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Critical behavior near the singularity in a scalar field collapse
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The critical behavior of a field near the singularity in the spherical symmetric scalar field collapse is stu
We consider the supercritical case in which a black hole singularity is formed by the strong imploding s
field at some advanced timev. We find that the field evolution near the singularity can be divided into th
following two stages. The spacetime structure near the onset of the first singularity is shown to be
approximated by a self-similar solution. In this self-similar stage the horizon mass linearly increases wiv.
After the self-similar stage ends, the logarithmic behavior becomes remarkable and the system evolves
the Schwarzschild spacetime with the advanced time. According to this evolution, the strength of the curv
singularity decreases asI.x22( f12)/(11 f ), wherex is the circumference radius andf runs from 0 to 1 with the
advanced timev. In the final stage of gravitational collapse (v→`), the scalar field dies away as
exp(2kv) inside the apparent horizon and the system smoothly approaches the static Schwarzschild
time. We find that the power-law behavior of the black hole mass is crucially related to the logarith
behavior of the field. We also propose our main idea that the critical exponentb of the mass power law is a
decreasing function ofv, which is due to the area law of the apparent horizon.@S0556-2821~96!01814-0#

PACS number~s!: 04.70.Bw, 04.40.Nr
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I. INTRODUCTION

Recently, critical behavior has been shown to occur ne
the zero mass black hole formation in gravitational collaps
of various massless fields. The known examples are spher
symmetric scalar waves@1–3#, axisymmetric gravitational
waves@4#, and radiation fluids@5,6#. These systems have a
field strength parameterp.M0 /L0 whereM0 andL0 are the
mass-energy of initial wave packet and the width of matt
fields, respectively. The final states of these collapses
characterized by a critical parameter valuep* : Only strong
fields (p.p* ) can form a black hole. Near the critical limi
p→p* , these systems exhibit critical phenomena that a
characterized by a universal power-law behavior and a sc
ing relation. The black hole massm0 serves as an order
parameter with the power-law dependence such
m0.up2p* ub. The critical exponentb is universal in the
sense of being independent of the details of the initial data
gravitational collapses. A scaling relation is also observ
near the critical point. For example, the scalar field appro
mately satisfies a discrete scaling relationZ(r2D,t2D)
.Z(r,t), whereZ is the derivative of the scalar field and
D.3.4 is a universal constant such as the critical expon
b. r andt are logarithmic scales of the proper radiusr and
of the proper time of a central observerT: r5 lnr and
t5 ln(T*2T). The timeT* is a finite accumulation time of
the scaling relation. The similar critical behavior of blac
hole formation has been also found in a complex scalar fi
collapse@7# and in a radiation fluid plus shell system@8#.

These critical phenomena are important issues in gene
relativity, because one is able to create a black hole of ar
trarily small mass by tuning the parameterp to the critical
valuep* @9#. This means that arbitrarily high spacetime cu
vature can develop from regular Cauchy data. Then,
threshold for black hole formation is an interesting subject
the context of cosmic censorship hypotheses. Furthermore
an observer could treat a controllable source of gravitatio
54/96/54~2!/1540~8!/$10.00
ar
es
ical

er
are

t
re
al-

as

in
ed
xi-

ent

k
eld

ral
bi-

r-
the
in
, if
nal

wave, he would be able to produce an arbitrarily small bla
hole and observe its Hawking radiation.

