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Critical behavior near the singularity in a scalar field collapse
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The critical behavior of a field near the singularity in the spherical symmetric scalar field collapse is studied.
We consider the supercritical case in which a black hole singularity is formed by the strong imploding scalar
field at some advanced time We find that the field evolution near the singularity can be divided into the
following two stages. The spacetime structure near the onset of the first singularity is shown to be well
approximated by a self-similar solution. In this self-similar stage the horizon mass linearly increases with
After the self-similar stage ends, the logarithmic behavior becomes remarkable and the system evolves toward
the Schwarzschild spacetime with the advanced time. According to this evolution, the strength of the curvature
singularity decreases &s-y ~2(1*2/(1+1 'wherey is the circumference radius afiduns from 0 to 1 with the
advanced timev. In the final stage of gravitational collapse (=), the scalar field dies away as
exp(—kv) inside the apparent horizon and the system smoothly approaches the static Schwarzschild space-
time. We find that the power-law behavior of the black hole mass is crucially related to the logarithmic
behavior of the field. We also propose our main idea that the critical expghehthe mass power law is a
decreasing function af, which is due to the area law of the apparent horiZ&2556-282(196)01814-(

PACS numbd(s): 04.70.Bw, 04.40.Nr

[. INTRODUCTION wave, he would be able to produce an arbitrarily small black
hole and observe its Hawking radiation.

Recently, critical behavior has been shown to occur near Though the numerical works have succeeded in pointing
the zero mass black hole formation in gravitational collapsesut such interesting features, any analytic approach to the
of various massless fields. The known examples are sphericatitical phenomena will also be useful for understanding its
symmetric scalar wavefl-3], axisymmetric gravitational essential dynamical processes. Several arguments have been
waves[4], and radiation fluid$5,6]. These systems have a given to explain this critical behavior, in particular, the value
field strength parametgr=M,/L, whereM, andL, are the  of the critical exponenf6,10,11. However, dynamical pro-
mass-energy of initial wave packet and the width of mattercesses in the critical phenomena are still unclear. For ex-
fields, respectively. The final states of these collapses argmple, the numerical works show that the self-similar evolu-
characterized by a critical parameter vafie: Only strong  tion (the scaling relationnear the regular center and the
fields (p>p*) can form a black hole. Near the critical limit critical exponeni3 are ““universal,” but the relation between
p—p*, these systems exhibit critical phenomena that argoth universality is not clarified by recent work. The analyti-
characterized by a universal power-law behavior and a scaktal works[6,10] claim that the latter should be due to the
ing relation. The black hole mass, serves as an order process which induces the breakdown of the self-similarity.
parameter with the power-law dependence such a# fact, the numerical calculations based on the spacglike
mo==|p—p*|#. The critical exponeng is universal in the and null[2] foliations of the spacetime give the same result
sense of being independent of the details of the initial data isuch that3=0.37, which means the critical exponent for a
gravitational collapses. A scaling relation is also observedinal black hole mass. We must consider the field evolution
near the critical point. For example, the scalar field approxitoward the final stage near the apparent horizon which will
mately satisfies a discrete scaling relatidfp—A,7—A) contain some universality, to assure the universal for univer-
=Z(p,7), whereZ is the derivative of the scalar field and sality of 8. The analysis near the singular center is very
A=3.4 is a universal constant such as the critical exponerttelpful for understanding the nonself-similar evolution, be-
B. p and 7 are logarithmic scales of the proper radiuand  cause the apparent horizon is very close to the singularity in
of the proper time of a central observ@r p=Inr and the critical limit. The field behavior near the singularity is
7=In(T*—T). The timeT* is a finite accumulation time of also an important subject in the study of the gravitational
the scaling relation. The similar critical behavior of black collapse. For example, the field behavior at the pdint
hole formation has been also found in a complex scalar fieldirawn in Fig. 1 is relevant to the problem that the singularity
collapse[7] and in a radiation fluid plus shell systdi. is naked or nof12,13. Further, the singularity structure can

