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We study superstrings with orientifold projections and with generalized open string boundary cor(ditions
braneg. We find two types of consistency condition, one related to the algebra of Chan-Paton factors and the
other to cancellation of divergences. One consequence is that the Dirichlet five branes of the type | theory carry
a symplectic gauge group, as required by string duality. As another application we study the type | theory on
a K3 Z, orbifold, finding a family of consistent theories with various unitary and symplectic subgroups of
U(16)x U(16). We argue that th&3 orbifold with spin connection embedded in gauge connection corresponds
to an interacting conformal field theory in the type | thedi$0556-282(96)05114-4

PACS numbss): 11.25.Mj, 11.25.Hf

I. INTRODUCTION of U(16)xX U(16). Rather surprisingly, we do not find a solu-

tion with the spin connection embedded in the gauge connec-

One of the notable features of S‘T'F‘g. dughty has been th'ﬁon. We argue that this theory, while it must exist, does not
convergence of many previously disjoint lines of devemp'correspond to a free conformal field theory. Finally, we dis-

ment. For example, certain once-obscure string backgrounds, s various related work.
namely orientifold§ 1-3] and D manifoldg 3], have proven
to be dual to more familiar backgroung4—8|. In order to
find the nonperturbative structure underlying string duality it

is important to understand as fully as possible all limits of  The orientifold group contains elements of two kinds. The
the theory. The purpose of the present paper is to develop tifgst are purely internal symmetrieg of the world-sheet
consistency conditions for orientifolds and D manifolds. theory, forming a subgrous,. For the purposes of the

Orientifolds are generalized orbifolds. In the orbifold con- present paper we will think of these as spacetime symme-
struction, discrete internal symmetries of the world-sheetries, though more generaligs in asymmetric orbifoldsone
theory are gauged. In the orientifold, products of internalcould consider symmetries whose spacetime interpretation is
symmetries with world-sheet parity reversal are also gaugedess clear. The second are elements of the foxim where
D manifolds are manifolds with special submanifolt@@ (2 is the world-sheet parity transformation ahds again a
brane$ on which strings are allowed to end. These are laSpacetime symmetry, now chosen from a &gt Closure
beled by a generalized Chan-Paton index, each value dmplies thatQhQh’e G, for h,h’ € G,, and if all elements
which corresponds to restricting the string end point to af G, commute with() this is simplyG,G,=G;. The full
given submanifold of spacetime. orientifold group isG=G;+QG,.

We will discuss consistency conditions of two types. The In the orientifold construction this group is gauged, mean-
first comes from closure of the operator product expansionfng that one sums over all group elements around any non-
which restricts the action of the discrete gauge symmetrietsivial path on the world sheet. This projects onto states in-
on the Chan-Paton index. One consequence is that D fiveariant underG, and (0G,. Elements ofG; also lead to
branes in type | string theory must have a symplectic rathetwisted closed strings, from a gauge transformation in going
than orthogonal gauge projection: this is a world-sheet deriaround a closed string. The factdG, means that orienta-
vation of a result previously found from string duality].  tion reversal(combined with aG, action on the fieldsis
Also, D three branes and seven branes are inconsistent in tiew part of the local symmetry group, so that unoriented
type | superstring, while D one branes have an orthogonalorld sheets are included. The element€)db, do not give
gauge projection. rise directly to new(twisted sectors of the string Hilbert

The second condition is cancellation of divergences andgpace; we will discuss later the extent to which it is useful to
anomalies at one loof®], which can be recast in terms of think of the open strings as being these twisted states.
consistency of the field equatiof$0]. Here we focus on a The Chan-Paton indeixlabels a set of a submanifold®
simple example, the type | theory orkKa8 orbifold. We find  braneg M;, with a string end point in stateconstrained to
all solutions to the consistency conditions, leading to gaugéie on M;. Some of theM; may be coincident. Each element
groups which are various unitary and symplectic subgroupsf the discrete gauge group will have some action on the

Chan-Paton index. Denote a general open string state by

|4,ij), wherey is the state of the world-sheet fields and
*Electronic address: egimon@physics.ucsb.edu and j are the Chan-Paton states of the left and right end
TElectronic address: joep@itp.ucsh.edu points; the boundary conditions on the fields jnare of

II. ORIENTIFOLDS AND CHAN-PATON FACTORS
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coursei,j dependent. The elemergsact on this as Let us apply this to the type | theory. The type | theory is
N o . an orientifold of the type IIB theory with the single non-
9 ij) = (ygiirlg- i1 ") (vg Djrj - (2.1 trivial element(); that is,h=h?=1. Tadpole cancellation, to

] ] ] ) . be reviewed in the next section, requires that the orientifold-
for some matrixyy associated wittg. This form is deter-  jng be accompanied by the inclusion mfnine branes, cor-

mined by the requirement that a general trace of products qlesponding to purely Neumann boundary conditionsJfis
wave functions be invariant. The action on the Chan-PatoRymmetric, we can choose a basis such that 1. If yq is

factors must also be consistent with the action on the fieldsyntisymmetric, we can choose a basis such thatis the
That is, for eachD braneM;, the spacetime-transformed symplectic matrix
D braneg-M; must appear, and the only nonzero elements

of y4 are those connectingl; andg- M; . If M; is left fixed 0 il
by g then diagonal elements are allowed. Similarly, M= —il ol (2.9
. H AR -1
Qh:[ihij) = (yan)iir|Qh- i "I")(vap)jj- - (22 \wheren must be even. For the massless open string vector,

e () eigenvalue of the oscillator state isl. For yg sym-
etric, the Chan-Paton wave function of the vector is then
antisymmetric, giving the gauge group SO( For y, anti-
symmetric, the massless vectors form the adjoint of
PJSp(n). Tadpole cancellation requires §2).