Though the numerical works have succeeded in poin
out such interesting features, any analytic approach to
critical phenomena will also be useful for understanding
essential dynamical processes. Several arguments have
given to explain this critical behavior, in particular, the val
of the critical exponent@6,10,11#. However, dynamical pro-
cesses in the critical phenomena are still unclear. For
ample, the numerical works show that the self-similar evo
tion ~the scaling relation! near the regular center and th
critical exponentb are ‘‘universal,’’ but the relation betwee
both universality is not clarified by recent work. The analy
cal works @6,10# claim that the latter should be due to th
process which induces the breakdown of the self-similar
In fact, the numerical calculations based on the spacelike@1#
and null @2# foliations of the spacetime give the same res
such thatb.0.37, which means the critical exponent for
final black hole mass. We must consider the field evolut
toward the final stage near the apparent horizon which
contain some universality, to assure the universal for univ
sality of b. The analysis near the singular center is ve
helpful for understanding the nonself-similar evolution, b
cause the apparent horizon is very close to the singularit
the critical limit. The field behavior near the singularity
also an important subject in the study of the gravitatio
collapse. For example, the field behavior at the pointA
drawn in Fig. 1 is relevant to the problem that the singula
is naked or not@12,13#. Further, the singularity structure ca
clearly show a dynamical aspect of the critical black hol
In this paper we limit our consideration to the scalar fie
collapse. Our main purpose is to clarify the critical behav
of the field evolution near the singularity and make an
tempt to understand some new universality in the criti
process.

The organization of this paper is as follows. In Sec. II
discuss the behavior of the field near the singularity and
1540 © 1996 The American Physical Society
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54 1541CRITICAL BEHAVIOR NEAR THE SINGULARITY IN A . . .
rive the evolution equations by reducing the Einstein equ
tions. ~Note that the black hole singularity is spacelike
Hence, we consider the evolution measured in an advan
time v.) To analyze the singularity structure, we can intro
duce the notion of a scalar charge which is related to t
strength of the Riemann curvature. The strong field behav
in the critical limit is discussed in Sec. III. The field equa
tions become simple by virtue of the critical limit. The fiel
evolution can be divided into the following two stages. In th
first stage, the system is assumed to exhibit the self-sim
property and the apparent horizon mass linearly increa
with the advanced timev. In the second stage, a logarithmi
behavior appears as a result of the breakdown of the s
similarity, which makes the system approach the Schwar
child spacetime. In Sec. IV, we discuss the final stage
gravitational collapse (v→`). The scalar field falls off at the
stage, and the system is shown to smoothly approach
Schwarzschild spacetime. Since the local mass and
strength of singularity are closely related to each other,
can find that the strong field behavior is directly related to
power-law behavior of the black hole mass. In Sec. V w
propose the idea that the critical exponent is a decreas
function of the advanced timev. This dependence of the
critical exponent is due to the increasing area of the appar
horizon. The final section is devoted to a summary of o
result. In this paper we useG5c51 unit.

II. APPROXIMATION NEAR THE SINGULARITY

To discuss the strong field evolution near the singulari
we use the single-null time coordinate system

ds25F~v,r !dv212dvdr1x~v,r !dV2, ~2.1!

wherev is an advanced time,r is an affine parameter, and
we setr to be zero atx50. Since we analyze the inside o
the apparent horizon, the componentgvv5F is chosen to be
positive. A singularity at the center of symmetry begins
the pointA in Fig. 1, and we setv5r50 at this point. Since

FIG. 1. Schematic process of the spherical gravitational collap
of a scalar field. A singularity at the center of symmetry begins
A ~where we setv5r50). The apparent horizon is schematicall
shown.
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we setr50 atx50, we assume that near the singular center
~i.e., regions I, II, and III in Fig. 2! the leading term ofx
have the form

x.x0~v !r 11 f , ~2.2!

wherex0 and f are functions ofv and the exponentf should
be restricted to the rangef.21 to require that
x(r50)50. We use this approximation only in thev.0
region.

From theGuu component of the Einstein equation, the
metricF can be determined byx as

x8F52ẋ22r1h~v !, ~2.3!

where the prime and overdot denote derivatives with respec
to r and v, respectively, andh(v) is arbitrary function of
v. The functionh(v) is related to the apparent horizon. The
apparent horizon is a surface where the light waves are mo
mentarily ‘‘frozen’’ @14#, and it is given by the equation

gmnxmxn5x8~2ẋ2Fx8!5x8$2r2h%50. ~2.4!

Hence, the apparent horizon is located atr5h(v)/2[r h .
Thereforeh plays an important role in the supercritical case.
SincehÞ0, from Eqs.~2.2! and ~2.3!, we find

F.
h

~11 f !x0
r2 f . ~2.5!

