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We study superstrings with orientifold projections and with generalized open string boundary condition~D
branes!. We find two types of consistency condition, one related to the algebra of Chan-Paton factors an
other to cancellation of divergences. One consequence is that the Dirichlet five branes of the type I theory
a symplectic gauge group, as required by string duality. As another application we study the type I theo
a K3 Z2 orbifold, finding a family of consistent theories with various unitary and symplectic subgroups
U~16!3U~16!. We argue that theK3 orbifold with spin connection embedded in gauge connection correspon
to an interacting conformal field theory in the type I theory.@S0556-2821~96!05114-4#

PACS number~s!: 11.25.Mj, 11.25.Hf
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I. INTRODUCTION

One of the notable features of string duality has been
convergence of many previously disjoint lines of develo
ment. For example, certain once-obscure string backgrou
namely orientifolds@1–3# and D manifolds@3#, have proven
to be dual to more familiar backgrounds@4–8#. In order to
find the nonperturbative structure underlying string duality
is important to understand as fully as possible all limits
the theory. The purpose of the present paper is to develop
consistency conditions for orientifolds and D manifolds.

Orientifolds are generalized orbifolds. In the orbifold co
struction, discrete internal symmetries of the world-sh
theory are gauged. In the orientifold, products of inter
symmetries with world-sheet parity reversal are also gaug
D manifolds are manifolds with special submanifolds~D
branes! on which strings are allowed to end. These are
beled by a generalized Chan-Paton index, each value
which corresponds to restricting the string end point to
given submanifold of spacetime.

We will discuss consistency conditions of two types. T
first comes from closure of the operator product expans
which restricts the action of the discrete gauge symmet
on the Chan-Paton index. One consequence is that D
branes in type I string theory must have a symplectic rat
than orthogonal gauge projection: this is a world-sheet d
vation of a result previously found from string duality@7#.
Also, D three branes and seven branes are inconsistent i
type I superstring, while D one branes have an orthogo
gauge projection.

The second condition is cancellation of divergences
anomalies at one loop@9#, which can be recast in terms o
consistency of the field equations@10#. Here we focus on a
simple example, the type I theory on aK3 orbifold. We find
all solutions to the consistency conditions, leading to ga
groups which are various unitary and symplectic subgro
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of U~16!3U~16!. Rather surprisingly, we do not find a solu-
tion with the spin connection embedded in the gauge conne
tion. We argue that this theory, while it must exist, does no
correspond to a free conformal field theory. Finally, we dis
cuss various related work.

II. ORIENTIFOLDS AND CHAN-PATON FACTORS

The orientifold group contains elements of two kinds. The
first are purely internal symmetriesg of the world-sheet
theory, forming a subgroupG1 . For the purposes of the
present paper we will think of these as spacetime symm
tries, though more generally~as in asymmetric orbifolds! one
could consider symmetries whose spacetime interpretation
less clear. The second are elements of the formVh, where
V is the world-sheet parity transformation andh is again a
spacetime symmetry, now chosen from a setG2 . Closure
implies thatVhVh8PG1 for h,h8PG2 , and if all elements
of G2 commute withV this is simplyG2G25G1 . The full
orientifold group isG5G11VG2 .

In the orientifold construction this group is gauged, mean
ing that one sums over all group elements around any no
trivial path on the world sheet. This projects onto states in
variant underG1 and VG2 . Elements ofG1 also lead to
twisted closed strings, from a gauge transformation in goin
around a closed string. The factorVG2 means that orienta-
tion reversal~combined with aG2 action on the fields! is
now part of the local symmetry group, so that unoriente
world sheets are included. The elements ofVG2 do not give
rise directly to new~twisted! sectors of the string Hilbert
space; we will discuss later the extent to which it is useful to
think of the open strings as being these twisted states.

The Chan-Paton indexi labels a set of a submanifolds~D
branes! Mi , with a string end point in statei constrained to
lie onMi . Some of theMi may be coincident. Each element
of the discrete gauge group will have some action on th
Chan-Paton index. Denote a general open string state
uc,i j &, wherec is the state of the world-sheet fields andi
and j are the Chan-Paton states of the left and right en
points; the boundary conditions on the fields inc are of
1667 © 1996 The American Physical Society
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coursei , j dependent. The elementsg act on this as

g:uc,i j &→~gg! i i 8ug•c,i 8 j 8&~gg
21! j 8 j . ~2.1!

for some matrixgg associated withg. This form is deter-
mined by the requirement that a general trace of products
wave functions be invariant. The action on the Chan-Pa
factors must also be consistent with the action on the fiel
That is, for eachD braneMi , the spacetime-transformed
D braneg•Mi must appear, and the only nonzero elemen
of gg are those connectingMi andg•Mi . If Mi is left fixed
by g then diagonal elements are allowed. Similarly,

Vh:uc,i j &→~gVh! i i 8uVh•c, j 8i 8&~gVh
21! j 8 j . ~2.2!

Note that the orientation reversal transposes the two e
points. Thegg andgVh are unitary.

