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We study the spectrum of created particles in two-dimensional black hole geometries for a linear, Hermitian
scalar field satisfying a Lorentz noninvariant field equation with higher spatial derivative terms that are
suppressed by powers of a fundamental momentum &gal&he preferred frame is the “free-fall frame” of
the black hole. This model is a variation of Unruh’s sonic black hole analogy. We find that there are two
qualitatively different types of particle production in this model: a thermal Hawking flux generated by “mode
conversion” at the black hole horizon, and a nonthermal spectrum generated via scattering off the background
into negative free-fall frequency modes. This second process has nothing to do with black holes and does not
occur for the ordinary wave equation because such modes do not propagate outside the horizon with positive
Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spectrum:
for the smoothest metric studied, with Hawking temperafife-0.000%,, agreement is of ordef(, /ko)° at
frequencyw =T, , and agreement to ord@¥, /k, persists out tan/ T =45 where the thermal number flux is
~10 20, The flux from scattering dominates at largeand becomes many orders of magnitude larger than the
horizon component for metrics with a “kink,” i.e., a region of high curvature localized on a static world line
outside the horizon. This nonthermal flux amounts to roughly 10% of the total luminosity for the kinkier
metrics considered. The flux exhibits oscillations as a function of frequency which can be explained by
interference between the various contributions to the fl80556-282(196)01614-1

PACS numbd(s): 04.70.Dy, 04.62+v

[. INTRODUCTION hole are just symmetry transformations, and one can learn
nothing new. However, the assumption of unlimited boost
Black holes are boost machines. They process high freinvariance is beyond the range of observational support, so
guency input and deliver it as low frequency output, owingwe shall not make it. Instead, we consider in this paper the
to the gravitational redshift. Thus, they provide a glimpse ofeffect on black hole radiation gfocal and nonlocalLorentz
the world at very short distance scales. This short distanceoninvariant modifications to quantum field theory.
world consists of nothing but vacuum fluctuations. A black It is worth pointing out that even if one does assume exact
hole acts like a microscope, allowing us to peer into thelLorentz invariance, there is still room for short distances to
vacuum and see something of the nature of these short diplay a crucial role in black hole physics. One way this might
tance fluctuations. happen is via nonlocality, such as in string thef2y. An-
When looking directly at a black hole, we see the vacuunother possibility is that the infalling matter or vacuum fluc-
fluctuations as processed by quantum field dynamics. In ottuations might have intense gravitational interactions with
dinary continuum quantum field theory, this processing rethe outgoing trans-Planckian degrees of freed@in Thus,
sults in Hawking radiatiofl], with a perfect thermal spec- even if exact Lorentz invariance is assumed, the use of ordi-
trum. The older the black hole, the higher is the boostary field theory in analyzing physics around black holes
interpolating between the input and output. In fact, this boosmight be unjustified.
grows exponentially as exip4M) with the aget of the hole. To some extent, one can sidestep the short distance re-
Therefore, according to ordinary quantum field theory, thegime by imposing a boundary condition on the quantum field
phenomenon of Hawking radiation involves physics at arbiin a timelike region outside the event horizgtl. Assuming
trarily high frequencies and short distances. If there is nevthat field modes propagate in the ordinary way below some
physics at some length scale, then the output of the blackutoff frequencyw., and assuming that the outgoing modes
hole will be the result of processing at least down to thatwith frequencies below the cutoff but well above the Hawk-
scale. ing temperaturdl, are in their ground state, then the usual
Perhaps, therefore, the existence and properties of Hawldawking effect can be deduced in an approximation that gets
ing radiation can teach us something about physics at verigetter asT,/w. gets smaller. This calculation shows that a
short distances. Note that the term ‘“short” here refers toconservative upper bound on the deviations from the thermal
measurements in the asymptotic rest frame, or the free-falipectrum is of ordelO((Ty/w.)*?). Other estimate$5],
frame, of the black hole. If one assumes exact Lorentz inbased on the behavior of accelerated detectors near the hori-
variance and locality, the large boosts provided by the blaclzon or on the trace anomaly, suggest that the deviations will
be much smaller, of ordéd(T,/w;). Such arguments leave
some room for interesting dependence on short distance
"Electronic address:corley@undhep.umd.edu physics, however, due to cumulative effects.
TElectronic address: jacobson@umdhep.umd.edu In view of the gentle curvature of spacetime outside the
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black hole one might expect no excitation of high energymodel, differing from the Unruh model in that the altered
degrees of freedom. On the other hand, even if there is onlglispersion relation is defined with respect to Eddington-
a small amplitude for excitation in a time of ordst, itis ~ Finkelstein coordinates. In the BMPS model, an outgoing
conceivable that the amplitude has a secular part which/@ve packet propagated backward in time does not reverse

grows with time as the trans-Planckian degrees of freedorffiféction but rather hugs the horizon at a distance of one
creep, while redshifting over extremely long timés.g., Planck length,” with exponentially growing wave vectors.

M3), away from the horizon(For the purposes of this paper For this model the usual Hawking effect at leading order in

/ SR -~ 1/M was established by analytical methods.
the term “Planck scale” will refer to the scale at which The primary purpose of the present paper is to determine

hypothetical Lorentz noninvariant physics occhiBurther-  precisely the ‘spectrum of Hawking radiation for a model
more, even small deviations in the spectrum might have &t a nonlinear dispersion relation as in the Unruh and
large effect when integrated all the way up to trans-Planckiagpps models. In our model the field equation has fourth
wave vectors. order spatial derivatives in the free-fall frame. We wish to
Given a particular model of short distance physics, weevaluate quantitatively the deviations from the thermal spec-
would thus like to ask the following questiond) Where do  trum, including the high wave vector region. To achieve this
the outgoing modes come fron{2) Does the above men- aim, numerical integration of théPDE) is impractical (at
tioned out vacuum boundary condition hold3) Exactly least for u, and leading order approximations are insuffi-
how large are the deviations from the thermal Hawking flux?cient. Instead, we employ a two-pronged attack. First, we
(4) Are the deviations from the thermal Hawking flux small exploit the stationarity of the background metric to simplify
even at very short wavelength$3) Do the deviations for the problem. Thus, instead of solving a PDE, we numerically
short wavelengths accumulate to make a large difference ifolve a lot of ordinary differential equatiod®DE’s) for the

any physical quantity, such as the energy flux or energy dermode functiong. Second, as a check on the accuracy of our
sity? numerical solutions, we develop the exact solution for a sub-

The simple model we shall consider in this paper is aClass of the models. To our surprise we have found in the
quantum field in two spacetime dimensions satisfying a lin-nodels studied here that, in addition to the Hawking radia-
ear wave equation with higher spatial derivative terms. Thdion, radiation is produced via scattering from the static cur-
dispersion relationn=w(k) thus differs at high wave vec- Vature.

tors from that of the ordinary wave equation. The particular A S&cond purpose of our paper is to give a physical pic-
dispersion relaton we shall study in detail is ture of the Hawking effect in the context of these models

2 Kk2—K4K2 . A modified dispersion relation occurs ubid- with altered dispersion relation. What we describe has a lot
® 0 " ispers I urs Lbig -g’n common with the picture explained by BMPS[ig] (al-
tgough we developed our picture independently before be-

new structure at some scale, for example, as in a plasma or . f thei The picture has t tial
crystal, wave propagation senses this, and the structure ming aware of their paperThe pictureé has two essentia
eatures, reversal of group velocity without reflection and

reflected in the dispersion relation. Unr{#] recently stud- |, d on” f b h of the di . |
ied a model like this which was motivated by a sonic analo mode conversion from one branch of the dispersion refa-

of a black hold7]. Although he describes the model in terms ion to another. Interestingly, both these phenomena can oc-

of sound propagation in an inhomogeneous background ﬂuiau:jforbltingl.’:lr waves in inhomtﬁgene;)tys plasrmil_}]hand
flow, the model is in fact identical to that of a scalar field jn UN@oubtedly occur in many other setings as well. 1he propa-

a black hole spacetime, with the comoving frame of thegation of a wave packet and the direction-reversal phenom-

background flow replaced by the free-fall frame of the blackEnon can be understood using the WKB approximation. At
hole. the turn-around point partial mode conversion from a posi-

By numerical integration of the altered partial differential tive free-fall frequency to a negative free-fall frequency

wave equation(PDE), Unruh studied the propagation of wave takes place. This mode conversion gives rise to the

wave packets in this model and established that, to the ndjaxvl:%r}%effect. f is 10 di the “stati it
merical accuracy of his calculation, Hawking radiation still Ird purpose ot our paper is to discuss the. stationarity

occurs and is unaffected by the altered dispersion reIatiorP.u.ZZI.e. n th_ese models: Ifthe wavepackets go frO”_‘ infinity

The numerical accuracy was not quite good enough to rul o infinity, without ever passing through the collapsing mat-
iati i ion?

out deviations at the upper bound referred to above. Perha g" then how can there be any particle production?

; : ; ; ; The remainder of our paper is organized as follows. Sec-
the most interesting thing about the model is the peculiar. . . ;
! 'ng thing u ! pecul on Il defines the model to be studied and Sec. Il describes

behavior of wave packets sent backwards in time toward th . -
e wave-packet propagation, mode conversion, and scatter-

horizon: rather than getting squeezed in an unlimited way ~ """ ) ; X
against the horizon and ceaselessly blueshifting, the wavgd n this model using a WKB analysis. Section IV lays out

packets reach a minimum distance of approach, then reverda® comquatipnaI techniques we employed to optain the pre-
direction and propagate back away from the Horizon Th&ise quantitative results that are reported and interpreted in

blueshift at the closest approach to the horizon is indepen—ec' V. In Seg. VI the stationarity puzzle is discussed, and
dent of the retarded time about which the outgoing Wavesec' Vil contalns_a summary of our results. Throughogt the
packet was centered, and the packet continues to blueshift JEPE" We use units in which=c=G=1, unless otherwise
the way out, going backwards in time. specified.