These critical phenomena are important issues in generalearly show a dynamical aspect of the critical black holes.
relativity, because one is able to create a black hole of arbiln this paper we limit our consideration to the scalar field
trarily small mass by tuning the parameteito the critical  collapse. Our main purpose is to clarify the critical behavior
valuep* [9]. This means that arbitrarily high spacetime cur-of the field evolution near the singularity and make an at-
vature can develop from regular Cauchy data. Then, théempt to understand some new universality in the critical
threshold for black hole formation is an interesting subject inprocess.
the context of cosmic censorship hypotheses. Furthermore, if The organization of this paper is as follows. In Sec. Il we
an observer could treat a controllable source of gravitationadliscuss the behavior of the field near the singularity and de-
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FIG. 1. Schematic process of the spherical gravitational collapse

of a scalar field. A singularity at the center of symmetry begins at
A (where we seb=r=0). The apparent horizon is schematically 1
shown.

] ] ] ) i ) FIG. 2. Penrose diagram for black hole formation due to a

rive the evolution equations by reducing the Einstein equagyayve-packet collapse. A singularity at the center of symmetry be-

tions. (Note that the black hole singularity is spacelike. gins atA in advanced times. Region | exhibits the self-similar

Hence, we consider the evolution measured in an advancesolution, while in region Il the spacetime structure changes from

time v.) To analyze the singularity structure, we can intro-the self-similar type to the Schwarzschild one. An asymptotically

duce the notion of a scalar charge which is related to th&chwarzschild geometry appears in the region lIl.

strength of the Riemann curvature. The strong field behavior

in the critical limit is discussed in Sec. Ill. The field equa- we setr =0 at y= 0, we assume that near the singular center

tions become simple by virtue of the critical limit. The field (i.e., regions I, Il, and lll in Fig. 2the leading term ofy

evolution can be divided into the following two stages. In thehave the form

first stage, the system is assumed to exhibit the self-similar

property and the apparent horizon mass linearly increases X=xo(v)r**", (2.2

with the advanced time. In the second stage, a logarithmic )

behavior appears as a result of the breakdown of the seli¥herexo andf are functions ot and the exponerft should

similarity, which makes the system approach the Schwarzd€ restricted to the rangef>—1 to require that

child spacetime. In Sec. IV, we discuss the final stage of(r=0)=0. We use this approximation only in the>0

gravitational collapseu(— ). The scalar field falls off at the r€gion. . _ _

stage, and the system is shown to smoothly approach the From theG,, component of the Einstein equation, the

Schwarzschild spacetime. Since the local mass and th@etricF can be determined by as

strength of singularity are closely related to each other, we

can find that the strong field behavior is directly related to a

power-law behavior of the black hole mass. In Sec. V we : I :
. o . . “where the prime and overdot denote derivatives with respect

propose the idea that the critical exponent is a decreasml% r andv, respectively, and(v) is arbitrary function of

function of the advanced time. This dependence of the v, [ESDECUVELY, v Y ;

o . . . . The functionh(v) is related to the apparent horizon. The
critical exponent is due to the increasing area of the apparer‘ft

horizon. The final section is devoted to a summary of ouPPparent horizon is a surface where the light waves are mo-

result. In this paper we usB=c=1 unit. mentarily “frozen” [14], and it is given by the equation
9“"xuXv=Xx'(2x—Fx")=x'{2r—h}=0. (2.4

Hence, the apparent horizon is locatedrath(v)/2=r,,.
Thereforeh plays an important role in the supercritical case.
Sinceh#0, from Egs.(2.2) and(2.3), we find