To derive further constraints on the matricesgg and
gVh , let us first demonstrate that the discrete gauge gro
may not include pure gauge twists, those withg51PG1
with g1 nontrivial. The point is that the allowed Chan-Pato
wave functions must form a complete set: the set of stri
wave functionsuc,i j & must include nontrivial states for all
pairsi j . One can see this heuristically by noting that if the
are statesik and j l for somek and l @and, therefore, also
l j by CPT invariance#, then by a splitting-joining interaction
one obtains alsoi j and lk. This interaction occurs in the
interior of the string and so by locality cannot depend on t
values of the end points. One can make this precise by
quiring that the annulus factorize correctly on the clos
string poles, so this is actually a one-loop condition—at tr
level it would be consistent to truncate to block-diagon
wave functions. Now, if the identity appears inG1 , we have
the projection

uc,i j &5~g1! i i 8uc,i 8 j 8&~g1
21! j 8 j . ~2.3!

Since this holds for a complete set, Schur’s lemma impl
that g1}1; we may as well setg151 because the overall
phase is irrelevant.

This implies a further restriction on thegg andgVh : they
must satisfy the algebra of the corresponding symmetries,
to a phase. For example,gg1

gg2
gg

2
21g

1
21}1, else we would

contradict the result in the previous section. As another e
ample, suppose thatG1 includes an element of order 2
g251. Then on a string state,

g2:uc,i j &→~gg
2! i i 8uc,i 8 j 8&~gg

22! j 8 j , ~2.4!

and so~by choice of phase!

gg
251. ~2.5!

Similarly, if G2 includes an element of order 2, the
(Vh)2 acts as

~Vh!2:uc,i j &→@gVh~gVh
T !21# i i 8uc,i 8 j 8&~gVh

T gVh
21! j 8 j ,

~2.6!

implying that

gVh
T 56gVh . ~2.7!
of
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Let us apply this to the type I theory. The type I theory i
an orientifold of the type IIB theory with the single non
trivial elementV; that is,h5h251. Tadpole cancellation, to
be reviewed in the next section, requires that the orientifol
ing be accompanied by the inclusion ofn nine branes, cor-
responding to purely Neumann boundary conditions. IfgV is
symmetric, we can choose a basis such thatgV5I . If gV is
antisymmetric, we can choose a basis such thatgV is the
symplectic matrix

M5F 0 i I

2 i I 0 G , ~2.8!

wheren must be even. For the massless open string vect
theV eigenvalue of the oscillator state is21. ForgV sym-
metric, the Chan-Paton wave function of the vector is the
antisymmetric, giving the gauge group SO(n). For gV anti-
symmetric, the massless vectors form the adjoint
USp(n). Tadpole cancellation requires SO~32!.

Now let us consider adding five branes. The Chan-Pat
index runs over both nine branes and five branes. The o
freedom in Eq.~2.7! is the overall sign. Since we are re
quired to take the SO projection on the nine branes it appe
that we are required to take the same projection on the fi
branes. This is in contradiction with Ref.@7#, where it was
found that string duality requires a symplectic gauge gro
on the type I five brane. To understand this we need to
somewhat more careful.

The point is that, althoughV2 acts trivially on the world-
sheet fields, it may be a nontrivial phase in various sectors
the Hilbert space. The phase ofV is determined by the re-
quirement that it be conserved by the operator product of t
corresponding vertex operators. Thus, the massless ve
state, with vertex operator] tX

m, necessarily hasV521 be-
causeV changes the orientation of the tangent derivativ
] t ; we have used this fact two paragraphs previously. In t
55 sector~that is, strings with both ends on a five brane!, for
the massless vertex operator is] tX

m (V521) for m parallel
to the five brane, and]nX

m (V511) for m perpendicular.
On these states,V251, and the same is true for the rest o
the 99 and 55 Hilbert spaces. To see this, use the fact t
V multiplies any mode operatorc r by6eipr . ~Details of the
mode expansions are given in Sec. III C.! In the Neveu-
Schwarz sector this is6 i , but the Gliozzi-Scherk-Olive
~GSO! projection requires that these modes operators act
pairs.1 SoV561, and this holds in theR sector as well by
supersymmetry.

Now consider the Neveu-Schwarz 59 sector. The fo
Xm with mixed Neumann-Dirichlet boundary conditions, sa
m56,7,8,9, have a half-integer mode expansion. Their s
perconformal partnerscm then have an integer mode expan
sion and the ground state is a representation of the cor
sponding Clifford algebra. The vertex operator is thus a sp
field: the periodiccm contribute a factorV5ei (H31H4)/2,
whereH3,4 are from the bosonization of the four periodic
c6,7,8,9 @11#. We need only consider this part of the verte
operator, as the rest is the same as in the 99 string and so

1The operator product expansion~OPE! is single valued only for
GSO-projected vertex operators.
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V2511. Now, the operator product ofV with itself ~which
is in the 55 or 99 sector! involves ei (H31H4), which is the
bosonization of (c61 ic7)(c81 ic9). This in turn is the ver-
tex operator for the state (c61 ic7)21/2(c

81 ic9)21/2u0&.
Finally we can deduce theV eigenvalue. Foru0& it is 11,
because its vertex operator is the identity, while eachc21/2
contributes either2 i ~for a 99 string! or1 i ~for a 55 string!,
for an overall21. That is, theV eigenvalue ofV•V is
21, so therefore is theV2 eigenvalue ofV.

