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We study the spectrum of created particles in two-dimensional black hole geometries for a linear, Her
scalar field satisfying a Lorentz noninvariant field equation with higher spatial derivative terms tha
suppressed by powers of a fundamental momentum scalek0 . The preferred frame is the ‘‘free-fall frame’’ of
the black hole. This model is a variation of Unruh’s sonic black hole analogy. We find that there are
qualitatively different types of particle production in this model: a thermal Hawking flux generated by ‘‘m
conversion’’ at the black hole horizon, and a nonthermal spectrum generated via scattering off the back
into negative free-fall frequency modes. This second process has nothing to do with black holes and do
occur for the ordinary wave equation because such modes do not propagate outside the horizon with p
Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spec
for the smoothest metric studied, with Hawking temperatureTH.0.0008k0 , agreement is of order (TH /k0)

3 at
frequencyv5TH , and agreement to orderTH /k0 persists out tov/TH.45 where the thermal number flux is
;10220. The flux from scattering dominates at largev and becomes many orders of magnitude larger than
horizon component for metrics with a ‘‘kink,’’ i.e., a region of high curvature localized on a static world
outside the horizon. This nonthermal flux amounts to roughly 10% of the total luminosity for the kin
metrics considered. The flux exhibits oscillations as a function of frequency which can be explaine
interference between the various contributions to the flux.@S0556-2821~96!01614-1#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

Black holes are boost machines. They process high
quency input and deliver it as low frequency output, owi
to the gravitational redshift. Thus, they provide a glimpse
the world at very short distance scales. This short dista
world consists of nothing but vacuum fluctuations. A bla
hole acts like a microscope, allowing us to peer into
vacuum and see something of the nature of these short
tance fluctuations.

When looking directly at a black hole, we see the vacu
fluctuations as processed by quantum field dynamics. In
dinary continuum quantum field theory, this processing
sults in Hawking radiation@1#, with a perfect thermal spec
trum. The older the black hole, the higher is the bo
interpolating between the input and output. In fact, this bo
grows exponentially as exp(t/4M ) with the aget of the hole.
Therefore, according to ordinary quantum field theory,
phenomenon of Hawking radiation involves physics at ar
trarily high frequencies and short distances. If there is n
physics at some length scale, then the output of the b
hole will be the result of processing at least down to t
scale.

Perhaps, therefore, the existence and properties of Ha
ing radiation can teach us something about physics at v
short distances. Note that the term ‘‘short’’ here refers
measurements in the asymptotic rest frame, or the free
frame, of the black hole. If one assumes exact Lorentz
variance and locality, the large boosts provided by the bl

*Electronic address:corley@undhep.umd.edu
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hole are just symmetry transformations, and one can le
nothing new. However, the assumption of unlimited boo
invariance is beyond the range of observational support
we shall not make it. Instead, we consider in this paper
effect on black hole radiation of~local and nonlocal! Lorentz
noninvariant modifications to quantum field theory.

It is worth pointing out that even if one does assume ex
Lorentz invariance, there is still room for short distances
play a crucial role in black hole physics. One way this mig
happen is via nonlocality, such as in string theory@2#. An-
other possibility is that the infalling matter or vacuum flu
tuations might have intense gravitational interactions w
the outgoing trans-Planckian degrees of freedom@3#. Thus,
even if exact Lorentz invariance is assumed, the use of o
nary field theory in analyzing physics around black hol
might be unjustified.

To some extent, one can sidestep the short distance
gime by imposing a boundary condition on the quantum fie
in a timelike region outside the event horizon@4#. Assuming
that field modes propagate in the ordinary way below so
cutoff frequencyvc , and assuming that the outgoing mod
with frequencies below the cutoff but well above the Haw
ing temperatureTH are in their ground state, then the usu
Hawking effect can be deduced in an approximation that g
better asTH /vc gets smaller. This calculation shows that
conservative upper bound on the deviations from the ther
spectrum is of orderO„(TH /vc)

1/2
…. Other estimates@5#,

based on the behavior of accelerated detectors near the
zon or on the trace anomaly, suggest that the deviations
be much smaller, of orderO(TH /vc). Such arguments leave
some room for interesting dependence on short dista
physics, however, due to cumulative effects.

In view of the gentle curvature of spacetime outside t
1568 © 1996 The American Physical Society
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54 1569HAWKING SPECTRUM AND HIGH FREQUENCY DISPERSION
black hole one might expect no excitation of high ener
degrees of freedom. On the other hand, even if there is o
a small amplitude for excitation in a time of orderM , it is
conceivable that the amplitude has a secular part wh
grows with time as the trans-Planckian degrees of freed
creep, while redshifting over extremely long times~e.g.,
M3), away from the horizon.~For the purposes of this pape
the term ‘‘Planck scale’’ will refer to the scale at whic
hypothetical Lorentz noninvariant physics occurs.! Further-
more, even small deviations in the spectrum might hav
large effect when integrated all the way up to trans-Planck
wave vectors.

Given a particular model of short distance physics,
would thus like to ask the following questions.~1! Where do
the outgoing modes come from?~2! Does the above men
tioned out vacuum boundary condition hold?~3! Exactly
how large are the deviations from the thermal Hawking flu
~4! Are the deviations from the thermal Hawking flux sma
even at very short wavelengths?~5! Do the deviations for
short wavelengths accumulate to make a large differenc
any physical quantity, such as the energy flux or energy d
sity?

The simple model we shall consider in this paper is
quantum field in two spacetime dimensions satisfying a l
ear wave equation with higher spatial derivative terms. T
dispersion relationv5v(k) thus differs at high wave vec
tors from that of the ordinary wave equation. The particu
dispersion relation we shall study in detail
v25k22k4/k0

2 . A modified dispersion relation occurs ubiq
uitously in all sorts of physical situations. Whenever there
new structure at some scale, for example, as in a plasma
crystal, wave propagation senses this, and the structur
reflected in the dispersion relation. Unruh@6# recently stud-
ied a model like this which was motivated by a sonic ana
of a black hole@7#. Although he describes the model in term
of sound propagation in an inhomogeneous background fl
flow, the model is in fact identical to that of a scalar field
a black hole spacetime, with the comoving frame of t
background flow replaced by the free-fall frame of the bla
hole.

By numerical integration of the altered partial differenti
wave equation~PDE!, Unruh studied the propagation o
wave packets in this model and established that, to the
merical accuracy of his calculation, Hawking radiation st
occurs and is unaffected by the altered dispersion relat
The numerical accuracy was not quite good enough to r
out deviations at the upper bound referred to above. Perh
the most interesting thing about the model is the pecu
behavior of wave packets sent backwards in time toward
horizon: rather than getting squeezed in an unlimited w
against the horizon and ceaselessly blueshifting, the w
packets reach a minimum distance of approach, then rev
direction and propagate back away from the horizon. T
blueshift at the closest approach to the horizon is indep
dent of the retarded time about which the outgoing wa
packet was centered, and the packet continues to blueshi
the way out, going backwards in time.

Subsequently, Brout, Massar, Parentani, and Spin
~BMPS! @8# made an analytical study of the Unruh mode
and came to similar conclusions in a leading order appro
mation in 1/M . In addition, BMPS introduced anothe
gy
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model, differing from the Unruh model in that the altered
dispersion relation is defined with respect to Eddington
Finkelstein coordinates. In the BMPS model, an outgoin
wave packet propagated backward in time does not reve
direction but rather hugs the horizon at a distance of on
‘‘Planck length,’’ with exponentially growing wave vectors.
For this model the usual Hawking effect at leading order i
1/M was established by analytical methods.

The primary purpose of the present paper is to determi
precisely the spectrum of Hawking radiation for a mode
with a nonlinear dispersion relation as in the Unruh an
BMPS models. In our model the field equation has fourt
order spatial derivatives in the free-fall frame. We wish to
evaluate quantitatively the deviations from the thermal spe
trum, including the high wave vector region. To achieve thi
aim, numerical integration of the~PDE! is impractical ~at
least for us!, and leading order approximations are insuffi
cient. Instead, we employ a two-pronged attack. First, w
exploit the stationarity of the background metric to simplify
the problem. Thus, instead of solving a PDE, we numerical
solve a lot of ordinary differential equations~ODE’s! for the
mode functions. Second, as a check on the accuracy of o
numerical solutions, we develop the exact solution for a su
class of the models. To our surprise we have found in th
models studied here that, in addition to the Hawking radia
tion, radiation is produced via scattering from the static cu
vature.

A second purpose of our paper is to give a physical pic
ture of the Hawking effect in the context of these model
with altered dispersion relation. What we describe has a l
in common with the picture explained by BMPS in@8# ~al-
though we developed our picture independently before b
coming aware of their paper!. The picture has two essential
features, reversal of group velocity without reflection an
‘‘mode conversion’’ from one branch of the dispersion rela
tion to another. Interestingly, both these phenomena can o
cur for linear waves in inhomogeneous plasmas@9–11#, and
undoubtedly occur in many other settings as well. The prop
gation of a wave packet and the direction-reversal phenom
enon can be understood using the WKB approximation. A
the turn-around point partial mode conversion from a pos
tive free-fall frequency to a negative free-fall frequency
wave takes place. This mode conversion gives rise to t
Hawking effect.

A third purpose of our paper is to discuss the ‘‘stationarit
puzzle’’ in these models: If the wavepackets go from infinity
to infinity, without ever passing through the collapsing mat
ter, then how can there be any particle production?

The remainder of our paper is organized as follows. Se
tion II defines the model to be studied and Sec. III describe
the wave-packet propagation, mode conversion, and scatt
ing in this model using a WKB analysis. Section IV lays ou
the computational techniques we employed to obtain the pr
cise quantitative results that are reported and interpreted
Sec. V. In Sec. VI the stationarity puzzle is discussed, an
Sec. VII contains a summary of our results. Throughout th
paper we use units in which\5c5G51, unless otherwise
specified.

II. THE MODEL AND ITS QUANTIZATION

The model we shall consider consists of a free, Hermitia
scalar field propagating in a two-dimensional black hol
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1570 54STEVEN CORLEY AND TED JACOBSON
spacetime. The dispersion relation for the field lacks Lore
invariance, and is specified in the free-fall frame of the bla
hole, that is, the frame carried in from the rest frame
infinity by freely falling trajectories. This is the same fram
as the one used in the Unruh model@6#, but the dispersion
relation we adopt is different. The BMPS model, on the oth
hand, adopts the same dispersion relation as Unruh, but
plies it in the Eddington-Finkelstein coordinate frame.

