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Oscillons in a hot heat bath
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In models of real scalar fields with degenerate double-well potentials, spherically symmetric, large amp
fluctuations away from the vacuum are unstable. Neglecting interactions with an external environmen
evolution of such configurations may entail the development of an oscillon, a localized, nonsingular,
dependent configuration which isextremelylong lived. In the present study we investigate numerically how th
coupling to a heat bath influences the evolution of collapsing bubbles. We show that the existence and li
of the oscillon stage is extremely sensitive to how strongly the field is coupled to the heat bath. By mod
the coupling through a Markovian Langevin equation with viscosity coefficientg, we find that for
g*531024m, where m is the typical mass scale in the model, oscillons are not observ
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I. INTRODUCTION

It is well known that nonlinear field theories allow for th
existence of static, regular, and localized configurations@1#.
In 111 dimensions, one finds the kink solutions to the Klei
Gordon equation with sine-Gordon orf4 potentials. Unfor-
tunately, for a higher number of spatial dimensions, the o
static and stable solutions involve either two or more fie
with some topological conservation law, as in the case of
’t Hooft–Polyakov monopole or the Nielsen-Olesen vortic
@2#, or a conserved global charge, as in the case of nonto
logical solitons @3#. The interest in such static solution
stems from a myriad of possible applications, from the mo
eling of particles and cosmological topological defects, to
propagation of information in optical fibers and defects
liquid crystals and superfluids.

Given the justified interest in static solutions, unstab
time-dependent solutions have received considerably les
tention in the literature. However, as recent work has emp
sized, the presence of nonlinearities can lead to the existe
of extremely long lived~i.e., nearly nondissipative! solutions
of the Klein-Gordon equation@4,5#. These spherically sym-
metric solutions, known as oscillons, are characterized b
rapid oscillation of the field at small radial values~the core!
of the configuration, very much like the~111!-dimensional
breathers which form from kink-antikink collisions@6#. In
fact, oscillons can be thought of as a possible stage du
the collapse of an unstable bubble; as the bubble collap
radiating its initial energy to infinity, it may~or may not!
settle into an oscillon before completely disappearing.~The
detailed conditions for a bubble to settle into an oscill
configuration are given in Ref.@5#.!

Apart from adding to our knowledge of time-depende
coherent nonlinear phenomena in field theories, the fact
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collapsing bubbles may settle into long-lived configuration
may have important consequences for our understanding
the dynamics of phase transitions. As an example, conside
system in a metastable state which is being cooled down
some rate per unit volume,Gcool. For a strong enough first
order phase transition, where homogeneous nucleatio
theory is applicable, the system will supercool in this meta
stable state before it decays by nucleating a critical radiu
bubble. The rate per unit volume for nucleating a critica
bubble is dominated by the Boltzmann factor,
GCB;exp@2FCB/T#, whereFCB is the cost in free energy
for nucleating the critical bubble, andT is the temperature.
Critical bubble nucleation is suppressed forGCB/Gcool,1.
Unless the barrier disappears below a certain temperatu
the free energy cost for nucleating a critical bubble typically
decreases as the system is cooled down, reaching a minim
value before it starts increasing again@7#. Apart from critical
bubbles, smaller free energy, unstable~subcritical! bubbles
are also nucleated. Since subcritical bubbles may fall into a
oscillon stage during their collapse, they may exist for a
much longer time than one would naively estimate. If thei
lifetime tosc is longer than the cooling time scale
@tosc.(GcoolV)

21#, it is possible that as the temperature de
creases, they will overcome the free-energy barrier and in
tiate the decay of the metastable state. In other words, osc
lons could become critical bubbles.

In practice, this possibility has not yet been analyzed i
much detail. Estimates in the context of the electrowea
phase transition show that oscillons are sufficiently sup
pressed to be of negligible impact@8#. However, based on
the qualitative arguments above, one expects oscillons to
of greater relevance in earlier~in a cosmological context!,
and thus faster, phase transitions. In fact, in the work o
Copeland, Gleiser, and Mu¨ller @5#, it was remarked that for a
grand-unified-theory-~GUT!-scale transition oscillons are ef-
ficiently produced by thermal processes ifFosc/T,10. This
condition may be satisfied by, e.g., Coleman-Weinberg po
tentials. Also, apart from their potential relevance to the dy
1626 © 1996 The American Physical Society
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54 1627OSCILLONS IN A HOT HEAT BATH
namics of both cosmological and laboratory phase tran
tions, it remains to be seen if oscillons exist in th
nonrelativistic limit of the Klein-Gordon equation, as time
dependent solutions of the nonlinear Schro¨dinger equation.