X'F=2x—2r+h(v), 2.3

II. APPROXIMATION NEAR THE SINGULARITY

To discuss the strong field evolution near the singularity
we use the single-null time coordinate system

ds?=F(v,r)dv2+2dvdr+ x(v,r)dQ?, (2.1

h
~ —f
wherev is an advanced time, is an affine parameter, and F= (1+f))(0r ' @9
we setr to be zero afy=0. Since we analyze the inside of
the apparent horizon, the componep;=F is chosen to be The exponenf determines the divergence of the curva-

positive. A singularity at the center of symmetry begins atture  singularity, because the curvature invariant
the pointA in Fig. 1, and we set =r=0 at this point. Since 1 =R**7°R,;. 5 behaves ag=r 421~y ~2@*D/1+1 negr
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the singular center. For example, for the Schwarzschild

1+f
r
spacetime, we obtaifi=1 andl=y "3, and for the Robert Xon(Zﬁ)z(ﬂ)
self-similar solution15], we obtainf=0 andl=y 4.

r f r\?
110 ] 3001 5

When we assume E@2.2), we obtain a scalar fielgh as ro\tef ro\tf
(see appendix +---ta; 27 Inkr+a,Iin2kn 27 +---0,
1 (2.9
= E\/l—lenr+0(1). (2.6) L f ,
r r r
~A-Ll —fl — = =(1— — ...
| — F=fo (277) [1 f(277) 2 f)(277 ’
From Egs.(2.2 and (2.6) we find thatf is restricted by
—1<f<1. Note that the scalar field is proportional to ro\ttf ro\tf
J1—f2, so we can interpret the quantityl—f? to be a +2(1+Hay 27 Inkr +b,In2x 7 27 T
scalar charge. This interpretation gives an important property 2.9

of f. Since the singularity is formed by a strong imploding
scalar field,f#1 at the pointA in Fig. 1. However, after the
first singular pointA, the system must relax to the Schwarzs-
child spacetime and then the scalar field falls off with
Hence,f—1 in the limitv—%, as a function ob, i.e., f
changes during the gravitational collapse in the regiqsde
Fig. 2). It follows that the divergence of the curvature singu-
larity also changes witly as | =) 2@+*D/A+D Thys, the
function f plays an important role in the strong filed evolu-
tion near the singularity.

where »=h/2(1+f) (which has dimension of lengtrand
Ao=x0(27)'" %, a;, a,, b, (are dimensionlessare func-
tions ofv and« is a constant which is determined by a scale
Lo of the initial data. The final black hole masg, is as-
sumed to bamy<(2«) ! in the critical limit.

For f=1, we obtainy=Aqr? andF=27/A,r. To obtain
the Schwarzschild metric at the final stagg, should be
equal to unity atf=1 and » gives a final black hole mass
. . . . o. Therefore, we can interprej as a mass function, and
¢ a(t)'?hee c;(otiﬂetAl?steJﬁ?C]thego?ur?cft“%n;elzsc\pi/tri]c?etlﬁ:nti?el?\ggr?t Othe limit 77—>C_) co_rresponds to the criticgl limit. Note that the

' mass scale is given by only, andA, is chosen to be of

nlumenqal Calf.”'?ﬂons.t‘?‘u%g’lgsatr_}?‘t tger:nlt!al V?Ittr’]ef as | order of unity[Ay~O((7)%)~0(1)]. Further,f is assumed
aiso universat in the criica’ imit. “he behavior of the scalary, change from 0 to 1 as a function of order of unity. These

: : —_~ * -2
cu_rvatureR IS given by7_2—(T *T.) a.t t.he center, wh_ere choices of orders are important when we analyze the critical
T is a central proper time an@* is a finite accumulation limit 7—0

time of the scaling relatiofi3]. Because the accumulation According to the expansion@.8) and(2.9), the Einstein

number of echoes becomes infinite in the critical limit ; : . N : i
. t th t the d t th
(T—T*) [16], the scalar curvaturéR diverges such as Zg:;g&s give the equatiorsee the derivation given in the