Now let us consider adding five branes. The Chan-Paton
index runs over both nine branes and five branes. The only

Note that the orientation reversal transposes the two ent@
points. Theyy and yqy, are unitary.

To derive further constraints on the matriceg and
Yan, let us first demonstrate that the discrete gauge grou
may not include pure gauge twists, those witk1e G,
with y, nontrivial. The point is that the allowed Chan-Paton

wave functions must form a complete set: the set of strinqreedom in Eq.(2.7) is the overall sign. Since we are re-

wave functions|s,ij) must include nontrivial states for all g ireq to take the SO projection on the nine branes it appears
pairsij . Qne can see this heuristically by noting that if therey, o+ \we are required to take the same projection on the five
are statesk and jl for somek and| [and, therefore, also pranes. This is in contradiction with Rdf], where it was

lj by CPT invariancg then by a splitting-joining interaction  ¢5,,nd that string duality requires a symplectic gauge group

one obtains alsej and Ik. This interaction occurs in the o the type | five brane. To understand this we need to be
interior of the string and so by locality cannot depend on the;gmewhat more careful.

values of the end points. One can make this precise by re- The point is that, althougf? acts trivially on the world-
quiring that the annulus factorize correctly on the closedsheet fields, it may be a nontrivial phase in various sectors of
strlng'poles, so this is e}ctually a one-loop condltlonfat tre8ne Hilbert space. The phase 6f is determined by the re-
level it would be consistent to truncate to block-diagonaly,irement that it be conserved by the operator product of the
wave functions. Now, if the identity appears®y, we have  c4rresponding vertex operators. Thus, the massless vector
the projection state, with vertex operat@kX*, necessarily ha@ = — 1 be-
|¢//1ij>=(7’1)nf|¢,i'j')()’fl)jfj- 2.3 cause() changes the orientation of the tangent derivative

dy; we have used this fact two paragraphs previously. In the
Since this holds for a complete set, Schur's lemma implie

5%5 sectof(that is, strings with both ends on a five brarfer
XM —
that y,1; we may as well set;=1 because the overall the massless vertex operatopjX* ({) 1) for u parallel
phase is irrelevant.

to the five brane, and,X* (0= +1) for u perpendicular.
This implies a further restriction on thg, and yq: they

On these state€)?=1, and the same is true for the rest of
must satisfy the algebra of the corresponding symmetries, u e 99 and 55 Hilbert spaces. To see this, use the fact that
to a phase. For example/glygzygglgilocl, else we would

multiplies any mode operatat, by =e'™". (Details of the

) ) : ) mode expansions are given in Sec. IlI) @n the Neveu-

contradict the result in the previous section. As another eXgchwarz sector this isti. but the Gliozzi-Scherk-Olive
ample, suppose thaB, includes an element of order 2, (s projection requires that these modes operators act in

2_ .
g°=1. Then on a string state, pairs! So Q= =*1, and this holds in th& sector as well by
ol 5 . -2 supersymmetry.
9 '|’/’"J>_)(79)“’|¢" (v i (2.4 Now consider the Neveu-Schwarz 59 sector. The four

X#* with mixed Neumann-Dirichlet boundary conditions, say
©=26,7,8,9, have a half-integer mode expansion. Their su-
752 1. (2.5 p_erconformal partnerg* ther) have an intege_r mode expan-
sion and the ground state is a representation of the corre-
Similarly, if G, includes an element of order 2, then sponding Clifford algebra. The vertex operator is thus a spin
(Qh)? acts as field: the periodicy* contribute a factorv=e!(HatH4a)2
whereH; 4 are from the bosonization of the four periodic
Q2D —Lyan(von i i’ i)Y (vanvam)i y®"89[11]. We need only consider this part of the vertex
(2.6 operator, as the rest is the same as in the 99 string and so has

and so(by choice of phase

implying that
T The operator product expansi¢®PE) is single valued only for
Yon=% Yan- (2.7) GSO-projected vertex operators.
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Q2= +1. Now, the operator product &f with itself (which fields[5]. The n-form field strengthH,, thus satisfies
is in the 55 or 99 sectprinvolves e'(M3™H4) which is the
bosonization of ¢°+iy”) (42 +i¢°). This in turn is the ver-
tex operator for the stateyf+iy’) (8 +iy°) _1,,0). dH,=*Jg_pn, d*Hy=*J5-1, 3.1
Finally we can deduce th@ eigenvalue. Fot0) it is +1,
because its vertex operator is the identity, while edch,,
contributes either-i (for a 99 string or +i (for a 55 string,
for an overall—1. That is, theQ) eigenvalue ofV-V is
—1, so therefore is th€? eigenvalue olV.
Returning to Eq(2.6), in the 59 sector there is an extra
f *J10-k=0
k

whereJg_,, andJ,,_, are sources of the indicated rank. The
field equations are consistent only if