The exponentf determines the divergence of the curva-
ture singularity, because the curvature invariant
I5RabgdRabgd behaves asI.r2422 f.x22(21 f )/(11 f ) near

se
at
y

FIG. 2. Penrose diagram for black hole formation due to a
wave-packet collapse. A singularity at the center of symmetry be-
gins atA in advanced timev. Region I exhibits the self-similar
evolution, while in region II the spacetime structure changes from
the self-similar type to the Schwarzschild one. An asymptotically
Schwarzschild geometry appears in the region III.
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the singular center. For example, for the Schwarzsch
spacetime, we obtainf51 and I.x23, and for the Robert
self-similar solution@15#, we obtainf50 andI.x24.

When we assume Eq.~2.2!, we obtain a scalar fieldc as
~see appendix!

c.
1

2
A12 f 2lnr1O~1!. ~2.6!

From Eqs.~2.2! and ~2.6! we find that f is restricted by
21, f<1. Note that the scalar field is proportional t
A12 f 2, so we can interpret the quantityA12 f 2 to be a
scalar charge. This interpretation gives an important prop
of f . Since the singularity is formed by a strong implodin
scalar field,fÞ1 at the pointA in Fig. 1. However, after the
first singular pointA, the system must relax to the Schwarz
child spacetime and then the scalar field falls off withv.
Hence, f→1 in the limit v→`, as a function ofv, i.e., f
changes during the gravitational collapse in the region II~see
Fig. 2!. It follows that the divergence of the curvature sing
larity also changes withv as I.x22(21 f )/(11 f ). Thus, the
function f plays an important role in the strong filed evolu
tion near the singularity.

One of the interesting questions is whether the value
f at the pointA is unique or not in the critical limit. Recen
numerical calculations suggest that the initial value off is
also universal in the critical limit. The behavior of the sca
curvatureR is given byR.(T*2T)22 at the center, where
T is a central proper time andT* is a finite accumulation
time of the scaling relation@3#. Because the accumulatio
number of echoes becomes infinite in the critical lim
(T→T* ) @16#, the scalar curvatureR diverges such as
R.(T*2T)22 at the first singular point. This proper tim
dependence of the scalar curvature has the same form
the Roberts solution which is given by

ds25~p21!dV212dVdR1R~pV1R!dV2, ~2.7!

wherep is a constant. From the line element~2.7!, we find
the scalar curvature to beR5R0(j)/V

2, wherej5R/V is
self-similar variable andV is proportional to the centra
proper timeT*2T. Since the center is given by a line o
j5const, the Roberts solution givesR.(T2T* )22. This
suggests that the spacetime near the pointA can be well
approximated by the self-similar solution. Another justific
tion of the self-similarity at the first singular point is as fo
lows: We can express a function which exhibits the kno
discrete scaling relation by the formZ(t,r)5X(t2r)
1Y(t2r)exp(i2pr/n) with logarithmic scaler of r . The
second term representing the discrete scaling rapidly os
lates in with the variabler near the first singular pointA
(uru→` at r→0). Then, the mean value of the second te
vanishes. Therefore, the scalar field approximately satisfi
continuous scaling relation at the pointA. If we assume the
continuous self-similar Roberts solution near the pointA in
the critical limit, we can set the initial value to bef50.

To analyze the field evolution~in term of the advanced
time! near the singularity, let us extend Eqs.~2.2! and ~2.5!
to the terms of higher orders. When we assume the Eq.~2.2!,
we obtain higher correction terms as~see appendix!
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x.A0~2h!2S r

2h D 11 f H 12~12 f !S r

2h D2
f

2
~12 f !S r

2h D 2
1•••1a1S r

2h D 11 f

lnkr1a2ln2khS r

2h D 11 f

1•••J ,
~2.8!

F.A0
21S r

2h D 2 f H 12 f S r

2h D2
f

2
~12 f !S r

2h D 21•••

12~11 f !a1S r

2h D 11 f

lnkr1b2ln2khS r

2h D 11 f

1•••J ,
~2.9!

whereh[h/2(11 f ) ~which has dimension of length! and
A0[x0(2h) f21, a1 , a2 , b2 ~are dimensionless! are func-
tions ofv andk is a constant which is determined by a scal
L0 of the initial data. The final black hole massm0 is as-
sumed to bem0,(2k)21 in the critical limit.