A. Field equation

Let ua denote the unit vector field tangent to the infallin
world lines, and letsa denote the orthogonal, outward poin
ing, unit vector, so thatgab5uaub2sasb. ~See Fig. 1.!

The action is assumed to have the form

S5
1

2E d2xA2ggabDaf*Dbf, ~1!

where the modified differential operatorDa is defined by

uaDa5ua]a, ~2!

saDa5F̂~sa]a!. ~3!

The time derivatives in the local free-fall frame are thus l
unchanged, but the orthogonal spatial derivatives are
placed byF̂(sa]a). The functionF̂ determines the disper
sion relation. For the moment it will be left unspecified. I
variance of the action ~1! under constant phas
transformations off guarantees that there is a conserv
current for solutions and a conserved ‘‘inner product’’ f
pairs of solutions to the equations of motion. However, sin
Da is not in general a derivation, simple integration by pa
is not allowed in obtaining the equations of motion or t
form of the current. We shall obtain these below after furth
specifying the model.

The black hole line elements we shall consider are st
and have the form

ds25dt22@dx2v~x!dt#2. ~4!

FIG. 1. A patch of spacetime showing a free-fall trajectory a
somet and x ~Lemaı̂tre-like! coordinate lines.u and s are ortho-
normal vectors, and the derivative alongs is modified, while that
alongu is just the partial derivative. The notationsd t anddx denote
]/]t and]/]x, respectively, andd t is the Killing vector.
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This is a generalization of the Lemaıˆtre line element for the
Schwarzschild spacetime, which is given by
v(x)52A2M /x ~together with the usual angular part!. We
shall assumev,0, dv/dx.0, andv→v0 asx→`. ] t is a
Killing vector, of squared norm 12v2, and the event horizon
is located atv521. The curves given bydx2vdt50 are
timelike free-fall world lines which are at rest~tangent to the
Killing vector! wherev50. Since we assumev,0 these are
ingoing trajectories.v is their coordinate velocity,t mea-
sures proper time along them, and they are everywhere
thogonal to the constantt surfaces~see Fig. 1!. We shall
refer to the functionv(x) as thefree-fall velocity. The as-
ymptotically flat region corresponds tox→`.

In terms of the notation above, the orthonormal basis ve
tors adapted to the free-fall frame are given byu5] t1v]x
ands5]x , and in these coordinatesg521. Thus the action
~1! becomes

S5
1

2E dtdx@ u~] t1v]x!fu22uF̂~]x!fu2#. ~5!

If we further specify thatF̂(]x) is an odd function of]x ,
thenDa becomes a derivation ‘‘up to total derivatives,’’ and
integration by parts yields the field equation

~] t1]xv !~] t1v]x!f5F̂2~]x!f. ~6!

The conserved inner product in this case is given by

~f,c!5 i E dx@f* ~] t1v]x!c2c~] t1v]x!f* #, ~7!

where the integral is over a constantt slice and is indepen-
dent of t if f andc satisfy the field equation~6!. The inner
product can, of course, be evaluated on other slices as w
but it does not take the same simple form on other slices.1

The dispersion relation for this model in flat spacetime, o
in the local free-fall frame@assumingv(x)'const#, is given
by

v25F2~k!, ~8!

where F(k)[2 i F̂ ( ik). Unruh’s choice for the function
F(k) has the property thatF2(k) 5 k2 for k!k0 and
F2(k) 5 k0

2 for k@k0 , wherek0 is a wave vector character-
izing the scale of the new physics. We usually think ofk0 as
being around the Planck mass. Specifically, he consider
the functionsF(k)5k0$tanh@(k/k0)

n#%1/n. Of course, there are
many other modifications one could consider. Perhaps t
simplest is given by

F2~k!5k22k4/k0
2 . ~9!

This dispersion relation has the same smallk behavior as
Unruh’s, but behaves quite differently for largek. It has the
technical advantage that the field equation~6! has no deriva-

1In fact, the inner product is nonlocal when evaluated on othe
slices if F̂(sa]a) is nonlocal. The conserved current densityj a is
determined by the equation]a j

a5Da@A2ggab(f1*Dbf2

2f2Dbf1* )#.

d
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54 1571HAWKING SPECTRUM AND HIGH FREQUENCY DISPERSION
tives higher than fourth order, and for this reason it is the o
on which all the calculations in this paper are based,
though we shall briefly discuss the behavior for alterna
choices in the final section. These two dispersion relatio
are plotted in Fig. 2 along with the dispersion relation for th
ordinary wave equation.

B. Quantization

To quantize the field we assume the field operatorf̂(x) is
self-adjoint and satisfies the equation of motion~6! and the
canonical commutation relations. In setting up the canoni
formalism, it is simplest to use the time function and evol
tion vector for which only first order time derivatives appea
in the action.~Otherwise one must introduce extra momen
which are constrained, and then pass to the reduced ph
space.! This just means that we define the momenta by

p5dL/d~] tf!5~] t1v]x!f;

i.e., p is the time derivative along the free-fall world lines
The equal time canonical commutation relations are th
@f(x),p(y)#5 id(x,y), as usual.

We define an annihilation operator corresponding to
initial data setf on a surfaceS by

a~ f !5~ f ,f̂ !, ~10!

where the inner product is evaluated onS. If the dataf are
extended to a solution of the field equation then we c
evaluate the inner product~10! on whichever surface we
wish. The Hermitian adjoint ofa( f ) is called the creation
operator forf and it is given by

a†~ f !52~ f * ,f̂ !. ~11!

The commutation relations between these operators foll
from the canonical commutation relations satisfied by t
field operator. The latter are equivalent to

@a~ f !,a†~g!#5~ f ,g!, ~12!

FIG. 2. Curvea is the standard dispersion relation for the mas
less wave equation, curveb is the type used by Unruh, and curve
c is the one used in this paper@Eq. ~9!#.
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provided this holds for all choices off andg. Now it is clear
that only if f has positive, unit norm are the appellations
‘‘annihilation’’ and ‘‘creation’’ appropriate for these opera-
tors. From Eq.~12! and the definition of the inner product, it
follows identically that we also have the commutation rela
tions

@a~ f !,a~g!#52~ f ,g* !, @a†~ f !,a†~g!#52~ f * ,g!.
~13!

A Hilbert space of ‘‘one-particle states’’ can be defined
by choosing a decomposition of the spaceS of complex ini-
tial data sets~or solutions to the field equation! into a direct
sum of the formS5Sp%Sp* , where all the data sets inSp
have positive norm and the spaceSp is orthogonal to its
conjugateSp* . Then all of the annihilation operators for ele-
ments ofSp commute with each other, as do the creation
operators. A ‘‘vacuum’’ stateuC& corresponding toSp is
defined by the conditiona( f )uC&50 for all f in Sp , and a
Fock space of multiparticle states is built up by repeate
application of the creation operators touC&.

It is not necessary to construct a specific Fock space
order to study the physics of this system. In fact, any indi
vidual positive norm solutionp defines annihilation and cre-
ation operators and a number operatorN(p)5a†(p)a(p).
The physical significance of the number operator depends,
course, on the nature ofp.

There are two types of positive norm wave packets in
which we are interested. The first are those corresponding
the quanta of Hawking radiation. These have positive Killing
frequency, that is, they are sums of solutions satisfyin
] tf52 ivf with v.0. It is not obvious that such solutions
have positive norm in the inner product~7!, and in fact they
do not in general. However, using the fact that the Killing
frequency is conserved, we know that if a positive Killing
frequency wave packet were to propagate out to infinity~or
any other region wherev50), the integral for its norm
would be manifestly positive. Since the norm is conserved
this suffices.

The other type of positive norm wave packets we sha
employ are those which correspond to particles as defined
the free-fall observers. These have positive free-fall fre
quency, that is, they are sums of solutions satisfyin
(] t1v]x)f52 iv8f, with v8.0, on some time slice.
These have manifestly positive norm~if the solutions
summed are orthogonal to each other like, for example, ha
monic modes in a constantv region!, although the free-fall
frequency isnot conserved.

Finally, we conclude this section on quantization with a
cautionary remark. One sees from the dispersion relation~9!
that, for k2.k0

2 , the field has imaginary frequency modes
which are well behaved in space. In principle these mode
must be included in a complete quantization of the mode
Although imaginary frequency modes can be quantize
@12,13#, the resulting model is unstable in that the energ
spectrum is unbounded below. However, these modes pl
no role in our analysis of the Hawking effect, so we shal
simply ignore them as an irrelevant unphysical feature of th
model.

s-



r

r

f
i

m

e

u

n

t

t

,

-
o
-
r-

s
t
-

n

to

1572 54STEVEN CORLEY AND TED JACOBSON
III. WAVE-PACKET PROPAGATION AND MODE
CONVERSION

In this section we describe, by way of pictures, the p
duction of Hawking radiation from an initial vacuum state b
means of a process known as ‘‘mode conversion.’’ We a
describe a new process of particle production via scatte
in a static geometry that happens in the dispersive mod
studied here. We assume that all ingoing positive free-
frequency wave packets are unoccupied, at some given t
far ~but not infinitely far—see Sec. VI! from the hole where
v(x) is approximately~or exactly! constant. Given this initial
state, we wish to calculate the number of particles, in a giv
outgoing packet, detected by an observer far from the h
who is at rest with respect to the hole. Following the sta
dard technology~see Sec. IV B!, the number of particles in
this packet is obtained by propagating the packet back
time to where the initial ground state boundary condition
imposed and taking the norm of its negative free-fall fr
quency piece.

The behavior of a wave packet propagated back in ti
can be understood qualitatively as follows. Assume a so
tion to the field equation~6! of the formf5e2 ivt f (x) and
solve the resulting ODE~17! for f (x) by the WKB approxi-
mation. That is, writef (x)5exp@i*k(x)dx# and assume the
quantities]xv and]xk/k are negligible compared tok. The
resulting equation is the position-dependent dispersion r
tion

@v2v~x!k#25F2~k!. ~14!

This is just the dispersion relation in the local free-fall fram
since the free-fall frequencyv8 is related to the Killing fre-
quencyv by

v85v2v~x!k. ~15!

The position-dependent dispersion relation is useful for
derstanding the motion of wave packets that are somew
peaked in both position and wave vector. A graphic
method we have employed is described below. The sa
method was used by BMPS@8#, who also found a Hamil-
tonian formulation for the wave-packet propagation usi
Hamilton-Jacobi theory.