—1 from the above argument. Separatg into a block
Ya.0 Which acts on the nine branes and a blogks which
acts on the five branes. We hayé’9= + vq,¢ from tadpole

ceTmceIIatlon. Tq (_:ancel the signin the 59 sector_ we then nee%r all closed curve<C,. In flat d=10 the only nontrivial
Ya5=— Yas. diving symplectic groups on the five brane as

found in Ref.[7]. This argument seems roundabout, but it isclosed curves are the poirCy, and the corresponding con-

. . . : straint onJ,q requires the gauge group §2). In a compact
faithful to the logic that the actions d® in the 55 and 99 gbeory there will be more constraints.

sectors are related because they are both contained in the 59, , 7 generally, the right-hand side of the field E(s1)

X 95 pro<_juct. Further, there does not appear to be any arb\'/Y/ill include additional terms from Chern-Simons couplings
trariness in the result.

. . . ... of the RR fields to curvature and gauge field strengths. In the
Let us'brlefly review the consequences of th's proJectlorbresent work we consider only orientifolds of flat back-
7). Consider a pair of coincident five branes, since the symg ounds, but the more general case will also be interesting.

- e . r
p|e(;tIC gr;JECt'On reqnwlrets ?hn e]cyenbnum;er. Tgeaworlld-tbrang The tadpole constraints were applied to orientifolds in
vectorsd,X* (u parallel to the five branenave Chan-Paton Refs.[2,15-17. Many of the results in the present section

wave functionsofj, gauge group US@= SU). The .o he found in Ref[2], except that our treatment of the

(3.2

ij s
world-brane scala}BnX“ (n perpendicular to the five brane  cpan-pPaton factors will be more general.
have Chan-Paton wave functid) . Since these are the col-

lective coordinates for five brand8], the wave function

;; means that the two five branes move together as a unit. A. General framework
The need for this can also be seen in another j&&y. In the

type | theory the force between five branes, and between one The divergences can be determined from the vacuum am-
branes, is half of that calculated in R¢&] because of the plitudes on the Klein bottl¢KB), Mobius strip (MS), and

. . o .~ cylinder (C). In Fig. 1 these surfaces are all depicted as cyl-
orientation projection. The product of the charges of a smglenders of length 21 and circumference 2, with the ends

one brane and single five brane would then be only half eing either boundaries or crosscaps. Taking coordinates
Dirac-Teitelboim-Nepomechie unit; but since the five branes0<0%<27rI 0= o?22r the periodr?ci.ty andgboundary

are always paired the quantization condition is respected. .. . : . )
The “){3 §1eor alsoq containe=one. three andpseven conditions on generic world-sheet fielgs(and their deriva-
y P ' ' tives) are as follows:

branes. The above argument giv@$=(*i)®"P’2 This

requires an SO projection on the one brane, consistent with

type I-heterotic duality. On the three and seven branes it

leads to an inconsistency. This is a satisfying result, as there ,’\

is no conserved charge in the type | theory to give rise to Qh, '

suchp branes. t
We do not know that we have found the complete set of (a)

consistency conditions of this type, but no others are evident

to us.

=

and unoriented one-loop graphs there is no corresponding
modular group, but cancellation of divergences plays an
analogous role in constraining the theof9]. In Refs.
[13,10 these divergences were obtained in the ten-
dimensional type | theory from one-loop vacuum amplitudes.
In Ref. [10] they were reinterpreted in terms of an inconsis- \ ]g

tency in the field equation for a Ramond-RamdRR) ten- > *

form potential. It is useful to recall the latter interpretation,

now generalized to all RR forms. D-branes and orientifold FIG. 1. Riemann surfaces described by E8.3). (a) Klein
fixed planes are electric and magnetic sources for the RRottle. (b) Mobius strip.(c) Cylinder.

IIl. TADPOLES ;
Modular invariance on the torus is one of the central con-
sistency requirements for closed oriented strings. For open  (b)
1
<) O
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whereg’ =QF2(Qﬁl)‘1. Rescaling the coordinates to stan-
dard length @ for open strings and 2 for closed, the re-
spective amplitudes are

KB: Treg(Qhy(—1)FFemlotlord),

FIG. 2. Tadpoles in thg-twisted sector(a) Crosscap: fields at MS: Tr, ii(QE(_ 1)Femto4),
opposite points differ by afh transformation, wherg= (Qh)?2. '
(b) Boundary in staté. The manifoldM; must be fixed undeg. C: Tro,ij(G(_ 1)FewL0/|)_ (3.6
KB: ¢(0,7+ 02):QF1¢(0,02), The closed string trace is labeled by the spacelike tgist
_ and the open string traces are labeled by the Chan-Paton
(27l m+ %) =Qh,p(27l,0?), states.