The above discussion neglected the effects of an exte
environment on the evolution of shrinking bubbles. How
ever, in most realistic situations, a thermal background w
influence the dynamics~and coherence! of any field configu-
ration. In this work, we will examine the evolution of coher
ent field configurations coupled to heat baths in more det
The evolution of the scalar field in a thermal bath will b
modeled by a Markovian Langevin equation. As we will se
the presence of a thermal bath adds additional constraints
the possible existence and lifetimes of oscillons; even if t
collapsing bubble does settle into an oscillon, the bath c
affect its lifetime quite appreciably. However, for sufficientl
small couplings between the field and the thermal bath,
cillons are still present.

The rest of this work is organized as follows. In the ne
section, we briefly review the properties of oscillons in th
absence of a thermal bath. In Sec. III, we discuss how
study bubble evolution in the presence of a heat bath. In S
IV, we present our numerical results. Lifetimes of the osc
lons for several sets of parameters are obtained usin
method consistent with an ensemble-averaging proced
together with empirically determined equations of best fit f
the data. In Sec. V we summarize our results, pointing
possible directions of future work.

II. COLD OSCILLONS

In this section we briefly review some of the results whic
established the existence of oscillons as a possible stage
ing bubble collapse for nonlinear field theories. This discu
sion will help us set up the notation and concepts which w
be useful later when we include thermal effects. More deta
can be found in Refs.@4,5#.

The action for a real scalar field in 311 dimensions is

S@f#5E d4xF12 ~]mf!~]mf!2V~f!G , ~1!

where we restrict our investigation to a symmetric doubl
well potential of the form

V~f!5
l

4 S f22
m2

l D 2. ~2!

A solutionf(x,t) to the equation of motion,

]2f/]t22¹2f52
]V~f!

]f
, ~3!

has energy

E@f#5E d3xF12 ~]f/]t !21
1

2
~¹f!21V~f!G . ~4!

Since we are only interested in spherically symmetr
configurations, it proves convenient to introduce dimensio
less variablesr5rm, t5tm, and F5(Al/m)f. The
nonlinear Klein-Gordon equation is
si-
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]2F

]t2
2

]2F

]r2
2
2

r

]F

]r
5F2F3. ~5!

Oscillons are found by solving the above equation with a
bubblelike initial configuration, which so far has been taken
to be either a ‘‘Gaussian’’ or a ‘‘tanh’’ bubble:

Gaussian:F~r,0!5~Fc2F0!e
2r2/R0

2
1F0 ; ~6!

tanh:F~r,0!5
1

2
@~F02Fc!tanh~r2R0!1F01Fc#,

R0@1. ~7!

R0 is the initial radius of the configuration,F0 is the asymp-
totic vacuum the configuration decays into~we will take
F0521), andFc is the value of the field at the configura-
tion’s core. ~We will take it to beFc51; i.e., the bubble
interpolates between the two vacua.! We also impose the
boundary conditions

F~r→`,t!5F0 , F8~0,t!50, Ḟ~r,0!50 . ~8!

Equation~5! is then numerically solved by a finite differ-
ence routine second order accurate in time and fourth orde
accurate in space.~We used the same discrete steps as in Ref
@5#, that is, a spatial steph50.1 and a time step
dt50.05.) In order to examine the rate at which the initial
configuration decays into the vacuum, we measure the tota
energy within a spherical shell surrounding it. As discussed
in Refs. @4,5#, the oscillon configuration is identified by the
presence of an almost flat plateau in the plot of energy v
time, signaling a regime during which almost no energy is
radiated away. Typically, lifetimes range from 103m21 to
104m21. In Fig. 1, we show the energy of a few oscillons as
a function of time for several Gaussian bubbles of differing
initial radii.

