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Quantum theory of nonrelativistic particles interacting with gravity
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(Received 13 December 1995

We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We
considerN nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-
Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the
system of particles to first order i®. The effective interaction between the particles as well as the self-
interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held respon-
sible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macro-
scopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-
induced collapse models. We finally comment on possible applica{i80§56-282(96)00214-1

PACS numbgs): 03.65.Bz, 04.406-b, 05.40+j

[. INTRODUCTION particular features of the gravitational coupling, which is
quadratically coupled to momenta. The result of our analysis
There has been recently considerable interest in the applis the non-Markovian master equati¢d.9) below. For the
cation of the influence functional techniq(d] in the study case of a single particle, it is simplified significanflizq.
of nonequilibrium systems in physics. In addition to quantum(4.1]. We see that the dissipation and diffusion are deter-
Brownian motion[2—5] for which the method was initially mined solely from the Hamiltonian operator. We can inter-
developed, it has been applied to the modeling of particlePret our results as a continuous monitoring of the energy of
field interactiong6], radiation damping7], blackbody radia- the particle by the gravitational environment.
tion [8], and most recently to noninertial detectors coupled to  The diffusion function which is responsible for decoher-
a scalar field9]. It is one of the most powerful techniques to €nce vanishes at long times, and it turns out, that unless we
obtain master equations, when the coarse graining come®nsider macroscopically massive bodies, the rate of gravi-
from the Sp"tting of degrees of freedom to System and enViIationaIIy induced decoherence is extremely small. This is a
ronment. desirable result in connection with the gravity-induced col-
In this paper we apply the technique in another case: &pse models.
system ofN nonrelativistic particles coupled to linearized
gravity. A motivation for this is the possibility that gravity
induces decoherence on the particles’ states. This is a sug-
gestion made in different contexts on fundamental irrevers- ConsiderN particles on a3+ 1)-dimensional spacetime,
ibility in quantum mechanicf11-12. The weakness of the moving on trajectoriegx,(7,),t,(7,)) parametrized by the
coupling suggests that the probable decoherence time shoulgloper timesr,, so thatt,(7,,) is a strictly increasing function
be very large, but the particular form of the couplifqmia-  of 7, [9]. We assume that the gravitational interaction is very
dratic to momentumand the possibility of persistent noise weak and therefore work in the linearized approximation.
might give rise to relatively strong loss of coherence. That is, the metric is
In addition, the model we present here can be generalized
in a straightforward way to obtain a description of systems of _
guantum-mechanical detectors of gravitational waves. 9pur= M F Ny
Our model consists of nonrelativistic particles coupled to
the linearized gravitational field, which is assumed to be ini-with 7,, the Minkowski space metric.
tially in its vacuum state. We argue that a factorizing initial We take the nonrelativistic limit for the particles, that is,
condition is, in contrast to quantum Brownian motion, well we assume that there exists a frame with respect to which
suited for our system. The modes of the graviton field areghey are almost stationary, and therefore we can write their
bounded in energy by an ultraviolet cutoff, which on trajectories aga,+ X (,)(t),t), having identified the global
physical grounds should be much smaller than the Comptotime coordinatet with the proper time of the particles. We
wavelength of the particles. In addition, we assume that thassume thalix, | is much smaller than the distance between
particles are almost stationary. Our analysis resembles, in any two particlesdnm=|a(n)—a(m)|. This is a good approxi-
way, the one of9]. Like those authors, we obtain correlation mation as long asl,,, is much larger than the maximum
kernels describing a nonlocal interaction between the parwavelength of the gravition field that can be excited. Essen-
ticles. The influence functional we construct is rather differ-tially, we consider the particles moving around some fixed
ent from the ones considered in the literature, due to theites coordinated bg, , so that their individual motion does
not significantly change their distances. In any case, this ap-
proximation does not affect at all the discussion on the self-
*Electronic address: can@tp.ph.ic.ac.uk interaction of the particles through the gravitational field.