Subsequently, Brout, Massar, Parentani, and Spindel
(BMPS) [8] made an analytical study of the Unruh model,
and came to similar conclusions in a leading order approxi- The model we shall consider consists of a free, Hermitian

mation in 1M. In addition, BMPS introduced another scalar field propagating in a two-dimensional black hole

Il. THE MODEL AND ITS QUANTIZATION
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This is a generalization of the Lentia line element for the
Schwarzschild  spacetime, which is given by
v(x)=—+y2M/x (together with the usual angular partVe
shall assume <0, dv/dx>0, andv—vgy asx—®. g, is a
Killing vector, of squared norm4v2, and the event horizon
is located atv=—1. The curves given bgx—vdt=0 are
timelike free-fall world lines which are at re@tangent to the
Killing vector) wherev =0. Since we assume<0 these are
ingoing trajectories.v is their coordinate velocityt mea-
~ sures proper time along them, and they are everywhere or-
thogonal to the constarit surfaces(see Fig. 1L We shall
| | refer to the functiorv(x) as thefree-fall velocity The as-
free-fall ’ ymptotically flat region corresponds 6.
worldline , In terms of the notation above, the orthonormal basis vec-
tors adapted to the free-fall frame are given by d,+ v dy

FIG. 1. A patch of spacetime showing a free-fall trajectory andands: dx, and in these coordinatgs=—1. Thus the action
somet andx (Lematre-like) coordinate linesu ands are ortho- (1) becomes
normal vectors, and the derivative aloags modified, while that 1
alongu is just the partl_al derlvatlvg. The n_ot_atloﬁg,and S, denote S= _J dtdx[|((9t+ v(gx)¢|2_ | F((gx)¢|2]_ (5)
dlot and dl 9x, respectively, and; is the Killing vector. 2
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spacetime. The dispersion relation for the field lacks Lorentf we further specify that=(d,) is an odd function ofd,,
invariance, and is specified in the free-fall frame of the blackhenD, becomes a derivation “up to total derivatives,” and
hole, that is, the frame carried in from the rest frame atintegration by parts yields the field equation

infinity by freely falling trajectories. This is the same frame -

as the one used in the Unruh modél, but the dispersion (0 dxv) (9 +vdy) p=F(3y) ¢. (6)
relation we adopt is different. The BMPS model, on the other. h di duct in thi . b
hand, adopts the same dispersion relation as Unruh, but aa— € conserved Inner product In this case IS given by
plies it in the Eddington-Finkelstein coordinate frame.
(G091 [ A (v = ot 61, @)

A. Field equation

Let u® denote the unit vector field tangent to the infalling Where the integral is over a constanslice and is indepen-

world lines, and le® denote the orthogonal, outward point- dent oft if ¢ and ¢ satisfy the field equatiof6). The inner
ing, unit vector, so thag®?=u®uf—s*s?. (See Fig. 1. product can, of course, be evaluated on other slices as well,

The action is assumed to have the form but it does not take the same simple form on other sfices.
The dispersion relation for this model in flat spacetime, or

1 in the local free-fall framg¢assuming (x)~const, is given
5= dx=aup,4* Dyo, @ by gassuming (9 =const, 5 9
where the modified differential operat®r, is defined by w?=F*(k), ®)
u*D,=u"d,, (2) Where F(k)E—iIE(ik). Unruh’s choice for the function
F(k) has the property thaF?(k) = k? for k<k, and
sD,= ﬁ(sa(ya)_ (3) F2(k) = k% for k>kg, wherek, is a wave vector character-

izing the scale of the new physics. We usually thinkgfas
The time derivatives in the local free-fall frame are thus leftbeing around the Planck mass. Specifically, he considered
unchanged, but the orthogonal spatial derivatives are rethe functionsF (k) = kof{tanH (k/ko)"J}*". Of course, there are
placed byF(s*d,). The functionF determines the disper- many other modifications one could consider. Perhaps the
sion relation. For the moment it will be left unspecified. In- simplest is given by
variance of the action (1) under constant phase
transformations of$ guarantees that there is a conserved F2(k) =k2—k*/kj. 9)
current for solutions and a conserved “inner product” for ] ) )
pairs of solutions to the equations of motion. However, sincl Nis dispersion relation has the same snkabehavior as
D, is notin general a derivation, simple integration by parts Unruh’s, but behaves quite differently for large It has the
is not allowed in obtaining the equations of motion or theteéchnical advantage that the field equatiéphas no deriva-
form of the current. We shall obtain these below after further
specifying the model.

The black hole line elements we shall consider are static }In fact, the inner product is nonlocal when evaluated on other
and have the form slices if F(s“d,) is nonlocal. The conserved current dengityis

determined by the equationd,j®="D,\V—99*(¢$: D,
ds?>=dt?—[dx—v(x)dt]2. (4 —¢Dee?)].
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FIG. 2. Curvea is the standard dispersion relation for the mass-
less wave equation, cunkeis the type used by Unruh, and curve
c is the one used in this papgEqg. (9)].

tives higher than fourth order, and for this reason it is the on
on which all the calculations in this paper are based, al

though we shall briefly discuss the behavior for alternate
choices in the final section. These two dispersion relation§
are plotted in Fig. 2 along with the dispersion relation for the

ordinary wave equation.

B. Quantization

To quantize the field we assume the field operéﬁt()r) is
self-adjoint and satisfies the equation of moti@h and the
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provided this holds for all choices éfandg. Now it is clear
that only if f has positive, unit norm are the appellations
“annihilation” and “creation” appropriate for these opera-
tors. From Eq(12) and the definition of the inner product, it
follows identically that we also have the commutation rela-
tions

[a'(f),a’(g)]=—(f*,0).
(13

[a(f),a(g)]=—(f,g%),

A Hilbert space of “one-particle states” can be defined
by choosing a decomposition of the spa&ef complex ini-
tial data setgor solutions to the field equatipimto a direct
sum of the formS= SpeaS’,; , Where all the data sets @,
have positive norm and the spa& is orthogonal to its
conjugatesg . Then all of the annihilation operators for ele-
ments of S, commute with each other, as do the creation
operators. A “vacuum” statg¥) corresponding tdS, is
defined by the conditiom(f)|¥)=0 for all f in S;, and a

Fock space of multiparticle states is built up by repeated

application of the creation operators|t).

It is not necessary to construct a specific Fock space in
rder to study the physics of this system. In fact, any indi-
vidual positive norm solutiop defines annihilation and cre-
ation operators and a number operakt(p)=a'(p)a(p).

The physical significance of the number operator depends, of
course, on the nature qf.

There are two types of positive norm wave packets in
which we are interested. The first are those corresponding to
the quanta of Hawking radiation. These have positive Killing

canonical commutation relations. In setting up the canonicalrequency, that is, they are sums of solutions satisfying

formalism, it is simplest to use the time function and evolu-
tion vector for which only first order time derivatives appear

dip=—iwe with >0. It is not obvious that such solutions
have positive norm in the inner produ@, and in fact they

in the action.(Otherwise one must introduce extra momentado not in general. However, using the fact that the Killing
which are constrained, and then pass to the reduced phaBequency is conserved, we know that if a positive Killing

space). This just means that we define the momenta by
7= 6L18(dp)=(dy+vdy) P;

i.e., 7 is the time derivative along the free-fall world lines.

frequency wave packet were to propagate out to infifoty
any other region where=0), the integral for its norm
would be manifestly positive. Since the norm is conserved,
this suffices.

The other type of positive norm wave packets we shall

The equal time canonical commutation relations are the'&mploy are those which correspond to particles as defined by

[$(x),7(y)]=i8(x,y), as usual.
We define an annihilation operator corresponding to a

initial data setf on a surface by

a(f)=(f, ),

where the inner product is evaluated Bn If the dataf are
extended to a solution of the field equation then we ca
evaluate the inner produdtl0) on whichever surface we
wish. The Hermitian adjoint of(f) is called the creation
operator forf and it is given by

al(f)=—(f*,¢).

(10

(11)

the free-fall observers. These have positive free-fall fre-

Tquency, that is, they are sums of solutions satisfying

(ditvd)p=—iw'd, with »'>0, on some time slice.
These have manifestly positive norrif the solutions
summed are orthogonal to each other like, for example, har-
monic modes in a constant region, although the free-fall

r{requency isnot conserved.

Finally, we conclude this section on quantization with a
cautionary remark. One sees from the dispersion reldfpn
that, for k2>k§, the field has imaginary frequency modes
which are well behaved in space. In principle these modes
must be included in a complete quantization of the model.
Although imaginary frequency modes can be quantized

The commutation relations between these operators follod12,13, the resulting model is unstable in that the energy
from the canonical commutation relations satisfied by thespectrum is unbounded below. However, these modes play

field operator. The latter are equivalent to

[a(F),a"(g)]=(f,9), 12

no role in our analysis of the Hawking effect, so we shall
simply ignore them as an irrelevant unphysical feature of the
model.
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ll. WAVE-PACKET PROPAGATION AND MODE
CONVERSION 10

In this section we describe, by way of pictures, the pro-

. : o o 05 t
duction of Hawking radiation from an initial vacuum state by
means of a process known as “mode conversion.” We also Vo
describe a new process of particle production via scattering
in a static geometry that happens in the dispersive models 0.0

studied here. We assume that all ingoing positive free-fall

frequency wave packets are unoccupied, at some given time,

far (but not infinitely far—see Sec. Yfrom the hole where 05 |

v(X) is approximatelyor exactly constant. Given this initial

state, we wish to calculate the number of particles, in a given

outgoing packet, detected by an observer far from the hole l ‘ , ‘

who is at rest with respect to the hole. Following the stan- -0.75 -0.25 0.25 0.75

dard technologysee Sec. IV B the number of particles in k,

this packet is obtained by propagating the packet back in

time to where the initial ground state boundary condition is FIG. 3. Graphical solution of the position-dependent dispersion

imposed and taking the norm of its negative free-fall fre-relation(14), with F(k) given by Eq.(9), in units wherek,=1. The

quency piece. line Ia_beledvo corresponds to a position _far frqm the hole. The
The behavior of a wave packet propagated back in timé)the_r line co_rresponds to th_e classical turnln_g point. Khalues c_>f

can be understood qualitatively as follows. Assume a solu:—:e 'Orl‘_terse‘?t'ons l‘)ft_thefs”af‘_'gh‘;a”ddcur‘l’:ed ltlf:]es a‘lfe ”:E solutions to

i H 7 — - iot e dispersion relation 1or 1ixeeé andv. FOr thevg line these are

e opra, ot fom R T 0. ., ande e o Te

mation. That is, writef (x) = exgi fkodx] and assume the flllecli( arrqwheads indicate the dlr(cja_ctlon OL proEagatlon of wave

guantitiesd,v and d,k/k are negligible compared to. The packets, in momentum space, as discussed in the text.