For f51, we obtainx.A0r
2 andF.2h/A0r . To obtain

the Schwarzschild metric at the final stage,A0 should be
equal to unity atf51 andh gives a final black hole mass
m0 . Therefore, we can interpreth as a mass function, and
the limit h→0 corresponds to the critical limit. Note that the
mass scale is given byh only, andA0 is chosen to be of
order of unity@A0;O„(h)0…;O(1)#. Further,f is assumed
to change from 0 to 1 as a function of order of unity. Thes
choices of orders are important when we analyze the critic
limit h→0.

According to the expansions~2.8! and ~2.9!, the Einstein
equations give the equations~see the derivation given in the
appendix!

~2h!A0 ḟ5~11 f !~21 f !a1 , ~2.10!

4hȦ024hA0 ḟ ln2kh14A0~12 f !ḣ

5a11~11 f !~2a21b2!ln2kh, ~2.11!

2hA0 ḟ ln2kh14A0f ḣ52~415 f12 f 2!a11~11 f !

3~ f a22b2!ln2kh, ~2.12!

and the scalar filedc is given by

c56
1

2
A12 f 2H lnkr1c0~v !1

r

2h
1O~r 11 f lnr !J .

~2.13!

Here, the overdot denotes the derivative with respect tov.
The evolution equation forc0 in Eq. ~2.13! has a very com-
plicated form. Because it has no relevance to the leadi
behavior of the system, we do not write it here. In the nex
section we will discuss the solution of these equations in th
critical limit h→0.

III. DYNAMICAL BEHAVIOR IN THE CRITICAL LIMIT

Since the critical limit is given by the conditionh→0 and
bothA0 and f are of order of unity, from Eq.~2.10! we find
a1 to be of order ofO(h). Therefore, we obtain the follow-
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ing simplified equations from Eqs.~2.10!–~2.12! in the criti-
cal limit:

~2h!A0 ḟ5~11 f !~21 f !a1 , ~3.1!

2A0ḣ5
1

2
~11 f !~21 f !~a11a2!ln2kh, ~3.2!

b252~11 f !~21 f !a12 f ~11 f !a2 . ~3.3!

For sufficiently smallf ( f.0), the above equations will ex
hibit the self-similar evolution, which is valid in the neigh
borhood of the first singular pointA ~i.e., the region I in Fig.
2!. In this region the horizon massMh increases in propor-
tion to v. Since f increases with the advanced timev, self-
similar approximation breaks down at some timev0 which
depends on the initial data. Then, the system begins
evolve toward the Schwarzschild spacetime with adva
time v in the region II drawn in Fig. 2. The strength of th
curvature singularity will change in this transition stage. B
fore discussing the transition stage, we give a brief comm
on the self-similar stage.

A. Self-similar stage

As mentioned in the previous section,f should vanish at
the pointA. To verify the approximate expansions~2.8! and
~2.9! near the self-similar region, we compare them with t
Roberts metric~2.7!. Then, under the conditionf.0, we
obtaina1.b2;O(h) and the relations

2h5A~p21!/A0pv, ~3.4!

a2ln2kh5p, ~3.5!

where the limitp→1 corresponds to the critical limit. We se
v50 at the first singular pointA. It is easy to confirm that
Eqs.~3.4! and ~3.5! can also satisfy the evolution equation
~3.1!–~3.3!. In this first stage of collapse, the apparent ho
zon has a simple structure. The apparent horizon is given
the equation

gmnxmxn5x8~2ẋ2Fx8!52x8$r2~11 f !h%50.
~3.6!

