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Universality of supersymmetric attractors
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The macroscopic entropy-area formula for supersymmetric black holes inN52,4,8 theories is found to be
universal: ind54 it is always given by the square of the largest of the central charges extremized in m
space. The proof of universality is based on the fact that the doubling of unbroken supersymmetry n
black hole horizon requires that all central charges other thanZ5M vanish at the attractor point forN54,8.
The ADM mass at the extremum can be computed in terms of duality symmetric quartic invariants whi
moduli independent. The extension of these results ford55, N51,2,4 is also reported. A duality symmetri
expression for the energy of the ground state with spontaneous breaking of supersymmetry is provided
power 1/2~2/3! of the black hole area of the horizon ind54 (d55). It is suggested that the universal duali
symmetric formula for the energy of the ground state in supersymmetric gravity is given by the modulus
maximal central charge at the attractor point in any supersymmetric theory in any dime
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I. INTRODUCTION

The attractor behavior in the supersymmetric system w
discovered in the context ofN52 extremal magnetic black
holes@1#. It was explained in this work that unbroken supe
symmetry leads to the fact that the area of the black h
horizon depends only on conserved charges. The idea
further developed for more general black hole solutions
@2,3#. In @3# the complete treatment ofd54, N52 and
d55,N51 supersymmetric attractors was presented as w
as some particular examples ofN54,8 attractors ind54.
The main result of this work was that the area of the sup
symmetric black hole horizon in the theories ofN52 super-
gravity interacting with arbitrary number of vector and h
permultiplets can be computed by extremizing the cen
charge of the theory in the moduli space. The summary
the attractor picture inN52 theories is the following. There
is only one central chargeZAB whereA,B51,2 and the cen-
tral chargeZAB is complex and antisymmetric inA,B.
Therefore we have onlyZ125Z. Unbroken supersymmetry
of theN52 black holes requires

MADM
2 ~q,p,f!5uZ~q,p,f!u2. ~1!

In gravitational theories the ADM mass in asymptotica
flat spaces defines the energy of the space-timeMADM5E.
Thus inN52 theories one may have concluded that the a
of the horizon is proportional to the square of the energy
its minimum:

A~q,p!

4
5pE2~q,p,f!u]E/]f50 . ~2!
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Vice versa, the minimal energy is given by the square root o
the area:

E~q,p!5SA~q,p!

4p D 1/2. ~3!

In d55 the minimal energy inN52 theories was shown to
beE(q,p);@A(q,p)#2/3 @3#.

The purpose of this paper is to find out how much of this
behavior carries over to higher extended supersymmetrie
where the number of central charge eigenvalues isN/2.1.
We would like to mention in this respect that the focus of
interest to the problem as to whether the area always doe
not depend on moduli was stimulated by the work of Larsen
and Wilczek@4#.

The area formulas for theories with extended supersym
metries are build out of central charges on the basis of dua
ity invariance and comparison with some known particular
black hole solutions. For example, inN54 theories there are
two eigenvalues of the central charge matrixZ1 andZ2 . The
area of the horizon for the particular black holes inN54
supergravity without matter multiplets is proportional to@5#

SA~q,p!

4 D
N54

5p~ uZ1u2uZ2u2!. ~4!

In N58 theory the corresponding formula for the area de-
pends on 4 eigenvalues of the central charge matrix and
given in agreement with some class of solutions by@6#

SA~q,p!

4 D
N58

5pS US (
i

uZi u422(
i. j

uZi u2uZj u2

18uZ1Z2Z3Z4u D U D 1/2. ~5!
1525 © 1996 The American Physical Society
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1526 54SERGIO FERRARA AND RENATA KALLOSH
Formula~5! corresponds to the Cremmer-Julia@7# E~7! quar-
tic invariant,

L5Tr~ZZ̄!22 1
4 ~TrZZ̄!214~PfZ1PfZ̄!, ~6!

in the normal frame for the central charge matrix@8#. Each
central charge depends on moduli and electromagne
charges.

One may have thought that the function to be extremiz
to get the area will be some combination of various cent
charges inN.2 theories generalizing the one central char
situation inN52 theories. However, this is not the case, th
result of our study is that the unbroken supersymmetry lea
to the universal formula for the area of the horizonin all
d54 extended supersymmetric theories. First, let us note t
the energy of the space-time, or ADM mass is equal to t
largest eigenvalue of the central charge matrix from the
quirement of unbroken supersymmetry1:

E~q,p,f!5MADM~q,p,f!5maxuZC~q,p,f!u,

C51, . . . ,N/2. ~7!

We will find that the square of the minimal energy alway
defines the area of the horizon of the supersymmetric bla
holes:

A~q,p!

4
5pE2~q,p,f!u

]E/]f50
. ~8!

Let us relabel the central charges: the largest o
maxuZC(q,p,f)uwill be called uZu so that

maxuZC~q,p,f!u[uZu,

and the remaining (N/221) eigenvalues of the centra
charge matrix will be labelled by the indexc which runs
from 1 to (N/221).