resulting equation is the position-dependent dispersion rela-

tion

(The subscript $” is intended to suggest “smaller” in ab-
[w—v(X)k]2=F4(K). (14) solute value. Note that for the ordinary wave equation one
would have only the two roots witb>0 corresponding to
k_s andk, ¢ at the velocityvg.
This is just the dispersion relation in the local free-fall frame, The coordinate velocitdx/dt of a wave packet is the
since the free-fall frequency’ is related to the Killing fre-  group velocityv ;=dw/dk. This may also be expressed, us-
guencyw by ing Eq. (15), asvg=vgy+v(x), wherevy=dw'/dk is the
group velocity in the free-fall frame which corresponds to
the slope of the curved line in Fig. 3. The group velocity is
o'=w—v(X)k. (15 positive atk,s and negative ak_, k_g, andk, . Thus,
while there is one outgoing mode at fixed positwe there
are three ingoing modes. Of crucial importance is the fact
The position-dependent dispersion relation is useful for unthat thek_ mode outside the horizon & — 1) hasnegative
derstanding the motion of wave packets that are somewhdtee-fall frequency when the Killing frequency is positive.
peaked in both position and wave vector. A graphical Now consider a wave packet located far from the hole,
method we have employed is described below. The sameentered about frequenay, and containing onhk values
method was used by BMP[B], who also found a Hamil- aroundk, . This is an outgoing wave packet so, going back-
tonian formulation for the wave-packet propagation usingwards in time, the packet moves towards the hole. Two
Hamilton-Jacobi theory. qualitatively different effects govern the wave-packet propa-
Graphs of the square root of both sides of Etd) are  gation, namely, mode conversion at the horizon and scatter-
shown in Fig. 3 forF(k) given by Eq.(9) and for two dif-  ing off the geometry. These will now be discussed in turn.
ferent values ob. As x varies, the slope-v(x) [=|v(X)]|]
of the straight line representing the left hand side of @4)
changes, but for a given wave packet the intereejx fixed A. Mode conversion at the horizon

since the Killing frequency is conserved. For a giverthe L
intersection points on the graph correspond to the possible AS the wave packet propagates backwards in time towards

wave vectors in this approximation. These solutions to théhe black hol_dv(x)l increases, so the slope of the straight
dispersion relation for fixeds and v will be denoted, in line in Fig. 3 increases, until eventually the straight line be-
increasing order, as comes tangent to the dispersion curve. At this pojptrops
to zero. Ifw is very small compared thy,, then this stopping
point x; occurs wherv(x) is very close to—1, that is, just
k(w)=k_ k_g,kig,ky. (16)  barely outside the horizon.
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What happens at the stopping point? It was incorrectlyy=—1+ X, where «k=v'(0), s0 k=w/kX, SO
suggested in Ref5] that the wave packets just asymptoti- ¢~ exp((w/«)Inx).2 This mode function can be analytically

cally approach limiting positiorx;, and wave vectork;. continued to the upper ha¥ plane, yielding a purely posi-
However, near the stopping point the point particle picture otive wave vector functiorb, on the real axis, or to the lower
the wave-packet motion is inadequate, and the spread in bottalf x plane, yielding a purely negative wave vector function
k andx must be considered. One can determine qualitativelys_ . These two functions agree for positive valuescdfut
what happens by considering the behavior of nearby soludiffer for negative values, the difference being given by the
tions to the dispersion relation as follof#s pointed out by discontinuity across the branch cut of the logarithm. Writing
Unruh[14], it is an unstable situation for the wave packet to _y—ye*i7 one sees that the ratio of the values at any nega-
just sit at the stopping point: fdr slightly abovek, the group  tjve x is given by¢_ /¢, =exp(2rwlx). Hence, to obtain a
velocity drops below zerd.e., the comoving group veloCity \yaye packet that vanishes for negatiyeone must form the
drops below the magnitude of the free-fall velogisp, back- combinationg , — exp(—27w/k)é_ . The ratio of the norms

wards in time, the wave packet tends to move baulay of the negative and positive frequency parts of this combina-
from the horizon and therefore to the rigtio higher wave tion is easilv seen to be the exponential factor
vectorsg on the dispersion curve. Once this begins to happen y P explT),

k continues to increase as the wave packet moves furth%}’hereT:K/zq IS thetHa\lNklng telrnpelr]ature. T?Ltjs the niga—
away. Exactly this behavior was found in Unruh’s numerical''V€ Wave Vector part 1S large only wheai IS not too muc
solution [6] to the PDE. In brief, a long wavelength,,  |arger than the Hawking temperature.

packet went in, and a short wavelendth packet came out. Now cqnsi_der how things change when the altered disper_-
This is an example of the phenomenon of “mode conver-SION relation is used. The wave packet can be propagated in
sion” [10,11, but it is only half the story. fairly close to the horizon before the wave vectors reach the

There is another short wavelength solution to the disperonlinear part of the dispersion curve, so there will be some
sion relation ax approaches;, atk_ on the negative wave domain near the horizon in which it takes approximately the
vector, negative free-fall frequency branch of the dispersiorsame form as for the ordinary wave equation. The negative
curve, which mixes in. We will discuss in a moment a quan-wave vector part can be inferred in this domain from the
titative measure of the relative amplitudes of thke and above argument, so one sees that as long as this domain of
k, packets arising from this mode conversion process, bgoncurrence exists, the conversion amplitude to the negative
looking at how it works for the usual wave equation. Sufficewave vector branch should be approximately the same. The
it to say here that the negative wave-vector mode mixes imssential difference from the ordinary wave equation is just
strongly for sufficiently smallw for both Unruh’s dispersion that, rather than remaining crammed against the horizon, the
relation and Eq(9), as shown both by Unruh’s solution of short-wavelength wavepackets propagate back away from
the PDE and by the ODE methods applied by BMBEand  the horizon.
ourselves. The “converted,” negative wave vector, wave |t is worth emphasizing that our analysis of the wave-
packet also has a negative group velocity, and so also moveggcket motion assumes that the asymptotic velocity is not too
backwards in time, away from the hole. The end result thugmg|. Otherwise, as the negative wave vector wave packet is
consists of two wave packets, one constructed of large POSKropagated backwards in time, Fig. 3 shows that eventually a

tive k wave vectors am_:l the other of large negaﬁ_\vwave point is reached where the comoving group velocity passes
vectors, both propagating away from the héa different from —o to +o0. This issue is addressed further in Sec. VI.
group velocities and reaching the asymptotically fledon-

stant free-fall velocity region. The number of created par-
ticles in the final, late time, wave packet is given (oyinus
the norm of the negative wave vect@nd negative free-fall If the ordinary two-dimensional wave equation were sat-
frequency part of the initial, early time wave packet. isfied, there would be no scattering off the geometry at all,
Let us see how the conversion amplitude is determined itbecause this equation is conformally invariant and all two-
the case of the ordinary wave equation with the linear disdimensional line elements are conformally flat. However, the
persion relation. This will also indicate how it works for the higher spatial derivative terms in E§6) spoil conformal
nonlinear dispersion relations. First, note that the wavenvariance, hence there is some scattering. The reversal of
packet vanishes inside the horiz@rom the causal behavior group velocity at the horizon described in the previous sub-
of the ordinary wave equatignso it must havesomenega-  section is already an example of this, but in addition there
tive wave vector component, since a purely positive wavewill be scattering from the geometry outside the black hole.
vector wave packet cannot vanish on the half lijpe any = For metrics with a minimum characteristic length scale
open interval. But how large is this negative wave vector I>k51 this scattering will be extremely small, since the
piece? The WKB form of a single frequency mode is
¢~exp(fkdy, and the dispersion relation—vk=k yields
k=w/(1+v). Expanding about the horizon @t 0 we have 3This derivation of the form of the mode function can be ques-
tioned on the grounds that the WKB approximation may not be
valid. Sufficientconditions for validity of WKB aredk/dx<k? and
2In fact, the WKB approximation breaks down as the stoppingv’<k. The dispersion relation impliesk/dx= («/w)k?, so both of
point is approached; however, this does not prevent us from obtairthese conditions are satisfied only whe® . Nevertheless, for
ing qualitative information about the motion of the wave packet assome reasoriperhaps related to conformal invariandgbe WKB
described here. solution is in fact exact for the ordinary wave equation.

B. Scattering
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which hasnegativefree-fall frequency(and hence negative

norm), does lead to particle production. This particle creation
has absolutely nothing to do with black holes. It is caused by
scattering from a stationaryn fact stati¢ geometry. This is

possible because the time translation Killing field does not
agree with the free-fall frame, which is a distinguished frame
in our Lorentz noninvariant theory. We shall have more to
say about particle creation in a stationary metric in Sec. VI.

IV. COMPUTING THE SPECTRUM OF BLACK HOLE
RADIATION

In this section we discuss the approach taken to solve for
the particle production in a given mode, i.e., fixed Killing
frequency solution. We begin by discussing the reduction of

% the PDE, Eq.(6), to an ODE plus boundary condition. We
then discuss the method applied to compute the particle pro-
duction rate given a solution to the ODE.

A. Solving the mode equation

% Because the background flow is stationary, the Killing
frequencyw is conserved, and solutions to E@) of the
form ¢(t,x)=e " '“'f(x) exist. Substitution yields an ODE

FIG. 4. Schematic representation of the history of an outgoing©or f(X):

low frequency positive wave vector wavepacket. The solid vertical

line is the horizon, and the dashed line is the “kink” where the -

scattering takes place. The and — signs indicate the sign of the (—io+d0)(—io+vd)f(X)=F2(a)f(x). (17

wave vector.