Graphs of the square root of both sides of Eq.~14! are
shown in Fig. 3 forF(k) given by Eq.~9! and for two dif-
ferent values ofv. As x varies, the slope2v(x) @5uv(x)u#
of the straight line representing the left hand side of Eq.~14!
changes, but for a given wave packet the interceptv is fixed
since the Killing frequency is conserved. For a givenx, the
intersection points on the graph correspond to the poss
wave vectors in this approximation. These solutions to
dispersion relation for fixedv and v will be denoted, in
increasing order, as

k~v!5k2 ,k2s ,k1s ,k1 . ~16!
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~The subscript ‘‘s’’ is intended to suggest ‘‘smaller’’ in ab-
solute value.! Note that for the ordinary wave equation one
would have only the two roots withv.0 corresponding to
k2s andk1s at the velocityv0 .

The coordinate velocitydx/dt of a wave packet is the
group velocityvg5dv/dk. This may also be expressed, us-
ing Eq. ~15!, as vg5vg81v(x), wherevg8[dv8/dk is the
group velocity in the free-fall frame which corresponds to
the slope of the curved line in Fig. 3. The group velocity is
positive atk1s and negative atk2 , k2s , and k1 . Thus,
while there is one outgoing mode at fixed positivev, there
are three ingoing modes. Of crucial importance is the fac
that thek2 mode outside the horizon (v.21) hasnegative
free-fall frequency when the Killing frequency is positive.

Now consider a wave packet located far from the hole
centered about frequencyv, and containing onlyk values
aroundk1s . This is an outgoing wave packet so, going back
wards in time, the packet moves towards the hole. Tw
qualitatively different effects govern the wave-packet propa
gation, namely, mode conversion at the horizon and scatte
ing off the geometry. These will now be discussed in turn.

A. Mode conversion at the horizon

As the wave packet propagates backwards in time toward
the black holeuv(x)u increases, so the slope of the straigh
line in Fig. 3 increases, until eventually the straight line be
comes tangent to the dispersion curve. At this pointvg drops
to zero. Ifv is very small compared tok0 , then this stopping
point xt occurs whenv(x) is very close to21, that is, just
barely outside the horizon.

FIG. 3. Graphical solution of the position-dependent dispersio
relation~14!, with F(k) given by Eq.~9!, in units wherek051. The
line labeledv0 corresponds to a position far from the hole. The
other line corresponds to the classical turning point. Thek values of
the intersections of the straight and curved lines are the solutions
the dispersion relation for fixedv andv. For thev0 line these are
denoted from left to right byk2 , k2s , k1s , andk1 in the text. The
filled arrowheads indicate the direction of propagation of wave
packets, in momentum space, as discussed in the text.



n

e
g
a-

a-

a-

er-
d in
he
e
e
ive
e
n of
tive
he
st
the
om

-
too
t is
y a
es
I.

t-
ll,
o-
he

l of
b-
re
le.
le
e

s-
be

54 1573HAWKING SPECTRUM AND HIGH FREQUENCY DISPERSION
What happens at the stopping point? It was incorrec
suggested in Ref.@5# that the wave packets just asymptot
cally approach limiting positionxt and wave vectorkt .
However, near the stopping point the point particle picture
the wave-packet motion is inadequate, and the spread in b
k andx must be considered. One can determine qualitativ
what happens by considering the behavior of nearby so
tions to the dispersion relation as follows.2 As pointed out by
Unruh @14#, it is an unstable situation for the wave packet
just sit at the stopping point: fork slightly abovekt the group
velocity drops below zero~i.e., the comoving group velocity
drops below the magnitude of the free-fall velocity! so, back-
wards in time, the wave packet tends to move backaway
from the horizon and therefore to the right~to higher wave
vectors! on the dispersion curve. Once this begins to happ
k continues to increase as the wave packet moves furt
away. Exactly this behavior was found in Unruh’s numeric
solution @6# to the PDE. In brief, a long wavelengthk1s
packet went in, and a short wavelengthk1 packet came out.
This is an example of the phenomenon of ‘‘mode conve
sion’’ @10,11#, but it is only half the story.

There is another short wavelength solution to the disp
sion relation asx approachesxt , atk2 on the negative wave
vector, negative free-fall frequency branch of the dispersi
curve, which mixes in. We will discuss in a moment a qua
titative measure of the relative amplitudes of thek2 and
k1 packets arising from this mode conversion process,
looking at how it works for the usual wave equation. Suffic
it to say here that the negative wave-vector mode mixes
strongly for sufficiently smallv for both Unruh’s dispersion
relation and Eq.~9!, as shown both by Unruh’s solution o
the PDE and by the ODE methods applied by BMPS@8# and
ourselves. The ‘‘converted,’’ negative wave vector, wav
packet also has a negative group velocity, and so also mo
backwards in time, away from the hole. The end result th
consists of two wave packets, one constructed of large po
tive k wave vectors and the other of large negativek wave
vectors, both propagating away from the hole~at different
group velocities! and reaching the asymptotically flat~con-
stant free-fall velocity! region. The number of created par
ticles in the final, late time, wave packet is given by~minus!
the norm of the negative wave vector~and negative free-fall
frequency! part of the initial, early time wave packet.

Let us see how the conversion amplitude is determined
the case of the ordinary wave equation with the linear d
persion relation. This will also indicate how it works for th
nonlinear dispersion relations. First, note that the wa
packet vanishes inside the horizon~from the causal behavior
of the ordinary wave equation!, so it must havesomenega-
tive wave vector component, since a purely positive wa
vector wave packet cannot vanish on the half line~or any
open interval!. But how large is this negative wave vecto
piece? The WKB form of a single frequency mode
f;exp(i*kdx), and the dispersion relationv2vk5k yields
k5v/(11v). Expanding about the horizon atx50 we have

2In fact, the WKB approximation breaks down as the stoppin
point is approached; however, this does not prevent us from obt
ing qualitative information about the motion of the wave packet
described here.
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v.211kx, where k5v8(0), so k.v/kx, so
f;exp(i(v/k)lnx).3 This mode function can be analytically
continued to the upper halfx plane, yielding a purely posi-
tive wave vector functionf1 on the real axis, or to the lower
half x plane, yielding a purely negative wave vector functio
f2 . These two functions agree for positive values ofx but
differ for negative values, the difference being given by th
discontinuity across the branch cut of the logarithm. Writin
2x5xe6 ip, one sees that the ratio of the values at any neg
tive x is given byf2 /f15exp(2pv/k). Hence, to obtain a
wave packet that vanishes for negativex, one must form the
combinationf12exp(22pv/k)f2 . The ratio of the norms
of the negative and positive frequency parts of this combin
tion is easily seen to be the exponential factor exp(2v/T),
whereT5k/2p is the Hawking temperature. Thus the neg
tive wave vector part is large only whenv is not too much
larger than the Hawking temperature.

Now consider how things change when the altered disp
sion relation is used. The wave packet can be propagate
fairly close to the horizon before the wave vectors reach t
nonlinear part of the dispersion curve, so there will be som
domain near the horizon in which it takes approximately th
same form as for the ordinary wave equation. The negat
wave vector part can be inferred in this domain from th
above argument, so one sees that as long as this domai
concurrence exists, the conversion amplitude to the nega
wave vector branch should be approximately the same. T
essential difference from the ordinary wave equation is ju
that, rather than remaining crammed against the horizon,
short-wavelength wavepackets propagate back away fr
the horizon.

It is worth emphasizing that our analysis of the wave
packet motion assumes that the asymptotic velocity is not
small. Otherwise, as the negative wave vector wave packe
propagated backwards in time, Fig. 3 shows that eventuall
point is reached where the comoving group velocity pass
from 2` to 1`. This issue is addressed further in Sec. V

B. Scattering

If the ordinary two-dimensional wave equation were sa
isfied, there would be no scattering off the geometry at a
because this equation is conformally invariant and all tw
dimensional line elements are conformally flat. However, t
higher spatial derivative terms in Eq.~6! spoil conformal
invariance, hence there is some scattering. The reversa
group velocity at the horizon described in the previous su
section is already an example of this, but in addition the
will be scattering from the geometry outside the black ho
For metrics with a minimum characteristic length sca
l@k0

21 this scattering will be extremely small, since th

g
ain-
as

3This derivation of the form of the mode function can be que
tioned on the grounds that the WKB approximation may not
valid. Sufficientconditions for validity of WKB aredk/dx!k2 and
v8!k. The dispersion relation impliesdk/dx.(k/v)k2, so both of
these conditions are satisfied only whenv@k. Nevertheless, for
some reason~perhaps related to conformal invariance! the WKB
solution is in fact exact for the ordinary wave equation.
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1574 54STEVEN CORLEY AND TED JACOBSON
long-wavelength modes almost satisfy the ordinary wa
equation, and the short-wavelength modes do not ‘‘see’’
scalel .

Following our late time outgoing wave packet backwar
in time, scattering will occur both on the way in towards t
hole, and on the way back out, contributing to the prese
of components in the early time ingoing wave packet w
wave vectorsk2 , k2s , and k1 @Eq. ~16!#. The different
contributions to the scattered wave can be visualized easi
we idealize the scattering as a process that occurs at just
position, as depicted in Fig. 4.~In fact this will be essentially
the case for the ‘‘kinked’’ metric to be discussed in Sec. V!
Going backwards in time, thek1s packet backscatters into
the other three roots. Ak1s piece continues on towards th
horizon, blueshifting, and undergoes mode conversion t
pair of k2 andk1 packets, which then propagate back aw
from the horizon. When these reach the scattering ‘‘kink
they partly backscatter into thek1s root and forward scatter
into the other three roots. Thek2 packet, which determines
the particle creation amplitude, thus receives contributio
from three independent processes:~i! backscattering from
k1s , ~ii ! mode conversion at the horizon~partly modified by
forward scattering out ofk2), and ~iii ! forward scattering
from k1 .

For the ordinary wave equation in more than two dime
sions, there is also backscattering from the geometry. H
ever, in that case there is only one ingoing mode for fix
positivev, corresponding tok2s , which has positive free-
fall frequency and does not give rise to any particle creati
In our model the possibility of scattering into thek2 mode,

FIG. 4. Schematic representation of the history of an outgo
low frequency positive wave vector wavepacket. The solid verti
line is the horizon, and the dashed line is the ‘‘kink’’ where th
scattering takes place. The1 and2 signs indicate the sign of the
wave vector.
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which hasnegativefree-fall frequency~and hence negative
norm!, does lead to particle production. This particle creation
has absolutely nothing to do with black holes. It is caused b
scattering from a stationary~in fact static! geometry. This is
possible because the time translation Killing field does no
agree with the free-fall frame, which is a distinguished frame
in our Lorentz noninvariant theory. We shall have more to
say about particle creation in a stationary metric in Sec. VI

IV. COMPUTING THE SPECTRUM OF BLACK HOLE
RADIATION

In this section we discuss the approach taken to solve fo
the particle production in a given mode, i.e., fixed Killing
frequency solution. We begin by discussing the reduction o
the PDE, Eq.~6!, to an ODE plus boundary condition. We
then discuss the method applied to compute the particle pr
duction rate given a solution to the ODE.