Returning to Eq.~2.6!, in the 59 sector there is an extr
21 from the above argument. SeparategV into a block
gV,9 which acts on the nine branes and a blockgV,5 which
acts on the five branes. We havegV,9

T 51gV,9 from tadpole
cancellation. To cancel the sign in the 59 sector we then n
gV,5
T 52gV,5 , giving symplectic groups on the five brane

found in Ref.@7#. This argument seems roundabout, but it
faithful to the logic that the actions ofV in the 55 and 99
sectors are related because they are both contained in th
3 95 product. Further, there does not appear to be any a
trariness in the result.

Let us briefly review the consequences of this project
@7#. Consider a pair of coincident five branes, since the sy
plectic projection requires an even number. The world-br
vectors] tX

m (m parallel to the five brane! have Chan-Paton
wave functionss i j

a , gauge group USp~2!5 SU~2!. The
world-brane scalars]nX

m (m perpendicular to the five brane!
have Chan-Paton wave functiond i j . Since these are the co
lective coordinates for five branes@3#, the wave function
d i j means that the two five branes move together as a u
The need for this can also be seen in another way@12#. In the
type I theory the force between five branes, and between
branes, is half of that calculated in Ref.@5# because of the
orientation projection. The product of the charges of a sin
one brane and single five brane would then be only ha
Dirac-Teitelboim-Nepomechie unit; but since the five bran
are always paired the quantization condition is respected

The IIB theory also containsp5one, three, and seve
branes. The above argument givesV25(6 i )(92p)/2. This
requires an SO projection on the one brane, consistent
type I-heterotic duality. On the three and seven brane
leads to an inconsistency. This is a satisfying result, as th
is no conserved charge in the type I theory to give rise
suchp branes.

We do not know that we have found the complete se
consistency conditions of this type, but no others are evid
to us.

III. TADPOLES

Modular invariance on the torus is one of the central c
sistency requirements for closed oriented strings. For o
and unoriented one-loop graphs there is no correspon
modular group, but cancellation of divergences plays
analogous role in constraining the theory@9#. In Refs.
@13,10# these divergences were obtained in the t
dimensional type I theory from one-loop vacuum amplitud
In Ref. @10# they were reinterpreted in terms of an incons
tency in the field equation for a Ramond-Ramond~RR! ten-
form potential. It is useful to recall the latter interpretatio
now generalized to all RR forms. D-branes and orientifo
fixed planes are electric and magnetic sources for the
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fields @5#. Then-form field strengthHn thus satisfies

dHn5* J92n , d*Hn5* Jn21, ~3.1!

whereJ92n andJn21 are sources of the indicated rank. The
field equations are consistent only if

E
Ck

* J102k50 ~3.2!

for all closed curvesCk . In flat d510 the only nontrivial
closed curves are the pointsC0 , and the corresponding con-
straint onJ10 requires the gauge group SO~32!. In a compact
theory there will be more constraints.

More generally, the right-hand side of the field Eqs.~3.1!
will include additional terms from Chern-Simons couplings
of the RR fields to curvature and gauge field strengths. In th
present work we consider only orientifolds of flat back-
grounds, but the more general case will also be interesting

The tadpole constraints were applied to orientifolds in
Refs. @2,15–17#. Many of the results in the present section
can be found in Ref.@2#, except that our treatment of the
Chan-Paton factors will be more general.

A. General framework

The divergences can be determined from the vacuum am
plitudes on the Klein bottle~KB!, Möbius strip ~MS!, and
cylinder ~C!. In Fig. 1 these surfaces are all depicted as cyl
inders of length 2p l and circumference 2p, with the ends
being either boundaries or crosscaps. Taking coordinate
0<s1<2p l , 0<s2<2p, the periodicity and boundary
conditions on generic world-sheet fieldsf ~and their deriva-
tives! are as follows:

FIG. 1. Riemann surfaces described by Eq.~3.3!. ~a! Klein
bottle. ~b! Möbius strip.~c! Cylinder.
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KB: f~0,p1s2!5Vh̃1f~0,s2!,

f~2p l ,p1s2!5Vh̃2f~2p l ,s2!,

f~s1,2p1s2!5g̃f~s1,s2!,

MS: f~0,s2!PM̃ i , f~2p l ,p1s2!5Vh̃f~2p l ,s2!,

f~s1,2p1s2!5g̃f~s1,s2!,

C: f~0,s2!PM̃ i , f~2p,s2!PM̃ j ,

f~s1,2p1s2!5g̃f~s1,s2!. ~3.3!

It is convenient to include in the periodicity or boundar
conditionsg, h, andMi , besides the spacetime part dis
cussed earlier,a61 on the world-sheet fermions from the
GSO projection; the tilde is a reminder of this addition
information. The respective definitions~3.3! are consistent
only if

KB: ~Vh̃1!
25~Vh̃2!

25g̃,

MS: ~Vh̃!25g̃, g̃M̃ i5M̃ i ,

C: g̃M̃ i5M̃ i , g̃M̃ j5M̃ j ; ~3.4!

else the corresponding path integral vanishes.
These graphs will have divergences from the tadpo

shown in Fig. 2. If there arem noncompact dimensions, the
dangerous tadpoles will be from those massless RR sta
which arem forms in the noncompact directions. In gener
there are several such tadpoles, coming from twisted a
untwisted sectors.