/

Boundary conditions are required to select among solutions
long-wavelength modes almost satisfy the ordinary waveof this equation. We would like to impose boundary condi-
equation, and the short-wavelength modes do not “see” theions that hold if the solution arises as part of a wave packet
scalel. that is localized and outgoing at late times, since these are

Following our late time outgoing wave packet backwardsthe ones that are relevant for the Hawking effect. What are
in time, scattering will occur both on the way in towards thethese boundary conditions?
hole, and on the way back out, contributing to the presence Note first that a solution cannot strictly vanish everywhere
of components in the early time ingoing wave packet withinside the horizon unless it is identically zero everywhere or
wave vectorsk_, k_g, andk, [Eq. (16)]. The different it is somehow singular at the horizon. Since our PDE con-
contributions to the scattered wave can be visualized easily tains higher spatial derivative terms, and is hence not causal,
we idealize the scattering as a process that occurs at just ol@e might expect that solutions would be well behaved at the
position, as depicted in Fig. 4n fact this will be essentially horizon. This is, in fact, the case, and therefore a solution
the case for the “kinked” metric to be discussed in Seq. V. cannot vanish everywhere inside the horizon. Unruh’s results
Going backwards in time, thk, ¢ packet backscatters into from propagating wave packets satisfying a similar equation
the other three roots. K, ¢ piece continues on towards the indicate that outgoing wave packets do indeed have nonvan-
horizon, blueshifting, and undergoes mode conversion to &hing amplitude inside the horizon, but they decay rapidly
pair of k_ andk, packets, which then propagate back awayinside? We are thus interested in the mode solutions to the
from the horizon. When these reach the scattering “kink,” ODE that decay inside the horizon.
they partly backscatter into tHe,  root and forward scatter For example, consider the case where the free-fall veloc-
into the other three roots. THe_ packet, which determines ity v(x) goes to a constaitiess than—1) inside the horizon.
the particle creation amplitude, thus receives contributionsn this constant velocity region the ODE7) has two oscil-
from three independent processéi: backscattering from lating modes, one exponentially growing mode, and one ex-
ks, (i) mode conversion at the horizg¢partly modified by ~ ponentially damped mode. In principle, we apply the bound-
forward scattering out ok_), and (iii) forward scattering ary condition that the solution and its first three derivatives
fromk, . agree with the exponentially growirgvith x) mode and its

For the ordinary wave equation in more than two dimen-first three derivatives, respectively, at some position in the
sions, there is also backscattering from the geometry. Howeonstant velocity region inside the horizon. As a practical
ever, in that case there is only one ingoing mode for fixed
positive w, corresponding t&k_¢, which has positive free-
fall frequency and does not give rise to any particle creation. “We thank W. G. Unruh for showing us some of his unpublished
In our model the possibility of scattering into the mode, graphs that make this point clear.
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matter, however, it is very important to realize that almost
any boundary condition appliedsidethe horizon will yield
essentially the same solutiautsidethe horizon. This is im-
portant because for a genetglx) we would not know ex- 10°°
plicitly the form of the required boundary condition, and also
because numerical integration of the ODE will always intro-
duce small errors. 0.0

The insensitivity to the boundary condition can be under- v
stood as follows. An arbitrary boundary condition may be
written as a linear combination of the boundary conditions -1°
generating the above four modes. Since the solution corre-
sponding to the growing mode grows exponentially with in- s
creasingx until it emerges from behind the horizon, whereas
the other three maintain approximately constant or decreas-
ing amplitudes, the contribution from the exponentially ;¢
growing mode will be exponentially amplified relative to the
other modes. Moreover, agreeméup to an irrelevant over-
a” Constanl Outs|de the horlzon Wlth the Solutlon ar|s|ng FIG. 5. Plot of the real.and Imaglnal’y pal’ts of the solution to Eq
purely from the exponentially damped boundary condition(1? for a free-fall velocity vyinc [Eq. (35)], temperatureT,, =
will rapidly get better and better as the arbitrary condition is0-003. and frequency ab = 0.01, in units wherd,=1. The hori-
applied deeper and deeper inside the horizon. In fact, in non i located ak=0 and the kink is located a¢=26. Note how
merically solving the ODE, we used the criterion of insensi-the solution tu_nnels o.ut across the horizon, growing exponentially,
tivity to the point of application of the boundary condition to and then begins oscnlatlng. Both the short and long wavelength
ensure that the appropriate mode had been selected. Also,cffmloonents are clearly visible.
was important not to start the numerical integration too dee;z . . . . .
inside the horizon, for otherwise the exponential growth pro- givenin the Appendikto compute the par.tlcle production at
duced such huge field values that numerical problems aros8 9Vene, and found agreement to within the targeted nu-

Given the above ODE and boundary conditions it is nowT€fical accuracy.
a simple matter to solve the equation numerically, in
some cases, analyticallfThe analytical solution is given in B. Computing the particle creation rate

the Appendix. We need only integrate the equation out 10 |, this subsection we obtain the explicit expression for the
positivex values in which the velocity is approximately con- particle creation rate to be used in our analysis. g
stant (and at its asymptotic valyie In a region where yanote a final wave packet of the form

dv/dx is zero(or is negligibly small the generic mode so-
lution u(x) is just a sum of four harmonics,

2.0

-25.0 0.0 25.0 50.0 75.0 100.0 125.0

1//out=NJ’ dwc, ((w)e'“oe™ etk s(@)x] (19

4
Uw(X)HZ ¢ (w)eki@x, (18) WhereNis a normali;ation constanty, is a constant that.
=1 determines at what time the wave packet passes a given
point, and only the small positive ro&t, ((w) of the disper-
sion relation is included in the integration. This is an outgo-
with ki (w) given by Eq.(16). An example solution is shown ing wavepacket solution of the field equatit8) in the con-
in Fig. 5. As expected, the solution grows exponentially outstant velocity region, where it has both positive Killing
across the horizon, located @0, and then starts oscillat- frequency and positive free-fall frequency.
ing. By fitting (i.e., employing a minimization procedurier Propagating this data backwards in time, as explained in
the coefficientsc)(w) of the four mode solutions, the nu- Sec. lll, it arrives back again in the constant velocity region
merical solution can be expressed analytically in the asympas an ingoing wave packet,
totic constant velocity region. This step amounts to taking a
“local Fourier transform” of the numerical solution in the Yn=t_t+ i gt (20)
constant velocity region. As will be shown below, knowl-

edge of these coefficients is tantamount to finding the Pareomposed of wave-vector componerits, k_., andk.
ticle production in moden. As a check on the accuracy of yagpectively, all of which have negative group velocity.
the numerical solution we also used the exact soluB®)  sjnce the inner produd®) is time independent we have

(outr ®)=(_,d)+ (s, D)+ (1, ¢) (2D

SFor the numerical work we usedATHEMATICA for its conve-
nience and flexibility. In retrospect, it would probably have been . o .
better to use a standard programming language since the comput%[’ in terms of annihilation and creation operat(ts) and
tions turned out to be very time consuming. For instance, comput=="""
ing the created particle flux at the highest resolution fairgle b
frequency took on the order of one hour on a Next machine. (o =—a' (o) +a(y_g)+a(yy). (22
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We assume that the state of the field at early times is the |w'(k_)vg(k_)02_(w)|
free-fall vacuum|ff), which satisfiea(p;,)|ff) = 0 for any N(w)= PECE U (29
ingoing positive free-fall frequency wave packef,. The @ (B4s)UglBes)rsl@
particle creation in the packet,, characterized by the ex-  Equation(28) gives the occupation number of a particular
pectation value of the numbgr operator, is, thusing Eq.  \yave packet. To obtain the number of particles reaching
(12)], given by the norm of._ : T per unit time, consider the compléterthonormal set of
late time, outgoing wave packets of the form

N(Wou) =(ff|a" (Youwalow )= (¥ ,¥-). (23) doing wave p
To evaluate this norm we use the solution to the mode equa- Pjn=NJ(J+1)Edke—iw<k>teikxei2wnk/e_ 30
tion as follows. j

Let ¢ denote the solution to E@6) generated by the final
data sety,,; (and therefore also by the early data gef).  |nese are of the same form as the wave packeds the

This solution can be expanded in exact solutions to the mod@nly_difference being in the integration ovérinstead of
equation(17) w. [This is the same basis as that used by HawKibj

except that for uss(k) is a different function. The wave
4 i packet p;, is localized on the trajectory satisfying
lﬂ(t,X):J dwe'“Yoe~ 1ty (x), (29 vgt—X—2mn/e=0, and the time interval between the pas-
sage of successive wave packels, pj -1 is, therefore,
whereu,,(x) is proportional to the mode solution that decaysAt=2w/v4e. Furthermore, the temporal spread of a packet
inside the horizon which we find either analytically or nu- at fixedx is of the same order. The frequency spreéad in
merically. At large positivex, in the constant velocity re- one of these wave packets is given for small by

gion, u,, takes the form Aw~(dw/dk)e=vg4e. Thus in the smalle limit we have
4 AtAw=27.
. The number of particles reachiri” in a time interval
— k(o
Uw(X)—Zl ci(w)e i, (29 st<At in the wave packetp;, for fixed j is approximately
as explained in the previous subsection. khe term in Eq. SN(w()= ﬁN(w-) (31)
(25) gives rise to the outgoing wave packej, at late times, VAL T

and thek_, k_g, andk, terms give rise to the ingoing wave ) o )
packetsy_, _s, and 4. , respectively, at early times. vyhere the notatlomjzw(]e)_ is introduced. The approxima-
Each of these wave packets is separately localized in théon made is to assume thais very small so that essentially
large x, constant velocity region. In particulag;_ takes ©Only one packet for a given frequency contributes to the flux,
there the simple form and of that packet only the portion located in the time inter-

val ét. Rewriting this expression usinjtA w =2 and tak-

4 . ing the limit e—~0 we obtain the particle number flux per

‘ﬁ—:f dwc_(w)e e letmi(ex], (260 unit frequency interval:

Now because)_ is localized in the constant velocity region, dN(w) i ) (32

its norm can be evaluated as if the constant velocity region dtde 27 (@),

extended throughout all of space. On a constartback-

ground one has where we have dropped the subscripts. In the thermal case,

one hasN(w)=(e“T—1)"1. The total luminosity, i.e., the

(e~ Tet=k(x] g=ilot=kj(w)X]y @ 0 total Killing energy reaching’* per unit time, is obtained

from dN(w)/dt by multiplying by the frequencw and sum-

=4mo'[k(0)]ok(w) —kj()), (27) ming up over all frequencies, i.e.,
wherew' is the free-fall frequencyl5). Using Eq.(27), the o
number expectatiof23) evaluates to sz de—N(w). (33
au
N(¢ouo=4ﬁf dolo’[k-(@)]ogk-(0)]c_(0)?. V. RESULTS OF THE COMPUTATIONS
(28)