The full one-loop amplitude is
P(ot 2w+ 0%)=Go(c,0?),

Wdt — 27 +~ — 2171
MS: #(00d)eM;, ¢2nl,m+0?)=0hp(27l,0?), jo 2_t{Tr°(P(_1)Fe TR+ Tro(P(—1)"e* o)),

~ (3.7
p(at 27+ 0%) =Gg(0t,0?),
whereP includes the GSO an@ projections, and- is the
C. #0002 eM, ¢(277,02)E|\7|j, spacetime fermion number. The traces are over the trans-
verse oscillator states and include a spacetime momentum
d(or2m+ 0?) =G p(at,0?). (3.3  sum. The sums in the projection operators and over twisted

sectors and Chan-Paton states are equivalent to summing the
It is convenient to include in the periodicity or boundary surfaces in Fig. 1 over all tadpole types. Evaluating the
conditionsg, h, and M;, besides the spacetime part dis- traces, the—0 limit produces the divergences of interest.
cussed earlierax1 on the world-sheet fermions from the Note that the loop modulusis related to the cylinder length
GSO projection; the tilde is a reminder of this additional| differently for each surface:
information. The respective definition8.3) are consistent
only if

. 1 . 1 . 1
KB: t—a, MS: t—a, C: t_ﬁ' (3.8

KB: (Qhy)?=(0h,)2=T,
MS: (Q’ﬁ)zzal ami: Mi , B. Type | theory on a K3 orbifold
We will evaluate the tadpoles and solve the consistency

C: gM;=M;, EMJ:MJ-; (3.4)  conditions for one particular example. This is the type |
theory on aK3 Z, orbifold. The type | theory includes a
else the corresponding path integral vanishes. projection onQ). The orbifold is formed from the theory on

These graphs will have divergences from the tadpoles torus by projecting witlRgg, reflection ofX®7:8:2 we will
shown in Fig. 2. If there aren noncompact dimensions, the abbreviate this aR. Closure gives also the elemeRdR. To
dangerous tadpoles will be from those massless RR statelefineR we have to make a specific choice of its action on
which arem forms in the noncompact directions. In generalthe fermions; we choos@= e "J67*Jsd
there are several such tadpoles, coming from twisted and This example is of interest for a number of reasons. It is

untwisted sectors. ) related byT duality to many similar theories. A-duality
To write the Klein bottle and Moius strips in terms of transformation onX* for given u (abbreviatedT,) is a
traces, take the alternate coordinate regiosod<4wl,  spacetime reflection, but only on the world-sheet right mov-
0<o?< 7 with periodicitie$ ers. It transformg) to QR , [3,14]. ThusTg duality takes the
- above orientifold group t§1,Rg7g9,Q2Rg, Q2 R7gg}, Tas67 du-
KB:¢p(a', m+0?)=Qhyp(47l - 0t,0?), ality takes it tof 1,Rg7g9, QRase7, QRyssg, and so on. This is
~ the simplest orientifold that is not just tAedual of a toroi-
#(47l,0%)=7' $(0,0%), dal theory.
_ _ We can anticipate some of the tadpole calculation. The
MS:¢(a',m+ %) =Qhg(4nl—0',0%), ¢(0,0%)eM;, Q projection will require nine branes as in the noncompact
_ case[10]. Similarly the QR projection, beingTg;g9 dual to
o(4ml,0?) eM;, (3.5  Q, will require five branes with fixek®”8° There is also

the possibility of twisted sector tadpoles, and these will in-
deed appear. In all there are three tadpole types, the ten-
2This is done by taking the upper strip<o?<2, inverting it  form, six-form, and twisted-sector six-forfactually 16 of
from right to left and multiplying the fields by(th,) %, and gluing  these last, one for each fixed poimnd each receives two
it to the right side of the lower strip: with this construction the fields contributions. The ten-form receives contributions from the
are smooth at!=2l. crosscap withh=1 and the nine brane boundary with
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g=1, the six-form from the crosscap with=RR and the five R=+ Q=+ SQ(4) rep.
brane boundary witly=1, and the twisted-sector six-forms PP 0iNG A= yro\ YR AN=—ya\vad (2.2)
from five brane and nine brane boundaries vgtaR. ez RETRS Lo e
The IIB theory hasd=10N=2—d=6N=4 spacetime ¥~vd0i\ji A=—7r\Y¥Rs A=—7ao\'70s 4(L1).
supersymmetry. Th& projection leaves only the sum of the (3.11
left- and right-moving supersymmetrie®,,+ Q, . Similarly o N )
the QR projection leaves the linear combinations We have indicated the conditions imposed by Bvand ()
Q.+ R’éa' The supersymmetries unbroken by both prOjec_pro_Jec:tlo_ns on the Chan-Paton wave func_:tu)nsThe sub-
tions correspond to the: 1 eigenvalues oR; this is half the ~ SCTPt 9 indicates the block ofg or yq which acts on the
eigenvalues oR or a quarter of the original supersymme- nine branes. For the 55 open strings, let us first consigder
tries. d=6N=1. five branes at théth fixed point ofR. The massless spec-
Let us work out the massless spectrum of this theory. Wérum 1S
focus on the bosons, since the fermions will have the same