R=(T*—T) ? at the first singular point. This proper time
dependence of the scalar curvature has the same form with (277)Aof=(1+f)(2+f)a (2.10
the Roberts solution which is given by 1
AnAg—47AofIN2k p+4A)(1—f) 7

=a;+(1+f)(2a,+by)IN2k 7, (2.1)

ds’=(p—1)dV?+2dVdR+R(pV+R)dQ?, (2.7

wherep is a constant. From the line eleme@t?), we find . ) )

the scalar curvature to bR="TRy(£)/V?, whereé=R/V is 2nAofIN2kn+4Af n=—(4+5f+2f%a; +(1+f)
self-similar variable andv is proportional to the central _

proper timeT* —T. Since the center is given by a line of X (faz=by)In2«ca, (212
£=const, the Roberts solution givés=(T—T*) 2. This and the scalar fileds is given by
suggests that the spacetime near the pdintan be well

approximated by the self-similar solution. Another justifica- 1 r .
tion of the self-similarity at the first singular point is as fol- = *3 1— 12 Inkr + ¢ro(v) + 2—+O(r1+ Inr) ;.
lows: We can express a function which exhibits the known K (2.13

discrete scaling relation by the forrd(r,p)=X(7—p)

+Y(7—p)exp(2mp/A) with logarithmic scalep of r. The  Here, the overdot denotes the derivative with respeat.to
second term representing the discrete scaling rapidly osciffhe evolution equation fog, in Eq. (2.13 has a very com-
lates in with the variable near the first singular poifh  plicated form. Because it has no relevance to the leading
(|p|— atr—0). Then, the mean value of the second termpehavior of the system, we do not write it here. In the next
vanishes. Therefore, the scalar field approximately satisfies gection we will discuss the solution of these equations in the
continuous scaling relation at the poift If we assume the critical limit 7—0.

continuous self-similar Roberts solution near the péinn

the critical limit, we can set the initial value to be=0. 1. DYNAMICAL BEHAVIOR IN THE CRITICAL LIMIT
To analyze the field evolutiofin term of the advanced
time) near the singularity, let us extend E¢2.2) and (2.5 Since the critical limit is given by the conditiom— 0 and

to the terms of higher orders. When we assume thgZ8),  both Ay andf are of order of unity, from Eq2.10 we find
we obtain higher correction terms &see appendix a, to be of order ofO(%). Therefore, we obtain the follow-
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ing simplified equations from Eq§2.10—(2.12 in the criti- Sincef increases with the advanced time self-similar
cal limit: approximation breaks down at some tirng. The break-
. down of self-similarity is also necessary for producing a fi-
(2n)Agf=(1+1)(2+f)ay, (38.)  nite black hole mass, because the local mass at the apparent

horizon linearly increases i in this region. The time scale
vo Will correspond to the initial width. o of the wave packet,
because first strong imploding waves continue during this
time scale.

1
2A07=5(1+D(2+D(arta)n2kn, (3.2

b,=—(1+f)(2+f)a;—f(1+f)a,. (3.3
B. Transition stage

For sufficiently smalff (f=0), the above equations will ex-
hibit the self-similar evolution, which is valid in the neigh-
borhood of the first singular poi (i.e., the region | in Fig.
2). In this region the horizon madd, increases in propor-
tion towv. Sincef increases with the advanced time self-
similar approximation breaks down at some timgwhich
depends on the initial data. Then, the system begins t
evolve toward the Schwarzschild spacetime with advanc
time v in the region Il drawn in Fig. 2. The strength of the
curvature singularity will change in this transition stage. Be
fore discussing the transition stage, we give a brief comme
on the self-similar stage.

