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Quantum theory of nonrelativistic particles interacting with gravity
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We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles
considerN nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynm
Vernon influence functional technique, we trace out the graviton field to obtain a master equation fo
system of particles to first order inG. The effective interaction between the particles as well as the se
interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held re
sible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For m
scopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in g
induced collapse models. We finally comment on possible applications.@S0556-2821~96!00214-7#

PACS number~s!: 03.65.Bz, 04.40.2b, 05.40.1j
I. INTRODUCTION

There has been recently considerable interest in the ap
cation of the influence functional technique@1# in the study
of nonequilibrium systems in physics. In addition to quantu
Brownian motion@2–5# for which the method was initially
developed, it has been applied to the modeling of partic
field interactions@6#, radiation damping@7#, blackbody radia-
tion @8#, and most recently to noninertial detectors coupled
a scalar field@9#. It is one of the most powerful techniques t
obtain master equations, when the coarse graining co
from the splitting of degrees of freedom to system and en
ronment.

In this paper we apply the technique in another case
system ofN nonrelativistic particles coupled to linearize
gravity. A motivation for this is the possibility that gravity
induces decoherence on the particles’ states. This is a
gestion made in different contexts on fundamental irreve
ibility in quantum mechanics@11–12#. The weakness of the
coupling suggests that the probable decoherence time sh
be very large, but the particular form of the coupling~qua-
dratic to momentum! and the possibility of persistent nois
might give rise to relatively strong loss of coherence.

In addition, the model we present here can be general
in a straightforward way to obtain a description of systems
quantum-mechanical detectors of gravitational waves.

Our model consists of nonrelativistic particles coupled
the linearized gravitational field, which is assumed to be i
tially in its vacuum state. We argue that a factorizing init
condition is, in contrast to quantum Brownian motion, we
suited for our system. The modes of the graviton field a
bounded in energy by an ultraviolet cutoffL, which on
physical grounds should be much smaller than the Comp
wavelength of the particles. In addition, we assume that
particles are almost stationary. Our analysis resembles,
way, the one of@9#. Like those authors, we obtain correlatio
kernels describing a nonlocal interaction between the p
ticles. The influence functional we construct is rather diffe
ent from the ones considered in the literature, due to
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particular features of the gravitational coupling, which is
quadratically coupled to momenta. The result of our analysis
is the non-Markovian master equation~3.9! below. For the
case of a single particle, it is simplified significantly@Eq.
~4.1!#. We see that the dissipation and diffusion are deter-
mined solely from the Hamiltonian operator. We can inter-
pret our results as a continuous monitoring of the energy of
the particle by the gravitational environment.

The diffusion function which is responsible for decoher-
ence vanishes at long times, and it turns out, that unless we
consider macroscopically massive bodies, the rate of gravi-
tationally induced decoherence is extremely small. This is a
desirable result in connection with the gravity-induced col-
lapse models.

II. THE MODEL

ConsiderN particles on a~311!-dimensional spacetime,
moving on trajectories„xn(tn),tn(tn)… parametrized by the
proper timestn so thattn(tn) is a strictly increasing function
of tn @9#. We assume that the gravitational interaction is very
weak and therefore work in the linearized approximation.
That is, the metric is

gmn5hmn1hmn ~2.1!

with hmn the Minkowski space metric.
We take the nonrelativistic limit for the particles, that is,

we assume that there exists a frame with respect to which
they are almost stationary, and therefore we can write their
trajectories as„a (n)

i 1x (n)
i (t),t…, having identified the global

time coordinatet with the proper time of the particles. We
assume thatux(n)u is much smaller than the distance between
any two particlesdnm5ua(n)2a(m)u. This is a good approxi-
mation as long asdnm is much larger than the maximum
wavelength of the gravition field that can be excited. Essen-
tially, we consider the particles moving around some fixed
sites coordinated bya(n) , so that their individual motion does
not significantly change their distances. In any case, this ap-
proximation does not affect at all the discussion on the self-
interaction of the particles through the gravitational field.
1600 © 1996 The American Physical Society
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We work in the transverse-traceless gauge for the linea
ized gravitational field~h0m50, h i

i j50, h i
i50!. Under these

approximations, the total action of the system for evolutio
from global timet50 to t5T reads

Stot5Sgr1Spar1Sint ~2.2!

where

Sgr5
1

4pG E
0

T

dtE d3x hmn,rh
mn,r

5
1

4pG E
0

T

dtE d3x~ ḣi j ḣ
i j2hi j ,kh

i j ,k!, ~2.3!