This means that the apparent horizon is located
r5(11 f )h→h. The local mass defined by

M5
1

2
Ax~12gmn]mAx]nAx!, ~3.7!

is estimated to be

Mh5
1

4
pAp21v, ~3.8!

at the apparent horizon@10#. Then the apparent horizon mas
Mh at this stage should beMh.(p21)1/2 in the critical limit
p→1. Since the numerical and analytical calculations ha
estimated the horizon mass at different regions, the disag
ment of the critical exponent is not surprising. The relati
between them will be seen in Sec. V.
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Since f increases with the advanced timev, self-similar
approximation breaks down at some timev0 . The break-
down of self-similarity is also necessary for producing a fi-
nite black hole mass, because the local mass at the appare
horizon linearly increases inv in this region. The time scale
v0 will correspond to the initial widthL0 of the wave packet,
because first strong imploding waves continue during this
time scale.

B. Transition stage

At the final stage of the evolution, the mass parameterh
must satisfy the conditionḣ.0 for a finite black hole mass,
because the horizon scale is given byh. Hence, from Eqs.
~3.2! and~3.3!, we require the relationa11a2;O(h) at the
final stage. This means that after breakdown of the self
similarity, a2 becomes of order ofO(h) which is the same
order witha1 . Recall that in the region I,a2 is of order of
1/ln2kh by virtue of Eq.~3.5!. In the transition stage~toward
the Schwarzschild spacetime!, we will find a dynamical evo-
lution different from the self-similar one. The field behavior
in the region II~see Fig. 2! is determined by the equation

2ḣ5~12g!h ḟ ln2kh, ~3.9!

which is derived from Eqs.~3.1! and~3.2! with the unknown
functiong(v) defined by the ratio ofa1 to a2 as

g52
a2
a1
. ~3.10!

We must require thatg→` in the self-similar region where
a1.h anda2.1/lnh. Further,g should also satisfy the con-
dition g51 at f51, because the spacetime approaches th
Schwarzschild one. Let us analyze the evolution of the ap
parent horizon in this region. Since the apparent horizon is
located atr5(11 f )h, and botha1 anda2 are of order of
h, the expansion~2.8! of x and the local mass~3.7! lead to

Mh.C~ f !h1O~h2!, ~3.11!

whereC( f ) is a function off and is of order of unity. From
Eq. ~3.11!, we obtain

Ṁh.Ċ~ f !h1C~ f !ḣ.C~ f !ḣ. ~3.12!

Here we used the fact thatḟ is of order of unity andḣ is of
order of h lnkh, @see Eq. ~3.9!#. The relation
Ṁh.h lnh.0 guarantees to keep the black hole mass finite

It is important to find the following relation betweenh
and f form ~3.9!:

2kh~v !5~2kh i !
b̄~v !, ~3.13!

where the critical exponentb̄ is given by

b̄ ~v !5expF12Ev0
v

~12g! ḟ dvG5expF12E0f ~v !

~12g!d fG ,
~3.14!

and

h i[h~v5v0!5 1
2Ap21/A0pv0 . ~3.15!
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If we obtain the dependence ofg on f , b̄ andh are given as
functions of f . We expect these functionsb̄( f ) andh( f ) to
be universal to obtain universal power law ofMh in the
critical limit. Although our local analysis cannot give th
explicit form ofg, we will roughly estimate Eq.~3.14! in the
following.

Since the area of apparent horizon should increase w
the advanced timev @17#, we find ḣ>0 from Eq. ~3.12!.
Furthermore,ḟ.0 because the spacetime should approa
the Schwarzschild spacetime during gravitational collap
Therefore, from Eq.~3.9! we find g>1 in the critical limit.
Hence,b̄ is restricted to the range 0,b̄<1.

We can now express the field quantities in terms off .
Near the singularity, the invariant curvatureI and the local
mass are given by

I.
1

64h4A0
2/~11 f !~11 f !2~312 f17 f 2!S x

4h2D 22~ f12!/~ f11!

,

~3.16!

M.
1

4
A0
1/~11 f !h~11 f !2S x

4h2D 2~12 f !/2~11 f !

. ~3.17!

Thus, the evolution of the scalar field~2.13!, the metric com-
ponents~2.8! and~2.9!, and the local mass~3.17! are mainly
determined by the single functionf . It seems that the field
evolution is universal in the meaning of the dependence
f . Another interesting result of our analysis is the power-la
behavior of the black hole mass. The local mass at the
parent horizon is given by

Mh.C~ f !h.~h i !
b̄. ~3.18!