Il. THE MODEL

(2.1
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We work in the transverse-traceless gauge for the linearwhere
ized gravitational fieldhy, =0, h{' =0, h{=0). Under these
approximations, the total action of the system for evolution J(”—cosk ANk 21
from global timet=0 tot=T reads B (212

Stot= Sgr+ Spar+ Sint (2.2 ‘]E(rl) =sink- an) AﬁrlJ)X X! (213

where L . .
and o =|k|. This is just the action of a collection of forced

s , harmonic oscillators. Therefore the total action is that of a
So=1-G fo dtj d*x h,, P collection of N nonrelativistic free particles interacting with
a bath of harmonic oscillators, through couplings depending
5 i ik quadratically on the velocity.
~1.G dtf d®x(h;jhl —hy R, (2.3 The tracing out of the graviton modes can be done exactly
since the path integral is a Gaussian with respect to them. We
compute the influence functional:

T o
sparzg fodtéaijx'(n)xgn), (2.4)
: f[x(t),x'(t’)]=1—llg JdQ?f dqf’ﬁf dqu dagé
smt=; fodt Py X (X - (2.5
X(qa—q;;)f Dq,(t)Dap(t’)
Note that we have séi=c=m=1.
We expand the graviton field in normal modes: XGXP[ngr[qa(t)HiSim[qa(t),X(t)]
—iS,[aL(t")]—iSnlgl(t"),x' (t’
h”(X t) f ( Z q(r) cosk- x+q(” sink- X)Aku gr[qa( )] |nt[qa( ) ( )]}
2.6 X po(d3 %o, o X5) (2.14
The polarization matrlceA(” (r=1,2) are traceless and where the integration is over the paths satisfygf¢0)=qyg,
transverse and can be chosen to satisfy g¥(T)=qf, q'*(0)=qy", andq’*(T)=q;“. Herepy is the
i density matrix of the total system. The path integrations can
ADIA = 5 ( Si— ﬁ) 2.7 be carried out exactly, to obtain
ki ki = %rr’ | k2 ’ .
T 5
Kk Kok, N j-'[x(t),x’(t’)]=N(T)ex;{ - ds| ds
2 Af(ﬁj)A(krlglz(E(ij__Z_:(l ])<5k)l__2_k) )1:T”k'(k)- o Jo
(2.8 x(Ja+J;)(s)sin Wo(s—8)(J,—IL)(s")

The gravity part of the action, therefore, reads

(r)2 2 r)2

ds

XCOSwa(S—S')(Ja—J;)(S’)}. (2.19

+(q52+ k2 “)2)] (2.9
This is just the action for two massless scalar fields propa- In deriving this we have assumed that&tO the states of
gating on Minkowski spacetime. the particles and of the graviton field were uncorrelated and
We now write the coupling part of the action, that the field was in its vacuum state: i.e.,

f f—QEZ(q cosk-an, ‘If[hij]=Cexr{2 | qi} (2.19

2w,
+ab, sink-a) A XX, (2.10
o o _ This initial condition is usually considered unphysical in
where within our approximations we ignored thg, terms  guantum Brownian motion models. We believe that it is ac-

in the trigonometric functions. tually a quite good one for the case of gravity. Graviton

~ By using the collective index to include thek,r and the  modes are excited only by nonstationary particles. Therefore

indexing of our oscillator by 1 or 2, we write this initial condition reflects an operation on the particles of
a very fast acceleration just before 0.

(qa+w 202)+qud,| (21D Substituting the expressions for the curredfsinto the
influence functional we get

Syt Sine= f 2 |3
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T (s (D E)Y= M (t—1"). 2.2
HX,X,]:N(T)GXL{@ f dsj g (& (D &)= 7" (=1 (2.23
nm JO 0
X (XXl + X (X T (S) Ill. THE MASTER EQUATION
ijkl ook ol koLl ’ i i i i -
xy'(ln)(m)(s_s ) XXy =X (X () (87 _ Having obtained an expression for th_e |nflut—§-nce func
tional we can compute the reduced density matrix propaga-

Y Tdsfsds’(ki xS (s) tor:
2 ], 98], 98 XinXm =X X i)

% ijkl s—¢g' )'(k )'(I _)'(/k )'(/I s'). ]
i) ) X Xy =X (X ) (") J(X¢ ,X{ ,t|x0,x(’,,0)=j f Dx DX’ exp(iSpal X]