FIG. 1. Bubble energy vs time forg50 andT50 in the case of
~a! R52.3, ~b! R53.4, and~c! R52.7.
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FIG. 2. Computed energy per degree of freedom,ecomp, vs time
for ~a! g51023 andT510.0, ~b! g50.1 andT50.1, ~c! g51.0
andT50.25. The horizontal lines in each figure represent the ex-
pected values from the equipartition theorem.
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III. HOT OSCILLONS

We would like to extend the previous analysis for fiel
interacting with thermal baths. The simplest way to do this
to couple the scalar field to a thermal bath via a generali
Langevin equation, which assumes the bath to be Markov
~white noise! and that the field couples to the noise add
tively. The bath is characterized by a viscosity coefficie
g and by a random noisej(x,t), which are related by the
fluctuation-dissipation theorem:

^j~x,t !j~x8,t8!&52gTd~ t2t8!d3~x2x8!. ~9!

g represents the coupling strength between field and ther
bath. For simple models, it can be expressed perturbativ
in terms of the coupling constants in the system.~See, e.g.,
Ref. @9#.! However, we will treat it here as a free paramet
Note thatg21 defines the thermalization time scale. Mo
complicated nonlocal forms of the Langevin equation cou
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be used, although we think it wise to defer such approach
to later studies.~More details can be found in Refs.@9,10#
and references therein.!

In terms of the dimensionless coordinates defined befo
the Langevin equation is given by

]2F

]t2
1g̃

]F

]t
2

]2F

]r2
2
2

r

]F

]r
5F2F31 j̃, ~10!

where g̃5g/m and j̃5Alj/m3 are the dimensionless vis-
cosity and noise, respectively.

Here, one last simplification comes in. In general, on
should be solving the fully~311!-dimensional Langevin
equation, as the bath carries no symmetries with it. Howev
we will assume that the dominant interactions of the bubb
with the thermal bath are in the radial direction. We mu
rewrite the fluctuation-dissipation relation consistently wit
spherical symmetry, effectively keeping the problem one d
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54 1629OSCILLONS IN A HOT HEAT BATH
mensional. The full~311!-dimensional problem proves to b
very CPU intensive and of limited interest.~Note that in the
presence of a thermal bath, results are obtained after an
semble averaging procedure. In other words, each meas
ment can involve hundreds of runs. As it is, the results o
tained here already required a network of workstatio
running for a total of 6000 days of CPU time.! This approxi-
mation is not only economical, but also makes sense ph
cally. For bubblelike configurations, it is reasonable to e
pect that the effect of the bath will be dominant in the rad
direction. In any case, the results here should be consid
as an upper bound on the lifetimes; including perturbatio
in all three dimensions will not help increase the oscillon
lifetime.

The spherically symmetric fluctuation-dissipation relati
is

^j̃~r,t!j̃~r8,t8!&5
1

2pr2
g̃ud~t2t8!d~r2r8!, ~11!

whereu5lT/m is the dimensionless temperature.

FIG. 3. Bubble energy vs time forR53.2, g51025, and
T50.1 with different seed values for each curve. The figure rep
sents only 30 runs from a total of 150.

FIG. 4. Bubble energy, total energy, and bath energy as fu
tions of time forR052.7, g51025, andT55.0.
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Before proceeding, we must make sure that our expres
sion for the fluctuation-dissipation relation is physical. A
simple way to do this is to consider the evolution of a free
field in a parabolic potential and measure the energy pe
degree of freedomE/N, whereN is the total number of
spatial lattice points. Since the problem is one dimensional
the equipartition theorem states that, in equilibrium,
E/N5T/2. We have confirmed that this relation is satisfied
for a wide range of parameters, as shown in Fig. 2.