The form of Eq.~3.18! claims that the power-law behavior o
the black hole mass is related to the strong field evoluti
near the singularity. This relation will be discussed in Sec.
Before discussing it, we will analyze the decay process in
static limit f→1.

IV. FINAL STAGE OF GRAVITATIONAL COLLAPSE

In this section we show that the strong fields near t
singularity smoothly relax to the perturbation of th
Schwarzschild background in the limitf→1. We start with
determining the form of the scalar field at the final stag
From Eq.~2.13!, we obtain the derivative with respect tov
of the scalar field as

ċ.
f ḟ

A12 f 2
lnkr . ~4.1!

In the final stage of the gravitational collapse,ċ must go to
zero asf approaches to unity. This means that atv→`, ḟ
behaves as

ḟ.~12 f !e, ~4.2!

wheree>1. From the Klein-Gordon equation forc, we find
that only the casee51 is allowed as a solution near the
origin. Thus, the scalar field has the form
e
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c5e2kvf~r !, ~4.3!

at the final stage. Here,k is a damping factor depending on
the final black hole andf(r ) is a function ofr . Note that the
v dependence~4.3! of the scalar field differs from the power-
law tail behavior which was given by Price@18#. The power-
law tail behavior is valid outside the horizon while our result
gives the behavior inside the horizon. The two results wil
not be applicable across. Therefore, to study the relation b
tween them, we need a careful discussion near the horizon

The Klein-Gordon equationc ;m
;m50 in the Schwarzs-

child background is given by

x~12x!f91~122x12lx2!f812lf50, ~4.4!

where l[2hk52m0k is a constant,x[r /2m0 , and the
prime denotes the derivative with respect tox. Near the ori-
gin (x;0), f can be expanded into

f5 (
n50

~anlnx1bn!x
n, ~4.5!

where the coefficientsan , bn are determined by the Klein-
Gordon equation as

a150, a252
1

2
la0 , . . . , ~4.6!

b15a0 , b25
1

2
~a02lb0!, . . . . ~4.7!

Equations~4.6! and~4.7! show that the expansion~2.13! can
smoothly match the expansion~4.5! in the limit f→1. To
determine the relation between the parameter$a0 , b0% and
$a1 , b2%, let us estimate the back reaction of the scalar per
turbation to the metric. We express the perturbation ofx as

Ax5r12m0d,

whered denotes a perturbation ofx from the background
proper radiusr . From the (r ,r ) component of the Einstein
equationRrr52(c r)

2, we obtain

d52e22kva0
2H c21xlnx1~12c1!x1x21

1

2
x3

1lF2
1

3
x3lnx1S 192

b0

3a0
D x3G J , ~4.8!

wherec1 and c2 are integral constants. On the other hand
using Eq.~2.8!, we can expressd in terms ofa1 anda2 as

d5
Ax2r

2m0
52

1

2
~12 f !H xlnx1x21

1

2
x3J 1

1

2
a1x

3lnkx

1
1

2
~a11a2!x

3ln2km0 , ~4.9!

in the limit f→1. The important point is that the perturbation
analysis gives the same result as the expansion near the s
gularity. From Eqs.~4.9! and ~4.8!, we find
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c151, c250, ~4.10!

a15
2

3
le22kva0

25
l

3
~12 f !, ~4.11!

~12g!ln2km052
1

3
1

b0

a0
. ~4.12!

@These results are also obtained from Eqs.~2.13!, ~4.5!, ~4.6!,
and~4.7!.# Sinceg→1 in this stage~see Sec. III!, we obtain
b05a0/3. The above analysis claims that the strong fiel
near the singularity smoothly decay to the Schwarzsch
spacetime at the final stage of gravitational collapse. N
that the analysis in this section is valid not only in the critic
limit but also in the noncritical case (p.p* ). In fact, we did
not use the limith→0 in this section. The advantage of th
critical limit is that we obtain the simple equation~3.9! to
give the solution~3.13!.

