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Oscillons in a hot heat bath
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In models of real scalar fields with degenerate double-well potentials, spherically symmetric, large amplitude
fluctuations away from the vacuum are unstable. Neglecting interactions with an external environment, the
evolution of such configurations may entail the development of an oscillon, a localized, nonsingular, time-
dependent configuration whichéstremelylong lived. In the present study we investigate numerically how the
coupling to a heat bath influences the evolution of collapsing bubbles. We show that the existence and lifetime
of the oscillon stage is extremely sensitive to how strongly the field is coupled to the heat bath. By modeling
the coupling through a Markovian Langevin equation with viscosity coefficigntwe find that for
y=5x10"*m, where m is the typical mass scale in the model, oscillons are not observed.
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PACS numbds): 11.10.Lm, 05.70.Ln, 98.80.Cq

[. INTRODUCTION collapsing bubbles may settle into long-lived configurations
may have important consequences for our understanding of
It is well known that nonlinear field theories allow for the the dynamics of phase transitions. As an example, consider a
existence of static, regular, and localized configuratidis  system in a metastable state which is being cooled down at
In 1+1 dimensions, one finds the kink solutions to the Klein-some rate per unit volumd;.,,. For a strong enough first
Gordon equation with sine-Gordon ¢ potentials. Unfor- order phase transition, where homogeneous nucleation
tunately, for a higher number of spatial dimensions, the onlytheory is applicable, the system will supercool in this meta-
static and stable solutions involve either two or more fieldsstable state before it decays by nucleating a critical radius
with some topological conservation law, as in the case of thédubble. The rate per unit volume for nucleating a critical
't Hooft—Polyakov monopole or the Nielsen-Olesen vorticesbubble is dominated by the Boltzmann factor,
[2], or a conserved global charge, as in the case of nontopd-cg~exd —Fcg/T], whereFcg is the cost in free energy
logical solitons[3]. The interest in such static solutions for nucleating the critical bubble, and is the temperature.
stems from a myriad of possible applications, from the mod-<Critical bubble nucleation is suppressed 10gg/T oo <1.
eling of particles and cosmological topological defects, to theJnless the barrier disappears below a certain temperature,
propagation of information in optical fibers and defects inthe free energy cost for nucleating a critical bubble typically
liquid crystals and superfluids. decreases as the system is cooled down, reaching a minimum
Given the justified interest in static solutions, unstableyvalue before it starts increasing agéi}. Apart from critical
time-dependent solutions have received considerably less diubbles, smaller free energy, unstalgeibcritica) bubbles
tention in the literature. However, as recent work has emphaare also nucleated. Since subcritical bubbles may fall into an
sized, the presence of nonlinearities can lead to the existenaescillon stage during their collapse, they may exist for a
of extremely long livedi.e., nearly nondissipatiyesolutions  much longer time than one would naively estimate. If their
of the Klein-Gordon equatiof4,5]. These spherically sym- lifetime 7, is longer than the cooling time scale
metric solutions, known as oscillons, are characterized by a7, (I'coV) 11, it is possible that as the temperature de-
rapid oscillation of the field at small radial valuéke cor¢  creases, they will overcome the free-energy barrier and ini-
of the configuration, very much like thd+1)-dimensional tiate the decay of the metastable state. In other words, oscil-
breathers which form from kink-antikink collisioni$]. In lons could become critical bubbles.
fact, oscillons can be thought of as a possible stage during In practice, this possibility has not yet been analyzed in
the collapse of an unstable bubble; as the bubble collapsesuch detail. Estimates in the context of the electroweak
radiating its initial energy to infinity, it mayor may noj  phase transition show that oscillons are sufficiently sup-
settle into an oscillon before completely disappearifidie  pressed to be of negligible impai8]. However, based on
detailed conditions for a bubble to settle into an oscillonthe qualitative arguments above, one expects oscillons to be
configuration are given in Ref5].) of greater relevance in earlién a cosmological context
Apart from adding to our knowledge of time-dependentand thus faster, phase transitions. In fact, in the work of
coherent nonlinear phenomena in field theories, the fact thaopeland, Gleiser, and Mar [5], it was remarked that for a
grand-unified-theorytGUT)-scale transition oscillons are ef-
ficiently produced by thermal processed-if,./T<<10. This
“Electronic address: gleiser@peterpan.dartmouth.edu condition may be satisfied by, e.g., Coleman-Weinberg po-
"Electronic address: rhaas@phys.ufl.edu tentials. Also, apart from their potential relevance to the dy-
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namics of both cosmological and laboratory phase transi- PP PDP 2 9d 5