We will establish that the fixed point of attraction in th
theories of extended supersymmetries withN.2 is given by
the condition of the vanishing of all eigenvalues of the ce
tral charge matrix which are smaller than the largest on
defining the ADM mass:

u~Zc!fixu50, c51, . . . ,SN2 21D . ~9!

The area formula therefore is always given by the extremu
value of the central charge, or space-time energy, which
the point where the other charges vanish. Let for example
N54 case the first eigenvalue is larger than the seco
uZ1u.uZ2u. We will find that the area formula for black hole
in N54 supergravity withN54 vector multiplets is given by
a duality symmetric formula which is also an extremum
the Arnowitt-Deser-Misner~ADM ! mass defined by the van-
ishing of the next to the largest eigenvalue of the cent
charge.

A(q,p) can be explicitly computed, by noticing tha
p(uZ1u2uZ2u2)Zc505p(uZ1u2uZ2u2) at the matter attractor

1For simplicity we consider only evenN.
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point ~deduced by setting the gaugino variationdl ia50 but
not fixing the S dilaton!. In N54 we have thatuZ2u50
forces the dilaton to take the fixed valueS5Sfix and the
matter scalars to the pointdl i

a(a51, . . . ,nv)50. So

~ uZu2!ufix5~ uZ1u2uZ2u2!S5Sfix ,dl
i
a50 . ~10!

But now we use the fact that (uZ1u2uZ2u2)dl
i
a50 is indepen-

dent of S and this allows to give an explicit formula for
uZ1ufix in terms of 2~61 nv) charges:

uZ1ufix
2 5 1

2Aq2p22~q•p!2. ~11!

Similarly in N58, the attractor point is the value of the 70
moduli f5ffix for which uZ2u5uZ3u5uZ4u50. This means
that the area formula is given in terms of the Cartan’s quarti
invariant J which depends only on charges and does no
depend on moduli. The universality of the area formula
comes from the fact that the Cremmer-Julia E~7! invariant at
the attractor point on one hand has to depend only on charg
and be E~7! symmetric, and therefore has to coincide with
Cartan’s invariantJ; on the other hand at the attractor it is
given by

SA~q,p!

4 D
N58

5pS US (
i

uZi u422(
i. j

uZi u2uZj u2

18uZ1Z2Z3Z4u D U D
uZ2u5uZ3u5uZ4u50

1/2

5uZ1ufix
2 ,

~12!

therefore

uZ1ufix
2 5~AL !f5ffix

5AJ, ~13!

and this gives an explicit formula ofuZ1ufix
2 in terms of the 56

charges.
If Cremmer-Julia E~7! invariantL is f independent in

the generic point of the moduli space, which seems likely, in
this case we have also

L5J, ~14!

as conjectured by Cremmer and Julia@7#. In any case at the
attractor point these two invariants coincide and this is th
reason for the universality of our area formula.

Similar results are also obtained forN52,4 atd55.
We find it useful to introduce here an additional object

S(r) I for any scalar fieldf I(r ), which forms part of the
black hole solution. It is typical for the attractor problem to
have a pair of phase space variables@x(t),y(t)5x8(t)#. In
our case the corresponding pair consists of the scalar fie
and the first derivative of the scalar field

S I~r![
]

]r
f I~r!. ~15!

We have plotted the value of the dilatone22f(r) and the
S(r) for the dilaton U(1)2 black hole. We are using here the
radial variabler521/r in terms of which the near horizon
geometry is conformally flat. Figure 1~a! shows that starting
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54 1527UNIVERSALITY OF SUPERSYMMETRIC ATTRACTORS
with any initial conditions atr50 (r→`) the field is driven
to an attractor value atr→2` (r50). Figure 1~b! shows
how the derivative evolves. The initial condition for the de
rivative of the scalar field atr50 (r→`) is equal to the
so-called scalar chargeS . It is a function of the moduli at
r50 (r→`) and electromagnetic charges, therefore the s
lar charge is also called a secondary hair of the black ho
When evolving into the core of the black hole, independen
of the initial value of the scalar charge atr50 (r→`), the
derivative~i.e., the effective scalar charge! S(r) goes to zero
at r5→2` (r50).

The physical picture of this phenomenon was suggested
us by A. Linde. It reflects the fact that the values of electr
and magnetic charges are protected by gauge invariance
the associated Gauss low. One can measure the actual va
of electric and magnetic charges being far away from t
black hole, which explains why these charges are called
black hole hair. The scalar charges which can be measu
far away from the black hole are not protected by any co
servation low. This is why the derivative of the scalar field
decreases when moving into the core of the black hole;
Fig. 2~b!. Whereas the electric and magnetic charges are c
served and their presence and stability supports the existe
of an infinite throat of the Bertotti-Robinson@9# geometry,
the derivative of the scalar chargeS(r)→0 atr→`, i.e., it
does not penetrate into the throat to keep its size~the area of
the black hole horizon! minimal. This results in the minimal

FIG. 1. Evolution of the dilaton fielde22f and of the effective
dilaton chargeS(r)52df/dr for various initial conditions at
r50 (r5`) to a common fixed point atr52` (r50).
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energy of the ground state. This picture may apply not on
for supersymmetric black holes. One may try to find out
the analogous phenomenon takes place at least for near
treme black holes, as suggested to us by L. Susskind. T
plausibility of this picture relies on the fact that we may b
dealing here with the critical phenomena which have som
specific range of applicability and in particular the attracto
behavior of the system may well describe the nearby traje
tories in the phase space of the system.