V. POWER-LAW BEHAVIOR OF BLACK HOLE MASS

An interesting application of the strong field behavio
near the singularity is to derive a power law of the black ho
mass. We now show that the critical exponentb is a decreas-
ing function ofv. From Eqs.~3.13!, ~3.15!, and ~3.11!, we
obtain the power-law behavior of the apparent horizon ma
as

Mh~v !.~p21!b~v !, ~5.1!

whereb(v) is given by

b~v !5
1

2
expF12Ev0

v
~12g! ḟ dvG5

1

2
expF12E0f ~v !

~12g!d fG .
~5.2!

Note that the detail ofC( f ) as a function off has no rel-
evance to the power-law behavior of horizon mass. Th
power-law behavior is crucially related to the evolution o
strong field near the singularity through the functiong( f ).
Especially, the logarithmic behavior of the field is found t
be important for producing the power law of black hol
mass.

The remarkable property of our results is a~advanced!
time dependence of the critical exponentb. As we have seen
in Sec. III, we obtaing>1. Then, Eq.~5.2! shows that the
critical exponentb is a decreasing function ofv. The de-
creasing property of the critical exponent is related to t
increasing area of the apparent horizon, because the co
tion g>1 is derived from the conditionṀh>0. The evolu-
tion of the critical exponent is completely due to the evol
tion of the apparent horizon. We can now understand
difference between numerical resultb.0.37@1# and analytic
resultb51/2 @10#. The latter is estimated in the self-simila
stage. The later evolution, i.e., evolution in the transitio
stage, is essential to obtain a smaller value ofb.

Before closing this section, let us estimate roughly t
critical exponentb. Sincea1 ,a2 , andb2 are related by the
simple equation~3.3!, we expect thata2 and a1 are also
related by a simple function off . Although our analysis
lacks the clincher to determine the critical exponent, we c
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assume a simple functiong which satisfies the condition
g→` at f50 andg51 at f51 ~see Sec. III!. For example,
the function g52313/Af22/(11 f ) leads to the result
b51/e, which is suggested in Ref.@1#

VI. SUMMARY

Let us summarize our results. In this paper we have an
lyzed the critical behavior of the strong field near singularity
in the critical black hole formation due to the scalar field
collapse. The strong field evolution near the singularity i
roughly divided into the two stages according to the value o
f . For sufficiently smallf ( f.0), the system exhibits the
self-similar evolution. This self-similar region appears in the
neighborhood of the first singular pointA ~region I in Fig. 2!.
In this region the horizon massMh increases in proportion to
v. Since f increases with the advanced timev, the self-
similar approximation breaks down at finite timev0 which
depends on initial data. After the self-similar stage ends, sy
tem evolves toward the Schwarzschild spacetime with th
advance timev ~in the region II drawn in Fig. 2!. In this
stage, the field behavior denoted by Eqs.~2.8!, ~2.9!, and
~2.6! is mainly determined by a single functionf . In this
meaning, the filed evolution near the singularity shows
universal feature. According to this evolution, the strength o
the curvature singularity decreases asI.(x/
h)22( f12)/(11 f ), wheref runs from 0 to 1 with the advanced
time v. This evolution of the singularity may be understood
in term of scalar chargeA12 f 2. During the gravitational
collapse, the scalar charge goes to zero (f→1). Then the
curvature strength decreases and the system relaxes to
Schwarzschild spacetime. In the final stage of gravitationa
collapse (v→`), scalar field dies away as exp(2kv) inside
the apparent horizon. The exponential falloff is due to th
logarithmic behavior lnr of the scalar field near the singular-
ity. The power-law behavior of the black hole mass is als
related to the strong field evolution. By virtue of the increas
ing property of the apparent horizon area, the critical expo
nentb becomes a decreasing function ofv. Equation~5.2!
suggests that the critical exponentb is crucially related to
the evolution of the scalar field in the neighborhood of the
origin. Numerical calculations have shown that theb is uni-
versal, which will mean that thef dependence ofg is also
universal. We expect that some universal evolution of th
strong field will continue after the self-similar stage near the
regular origin gives the universality of the critical exponent
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APPENDIX: DERIVATION OF EVOLUTION EQUATIONS

The purpose of this appendix is to derive the leading be
havior of the field. Now, Einstein-scalar equation
Gmn58pTmn is equivalent to
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Rmn52cmcn . ~A1!