To write the Klein bottle and Mo¨bius strips in terms of
traces, take the alternate coordinate region 0<s1<4p l ,
0<s2<p with periodicities2

KB:f~s1,p1s2!5Vh̃2f~4p l2s1,s2!,

f~4p l ,s2!5g̃8f~0,s2!,

MS:f~s1,p1s2!5Vh̃f~4p l2s1,s2!, f~0,s2!PM̃ i ,

f~4p l ,s2!PM̃ i , ~3.5!

2This is done by taking the upper stripp<s2<2p, inverting it
from right to left and multiplying the fields by (Vh̃2)

21, and gluing
it to the right side of the lower strip: with this construction the field
are smooth ats152p l .

FIG. 2. Tadpoles in theg-twisted sector.~a! Crosscap: fields at
opposite points differ by anVh transformation, whereg5(Vh)2.
~b! Boundary in statei . The manifoldMi must be fixed underg.
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whereg̃85Vh̃2(Vh̃1)
21. Rescaling the coordinates to stan

dard length (p for open strings and 2p for closed!, the re-
spective amplitudes are

KB: Trc,g8~Vh̃2~21!F1F̃ep~L01L̃0!/2l !,

MS: Tro,i i ~Vh̃~21!FepL0/4l !,

C: Tro,i j ~ g̃~21!FepL0 / l !. ~3.6!

The closed string trace is labeled by the spacelike twistg8
and the open string traces are labeled by the Chan-Pa
states.

The full one-loop amplitude is

E
0

`dt

2t
$Trc~P~21!Fe22pt~L01L̃0!!1Tro~P~21!Fe22ptL0!%,

~3.7!

whereP includes the GSO andG projections, andF is the
spacetime fermion number. The traces are over the tran
verse oscillator states and include a spacetime moment
sum. The sums in the projection operators and over twist
sectors and Chan-Paton states are equivalent to summing
surfaces in Fig. 1 over all tadpole types. Evaluating th
traces, thet→0 limit produces the divergences of interest
Note that the loop modulust is related to the cylinder length
l differently for each surface:

KB: t5
1

4l
, MS: t5

1

8l
, C: t5

1

2l
. ~3.8!

B. Type I theory on a K3 orbifold

We will evaluate the tadpoles and solve the consisten
conditions for one particular example. This is the type
theory on aK3 Z2 orbifold. The type I theory includes a
projection onV. The orbifold is formed from the theory on
a torus by projecting withR6789, reflection ofX

6,7,8,9; we will
abbreviate this asR. Closure gives also the elementVR. To
defineR we have to make a specific choice of its action o
the fermions; we chooseR5eip(J671J89).

This example is of interest for a number of reasons. It
related byT duality to many similar theories. AT-duality
transformation onXm for given m ~abbreviatedTm) is a
spacetime reflection, but only on the world-sheet right mov
ers. It transformsV toVRm @3,14#. ThusT6 duality takes the
above orientifold group to$1,R6789,VR6 ,VR789%, T4567 du-
ality takes it to$1,R6789,VR4567,VR4589%, and so on. This is
the simplest orientifold that is not just theT dual of a toroi-
dal theory.

We can anticipate some of the tadpole calculation. Th
V projection will require nine branes as in the noncompa
case@10#. Similarly theVR projection, beingT6789 dual to
V, will require five branes with fixedX6,7,8,9. There is also
the possibility of twisted sector tadpoles, and these will in
deed appear. In all there are three tadpole types, the te
form, six-form, and twisted-sector six-form~actually 16 of
these last, one for each fixed point! and each receives two
contributions. The ten-form receives contributions from th
crosscap withh51 and the nine brane boundary with

s
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g51, the six-form from the crosscap withh5R and the five
brane boundary withg51, and the twisted-sector six-form
from five brane and nine brane boundaries withg5R.

The IIB theory hasd510,N52→d56,N54 spacetime
supersymmetry. TheV projection leaves only the sum of th
left- and right-moving supersymmetries,Qa1Q̃a . Similarly
the VR projection leaves the linear combination
Qa1RQ̃a . The supersymmetries unbroken by both proje
tions correspond to the11 eigenvalues ofR; this is half the
eigenvalues ofR or a quarter of the original supersymme
tries,d56,N51.

Let us work out the massless spectrum of this theory.
focus on the bosons, since the fermions will have the sa
partition function by supersymmetry. The massless spect
for the right- or left-moving half of the closed string is

Sector R SO~4! rep.

Untwisted NS: c21/2
m u0& 1 ~2,2!

c21/2
m u0& 2 4~1,1!

R: us1s2s3s4&
s151s2 ,s352s4 1 2~2,1!

s152s2 ,s351s4 2 2~1,2!

Twisted NS: us3s4&,s352s4 1 2~1,1!

R: us1s2&,s152s2 1 ~1,2!.

~3.9!

Here,mP2,3,4,5,mP6,7,8,9, and SO~4!5SU~2!3SU~2! is
the massless little group in six dimensions. We have impo
the GSO projection: all states listed have (21)F

5(21)F̃51. This is most easily determined by requirin
that the vertex operators be local with respect to the sup
chargee2f/2ei (H01H11H21H32H4)/2 ~the minus sign in the ex-
ponent is necessary because this must haveR51); the ghost
times longitudinal part contributes a netZ2 branch cut in the
Neveu-Schwarz~NS! sector and none in the R sector. Th
bosonic spectrum is given by the product a left-moving st
with a right-moving state from the same sector and with
sameR. In the NSNS sectors this is symmetrized by theV
projection, and in the RR sectors it is antisymmetrized b
cause each side is a fermion. Thus, including the degene
from the 16 fixed points, the massless closed string spect
is

Sector SO~4! rep.