At the final stage of the evolution, the mass parameter
must satisfy the conditiom=0 for a finite black hole mass,
because the horizon scale is given hy Hence, from Egs.
(3.2 and(3.3), we require the relation; +a,~0O(7) at the
final stage. This means that after breakdown of the self-
gimilarity, a, becomes of order o®(#%) which is the same

rder witha,. Recall that in the region I, is of order of
/In2« 7 by virtue of Eq.(3.5). In the transition stagé&oward
_the Schwarzschild spacetipmeve will find a dynamical evo-
Aytion different from the self-similar one. The field behavior
in the region ll(see Fig. 2is determined by the equation

27=(1—y)nfin2k7, (3.9
A. Self-similar stage

which is derived from Egqg.3.1) and(3.2) with the unknown

As mentioned in the previous sectiohshould vanish at . . .
b > function y(v) defined by the ratio o, to a, as

the pointA. To verify the approximate expansiof%&8) and
(2.9 near the self-similar region, we compare them with the

a
Roberts metric(2.7). Then, under the conditiofi=0, we y=——2. (3.10
obtaina;=b,~O(#%) and the relations a
N e We must require thagy— o0 in the self-similar region where
2n=N(p=1)/Acpv, (3.4 a,= n anda,=1/Iny. Further,y should also satisfy the con-
a,n2xkp=p, 3.5 dition y=1 atf=1, because the spacetime approaches the

Schwarzschild one. Let us analyze the evolution of the ap-

where the limitp— 1 corresponds to the critical limit. We set parent horizon in this region. Since the apparent horizon is
v=0 at the first singular poinA. It is easy to confirm that located atr=(1+1)#, and botha, anda, are of order of

Egs.(3.4) and(3.5) can also satisfy the evolution equations 7+ the expansiori2.8) of x and the local mase3.7) lead to

(3.D)—(3.3. In this first stage of collapse, the apparent hori- Mo=C(f)n+O( n? 31
zon has a simple structure. The apparent horizon is given by n=C(H 7+ 00", (3.19
the equation whereC(f) is a function off and is of order of unity. From
LA , ) Eq. (3.11), we obtain
9" XuXv=x'(2x—Fx")=2x'{r = (1+f) 5}=0. o
(3.6 Mp=C(f)n+C(f) p=C(f) 7. (3.12
This means that the apparent horizon is located afjere we used the fact thétis of order of unity andy is of
r=(1+f)7—#. The local mass defined by order of plnky, [see Eq. (3.9]. The relation
1 M= 7lnnp=0 guarantees to keep the black hole mass finite.
M= 5\/;(1_9MV3M\/;(9V\/;)' (3.7 It is important to find the following relation between
andf form (3.9):
is estimated to be 2K77(U):(2K77i)av), (3.13
MhI%p\/mv. (3.9 where the critical exponerﬁis given by

_ 1 (v . 1 (f(v)
at the apparent horizdii0]. Then the apparent horizon mass ﬁ(v):eXF{EJ (I-yfdv :eXF{EL (1-y)df
M, at this stage should B = (p—1)"2in the critical limit ’0 (3.14
p—1. Since the numerical and analytical calculations have ’
estimated the horizon mass at different regions, the disagreand
ment of the critical exponent is not surprising. The relation
between them will be seen in Sec. V. ni=n(v=vg)=3Vp— LAypv,. (3.15
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If we obtain the dependence gfon f, 8 and 5 are given as =" ep(r), 4.3
functions off. We expect these function®(f) and »(f) to
be universal to obtain universal power law bf, in the at the final stage. Herd is a damping factor depending on
critical limit. Although our local analysis cannot give the the final black hole ane(r) is a function ofr. Note that the
explicit form of y, we will roughly estimate Eq(3.14 inthe v dependencéd.3) of the scalar field differs from the power-
following. law tail behavior which was given by Pri¢28]. The power-
Since the area of apparent horizon should increase witlaw tail behavior is valid outside the horizon while our result
the advanced time [17], we find =0 from Eg. (3.12. gives the behavior inside the horizon. The two results will
Furthermore,f>0 because the spacetime should approaciot be applicable across. Therefore, to study the relation be-
the Schwarzschild spacetime during gravitational collapseWeen them, we need a careful discussion near the horizon.