A. Solving the mode equation

Because the background flow is stationary, the Killing
frequencyv is conserved, and solutions to Eq.~6! of the
form f(t,x)5e2 ivt f (x) exist. Substitution yields an ODE
for f (x):

~2 iv1]xv !~2 iv1v]x! f ~x!5F̂2~]x! f ~x!. ~17!

Boundary conditions are required to select among solution
of this equation. We would like to impose boundary condi-
tions that hold if the solution arises as part of a wave packe
that is localized and outgoing at late times, since these a
the ones that are relevant for the Hawking effect. What ar
these boundary conditions?

Note first that a solution cannot strictly vanish everywhere
inside the horizon unless it is identically zero everywhere o
it is somehow singular at the horizon. Since our PDE con
tains higher spatial derivative terms, and is hence not causa
one might expect that solutions would be well behaved at th
horizon. This is, in fact, the case, and therefore a solutio
cannot vanish everywhere inside the horizon. Unruh’s resul
from propagating wave packets satisfying a similar equatio
indicate that outgoing wave packets do indeed have nonva
ishing amplitude inside the horizon, but they decay rapidly
inside.4 We are thus interested in the mode solutions to th
ODE that decay inside the horizon.

For example, consider the case where the free-fall veloc
ity v(x) goes to a constant~less than21) inside the horizon.
In this constant velocity region the ODE~17! has two oscil-
lating modes, one exponentially growing mode, and one ex
ponentially damped mode. In principle, we apply the bound
ary condition that the solution and its first three derivatives
agree with the exponentially growing~with x) mode and its
first three derivatives, respectively, at some position in th
constant velocity region inside the horizon. As a practica

4We thank W. G. Unruh for showing us some of his unpublished
graphs that make this point clear.
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matter, however, it is very important to realize that almo
any boundary condition appliedinsidethe horizon will yield
essentially the same solutionoutsidethe horizon. This is im-
portant because for a generalv(x) we would not know ex-
plicitly the form of the required boundary condition, and al
because numerical integration of the ODE will always intr
duce small errors.

The insensitivity to the boundary condition can be und
stood as follows. An arbitrary boundary condition may
written as a linear combination of the boundary conditio
generating the above four modes. Since the solution co
sponding to the growing mode grows exponentially with i
creasingx until it emerges from behind the horizon, where
the other three maintain approximately constant or decre
ing amplitudes, the contribution from the exponentia
growing mode will be exponentially amplified relative to th
other modes. Moreover, agreement~up to an irrelevant over-
all constant! outside the horizon with the solution arisin
purely from the exponentially damped boundary conditi
will rapidly get better and better as the arbitrary condition
applied deeper and deeper inside the horizon. In fact, in
merically solving the ODE, we used the criterion of insen
tivity to the point of application of the boundary condition t
ensure that the appropriate mode had been selected. Als
was important not to start the numerical integration too de
inside the horizon, for otherwise the exponential growth p
duced such huge field values that numerical problems ar

Given the above ODE and boundary conditions it is no
a simple matter to solve the equation numerically5 or, in
some cases, analytically.~The analytical solution is given in
the Appendix.! We need only integrate the equation out
positivex values in which the velocity is approximately con
stant ~and at its asymptotic value!. In a region where
dv/dx is zero~or is negligibly small! the generic mode so
lution uv(x) is just a sum of four harmonics,

uv~x!→(
l51

4

cl~v!eikl ~v!x, ~18!

with kl(v) given by Eq.~16!. An example solution is shown
in Fig. 5. As expected, the solution grows exponentially o
across the horizon, located atx50, and then starts oscillat
ing. By fitting ~i.e., employing a minimization procedure! for
the coefficientscl(v) of the four mode solutions, the nu
merical solution can be expressed analytically in the asym
totic constant velocity region. This step amounts to taking
‘‘local Fourier transform’’ of the numerical solution in the
constant velocity region. As will be shown below, know
edge of these coefficients is tantamount to finding the p
ticle production in modev. As a check on the accuracy o
the numerical solution we also used the exact solution~39!

5For the numerical work we usedMATHEMATICA for its conve-
nience and flexibility. In retrospect, it would probably have be
better to use a standard programming language since the com
tions turned out to be very time consuming. For instance, comp
ing the created particle flux at the highest resolution for asingle
frequency took on the order of one hour on a Next machine.
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~given in the Appendix! to compute the particle production a
a givenv, and found agreement to within the targeted n
merical accuracy.

B. Computing the particle creation rate

In this subsection we obtain the explicit expression for th
particle creation rate to be used in our analysis. Letcout
denote a final wave packet of the form

cout5NE dvc1s~v!eivu0e2 i @vt2k1s~v!x#, ~19!

whereN is a normalization constant,u0 is a constant that
determines at what time the wave packet passes a gi
point, and only the small positive rootk1s(v) of the disper-
sion relation is included in the integration. This is an outg
ing wavepacket solution of the field equation~6! in the con-
stant velocity region, where it has both positive Killing
frequency and positive free-fall frequency.

Propagating this data backwards in time, as explained
Sec. III, it arrives back again in the constant velocity regio
as an ingoing wave packet,

c in5c21c2s1c1 , ~20!

composed of wave-vector componentsk2 , k2s, and k1 ,
respectively, all of which have negative group velocity
Since the inner product~7! is time independent we have

~cout,f̂ !5~c2 ,f̂ !1~c2s ,f̂ !1~c1 ,f̂ ! ~21!

or, in terms of annihilation and creation operators~10! and
~11!,

a~cout!52a†~c2* !1a~c2s!1a~c1!. ~22!

en
puta-
ut-

FIG. 5. Plot of the real and imaginary parts of the solution to E
~17! for a free-fall velocity vkink @Eq. ~35!#, temperatureTH 5
0.003, and frequency ofv 5 0.01, in units wherek051. The hori-
zon is located atx50 and the kink is located atx.26. Note how
the solution tunnels out across the horizon, growing exponentia
and then begins oscillating. Both the short and long waveleng
components are clearly visible.
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We assume that the state of the field at early times is
free-fall vacuumuff &, which satisfiesa(pin)uff & 5 0 for any
ingoing positive free-fall frequency wave packetpin . The
particle creation in the packetcout, characterized by the ex
pectation value of the number operator, is, thus@using Eq.
~12!#, given by the norm ofc2 :

N~cout!5^ff ua†~cout!a~cout!uff &52~c2 ,c2!. ~23!

To evaluate this norm we use the solution to the mode eq
tion as follows.

Let c denote the solution to Eq.~6! generated by the fina
data setcout ~and therefore also by the early data setc in).
This solution can be expanded in exact solutions to the m
equation~17!,

c~ t,x!5E dveivu0e2 ivtuv~x!, ~24!

whereuv(x) is proportional to the mode solution that deca
inside the horizon which we find either analytically or n
merically. At large positivex, in the constant velocity re
gion, uv takes the form

uv~x!5(
l51

4

cl~v!eikl ~v!x, ~25!

as explained in the previous subsection. Thek1s term in Eq.
~25! gives rise to the outgoing wave packetcout at late times,
and thek2 , k2s , andk1 terms give rise to the ingoing wav
packetsc2 , c2s , and c1 , respectively, at early times
Each of these wave packets is separately localized in
large x, constant velocity region. In particular,c2 takes
there the simple form

c25E dvc2~v!eivu0e2 i @vt2k2~v!x#. ~26!

Now becausec2 is localized in the constant velocity region
its norm can be evaluated as if the constant velocity reg
extended throughout all of space. On a constantv back-
ground one has

~e2 i @vt2kl ~v!x#,e2 i @vt2kj ~v!x#!constantv

54pv8@kl~v!#d„kl~v!2kj~v!…, ~27!

wherev8 is the free-fall frequency~15!. Using Eq.~27!, the
number expectation~23! evaluates to

N~cout!54pE dvuv8@k2~v!#vg@k2~v!#c2~v!2u.

~28!

In practice, the mode solutionsuv we work with are not
normalized. To evaluate the norm ofcout note that at late
timescout is of the same form as Eq.~26!, with the small
positive rootk1s(v) in place of k2(v). Thus (cout,cout)
5(c1s ,c1s) 54p*dvv8@k1s(v)#uvg@k1s(v)#c1s(v)

2u.
Dividing Eq. ~28! by this norm then yields the properly no
malized occupation number. For a wave packet that
strongly peaked about frequencyv this yields the number
expectation value:
the
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N~v!5
uv8~k2!vg~k2!c2

2 ~v!u
uv8~k1s!vg~k1s!c1s

2 ~v!u
. ~29!

Equation~28! gives the occupation number of a particular
wave packet. To obtain the number of particles reachin
I1 per unit time, consider the complete6 orthonormal set of
late time, outgoing wave packets of the form

pjn5NE
j e

~ j11!e
dke2 iv~k!teikxei2pnk/e. ~30!

These are of the same form as the wave packets~19!, the
only difference being in the integration overk instead of
v. @This is the same basis as that used by Hawking@1#,
except that for usv(k) is a different function.# The wave
packet pjn is localized on the trajectory satisfying
vgt2x22pn/e50, and the time interval between the pas-
sage of successive wave packetspjn , pj ,n11 is, therefore,
Dt52p/vge. Furthermore, the temporal spread of a packe
at fixedx is of the same order. The frequency spreadDv in
one of these wave packets is given for smalle by
Dv'(dv/dk)e5vge. Thus in the smalle limit we have
DtDv52p.

The number of particles reachingI1 in a time interval
dt!Dt in the wave packetspjn for fixed j is approximately

dN~v j !5
dt

Dt
N~v j !, ~31!

where the notationv j[v( j e) is introduced. The approxima-
tion made is to assume thate is very small so that essentially
only one packet for a given frequency contributes to the flux
and of that packet only the portion located in the time inter
val dt. Rewriting this expression usingDtDv52p and tak-
ing the limit e→0 we obtain the particle number flux per
unit frequency interval:

dN~v!

dtdv
5

1

2p
N~v!, ~32!

where we have dropped the subscripts. In the thermal cas
one hasN(v)5(ev/T21)21. The total luminosity, i.e., the
total Killing energy reachingI1 per unit time, is obtained
from dN(v)/dt by multiplying by the frequencyv and sum-
ming up over all frequencies, i.e.,

L5E dv
v

2p
N~v!. ~33!