Spar5(
n
E
0

T

dt 12d i j ẋ~n!
i ẋ~n!

j , ~2.4!

Sint5(
n
E
0

T

dt hi j ẋ~n!
i ẋ~n!

j . ~2.5!

Note that we have set\5c5m51.
We expand the graviton field in normal modes:

hi j ~x,t !5E d3k

~2p!3 (
r

~q1k
~r ! cosk•x1q2k

~r ! sin k•x!Aki j
~r ! .

~2.6!

The polarization matricesAki j
(r ) (r51,2) are traceless and

transverse and can be chosen to satisfy

Aki
~r ! jAk j

~r 8!l5d rr 8S d l
i2

kikl
k2 D , ~2.7!

(
r
Aki j

~r !Akkl
~r ! 5S d ( i j2

k( ikj
k2 D S dk) l2

kk)kl
k2 D :5Ti jkl ~k!.

~2.8!

The gravity part of the action, therefore, reads

Sgr5
1

2pG E
0

TE d3k

~2p!3 (
r

@~ q̇1k
~r !21k2q1k

~r !2!

1~ q̇2k
~r !21k2q2k

~r !2!#. ~2.9!

This is just the action for two massless scalar fields prop
gating on Minkowski spacetime.

We now write the coupling part of the action,

Sint5
1

2 E
0

T

dtE d3k

~2p!3 (
r

(
n

~q1k
~r ! cosk•a~n!

1q2k
~r ! sin k•a~n!!Aki j

~r ! ẋi ẋ j , ~2.10!

where within our approximations we ignored thex(n) terms
in the trigonometric functions.

By using the collective indexa to include thek,r and the
indexing of our oscillator by 1 or 2, we write

Sgr1Sint5E
0

T

(
a

F 1

2pG
~ q̇a

21va
2qa

2 !1qaJaG ~2.11!
r-

n

a-

where

Jk1
~r !5cosk•a~n!Aki j

~r ! ẋi ẋ j ~2.12!

Jk1
~r !5sin k•a~n!Aki j

~r ! ẋi ẋ j ~2.13!

andvk5uku. This is just the action of a collection of forced
harmonic oscillators. Therefore the total action is that of
collection ofN nonrelativistic free particles interacting with
a bath of harmonic oscillators, through couplings dependin
quadratically on the velocity.

The tracing out of the graviton modes can be done exact
since the path integral is a Gaussian with respect to them. W
compute the influence functional:

F@x~ t !,x8~ t8!#5)
ab

E dqf
aE dqf8

bE dq0
aE dq0

bd

3~qa2qb8 !E Dqa~ t !Dqb8 ~ t8!

3exp$ iSgr@qa~ t !#1 iSint@qa~ t !,x~ t !#

2 iSgr@qa8 ~ t8!#2 iSint@qa8 ~ t8!,x8~ t8!#%

3r0~q0
a ,x0 ,q08

b ,x08! ~2.14!

where the integration is over the paths satisfyingqa(0)5q 0
a,

qa(T)5q f
a, q8a(0)5q08

a , andq8a(T)5qf8
a . Herer0 is the

density matrix of the total system. The path integrations ca
be carried out exactly, to obtain

F@x~ t !,x8~ t8!#5N~T!expF2(
a

i

2va
E
0

T

dsE
0

s

ds8

3~Ja1Ja8 !~s!sin va~s2s8!~Ja2Ja8 !~s8!