One should stress that the extremization of the ener
which we study here is performed under condition that th
scalar fields are constant as it is usually done in quantu
field theory by looking for the minima of the energy in the
class of configurations with constant scalars. This is the ma
feature of supersymmetric attractors, since we study the fix
points of the differential equations where the scalars ha
vanishing derivatives@1#.

ffix8 ~r!→0, r→`. ~16!

The massless black holes~solutions with ADM mass going
to zero! which one would tend to associate with the min
mum of the ADM energy, do not fit into the class of attrac
tors with constant scalars in the fixed point and has to
studied separately.

From the point of view of supersymmetry, this distinctio
comes from the following fact. The graviphoton charge
which is a linear combination of moduli and electromagnet
charges, always represents the ADM mass for supersymm
ric solutions, i.e., the energy of the space-time. The minim
zation in the class of configurations with constant scalars
supersymmetry requires all vector fields of the matter mu
tiplets to vanish at the attractor. Their charges also are giv
by some linear combinations of moduli and electro-magne
charges, which vanish at attractor. This leads to Bertot
Robinson-type geometry and black holes with nonvanishi
area of the horizon.

On the other hand one may be interested in the oppos
situation when the graviphoton charge tends to zero, lead
to a specific relation between the moduli and electromagne
charges, corresponding to massless black holes. The ma
multiplet charges do not vanish, otherwise the solutio
would be trivial. By supersymmetry it follows that the sca
lars do not tend to a constant near the black hole core,
geometry is very different from the Bertotti-Robinson-typ
geometry and this class of configurations has to be stud
separately.

Also the configurations with the zero area which hav
doubled or quadrupled number of unbroken supersymmetr
comparatively to those with nonvanishing area, do not ha
fixed points for the scalar fields near the horizon@10#.

In what follows we will explain how the result described
above follows from unbroken supersymmetry. In Sec. II w
will explain the particular case of pureN54 supergravity,
the U(1)2 model. We will present the complete theory o
attractors inN54 supergravity interacting with arbitrary
number ofN54 vector multiplets in Sec. III. The area for-
mula is presented in various forms which show the manife
S andT duality as well as moduli independence as the co
sequence of supersymmetry. On top of it the area formula
finally reduced to the universal one in terms of the minim
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zation of the ADM mass in the moduli space. In Sec. IV w
will analyze the simpleN58 model, anSTU attractor,
which presents in a nice way the gross features of the att
tors with extended supersymmetries. The generalN58 at-
tractor is described in Sec. V. Cartan’s quartic invaria
which reflects the E~7! symmetry of the theory is miracu
lously reduced to the simple and universal formula for t
area as the minimum of the largest eigenvalue of the cen
charge. Section VI presents supersymmetric attractors
d55. We present the area formulas inN51,2,4 theories. In
particular, the cubic E~6! invariant is described in connectio
with three central charges of the maximally extendedN54
theory in d55. The universality of the area formula aga
follows from the vanishing of all eigenvalues of the centr
charges except the largest one. One more miracle of su
symmetry and we get the universal formula for the area
terms of the minimization of the ADM energy for all case
considered.

These results should apply to strings theories or gene
zation thereof (M theory?!. A microscopic derivation is ex-
pected to correct the entropy formula for small values
charges. This is of course related to the fact that Einst
gravity is only the pointlike limit approximation of the mor
general theories.

Our study of supersymmetric black holes and their attr
tor behavior suggest the following interpretation: we ha
computed the exact energy of the ground state in supers
metric gravity as the function of electric and magne
charges. The presence of these charges~excitations of a su-
perstrings! in the vacuum leads to spontaneous breaking
supersymmetry, resulting in a duality symmetric positive e
ergy of the ground state associated with the nonvanish
area of the black hole horizon. The recent success in
calculation of the area of the horizon of some five- and fo
dimensional black holes@11# from the point of view of
counting string states with the use ofD-brane technology
@12# naturally fits into our interpretation. The nontrivial pa
of this picture is related to the fact that the extreme bla
holes with the nonvanishing area of the horizon have a c
formal isometry which exchanges the two asymptotic
gions. Therefore the calculation of the area of the horizon
such extreme black holes can be interpreted as the evalua
of the square of the energy of the ground state of this syst
The corresponding conformal factor has one parameter,
area of the horizon, or the mass of the Bertotti-Robins
universe. The relevance of the computation of the area of
extreme black hole horizon to spontaneous supersymm
breaking is explained in Sec. VII of the paper.