Therefore, from Eq(3.9 we find y=1 in the critical limit. The Klein-Gordon equationy'*,,=0 in the Schwarzs-
Hence,B is restricted to the range<08<1. child background is given by
We can now express the field quantities in termsf of X(1—X) "+ (1= 2x+2\x2) ' + 2\ =0,  (4.4)

Near the singularity, the invariant curvatureand the local

mass are given by where A=27k=2mgk is a constantx=r/2m,, and the

1 —2(f+2)I(f+1) prime denotes the derivative with respecixtoNear the ori-
|~ _4Ag/<1+f>(1+f)2(3+2f+7f2)(LZ _ gin (x~0), ¢ can be expanded into
647 4n
(3.16
$= 2 (annx+By)x", (4.5
1 - ¥ —(1-f)/2(1+1) n=0
M==AY p1+1)2 ) 3.1
470 g ) W (317 where the coefficients,,, B,, are determined by the Klein-

. i ) Gordon equation as
Thus, the evolution of the scalar fie{d.13, the metric com-

ponents2.8) and(2.9), and the local mas.17) are mainly

determined by the single functioh It seems that the field =0, a;=—3Aao,..., (4.6)
evolution is universal in the meaning of the dependence on

f. Another interesting result of our analysis is the power-law 1

behavior of the black hole mass. The local mass at the ap- Bi=agy, Bo==(ag—\Boy),.... 4.7
parent horizon is given by 2

Equationg4.6) and(4.7) show that the expansid.13 can
smoothly match the expansigd.5) in the limit f—1. To

; : ; determine the relation between the paramétey, 8o} and
The form of Eq.(3.18 claims that the power-law behavior of r{al’ b}, let us estimate the back reaction of the scalar per-

the black hole mass is related to the strong field evolutiot bation to th tric. W h turbation @is
near the singularity. This relation will be discussed in Sec. V. urbation 1o the metric. We express the perturbatioy

Before discussing it, we will analyze the decay process in the B
static limit f— 1. Vx=r+2mgs,

Mp=C(f) 7=(7;)~. (3.19

where 6 denotes a perturbation of from the background
IV. FINAL STAGE OF GRAVITATIONAL COLLAPSE proper radiug. From the ¢,r) component of the Einstein

. _ 2 .
In this section we show that the strong fields near theequat'onR"_z("bf) , We obtain

singularity smoothly relax to the perturbation of the
Schwarzschild background in the limfit=1. We start with 5=—e 2vgy2
determining the form of the scalar field at the final stage.
From Eq.(2.13, we obtain the derivative with respect #0

2 1 3
Co+XINX+(1—Cq)X+X +§x

- 1
of the scalar field as +A| = =3Inx+| = — o) , (4.9
3 9 3ag
= me_ (4.1  wherec; andc; are integral constants. On the other hand,
V1—f£2 using Eq.(2.8), we can express in terms ofa; anda, as

In the final stage of the gravitational coIIapsq'temust go to B \/;—r 1 , Lol 1
zero asf approaches to unity. This means thatat «, f o= 2m, E(l_f) XInx+Xx"+ X + 71X Inxx
behaves as L

f=(1-f)° 4.2 + §(a1+ a,)x3In2kmg, 4.9

wheree=1. From the Klein-Gordon equation fgr, we find  in the limit f — 1. The important point is that the perturbation
that only the casee=1 is allowed as a solution near the analysis gives the same result as the expansion near the sin-
origin. Thus, the scalar field has the form gularity. From Eqgs(4.9) and (4.8), we find
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c;=1, ¢,=0, (4.10 assume a simple functioy which satisfies the condition
vy—oo atf=0 andy=1 atf=1 (see Sec. ). For example,