partition function by supersymmetry. The massless spectrum R=+ Q=+ SQ(4) rep.
for the right- or left-moving half of the closed string is PEA0IDNT A=y MvRE A=—yaNTyal (22)
Sector R SQ4) rep. PUPOIIN A=—yr ARl A=vaNTvei4 (L),
Untwisted NS: " 150) + (2,2) (3.12
$"1510) - 4(1,1) where nowyg andyg  are the blocks acting on this set of
R: 151555554 five branes. The extra sign in tl§& projection follows from

the form of the vertex operator, as discussed earlier. Now

Si=+82,8=-s; +  2(21) considem), five branes at a nonfixed poiXt which requires

$1=—55,53=+S;, — 2(1,2) alson} at —X. The massless bosonic strings with both ends
Twisted NS:  |sgS,),53=—5s, +  2(1,1) atXx are
R: ,S$1=— + 1,2).
[S1S2),51= =S, (1.2 0=t SO(4) rep.
B9 YL OiN A=—vo ATV s (22
Here, u e 2,3,4,5,me 6,7,8,9, and SA)=SUR)xSU?2) is ¥ 10N A=7 ATy o} 4(1,1). (3.13

the massless little group in six dimensions. We have imposed

the GSO projection: all states listed have-X)"  TheR projection relates these wave functions to those of the
=(—1)F=1. This is most easily determined by requiring strings with ends at-X, but does not otherwise constrain
that the vertex operators be local with respect to the supethem. For the 59 strings, we have, in the two cases above,
chargee ™ #/2e!(HotH1+H2tH3=HY)/2 (the minus sign in the ex-

ponent is necessary because this must fiwer); the ghost R=+ SO(4) rep.
times longitudinal part contributes a &4 branch cut in the - .
Neveu-SchwarZNS) sector and none in the R sector. The |S3S4.,1j )Nji,S3=—Ss N=7vrAvgs 2(1,1)
bosonic spectrum is given by the product a left-moving state 3.14

with a right-moving state from the same sector and with the

sameR. In the NSNS sectors this is symmetrized by fhe and

projection, and in the RR sectors it is antisymmetrized be-

cause each side is a fermion. Thus, including the degeneracy SO(4) rep

from the 16 fixed points, the massless closed string spectrum '

is IS3S4.ij)Nji,S3=—54  2(1,1). (3.195

Sector SQ@4) rep. The Q) projection does not constrain these but determines the

. 95 state in terms of the 59 states.
Untwisted NSNS: (3,3)+11(1,1)

RR:(3,1)+(1,3)+6(1,1) (3.10 C. Tadpole calculation
_ We may now evaluate the surf®.6) over the closed and
Twisted NSNS: 481,1) open string spectra. The amplitudes @igat/2t times
: +R1+(—-1)F ~
RR:  161,1). R RR( % 1 2R 1 (2 1) e—ZWt(LoJf'—o)]'

This is thed=6, N=1 supergravity multiplet, plus one ten-
sor multiplet, plus 20 1,1) hypermultiplets.
For the open strings consider first the 99 states, with

Q1+R 1+(-1)F
massless bosonidNS) spectrum

MS: TrRa 2> R ezﬂtLo],
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_1)F - .
C TR g serss 11+R1+(-1) o-2milo) It is useful to defind

2 2 2 w o

(31@ fl(q):ql/lZH (1_q2n)’ fz(q):q1/12\/§H (1+q2n),
n=1 n=1

Here U (T) refers to the untwistedtwisted closed string

sector. On the Klein bottle we omit tHg1+ (— 1)%) projec- 14 . on-1
tor because the left- and right-moving states are identical in fs(@)=q nl;[l (1+q ),
the trace. The open-string traces include a sum over Chan-
Paton states. o

The signs of the operators appearing in the traces, in the f)=q Y]] (1—g®1). (3.23
various sectors, were given implicitly in the previous section. n=1
For completeness we give the action @f on the various

mode operators; the action & is obvious. In the closed These functions satisfy the “abstruse identity

string, 13(a)=3(a) + F3(a) (3.24
Qa0 =7,, Q0 1=y, Q%QIZ—!@ ) and have the modular transformations
A
fi(e™™)=\sfi(e™™), fa(e”™)=fs(e™™),
for integer and half-integar. The minus sign is included in
the last equation to give the convenient result fo(e S =f,(e ™). (3.2

Qz//M'J/MQﬂ:wM Yy for any productyy, of mode opera-

tors. Alternately this sign can be omitted: this just corre- The amplitudes Eqs(3.16), including the integrals over
sponds toQ—(—1)FQ, which has the same action on noncompact momenta, are then found to be
physical states. In open string, the mode expansions are (1—1)ve/128[3dt/t* times