II. ATTRACTOR IN PURE N54 SUPERGRAVITY,
U„1…2 MODEL

The basic feature of the extended supersymmetry att
tors can be easily understood already in the case of p
N54 supergravity with one gravitational multiplet only. Th
bosonic fields in the SU(4) version consist of a compl
axion-dilaton scalar, three vectors and three axial vectors
the metric. It was explained in@10# that near the horizon the
unbroken supersymmetry of the U(1)2 black hole is doubled.
Instead of 1/4 ofN54 supersymmetry, near the horizon 1
of N54 supersymmetry is restored. In the basis chosen
e
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@5# we have the following situation near the horizon: fo
positive pq the unbrokenN52 supersymmetry consists of
the third and the fourth ones, and for negative values ofpq it
is reverse, the first and the second supersymmetries are
broken whereas the third and the fourth are broken. The d
latino transformations rules in the notation of@5# is

1
2 dL I52gme I]mf1

1

A2
smn~e2fFmna IJ2efG̃mnb IJ!

2eJ

50. ~17!

The first term in Eq.~17! vanishes at the fixed point, since
we are looking forf850. Thus at the attractor we get, for
pq.0, J53,4 as well as forpq,0, J51,2 the second
term in Eq.~17!

Sfix eJ5 1
2 ~e2fupu2efuqu!fix eJ50, ~18!

which leads to the condition of the vanishing of the dilato
charge at the attractor:

Sfix 5 1
2 ~e2fupu2efuqu!fix 50⇔efix

22f5
uqu
upu

. ~19!

We may also rewrite the dilatino transformation rule a
the attractor in the form

~ZIJ!fix eJ50. ~20!

For pq.0,e3,e4 are nonvanishing, therefore at the attracto
using also the gravitino transformation rule we learn that

Z3450, uZ12u5~MADM !Z3450pq.0, ~21!

and for pq,0,e1,e2 are nonvanishing, therefore at the at
tractor

Z1250, uZ34u5~MADM !Z1250pq,0. ~22!

III. ATTRACTOR IN N54 SUPERGRAVITY WITH nv
VECTOR MULTIPLETS: GENERAL CASE

The geometry of theN54 supergravity coupled to
nv matter vector multiplets2 is based on the nonlinear
sigma model SU(1,1)/U(1)3O(6,nv)/O(6)3O(nv). The
SU(1,1)/U(1) manifold is parametrized by a complex scala
field S and the vector multiplet manifold by the coset repre
sentativesLL

A5(LL
i j ,LL

a ):

LL
i j52LL

i j5LL i j* 5 1
2 e i jkl LLkl , ~23!

where i , j51,2,3,4,L51, . . . ,61nv ,a51, . . . ,nv , and
there are orthogonality relations

2LL
a LaS1LL

i j LS i j5hlS , LL
a Lb

L52db
a , ~24!

2We describe here the version ofN54 theory closely related to
the one in@13#. The version here has the property of being sym
plectic covariant. The details of this construction will be presente
elsewhere.
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and

LL
i j Lkl

L 5 1
2 ~d@k

i d l ]
j !, LL

a Li j
L50. ~25!

The vector field~complexified! kinetic matrix is

NLS5~S2S̄!LL
i j LS i j1S̄hLS , ~26!

and the symplectic sections are

~Li j
L ,NLSLi j

S5SLL i j !,

~La
L ,NLSLa

S5S̄LLa!. ~27!

In terms of these sections the central chargeZi j is

Zi j5eK/2@Li j
LqL2SLi jLp

L#, ~28!

whereK52 lni(S2S̄) is theS-field Kahler potential. For the
x-independent scalars (S,Li j

L ,La
L) unbroken supersymmetr

for the matter gaugino’sdl i
a50 requires at the attracto

point

SLL
a pL2LaLqL50, ~29!

while unbrokenN51 supersymmetry for the dilatinox i re-
quires that the central chargeuZ2u,uZ1u5MADM given by

uZ2u25
1
4 (Zi j Z̄

i j2A~Zi j Z̄
i j !22 1

4 ue i jkl Zi j Zklu2) ~30!

should vanish. Equation~30! fixes the value ofS at its at-
tractor point:

Z250. ~31!

It can be proved using the symplectic formulation ofN54
theory given above that the quantity

uZ1u22uZ2u25
1
2A~Zi j Z̄

i j !22 1
4 ue i jkl Zi j Zklu2 ~32!

is S independent. This would be sufficient to prove t
moduli independence of this expression in pureN54 super-
gravity. However, in presence ofN54 vector multiplets this
expression as a function of attractor variables correspon
to a,b charge vectors of string theory does depend on
scalars of these multiplets~the asymptotic value of the ma
trix M used in various black holes constructions!. This was
established in@14# @see Eq.~8.13! of this paper# starting with
ten dimensional supersymmetry and using the Witten-Isr
Nestor construction. However our formalism shows that
the matter attractor point defined in Eq.~29! this expression
does not depend on matter moduli anymore and become
function of charges only:

~ uZ1u22uZ2u2! uZ2u505
1
2Aq2p22~q•p!2, ~33!

where Lorentzian O(6,nv) norm forqL ,p
L doublet is under-

stood. It then follows that the area is

A52pAq2p22~q•p!2. ~34!
y
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Note that the 2~61nv) electric and magnetic charges form an
SU(1,1) doublet and~6, nv) Lorentzian vectors. This coin-
cides with the minimum of the ADM mass,

A~q,p!54p~MADM
2 !]M /]f50, ~35!

in the axion-dilaton and matter moduli space.
We would like to stress here that in@3# we have intro-

duced the concept of attractor variables for the black ho
solutions: variables in which the ADM mass depend o
charges and moduli, however, the area depends only
charges. The area formula~34! in the attractor variables ap-
peared in the recently revised version of Ref.@15#. Our
choice of what are attractor variables is defined by the fo
mulation of the theory with manifest symplectic symmetry
Simultaneously this form provides the proof of the indepen
dence of the area from the moduli and leads to the unive
sality of the area formula in terms of the extrema of th
ADM mass in the moduli space. On the other hand the he
erotic area formula given in@15# as well as our proof of
independence on all moduli at the attractor point applied
the expression for central charges in@14# provides the link to
the properties of a string theory. Indeed the correspondi
attractor variables are the conserveda,b charge vectors of
string theory introduced into the black hole physics by Se
@16# a long time before it was realized that the area of supe
symmetric black holes depends only ona,b by the reason of
supersymmetry, as explained in this paper. OurN54 results
and formulas, since they entirely rely on general theory o
N54 supergravity coupled to vector multiplets, should
equally apply to the heterotic string compactified onT6 or to
the type II string compactified onK33T2 .

IV. STU ATTRACTOR IN N58 SU„8… SUPERGRAVITY

In @3# we have described STU model in the attractor var
ables. Here, as the preparation to generalN58 attractor we
would like to check whether the main principle of the mini-
mization of the largest eigenvalue of the central charge w
produce the moduli independent area. We will denot
e2h05ImS5s, e2s05ImT5t, e2r05ImU5u.

The ADM mass considered as a function of charges
generic point of the moduli space (s,t,u) is

MADM5
1

4 S stuuq1u1 s

tu
uq3u1

u

st
up2u1

t

su
up4u D . ~36!

The variation of the mass over the moduli gives three attra
tor equations:

S stuuq1u1 s

tu
uq3u2

u

st
up2u2

t

su
up4u D50,

S stuuq1u2 s

tu
uq3u1

u

st
up2u2

t

su
up4u D50,

S stuuq1u2 s

tu
uq3u2

u

st
up2u1

t

su
up4u D50. ~37!

The solution of these equations puts the moduli into the fixe
points where they become functions of charges:
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~stu!fixuq1u5S ustD
fix

up2u5S stuD
fix

uq3u5S t

suD
fix

up4u.

~38!

We get the useful relations

~s2t2!fix5
up2u
uq1u

, ~u2t2!fix5
uq3u
uq1u

, ~s2u2!fix5
up4u
uq1u

,

~39!

and

~stu!fix5S up2q3p4u
uq1u3

D 1/4. ~40!

This allows to get the value of the ADM mass at the attr
tor:

~MADM !fix5~stu!fixuq1u5uq1p2q3p4u1/4. ~41!

We may now conjecture that the generalization of the f
eigenvalues of theN58 supergravity central charges@6# is

4Z15S stuuq1u1 s

tu
uq3u D1S ust up2u1 t

su
up4u D ,

4Z25S stuuq1u1 s

tu
uq3u D2S ust up2u1 t

su
up4u D ,

4Z35S stuuq1u2 s

tu
uq3u D1S ust up2u2 t

su
up4u D ,

4Z45S stuuq1u2 s

tu
uq3u D2S ust up2u2 t

su
up4u D . ~42!

Now one can see that indeed the three attractor equa
~37! mean exactly

Z25Z35Z450,

Z1uZ25Z35Z450
5~MADM !fix5uq1p2q3p4u5E~p,q!. ~43!

This example makes it natural to look for the generalN58
attractor expecting to get the area from the minimum in
moduli space of the largest of the four eigenvalues of
central charge matrix.

V. N58 ATTRACTOR: GENERAL CASE

N58 theory has only one gravitational multiplet. Ther
fore all 28 vector fields are graviphotons, there are no ve
fields which are not supersymmetric partners of the gravit
The 28 electric and 28 magnetic charges all together ar
56 fundamental representation of E~7!. The black hole solu-
tions of this theory with 1/8 of supersymmetry unbroken a
known to have a nonvanishing area. The manifestly E~7!
symmetric area formula is given by the unique quartic inva
ant of E~7!. However, how can we find out if the area
independent on 70 moduli and depends only on 56 charg
Let us first analyze the supersymmetry transformation ru
@7# near the attractor where all 70 moduli tend to a const
values:
c-

ur
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the
the
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tor
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re

ri-
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es?
les
ant

dCmA5DmeA1ZABmngneB, ~44!

dxABC5Z@ABmnsmneC] . ~45!