2(
a

1

2va
E
0

T

dsE
0

s

ds8~Ja2Ja8 !~s!

3cosva~s2s8!~Ja2Ja8 !~s8!G . ~2.15!

In deriving this we have assumed that att50 the states of
the particles and of the graviton field were uncorrelated an
that the field was in its vacuum state: i.e.,

C@hi j #5C expF(
a

i

2va
qa
2 G . ~2.16!

This initial condition is usually considered unphysical in
quantum Brownian motion models. We believe that it is ac
tually a quite good one for the case of gravity. Graviton
modes are excited only by nonstationary particles. Therefo
this initial condition reflects an operation on the particles o
a very fast acceleration just beforet50.

Substituting the expressions for the currentsJa into the
influence functional we get
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F@x,x8#5N~T!expF i(
n,m

E
0

T

dsE
0

s

ds8

3~ ẋ~n!
i ẋ~n!

j 1 ẋ8~n!
i ẋ8~n!

j !~s!

3g~n!~m!
i jkl ~s2s8!~ ẋ~m!

k ẋ~m!
l 2 ẋ8~m!

k ẋ8~m!
l !~s8!

2(
n,m

E
0

T

dsE
0

s

ds8~ ẋ~n!
i ẋ~n!

j 2 ẋ8~n!
i ẋ8~n!

j !~s!

3h~n!~m!
i jkl ~s2s8!~ ẋ~m!

k ẋ~m!
l 2 ẋ8~m!

k ẋ8~m!
l !~s8!.

~2.17!

The kernelsg (n)(m) andh (n)(m) are given by the expres
sions

g~n!~m!
i jkl ~s!5

G

8p2 E d3k

uku
sinukus cosk•~an2am!Ti jkl ~k!,

~2.18!

h~n!~m!
i jkl ~s!5

G

8p2 E d3k

uku
cosukus cosk•~an2am!Ti jkl ~k!.

~2.19!

These are the dissipation and noise kernels, similar to
ones derived in@9# for the case of detectors minimal
coupled to a scalar field. FornÞm they describe the diss
pation and diffusion induced on the particlen from the par-
ticle m, while for n5m they contain the effects of the se
interaction of the particle through its interaction with t
gravitational field.

In order to keep them finite, we have to restrict the in
gration range to values ofuku smaller than a cutoffL. This is
natural, since we do not expect the nonrelativistic particle
excite graviton modes with arbitrarily high energy. In factL
should be much smaller than the Compton wavelength o
particle. This is in accordance with our previous approxim
tions, since the distance between any particles remains m
larger than their Compton wavelength.

In the particular casen5m we can perform the angula
integrations in spherical coordinates in the equations for
kernels and obtain

g~n!~n!
i jkl ~s!5

G

15p
d i jkl E

0

L

dk k sin ks, ~2.20!

h~n!~n!
i jkl ~s!5

G

15p
d i jkl E

0

L

dk k cosks. ~2.21!

We note that by taking the cutoff to infinity the dissipati
kernel becomes essentially the derivative of ad function, as
in the well studied case of quantum Brownian motion w
an Ohmic environment. The corresponding semiclass
equations fort@L21 can be found using the standard p
cedure@3,6,9#:

ẍi1
2G

15
d i jkl ẍ

j ẍkẋl5~ ẍld ik1 ẍkd i l !jkl , ~2.22!

with jkl(t) a stochastic force determined by the correlato
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^j i j ~ t !jkl~ t8!&5h i jkl ~ t2t8!. ~2.23!

III. THE MASTER EQUATION

Having obtained an expression for the influence func-
tional we can compute the reduced density matrix propaga-
tor:

J~xf ,xf8 ,tux0 ,x08,0!5E E Dx Dx8 exp~ iSpar@x#

2 iSpar@x8# !F@x,x8#, ~3.1!

where the integration is over all pathsx(s), x8(s8) satisfying
x~0!5x0, x8(0)5x08 , x(t)5xf , andx8(t)5xf .