For a line element of the form

ds25Fdv212dvdr1xdV2, ~A2!

the Einstein equation~A1! is written in the form

2
1

Ax
~Ax!95c82, ~A3!

2
2

Ax
~A
.
x!81

1

2x
~xF8!852c8ċ, ~A4!

2
2

Ax
~A
.
x! .1

F

2x
~xF8!82

1

2x
~ẋF82x8Ḟ !52ċ2,

~A5!

11
1

2
~x8F !82ẋ850, ~A6!

where prime and overdot denote derivatives with respec
r andv, respectively. From Eq.~A6!, we obtain

x8F52ẋ22r1h~v !. ~A7!

Since the local mass is given by

M5
Ax

2 H 12
x8

4x
~2ẋ2Fx8!J 5

Ax

2 H 12
x8

4x
~2r2h!J ,

~A8!

the apparent horizon is located atr5h(v)/2[r h , and then
the horizon mass is given by

Mh5
1

2
Axh. ~A9!

Therefore,h plays an important role in supercritical cas
Sinceh(v)Þ0, from Eqs.~2.2! and~A7!, we findF.r2 f for
singular center.

Let us determine the field behavior near the origin. Sin
x behaves such as Eq.~2.2!, from Eq. ~A3! we find

c.
1

2
A12 f 2lnkr , ~A10!

wherek is a constant.
Next, let us consider the Klein-Gordon equation whi

has the form

~xc8! .1~xċ!82~xFc8!850. ~A11!

Since (xċ)8 and (xc8) . behave as

~xc8! ..
A

2
A12 f 2 ḟ r f lnkr , ~A12!
t to

e.

ce

ch

~xċ!8.2
A

2A12 f 2
~11 f ! f ḟ r f lnkr , ~A13!

for ḟÞ0 the termxF must have logarithmic term as

xF.O~r 21 f lnkr !1ABr1•••. ~A14!

For this reason, the higher correction terms ofx andF are
given by

x5A~v !r 11 f1C~v !r 21 f1E~v !r 212 f lnkr , ~A15!

F5B~v !r2 f1D~v !r 12 f1G~v !r lnkr , ~A16!

and from Eqs.~A5! and ~A7!, we obtain

AD52 f , ~A17!

BC5 f21. ~A18!

AG52~11 f !BE, ~A19!

ḟ5~11 f !~21 f !
BE

A
. ~A20!

Therefore, from Eqs.~A17!, ~A18! and ~A19!, we obtain

x5A0~2h!2S r

2h D 11 f H 12~12 f !
r

2h

1a1S r

2h D 11 f

lnr /2h . . . J , ~A21!

F5A0
21S r

2h D 2 f H 12 f
r

2h

12~11 f !a1S r

2h D 11 f

lnr /2h . . . J , ~A22!

where 2h5AB ~which has dimension of length!,
A05A(2h) f21 ~which is dimensionless!, and a15E/A.
From Eqs.~A7!, ~A21!, and ~A22! we find h52(11 f )h.
Thus, the apparent horizon is located atr5(11 f )h5r h .
For f51, we obtainx.A0r

2 and F.2h/A0r . Hence, at
f51, A051 andh gives a final black hole massm0 . There-
fore, we can interpreth as a mass function and the limit
h→0 corresponds to the critical limit. Note that because th
mass scale is given byh, A0 remains to be of order of unity.
This is a reason why we introduce the functionsA0 andh
into Eqs.~A21! and ~A22!.

To obtain the equation for the mass functionh, we need
the higher correction terms of metric. Since the form of Eq
~A21! suggests that x can be expanded into
x.A0(2h)2(r /2h)11 f$(anr

n1r f11((mmlnr1nm)r
m%, we

obtain Eqs.~2.10!–~2.12!.
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