treated more symmetrically. It
gauge-fixing and ghost terms are

LGF52
1

2j
@]mA

m1je~w1f̂R!f̂ I #
2,

LFPG5c†$2]22f̂ Ie
2@~w1f̂R!22f̂ I

2#%c. ~3.48!

The ghost term is derived as usual by looking at
response of the gauge-fixing functional under a ga
transformation. The corresponding gauge-fixing functio
for the R̄j gauge fixing procedure isf @Am#5]mA
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1je( i /2)(f†f†2ff). A piece from the photon determi-
nant cancels off half the ghost contribution, and so we will
treat the ghosts as havinggc521. In bothRj andR̄j cases
we find the following masses and degrees of freedom:

MA
2 , gA53, ~3.49!

Mc
25jMA

2 , gc521, ~3.50!

MH
2 , gH51, ~3.51!

M j
25Mg

21jMA
2 , gj51. ~3.52!

The degree of freedom withM j is a ~gauge-dependent!
linear combination of the Goldstone mode and the vector
boson. At the tree level minimumuwu25m2 whenMg

250
this mode cancels the remaining ghost contribution, leaving a
j-independent result, calculable just from the photon and the
Higgs terms. At the tree level maximumw50 the gauge
dependence cancels out completely and the ghost decouple
Away from the minimum, however, the one-loop effective
potential isj dependent.

At finite temperature we find that theO(T2) term is again
gauge parameter independent and given by the same expres
sion as in Eq.~3.45!.

However, the next,O(T), term is explicitly gauge param-
eter dependent and given by

2T

12p
@3~MA

2 !3/22~jMA
2 !3/21~MH

2 !3/21~Mg
21jMA

2 !3/2#.

~3.53!

This term depends onj ~unlesse50 or uwu25m2) and is
complex for uwu,m2. In the Landau gauge (j50), it is
given by

2T

12p
@3~MA

2 !3/21~MH
2 !3/21~Mg

2!3/2# ~Landau!

~3.54!

and coincides with theO(T) contribution to the high-T ex-
pansion of the gauge-invariant effective potential~3.27! if
w is identified with the gauge-invariant order parameterx.

Since to this order only theO(T2) term enters in the
estimate of the critical temperature, we see thatTc is a
gauge-invariant quantity~to this order!. But comparing the
O(T) term with that in Lorentz gauges should convince the
reader that this term is gauge dependent and complex in gen
eral and one must be very careful in attaching any physical
meaning to it, such as a criterion for a first order phase tran-
sition, its strength, and the ensuing latent heat and supercool
ing temperature. Only in the Landau gauge do we find that
this term is the same as in the gauge-invariant formulation,
although even in this gauge, the higher-order finite tempera-
ture corrections and the zero temperature part are gauge pa
rameter dependent.

3. Unitary gauge

In unitary gauge, even the leading term ofV1T ~calculated
to one loop! is incorrect@1#:
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T2

24
@3~MA

2 !1MH
2 #. ~3.55!

In this gauge, higher-loop corrections affect the leading te
and must be included in the calculation to obtain the corr
answer~and gauge independent! for theO(T2) term. Arnold,
Braaten, and Vokos@26# showed that a two-loop calculatio
restores the correct leading term~3.45!.

4. Higher-loop resummation

We have seen that the one-loop effective potential, ca
lated in various gauge-fixing schemes, is explicitly gau
parameter dependent. One might argue that a resummati
higher-loop diagrams would eliminate this dependence. H
we will show that this is not the case@27#.

Although resummation would naturally be invoked to r
store gauge invariance in a particular calculation, clearly
summation does nothing to restore gauge parameter inde
dence atT50, since higher-loop diagrams are all high
order inl or e2. Thus it is clear that the gauge dependen
will remain in any calculation that includes the zero tempe
ture contribution.