- f8(e—277t) * 4
. a a ; i . 4 — mtn?/
X(,0)=x+i \/?m;x —emrxeim) 319 KB 8oz n;w e T

m#0

with the upper sign for NN boundaries conditions and lower +
for DD (N=Neumann, DB-Dirichlet). World-sheet parity,

i e”‘PWZ) 4] :

W= —o

X(0,0)—X(7—0,0), takes £8(e~2m)f8(e2m)
. D ——1 Tr(va 5709
an— e ™My (3.19 fﬁe 2 Ufie 2t)[ Ya,9Y0.9
o 4
There is no corresponding result for the ND sector, since % 2 e~ 2mtn’lp
() takes this into a different, DN, sector. For fermions, the n=—o

mode expansions are

© 4
_ _ _ +Tr( 'YS_),IJR-’,S')’;I-ZR,S)( Z—m e—27tpwz> ]
w<o,0>=2 e, w<o,0>=2 e "y, "

(3.20 f8e™ ) = L\
N C Be ™ (Tr(719) n;m e 2mnlp
Parity, #(o,0)— * (7 — 0,0), takes !
Y— ey, (3.2) +ij§;5 (v19)ii (Y19)jj
for integer and half-integear. As in the closed string there is o < - m_ M2
some physically irrelevant sign freedom. In evaluating the X 1__[6 Zm g~ t2mWr X=X 2ma
traces, note thaf) andR act on the compact momenf" m=e W=
and windingssX™=X™(2#) —X™(0) of the closed string as fo(e” ™) fi(e” ™)
— 20— sa aan TH(YR) TH(YRo)
QpmQ-1=p"  RpPR 1= pm flle ™fie™
f4(e77rt)f4(efﬂ't) 16
QXM "= —6X™,  REXTR™I=—6X" (3.22 it ra | (TH(vR)?+ 2, (Tr(vr)))?|.
fi(e"™f5(e™™) =1

and that only diagonal elements contribute in the traces. (3.26
Similarly in the open string 99 sector there is an internal

momentum, while in the 55 sector with fixed end points there

is a winding XM= X"(7) — X™(0). 3The V2 in f, corrects a typographical error in R¢L0].
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We have defined ¢=Vg/(4m2a’)® whereVy is the (regu-
lated volume of the noncompact dimensions. Alsarr2is MS:
the periodicity ofX™ (assumed for convenience to be inde-
pendent of m), p=r?a’, and we will later use
va=p2=V,/(47%a’)? with V, the volume of the torus be- C:
fore the orientifold. The second term in the first brace of the
cylinder amplitude includes a sum over five brane pairs vg
M;M; and over all ways for an open string to wind from one ~ — 7gTr( Yr5) Tr(Yr0)
to the other. In the second term in the second brace of the
cylinder, the only diagonal elementsRfare those where the 16
open string begins and ends on the same five brane without L2 o4 (TH( YR+ 2 (Tr(yri))?} -
winding—hence the sum over fixed poinits

Using the modular transformation E@®.25 and the Pois-

6V 4 _ Us _
T Tr( 79,197}2,9) - 2—Tr( 'yQé,SVBR,S)!
Uy

(Tr (719)?

32

(3.29

Finally, the total amplitude for largé [noting the rela-

son resummation formula

2 e—w(n—b)zla:\/az e—wasz+27risb

n=—o S=—o

(3.27

the amplitude becomes (1) [ dt/t? times

fz(e—ﬂ'/Zt) % o 4
KB: 5= | Veval 2 €™
fi(e ) s5 =

Us
+_
Vg

© 4
2 e 'rrszltp
s=— ,

MS:

- f?(e—w/Zt)fg(e—ﬂ'/Zt) 32 Tr (yﬂ 970 9)

4

fo(e” ™) fi(e” ™) { V6V

2
E o~ TSt +320 TF(YQRsyﬂRS)

f2( —mlt

© e ™

* 4
[ 512 (T r(v19) ( :E_OC e—ﬂTpsZ/Zt)
512; ,2 (71.9ii(v19)j)

9 )
% H 2 e—w52/2tp+is(xim—XJm)/r
m=6 s=—-=
4, — 4, —
fz(e w/t)f4( -n'/t)

fi(efﬂ/) ie =t 64 Tr(yrs) Tr(yro)

fg(87 7T/t) f2(97 7T/t) Ve

+ —_
fi(e” ™" fae” ™) 32

16
(Tr(yro)*+ 21 (Tr( 'YR,I))Z} . (3.28

The asymptotics are

U
KB: 160gvs+ 160—6,
4

tions Eq.(3.8) betweent andl] is (1—1)f,dl times

%}

161)4{322 64 Tr( vk 5?’QR,5) +(Tr(y19)%

+ 312 (Tr(vro) —ATH yr)))2 (3.30
=1

The (1-1) represents the contributions of NSNS and RR
exchange. Thede— divergences are equal and opposite by
supersymmetry, but must vanish separately in a consistent
theory [10]. The divergences have the expected form. The
RR part of the first line, proportional to the total spacetime
volume, is from exchange of the ten-form; in the second line,
proportional to theT-dual spacetime volume, it is from ex-
change of the six-form; in the third line, independent of the
volume of the internal spacetime, it is from exchange of
twisted-sector six-forms, one for each fixed point. Note that
v1=1 and so Trf; 9)=ng, Tr(y,5=ns, the numbers of
nine branes and five branes, respectively.