Let us decomposeN58 into SU(4)3SU(4) as ~4,1! 1
~1,4!, keeping all fields ofN58 theory. ThenN58 super-
gravity multiplet will split into one gravitational multiplet of
N54 theory,

@~2!4~3/2!6~1!4~1/2!2~0!#,

four spin 3/2 multiplets

4@~3/2!4~1!611~1/2!8~0!#,

and six vector multiplets

6@~1!4~1/2!6~0!#.

The eight-dimensional indexA is split asA5( i ,a) where
i51, . . . ,4 and a51, . . . ,4. The fermions are
CmA5(Cm i ,Cma) and xABC5(x i jk ,x iab ,xai j ,xabc). In
N54 theoryx i jk is in spin 2 multiplet,xai j ,xabc belong to
spin 3/2 multiplet andx iab to spin 1 multiplet. We may solve
Eqs.~45! using the ansatz

ea50, e i5$e1 ,e25” 0,e35e450%. ~46!

The transformation of four gravitino from the gravitational
multiplets and of those from the spin 3/2 multiplets are

dcm i5Dme i1Zi j mngne i , ~47!

dcma5Dmea1Zaimngne i . ~48!

The central charge matrix can be put into the normal fram
@8# by means of a SU(N) transformation. In this frame the
off diagonal elementsZai are absent,Zai50.

ZAB5S Zi j 0

0 Zab
D . ~49!

MatricesZi j andZab are diagonal:

Zi j5S z1s2 0

0 z2s2D , Zab5S z3s2 0

0 z4s2
D , ~50!

where

s25 i S 0 1

21 0D . ~51!

Thus the transformation of 4 gravitino from spin 3/2 multi-
plets vanishesdcma50 due to the fact that 4ea supersym-
metries are broken and that in the normal frame the off d
agonal elements of the central charge matrixZai are absent.
The variation of spin 1/2 fields vanishes

dxabc50, dxai j5Zi j ea1Ziae j50. ~52!

It remains to check the spin 1/2 transformations from th
gravitational multiplet and from the vector multiplet of
N54 theory at the attractor point:
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dx iab5Zabmnsmne i , ~53!

dx i jk5Zi j mnsmne j . ~54!

The first of these two equations implies thatZab50, i.e.,
z35z450. The second one yieldsz250, as inN54. Thus
we have proved that the attractor condition indeed requir
all eigenvalues of the central charge which are smaller th
the one equal to the ADM mass to vanish. This again lea
us to the universal formula for the area, starting with an E~7!
symmetric formula.

VI. ATTRACTORS IN d55, N52,4 THEORIES

The general formulas forN54, N58 derived in this pa-
per have an obvious extension atd55. In our previous paper
@3# we gave the general area formula for an arbitraryN51
theory ind55 in terms of the symmetric constantdABC

A;Zfix
3/25@dAB~q!21qAqB#3/4, ~55!

where dAB(q)21 is the inverse of the moduli dependen
matrix dAB5dABCt

C computed at the attraction
point Z5Zfix . There was only one central chargeZ
5tA(z)qA (dABCt

AtBtC51) and] iZ50⇒Z5Zfix.
For N52, N54 in d55 we have two and three centra

charges respectively3 @17#. Again the ADM mass is given by
the largest eigenvalue. Let us call itZ and the otherZc . As
before,

A;~Z!fix
3/2. ~56!

For N52 coupled tonv matter multiplets there are 61nv
electric charges. They are in the~5,nv) vector representation
of O~5, nv) 1 a singlet. The singlet is the charge of the
vector dual to theBmn field.

The general formula forZ at the attractor point coincides
with the macroscopic formula given by Strominger and Va
@11#:

Zu
fix

5~QHQF
2 !1/3, ~57!

where QH is the singlet charge andQF
2 is a Lorentzian

(5,nn) norm of the other 51nn charges.
For theN54 theory we have 27 charges which are in th

27 irreducible representation of E6 . The formula forZ is
given by the cubic root of the unique E6 invariant con-
structed out of the 27 dimensional representation of E6 ,
which is the central chargeZi j ( i , j51, . . . ,8) @note that the
27 can be represented as a traceless Sp(8) symplectic
trix#:

Zu
fix

5~n !1/35~qi jV
j l qlmVmnqnrVr i !1/3, ~58!

3The reason why inN54 supergravity ind55 there are only
three central charges in the normal frame is due to the fact that
Zi j ( i , j51, . . . ,8) central charge matrix is tracelessZi jV

i j50
with respect to the Sp(8) metricV i j52V j i . By reducingd55 to
d54 on S1 one gets a fourth charge from Kaluza-Klein vecto
gm5 .
es
an
ds

t

l

fa

e

ma-

whereqi j is a 27 integer charge vector transforming unde
E6(Z) ~integer valuedE6 group!.

TheseN54 results are expected to apply to the type I
strings compactified on the five-torus or eleven-dimension
supergravity~or M theory! on the six-torus.