At finite ~but large! T it is a little less obvious, since ther
is an additional expansion parameter:M /T ~with M any of
the masses!. In fact, we have already mentioned that resu
mation in unitary gaugedoes recover the correct, gauge
independent,T2 term. We now show explicitly inRj and
R̄j gauges that theT term remainsj dependent even afte
resummation of hard thermal loops@27#.

a. Expansion parameters. In this section we takee2;l,
andM can representMH or MA . Terms inVT are described
asO(aabbgc) with respect to the leadingT2M2 term, where
@27,28#

a[lT2/m2, b[lT/m, g[w2/T2. ~3.56!

We will take a'1 and g'1 but b,1, so that
$e2,l%5O(b2) andM /T5O(b). Our one-loop high-T ex-
pansion is then seen to be an expansion inb ~not to be
confused with inverse temperature here!.

We want to resum toO(b) ~given by daisy diagrams with
hard thermal loops!. The simplest approach is the tadpo
method ~for a more comprehensive discussion, see R
@27#!, replacing theM j ’s by thermal masses, which nee
only be calculated toO(b0). We then integrate with respec
to w, adding constants as needed, to giveVT . The leading
(T2) term is unaffected, and remains gauge independen

b. Thermal masses. TheO(b0) thermal masses are unam
biguous and gauge independent. For the scalars we can
the relationsM̃H

2 5MH
2 1V1T9 (w) and M̃ j

25M j
21V1T8 (w)/w

~the former is true to all orders inR̄j gauge!. We get

M̃H
2 5MH

2 1
T2

24
@6e218l#,

M̃ j
25Mg

21jMA
21

T2

24
@6e218l#. ~3.57!

Only the longitudinal part of the photon gets a thermal~elec-
tric screening, plasma! mass~given byP0

0) to leading order:
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M̃L
25MA

21
e2T2

3
, M̃T

25MA
2 . ~3.58!

With these hard-thermal-loop resummed masses,
O(b) term in theRj or R̄j gauge becomes

2T

12p F2MA
31~12j3/2!SMA

21
e2T2

3 D 3/2
1SMH

2 1
T2

24
@6e218l# D 3/2

1SMg
21jMA

21
T2

24
@6e218l# D 3/2G . ~3.59!

This term is stillj-dependent. We see that resummation@to
O(b)# does not render the effective potential gauge para
eter independent.

IV. NONEQUILIBRIUM ASPECTS

The main motivation for studying an effective potential i
to address the issue of symmetry breaking and phase tra
tions accounting for quantum and thermal corrections. By
very definition, the effective potential is anequilibrium
quantity because the expectation value of the scalar fie
which serves as the order parameter, is space-time indep
dent. At zero temperature the quantum wave functional
taken to be a stationary state; at finite temperature, the c
culation is performed with the equilibrium partition function
Thus it is clear that the effective potential is only suitable t
describe the equilibrium aspects associated with the ph
transition. The only equilibrium states correspond to the e
trema of the effective action which for homogeneous co
figurations coincide with the extrema of the effective pote
tial. Thus quantities such as the critical temperature defin
as the value at which the minima of the effective potenti
become a maximum, as well as expectation values of t
scalar field that extremize the effective potential, are mea
ingful quantities that are useful to determine whether there
a symmetry-breaking phase transition.

For values of the order parameter away from the extrem
the effective potential is simplynota reliable tool to describe
the situation and by its very definition it is not meant to be
In using the effective potential to address dynamical issu
such as ‘‘the rolling down’’ of the order parameter toward
the equilibrium configuration, the hope is that the time ev
lution is rather slow and the use of the ‘‘instantaneous’’ e
fective potential is justified as some sort of adiabatic a
proximation. This expectation, however, conceals th
physics of the dynamical processes during the phase tra
tion @18#.