Untwisted NSNS: ~3,3!111~1,1!

RR: ~3,1!1~1,3!16~1,1! ~3.10!

Twisted NSNS: 48~1,1!

RR: 16~1,1!.

This is thed56, N51 supergravity multiplet, plus one ten
sor multiplet, plus 20 (1,1) hypermultiplets.

For the open strings consider first the 99 states, w
massless bosonic~NS! spectrum
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R51 V51 SO~4! rep.

c21/2
m u0,i j &l j i l5gR,9lgR,9

21 l52gV,9l
TgV,9

21 ~2,2!

c21/2
m u0,i j &l j i l52gR,9lgR,9

21 l52gV,9l
TgV,9

21 4~1,1!.

~3.11!

We have indicated the conditions imposed by theR andV
projections on the Chan-Paton wave functionsl. The sub-
script 9 indicates the block ofgR or gV which acts on the
nine branes. For the 55 open strings, let us first considernI
five branes at theI th fixed point ofR. The massless spec-
trum is

R51 V51 SO~4! rep.

c21/2
m u0,i j &l j i l5gR,IlgR,I

21 l52gV,Il
TgV,I

21 ~2,2!

c21/2
m u0,i j &l j i l52gR,IlgR,I

21 l5gV,Il
TgV,I

214 ~1,1!,

~3.12!

where nowgR,I andgV,I are the blocks acting on this set o
five branes. The extra sign in theV projection follows from
the form of the vertex operator, as discussed earlier. No
considernJ8 five branes at a nonfixed pointX, which requires
alsonJ8 at2X. The massless bosonic strings with both end
at X are

V51 SO~4! rep.

c21/2
m u0,i j &l j i l52gV,J8 lTg8V,J

21 ~2,2!

c21/2
m u0,i j &l j i l5gV,J8 lTg8V,J

21 4~1,1!. ~3.13!

TheR projection relates these wave functions to those of t
strings with ends at2X, but does not otherwise constrain
them. For the 59 strings, we have, in the two cases abov

R51 SO~4! rep.

us3s4 ,i j &l j i ,s352s4 l5gR,IlgR,9
21 2~1,1!

~3.14!

and

SO~4! rep.

us3s4 ,i j &l j i ,s352s4 2~1,1!. ~3.15!

TheV projection does not constrain these but determines
95 state in terms of the 59 states.

C. Tadpole calculation

We may now evaluate the sums~3.6! over the closed and
open string spectra. The amplitudes are*0

`dt/2t times

KB: TrNSNS1 RR
U1T H V

2

11R

2

11~21!F

2
e22pt~L01L̃0!J ,

MS: TrNS-R
99155H V

2

11R

2

11~21!F

2
e22ptL0J ,
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C: TrNS-R
99195159155H 12 11R

2

11~21!F

2
e22ptL0J .

~3.16!

HereU (T) refers to the untwisted~twisted! closed string

sector. On the Klein bottle we omit the12„11(21)F̃… projec-
tor because the left- and right-moving states are identica
the trace. The open-string traces include a sum over Ch
Paton states.

The signs of the operators appearing in the traces, in
various sectors, were given implicitly in the previous sectio
For completeness we give the action ofV on the various
mode operators; the action ofR is obvious. In the closed
string,

Va rV
215ã r , Vc rV

215c̃ r , Vc̃ rV
2152c r

~3.17!

for integer and half-integerr . The minus sign is included in
the last equation to give the convenient resu
VcMc̃MV215cMc̃M for any productcM of mode opera-
tors. Alternately this sign can be omitted: this just corr
sponds toV→(21)FV, which has the same action on
physical states. In open string, the mode expansions are

X~s,0!5x1 iAa8

2 (
m52`
mÞ0

`
am

m
~eims6e2 ims! ~3.18!

with the upper sign for NN boundaries conditions and low
for DD ~N5Neumann, D5Dirichlet!. World-sheet parity,
X(s,0)→X(p2s,0), takes

am→6eipmam . ~3.19!

There is no corresponding result for the ND sector, sin
V takes this into a different, DN, sector. For fermions, th
mode expansions are

c~s,0!5(
r
eir sc r , c̃~s,0!5(

r
e2 ir sc r .

~3.20!

Parity,c(s,0)→6c̃(p2s,0), takes

c r→6eiprc r ~3.21!

for integer and half-integerr . As in the closed string there is
some physically irrelevant sign freedom. In evaluating t
traces, note thatV andR act on the compact momentapm

and windingsdXm5Xm(2p)2Xm(0) of the closed string as

VpmV215pm, RpmR2152pm,

VdXmV2152dXm, RdXmR2152dXm ~3.22!

and that only diagonal elements contribute in the trac
Similarly in the open string 99 sector there is an intern
momentum, while in the 55 sector with fixed end points the
is a windingdXm5Xm(p)2Xm(0).
l in
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It is useful to define3

f 1~q!5q1/12)
n51

`

~12q2n!, f 2~q!5q1/12A2)
n51

`

~11q2n!,

f 3~q!5q21/24)
n51

`

~11q2n21!,

f 4~q!5q21/24)
n51

`

~12q2n21!. ~3.23!