V. RESULTS OF THE COMPUTATIONS

In this section we describe and interpret the results of th
numerical computations we have performed. Before discus
ing the results we introduce the relevant parameters. Ou

6Let f (x) be any function with Fourier transformf̃ (k). On the
interval (j e, j e1e), f̃ (k) can be expressed as a
Fourier series Snajne

i2pnk/e. Thus one has f (x)
5*dk f̃(k)eikx5S j* j e

j e1edk f̃(k)eikx 5S j* j e
j e1edkSnajne

i2pnk/eeikx

5S jnajnpjn(x), wherepjn(x) 5* j e
( j11)edkei2pnk/eeikx.
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54 1577HAWKING SPECTRUM AND HIGH FREQUENCY DISPERSION
models are completely characterized by the cutoff wave v
tor k0 appearing in the dispersion relations~8! and ~9! and
the the free-fall velocity functionv(x) appearing in the met-
ric ~4!. @For a Schwarzschild black hole in four dimensio
v(x) is given byv(x)52(2M /x)1/2.# The most important
parameter characterizingv is the surface gravityk5v8(xh)
where xh is the position of the horizon@v(xh)521#, in
terms of which the Hawking temperature isTH5k/2p. For
the results discussed here, the ratioTH /k0 was either
0.000 784 or 0.003 12~which for brevity we usually write as
0.0008 or 0.003, respectively!, except in one case where w
considered a large number of temperatures~see Fig. 10!.
Note that ifk0 is the Planck mass then these temperatures
extremely high and would correspond to very sm
Schwarzschild black holes.7

Besides the surface gravity, what is important abo
v(x) is how much scattering~reflection! it produces. This is
determined by the specific form ofv(x). The results dis-
cussed here were obtained with three different forms
v(x):

v tanh,n[
1
2 $tanh@~2kx!n#%1/n21 ~34!

for n 5 2 and 20 and

vkink~x![@kxu~2x!2 1
2 #, ~35!

all of which go to21/2 asx goes to infinity. Qualitatively
speaking, v tanh,2 produces very little scattering wherea
v tanh,20 and vkink produce much more~although still very
little!. The curvature scalar of the line element~4! is given by
R52(v2)9, so asn increases inv tanh,n the curvature at the
bend diverges, as it does forvkink . Important note:We shall
often refer to thev tanh,20case as ‘‘kinked,’’ together with the
truly kinked casevkink , since they produce comparab
amounts of scattering. We considered them both becaus~i!
the truly kinked case allowed us to check the numerical co
putation by comparing with the analytic solution discussed
the Appendix,~ii ! comparison of the two allowed us to rul
out spurious effects that might have been associated wi
true kink, and~iii ! the comparison gave us more informatio
about the impact of short-wavelength processes on the s
trum of created particles. The most dramatic difference
found is illustrated by the difference between Fig. 11 a
Fig. 13 below.

7It would have been interesting to compute the spectrum also
large black holes, for example, for a primordial black hole tempe
ture of, say,TH'10220k0 . Such low temperatures lead to comp
tational difficulties with the techniques we have employed for tw
reasons. First, the distance from the horizon to the constant velo
region extends over a width determined by 1/TH which in units of
the lengthk0

21 is k0 /TH;1020. It would, therefore, be necessary t
integrate the ODE over an extremely large number of oscillat
cycles to obtain the particle production rate for a typical frequen
This difficulty might be sidestepped by taking the asymptotic v
locity to be211e wheree is of order 10220. The second difficulty
is simply that one would have to design a code specifically
handle a computation in which numbers with ratios like 1020 are
both important.
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The highest frequency at which there exist outgoin
modes at the asymptotic velocityv521/2 is given by
vc'0.18k0 . @At this value ofv the larger negativek root of
the dispersion relation still corresponds to a negative free-f
frequency~see Fig. 3!.# The ratiovc /TH for the two tem-
peratures used in our computations is about 235 and 59
TH /k0 5 0.000 784 and 0.003 12, respectively.

With the Introduction of the new length scalek0
21 one

expects necessarily some deviation from the thermal Haw
ing prediction. We shall useTH /k0 as a benchmark with
which to compare deviations. The initial deviation is presum
ably of order (TH /k0)

p for somep. As stated in the Intro-
duction, previous analyses estimated thatp should be unity
or possibly smaller.~For the smooth metric it turns out that
p is 3 at the lower temperature, and is roughly unity for th
kinked metrics.!

The computations were performed usingMATHEMATICA .
In order to test reliability of the computations, we adjuste
the WorkingPrecision, AccuracyGoal, and PrecisionGoal o
tions until there was no significant change in the results.
all cases the WorkingPrecision was better than 1024 times
the ratio of the smallest to the largest coefficient in the Fo
rier expansion~18!. We therefore believe the results reporte
below accurately represent the solution to the model.

A. Results

In broad terms, the results are the following. For th
smooth metric there is spectacular agreement with the th
mal Hawking flux at low frequencies. The relative differenc
from the thermal prediction8 does not exceedTH /k0 until
v/TH is of order 102. The largest deviations reliably ob-
tained were of order 60% at the cutoff frequency in the hig
temperature case. The kinked metric cases behaved quite
ferently. For them there is a significant nonthermal contrib
tion to the particle creation from scattering at the kink. Th
contribution does not decrease with frequency so at so
frequency it begins to dominate, and the relative deviatio
from the exponentially dying thermal prediction grows expo
nentially. Furthermore, it oscillates as a function of fre
quency due to interference between different scatter
pieces. These results will now be described in detail. We fi
compare the calculated flux of particles as a function of fr
quency to the thermal prediction. Next, we investigate cum
lative effects of this deviation in terms of the total luminos
ity.

1. Flux: smooth metrics

First we discuss the results for the smooth metric. Table
shows the relative deviation of the computed flux from th
thermal flux for various frequencies up to a frequency arou
which the relative deviation exceedsTH /k0 . Note the spec-
tacular agreement between the computed and thermal flux
For the lower temperature the relative deviation atv.TH is
of order (TH /k0)

3, while for the higher temperature it is of
order (TH /k0)

2, both significantly less than the expected de
viation of orderTH /k0 . Since we have only two fairly high

for
ra-
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o
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to
8By the ‘‘thermal prediction’’ we meanN(v)5(ev/T21)21. Any

modifications due to ‘‘gray body factors’’ are neglected.
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temperatures, however, it is difficult to say what the re
dependence onTh /k0 is. The size of the deviation could be
small in part due to a small coefficient. It should be possib
to extract the temperature dependence by evaluating the r
tive deviation at a fixed value ofv/T for several values of
T. This is difficult because of the small numbers in th
smooth case, but the analogous calculation has been p
formed for the kinked case, as described in the next subs
tion.

A crude and very conservative estimate of the numeric
error in the computation suggests that the low temperatu
relative differences in Table I are of the same order of ma
nitude as the computational error.~For the smallest frequen-
cies, the relative difference is just very small, while at large
frequencies the flux itself is so small that it is difficult to
evaluate the relative difference accurately.! This is probably
an overestimate of the error, but if correct it means that on
the order of magnitude of the low temperature numbers
significant.

For both temperatures we see an oscillation in the sign
the relative difference as a function of frequency.

The high frequency results are plotted in Figs. 6 and 7
the form of the relative difference between computed an
thermal energy fluxes as a function ofv/k0 ~the low fre-

TABLE I. Relative difference between computed and therm
energy fluxes for a range of low frequencies for both values of t
Hawking temperature.

TH /k050.0008 TH /k050.003
v/k0 Rel. Diff. v/k0 Rel. Diff.

0.00049 22.231029 0.0020 28.231027

0.0054 1.931028 0.0098 21.031026

0.010 2.031027 0.018 2.131026

0.015 6.931027 0.025 1.231025

0.020 1.531026 0.041 6.131025

0.025 2.031026 0.057 1.331024

0.030 21.531025 0.072 25.631026

0.035 22.431024 0.088 21.331023

FIG. 6. Plot of the relative difference between computed an
thermal energy fluxes as a function ofv/k0 for the smooth metric
with TH /k0 5 0.0008.
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quency data is included but is too small to be observed fro
the graph!. For the higher temperature case the entire spe
trum was obtained, and the maximum relative difference
about 60% and occurs at the highest frequency. For the low
temperature case the agreement between the computed
thermal energy fluxes remained quite good out unt
v/TH557.2 ~the last data point obtained! where the relative
error was about 3%. Data could not be obtained accurate
beyond this value ofv because the coefficient of the nega
tive norm mode was too difficult to compute accurately du
to its extremely small size.

2. Flux: kinked metrics

Now we turn to the results for the kinked metrics. In Fig
8 we plot the logarithm of the ratio of the computed flux
reaching infinity to the thermally predicted flux reaching in
finity as a function of frequency for a free-fall velocity

al
he

d

FIG. 7. Plot of the relative difference between computed an
thermal energy fluxes as a function ofv/k0 for the smooth metric
with TH /k0 5 0.003.

FIG. 8. Plot of the logarithm of the ratio of computed flux reach
ing infinity to the thermal flux reaching infinity forv kink and
TH /k0 5 0.003, as a function of frequency in units of the Hawking
temperature. The position of the deviation frequencyvd for this
case is indicated on the figure.
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vkink and temperatureTH /k0 5 0.003. This graph illustrate
the generic form of deviations between the two for all kink
cases. Namely, there was reasonable agreement~see below
for a more precise statement! up to some frequencyvd ,
while abovevd the disagreement was large and increa
~on average, see below! with frequency. The frequency
vd , termed the deviation frequency, represents the appr
mate frequency where rapid growth~apparently exponential!
of the ratio between the computed and thermal energy flu
begins.