In second order phase transitions, if the order paramete
initially very small and the system is evolving from an initia
disordered~high-temperature! phase with short-range corre-
lations towards a final equilibrium broken symmetry sta
with long-range correlations, the dynamical process is that
phase separation and growth of correlated domains. This
namics is not captured solely by the time evolution of th
expectation value of the scalar field, but the growth of flu
tuations will be manifest in the time dependence of the co
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relation functions of this field. During the early stages of
second order phase transition, when the order paramet
very small ~near the maximum of the effective potential!,
small-amplitude, long-wavelength fluctuations become u
stable and grow@29#. The two-point correlation functions o
the scalar field reflect this instability and grow exponential
as the order parameter ‘‘rolls down’’ the potential hill.

If the phase transition is of first order, then there are fr
energy barriers that the system has to overcome to reach
equilibrium state and the phase transition is driven by nuc
ation, in which large-amplitude configurations become u
stable and grow. However, if the first order transition is ve
weak ~that is to say that there is a substantial amount
phase mixing!, nucleation and phase separation occur
similar spatial and time scales and the long-wavelength
stabilities will still be important.

The information on thermodynamic instabilities that le
to phase separation iscontained in the effective potential
both at zero and finite temperature in the form of animagi-
nary part.

Weinberg and Wu@17# have shown in a beautiful pape
that the imaginary part of the effective potential in sca
theories determines the growth rate of the scalar-field tw
point correlation function for Gaussian states centered at z
expectation value~in field space!. Boyanovsky and de Vega
@18# have studied how this growth of correlations affects t
time evolution of the order parameter and concluded that
use of the effective potential to describe the time evolut
of the expectation value of the scalar field is not only unw
ranted but completely misleading and unreliable whene
the initial value of the expectation value is in the ‘‘spinod
region’’ ~the region in the tree level potential where the se
ond derivative is negative!.
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A. Imaginary part

We notice that in the ‘‘classical spinodal’’ region, wher
mH
2 ,0 or 0,uxu,m/A3, the Higgs mode has a band o

unstable wave vectors with imaginary frequencies f
k2,m223uxu2. The plasma mode has a band of unstab
wave vectors with imaginary frequencies fork2,m22uxu2

in the spinodal region 0,uxu2,m2. This new spinodal line
ranges from the maximum to the minima of the tree lev
potential.

When the gauge coupling is switched off, in the absen
of long-range forces, this is recognized as the ‘‘spinoda
region for the would be Goldstone modes@20#. However, in
the presence of long-range forces, the instabilities are mu
more severe for long-wavelength fluctuations, as can be s
from the infrared behavior of the plasma frequency, E
~3.13!.

As a consequence of these unstable modes, both the
and finite temperature effective potentials acquire an ima
nary part forall valuesof uxu between the maximum and the
minima of the tree level potential. Therefore we see th
unlike the case of a scalar order parameter in which there
a thermodynamically stable region in the phase diagram~be-
tween the classical spinodal and the coexistence line!, in this
case the unstable region covers the whole of the phase
gram below the coexistence curve.

Thus we here obtain one of the important conclusions
this work: The gauge-invariant effective potential to one
loop order iscomplexfrom the maximum to the minimum of
the tree level potential. There are no homogeneous confi
rations corresponding to quasiequilibrium states away fro
the minimum. Explicitly, the imaginary part of the gauge
invariant effective potential at zero temperature is given b
Im~Veff!56
1

4p2 H E
0

k1~ uxu!
k2dkAk12~ uxu!2k2 Q~m223uxu2!

1E
0

k2~ uxu!
kdkAk22~ uxu!2k2A2e2uxu21k2 Q~m22uxu2!J ,

k1
2~ uxu!52l~m223uxu2!, k2

2~ uxu!52l~m22uxu2!, ~4.1!
ed
te

e
nds

l
in-
ar-

c-
e

where the6 is determined by the direction of the analyt
continuation in the frequencies.

The presence of an imaginary part of the effective pot
tial has been sometimes justified as a failure of the lo
expansion and ‘‘corrected’’ by the Maxwell constructio
which yields a convex free energy. However, just as the v
der Waals loop in the equation of state for liquid-gas syste
is a signal of thermodynamic instabilities, the imaginary p
of the effective potential signals the presence of similar
stabilities in the quantum system.