In this section we describe and interpret the results of the

In practice, the mode solutiong, we work with are not numerical computations we have performed. Before discuss-
normalized. To evaluate the norm @f,; note that at late ing the results we introduce the relevant parameters. Our
times ¢, is of the same form as Eq26), with the small
positive rootk, ((w) in place ofk_(w). Thus Wout, Youd _
=(¢ss,¥1s) =47[doo’[K:g(®)]|vglKis(w)]c.s(®)?. bLet f(x) be any function with Fourier transform(k). On the
Dividing Eq. (28) by this norm then yields the properly nor- interval ~ (je,jet+e), f(k) can be expressed as a
malized occupation number. For a wave packet that isourier —series X,a,e*™"Wc.  Thus one has f(x)
strongly peaked about frequeney this yields the number = fdkf(k)e**=3,fl<" <dkf(k)e** =3[t <dkS a;,e'2™W e’
expectation value: =3,n@jnPjn(X), Wherep;(x) = [{L"Dedkd2mWeghx,
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models are completely characterized by the cutoff wave vec- The highest frequency at which there exist outgoing
tor kg appearing in the dispersion relatiof® and (9) and modes at the asymptotic velocity=—1/2 is given by
the the free-fall velocity functiom (x) appearing in the met- .~0.18,. [At this value ofw the larger negativk root of

ric (4). [For a Schwarzschild black hole in four dimensionsthe dispersion relation still corresponds to a negative free-fall
v(x) is given byv(x)=—(2M/x)¥2] The most important frequency(see Fig. 3] The ratio w./Ty for the two tem-
parameter characterizing is the surface gravitk=v'(xy) peratures used in our computations is about 235 and 59 for
where x;, is the position of the horizofiv(x,)=—1], in  Ty/kg = 0.000 784 and 0.003 12, respectively.

terms of which the Hawking temperatureTig = /2. For With the Introduction of the new length scall@l one

the results discussed here, the rafig/ky was either expects necessarily some deviation from the thermal Hawk-
0.000 784 or 0.003 1&which for brevity we usually write as ing prediction. We shall us@/k, as a benchmark with
0.0008 or 0.003, respectivglyexcept in one case where we which to compare deviations. The initial deviation is presum-
considered a large number of temperatuese Fig. 10 ably of order [T /ko)P for somep. As stated in the Intro-
Note that ifk, is the Planck mass then these temperatures arguction, previous analyses estimated thaghould be unity
extremely high and would correspond to very smallor possibly smaller(For the smooth metric it turns out that

Schwarzschild black holés. p is 3 at the lower temperature, and is roughly unity for the
Besides the surface gravity, what is important aboutinked metrics.
v(x) is how much scatteringeflection it produces. This is The computations were performed USIIGTHEMATICA .

determined by the specific form aef(x). The results dis- In order to test reliability of the computations, we adjusted
cussed here were obtained with three different forms fothe WorkingPrecision, AccuracyGoal, and PrecisionGoal op-

v(X): tions until there was no significant change in the results. In
all cases the WorkingPrecision was better than“0mes
Utanhn= 3 {tant (2xx)"}N—1 (34)  the ratio of the smallest to the largest coefficient in the Fou-
rier expansior(18). We therefore believe the results reported
forn = 2 and 20 and below accurately represent the solution to the model.
Uiink(X) =[ kX O(=X) — %], (35 A. Results

In broad terms, the results are the following. For the
s Smooth metric there is spectacular agreement with the ther-
mal Hawking flux at low frequencies. The relative difference
from the thermal predictidhdoes not exceed /k, until
wl/Ty is of order 18. The largest deviations reliably ob-
tained were of order 60% at the cutoff frequency in the high
temperature case. The kinked metric cases behaved quite dif-
ferently. For them there is a significant nonthermal contribu-

amounts of scattering. We considered them both becalise tion to the particle creation from scattering at the kink. This
the truly kinked case allowed us to check the numerical comgontribution (goe§ not c(ijecrgase W'thd frﬁquerlmy sod at some
putation by comparing with the analytic solution discussed infrequency it egins to dominate, and the relative deviation
the Appendix,(ii) comparison of the two allowed us to rule 0™ the exponentially dying thermal prediction grows expo-
out spurious effects that might have been associated with %enually.dFurthermoref, I OSC”Etes as ad_ff;mctlon of fre—d
true kink, and(iii ) the comparison gave us more information quency due to interierence between different scattere
about the impact of short-wavelength processes on the speRIECES: These results will now be described in detail. We first

trum of created particles. The most dramatic difference wompare the calculated flux Qf particles as a fun_ction of fre-
found is illustrated by the difference between Fig. 11 an uency to the thermal pr_ed_lcthn. Next, we investigate cumu-
Fig. 13 below ative effects of this deviation in terms of the total luminos-

ity.

all of which go to—1/2 asx goes to infinity. Qualitatively
speaking, vinn 2 Produces very little scattering wherea
Utanh.20 and v produce much mordalthough still very
little). The curvature scalar of the line eleméditis given by
R=2(v?)", so asn increases iV anhp the curvature at the
bend diverges, as it does fof;,. Important note:We shall
often refer to the,o, oCase as “kinked,” together with the
truly kinked casev,, since they produce comparable

2 . _ 1. Flux: smooth metrics
It would have been interesting to compute the spectrum also for

large black holes, for example, for a primordial black hole tempera-  First we discuss the results for the smooth metric. Table |
ture of, say,T,~10 2%,. Such low temperatures lead to compu- Shows the relative deviation of the computed flux from the
tational difficulties with the techniques we have employed for twothermal flux for various frequencies up to a frequency around
reasons. First, the distance from the horizon to the constant velocityhich the relative deviation exceeds /k,. Note the spec-
region extends over a width determined b, L1Avhich in units of ~ tacular agreement between the computed and thermal fluxes.
the lengthk,  is ko /Ty~ 10%°. It would, therefore, be necessary to For the lower temperature the relative deviatiorvat T, is
integrate the ODE over an extremely large number of oscillatiorof order (T} /ko)3, while for the higher temperature it is of
cycles to obtain the particle production rate for a typical frequencyorder (T /ko)?, both significantly less than the expected de-
This difficulty might be sidestepped by taking the asymptotic ve-viation of orderTy /ky. Since we have only two fairly high
locity to be — 1+ e wheree is of order 10?°. The second difficulty

is simply that one would have to design a code specifically to

handle a computation in which numbers with ratios liké®1ére 8By the “thermal prediction” we meal(w)=(e*'T—1)"1. Any
both important. modifications due to “gray body factors” are neglected.
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TABLE |. Relative difference between computed and thermal

energy fluxes for a range of low frequencies for both values of the 020
Hawking temperature.
0.00
Ty /ko=0.0008 Ty /ko=0.003 ®
wlkg Rel. Diff. wlkg Rel. Diff. §
020 ¢
0.00049 -2.2x107° 0.0020 -8.2x107” B
0.0054 1.%¢10°8 0.0098 ~1.0x10°® _Q
0.010 2.0<10°7 0.018 21076 2 a0l
0.015 6.9<10°7 0.025 1.210°° 3
0.020 1.5¢10°° 0.041 6.x10°° >
0.025 2.0¢10°6 0.057 1.%107* 060
0.030 —1.5x107° 0.072 —5.6x10°°
0.035 -2.4x1074 0.088 -1.3x10°° 0.80 - ‘ ‘ ‘
0.025 0.075 0.125 0.175
wk

[

temperatures, however, it is difficult to say what the real g 7. piot of the relative difference between computed and
dependence o, /K, is. The size of the deviation could be hermal energy fluxes as a function @fk, for the smooth metric

small in part due to a small coefficient. It should be possibley;ith T,,/k, = 0.003.

to extract the temperature dependence by evaluating the rela-

tive deviation at a fixed value ab/T for several values of quency data is included but is too small to be observed from

T. This is difficult because of the small numbers in thethe graph. For the higher temperature case the entire spec-

smooth case, but the analogous calculation has been parum was obtained, and the maximum relative difference is

formed for the kinked case, as described in the next subseabout 60% and occurs at the highest frequency. For the lower

tion. temperature case the agreement between the computed and
A crude and very conservative estimate of the numericathermal energy fluxes remained quite good out until

error in the computation suggests that the low temperaturg/T,,=57.2 (the last data point obtainga/here the relative

relative differences in Table | are of the same order of magerror was about 3%. Data could not be obtained accurately

nitude as the computational errgFor the smallest frequen- beyond this value of» because the coefficient of the nega-

cies, the relative difference is just very small, while at largertive norm mode was too difficult to compute accurately due

frequencies the flux itself is so small that it is difficult to to its extremely small size.

evaluate the relative difference accuratelyhis is probably

an overestimate of the error, but if correct it means that only 2. Flux: kinked metrics

the order of magnitude of the low temperature numbers is

o Now we turn to the results for the kinked metrics. In Fig.
significant.

For both t i ilation in the si we plot the logarithm of the ratio of the computed flux
or both temperatures we see an osciiiation in the sign o eaching infinity to the thermally predicted flux reaching in-

the relative difference as a function of frequency. . : ) -
The high frequency results are plotted in Figs. 6 and 7 inf|n|ty as a function of frequency for a free-fall velocity

the form of the relative difference between computed and

thermal energy fluxes as a function efk, (the low fre- 250
~
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0)/k0 FIG. 8. Plot of the logarithm of the ratio of computed flux reach-

ing infinity to the thermal flux reaching infinity foo ,, and
FIG. 6. Plot of the relative difference between computed andT, /k, = 0.003, as a function of frequency in units of the Hawking
thermal energy fluxes as a function ©fk, for the smooth metric temperature. The position of the deviation frequengy for this
with T, /kq = 0.0008. case is indicated on the figure.
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FIG. 10. Plot of the difference of computed and thermal particle

FIG. 9. Plot of the fractional difference between computed flux
b fluxes forw=T,, as a function ok, /Ty, for the kinked metric

and thermal flux as a function of frequency in units of the Hawking
temperature. The curves correspond from left to right to the Ukink -
pairs (,vann,20, (N,vkink)s (1,vkink » (10 tann 20, wherel andh de-

note the temperatures 0.00Q8 and 0.008, . respectively, In Fig. 10 we investigate the convergence of the com-

puted to the thermal particle number flux at the fixed fre-
quencyw=Ty, for the metricv,;,, as the temperature is
lowered (or, equivalently, as the cutoff is raisedVe see a
small amplitude, short-period oscillation superimposed on a
larger amplitude, longer-period one. In order to characterize
he rate of convergence we have found the absolute values at
he four points where the longer period oscillation peaks, and
it them to a power law Ty /ko)P. For all of the six pairs of

vyink @nd temperaturg@y /ky = 0.003. This graph illustrates
the generic form of deviations between the two for all kinked
cases. Namely, there was reasonable agreefsestbelow
for a more precise statemgnip to some frequencyy,
while abovewy the disagreement was large and increase
(on average, see belpwwith frequency. The frequency f

wq, termed the deviation frequency, represents the approxboints we findp=1 to within 10%, so it appears that the
mate frequency where rapid growglpparently exponentigl difference is decaying a8, /k, '
of the ratio between the computed and thermal energy fluxes Past the last frequency at which the relative deviation

begins. L I ._crosses zero the deviation takes off wildly. The computed
The low frequency deviations are magnified in Fig. 9, iNflux ceases its exponential decrease at sasge Figure 8

which the relative difference between the computed and thers—hOWS thatwy~ 10Ty, whereas Fig. 9 shows that the last

mal fluxes is plotted. At the lowest frequencies, the COM-,.10 oceurs at aroundTe, in that case.