VII. EXACT TOTAL ENERGY OF THE GROUND STATE
AND SPONTANEOUS BREAKING OF SUPERSYMMETRY

We would like to use here the experience from the stud
of supersymmetric black holes in string theory, accumulate
in the community over the recent years and also some ide
from duality symmetric quantization of superstring theor
@18# to learn about the properties of the exact Hamiltonian i
quantum theories with local supersymmetry. It has bee
pointed out in @18# that the consistent quantization of
k-symmetry in the backgrounds with unbroken supersymm
try can be performed with the help of the supercharge of th
background in which the extendedk-symmetric object can
exist. The supercharge of the gravitational supersymmet
theory was defined by Teitelboim@19# as the surface integral
in terms of the gravitinoCm field of the configuration, solv-
ing the field equations

Q5 R
]S

dSmngmnlCl . ~59!

The surface over which the integration has to be performe
depends on the choice of configuration. In all cases it is th
same surface the integration over which defines the AD
mass of a given system or the ADM mass per unit are
~length!. The on-shell backgrounds with some number of su
persymmetries unbroken in bosonic sectors have the vani
ing supersymmetry variation of the gravitino, when the pa
rameters are Killing spinors:

Qk5 R
]S

dSmngmnldek
Cm5 R

]S
dSmngmnl¹̂lek50.

~60!

For anti-Killing spinors the supercharge is not vanishing. Fo
the black hole multiplets it defines the so-called superhair
the black hole:

Ssuperhair[Q k̄5 R
]S

dSmngmnl¹̂le k̄ . ~61!

The concept of thesuperhairwas defined for the first time
for extreme Reissner-Nordstro¨m black holes in@20# and
studied more recently in the context of more general extrem
black holes in@21#.

In the theories with local supersymmetry the total-energ
operator~Hamiltonian! @22# is defined via the quadratic com-
bination of supercharges

P05~8pGhN!21(
I51

N

(
A51

4

QAI
2 . ~62!

The computation of the area of the horizon of the supersym
metric black holes performed above via the extremum of th
ADM energy suggest the following interpretation: the ADM
mass at the extremum in the moduli space is the value of t

the
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total-energy operator~Hamiltonian! of the ground state. Th
ground state has a nonvanishing vacuum energy due t
presence of electric and magnetic charges, which cause
taneous breaking of supersymmetry:

Hvac5E~p,q!5AA~p,q!

4p
. ~63!

The electric and magnetic charges are due to the excitatio
the microscopical degrees of freedom of the string theor
alternatively due to the near horizon black hole geometr
Bertotti-Robinson, which exists only when the charges
nonvanishing. For the string theory interpretation of
ground state energy the appropriate formulas are: for the
erotic string compactified onT6 ~or type II compactified on
K33T2) the SL(2,Z)3SO(6,22;Z) symmetric expressio
for the ground state energy is

E~p,q!het5AA~p,q!

4p
5~q2p22~q•p!2!1/4, ~64!

where the 2~6122! electric and magnetic charges for
SL(2,Z) doublets and~6,22! Lorentzian vectors. For type
string compactified onT6 the vacuum energy is given by th
E7(Z) symmetric expression.

E~q,p! II5J1/4, ~65!

where the quartic Cartan E~7! invariant is

J5qi j pjkq
klpli2

1
4 q

i j pi j q
klpkl1

1
96 ~e i jklmnoppi j pklpmnpop

1e i jklmnopq
i j qklqmnqop!. ~66!

and the chargesqi j and pi j , i , j51, . . . ,8 span the 56-
dimensional space. Our interpretation is supported by
following space-time picture. The black hole configuratio
interpolate between two vacua, one trivial at asymptotic
finity and the second one described by the Bertotti-Robin
geometry, which is known to have an unbrokenN52 super-
symmetry@23,24,10,3#. In particular, due to conformal fla
ness of the geometry and due to covariantly constant g
photon field strength, the supersymmetry variation of
gravitino field strength vanishes without enforcing any lin
combination of the supersymmetry parameter to vanish:

dSUSY~D @mcn] !BR50, e1Þ0, e2Þ0,

dSUSY~D @mcn] ! triv50, e1Þ0, e2Þ0. ~67!

At asymptotic infinity the trivially flat vacuum is also cha
acterized by the unbroken space-time supersymmetry. M
over, for the trivial vacuum the variation of the gravitin
itself vanishes, since both spin connections as well as ve
field strengths vanish at asymptotic infinity. Consider n
the second vacuum, the near horizon configuration of
supersymmetric black holes. The space is only conform
flat, it is characterized by some electric and magn
charges. The unique parameter, characterizing the geom
the Bertotti-Robinson mass, is given by duality symme
function of all available electric and magnetic charges. O
can check that despite the fact that the supersymmetry t
formation of the field strength of gravitino in this bac
the
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ground vanishes the transformation of gravitino does not f
nonvanishing chargesp,5q,p. This causes the main differ-
ence with the trivial asymptotically flat vacuum with zero
energy:

dSUSY~cn!BRÞ0, e1Þ0, e2Þ0, ~68!

dSUSY~cn! triv50, e1Þ0, e2Þ0. ~69!