IV. NUMERICAL RESULTS

Now that we have an evolution equation in the presence
of a thermal bath consistent with the assumption of spherica
symmetry, we can start investigating how the bath influences
the formation and longevity of oscillons.

re-

nc-

FIG. 5. Histograms for ~a! R52.5 and ~b! R53.0, for
g51025 andT50.1. Dt indicates the bin size used in the specific
cases.
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As in the ‘‘cold oscillon’’ case, we measure the ener
within a shell surrounding the initial configuration as a fun
tion of time. The radius of the shell,Rshell, should be taken
to be sufficiently larger than the radius of the initial config
ration,R0 . Typically, we choseRshell515. The presence o
temperature, however, immediately introduces two diffic
ties. First, the bath contributes to the energy within the sh
obscuring the measurement of the bubble’s energy. Sec
a physical result must be obtained by an ensemble avera
procedure, where different conditions are set by differ
seeds for the random number generator responsible for
noise term in the equation. However, as soon as we cha
the seed, the oscillon lifetime changes, as we show in Fi
for a selection of 30 runs out of 150. We must find a cons
tent procedure for measuring the ensemble-averaged osc
lifetime. Let us deal with each of these problems in turn.

FIG. 6. Histograms for~a! g51025 and ~b! g5331024, for
R052.7 andT50.1. Dt indicates the bin size used in the speci
cases.
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The first problem can be taken care of quite easily;
perform several runs without a bubble@i.e., with a constant
initial configuration F(r,0)521], and measure the
ensemble-averaged energy of the bath within the sh
^Ebath&. The angular brackets denote ensemble-avera
quantities. We then define the normalized energy of
bubble by

Ebub5Etotal2^Ebath&, ~12!

where Etotal is the total energy within the shell. Figure
shows a typical case forEbub, Etotal, and^Ebath&. As a test of
this procedure, we confirmed that^Ebub&→0 after bubbles
have decayed. Another test is to measure the plateau en
for small g andT. The result should be~and is! consistent
with the cold oscillon case,Eplateau;43m/l.

In order to handle the second problem, we first define h
we measure the oscillon’s lifetime. As opposed to the case
cold oscillons, where we could just estimate the lifetime
checking when the oscillon finally decays~see Fig. 3!, here
we must automate the procedure, as we will have to han
thousands of runs. First, we must establish if a given init
bubble settles into an oscillon stage. As we remarked ear
the most important signature of the oscillon is the near c
stancy of its total energy. In Refs.@4,5#, it was measured tha
during the oscillon stage the plateau energy varies by at m
20%. After an exhaustive search, we found that we can id
tify an oscillon stage by settingudEplateau/dtu<0.02m2/l.
Steeper changes of the plateau energy were incompa
with the nearly nondissipative nature of oscillons. Now th
we know how to hunt for oscillons, we must decide how w
will measure their lifetimes. Here, the fact that these config
rations decay rather quickly allows us to simply set the o
cillon lifetime to the time when its energy drops t
0.1Eplateau.

To summarize so far, we first choose values for the th
variables in the model: the initial radiusR0 , the viscosity

fic

FIG. 7. Oscillon lifetime vs radius for constant viscosity an
temperature.
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g, and the temperatureT. Each numerical ‘‘experiment’’
consists of evolving the Langevin equation with a choice
variables and a given value for the random number seed. T
code then searches for an oscillon by identifying a fairly fla
plateau, and then measures its lifetime by recording the tim
when its energy decays to 0.1Eplateau. This procedure is re-
peated a large number of times with different seeds for t
random number generator. This way, we obtain a distributi
of lifetimes for a given set of variables, as shown in Fig. 3
In order to determine the ensemble-averaged lifetime, w
produce a histogram where we bin different decay times
the number of occurrences. In Fig. 5, we show a few e
amples of histograms for varying radii and fixed viscosit
and temperature. In Fig. 6, we show a few examples of var
ing viscosity, with fixed radius and temperature.

We can now extract the ensemble-averaged lifetime
fitting a Gaussian to the various histograms, using a lea
squares approximation. Since the thermal noise produc
the variation in the lifetimes is generated from normal dev
ates, it is reasonable to assume that the lifetimes will follo
the central limit theorem, and produce Gaussian distribut
data as well, for a sufficiently large number of runs. Th
mean gives the desired lifetime and the variance gives t
spread in the lifetime measurements. In order to obtain t
best possible fit, we used the Levenberg-Marquardt meth
@11#.