(2.17
The kernelsy ) m and 7 m are given by the expres- ~1Spal X' DFXX, @D
sions
where the integration is over all patkés), x'(s") satisfying
ijki e dk " X(0)=xg, X' (0)=x§, X(t)=xX;, andx’(t) =x; .
Yimm(S)= g2 T&[ sink|s cosk- (a,—am) " (k), The knowledge of the reduced density matrix propagator

(2.18 enables us to construct a master equation. Our system is
characterized by the nonlocal dissipation and diffusion in the
B G 3 ) influence functional, and the coupling which is quadratic to
n'(’nk)'(m)(s)= i f T cogk|s cosk- (a,—ay) T (k). the velocities. Because of the peculiarities of the latter, the
8w K 21 general method of Hu, Paz, and Zhdrgj is not applicable
(2.19 here. Instead we compute the influence functional perturba-

These are the dissipation and noise kernels, similar to thdvely (first order inG) and use the Feynman prescription for
ones derived in[9] for the case of detectors minimally the determmaﬂon.of 'the master equation.
coupled to a scalar field. Far#m they describe the dissi-  Our starting point is the density matrix propagator for the
pation and diffusion induced on the particiefrom the par-  free particle under external forc€gs) andF'(s):
ticle m, while for n=m they contain the effects of the self-
interaction of the particle through its interaction with the

gravitational field. JOLFF I Xt 1t[%0,%0,0)

In order to keep them finite, we have to restrict the inte- C i i
gration range to values di| smaller than a cutoff\. This is =1 ex;{z (Xf—X0)2— >t (Xf —x4)?
natural, since we do not expect the nonrelativistic particles to

excite graviton modes with arbitrarily high energy. In fakt, i t

should be much smaller than the Compton wavelength of the + - XOJ ds $(s)

particle. This is in accordance with our previous approxima- t 0

tions, since the distance between any particles remains much i ; i ¢

larger than their Compton wavelength. S X")J ds F'(s)+ - fo ds(t—s)F(s)
In the particular case=m we can perform the angular t 0 t 0

integrations in spherical coordinates in the equations for the

kernels and obtain _ l_ X, ftds(t—s)F’(s)
0

. G . A .
ijkl — ijkl : i t s

YVimin(8)= 15 0 JO dk ksinks,  (2.20 e f dsf ds's’ (t—s)F(S)F(s')
0 0

G .

B _ A i [t s
nu(Jnk)l(n)(S):E Skl JO dk k cosks. (2.21) 1 fodsfodS’s’(t—S)F’(S)F’(S’) ) (3.2

We note that by taking the cutoff to infinity the dissipation ) ) ) )
kernel becomes essentially the derivative of function, as The perturbation expansion of the propagator is written then
in the well studied case of quantum Brownian motion with formally:
an Ohmic environment. The corresponding semiclassical
equations fort>A " can be found using the standard pro-

1)
cedure[3,6,9: ' "= - —— i — |30 ’
‘J(Xfaxf 1t|X01X01O) f[ | 5F(S) | 5F,(S) J [FaF ]
.. 2G et el ik ko / /
X'-‘rE 5ijk|xlxkx|:(x'5‘k+xk5”)§k|, (2.22 X (X Xt 5t X0,%0,.0)[p=pr=0. (3.3

with &,,(t) a stochastic force determined by the correlator To first order inG we obtain
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465.,5k|g'<nk)'<m>+2t 81 X=X (X=X oy om0 (X4 = X8) iy (X§ =XV

C
J(X¢ , X{ ,t|Xg,%0,0) = — exp{ >
t (m)(m)
G ijkl i j G NI j
(3f 4'9)(n)(m 3ij (X = X0) (n) (Xt = X0) () Onm— T (3f+4ig) ;) 5”( Xo) )(Xf=X0)(n)Onm
| . . . .
= 52 T (X =X0) ) (X6 = X0) (X = X0) () (X6 = X0) tm) = (X1 = X)) (Xf ~ X0 )

G ) )
k | kl k |
X (Xf _X(/))(m)(xfl _X(/))(m 1- PTe g;]n)(m)[(xf_XO)I(n)(Xf_Xo)gn)(xf_xo)(m)(xf_Xo)(m)

i j k | i j k |
+ (X =X0) () (Xt = X0) ) (X = X0) (i (X¢ = X0) () = 2(X£ = X0) 1y (Xt = X)) (Xt = X0) (o (X —XZ))(m)]) }