The flat region of the Maxwell constructed free ener
indicates that the system will be found in a coexistence
phases but offers no information on the nonequilibrium p
cesses leading to phase separation. In this respect the e
tive potential with its imaginary part at least provides som
c

n-
op
n
an
ms
rt
n-

y
of
o-
ffec-
e

restricted information on dynamical processes. As discuss
in Refs.@17,18# this imaginary part determines the decay ra
of unstable Gaussian states.

In the one-loop approximation, the Hamiltonian for th
modes with wave vectors in the unstable bands correspo
to inverted harmonic oscillatorsfor which the analysis of
Refs. @17,18,20,30# can be applied. The effective potentia
~3.14! is complex because the modes corresponding to
verted harmonic oscillators were treated as ordinary h
monic oscillators, i.e., byanalytically continuingthe zero
point energy for these oscillators. The Gaussian wave fun
tionals and density matrix have complex kernels for th
fieldsh1,2 reflecting this analytic continuation.

In terms of the shifted fieldsh1 andh2 with zero expec-
tation value, the Gaussian wave functional~3.15! and the
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density matrix~see Appendix A! are ‘‘centered’’ at the ori-
gin in field space, and for the wave vectors in the unsta
bands, they are not stationary states of the Hamiltonian.

In this one-loop approximation we can use the results
previous investigations of similar situations@17,18,20,30# to
study the early time evolution of initially prepared nonequ
librium states.

B. Early time evolution of nonequilibrium states

From the previous discussion it is clear that the imagin
part of the effective potential conceals a dynamical noneq
librium situation associated with the instabilities towar
phase separation. This is a dynamical situation thatmustbe
treated as a time-dependent problem. The quantum states
lead to the effective potential~and free energy! arenot sta-
tionary states.

Since only the Higgs and plasma modes have unsta
bands, we will focus only on these. Consider the situation
which an initial Gaussian density matrix has been prepa
such that the gauge-invariant scalar fieldF has initial expec-
tation value in this ensemble given byx, and that the kernels
have positive frequencies. That is, the density matrix in
Schrödinger representation is given by the expression in A
pendix A but with the real kernels

KH
~1!~k,t50!52

1

2
WH~k!cothFWH~k!

T G ,
KH

~2!~k,t50!5
WH~k!

sinh@WH~k!/T#
, ~4.2!

Kp
~1!~k,t50!52

1

2
WP~k!cothFWP~k!

T G ,
KH

~2!~k,t50!5
WP~k!

sinh@WP~k!/T#
~4.3!

WH
2 ~k!.0, WP

2 ~k!.0. ~4.4!

The frequenciesWH(k) andWP(k) determine the initial con-
ditions on the state as discussed in Refs.@17,18,20,30#. We
can now use the results of Refs.@17,18,20,30# to determine
the time evolution of this initial state. The early time evol
tion of the expectation valuex will be determined by the
classical equations of motion with small quantum and th
mal corrections. However, at longer times the growth of t
unstable modes makes the one-loop approximation to
dynamics unreliable as in the problem of domain growth
scalar theories@20,29#. Clearly, the most important dynamic
is described by the evolution of the unstable modes and
termined by the time evolution of the kernels. We now u
the method discussed in Ref.@20# to obtain the following
time evolution of the kernels:

KH
~1!~k,t !5

KH
~1!~k,t50!

uUk~ t !u2
2 i

dln@ uUk~ t !u2#
dt

, ~4.5!

KH
~2!~k,t !5

KH
~2!~k,t50!

uUk~ t !u2
, ~4.6!
ble

of

i-

ary
ui-
ds
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Kp
~1!~k,t !5

Kp
~1!~k,t50!

uVk~ t !u2
2 i

dln@ uVk~ t !u2#
dt

, ~4.7!