IV. SOLUTIONS

Now let use solve the consistency conditions we have
found, from the algebra of Chan-Paton matrices and the can-
cellation of divergences. From the algebra we have(Eq),
implying ¢, o= * 0.0 @and Yors= * ' Yars. The ten-form
and six-form divergences are thus proportional to
(32¥ng)? and (32 'ng)?, and so

ng=32, 7}2,9: Y09 7’}1,5: ~—7Yas5
T T
Ns=32, Yors=Yors Yore— — Yore- (4.1

The last equality in each line follows from the discussion at
the end of Sec. Il. By a unitary change of basis,
Yan—U7yanUT, one can take

Yors= |- 4.2

The remaining constraints from the algebra are,

Yoo=1,

YR9™ Y0,970R9™ YOR,9:
Yr5= YQ,5Y0R5™ YQ,5;

R5— 7?{,9: 1, 4.3
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where all phases have been set to one by choice of the irrel- 16 16

evant overall phases Ofgg, Yrs, Yare, andyqs. To-  U16)x[] um)xII uspn)), > m+> nj=1s,
gether with the unitarity of these matrices, this implies that =1 J =1 J

they are Hermitian, as well as antisymmetric. The choice Eq. (4.7)
(4.2 leaves the freedom to make real orthogonal transforma- . . . .
tions. With this, we can take Rith hypermultiplets in the representations

16
il 2(1201,1)+ >, {2(1, im,(m,—1),1),+(16,m,,1);}
i=1

—il 0

YrR9™ YR5~ YOQR9™ YQ,5— M :[

_ _ , + 1,1, 3nj(nj—1)—1);+(1,1,1)+(16,1,n})}.
the blocks being 18 16. Finally, the twisted sector tadpoles EJ: {11, 2y (ny= 1= D)+ ( )+ M)a

vanish. Thus we have found a unique consistent solution for
the action of the symmetries on the Chan-Paton factors.

Returning to the massless spectra in Sgc. B, we Calve have checked that tHe* and F4
now solve for the Chan-Paton wave functions. For the 9
open strings, Eq(3.11) implies the wave functions

4.8

anomalies cancel for
9[his spectrunf. Much of this space of theories is connected.
A multiple of four five branes can move away from a fixed
point. A single pair forms the basic dynamical five brane and
A S must move together as discussed in Sec. I, and in the orien-
—-s Al tifold an image pair must move in the opposite direction. If

4k five branes move away from fixed pointU(m,) breaks

to U(m, —2k) X USp(2k). The collective coordinate for this
(4.5 motion is one of the antisymmetric tensors oflyf, which

can indeed break Wqg,) in this way. Becausen, can change

only mod2, there are disconnected sectors of moduli space

whereS andA refer to symmetric and antisymmetric blocks, according to whether each of the, is odd or even. The
respectively. The vectors form the adjoint of18), with the ~ largest group is (L6) < U(16) with all five branes on a single
Chan-Paton index transforming 26+ 16. The scalars trans- fixed point. Incidentally, we implicitly began with a torus
form as the antisymmetric tensa20+ 120 of U(16). The Wlth. no Wilson !lnes, but_ these Wilson lingsransforming
scalars are in sets of four, from=26,7,8,9, which is the again as the antisymmetric tensor ofllf)] can break the 99
content of a hypermultiplet. Thus the 99 sector contains é‘l(l@ in the same pattern.as the 55' . .

vector multiplet in the adjoint of t16) and hypermultiplets The spacetime anomalies of this model will be discussed

. . : . further in a future publicatiofil9]. The spectrum above has
ng)we 120+120 (or equivalently, two hypermuiltiplets in the U(1) anomalies, which are cancelled by a generalization of

. . . . the Green-Schwarz mechanism. This also generates masses
For 55 open strings, consider firsf D branes at fixed 9

172 ; )
pointl; nj=2m, must be even in order for the matricgs4) of orderg; “for up to 16 U1) multiplets, so the above spec

to have a sensible action. For open strings with both ends Etllium is only correct in the formajs—0 fimit.

I, Eqg.(3.12 gives the same wave functiod.5) as for the
99 strings, a vector multiplet in the adjoint'd{m,) and two V. DISCUSSION

hypermultiplets in_ the, antisymmetrigm, (m, __1) of _this The surprise is that we have not found the theory that we
group. Now (,:on5|d,enJ D branes at a nonfixed poi,  nqgt expected, ths3 orbifold with spin connection embed-
where agaim;=2m,; must be even. EquatioB.13 implies  ged in the gauge connection. This has gauge grou8§0
that the vector multiplets are in the adjoint representation of« gy2), possibly enhanced at special points. This theory
USp(n;) and the hypermuiltiplets are in one antisymmetricmyst exist because it exists for type | on a smdog where