(3.9

wheref andg are functions of time, ot

ht .
_ ijkl t
ax(hox(d ox(K ax(’r'n))p am? % Binym(t)

£ 1 d3k sin|k|t . .
fmm (= 8772tf| wz 1= Tkt d d

dea K X X o o o T axT ax T o E ax!
(M Z2A(n) T2 (m) 2 (m) (M @A) T (m)“ 2 (m)

X cosk- (a,—ay,) T (k), (3.9 4
)
- 1k T |P- (39)
K 1 f d3k 1-cogk|t X {1y Xy X 1) X om)
Imm(V =g W K2 KT
X cosk- (a,—ay) T (k), (3.6) This is the main result of this paper: the master equation

for N nonrelativistic particles interacting through linearized
gravity. The gravitational field induces a renormalization in
and, in particular, the mass of the particles, modifies the dynamics so that they
become dissipative, and is responsible for noise. These three
effects are contained in the functiofm(t), «(t), ands(t),

A sin kt . i
I(nk)l(n)(t) mgjklfo (1_ @ ) (3.7)  fespectively:
h |k| 5 S 3.1
ik ik A 1—coskt ()= ij Okl (3.10
Iyt = 1_5771 & k—t (3.9

4G
(i) (1) = 7es fmt? 311
The standard prescription for the derivation of the master
equation from the reduced density master propagator consists
of taking its time derivative and using identities relatixg ikl 4 1o 2vijkl
andx; with the action of derivatives with respect x¢ and Bnym = %co (tg+29t) (ny(m) - 312
x¢ . For the interested reader, we list the relevant identities in
the Appendix.
After some calculations, the master equation turns out to
be (inserting backi, m, andc)
IV. ONE PARTICLE

2 2
Z [1 Smy(t)] ‘9__ ,9_ An interesting case is that of a single particle. Since then
a9t P (n) Xl ox 2 pP . . . o
(n) X(n) the functions in the master equation are totally symmetric in
4 the spatial indices, we can, without loss of generality, con-
J sider it constrained to move in only one dimension. The mas-
x'(n)ax{n)axfm)ax}m) ter equation reads then in operator form

Iﬁ4 ijkl
am2 2 iy (m) (1) P
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i These features were more or less expected, since gravity
p=—7[Hrpl-i a(V)[HE 1= B(1[Hg.[Hg 1] couples very weakly and its strength increases with the mass
(4.1) of the interacting bodies. Still, there was the possibility that a
persistent noise source might induce decoherence even in
and depends explicitly only on the renormalized Hamiltonianmicroscopic systems, despite the weakness of the coupling.
Hg. We can verify that this form of master equaticin Note that our analysis based on the linearized approximation
particular the noise paris particular to the free particle case. does not rule out the possibility that highly nonlinear Planck
For a harmonic oscillator we would get an extra dissipatiorscale processed 1,12 might be a source of noise, giving
and diffusion term due to the coupling of the particle’s po-rise to decoherence at smaller mass scales.
sition to the graviton oscillator Hamiltonian, and of form  The dissipation functior(t) approaches asymptotically
similar to the one derived ifi3] for quadratic coupling to @ constant of the order aBA/%c®. The overall picture we
position. get is that of a particle continuously dissipating energy and
The diffusion coefficien3(t) exhibits a “jolt” for times ~ suffering at early times noise from the environment until it
of the order ofA™%. In quantum Brownian models this is a becomes correlated with the gravitational field.
cause of rapid decoherence of the density matrix of the par-
ticle, and diagonalization in a basis determined by the cou-
pling to the environment. Our particular form of the diffu-
sion terms tempts us to propose that it should lead to
diagonalization of the particle’s density matrix in the energy V. CONCLUSIONS
eigenstate basis. But we have to take into account that the
coupling is extremely weak and that after the jolt the diffu-

at

We have studied the quantum theoryMfnonrelativistic
sion coefficient falls to zero, quite slowly actually since it particles coupled to the linearized gravitational field using
' the influence functional formalism. Our main result was the

varies at most as 0/ master equatiofi3.9) containing information about nonlocal
We can give an estimation of the decoherence in the en- q ’ 9

ergy by approximatings(t) with a constant of the order of interaction between the particles. We should note that the
G%/hz/: f(E)rptimes of the order of\~ and zero afterwards gravitational field, being coupled quadratically to the veloci-