The knowledge of the reduced density matrix propagator
enables us to construct a master equation. Our system is
characterized by the nonlocal dissipation and diffusion in the
influence functional, and the coupling which is quadratic to
the velocities. Because of the peculiarities of the latter, the
general method of Hu, Paz, and Zhang@3# is not applicable
here. Instead we compute the influence functional perturba-
tively ~first order inG! and use the Feynman prescription for
the determination of the master equation.

Our starting point is the density matrix propagator for the
free particle under external forcesF(s) andF8(s):

J~0!@F,F8#~xf ,xf8 ,tux0 ,x08,0!

5
C

t
expF i2t ~xf2x0!

22
i

2t
~xf82x08!2

1
i

t
x0E

0

t

ds sF~s!

2
i

t
x08E

0

t

ds sF8~s!1
i

t
xfE

0

t

ds~ t2s!F~s!

2
i

t
xf8E

0

t

ds~ t2s!F8~s!

1
i

t E0
t

dsE
0

s

ds8s8~ t2s!F~s!F~s8!

2
i

t E0
t

dsE
0

s

ds8s8~ t2s!F8~s!F8~s8!G . ~3.2!

The perturbation expansion of the propagator is written then
formally:

J~xf ,xf8 ,tux0 ,x08,0!5FF2 i
d

dF~s!
,i

d

dF8~s!GJ~0!@F,F8#

3~xf ,xf8 ,tux0 ,x08,0!uF5F850 . ~3.3!

To first order inG we obtain
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J~xf ,xf8 ,tux0 ,x08,0!5
C

t
expF (

~n!~m!
S 4Gd i jdklg~n!~m!

i jkl 1
i

2t
d i j ~xf2x0!~n!

i ~xf2x0!~n!
j dmn2

i

2t
d i j ~xf82x08!~n!

i ~xf82x08!~n!
j dnm

2
G

t
~3 f24ig !~n!~m!

i jkl d i j ~xf2x0!~n!
i ~xf2x0!~n!

j dnm2
G

t
~3 f14ig !~n!~m!

i jkl d i j ~xf82x08!~n!
i ~xf2x0!~n!

j dnm

2
iG

2t2
f ~n!~m!
i jkl @~xf2x0!~n!

i ~xf2x0!~n!
j ~xf2x0!~m!

k ~xf2x0!~m!
l 2~xf82x08!~n!

i ~xf82x08!~n!
j

3~xf82x08!~m!
k ~xf82x08!~m!

l #2
G

2t2
g~n!~m!
i jkl @~xf2x0!~n!

i ~xf2x0!~n!
j ~xf2x0!~m!

k ~xf2x0!~m!
l

1~xf82x08!~n!
i ~xf82x08!~n!

j ~xf82x08!~m!
k ~xf82x08!~m!

l 22~xf2x0!~n!
i ~xf2x0!~n!

j ~xf82x08!~m!
k ~xf82x08!~m!

l # D G
~3.4!
t

y
e

-

where f andg are functions of time,

f ~n!~m!
i jkl ~ t !5

1

8p2t Euku,L

d3k

k2 S 12
sinukut

ukut D
3cosk•~an2am!Ti jkl ~k!, ~3.5!

g~n!~m!
i jkl ~ t !5

1

8p2t Euku,L

d3k

k2
12cosukut

ukut

3cosk•~an2am!Ti jkl ~k!, ~3.6!

and, in particular,

f ~n!~n!
i jkl ~ t !5

1

15pt
d i jkl E

0

L

dkS 12
sin kt

kt D , ~3.7!

g~n!~n!
i jkl ~ t !5

1

15pt
d i jkl E

0

L

dk
12coskt

kt
. ~3.8!

The standard prescription for the derivation of the mas
equation from the reduced density master propagator cons
of taking its time derivative and using identities relatingx0
andx08 with the action of derivatives with respect toxf and
xf8 . For the interested reader, we list the relevant identities
the Appendix.