puted flux in the lower temperature cases has alread_y aP- gefore discussing the results for large we look at how
proached very close to the thermal prediction, whereas in the

higher temperature cases there is still a difference of a coupl“l"évafg?; v(;/]lt?hteh(ranﬁrr};:ps_rhaetu\:g?ulgg gﬁr:)d /f_:_ee;lf;aell I\i/sile(:)o?litz

of percent at the lowest frequency computed. We have naf ;' : d''H '
computed for yet lower frequencies because, as we inte-able Il Note .thatwd/TH Increases with decreqsmg tem-
grated across the kink, the convergence criterion used b erature, and in the lower temperature case is somewhat

MATHEMATICA failed. [Since the thermal number flux r?_((-:')rofk(i)rr] thﬁoz\,mgto ttgzd dﬁCiI;ttigig f;)tr ]f:]ee H;r?c:ggkébw
(e®’T—1)"1! diverges asn—0, the relative difference must 9 9 ®

vanish in that limit unless the absolute difference is also\{_vﬁast’eig f(r)ong E;fs 8 that the log curve is approximately linear.
diverging. If a scattered component surviveseas: 0, then '

the absolute differencwill diverge] [dN(w)/dtdw]
Increasingw from zero, we see that the computed flux Wwf(w)ey(wwd), (36)

generically starts out slightly below the thermal flux. De-

pending on the parameters, the relative deviation then eithgghere f(w) is some relatively slowly varyingi.e., not ex-

decreases monotonically, or oscillates about the thermaonentia) function. We have estimated the value pfrom
value, eventually reaching a maximum negative value after

which it becomes positive and never returns to zero. The TABLE Il. Deviation frequenciessy, in units of the Hawking
maximum negative deviation is about 7% for the lower tem-temperature, for the various kinked free-fall velocities and tempera-
perature(0.000%,) cases and is 2.4% or 6% for the higher tures, from an eyeball fit of figure @nd the analogous plots for the
Ty /ko and VT /ky are around 0.1% and 3%, respectively,

for the lower temperature and are around 0.4% and 6%, ré4etic T /ko=0.0008 T /ko=0.003
spectively, for the higher temperature. Thus the maximum, - 16.5 10
negative deviation appears to be of ord&F,/k, in these Ukink‘ 13 95

cases.
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FIG. 11. Plot of the energy flux as a function of frequency, both ]
in units of the cutoff wavevectoky, for the vimnoe Th/Ko = FIG. 13. Plot of the energy flux as a function of frequency, both
0.0008 case. ' in units of the cutoff wave vectdq,, for thev ., Ty /kg = 0.0008
case.

graphs like Fig. 8 for both kinked metrics. We find that

y~1/T to within the roughly 5% accuracy of our estimate. quency, and the maximum amplitude grows at least linearly
The valuey=1/T is what one would have if the spectral flux ang certainly faster in the i, Ty /ko=0.0008 case. The
wereconstant so we conclude that the exponential SUPPreSyinimum amplitude is greater than zero and slowly growing.

sion that would be present in the thermal flux is arrested aftegaca|l that even in the low frequency spectrum there was an
wq in our model with the kinked metrics. Putting=1/T we  qqjjiation of the computed flux about the thermal flux.

thus have, forw>wq, Whether these two oscillations are related is an issue that

will be discussed in the interpretation subsection. In the other
m%f(w)e""d”. (37)  case,vgnnzo and the lower temperatur& /ko=0.0008,
there is no oscillation at all. Rather, the flux increases, peaks,
Actually there is interesting structure in the flux above@nd then decays again. Nevertheless, it still remains many

wq that is “washed out” in the logarithmic plot of Fig. 8. orders of magnitude above the thermal prediction even at the

This structure is revealed in Figs. 11—14, which show plotdlighest frequency.

of the computed flux of energy reaching infinity for frequen-

cies larger thamy for the four kinked parameter sets. These 3. Luminosity

plots show that in fact the energy flux doest increase

linearly (as it would if the number flux were constantn

three of the four cases, the energy flux oscillates with fre

quency. The period of this oscillation increases with fre-

Even a small deviation in the flux could have a dramatic
effect on the net luminosity if integrated over a wide enough
range of frequencies. What determines the range of frequen-
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FIG. 12. Plot of the energy flux as a function of frequency, both  FIG. 14. Plot of the energy flux as a function of frequency, both
in units of the cutoff wave vectoky, for the vnn20 Tr/ko = in units of the cutoff wave vectdty, for thev g, Ty /kg = 0.003
0.003 case. case.
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cies in our case is that fas greater than about 0.k§, there (2) The oscillations in the flux at smalb; specifically,
is no longer a solution to the dispersion relation correspondtheir origin and their characteristi¢such as amplitude and
ing to the outgoing mode. period.

For the smooth metrico(a,n 3 with either temperature, as ~ (3) The energy flux behavior for large for the higher
well as forvnn 20With Ty /ky = 0.0008, we find no signifi- t€mperature case.
cant deviations from the thermal luminosity. For the other
cases, however, there is a significant change. To estimate the
cumulative effects of the deviations in the energy flux we (1) The comparatively larger deviations from thermality
compute a lower bound to the portion of the lumino$&g®) at smallew in the energy flux than in the smooth metrics.
in the modes of frequency larger thary . (Since the flux in (2) The form of the oscillating convergence to the thermal
our models is primarilypelowthe thermal flux at lower fre- prediction atw= Ty as a function ok, /Ty (Fig. 10.
quencies, including those would somewhat counterbalance (3) The dip in the relative difference between fluxes im-
the extra flux at the higher frequencieBhe simplest way to Mediately before the very large deviations take d¥g. 9).
do this is to evaluate a Riemann sum of E8p) from w4 to (4) The value ofog . _
the largest allowed frequency. In the thermal case this inte- (5 The huge deviations from thermality at large
gral amounts to less than 0.2% of the total luminosity. For (6) The oscillation in the energy flux at large.

U tanh 202100 e With T /ko = 0.003 we find values of 2.6% (7) The lack of an oscillation in the lower temperature,

0 i , _ . Utanh, 20Metric at largew.
:n\;jaﬁjﬁlt;]eastpigclu(\)/;: y(‘)fatr;:lfg‘t';'l‘ tar:(-err#:ﬁlug{i?]%?igt;ve find The results for the smooth metrics are illustrated in Figs.

It would have been interesting to compute this extra Iu—6 and 7 and Table | They show the extreme accuracy to
o 9 mp which the computed particle creation agrees with the thermal
minosity for much lower temperature@.e., much larger

) prediction well out into the tail of the thermal spectrum. Why
black hole$ but, as mentioned footnote 7, we are so fars the agreement so good? From the discussion of wave-
unable.to har!dle very IQW temperatures. At onv temperatureﬁacket propagation in Sec. Ill, one might expect larger de-
one might think that since the thermal flux is smaller, they;iations than observed, since a wave packet propagated
extra flux might make a larger relative contribution, sincepgckwards in time seemed to turn around and head back
one is always integrating up to the same cutoff frequencyaway from the black hole before ever reaching the horizon.
w¢ [since this is fixed for a fixed asymptotic value of This might lead one to believi&] that the appropriate tem-
v(x)]. But there are two other effects that are relevant. Firstperature at which the black hole radiates a specific frequency
as the temperature falley/ko decreasesalthoughwy/Ty mode should be (1/2)v’(x,), wherex, is the classical turn-
increases; see Table)llso the range fromwy to w. in- ing point. Sincev’ is smaller at the turning point than at the
creases, which tends to increase the extra luminosity. On theorizon, one would thus expelgssparticle flux at a given
other hand, at lower temperatures, the kink is less kinky, sérequency than in the thermal spectruniat. What we find,
produces fewer particleBvhich is reflected in the greater however, is that the computed particle productioraiger
exponential suppression suggested by B3)]. We do not than the thermal particle production for some low frequen-
know the outcome of these competing effects. cies. Moreover, calculation reveals that the deviations shown

in Table | are roughly two orders of magnitude smaller than
one would have expected if the appropriate temperature were

B. Interpretation of results determined by’ at the turning point. It thus appears that the
. L . . acket must probe the horizon more closely than expected.
The goal of this section is to explain the various featuresris is not so surprising, since we have already seen that the

of the results. Listed below, and subdivided under theyyp approximation breaks down around the classical turn-
smooth and kinked headings, are the most important featurqﬁg point and hence so does our naive picture of the propa-

that we shall address. gation of wave packets in this region. Furthermore, we know
from our mode analysis that the packet does not vanish in-
side the horizon but rather decays exponentially across it.
(1) The extremely good agreement with thermality atThe small deviations that do exist may be due to the scatter-
small w. ing phenomenon discussed below, or may be attributable to
an intrinsic deviation from thermality of the mode conver-
sion in these models. We have not determined which of these
°In Unruh’s model[6], with the hyperbolic dispersion relation, is the case.
there is no cutoff frequency on outgoing modes at all, so luminosity The remaining phenomena seem to be a consequence of
accumulates up to arbitrarily high frequency. If the scattering phescattering into and out of the negative wave vector, negative
nomenon persists up to arbitrarily high frequency then it appearfree-fall frequency mode, principally from the kink in the
there will be an infinite energy density of created particles in thatmetric. The scattering can be described using either a wave-
model.(Since the group velocity is dropping exponentially however packet picture, as described in Sec. IlIB or a time-
this would not translate into an infinite energy flufor a truly  independent mode picture. From the mode point of view, as
kinked metric one would indeed expect the scattering to persist uphe mode equatiofil7) is integrated out from the horizon, a
to arbitrarily high frequencies, but if the metric is slowly varying solution is obtainedFig. 5 with wave-vector components
below some length scale, then for wavelengths shorter than th&_, k.., andk, [Eq. (16)]. (There is essentially n&_
scale one would expect the scattering to cease. component until the kink is reached, due to the boundary

2. Kinked

1. Smooth
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condition inside the horizon and the fact that mode converwill therefore produce significant interference effétias a

sion produces no such compongmts the equation is inte- functipn pf frequency, since the relative phases of the two

grated across the kink, the. component receives contribu- contributions depend on frequency. _

tions from (i) that already present on the left of the kink TI(I) check dlreptlthhether thﬁ '{S‘terfelzr_encelixgi'”s the
o o ; tion seen in the energy flugsee Figs. 11-D4we