tions, it remains to be seen if oscillons exist in the —— - ———=0-0", %)
L ) . . aT ap p dp

nonrelativistic limit of the Klein-Gordon equation, as time-

dependent solutions of the nonlinear Salinger equation. Oscillons are found by solving the above equation with a

The above discussion neglected the effects of an externglubblelike initial configuration, which so far has been taken
environment on the evolution of shrinking bubbles. How-tg pe either a “Gaussian” or a “tanh” bubble:

ever, in most realistic situations, a thermal background will

influence the dynamicgand coherengeof any field configu- Gaussian® (p,0) = (dbc—dbo)e"’z’Rng Do (6)
ration. In this work, we will examine the evolution of coher-

ent field configurations coupled to heat baths in more detail. 1

The evolution of the scalar field in a thermal bath will be  tanh:®(p,0)=5[(Po—P)tantp—Rg) + Do+ Pc],
modeled by a Markovian Langevin equation. As we will see,

the presence of a thermal bath adds additional constraints on R.>1 @
the possible existence and lifetimes of oscillons; even if the

collapsing bubble does settle into an oscillon, the bath caR is the initial radius of the configuratiol®, is the asymp-
affect its lifetime quite appreciably. However, for sufficiently totic vacuum the configuration decays intwe will take
small couplings between the field and the thermal bath, 0s§ = —1), and®, is the value of the field at the configura-
cillons are still present. tion’s core.(We will take it to be®.=1; i.e., the bubble

The rest of this work is organized as follows. In the nextinterpolates between the two vacusVe also impose the
section, we briefly review the properties of oscillons in thepoundary conditions

absence of a thermal bath. In Sec. Ill, we discuss how we

study bubble evolution in the presence of a heat bath. In Sec. d(p—»,7)=d,, P'(0,7)=0, {p(p,o):o . (8

IV, we present our numerical results. Lifetimes of the oscil-

lons for several sets of parameters are obtained using a Equation(5) is then numerically solved by a finite differ-
method consistent with an ensemble-averaging procedurence routine second order accurate in time and fourth order
together with empirically determined equations of best fit foraccurate in spacéWe used the same discrete steps as in Ref.
the data. In Sec. V we summarize our results, pointing td5], that is, a spatial steph=0.1 and a time step

possible directions of future work. 67=0.05.) In order to examine the rate at which the initial
configuration decays into the vacuum, we measure the total
Il. COLD OSCILLONS energy within a spherical shell surrounding it. As discussed

. ) ) ) . in Refs.[4,5], the oscillon configuration is identified by the
In this section we briefly review some of the results whichpresence of an almost flat plateau in the plot of energy vs
established the existence of oscillons as a possible stage dyfme, signaling a regime during which almost no energy is
ing bubble collapse for nonlinear field theories. This discusyadiated away. Typically, lifetimes range from3p0 ! to
sion will help us set up the notation and concepts which willjo¢y—=1. |n Fig. 1, we show the energy of a few oscillons as

be useful Iater.when we include thermal effects. More detail$; fynction of time for several Gaussian bubbles of differing
can be found in Refd4,5]. initial radii.