After some calculations, the master equation turns out
be ~inserting back\, m, andc!

]

]t
r5(

n

i\

2m
@12dm~n!~ t !#S ]2

]x~n!
22

]2

]x~n!8 2D r

2
i\4

4m2 (
n,m

a~n!~m!
i jkl ~ t !S ]4

]x~n!
i ]x~n!

j ]x~m!
k ]x~m!

l

er
ists

in

to

2
]4

]x~n!8 i ]x~n!8 j ]x~m!8k ]x~m!8 l D r2
\4

4m2 (
n,m

b~n!~m!
i jkl ~ t !

3S ]4

]x~n!
i ]x~n!

j ]x~m!
k ]x~m!

l 1
]4

]x~n!8 i ]x~n!8 j ]x~m!8k ]x~m!8 l

22
]4

]x~n!
i ]x~n!

j ]x~m!8k ]x~m!8 l D r. ~3.9!

This is the main result of this paper: the master equation
for N nonrelativistic particles interacting through linearized
gravity. The gravitational field induces a renormalization in
the mass of the particles, modifies the dynamics so that the
become dissipative, and is responsible for noise. These thre
effects are contained in the functionsdm(t), a(t), andb(t),
respectively:

dm~n!~ t !5
4G\

c5
g~n!~n!
i jkl d i jdkl , ~3.10!

a~n!~m!
i jkl ~ t !5

4G

\c5
ḟ ~n!~m!
i jkl t2, ~3.11!

b~n!~m!
i jkl 5

4G

\c5
~ tg1 1

2 ġt
2!~n!~m!

i jkl . ~3.12!

IV. ONE PARTICLE

An interesting case is that of a single particle. Since then
the functions in the master equation are totally symmetric in
the spatial indices, we can, without loss of generality, con-
sider it constrained to move in only one dimension. The mas
ter equation reads then in operator form
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]

]t
r52

i

\
@HR,r#2 ia~ t !@HR,r

2 #2b~ t !†HR ,@HR,r#‡

~4.1!

and depends explicitly only on the renormalized Hamilton
HR . We can verify that this form of master equation~in
particular the noise part! is particular to the free particle cas
For a harmonic oscillator we would get an extra dissipat
and diffusion term due to the coupling of the particle’s p
sition to the graviton oscillator Hamiltonian, and of for
similar to the one derived in@3# for quadratic coupling to
position.

The diffusion coefficientb(t) exhibits a ‘‘jolt’’ for times
of the order ofL21. In quantum Brownian models this is
cause of rapid decoherence of the density matrix of the
ticle, and diagonalization in a basis determined by the c
pling to the environment. Our particular form of the diffu
sion terms tempts us to propose that it should lead
diagonalization of the particle’s density matrix in the ener
eigenstate basis. But we have to take into account that
coupling is extremely weak and that after the jolt the diff
sion coefficient falls to zero, quite slowly actually since
varies at most as 1/t.

We can give an estimation of the decoherence in the
ergy by approximatingb(t) with a constant of the order o
GL2/\c for times of the order ofL21 and zero afterwards
We borrow some ideas from the quantum state diffusion p
ture of quantum mechanics@13–15#. At the times thatb(t) is
constant, we have a unique unraveling of the density ma
into states evolving stochastically in a Hilbert space. It
straightforward to show@13# that an initial wave packet with
energy spreadDE0 will emerge after the jolt with spreadDE
given by

1

~DE!2
2

1

~DE0!
2;

GL

\c5
. ~4.2!

For a single particle of massm a good upper bound on\L is
Gm3c/\: the classical gravitational self-energy of a ma
distribution localized within the Compton wavelength of t
particle. This means that

1

~DE!2
2

1

~DE0!
2;

G2m3

\3c4
. ~4.3!