Kp
~2!~k,t !5

Kp
~2!~k,t50!

uVk~ t !u2
, ~4.8!

where the mode functionsUk(t)5U1k(t)1 iU 2k(t) and
V1k(t)1 iV2k(t) obey the evolution equations@20#

F d2dt2 1k212l~3uxclu2~ t !2m2!GUk~ t !50,

U1k~0!51, U2k~0!50, U̇1k~0!50, U̇2k~0!5WH~k!,
~4.9!

F d2dt2 1@k212l~ uxclu2~ t !2m2!#@k212e2uxclu2~ t !#/k2GVk~ t !

50,

V1k~0!51, V2k~0!50, V̇1k~0!50, V̇2k~0!5WP~k!,
~4.10!

wherexcl is the classical evolution of the ‘‘zero mode’’@20#.
Obviously the mode functionsUk(t) andVk(t) grow almost
exponentially for wave vectors in the respective unstabl
bands whenuxclu(t) is in the corresponding spinodal regions.

Consider the equal-time two-point correlation functions o
thegauge-invariantoperatorsh andh†:

^h~xW ,t !h†~yW ,t !&5E d3k

~2p!3
eik

W
•~xW2yW !H uUk~ t !u2

2WH~k!
cothFWH~k!

T G
1

uVk~ t !u2

2WP~k!
cothFWP~k!

T G J . ~4.11!

When xcl(t) remains in the spinodal, it is clear that the
growth rateof ^h(0W ,t)h†(0W ,t)& is related to the imaginary
part of the effective potential given by Eq.~4.1! at zero tem-
perature.

At this point we recognize an important payoff of the
gauge-invariant description. In order to compute gauge
invariant correlation functions from the gauge-variant opera
tor f(xW ,t) we would have to append a line integral of the
~time-dependent! gauge field, with the ensuing path ambigu-
ities and complications. The formulation in terms of gauge
invariant order parameters from the start overcomes the
difficulties and allows one to extract physically meaningful
correlation functions that provide dynamical information on
nonequilibrium processes.

Just as in the case of a scalar field theory undergoin
spinodal decomposition@29# this equal-time correlation
function will grow exponentially at early times because of
the unstable modes. This growth of is the hallmark of the
dynamics of phase separation@17,18,29#.

If the phase transition is weakly first order in the sense
that a considerable amount of phase separation and mixin
occurs during nucleation, then the growth of correlations de
scribed by the dynamics of the unstable modes will be also
dominant process.
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As noted before, unlike the case of a scalar field tra
forming under a discrete symmetry, in this case the spino
region reaches all the way to the minimum of the poten
~at least in the one-loop approximation! and the long-
wavelength instabilities are enhanced by the long-ran
forces. This feature provides interesting possibilities if t
phase transition is strongly first order and nucleation is
dominant mechanism. Typically after nucleation of a critic
bubble, the order parameter inside the bubble is very clos
its equilibrium value. If this value is smaller in magnitude
that of the equilibrium configuration, spinodal instabilitie
may be still presentinside the bubble.

If the critical droplet has rather small radius, it will hav
to grow to a size'1/(uxu2m), with uxu the value of the
order parameter inside the bubble, before any instability
velops inside the bubble. Therefore the fact that the spino
line reaches to the minimum may lead to the tantalizing p
sibility that for large critical bubbles there may still be no
equilibrium processesinside the bubble if the order param
eter inside is smaller in magnitude than the equilibriu
value.

Clearly all these possibilities will have to be studied
deeper detail and we expect a strong dependence on the
ues of the gauge and Yukawa couplings~in the case of fer-
mions!. Furthermore, our analysis of the time evolution
the spinodal instabilities only holds at very early times af
the preparation of the initial state. At longer times a nonp
turbative gauge-invariant scheme will have to be used
determine the dynamics. We hope to be able to implem
the variational schemes of Ref.@31# to the gauge-invariant
formulation.