The action for a real scalar field i3l dimensions is

150 T v v T T T T T T T T T

1
S[¢]=f d*x 5(0,9)(9"¢) =V ()|, D

where we restrict our investigation to a symmetric double-
well potential of the form

}\ m2 2 100 | -
V(e)=7| ¢~ T) @ J
E
A solution ¢(x,t) to the equation of maotion, §
e
Y
Pplot>—V2p=— (¢), 3 i
1) .
: |
as ener =
¥ ()| ()
\ ]
a1 2, 1 2 \
E[¢]= | d°X|5(dd/at) + (V) +V(e)|. (4 \
2 2 | A L 1
2000 4000 6000
Since we are only interested in spherically symmetric T
configurations, it proves convenient to introduce dimension-
less variablesp=rm, r=tm, and CI>=(\/X/m)¢. The FIG. 1. Bubble energy vs time for=0 andT=0 in the case of

nonlinear Klein-Gordon equation is () R=2.3, (b) R=3.4, and(c) R=2.7.
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Ill. HOT OSCILLONS be used, although we think it wise to defer such approaches

. . . , to later studies(More details can be found in Reff9,10|
We would like to extend the previous analysis for f|eldsand references therejn.

interacting with thermal baths. The simplest way to do this is In terms of the dimensionless coordinates defined before
to couple the scalar field to a thermal bath via a generalizeﬂ1e Langevin equation is given by '
Langevin equation, which assumes the bath to be Markovian
(white nois¢ and that the field couples to the noise addi- 5 )

tively. The bath is characterized by a viscosity coefficient E+~@_ Q_ E@zq)_q)s_i_"g‘ (10)
v and by a random noisé(x,t), which are related by the a2 Var 2 '
fluctuation-dissipation theorem:

wherey=y/m andEz JNEIm® are the dimensionless vis-
(EGHEX ) =2yTo(t—t") 3 (x—X). (9 cosity and noise, respectively.
Here, one last simplification comes in. In general, one
v represents the coupling strength between field and thermahould be solving the fully(3+1)-dimensional Langevin
bath. For simple models, it can be expressed perturbativelgquation, as the bath carries no symmetries with it. However,
in terms of the coupling constants in the systéBee, e.g., we will assume that the dominant interactions of the bubble
Ref.[9].) However, we will treat it here as a free parameter.with the thermal bath are in the radial direction. We must
Note thaty™ ! defines the thermalization time scale. More rewrite the fluctuation-dissipation relation consistently with
complicated nonlocal forms of the Langevin equation couldspherical symmetry, effectively keeping the problem one di-
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FIG. 3. Bubble energy vs time foR=3.2, y=105, and
T=0.1 with different seed values for each curve. The figure repre-
sents only 30 runs from a total of 150. @
mensional. The ful{3+1)-dimensional problem proves to be
very CPU intensive and of limited intereghote that in the
presence of a thermal bath, results are obtained after an en-
semble averaging procedure. In other words, each measure-y,
ment can involve hundreds of runs. As it is, the results ob-
tained here already required a network of workstations
running for a total of 6000 days of CPU timd&.his approxi-
mation is not only economical, but also makes sense physi-
cally. For bubblelike configurations, it is reasonable to ex-
pect that the effect of the bath will be dominant in the radial -
direction. In any case, the results here should be considered ©
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as an upper bound on the lifetimes; including perturbations & 10
in all three dimensions will not help increase the oscillon’'s &
lifetime. §
The spherically symmetric fluctuation-dissipation relation =
is
>4 ~ 0 1 1
ot -~ ’ ’ 1
<§(Py7)§(P T )>: 27Tp2 y05(r—1")d(p—p'), (11) 3000 4000 5000
(b) T

where #=\T/m is the dimensionless temperature.

== By !
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FIG. 5. Histograms for(a) R=2.5 and (b) R=3.0, for
y=10"% andT=0.1. A7 indicates the bin size used in the specific
cases.

Before proceeding, we must make sure that our expres-
sion for the fluctuation-dissipation relation is physical. A
simple way to do this is to consider the evolution of a free
field in a parabolic potential and measure the energy per
degree of freedonkE/N, where N is the total number of
spatial lattice points. Since the problem is one dimensional,
the equipartition theorem states that, in equilibrium,
E/N=T/2. We have confirmed that this relation is satisfied
for a wide range of parameters, as shown in Fig. 2.