2 o 2 N the function y= —3+3Lf- 2/(1+f) leads to the result
a=zhe “025(1_”' (41D g=1/e, which is suggested in Refl]
__1 Bo VI. SUMMARY
(l—y)InZKmo——§+a—. (4.12
° Let us summarize our results. In this paper we have ana-
[These results are also obtained from H@sl3, (4.5), (4.6),  lyzed the critical behavior of the strong field near singularity

and(4.7).] Sincey—1 in this staggsee Sec. )i, we obtain in the critical black hole formation due to the scalar field
Bo=ay/3. The above analysis claims that the strong fieldscollapse. The strong field evolution near the singularity is
near the singularity smoothly decay to the Schwarzschildoughly divided into the two stages according to the value of
spacetime at the final stage of gravitational collapse. Noté. For sufficiently smallf (f=0), the system exhibits the
that the analysis in this section is valid not only in the critical Self-similar evolution. This self-similar region appears in the
limit but also in the noncritical cas@@ p*). In fact, we did  neighborhood of the first singular poiat(region I in Fig. 2.

not use the limity—0 in this section. The advantage of the In this region the horizon masd,, increases in proportion to
critical limit is that we obtain the simple equatigB.9) to  v. Sincef increases with the advanced tine the self-

give the solution(3.13. similar approximation breaks down at finite tinog which
depends on initial data. After the self-similar stage ends, sys-
V. POWER-LAW BEHAVIOR OF BLACK HOLE MASS tem evolves toward the Schwarzschild spacetime with the

advance timev (in the region Il drawn in Fig. 2 In this
An interesting application of the strong field behavior stage, the field behavior denoted by E(®.9), (2.9), and
near the singularity is to derive a power law of the black hole(2.6) is mainly determined by a single functidgn In this
mass. We now show that the critical expongris a decreas- meaning, the filed evolution near the singularity shows a
ing function ofv. From Egs.(3.13, (3.19, and(3.11), we  universal feature. According to this evolution, the strength of
obtain the power-law behavior of the apparent horizon masghe  curvature  singularity — decreases ad=(y/
as ) ~2(0+2/A+0 "wheref runs from 0 to 1 with the advanced
B(o) time v. This evolution of the singularity may be understood
Mp(v)=(p—1)""", (3D in term of scalar charge/I—f2. During the gravitational
collapse, the scalar charge goes to zefe-(). Then the

where/(v) is given by curvature strength decreases and the system relaxes to the

1 1 (v ) 1 1 () Schwarzschild spacetime. In the final stage of gravitational
B(v)= Eexr{i (1—y)fdv|= Eexr{zf (1—y)df]|. collapse (—), scalar field dies away as expkv) inside
vo 0 52 the apparent horizon. The exponential falloff is due to the

logarithmic behavior In of the scalar field near the singular-
ity. The power-law behavior of the black hole mass is also

Note that the detail of(f) as a function off has no rel- related to the strong field evolution. By virtue of the increas-
evance to the power-law behavior of horizon mass. This 9 - By

power-law behavior is crucially related to the evolution of "9 property of the apparen_t h°”z°f? area, the c.ritical EXpo-
strong field near the singularity through the functig(f). nent 5 becomes a decreasing function:af Equation(s.2)

. oS : L suggests that the critical exponegtis crucially related to
Especially, the logarithmic behavior of the field is found to : R X
be important for producing the power law of black holethe evolution of the scalar field in the neighborhood of the

origin. Numerical calculations have shown that fhés uni-
mass. versal, which will mean that thé dependence o¥ is also
The remarkable property of our results is(@vancey ’ P

e dependence of the cricl exponghtas we have seen UrVErel, M expect et some uvesal evollon of e
in Sec. lll, we obtainy=1. Then, Eq.5.2) shows that the 9 9

critical exponents is a decreasing function af. The de- regular origin gives the universality of the critical exponent.

creasing property of the critical exponent is related to the

increasing area of the apparent horizon, because the condi- ACKNOWLEDGMENTS
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stage, is essential to obtain a smaller valuggof