The ground state energy, which is proportional to the squa
root of the area of the black hole horizon~or to the Bertotti-
Robinson mass! is positive, duality symmetric and presents a
nontrivial computation of an eigenvalue of the energy
operator of a ground state of quantum gravity system. Th
energy of the ground state

~P0!vac5~8pGhN!21(
I51

N

(
A51

4

~QAI!vac
2 ~70!

is always non-negative, however, for the ground state to ha
a positive energy one has to require that the supercharge
the ground state is nonvanishing. This happens in our syste
since the ground state supercharge does not vanish in pr
ence of the covariantly constant graviphoton field strengt
This makes the calculation of the ground state energy of t
theory with local supersymmetry consistent with the idea o
spontaneous breaking of supersymmetry with the nonvanis
ing constant value of the vacuum supercharge.

VIII. DISCUSSION

In this paper we have established the universality of th
black hole area formula for extended supersymmetric the
ries N>2 in d54. It is based on the fact that all central
charges of the theory except the one which equals the AD
mass have to vanish near the black hole horizon by requir
ment of supersymmetry. In this way supersymmetry realize
the principle of lowest possible ground state. The fact th
the ADM mass as a function of charges and moduli is equ
to the central charge does not mean yet that it is a grou
state. Since the central charge depends on conserved elec
and magnetic charges and moduli in the generic point th
energy is not the minimal one. One has to minimize it in th
moduli space and this is how we get the minimal energy o
the ground state.

This universality can be understood also from the fact th
in supersymmetric theories with asymptotically flat space
there exists a well defined universal expression for th
Hamiltonian in terms of the sum over all supercharges@22#.
The presence of an extended microscopic object like sup
string introduces spontaneous breaking of the supersymm
try, from the point of view of the space-time Hamiltonian
since it has a nonvanishing value on the ground state of t
system. The electric and magnetic charges which are inte
preted as charges (q,p) defining the Bertotti-Robinson ge-
ometry and defining the size of its infinite throatA(q,p),
from the point of view of string theory are simply the con-
served charge vectors of string theory(aW ,bW ).

If one accepts the point of view that the calculation of th
area of the black hole horizon was a tool to get the groun
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state energy, it become clear that any supersymmetric b
hole solution with particular area formula actually provid
the calculation of the ground state energy and gives a s
cific example of the ground state energy calculation. Ho
ever, the general expression for the energy of the gro
state is simultaneously universal and duality invariant as
plained in this paper,

E~q,p!5E~aW ,bW !5SA~q,p!

4p D 1/2. ~71!

This result can be associated with the fact discovered
Gaillard and Zumino@25# that the energy momentum tenso
in supergravities is duality invariant whereas the off-sh
Lagrangian is not. Our analysis also predicts that the m
generalS andT duality invariant area formulas in the he
erotic theory compactified onT6 @or type II, compactified on
K33T2 , given in Eq. ~64! or with U duality for type II
string theory compactified onT6 as given in Eqs.~65!#
should be reachable by the counting of string states, as it
already demonstrated in particular examples@11#.

The space-time picture is that the most general four
mensional supersymmetric black holes with the nonvani
ing area of the horizon, covering the singularities, interpol
between four dimensional Minkowski space-timeM4, at spa-
tial infinity r→` andadS23S2 down the infinite wormhole
throat r→0 as was noticed by Gibbons@23# with respect to
Reissner-Nordstro¨m geometry. In addition the near horizo
geometry upon the change of variables

r52
E2~p,q!

r
~72!

was also interpreted in@3# as the second conformally fla
M4. The conformal factor relating these two asymptotic
gionsM4(r ) andM4(r) was found to be equal to@3#
ack
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E~q,p!2

r2
5

r 2

E~q,p!2
. ~73!

Thus the total stability of this picture of the space-time ge-
ometry is constrained severely by the fact that the space-time
energy of the ground stateE(q,p) is not vanishing. The
existence of these charges is explained by the existence o
the string states. Moreover, from the point of view of string
theory the twoM4 do not seem to be distinguishable. This is
one possible explanation of the spontaneous supersymmetr
breaking behind the nonvanishing of the ground state energy
E(q,p)Þ0. When the energy of the ground state vanishes
and the area of the black hole horizon shrinks to zero this
picture of two asymptoticallyM4 regions is not valid any-
more, scalar fields do not stop evolving inside the throat. In
the duality symmetric area formulas the vertices described in
@5,6# are reached, double or quadruple number of supersym
metries is restored and singularities become naked unless th
ground state energyE(q,p) is nonvanishing. Our macro-
scopic formulas are supposed to be valid for large values of
charges but one may expect corrections to them from micro-
scopic physics, for example one can find some disagreemen
between microscopic and macroscopic calculation of the en
tropy for small charges@11#. Therefore the status of the zero
entropy limit may be changed by microscopic physics.
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