These functions satisfy the ‘‘abstruse identity’’

f 3
8~q!5 f 2

8~q!1 f 4
8~q! ~3.24!

and have the modular transformations

f 1~e
2p/s!5As f1~e2ps!, f 3~e

2p/s!5 f 3~e
2ps!,

f 2~e
2p/s!5 f 4~e

2ps!. ~3.25!

The amplitudes Eqs.~3.16!, including the integrals over
noncompact momenta, are then found to be
(121) v6/128*0

`dt/t4 times

KB: 8
f 4
8~e22pt!

f 1
8~e22pt! H S (

n52`

`

e2ptn2/rD 4
1S (

w52`

`

e2ptrw2D 4J ,
MS: 2

f 2
8~e22pt! f 4

8~e22pt!

f 1
8~e22pt! f 3

8~e22pt! H Tr~gV,9
21gV,9

T !

3S (
n52`

`

e22ptn2/rD 4
1Tr~gVR,5

21 gVR,5
T !S (

w52`

`

e22ptrw2D 4J ,
C:

f 4
8~e2pt!

f 1
8~e2pt! H „Tr~g1,9!…

2S (
n52`

`

e22ptn2/rD 4
1 (

i , jP5
~g1,5! i i ~g1,5! j j

3 )
m56

9

(
w52`

`

e2t~2pwr1Xi
m

2Xj
m

!2/2pa8J
22

f 2
4~e2pt! f 4

4~e2pt!

f 1
4~e2pt! f 3

4~e2pt!
Tr~gR,5!Tr~gR,9!

14
f 3
4~e2pt! f 4

4~e2pt!

f 1
4~e2pt! f 2

4~e2pt! H „Tr~gR,9!…
21(

I51

16

„Tr~gR,I !…
2J .

~3.26!

3TheA2 in f 2 corrects a typographical error in Ref.@10#.
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We have definedv65V6 /(4p2a8)3 whereV6 is the ~regu-
lated! volume of the noncompact dimensions. Also, 2pr is
the periodicity ofXm ~assumed for convenience to be inde
pendent of m), r5r 2/a8, and we will later use
v45r25V4 /(4p2a8)2 with V4 the volume of the torus be-
fore the orientifold. The second term in the first brace of th
cylinder amplitude includes a sum over five brane pai
MiM j and over all ways for an open string to wind from on
to the other. In the second term in the second brace of t
cylinder, the only diagonal elements ofR are those where the
open string begins and ends on the same five brane with
winding—hence the sum over fixed pointsI .

Using the modular transformation Eq.~3.25! and the Pois-
son resummation formula

(
n52`

`

e2p~n2b!2/a5Aa (
s52`

`

e2pas212p isb, ~3.27!

the amplitude becomes (121)*0
` dt/t2 times

KB:
f 2
8~e2p/2t!

f 1
8~e2p/2t! H v6v4S (

s52`

`

e2prs2/tD 4
1
v6
v4

S (
s52`

`

e2ps2/trD 4J ,
MS: 2

f 2
8~e2p/2t! f 4

8~e2p/2t!

f 1
8~e2p/2t! f 3

8~e2p/2t! H v6v432
Tr~gV,9

21gV,9
T !

3S (
s52`

`

e2prs2/2tD 41 v6
32v4

Tr~gVR,5
21 gVR,5

T !

3S (
s52`

`

e2ps2/2trD 4J ,
C:

f 2
8~e2p/t!

f 1
8~e2p/t! H v6v4512

„Tr~g1,9!…
2S (

s52`

`

e2prs2/2tD 4
1

v6
512v4

(
i , jP5

~g1,5! i i ~g1,5! j j

3 )
m56

9

(
s52`

`

e2ps2/2tr1 is~Xi
m

2Xj
m

!/rJ
2
f 2
4~e2p/t! f 4

4~e2p/t!

f 1
4~e2p/t! f 3

4~e2p/t!

v6
64
Tr~gR,5!Tr~gR,9!

1
f 3
4~e2p/t! f 2

4~e2p/t!

f 1
4~e2p/t! f 4

4~e2p/t!

v6
32

3H „Tr~gR,9!…
21(

I51

16

„Tr~gR,I !…
2J . ~3.28!

The asymptotics are

KB: 16v6v4116
v6
v4
,

-

e
rs
e
he

out

MS: 2
v6v4
2

Tr~gV,9
21gV,9

T !2
v6
2v4

Tr~gVR,5
21 gVR,5

T !,

C:
v6v4
32

„Tr~g1,9!…
21

v6
32v4

„Tr~g1,5!…
2

2
v6
16
Tr~gR,5!Tr~gR,9!

1
v6
8 H „Tr~gR,9!…

21(
I51

16

„Tr~gR,I !…
2J . ~3.29!

Finally, the total amplitude for largel @noting the rela-
tions Eq.~3.8! betweent and l # is (121)*0

`dl times

v6v4
16

$322264 Tr~gV,9
21gV,9

T !1„Tr~g1,9!…
2%

1
v6
16v4

$322264 Tr~gVR,5
21 gVR,5

T !1„ Tr~g1,5!…
2%

1
v6
64(I51

16

„Tr~gR,9!24Tr~gR,I !…
2. ~3.30!