IV. NUMERICAL RESULTS

Now that we have an evolution equation in the presence
of a thermal bath consistent with the assumption of spherical

FIG. 4. Bubble energy, total energy, and bath energy as funcsymmetry, we can start investigating how the bath influences

tions of time forR,=2.7, y=10"°, andT=5.0.

the formation and longevity of oscillons.
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) \ 1 The first problem can be taken care of quite easily; we
’ ) perform several runs without a bubHliee., with a constant

/ \ ] initial configuration ®(p,0)=—-1], and measure the

\ ] ensemble-averaged energy of the bath within the shell,
/ \ ] (Epay- The angular brackets denote ensemble-averaged

! \ quantities. We then define the normalized energy of the

, ] ] bubble by

/ \ ] Epub= Etota— <Ebath> ) (12

/ X ] where E, is the total energy within the shell. Figure 4
N T shows a typical case fd,,p, Eyta;, and{Epay. As a test of
- S ] this procedure, we confirmed théE,,)—0 after bubbles
o have decayed. Another test is to measure the plateau energy
800 1000 1200 for small y andT. The result should béand ig consistent
(b) T with the cold oscillon casek pjaeaq43M/\.
In order to handle the second problem, we first define how
FIG. 6. Histograms fofa) y=10"° and (b) y=3x10"*% for  we measure the oscillon’s lifetime. As opposed to the case of
Ro=2.7 andT=0.1. A7 indicates the bin size used in the specific cold oscillons, where we could just estimate the lifetime by
cases. checking when the oscillon finally decaysee Fig. 3, here
we must automate the procedure, as we will have to handle
As in the “cold oscillon” case, we measure the energythousands of runs. First, we must establish if a given initial
within a shell surrounding the initial configuration as a func-bubble settles into an oscillon stage. As we remarked earlier,
tion of time. The radius of the sheRg,;, should be taken the most important signature of the oscillon is the near con-
to be sufficiently larger than the radius of the initial configu- stancy of its total energy. In Ref,5], it was measured that
ration, Ry. Typically, we choseRy,o=15. The presence of during the oscillon stage the plateau energy varies by at most
temperature, however, immediately introduces two difficul-20%. After an exhaustive search, we found that we can iden-
ties. First, the bath contributes to the energy within the shelltify an oscillon stage by settingd Eyjatea/dt|<0.02m%/X.
obscuring the measurement of the bubble’s energy. Secon8teeper changes of the plateau energy were incompatible
a physical result must be obtained by an ensemble averagingith the nearly nondissipative nature of oscillons. Now that
procedure, where different conditions are set by differentve know how to hunt for oscillons, we must decide how we
seeds for the random number generator responsible for theill measure their lifetimes. Here, the fact that these configu-
noise term in the equation. However, as soon as we changations decay rather quickly allows us to simply set the os-
the seed, the oscillon lifetime changes, as we show in Fig. 8illon lifetime to the time when its energy drops to
for a selection of 30 runs out of 150. We must find a consis0.1E ;ca,
tent procedure for measuring the ensemble-averaged oscillon To summarize so far, we first choose values for the three
lifetime. Let us deal with each of these problems in turn. variables in the model: the initial radiug,, the viscosity

Number of Occurrences
-
T
1
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FIG. 8. Oscillon lifetime vs viscosity for constant radius and FIG. 9. Oscillon lifetime vs temperature for constant radius and
temperature. The equation providing best fitAB(y+B)/y,]~C viscosity. The equation providing best fitAexp(—T/Ty)+B where
where A—20x1C, B-40<10° C-043, and A~21X10, B=17x10° andTo=2.1.

¥0=5.8X10"°. o _ o _
v~ + is the typical thermalization time scale, we obtain a

) ] rough criterion for the existence of oscillons in the presence
y, and the temperatur@. Each numerical “experiment” ¢ 53 Markovian thermal bath,

consists of evolving the Langevin equation with a choice of
variables and a given value for the random number seed. The vy I>1, (13
code then searches for an oscillon by identifying a fairly flat

plateau, and then measures its lifetime by recording the timghere r, is the lifetime of the cold oscillon of the same
when its energy decays to EJaear This procedure is re- radius. Since typically 18< r,<10", this result is consistent
peated a large number of times with different seeds for thevith the fact that the bath acts to destroy the coherence of the
random number generator. This way, we obtain a distributiorfield configuration.