The low frequency deviations are magnified in Fig. 9,
which the relative difference between the computed and t
mal fluxes is plotted. At the lowest frequencies, the co
puted flux in the lower temperature cases has already
proached very close to the thermal prediction, whereas in
higher temperature cases there is still a difference of a co
of percent at the lowest frequency computed. We have
computed for yet lower frequencies because, as we i
grated across the kink, the convergence criterion used
MATHEMATICA failed. @Since the thermal number flu
(ev/T21)21 diverges asv→0, the relative difference mus
vanish in that limit unless the absolute difference is a
diverging. If a scattered component survives asv→0, then
the absolute differencewill diverge.#

Increasingv from zero, we see that the computed flu
generically starts out slightly below the thermal flux. D
pending on the parameters, the relative deviation then ei
decreases monotonically, or oscillates about the ther
value, eventually reaching a maximum negative value a
which it becomes positive and never returns to zero. T
maximum negative deviation is about 7% for the lower te
perature~0.0008k0) cases and is 2.4% or 6% for the high
temperature~0.003k0) cases. For comparison, note th
TH /k0 andATH /k0 are around 0.1% and 3%, respective
for the lower temperature and are around 0.4% and 6%
spectively, for the higher temperature. Thus the maxim
negative deviation appears to be of orderATH /k0 in these
cases.

FIG. 9. Plot of the fractional difference between computed fl
and thermal flux as a function of frequency in units of the Hawk
temperature. The curves correspond from left to right to the (T,v)
pairs (h,v tanh,20), (h,vkink), (l ,vkink), (l ,v tanh,20), wherel andh de-
note the temperatures 0.0008k0 , and 0.003k0 , respectively.
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In Fig. 10 we investigate the convergence of the com-
puted to the thermal particle number flux at the fixed fre-
quencyv5TH , for the metricvkink , as the temperature is
lowered~or, equivalently, as the cutoff is raised!. We see a
small amplitude, short-period oscillation superimposed on a
larger amplitude, longer-period one. In order to characterize
the rate of convergence we have found the absolute values
the four points where the longer period oscillation peaks, and
fit them to a power law (TH /k0)

p. For all of the six pairs of
points we findp51 to within 10%, so it appears that the
difference is decaying asTH /k0 .

Past the last frequency at which the relative deviation
crosses zero the deviation takes off wildly. The computed
flux ceases its exponential decrease at somevd . Figure 8
shows thatvd;10TH , whereas Fig. 9 shows that the last
zero occurs at around 6TH in that case.

Before discussing the results for largev, we look at how
vd varies with the temperatureTH /k0 and free-fall velocity
~i.e., form of the metric!. The values ofvd /TH are listed in
Table II. Note thatvd /TH increases with decreasing tem-
perature, and in the lower temperature case is somewha
larger for the smoothed kink than for the true kink.

Looking now at the deviations at frequencies abovevd
we see from Fig. 8 that the log curve is approximately linear.
That is, one has

@dN~v!/dtdv#

~ev/T21!21 ; f ~v!eg~v2vd!, ~36!

where f (v) is some relatively slowly varying~i.e., not ex-
ponential! function. We have estimated the value ofg from

ux
ng

FIG. 10. Plot of the difference of computed and thermal particle
fluxes forv5TH , as a function ofk0 /TH , for the kinked metric
vkink .

TABLE II. Deviation frequenciesvd , in units of the Hawking
temperature, for the various kinked free-fall velocities and tempera-
tures, from an eyeball fit of figure 9~and the analogous plots for the
other kinked metrics which are not included here! to the data.

Metric TH /k050.0008 TH /k050.003

v tanh,20 16.5 10
vkink 13 9.5
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1580 54STEVEN CORLEY AND TED JACOBSON
graphs like Fig. 8 for both kinked metrics. We find tha
g'1/T to within the roughly 5% accuracy of our estimate
The valueg51/T is what one would have if the spectral flux
wereconstant, so we conclude that the exponential suppre
sion that would be present in the thermal flux is arrested af
vd in our model with the kinked metrics. Puttingg51/T we
thus have, forv.vd ,

dN

dtdv
' f ~v!e2vd /T. ~37!

Actually there is interesting structure in the flux abov
vd that is ‘‘washed out’’ in the logarithmic plot of Fig. 8.
This structure is revealed in Figs. 11–14, which show plo
of the computed flux of energy reaching infinity for frequen
cies larger thanvd for the four kinked parameter sets. Thes
plots show that in fact the energy flux doesnot increase
linearly ~as it would if the number flux were constant!. In
three of the four cases, the energy flux oscillates with fr
quency. The period of this oscillation increases with fr

FIG. 11. Plot of the energy flux as a function of frequency, bo
in units of the cutoff wavevectork0 , for the v tanh,20, TH /k0 5
0.0008 case.

FIG. 12. Plot of the energy flux as a function of frequency, bo
in units of the cutoff wave vectork0 , for the v tanh,20, TH /k0 5
0.003 case.
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quency, and the maximum amplitude grows at least linearl
and certainly faster in thevkink , TH /k050.0008 case. The
minimum amplitude is greater than zero and slowly growing
Recall that even in the low frequency spectrum there was a
oscillation of the computed flux about the thermal flux.
Whether these two oscillations are related is an issue th
will be discussed in the interpretation subsection. In the othe
case, v tanh,20 and the lower temperatureTH /k050.0008,
there is no oscillation at all. Rather, the flux increases, peak
and then decays again. Nevertheless, it still remains man
orders of magnitude above the thermal prediction even at th
highest frequency.

3. Luminosity

Even a small deviation in the flux could have a dramatic
effect on the net luminosity if integrated over a wide enough
range of frequencies. What determines the range of freque

h

h

FIG. 13. Plot of the energy flux as a function of frequency, both
in units of the cutoff wave vectork0 , for thevkink , TH /k0 5 0.0008
case.

FIG. 14. Plot of the energy flux as a function of frequency, both
in units of the cutoff wave vectork0 , for thevkink , TH /k0 5 0.003
case.



ty

al

-

e,

s.
to
al
y
ve-
e-
ted
ack
on.
-
ncy

e

n-
wn
an
ere
e
ted.
the
rn-
pa-
ow
in-
it.

ter-
to

r-
ese

e of
tive
e
ve-
e-
as

ary

54 1581HAWKING SPECTRUM AND HIGH FREQUENCY DISPERSION
cies in our case is that forv greater than about 0.18k0 , there
is no longer a solution to the dispersion relation correspo
ing to the outgoing mode.9

For the smooth metric (v tanh,2) with either temperature, a
well as forv tanh,20with TH /k0 5 0.0008, we find no signifi-
cant deviations from the thermal luminosity. For the oth
cases, however, there is a significant change. To estimat
cumulative effects of the deviations in the energy flux
compute a lower bound to the portion of the luminosity~33!
in the modes of frequency larger thanvd . ~Since the flux in
our models is primarilybelow the thermal flux at lower fre-
quencies, including those would somewhat counterbala
the extra flux at the higher frequencies.! The simplest way to
do this is to evaluate a Riemann sum of Eq.~33! from vd to
the largest allowed frequency. In the thermal case this in
gral amounts to less than 0.2% of the total luminosity. F
v tanh,20andvkink with TH /k0 5 0.003 we find values of 2.6%
and 8%, respectively, and forvkink atTH /k050.0008 we find
a value that is 10% of the total thermal luminosity.

It would have been interesting to compute this extra
minosity for much lower temperatures~i.e., much larger
black holes! but, as mentioned footnote 7, we are so
unable to handle very low temperatures. At low temperatu
one might think that since the thermal flux is smaller, t
extra flux might make a larger relative contribution, sin
one is always integrating up to the same cutoff freque
vc @since this is fixed for a fixed asymptotic value
v(x)#. But there are two other effects that are relevant. Fi
as the temperature falls,vd /k0 decreases~althoughvd /TH
increases; see Table II!, so the range fromvd to vc in-
creases, which tends to increase the extra luminosity. On
other hand, at lower temperatures, the kink is less kinky
produces fewer particles@which is reflected in the greate
exponential suppression suggested by Eq.~37!#. We do not
know the outcome of these competing effects.

B. Interpretation of results

The goal of this section is to explain the various featu
of the results. Listed below, and subdivided under
smooth and kinked headings, are the most important feat
that we shall address.

1. Smooth

~1! The extremely good agreement with thermality
smallv.

9In Unruh’s model@6#, with the hyperbolic dispersion relation
there is no cutoff frequency on outgoing modes at all, so lumino
accumulates up to arbitrarily high frequency. If the scattering p
nomenon persists up to arbitrarily high frequency then it appe
there will be an infinite energy density of created particles in t
model.~Since the group velocity is dropping exponentially howev
this would not translate into an infinite energy flux.! For a truly
kinked metric one would indeed expect the scattering to persis
to arbitrarily high frequencies, but if the metric is slowly varyin
below some length scale, then for wavelengths shorter than
scale one would expect the scattering to cease.
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~2! The oscillations in the flux at smallv; specifically,
their origin and their characteristics~such as amplitude and
period!.

~3! The energy flux behavior for largev for the higher
temperature case.

2. Kinked

~1! The comparatively larger deviations from thermali
at smallv in the energy flux than in the smooth metrics.

~2! The form of the oscillating convergence to the therm
prediction atv5TH as a function ofk0 /TH ~Fig. 10!.

~3! The dip in the relative difference between fluxes im
mediately before the very large deviations take over~Fig. 9!.

~4! The value ofvd .
~5! The huge deviations from thermality at largev.
~6! The oscillation in the energy flux at largev.
~7! The lack of an oscillation in the lower temperatur

v tanh, 20metric at largev.
The results for the smooth metrics are illustrated in Fig

6 and 7 and Table I. They show the extreme accuracy
which the computed particle creation agrees with the therm
prediction well out into the tail of the thermal spectrum. Wh
is the agreement so good? From the discussion of wa
packet propagation in Sec. III, one might expect larger d
viations than observed, since a wave packet propaga
backwards in time seemed to turn around and head b
away from the black hole before ever reaching the horiz
This might lead one to believe@5# that the appropriate tem
perature at which the black hole radiates a specific freque
mode should be (1/2p)v8(xt), wherext is the classical turn-
ing point. Sincev8 is smaller at the turning point than at th
horizon, one would thus expectlessparticle flux at a given
frequency than in the thermal spectrum atTH . What we find,
however, is that the computed particle production islarger
than the thermal particle production for some low freque
cies. Moreover, calculation reveals that the deviations sho
in Table I are roughly two orders of magnitude smaller th
one would have expected if the appropriate temperature w
determined byv8 at the turning point. It thus appears that th
packet must probe the horizon more closely than expec
This is not so surprising, since we have already seen that
WKB approximation breaks down around the classical tu
ing point and hence so does our naive picture of the pro
gation of wave packets in this region. Furthermore, we kn
from our mode analysis that the packet does not vanish
side the horizon but rather decays exponentially across
The small deviations that do exist may be due to the scat
ing phenomenon discussed below, or may be attributable
an intrinsic deviation from thermality of the mode conve
sion in these models. We have not determined which of th
is the case.