This is an extremely small quantity, when considering m
croscopic particles~even on atomic scales!. On the other
hand, for macroscopic and even mesoscopic particles
right hand side is quite large and we expect a localization
the particle in its energy eigenstates. For instance, a par
with massm51028 g and irrespective of its initial configu
ration will emerge after 10230 s localized in an energy eigen
state with spread of the order of 0.1 MeV, which is a ti
portion of its kinetic energy. But in this case, the gravit
induced decoherence is, in general, hidden beneath the
fects of other types of environment@16#. In any case, this
result is in good agreement with the assumptions of
gravitationally induced collapse models.
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These features were more or less expected, since grav
couples very weakly and its strength increases with the ma
of the interacting bodies. Still, there was the possibility that
persistent noise source might induce decoherence even
microscopic systems, despite the weakness of the couplin
Note that our analysis based on the linearized approximati
does not rule out the possibility that highly nonlinear Planc
scale processes@11,12# might be a source of noise, giving
rise to decoherence at smaller mass scales.

The dissipation functiona(t) approaches asymptotically
a constant of the order ofGL/\c5. The overall picture we
get is that of a particle continuously dissipating energy an
suffering at early times noise from the environment until i
becomes correlated with the gravitational field.

V. CONCLUSIONS

We have studied the quantum theory ofN nonrelativistic
particles coupled to the linearized gravitational field usin
the influence functional formalism. Our main result was th
master equation~3.9! containing information about nonlocal
interaction between the particles. We should note that th
gravitational field, being coupled quadratically to the veloc
ties, gives a rather unusual expression for the influence fun
tional. This results in a master equation where both dissip
tion and diffusion are determined uniquely by the
Hamiltonian operator. This is in accordance with our intui
tive feeling, that the gravitational field acts as if continuousl
‘‘measuring’’ a particle’s energy.

One of our motivations for this work was to establish
whether we can consider the gravitational field as a source
fundamental decoherence in quantum mechanics. The
swer comes out negative for microscopic systems, but sy
tems with large mass seem to decohere with a fast rate, in
energy eigenstate basis. In addition, it might be interesting
examine the evolution of a single particle under the action
a particular matter distribution. The formalism we used ca
be extended with slight modifications to cover this case. W
can, for instance, consider almost stationary cosmic dust a
even a cosmological spacetime. The collective effect of ma
ter plus gravity might give the strongest decoherence to t
particle.

In addition, it would be of interest to study the response o
a system of detectors to different initial conditions for the
graviton field. The case where a number of modes is excit
seems very interesting. The information on the state of th
field should be encoded in the correlation kernels of the pa
ticles, from the time evolution of which we would be able to
determine the presence of the graviton fields. This mig
give a nice toy model for detectors of gravitational waves.
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APPENDIX

We give here the identities that enable us to comp
perturbatively the master equation. We give the form for
case of one dimension and one particle. The generalizatio
straightforward.

~xf2x0!
2J~xf ,xf8 ,tux0 ,x08,0!

5F2t2„122iG(9 f211ig)…S ]2

]xf
22

i

t D
22Gt2S ]2

]xf
2 1

i

t D 22Gt~3 f24ig !

1
4G

t
~ f2 ig !~xf2x0!

41
4iG

t
g~xf2x0!

2~xf82x08!2G
3J~xf ,xf8 ,tux0 ,x08,0!1O~G2!, ~A1!
te
he
n is

~xf2x0!
4J~xf ,xf8 ,tux0 ,x08,0!

5F t4 ]4

]xf
426i t 3

]2

]xf
223t2GJ~xf ,xf8 ,tux0 ,x08,01O~G!,

~A2!

~xf2x0!
2~xf82x08!2J~xf ,xf8 ,tux0 ,x08,0!5F t4 ]4

]xf
2]xf8

2

1 i t 3
]2

]xf
22 i t 3

]2

]xf8
2 1t2GJ~xf ,xf8 ,tux0 ,x08,0!1O~G!.

~A3!

We should keep in mind that eventually we keep terms
first order inG. The expressions for the primed quantities ar
obtained by permutation of primed with unprimed ones an
complex conjugation.
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