We brrow some deas ro th cuanu st cifuson i 95 ST U1USe expssion o e uence e
ture of quantum mechani¢$3—-15. At the times thap3(t) is : : o qu ) P
. . y .tion and diffusion are determined uniquely by the

constant, we have a unique unraveling of the density matri Lo oo ; o

. _Hamiltonian operator. This is in accordance with our intui-

into states evolving stochastically in a Hilbert space. It is,. : L . , .
. - ... tive feeling, that the gravitational field acts as if continuously
straightforward to showl3] that an initial wave packet with . 2 S
measuring” a particle’'s energy.

energy spread E, will emerge after the jolt with sprealiE One of our motivations for this work was to establish

given by whether we can consider the gravitational field as a source of
fundamental decoherence in quantum mechanics. The an-
1 1 GA swer comes out negative for microscopic systems, but sys-
e~ —, (4.2 tems with large mass seem to decohere with a fast rate, in the
(ABE)® (AEg)” he energy eigenstate basis. In addition, it might be interesting to
examine the evolution of a single particle under the action of
a particular matter distribution. The formalism we used can
be extended with slight modifications to cover this case. We
can, for instance, consider almost stationary cosmic dust and
even a cosmological spacetime. The collective effect of mat-
ter plus gravity might give the strongest decoherence to the

For a single particle of masa a good upper bound oA is
Gm’c/#: the classical gravitational self-energy of a mass
distribution localized within the Compton wavelength of the
particle. This means that

1 1 G2m3 particle.
5— 5~ —aa (4.3 In addition, it would be of interest to study the response of
(AE)® (AEg)“ #°c a system of detectors to different initial conditions for the

graviton field. The case where a number of modes is excited

o ) o ~seems very interesting. The information on the state of the

This is an extremely small quantity, when considering mi-fie|d should be encoded in the correlation kernels of the par-
croscopic particlegeven on atomic scalgsOn the other iicles, from the time evolution of which we would be able to

hand, for macroscopic and even mesoscopic particles thgstermine the presence of the graviton fields. This might

right hand side is quite large and we expect a localization ofiye a nice toy model for detectors of gravitational waves.
the particle in its energy eigenstates. For instance, a particle

with massm= 108 g and irrespective of its initial configu-
ration will emerge after 10°° s localized in an energy eigen-
state with spread of the order of 0.1 MeV, which is a tiny

portion of its kinetic energy. But in this case, the gravity- ACKNOWLEDGMENTS
induced decoherence is, in general, hidden beneath the ef-
fects of other types of environmeft6]. In any case, this | would like to thank J. J. Halliwell and A. Zoupas for

result is in good agreement with the assumptions of theuseful discussions and suggestions. The research was sup-
gravitationally induced collapse models. ported by the Greek State Scholarship Foundation.
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APPENDIX

We give here the identities that enable us to compute Py 2
perturbatively the master equation. We give the form for the =
case of one dimension and one particle. The generalization is

straightforward.
(Xf - XO)ZJ(Xf !Xé ,tlxo !X(l)lo)

_ 2 ; ; o i
=| ~ta-2ie(ef-11ig)| S5

2

g° i
ot Lo

-2 f—A4i
axfz Gt(3 ig)

4G ) 4 4iG 2 2
+T(f—lg)(Xf—Xo) +T9(Xf_xo) (X —X0)

X J(X¢ X} ,t|X0,%4,0)+ O(G?), (A1)

1605
(Xf_X0)4‘](Xf vxf, lt|X0 ,X(,),O)

t* ——6it3 (9—2—3t2 J(Xs ,X{ ,t|Xg,X5,0+ O(G)

(A2)
(94
(X = X0) 2(X{ —X0) 2I(X¢ , X ,t|Xo,X6,0)=[t4 XZaxl?
32 3?
+it3 ——it® —5 +1t2|J(Xs , X ,t|Xg,%5,0) + O(G).
(?sz 0Xf/2 ( f f | 01,70 ) ( )

(A3)

We should keep in mind that eventually we keep terms to
first order inG. The expressions for the primed quantities are
obtained by permutation of primed with unprimed ones and
complex conjugation.
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