The remaining phenomena seem to be a consequenc
scattering into and out of the negative wave vector, nega
free-fall frequency mode, principally from the kink in th
metric. The scattering can be described using either a wa
packet picture, as described in Sec. III B or a tim
independent mode picture. From the mode point of view,
the mode equation~17! is integrated out from the horizon, a
solution is obtained~Fig. 5! with wave-vector components
k2 , k1s , and k1 @Eq. ~16!#. ~There is essentially nok2s
component until the kink is reached, due to the bound
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1582 54STEVEN CORLEY AND TED JACOBSON
condition inside the horizon and the fact that mode conv
sion produces no such component.! As the equation is inte-
grated across the kink, thek2 component receives contribu
tions from ~i! that already present on the left of the kin
~which is partly scattered!, and~ii ! the scattering of thek1s

andk1 components. The scattering is strongest fromvkink ,
somewhat less strong for shorter wavelengths fromv tanh,20,
and barely present for the smooth metricv tanh,2.

The contribution~i! is the thermal contribution, which
arises from mode conversion at the horizon as discusse
Sec. III A. As the frequencyv grows, this contribution dies
exponentially10 as exp(2v/TH). The contributions~ii ! from
the scattering will therefore dominate the particle creation
frequencies larger than some frequency, and they will not
exponentially decaying. This is just what we found, as illu
trated in Fig. 8. This interpretation can be checked by ind
pendently estimating the scattering amplitudes and pred
ing the deviation frequencyvd .

The scattering amplitudes forv@TH can be estimated as
follows. From the WKB approximation~i.e., using the local
dispersion relation! we solve for either thek1s or the k1

mode in the linear part ofvkink to the left of the kink.~If v is
not much greater thanTH then the WKB approximation is
inadequate for thek1smode.! In the constant part ofv kink to
the right of the kink we know the exact harmonic modes, a
the solution is a sum of these modes with constant coe
cients. The coefficients are determined by matching the
lutions and their first three derivatives across the kink. Fro
the coefficients one may then compute the amount of parti
creation, as was done in Sec. IV B.

Using this result we look for the value ofv where the
particle creation from scattering is comparable to the parti
creation from mode conversion. For the higher temperat
case (TH /k050.003! this yieldsvd /TH59.5 and for the low
temperature case (TH /k050.0008! it yields vd /TH513.
Looking back at Table II we see extremely good agreeme
with the estimated values. We cannot perform the same t
of calculation with thev tanh,20case, but of course in that cas
there is scattering as well, the amount of which would pr
sumably be slightly less since now the discontinuity
v8(x) has been smoothed out a little. Hencevd /TH would
be slightly larger, in agreement with Table II.

The oscillation seen in the fluxes in the largev spectrum
for all kinked metrics except the low temperaturev tanh, 20
case seems to be explained by interference between the
tributions to thek2 mode from the scatteredk1s and k1

components. At these large frequencies the contribution
the mode conversion is negligible, so essentially all the p
ticle creation is coming from the scattering. Using the abo
WKB calculation we find that indeed the right order of mag
nitude is obtained to account for the peaks in the spectru
Furthermore, the amplitude of thek2 pieces coming from the
two separate scatters are the same order of magnitude. T

10We cannot rule out the possibility that there is a very sm
nondecaying piece. See Sec. V A 1.
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will therefore produce significant interference effects11 as a
function of frequency, since the relative phases of the tw
contributions depend on frequency.

To check directly whether the interference explains th
oscillation seen in the energy flux~see Figs. 11–14! we
would need to know how the phases of the twok2 contribu-
tions behave as functions of the Killing frequency of the la
time outgoing packet. We could easily extract the pha
changes occurring throughout the propagation and at
scattering points from a WKB calculation, but we do no
know how to calculate the phase change occurring during
mode conversion process. This could be sidestepped by
culating instead the interference as a function of the positi
of the kink at afixed frequency. Then the phase changes o
mode conversion and scattering would be essentially co
stant, so the oscillation would be due entirely to the diffe
ence in the phase accumulations of thek1s andk1 modes as
a function of position. We have not performed the comput
tions necessary to demonstrate that this is indeed wha
happening, but it seems quite plausible~and at this time the
only plausible explanation!. The only potential problem we
see is that the WKB predictions for the amplitudes of the tw
scattered modes, although of the correct order of magnitu
are not close enough to each other to yield the large ratio
maximum to minimum flux values seen in Figs. 11–14
Since the WKB approximation gets better ask grows, it may
be that thek1s contribution is not as accurately approxi
mated as thek1 contribution. On the other hand, we cur
rently see no reason why the two contributions should in fa
be as close in amplitude as they apparently are.

If the above interpretation is correct, it should also expla
why in the lower temperaturev tanh, 20case the energy flux at
largev is down by about five orders of magnitude from th
other kinked cases, and does not oscillate, but rather
creases over some frequency range, and then decays~see
Figs. 11–14!. Recall that the bulk of the scattering occur
wherev8(x) changes from zero to 2pTH . In the vkink case
this occurs at a point, but in thev tanh, 20case it occurs over a
range of approximately 20k0

21 for TH50.000 78 and about
5k0

21 for TH50.0031. This smoothing seems to account fo
the difference in the spectra. Sincek1 is of orderk0 , the
scattering for this mode is drastically reduced in the low
temperature case compared with the higher temperature c
because the wavelength is then much smaller than the len
scale characterizing the kink. Meanwhile, the amount of sc
tering of thek1s mode is also greatly reduced, but for low
enough Killing frequencies this reduction is not as seve
since its wavelength is much longer. Hence, the scattering
thek1s mode dominates the particle creation and there is
interference.

Now let us consider the smallv oscillations. For small
v, the thermalk2 contribution from mode conversion is no
longer negligible, so there are now three interfering cont

ll

11If one takes a wave packet with very small spatial extent at la
times, this will produce narrow packets when propagated bac
wards in time. Since the two scattering processes occur at differ
space time points~cf. Sec. III B! the two scatteredk2 packets will
have essentially no overlap, so will not interfere. However, sin
we calculated the particle production with packets of perfectly we
defined frequency~and hence spread out over all space!, we will
definitely have interference.
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butions to thek2 mode at largex. Since the amplitude o
mode conversion dominates the other two we see on
small oscillation about this dominant contribution. At fixe
v5TH , the relative phases of the three contributions ar
function of the temperature. We expect that this explains
presence in Fig. 10 of the short period, small amplitude
cillation superimposed on the longer period, larger amplitu
oscillation, although we have not carried out any detai
analysis to confirm this explanation.

Our explanations of the remaining features are the m
tentative. The fact that the low frequency deviations
much greater in the kinked cases than the smooth cas
presumably explained by the presence of scattering effec
these low frequencies. We could not estimate these scatte
amplitudes reliably using the WKB approximation since it
not valid for these low frequencies, and we have not
tempted to compute it in any other fashion. The oscillatio
in the flux at low frequency seen in the smooth cases and
lower temperature kinked cases are perhaps due to the
interference mechanism as we invoked to explain the h
frequency oscillations. The dip in the relative difference
fluxes plotted in Fig. 9 for the kinked cases is perhaps also
interference phenomenon arising from the scattering of w
packets. Around the frequencies at which this happens,
amplitudes of the scattered packets, as predicted from
WKB calculation, are of the same order of magnitude as
amplitude of the large negative wave vector packet aris
from mode conversion. The question is why do the phase
these packets always conspire to produce this dip? We
fortunately have no answer to this.

Finally, there is the largev behavior of the high tempera
ture, smooth metric. In contrast to all other cases, we g
computed energy fluxsmaller than the thermal energy flux
with a comparatively small relative difference of about 60
~Figs. 6 and 7!. Perhaps this is related to the dip in the re
tive difference between fluxes discussed above. That is,
haps in this case the dip has been pushed out to the en
the spectrum, so that the huge deviations that would h
been present are now gone. A possible test of this would
to see if one dip goes continuously over into the other an
interpolates between 2 and 20 inv tanh,n , with the tempera-
ture fixed. This we have not done yet.

VI. THE STATIONARITY PUZZLE

The way the usual Hawking effect transpires in a stric
stationary spacetime is that the outgoing wave packets
traced backwards to parts that donot make it back out to
infinity, but rather cross the white hole horizon, at whi
point the Unruh boundary condition on the quantum stat
imposed. The piece of the wave packets that scatters of
curvature and does make it back out to infinity is not as
ciated with particle creation. Since in the Unruh model a
its variant considered here theentire wave packet turns
around and goes back out, it would seem that there can b
particle creation at all. So how do these models yield a n
zero Hawking flux?

The answer is that neither we nor Unruh have actua
followed the wave packet also the way out to infinit
Rather, we impose as initial boundary condition that the
going modes are in the free-fall vacuum at some locat
f
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where the free-fall frame is falling toward the black hole.
@Technically, this corresponds to the fact that the metric
functionv(x) goes to21/2 rather than vanishing at infinity.#
This boundary condition is physically motivated by the idea
that the formation of a black hole is an adiabatic process fa
from the hole. This is true at all times, and in particular it is
true long after the hole has formed. The theory has a pre
ferred frame, and we are simply assuming that in this pre
ferred frame the process of black hole formation does no
excite the ingoing modes.

By imposing the boundary condition in the free-fall frame
wherev(x),0 we avoid the need to push our linear disper-
sive model into a regime where it is not physically sensible
In this way we can obtain significant results from the model
However, the ultimate goal is to obtain a full understanding
of physics around black holes, at least in a model that is we
behaved throughout the evolution. To this end, we shall now
clarify, by considering the behavior of several linear disper
sive models, why it is that these models are unphysical whe
it comes to questions involving the propagation in from in-
finity. This still leaves one with the question of what happens
in a physical model or, better yet, in nature. A few comment
on this deeper question will be made at the end of this se
tion.

The propagation of wave packets out to infinity can be
studied as described in Sec. III with WKB analysis, in which
the motion of a wave packet and the evolution of its wave
vector are obtained by solving the local dispersion relatio
@v2v(x)k#25F2(k) and integrating the group velocity. The
result of this sort of analysis depends on the particular dis
persion relation considered. Here we will describe briefly
some examples of the different types of behavior that see
to be possible.