V. CONCLUSIONS

In this article we have presented a formulation of the
fective potential in terms of a gauge-invariant order para
eter for the case of the Abelian Higgs model. The gau
invariant states of the theory are those annihilated by the
class constraints and gauge-invariant operators are those
commute with these constraints. We recognized an order
rameter that is invariant under the local gauge transform
tions but transforms as a charged operator under global p
rotations; its expectation value in the lowest-energy st
therefore signals the breakdown of the global U~1! symme-
try.

We evaluated the one-loop contribution to this gaug
invariant effective potential both at zero and nonzero te
perature and obtained its high-temperature expansion.
found that the effective potential is complex both at zero a
nonzero temperature and that the spinodal~thermodynami-
cally unstable! region extends from the maximum to th
minimum of the tree level potential~in this approximation!.
The gauge-invariant effective potential was compared to
effective potential obtained in several covariant gauges,
we found that the dependence on gauge parameter can
only at the extrema, but for all other values of the ord
parameter the gauge-fixed effective potentials are gauge
rameter dependent at zero and nonzero temperature. In
ticular in a high-temperature expansion only theO(T2) con-
tribution is gauge invariant, whereas theO(T),O„ln(T)…,
. . . depend on the gauge parameter and are complex
s-
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general these cannot be taken as trustworthy quantities
extract information on the strength of the transition and
features, such as latent heat and supercooling temperat
although the contributions of the gauge boson masses~we
did not study fermions! are gauge independent and real t
this order.

The imaginary part of the one-loop effective potential d
termines the spinodal lines, which identify the region o
long-wavelength instabilities. Unlike the case of a scal
field with discrete symmetries, the spinodal line encom
passes all values of the homogeneous order parameter r
ing between the maximum and the minimum of the tree lev
potential in the one-loop approximation.

Nonequilibrium dynamical aspects were then studied
terms of gauge-invariant correlation functions. It is in the
dynamical situations out of equilibrium that the gauge
invariant formulation has the greatest impact, since, in ge
eral, correlation functions involve nonlocal line integrals o
the gauge field. We obtained the early time behavior of t
gauge-invariant correlation functions for initial conditions i
which the order parameter is in the spinodal region; the
correlation functions grow exponentially at early times as
consequence of the instabilities.

We conjectured that these spinodal instabilities may pl
an important role in first order phase transitions, in that th
may be responsible for nonequilibrium dynamicsinside the
nucleating bubbles. Clearly this possibility will have to b
studied further.

There are several important avenues to pursue: high
order calculations and the implementation of variational
Hartree-like approximations in the gauge-invariant formul
tion to address the long time behavior and to obtain a mo
solid understanding of nonequilibrium processes. Furth
more, it is important to generalize the resummation progra
to the gauge-invariant effective potential, and to general
these new methods and results to non-Abelian gauge th
ries, in particular, the electroweak theory. Study of the
issues is underway.
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APPENDIX A

As shown in Sec. II, in the one-loop approximation th
Hamiltonian becomes a sum of independent harmonic os
lators for the gauge-invariant normal modes and in this ca
the explicit form of the density matrix in the Schro¨dinger
representation is available~see@20# and references therein!.
This form of the density matrix is particularly convenient t
study real-time dynamics, since the Liouville equation b
comes a functional differential equation, which in this ca
can be solved explicitly for the time dependence@20#.

The equilibrium density matrix that describes the system
at temperatureT51/b is given in the Schro¨dinger represen-
tation by



1776 54D. BOYANOVSKY, D. BRAHM, R. HOLMAN, AND D.-S. LEE
^F,F†,ATur̂uAT8 ,F8†,F8&5N@T#expH E d3xE d3y@AW T~xW !•AW T~yW !1AW T8~xW !•AW T8~yW !#KT
~1!~xW2yW !

1AW T8~xW !•AW T~yW !KT
~2!~xW2yW !J

3expH E d3xE d3y@h1~xW !h1~yW !1h18~xW !h18~yW !#KH
~1!~xW2yW !1h18~xW !h1~yW !KH

~2!~xW2yW !J
3expH E d3xE d3y@h2~xW !h2~yW !1h28~xW !h28~yW !#Kp

~1!~xW2yW !1h28~xW !h2~yW !Kp
~2!~xW2yW !J ,

~A1!