(which is partly scatterédand i) the scattering of thé,; ~ 9S¢!'@ .

andk, components. The scattering is strongest frogy, would need to know how the phases of the tkvocontribu-

hat | ; for short lenaths f tions behave as functions of the Killing frequency of the late
somewnat [€ss strong tor shorter wavelengins ik 20 time outgoing packet. We could easily extract the phase

and barely present for the smooth mewigyn2. ~ changes occurring throughout the propagation and at the
The contribution(i) is the thermal contribution, which scattering points from a WKB calculation, but we do not
arises from mode conversion at the horizon as discussed know how to calculate the phase change occurring during the
Sec. Il A. As the frequencw grows, this contribution dies mode conversion process. This could be sidestepped by cal-
exponentially® as expE w/Ty). The contributiongii) from  culating instead the interference as a function of the position
the scattering will therefore dominate the particle creation forof the kink at afixedfrequency. Then the phase changes on
frequencies larger than some frequency, and they will not b&0de conversion and scattering would be essentially con-
exponentially decaying. This is just what we found, as illus-Stant, so the oscillation woul_d be due entirely to the differ-
trated in Fig. 8. This interpretation can be checked by inde€NCe In the phase accumulations of kg andk.. modes as

endently estimating the scattering amplitudes and predic function of position. We have not performed the computa-
P y 9 9 P P fons necessary to demonstrate that this is indeed what is

ing the deviation frequency, . _ happening, but it seems quite plausikémd at this time the
The scattering amplitudes fer>T, can be estimated as gnly plausible explanation The only potential problem we
follows. From the WKB approximatiofi.e., using the local see is that the WKB predictions for the amplitudes of the two
dispersion relationwe solve for either thek, ; or the k. scattered modes, although of the correct order of magnitude,
mode in the linear part af ;. to the left of the kink(If w is  are not close enough to each other to yield the large ratio of
not much greater thafi; then the WKB approximation is maximum to minimum flux values seen in Figs. 11-14.
inadequate for thiz, s mode) In the constant part of ; to ~ Since the WKB approximation gets betterkagrows, it may
the right of the kink we know the exact harmonic modes, and®® that thek, s contribution is not as accurately approxi-

the solution is a sum of these modes with constant coeffi[nated as the, contribution. On the other hand, we cur-

cients. The coefficients are determined by matching the ngently S€e no reason why the two contributions should in fact
lutions and their first three derivatives across the kink. From e as close in amplltude as ;hey appar_ently are. .
. C If the above interpretation is correct, it should also explain
the cpefﬁments one may then compute the amount of partmlgvhy in the lower temperature,,,;, socase the energy flux at
creation, as was done in Sec. IV B. large  is down by about five orders of magnitude from the
Using this result we look for the value @ where the  other kinked cases, and does not oscillate, but rather in-
particle creation from scattering is comparable to the particlereases over some frequency range, and then desags
creation from mode conversion. For the higher temperatur&igs. 11-14. Recall that the bulk of the scattering occurs
case [ /ko=0.003 this yieldswy/T;=9.5 and for the low wherev’(x) changes from zero to2Ty. In the v, case
temperature caseT(;/k,=0.0009 it yields wy/Ty=13. this occurs ata point, but inlthﬂanh,zoCase it occurs over a
Looking back at Table Il we see extremely good agreemenfange of approximately 2§~ for T,;=0.000 78 and about
with the estimated values. We cannot perform the same typeKo -~ for Ty =0.0031. This smoothing seems to account for
of calculation with they ;. 20case, but of course in that case the dlff_erence in the spectra. Sl_nke is of orde_rko, the
there is scattering as well, the amount of which would pre_scatterlng for this mode is dra_lstlcally _reduced in the lower
sumably be slightly less since now the discontinuity inLemperature case compafed with the higher temperature case,
, . ecause the wavelength is then much smaller than the length
v (X). has been smoothed out a I_|tt|e. Henog/Ty, would scale characterizing the kink. Meanwhile, the amount of scat-
be slightly larger, in agreement with Table II. tering of thek.  mode is also greatly reduced, but for low
The oscillation seen in the fluxes in the largespectrum  enoygh Killing frequencies this reduction is not as severe
for all kinked metrics except the low temperatwgn, 20 since its wavelength is much longer. Hence, the scattering of
case seems to be explained by interference between the coe k, ¢ mode dominates the particle creation and there is no
tributions to thek_ mode from the scatterek, ; and k, interference.
components. At these large frequencies the contribution of Now let us consider the smadb oscillations. For small
the mode conversion is negligible, so essentially all the parw, the thermak_ contribution from mode conversion is no
ticle creation is coming from the scattering. Using the abovdonger negligible, so there are now three interfering contri-
WAKB calculation we find that indeed the right order of mag-
nitude is obtained to account for the peaks in the spectrum.”
Furthermore, the amplitude of ttke pieces coming from the 14f one takes a wave packet with very small spatial extent at late

two separate scatters are the same order of magnitude. Thé#pes, this will produce narrow packets when propagated back-
wards in time. Since the two scattering processes occur at different

space time pointécf. Sec. 1l B) the two scattere#_ packets will
have essentially no overlap, so will not interfere. However, since
we calculated the particle production with packets of perfectly well
Oywe cannot rule out the possibility that there is a very smalldefined frequencyand hence spread out over all spacee will
nondecaying piece. See Sec. VA 1. definitely have interference.
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butions to thek_ mode at largex. Since the amplitude of where the free-fall frame is falling toward the black hole.
mode conversion dominates the other two we see only fTechnically, this corresponds to the fact that the metric
small oscillation about this dominant contribution. At fixed functionv (x) goes to— 1/2 rather than vanishing at infinity.
w=Ty, the relative phases of the three contributions are &his boundary condition is physically motivated by the idea
function of the temperature. We expect that this explains thehat the formation of a black hole is an adiabatic process far
presence in Fig. 10 of the short period, small amplitude 0Sfrom the hole. This is true at all times, and in particular it is
cillation superimposed on the longer period, larger amplituderye long after the hole has formed. The theory has a pre-
oscillat_ion, although we have not carried out any detailedterred frame, and we are simply assuming that in this pre-
analysis to confirm this explanation. ferred frame the process of black hole formation does not
Our explanations of the remaining features are the mosgxcite the ingoing modes.
tentative. The fact that the low frequency deviations are By imposing the boundary condition in the free-fall frame
much greater in the kinked cases than the smooth case \Wherev(x)<0 we avoid the need to push our linear disper-
presumably explained by the presence of scattering effects glye model into a regime where it is not physically sensible.
these low frequencies. We could not estimate these scattering this way we can obtain significant results from the model.
amplitudes reliably using the WKB approximation since it is However, the ultimate goal is to obtain a full understanding
not valid for these low frequencies, and we have not atyf physics around black holes, at least in a model that is well
tempted to compute it in any other fashion. The oscillationssehaved throughout the evolution. To this end, we shall now
in the flux at low frequency seen in the smooth cases and thgarify, by considering the behavior of several linear disper-
lower temperature kinked cases are perhaps due to the sargge models, why it is that these models are unphysical when
interference mechanism as we invoked to explain the higlt comes to questions involving the propagation in from in-
frequency oscillations. The dip in the relative difference offinjty. This still leaves one with the question of what happens
fluxes plotted in Fig. 9 for the kinked cases is perhaps also af g physical model or, better yet, in nature. A few comments
interference phenomenon arising from the scattering of wavgn, this deeper question will be made at the end of this sec-
packets. Around the frequencies at which this happens, thggn.
amplitudes of_ the scattered packets, as predict.ed from the The propagation of wave packets out to infinity can be
WKB calculation, are of the same order of magnitude as thetydied as described in Sec. 11l with WKB analysis, in which
amplitude of the large negative wave vector packet arisinghe motion of a wave packet and the evolution of its wave
from mode conversion. The question is why do the phases Gfector are obtained by solving the local dispersion relation
these packets always conspire to produce this dip? We Ulw — o (x)k]2=F2(k) and integrating the group velocity. The
fortunately have no answer to this. _ result of this sort of analysis depends on the particular dis-
Finally, there is the large» behavior of the high tempera- persjon relation considered. Here we will describe briefly

ture, smooth metric. In contrast to all other cases, we get 8ome examples of the different types of behavior that seem
computed energy flusmallerthan the thermal energy flux, to be possible.

with a comparatively small relative difference of about 60%  ynruh model In the Unruh modell6], with the hyperbolic
(FIgS 6 and 7 Perhaps this is related to the d|p in the rela'tangent dispersion relation = kotanh((/ko), the magnitude
tive difference between fluxes discussed above. That is, pegf the wave vector grows without bound as the wave packet
haps in this case the dip has been pushed out to the end gfpves outward where(x) is falling to zero. Thus, even
the spectrum, so that the huge deviations that would havghough the difference between the free-fall and Killing
been present are now gone. A possible test of this would bgames is going to zero, the wave vector is diverging in such
to see if one dip goes continuously over into the othenas 5 \ay that the wave packet always maintains a negative free-
interpolates between 2 and 20 iiyyn,, With the tempera-  fa|| frequency part of the same, negative, norm. Thus the
ture fixed. This we have not done yet. Hawking effect indeed occurs as long&) never actually
reaches zero. From this analysis we see that the Unruh
model, while it entails a strict cutoff in free-fall frequency,
involves in an essential way arbitrarily high wave vectors,
The way the usual Hawking effect transpires in a strictlyi.e., arbitrarily short wavelengths. Insofar as we wish to ex-
stationary spacetime is that the outgoing wave packets afelore the consequences of a fundamental short-distance cut-
traced backwards to parts that dot make it back out to 0off on the Hawking effect, this is an unsatisfactory feature of
infinity, but rather cross the white hole horizon, at whichthe model. The outgoing modes emerging from the black
point the Unruh boundary condition on the quantum state igole region still arise from arbitrarily short-wavelength
imposed. The piece of the wave packets that scatters off th@odes, albeit ingoing ones.
curvature and does make it back out to infinity is not asso- Quartic model This is the model we have focused on in
ciated with particle creation. Since in the Unruh model ancthis paper, with dispersion relation®=k>—k*/kZ in free-
its variant considered here thentire wave packet turns fall coordinates. The spectrum of wave vectors associated
around and goes back out, it would seem that there can be maith real frequencies is bounded lat £k,, and the group
particle creation at all. So how do these models yield a nonvelocity goes through infinity and changes sign at the cutoff
zero Hawking flux? wave vector. The behavior of the positive and negative
The answer is that neither we nor Unruh have actuallywave-vector piecegequivalently, the positive and negative
followed the wave packet also the way out to infinity. free-fall frequency piecesf the early time wave packet is
Rather, we impose as initial boundary condition that the indifferent. Proceeding backwards in time, the positive wave-
going modes are in the free-fall vacuum at some locatiorvector piece accelerates off to infinity at ever increasing ve-