3 ny(nj—1) [which is reducible in USp(;), containing one the spectrum is the same as for the heterotic string because

vectors: A= {

Al A

scalars: A=
Ay —A

singlet staté the low energy supergravities are the same. The question is
For 59 open strings with the five brane at a fixed point,the nature of the orbifold limit. We believe that what is hap-
Eq. (3.14 implies the wave functions pening is as follows. For type | on a smod€I3, there is only
one kind of end point, with Neumann boundary conditions.
Xi X As we approach the orbifold limit, some wave functions be-
scalars: A= IV } (4.6 come localized at the fixed point while others remain ex-
2 M tended. In the limit, end points in localized states become

Dirichlet end points, while end points in the extended states
with X, andX; general 1&m, matrices. These states trans- remain Neumann. But there is no reason for a transition from
form as the {6,m;)+(16,m;) of U(16)XU(m,), but be- one type of state to the other to be forbidden, particularly as
cause there are only two scalar states Bdl4) in this sec-  we have neglected the coupling of the end point to the rest of
tor, this is a single hypermultiplet in thd.§,m,). Similarly,
for 59 strings with five brane not at a fixed point, £§.15
gives a hypermultiplet in thel@,n}). “Though these are not among the anomaly-free theories recently

The total gauge group is found in Ref.[18].



54 CONSISTENCY CONDITIONS FOR ORIENTIFOLDS AN. .. 1675

the string. This would correspond to a term in the worldReference[15] found it impossible to cancel all tadpoles,
sheet action which changes the boundary condition from fivéghough we do not understand their calculation in detail. Ref-
brane to nine brane, which is just a 59 open string vertexerence[14] found a model with group S@2)X SO(2) 16,
operator. So we conjecture that the orbifold limit is a theoryHowever, because of the orthogonal projection on the five
with nontrivial 59 backgrounds. This is no longer a freebranes, this suffers from the problem observed in Ref.

world-sheet theory. In fact, it is rather complicated, similarthere are half-hypermultiplets in re@ot pseudorealrepre-
to an orbifold with a twisted-state background. sentations. Also, it is not clear that the twisted tadpoles can-

Let us pursue this a bit further. Embedding the spin conCel for this model: they are discussed but the relative normal-
necton in the gauge connection means thatzation does not seem to agree with our result E330.
yro=diag(+ 128, — 1%). Section Il then implies thag s is Reference[17] find anomaly-free orientifold models with

, l . y 4 . .
antisymmetric. This makes it impossible to cancel the six-9auge groups such as U8p" that also arise in our construc-
form tadpole in the theories we consider, but if we ignoretion, though the matter content is differ¢nb antisymmetric
this for now we might guess that we still need 32 five branestensors of the gauge group, but additional antisymmetric ten-
two at each fixed point. This gives an G at each fixed SOF Supergravity multiple}s These models are constructed
point, for total gauge group S@8)x SO(4)X SU(2) 6. Now, from more abstract conformal field theorigdFT’s), and the
we have noted in the beginning of Sec. Il that open Stringdescrlpnon is rather |ne>_<pI|C|t, so we have not been lablle to
field strengths are also sources for RR fields. So it may b&'ake a detailed comparison. Also, R4f5] construct simi-
that it is possible to cancel the tadpoles with an appropriatt®" models using free fermions. Curiously the gauge groups
59 background. Moreover, some 59 strings areZje('s of ~ aré smaller than those found elsewh¢eeg., USK8) in
SQO4) and 2's of one of the fixed point S(2)’s making it d=_6]; again we have not been able to make detailed com-
possible to break down to a diagonal @Jand obtain the Parsons.

expected gauge group with hypermultipte?’s [which exist _As an aside, there is a strong temptation to regard the
on the smoottK3 but cannot be obtained directly from the Dirichlet open strings as the twisted sector that is otherwise
32 of SO32)]. absent for the orientifol{20,1,2. This is true in a number of

There has been a substantial literature on this and relatdg@'™mal senses, but we find it somewhat dangerous to think
models. Referencf20] considered the type | theory dg3 IS way, in that it might lead one only to a subset of the
with spin connection embedded in gauge connection and di onsistent theories. Note, too, that it is not always true: a D
not find an anomaly-free theory based on a free CFT. This iQrane in a noncompact space need not be accompanied by an
consistent with the discussion above. Further, they were legfientifold—there is no inconsistency in the RR field equa-
to argue for Dirichlet open strings with $2) Chan-Paton tion because the flux can escape to infinity. Conversely an
factors at each fixed point, as above, and that thes@)3U orientifold of a noncompact space does not require the intro-
should be identified with an @) in SO32), again consis- duction of D branes.
tent with the discussion of the 59 background. However, we N conclusion, we have developed some of the necessary
do not see much hope for making this more precise, becaudgchnology of orientifolds and D manifolds, as a step toward
of the complicated nature of the world-sheet theory. trying to uncover the structure underlying string duality. It

Reference$2,15] also considered type | a&3, but with- will be interesting to analyze the duality symmetries of these

out embedding the spin connection in the gauge connectiof"€0ries(19]-
Both implicitly assumed d|z_igonql’s, _and nelther_observed ACKNOWLEDGMENTS
the need 7] for a symplectic projection on the five branes.
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