Unruh model. In the Unruh model@6#, with the hyperbolic
tangent dispersion relationv5k0tanh(k/k0), the magnitude
of the wave vector grows without bound as the wave packe
moves outward wherev(x) is falling to zero. Thus, even
though the difference between the free-fall and Killing
frames is going to zero, the wave vector is diverging in suc
a way that the wave packet always maintains a negative fre
fall frequency part of the same, negative, norm. Thus th
Hawking effect indeed occurs as long asv(x) never actually
reaches zero. From this analysis we see that the Unru
model, while it entails a strict cutoff in free-fall frequency,
involves in an essential way arbitrarily high wave vectors
i.e., arbitrarily short wavelengths. Insofar as we wish to ex
plore the consequences of a fundamental short-distance c
off on the Hawking effect, this is an unsatisfactory feature o
the model. The outgoing modes emerging from the blac
hole region still arise from arbitrarily short-wavelength
modes, albeit ingoing ones.

Quartic model. This is the model we have focused on in
this paper, with dispersion relationv25k22k4/k0

2 in free-
fall coordinates. The spectrum of wave vectors associate
with real frequencies is bounded atk56k0 , and the group
velocity goes through infinity and changes sign at the cutof
wave vector. The behavior of the positive and negative
wave-vector pieces~equivalently, the positive and negative
free-fall frequency pieces! of the early time wave packet is
different. Proceeding backwards in time, the positive wave
vector piece accelerates off to infinity at ever increasing ve
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locity, exceeding the long wavelength velocity of light. Th
negative wave-vector part does the same thing, except it
pears from the WKB analysis that at some finite locatio
before the wave packet reaches infinity, the wave vec
reaches2k0 , the free-fall frequency goes to zero, and th
group velocity diverges. The behavior at this point remai
to be understood. There is a WKB solution that revers
direction in time, propagating ‘‘back to the future’’ and ou
to spatial infinity at superluminal velocity. However, this so
lution violates the final boundary condition consisting of th
outgoing wave packet with which we began the WKB anal
sis. A solution that simply continues through with free-fa
frequency changing sign would have a norm that chang
sign from negative to positive, which is impossible in vie
of norm conservation. It seems likely that the solution or
derivatives must blow up as the reversal point is approach
This issue remains to be clarified.

Cubic model. This model is defined by the dispersion re
lationv25(k2k3/k0

2)2 in Lemaı̂tre coordinates. Note that in
this model there is no bound to the size ofk for real fre-
quency modes. The behavior of a backwards propagated
wave vector outgoing wave packet in this model is initial
quite similar to that in the original Unruh model and ou
quartic version thereof. As it recedes from the horizon~back-
wards in time! the positive norm part of the wave packe
propagates at increasing velocity approaching close to tw
the speed of light ifv!k0 . The negative norm part does th
same for a while, but then as it approaches zero free-
frequency something new must happen, since norm con
vation does not permit the wave packet to simply switch ov
to positive free-fall frequency. It seems likely that the wav
packet undergoes partial mode conversion here to the ne
tive frequency branch of the dispersion curve wit
k,2k0 . To keep the norm conserved, this part would ne
to have a negative norm of larger magnitude than before
conversion, since presumably a portion of the negative no
wave packet continues on to positive free-fall frequency a
thus to positive norm. After this hypothetical conversion th
negative norm piece has a group velocity of roughly twic
the speed of light, and is heading~backwards in time! toward
the horizon. It sails through the horizon at ever increasi
velocity and slams into the singularity at infinite coordina
speed and with infinite wave vector. To predict the outgoi
Hawking spectrum would thus require a supplementa
boundary condition on these superluminal infinite wav
vector modes at the singularity. If we take all this serious
and impose a vacuum boundary condition at the singular
the predicted Hawking flux will depend on how much of th
negative norm wave packet is converted to positive norm
the second conversion event.

It is clear from these examples that in facing the statio
arity puzzle we are inevitably forced into the details of th
short distance domain of the model. For this reason it wou
be best to have a model whose short distance behavio
determined by some reasonable physics. One appro
would be to push Unruh’s original fluid analogy, taking fo
the fluid liquid helium, a fluid that can exist at zero temper
ture. This was considered initially in@5#, and the analysis has
recently been pushed further in@15#. In this model the out-
going wave packet is indeed traced backwards all the w
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back out to infinity, where it appears as a superposition
multiroton modes of the superfluid.

If indeed the outgoing modes arise from ingoing mod
that start at infinity, then one is faced with the puzzle
explaining how particle creation could ever occur, in view o
the conservation of the Killing energy. In@15# it is argued
that the resolution of this puzzle probably involves the bac
reaction, which can both destroy the Killing symmetry an
decohere the positive and negative norm parts of the ingo
wave packet.

VII. CONCLUSION

We have studied the spectrum of created particles
smooth and ‘‘kinked’’ two-dimensional black hole geom
etries for a linear, Hermitian scalar field satisfying a Loren
noninvariant field equation with higher spatial derivativ
terms that are suppressed by powers of a fundamental m
mentum scalek0 . We have found that there are two qualita
tively different processes leading to particle production
this model. First, there is a thermal Hawking flux generat
by ‘‘mode conversion’’ at the black hole horizon. The othe
process has nothing to do with the horizon, and generate
nonthermal spectrum via scattering off the background in
negative free-fall frequency modes. This second process d
not occur for the ordinary wave equation because su
modes do not propagate outside the horizon with positi
Killing frequency.

The horizon component of the radiation is astonishing
close to a perfect thermal spectrum, as evidenced by
computations for smooth metrics in which the scattered co
ponent is minimal. Atv/TH51 the relative difference be-
tween the two is of order (TH /k0)

3 in the lower temperature
case considered (TH50.0008k0), a much smaller difference
than might have been expected. Moreover, agreement to
derTH /k0 persists out tov/TH.45, where the thermal num-
ber flux has decayed to something of orde
exp(2v/TH);10220.

For the metrics with ‘‘kinks,’’ i.e., regions of large cur-
vature localized along a static timelike world line, the agre
ment with the thermal prediction is still remarkably good a
v5TH , where the relative deviation in the flux is of orde
TH /k0 . As the frequency is raised, however, the thermal flu
drops while the flux from scattering remains of the sam
order, so it quickly dominates and becomes many orders
magnitude larger than the thermal component. This nonth
mal flux amounted to roughly 10% of the total luminosity fo
the kinkier metrics. The flux exhibited oscillations as a fun
tion of frequency which can be explained by interferenc
between the various scattered contributions to the flux.
low frequencies the thermal component also interferes.

Although one does not expect kinks in the smooth clas
cal background metrics ordinarily adopted in black hole r
diation studies, they might be an important source of partic
production once the backreaction is taken into account,
perhaps in the early universe. It will be interesting to purs
further the physics of this new sort of particle creation and
possible applications.

Even small deviations from a thermal spectrum of blac
hole radiation would apparently@16# allow violations of the
generalized second law~GSL!, which says that the black
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hole entropy plus the entropy of the exterior cannot decre
Do the deviations we have found jeopardize the GSL? H
it is important to recall that even the usual Hawking sp
trum is not that of a blackbody, due to the different abso
tion coefficients for different modes. However, this is pe
fectly consistent with thermal equilibrium and th
generalized second law, since these same absorption co
cients govern what can be put into a black hole. Similarly
the presence of interactions, the Hawking radiation spect
is shaped by those particular interactions, but presumably
in such a way that allows violations of the GSL. The arg
ments @17# based on periodicity on the Euclidean secti
support this view, as does a perturbative analysis of a
ticular interacting theory@18#. For the models considered i
this paper, it is relevant to point out that the mode convers
and scattering processes underlying the particle crea
would also affect what radiation could be injected into
black hole. Thus the deviations from thermality are not n
essarily in contradiction with the GSL. It would be worth
while to analyze this issue thoroughly, to understand the
tus of thermal equilibrium and the GSL in these models.

Finally, the elusive goal of fully understanding the Haw
ing effect in a theory with a true cutoff on short distan
degrees of freedom remains beyond our grasp, although
considerations of@15# seem to provide a step in the righ
direction.
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APPENDIX

We discuss here the exact solution to the ODE~17! ob-
tained for the special case of the kinked free-fall velocity

v~x!5H v0 , x.0,

kx1v0 , x<0,
~A1!

wherev0 andk are negative and positive constants, resp
tively. Considering first Eq.~17!, with linear velocity
v(x)5(kx1v0) for all x, we Fourier transform and get
momentum space equation. By defining a new funct
g̃(k) via f̃ (k)5k212 iv/ke2 i (v0 /k)kg̃(k), we find thatg̃(k)
satisfies the simple looking equatio
$d2/dk21@12(k/k0)

2#/k2%g̃(k)50. The general solution is
ase.
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n

given by parabolic cylinder functions; however, because w
need anx-space solution, we must Fourier transformf̃ (k)
which we only know how to do under a more restrictiv
condition. This condition isk0 /k52n11 wheren is an odd
integer. In this case the solutions simplify to solutions of th
simple harmonic oscillator problem in quantum mechanic
i.e., g̃(k)}e2k2/(2kk0)Hn@A(1/kk0)k#. Inverse Fourier trans-
forming f̃ (k) we get

dmf n~x!

dxm
5~2A2n11k!m(

s50

@n/2# F ~1/4!s n!

s! ~n22s!!

3expS 2
2n11

4
v~x!2DD2 iv/k1~n22s21!1m

3@A2n11v~x!#G ~A2!

where we have included arbitrary order derivatives off n in
this expression since we shall need them later.Dp(z) is the
parabolic cylinder function of orderp.

Going back to the kinked velocity~A1!, since the velocity
is constant for positivex, the general solution is a sum o
four modes,( l51

4 cle
iklx. By matchingf n given above and its

first three derivatives atx50 to this sum, we may solve for
the coefficientscl which, as described in the paper, yield th
particle production.

At this point the reader may be wondering what happen
to the other three linearly independent solutions to the ori
nal ODE ~17!. The answer is that we selected one of th
solutions by the choice of integration contour in evaluatin
the Fourier transform. Moreover, we got lucky, because t
solution we obtained is the ‘‘right’’ one: as argued in Se
IV A, the solution appropriate for a wave packet that
purely outgoing at late times should decay across the ho
zon. Noting thatDp(z)→e2z2/4zp as z→` we see that the
above solution satisfies this property.~We did not really need
this luck since, as explained in Sec. IV A, almost all th
solutions agree outside the horizon up to exponentially sm
terms.!

Unfortunately, because the exact solution is rather u
wieldy, we have so far not been able to do anything with
except to use it as a check on our numerical solutions. T
we did by comparing the predicted particle creation at
given frequency using the exact solution to that obtain
using the numerically generated solution. We found the sa
results to the numerical accuracy of the latter solution, th
confirming the accuracy of the finite differenced solution.
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