VI. THE STATIONARITY PUZZLE
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locity, exceeding the long wavelength velocity of light. The back out to infinity, where it appears as a superposition of
negative wave-vector part does the same thing, except it agaultiroton modes of the superfluid.

pears from the WKB analysis that at some finite location, If indeed the outgoing modes arise from ingoing modes
before the wave packet reaches infinity, the wave vectothat start at infinity, then one is faced with the puzzle of

reaches—kg, the free-fall frequency goes to zero, and the€xplaining how particle creation could ever occur, in view of

group velocity diverges. The behavior at this point remainghe conservation of the Killing energy. [i15] it is argued

to be understood. There is a WKB solution that reversedhat the resolution of this puzzle probably involves the back-
direction in time, propagating “back to the future” and out "€&ction, which can both destroy the Killing symmetry and

to spatial infinity at superluminal velocity. However, this so- 4€cohere the positive and negative norm parts of the ingoing

lution violates the final boundary condition consisting of the'Vave packet.

outgoing wave packet with which we began the WKB analy-

sis. A solution that simply continues through with free-fall VII. CONCLUSION
frequency changing sign would have a norm that changes

sign from negative to positive, which is impossible in view o ., . .
of norm conservation. It seems likely that the solution or jtsSmooth and “kinked” two-dimensional black hole geom-

derivatives must blow up as the reversal point is approachetﬁ’.tma‘.S for. a It'nfalrd’ Herml'glan sc.a:‘arhﬂerl]d satlsfylr}g da L.ore.ntz
This issue remains to be clarified. noninvariant field equation with higher spatial derivative

Cubic model This model is defined by the dispersion re- terms that are suppressed by powers of a fundamentall mo-
lation w?= (k—k3/k3)? in Lemalre coordinates. Note that in mentum scalé, . We have found that there are two qualita-

; 0 X tively different processes leading to particle production in
this model there is no bound to the size lofor real fre-  hig ' model. First, there is a thermal Hawking flux generated
quency modes. The behavior of a backwards propagated Iog, “mode conversion” at the black hole horizon. The other
wave vector outgoing wave packet in this model is initially process has nothing to do with the horizon, and generates a
quite similar to that in the original Unruh model and our nonthermal spectrum via scattering off the background into
quartic version thereof. As it recedes from the horithack-  negative free-fall frequency modes. This second process does
wards in timg the positive norm part of the wave packet not occur for the ordinary wave equation because such
propagates at increasing velocity approaching close to twictodes do not propagate outside the horizon with positive
the speed of light itv<<ky. The negative norm part does the Killing frequency.
same for a while, but then as it approaches zero free-fall The horizon component of the radiation is astonishingly
frequency something new must happen, since norm conseglose to a perfect thermal spectrum, as evidenced by our
vation does not permit the wave packet to simply switch ovecomputations for smooth metrics in which the scattered com-
to positive free-fall frequency. It seems likely that the waveponent is minimal. Atw/Ty=1 the relative difference be-
packet undergoes partial mode conversion here to the negbween the two is of orderT /ko)® in the lower temperature
tive frequency branch of the dispersion curve withcase consideredly=0.000&,), a much smaller difference
k<—kq. To keep the norm conserved, this part would needhan might have been expected. Moreover, agreement to or-
to have a negative norm of larger magnitude than before thderT, /kq persists out ta/ T =45, where the thermal num-
conversion, since presumably a portion of the negative norrber  flux has decayed to something of order
wave packet continues on to positive free-fall frequency an@xp(—w/T)~10"%°,
thus to positive norm. After this hypothetical conversion the For the metrics with “kinks,” i.e., regions of large cur-
negative norm piece has a group velocity of roughly twicevature localized along a static timelike world line, the agree-
the speed of light, and is headifigackwards in timgtoward =~ ment with the thermal prediction is still remarkably good at
the horizon. It sails through the horizon at ever increasingo= Ty, where the relative deviation in the flux is of order
velocity and slams into the singularity at infinite coordinate Ty /kq. As the frequency is raised, however, the thermal flux
speed and with infinite wave vector. To predict the outgoingdrops while the flux from scattering remains of the same
Hawking spectrum would thus require a supplementaryorder, so it quickly dominates and becomes many orders of
boundary condition on these superluminal infinite wave-magnitude larger than the thermal component. This nonther-
vector modes at the singularity. If we take all this seriouslymal flux amounted to roughly 10% of the total luminosity for
and impose a vacuum boundary condition at the singularitythe kinkier metrics. The flux exhibited oscillations as a func-
the predicted Hawking flux will depend on how much of thetion of frequency which can be explained by interference
negative norm wave packet is converted to positive norm apetween the various scattered contributions to the flux. At
the second conversion event. low frequencies the thermal component also interferes.

It is clear from these examples that in facing the station- Although one does not expect kinks in the smooth classi-
arity puzzle we are inevitably forced into the details of thecal background metrics ordinarily adopted in black hole ra-
short distance domain of the model. For this reason it wouldliation studies, they might be an important source of particle
be best to have a model whose short distance behavior @groduction once the backreaction is taken into account, or
determined by some reasonable physics. One approagierhaps in the early universe. It will be interesting to pursue
would be to push Unruh’s original fluid analogy, taking for further the physics of this new sort of particle creation and its
the fluid liquid helium, a fluid that can exist at zero tempera-possible applications.
ture. This was considered initially [%], and the analysis has Even small deviations from a thermal spectrum of black
recently been pushed further [i5]. In this model the out- hole radiation would apparent[yL 6] allow violations of the
going wave packet is indeed traced backwards all the wageneralized second laWGSL), which says that the black

We have studied the spectrum of created particles in
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hole entropy plus the entropy of the exterior cannot decreasgiven by parabolic cylinder functions; however, because we
Do the deviations we have found jeopardize the GSL? Her@eed anx-space solution, we must Fourier transfofifk)

it is important to recall that even the usual Hawking spec-which we only know how to do under a more restrictive
trum is not that of a blackbody, due to the different absorpcondition. This condition i%,/«x=2n+1 wheren is an odd
tion coefficients for different modes. However, this is per-integer. In this case the solutions simplify to solutions of the
fectly consistent with thermal equilibrium and the simple harmonic oscillator problem in quantum mechanics,
generalized second law, since these same absorption coefif_ié_,@'(k)Oc e—kZ/(zxko)Hn[ \/mk]_ Inverse Fourier trans-
cients govern what can be put into a black hole. Similarly, informing'f(k) we get

the presence of interactions, the Hawking radiation spectrum

is shaped by those particular interactions, but presumably not

in such a way that allows violations of the GSL. The argu- [n/2] |

ments[17] based on periodicity on the Euclidean section m:(_mmmz {(1/4)sn—'

support this view, as does a perturbative analysis of a par-  dx™ 0 st(n—2s)!

ticular interacting theory18]. For the models considered in

this paper, it is relevant to point out that the mode conversion on+1
and scattering processes underlying the particle creation Xexr{ i v(x)z) D _iwikt(n—2s—1)+m
would also affect what radiation could be injected into a
black hole. Thus the deviations from thermality are not nec-
essarily in contradiction with the GSL. It would be worth-

while to analyze this issue thoroughly, to understand the sta- X[v2n+1v(x)]
tus of thermal equilibrium and the GSL in these models.

Finally, the elusive goal of fully understanding the Hawk- . . I
ing effect in a theory with a true cutoff on short distance Where we have included arbitrary order derivatives pfn

degrees of freedom remains beyond our grasp, although tH8iS expression since we shall need them lagj(z) is the

considerations of15] seem to provide a step in the right Parabolic cylinder function of ordep. _ .
direction. Going back to the kinked velocityAl), since the velocity

is constant for positive, the general solution is a sum of
four modeszf‘=lc|eiklx. By matchingf,, given above and its
first three derivatives at=0 to this sum, we may solve for
We would like to thank T. Antonsen, R. Brout, S. Massar,the coefficients, which, as described in the paper, yield the
M. Ortiz, R. Parentani, F. Skiff, Ph. Spindel, and W. G. particle production.
Unruh for helpful discussions. This work was supported in At this point the reader may be wondering what happened
part by NSF Grant No. PHY94-13253, grants from theto the other three linearly independent solutions to the origi-
Graduate School and General Research Board of the Univenal ODE (17). The answer is that we selected one of the

(A2)

ACKNOWLEDGMENTS

sity of Maryland, and the University of Utrecht. solutions by the choice of integration contour in evaluating
the Fourier transform. Moreover, we got lucky, because the
APPENDIX solution we obtained is the “right” one: as argued in Sec.

_ _ IV A, the solution appropriate for a wave packet that is
. .Wg ?'Siﬁss here Ithe exa(;ttrS]c}ILli'tlokn (tjofthe fOI(IJE)IOb'_t purely outgoing at late times should decay across the hori-
ained for the special case ot the inked free-fall VEIoCty 2 on. Noting thaIDp(z)—>e‘Zz’4zp asz—x we see that the

above solution satisfies this propertwe did not really need

Vo, x>0, this luck since, as explained in Sec. IV A, almost all the
v(x)= (A1)  solutions agree outside the horizon up to exponentially small
kX+vg, X=<0, terms)

Unfortunately, because the exact solution is rather un-
wherev, and « are negative and positive constants, respecwieldy, we have so far not been able to do anything with it
tively. Considering first Eq.(17), with linear velocity except to use it as a check on our numerical solutions. This
v(Xx)=(xx+vy) for all x, we Fourier transform and get a we did by comparing the predicted particle creation at a
momentum space equation. By defining a new functiorgiven frequency using the exact solution to that obtained
(k) via f(k)=k 1 1e/xe"1o/kg(k) we find thatg(k)  using the numerically generated solution. We found the same
satisfies the simple looking equation results to the numerical accuracy of the latter solution, thus
{d?/dk?+[1— (k/Ko)%]/k?}g(k)=0. The general solution is confirming the accuracy of the finite differenced solution.
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