N@T#5N@0#PkF tanh2S vT~k!

T D tanhS vH~k!

T D tanhS vp~k!

T D G1/2, ~A2!

KT
~1!~xW2yW !52

1

2E d3k

~2p!3
vT~k!cothFvT~k!

T GeikW•~xW2yW !, ~A3!

KT
~2!~xW2yW !5E d3k

~2p!3
vT~k!

sinh@vT~k!/T#
eik

W
•~xW2yW !, ~A4!

KH
~1!~xW2yW !52

1

2E d3k

~2p!3
vH~k!cothFvH~k!

T GeikW•~xW2yW !, ~A5!

KH
~2!~xW2yW !5E d3k

~2p!3
vH~k!

sinh@vH~k!/T#
eik

W
•~xW2yW !, ~A6!

Kp
~1!~xW2yW !52

1

2E d3k

~2p!3
k2vp~k!

vT
2~k!

cothFk2vp~k!

TvT
2~k! GeikW•~xW2yW !, ~A7!

Kp
~2!~xW2yW !5E d3k

~2p!3
vp~k!k2

vT
2~k!sinh@k2vp~k!/TvT

2~k!#
eik

W
•~xW2yW !. ~A8!
-

The trace of this density matrix gives the gauge-invari
one-loop partition function, whose logarithm~divided by
2b) gives the one-loop effective potential at finite tempe
ture.

APPENDIX B

In this appendix we provide the essential ingredients
obtain the high-temperature expansion of the contribution
the plasma mode to the finite temperature effective poten

The first two terms in the free energy density given by E
~3.25! ~the transverse and Higgs modes! are of the usual
form with dispersion relations of the formv(k)5Ak21m2

and their asymptotic high-temperature expansion can be
tained by following the steps described in@1#. The third term
requires special attention because of the unusual dispe
relation of the plasma mode. This term can be written as

E d3k

~2p!3
ln@12e2bvp~k!#5

T4

2p2 I ~y1
2 ,y2

2!,

I ~y1
2 ,y2

2!5E
0

`

x2dxln@12e2 ~1/x!A~x21y1
2
!~x21y2

2
!#,
ant

ra-

to
of
tial.
q.

ob-

rsion

y1
25

mg
2

T2
, y1

25
mT
2

T2
. ~B1!

The functionI (y1
2 ,y2

2) can be written as

I ~y1
2 ,y2

2!5E
0

y1
2E

0

y2
2

dadb
d

da

d

db
I ~a,b!

1I ~0,y2
2!1I ~y1

2,0!2I ~0,0!. ~B2!

The last three terms are of standard form and can be calcu
lated following the procedures of Ref.@1#. Using the identity
~3.11! of Ref. @1# we find

d

da

d

db
I~a,b!52

1

2

d

da

d

dbE0
L

xdxA~x21a!~x21b!1E
0

L

x2dx

3(
l51

` F 2p lx

~x21a!~x21b!1~2p lx !G
2

, ~B3!

where we introduced an upper momentum cutoff to regulate
the individual terms. The integral in the first term is the same
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as the plasma contribution to the zero temperature effec
potential in Eq.~3.14! but in terms of the variablesa,b. This
integral has a logarithmic cutoff dependence. The seco
term does not have infrared divergences fora,b50 and can
be expanded in power series ofa,b. In this series, the first
term, witha5b50, has a logarithmic cutoff dependence th
tive

nd

at

exactly cancels~upon integration ona,b) that of the first
term. The remaining series is both ultraviolet and infrare
safe. Finally only the finite terms from thezero temperature
effective potential but in terms of the variablesy1

2 and y2
2

contribute toI (y1
2 ,y2

2) and we obtain the result quoted in Eq
~3.27!.
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