The (121) represents the contributions of NSNS and RR
exchange. Thesel→` divergences are equal and opposite by
supersymmetry, but must vanish separately in a consiste
theory @10#. The divergences have the expected form. Th
RR part of the first line, proportional to the total spacetime
volume, is from exchange of the ten-form; in the second line
proportional to theT-dual spacetime volume, it is from ex-
change of the six-form; in the third line, independent of the
volume of the internal spacetime, it is from exchange o
twisted-sector six-forms, one for each fixed point. Note tha
g151 and so Tr(g1,9)5n9 , Tr(g1,5)5n5 , the numbers of
nine branes and five branes, respectively.

IV. SOLUTIONS

Now let use solve the consistency conditions we hav
found, from the algebra of Chan-Paton matrices and the ca
cellation of divergences. From the algebra we have Eq.~2.7!,
implying gV,9

T 56gV,9 andgVR,5
T 568gVR,5 . The ten-form

and six-form divergences are thus proportional to
(327n9)

2 and (3278n5)
2, and so

n9532, gV,9
T 5gV,9 , gV,5

T 52gV,5 ,

n5532, gVR,5
T 5gVR,5 , gVR,9

T 52gVR,9 . ~4.1!

The last equality in each line follows from the discussion a
the end of Sec. II. By a unitary change of basis
gVh→UgVhU

T, one can take

gV,95I , gVR,55I . ~4.2!

The remaining constraints from the algebra are,

gR,95gV,9gVR,95gVR,9 ,

gR,55gV,5gVR,55gV,5 ,

gR,5
2 5gR,9

2 51, ~4.3!
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where all phases have been set to one by choice of the i
evant overall phases ofgR,9 , gR,5 , gVR,9 , and gV,5 . To-
gether with the unitarity of these matrices, this implies th
they are Hermitian, as well as antisymmetric. The choice
~4.2! leaves the freedom to make real orthogonal transform
tions. With this, we can take

gR,95gR,55gVR,95gV,55M5F 0 i I

2 i I 0 G , ~4.4!

the blocks being 16316. Finally, the twisted sector tadpole
vanish. Thus we have found a unique consistent solution
the action of the symmetries on the Chan-Paton factors.

Returning to the massless spectra in Sec. III B, we c
now solve for the Chan-Paton wave functions. For the
open strings, Eq.~3.11! implies the wave functions

vectors: l5F A S

2S AG ,
scalars: l5FA1 A2

A2 2A1
G , ~4.5!

whereS andA refer to symmetric and antisymmetric block
respectively. The vectors form the adjoint of U~16!, with the
Chan-Paton index transforming as16116. The scalars trans-
form as the antisymmetric tensor1201120 of U~16!. The
scalars are in sets of four, fromm56,7,8,9, which is the
content of a hypermultiplet. Thus the 99 sector contain
vector multiplet in the adjoint of U~16! and hypermultiplets
in the1201120 ~or equivalently, two hypermultiplets in the
120).

For 55 open strings, consider firstnI D branes at fixed
point I ; nI[2mI must be even in order for the matrices~4.4!
to have a sensible action. For open strings with both end
I , Eq. ~3.12! gives the same wave functions~4.5! as for the
99 strings, a vector multiplet in the adjoint ofU(mI) and two
hypermultiplets in the antisymmetric12mI(mI21) of this
group. Now considernJ8 D branes at a nonfixed pointX,
where againnJ8[2mJ8 must be even. Equation~3.13! implies
that the vector multiplets are in the adjoint representation
USp(nJ8) and the hypermultiplets are in one antisymmet
1
2 nJ8(nJ821) @which is reducible in USp(nJ8), containing one
singlet state#.

For 59 open strings with the five brane at a fixed poi
Eq. ~3.14! implies the wave functions

scalars: l5F X1 X2

2X2 X1
G , ~4.6!

with X1 andX2 general 163mI matrices. These states tran
form as the (16,mI)1(16,m̄I) of U~16!3U(mI), but be-
cause there are only two scalar states Eq.~3.14! in this sec-
tor, this is a single hypermultiplet in the (16,mI). Similarly,
for 59 strings with five brane not at a fixed point, Eq.~3.15!
gives a hypermultiplet in the (16,nJ8).

The total gauge group is
rel-

at
q.
a-

s
for

an
99

,

a

at

of
ic

t,

-

U~16!3)
I51

16

U~mI !3)
J

USp~nJ8!, (
I51

16

mI1(
J
nJ8516,

~4.7!

with hypermultiplets in the representations

2~120,1,1!1(
I51

16

$2~1, 1
2mI~mI21!,1! I1~16,mI ,1! I%

1(
J

$~1,1, 1
2nJ8~nJ821!21!J1~1,1,1!1~16,1,nJ8!J%.

~4.8!

We have checked that theR4 andF4 anomalies cancel for
this spectrum.4 Much of this space of theories is connected.
A multiple of four five branes can move away from a fixed
point. A single pair forms the basic dynamical five brane and
must move together as discussed in Sec. II, and in the orien
tifold an image pair must move in the opposite direction. If
4k five branes move away from fixed pointI , U(mI) breaks
to U(mI22k)3USp(2k). The collective coordinate for this
motion is one of the antisymmetric tensors of U(mI), which
can indeed break U(mI) in this way. BecausemI can change
only mod2, there are disconnected sectors of moduli spac
according to whether each of themI is odd or even. The
largest group is U~16!3U~16! with all five branes on a single
fixed point. Incidentally, we implicitly began with a torus
with no Wilson lines, but these Wilson lines@transforming
again as the antisymmetric tensor of U~16!# can break the 99
U~16! in the same pattern as the 55.