of lifetimes for a given set of variables, as shown in Fig. 3. From Fig. 7 we note that although the bath affects the
In order to determine the ensemble-averaged lifetime, wéongevity of the oscillons, it does not appreciably affect the
produce a histogram where we bin different decay times véange of radii for the initial bubble settling into the oscillon
the number of occurrences. In Fig. 5, we show a few exstage; as in Refs.[4,5, we still obtain roughly
amples of histograms for varying radii and fixed viscosity 2.3<Ro=4.5 for the allowed range. Also, the longest-lived
and temperature. In Fig. 6, we show a few examples of Varyoscillons are the most affected, consistent with the above
ing viscosity, with fixed radius and temperature. condition, Eq.(13). o o

We can now extract the ensemble-averaged lifetime by N Fig. 8 we display the results for lifetime vs viscosity,
fitting a Gaussian to the various histograms, using a leasto” Ro=2.7m " and T=0.1m/x. A least-squares fit pro-
squares approximation. Since the thermal noise producingtces the empirical relation
the variation in the lifetimes is generated from normal devi-
ates, it is reasonable to assume that the lifetimes will follow (y)=A
the central limit theorem, and produce Gaussian distributed
data as well, for a sufficiently large number of runs. The
mean gives the desired lifetime and the variance gives thwhere A=52.0>< 10°, B=4.0% 10_.61 C=0.43, and, 7o
spread in the lifetime measurements. In order to obtain th& 9-8< 10" >. The error bars are given by the variance of the
best possible fit, we used the Levenberg-Marquardt metho@ussian fit the histogramy, sets the scale for the exist-
[11]. ence of os_cnlor_ns. _ -

The results for the lifetime as a function of radius and__Finally. in Fig. 9 we @fplay the r(issults of lifetime vs
different values of viscosity and temperature are shown iff€mperature, foRy=2.7m "~ and y=10 *. It is clear that
Fig. 7. It is clear that the coupling to the bath strongly sup- he I_|fet|me is Iggs se_nsmve to tempera’Fure than to viscosity.
presses the duration of the oscillon stage, when it is at a”Agam, an empirical fit can be obtained:
present; for values of viscosity larger thar5x 10" *m, no T
oscillons could be found. Bubbles quickly collapse, radiating 7(T) =Aexp{ ——|+B, (15)
their coherent energy into the incoherent thermal bath. Since To

-C

vy+B ' (14

Yo
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whereA=2.1x10°, B=1.7xX10°, andT,=2.1. For higher oscillon, the bath suppresses the duration of the oscillon
temperatures, it becomes very difficult to extract meaningfuktage. For even smaller values1f the oscillon approaches

results, as the signal-to-noise ratio sharply decreases. similar lifetimes as in the cold oscillon case. Thus, the rel-
evance of oscillons in different contexts in which a thermal
V. CONCLUSIONS bath is present will depend on the strength of the coupling

] ) ) ) _ between the field and the thermal bath, here modeleg.by

We investigated the evolution of collapsing bubblelike pog 5 rough rule, oscillons are present wheneyet> 7,.
configurations in the presence of a thermal bath. The bubbles oy discussion focused on Markovian thermal baths.
were assumed to have Gaussian profile, and the dynamiggowever, given the nature of interacting field theories, it is
were modelled by a generalized Langevin equation with &ggsiple that the bath will have more complicated properties
Markovian thermal bath. In the absence of a thermal bath, if,cn as spatiotemporal correlations which are nonlocal
is possible for these configurations to settle into what isyng/or couplings which are multiplicative as oppose to addi-
knqwn as an.oscnlon stage, a nearly nondissipative configuge. (For example, terms of the formp in the equation of
ration which is thus extremely long lived. motion [9].) It remains to be seen if these nonlocal effects

We showed that the presence of a thermal bath affects thgjj| 4¢t as an additional source of coherence for fields. That
existence and longevity of the oscillon stage rather stronglybeing the case, coupling to more general thermal baths may

. . .. 4 N .
For values of the viscosity coefficieny>5X10""m, no  naye very different consequences for the existence and lon-
oscillon stage develops, independent of temperature. This evity of oscillons.

naively analogous to an overdamped harmonic oscillator. For
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