_I_3ef0re closing thi_s section, let us estimate roughly theAPPENDIX: DERIVATION OF EVOLUTION EQUATIONS
critical exponent3. Sincea;,a,, andb, are related by the
simple equation(3.3), we expect thal, and a; are also The purpose of this appendix is to derive the leading be-
related by a simple function of. Although our analysis havior of the field. Now, Einstein-scalar equation
lacks the clincher to determine the critical exponent, we carts,,=8=T,, is equivalent to
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=2 A (x9)’ A arhfitine,  (A13)
X)'=— 77— KT,
For a line element of the form 2112
d?=Fdv2+ 2dvdr+ ydQ? (A2) for f#0 the termyF must have logarithmic term as
the Einstein equatiofAl) is written in the form XF=0(r2*finkr) + ABr+- - -. (A14)
1 For this reason, the higher correction termsyoénd F are
- =)=y (A3)  given by
VX
=AW +C)r2 "+ E(v)r2?\Inkr, (A15)
2 . ’ 1 Y r
=)'+ 5 (XF)' =24y, (Ad)
Vx X F=B(uv)r "+D(u)r' "+ G(v)rinkr,  (A16)

and from Egs(A5) and (A7), we obtain

2 ! F AN 1 i =l Ic 2
— = () + 5o (XF) = 5o (hF = x'F)=2¢7,
Vx X X AD=—f AL7
1 BC=f—1. (A18)
l+§(X’F)’—)'(’=O, (AB)
. o ) AG=2(1+f)BE, (A19)
where prime and overdot denote derivatives with respect to
r andv, respectively. From EqA6), we obtain
. BE
X' F=2x—2r+h(v). (A7) f=A+H2+1) % (A20)

Since the local mass is given by Therefore, from Eqs(A17), (A18) and(A19), we obtain

o WX 1- X 25—Fy)) _ W 1- X or—nmyl, "
2 4y 2 4y _ of T r
x=RAo(27)° 5= 1-(1-f)5—
(A8) 27 27
the apparent horizon is located rat h(v)/2=r,,, and then ro\tf
the horizon mass is given by ta 27 Inr/2q...¢, (A21)
M= 2\ (A9) r r
h=5VXh- | o
2 F=Ag (2 ) {1 o

Therefore,h plays an important role in supercritical case. 1+f
Sinceh(v)#0, from Eqs(2.2) and(A7), we findF=r ~' for +2(1+f)a;
singular center.

Let us determine the field behavior near the origin. Since

behave ch as E.2), from Eq.(A3) we find where 2p=AB (which has dimension of length
X ves su S E@.2, fr a- (A3) e fi Ao,=A(27%)""! (which is dimensionlegs and a;=E/A.

1 From Egs.(A7), (A21), and (A22) we find h=2(1+f) 7.
~—[1_¢f2 Thus, the apparent horizon is locatedrat (1+f)n=r,.
Y= V1= Tinar, (A10) For f=1, we obtainy=Agr? and F=27/A,r. Hence, at
) f=1,Ap=1 andy gives a final black hole mass,. There-
wherex is a constant. _ _ _fore, we can interprety as a mass function and the limit
Next, let us consider the Klein-Gordon equation which ,, .o corresponds to the critical limit. Note that because the
has the form mass scale is given by, A, remains to be of order of unity.
This is a reason why we introduce the functiokg and #

r
ﬂ Inr/i2y.. ] (A22)

(x¢') +(x)' —(xF¢')' =0. (A11)  into Egs.(A21) and(A22).
_ To obtain the equation for the mass functignwe need
Since ()’ and (y¢') behave as the higher correction terms of metric. Since the form of Eq.
A (A21) suggests that y can be expanded into
AN x=Ao(27)°(r127)* " {Zanr "+ r IS (uplnr + v)r™, we
(') = ZN1=1rliner, (A12)  Cptain Eqs(2.10-(2.12).
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