The spacetime anomalies of this model will be discussed
further in a future publication@19#. The spectrum above has
U~1! anomalies, which are cancelled by a generalization of
the Green-Schwarz mechanism. This also generates mass
of ordergs

1/2 for up to 16 U~1! multiplets, so the above spec-
trum is only correct in the formalgs→0 limit.

V. DISCUSSION

The surprise is that we have not found the theory that we
most expected, theK3 orbifold with spin connection embed-
ded in the gauge connection. This has gauge group SO~28!
3SU~2!, possibly enhanced at special points. This theory
must exist because it exists for type I on a smoothK3, where
the spectrum is the same as for the heterotic string becaus
the low energy supergravities are the same. The question i
the nature of the orbifold limit. We believe that what is hap-
pening is as follows. For type I on a smoothK3, there is only
one kind of end point, with Neumann boundary conditions.
As we approach the orbifold limit, some wave functions be-
come localized at the fixed point while others remain ex-
tended. In the limit, end points in localized states become
Dirichlet end points, while end points in the extended states
remain Neumann. But there is no reason for a transition from
one type of state to the other to be forbidden, particularly as
we have neglected the coupling of the end point to the rest o

4Though these are not among the anomaly-free theories recentl
found in Ref.@18#.
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the string. This would correspond to a term in the wo
sheet action which changes the boundary condition from
brane to nine brane, which is just a 59 open string ver
operator. So we conjecture that the orbifold limit is a theo
with nontrivial 59 backgrounds. This is no longer a fr
world-sheet theory. In fact, it is rather complicated, simi
to an orbifold with a twisted-state background.

Let us pursue this a bit further. Embedding the spin c
nection in the gauge connection means t
gR,95diag(1128,214). Section II then implies thatgR,5 is
antisymmetric. This makes it impossible to cancel the s
form tadpole in the theories we consider, but if we igno
this for now we might guess that we still need 32 five bran
two at each fixed point. This gives an SU~2! at each fixed
point, for total gauge group SO~28!3SO~4!3SU~2! 16. Now,
we have noted in the beginning of Sec. III that open str
field strengths are also sources for RR fields. So it may
that it is possible to cancel the tadpoles with an appropr
59 background. Moreover, some 59 strings are in (2,2)’s of
SO~4! and 2’s of one of the fixed point SU~2!’s making it
possible to break down to a diagonal SU~2! and obtain the
expected gauge group with hypermultiplet5 2’s @which exist
on the smoothK3 but cannot be obtained directly from th
32 of SO~32!#.

There has been a substantial literature on this and rel
models. Reference@20# considered the type I theory onK3
with spin connection embedded in gauge connection and
not find an anomaly-free theory based on a free CFT. Thi
consistent with the discussion above. Further, they were
to argue for Dirichlet open strings with SU~2! Chan-Paton
factors at each fixed point, as above, and that these SU~2!’s
should be identified with an SU~2! in SO~32!, again consis-
tent with the discussion of the 59 background. However,
do not see much hope for making this more precise, beca
of the complicated nature of the world-sheet theory.

References@2,15# also considered type I onK3, but with-
out embedding the spin connection in the gauge connec
Both implicitly assumed diagonalg ’s, and neither observed
the need@7# for a symplectic projection on the five brane

5It is interesting to ask whether the theories we have found ar
the same moduli space as the spin5gauge orbifold, with a different
gauge background; we have not answered this.
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Reference@15# found it impossible to cancel all tadpoles
though we do not understand their calculation in detail. Re
erence@14# found a model with group SO~32!3SO~2! 16.
However, because of the orthogonal projection on the fi
branes, this suffers from the problem observed in Ref.@7#:
there are half-hypermultiplets in real~not pseudoreal! repre-
sentations. Also, it is not clear that the twisted tadpoles ca
cel for this model: they are discussed but the relative norm
ization does not seem to agree with our result Eq.~3.30!.
Reference@17# find anomaly-free orientifold models with
gauge groups such as USp~8! 4 that also arise in our construc-
tion, though the matter content is different~no antisymmetric
tensors of the gauge group, but additional antisymmetric te
sor supergravity multiplets!. These models are constructe
from more abstract conformal field theories~CFT’s!, and the
description is rather inexplicit, so we have not been able
make a detailed comparison. Also, Refs.@16# construct simi-
lar models using free fermions. Curiously the gauge grou
are smaller than those found elsewhere@e.g., USp~8! in
d56#; again we have not been able to make detailed co
parisons.

As an aside, there is a strong temptation to regard t
Dirichlet open strings as the twisted sector that is otherwi
absent for the orientifold@20,1,2#. This is true in a number of
formal senses, but we find it somewhat dangerous to thi
this way, in that it might lead one only to a subset of th
consistent theories. Note, too, that it is not always true: a
brane in a noncompact space need not be accompanied b
orientifold—there is no inconsistency in the RR field equa
tion because the flux can escape to infinity. Conversely
orientifold of a noncompact space does not require the int
duction of D branes.

In conclusion, we have developed some of the necess
technology of orientifolds and D manifolds, as a step towa
trying to uncover the structure underlying string duality.
will be interesting to analyze the duality symmetries of thes
theories@19#.
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