The results for the lifetime as a function of radius an
different values of viscosity and temperature are shown
Fig. 7. It is clear that the coupling to the bath strongly sup
presses the duration of the oscillon stage, when it is at
present; for values of viscosity larger thang.531024m, no
oscillons could be found. Bubbles quickly collapse, radiatin
their coherent energy into the incoherent thermal bath. Sin

FIG. 8. Oscillon lifetime vs viscosity for constant radius an
temperature. The equation providing best fit isA@(g1B)/g0#

2C

where A52.03103, B54.031026, C50.43, and
g055.831025.
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g21 is the typical thermalization time scale, we obtain a
rough criterion for the existence of oscillons in the presence
of a Markovian thermal bath,

g21.t0 , ~13!

where t0 is the lifetime of the cold oscillon of the same
radius. Since typically 103<t0<104, this result is consistent
with the fact that the bath acts to destroy the coherence of th
field configuration.

From Fig. 7 we note that although the bath affects the
longevity of the oscillons, it does not appreciably affect the
range of radii for the initial bubble settling into the oscillon
stage; as in Refs. @4,5#, we still obtain roughly
2.3&R0&4.5 for the allowed range. Also, the longest-lived
oscillons are the most affected, consistent with the abov
condition, Eq.~13!.

In Fig. 8 we display the results for lifetime vs viscosity,
for R052.7m21 and T50.1m/l. A least-squares fit pro-
duces the empirical relation

t~g!5AFg1B

g0
G2C

, ~14!

where A52.03103, B54.031026, C50.43, and, g0
55.831025. The error bars are given by the variance of the
Gaussian fit the histograms.g0 sets the scale for the exist-
ence of oscillons.

Finally, in Fig. 9 we display the results of lifetime vs
temperature, forR052.7m21 and g51025. It is clear that
the lifetime is less sensitive to temperature than to viscosity
Again, an empirical fit can be obtained:

t~T!5AexpS 2
T

T0
D1B, ~15!

d FIG. 9. Oscillon lifetime vs temperature for constant radius and
viscosity. The equation providing best fit isAexp(2T/T0)1B where
A52.13103, B51.73103, andT052.1.
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whereA52.13103, B51.73103, andT052.1. For higher
temperatures, it becomes very difficult to extract meaning
results, as the signal-to-noise ratio sharply decreases.

V. CONCLUSIONS

We investigated the evolution of collapsing bubblelik
configurations in the presence of a thermal bath. The bubb
were assumed to have Gaussian profile, and the dynam
were modelled by a generalized Langevin equation with
Markovian thermal bath. In the absence of a thermal bath
is possible for these configurations to settle into what
known as an oscillon stage, a nearly nondissipative confi
ration which is thus extremely long lived.

We showed that the presence of a thermal bath affects
existence and longevity of the oscillon stage rather strong
For values of the viscosity coefficient,g.531024m, no
oscillon stage develops, independent of temperature. Thi
naively analogous to an overdamped harmonic oscillator. F
smaller values ofg, an oscillon stage develops, but its life
time is suppressed. This result can be related to the fact
the time scale for thermalization is;g21, while in the ab-
sence of a heat bath the typical lifetime of the oscillon sta
is t0;(103–104)m21. This is analogous to an underdampe
harmonic oscillator, where the decay time scale isg21.
When the decay time scale is of order the lifetime of th
ul
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oscillon, the bath suppresses the duration of the osc
stage. For even smaller values ofg, the oscillon approach
similar lifetimes as in the cold oscillon case. Thus, the
evance of oscillons in different contexts in which a ther
bath is present will depend on the strength of the cou
between the field and the thermal bath, here modeledg.
As a rough rule, oscillons are present wheneverg21.t0 .

Our discussion focused on Markovian thermal ba
However, given the nature of interacting field theories,
possible that the bath will have more complicated prope
such as spatiotemporal correlations which are non
and/or couplings which are multiplicative as oppose to a
tive. ~For example, terms of the formjf in the equation o
motion @9#.! It remains to be seen if these nonlocal eff
will act as an additional source of coherence for fields.
being the case, coupling to more general thermal baths
have very different consequences for the existence and
gevity of oscillons.
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