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Universality of supersymmetric attractors
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The macroscopic entropy-area formula for supersymmetric black holes=i2,4,8 theories is found to be
universal: ind=4 it is always given by the square of the largest of the central charges extremized in moduli
space. The proof of universality is based on the fact that the doubling of unbroken supersymmetry near the
black hole horizon requires that all central charges other #vaM vanish at the attractor point fod=4,8.

The ADM mass at the extremum can be computed in terms of duality symmetric quartic invariants which are
moduli independent. The extension of these resultddfes, N=1,2,4 is also reported. A duality symmetric
expression for the energy of the ground state with spontaneous breaking of supersymmetry is provided by the
power 1/2(2/3) of the black hole area of the horizond+4 (d=5). It is suggested that the universal duality
symmetric formula for the energy of the ground state in supersymmetric gravity is given by the modulus of the
maximal central charge at the attractor point in any supersymmetric theory in any dimension.
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I. INTRODUCTION Vice versa, the minimal energy is given by the square root of
the area:
The attractor behavior in the supersymmetric system was

discovered in the context d=2 extremal magnetic black A(q,p) |2
holes[1]. It was explained in this work that unbroken super- E(q,p)=< yp. ) :
symmetry leads to the fact that the area of the black hole
horizon depends only on conserved charges. The idea W3s 4—=5 the minimal energy ifN=2 theories was shown to
further developed for more general black hole solutions in,, E(q,p)~[A(q,p)12° [3].
[2,3]. In [3] the complete treatment ai=4, N=2 and The purpose of this paper is to find out how much of this
d=5,N=1 supersymmetric attractors was presented as wellghayior carries over to higher extended supersymmetries,
as some particular examples bf=4,8 attractors ind=4.  \yhare the number of central charge eigenvalues/E>1.
The main result of this work was that the area of the superye \would like to mention in this respect that the focus of
symmetric black hole horizon in the theoriesif2 Super-  jnierest to the problem as to whether the area always does

gravity interacting with arbitrary number of vector and hy- depend on moduli was stimulated by the work of Larsen
permultiplets can be computed by extremizing the central,q Wilczek[4].

charge of the theory in the moduli space. The summary of rhe grea formulas for theories with extended supersym-
the attractor picture ifN=2 theories is the following. There  eries are build out of central charges on the basis of dual-
is only one central chargé,g whereA,B=1,2 and the cen- jiy invariance and comparison with some known particular
tral chargeZ,g is complex and antisymmetric i®,B.  plack hole solutions. For example, Mi=4 theories there are
Therefore we have onlf,,=Z. Unbroken supersymmetry o eigenvalues of the central charge maitixandZ,. The

of the N=2 black holes requires area of the horizon for the particular black holesNr-=4
supergravity without matter multiplets is proportional[ &

()

Mo (d, P, #)=1Z(a,p, )| D)
In gravitational theories the ADM mass in asymptotically (A(q,p)) = 7(|Z4] - |Z5)?). (4)
flat spaces defines the energy of the space-tilng,,=E. 4 Jia

Thus inN=2 theories one may have concluded that the area

of the horizon is proportional to the square of the energy inn N=8 theory the corresponding formula for the area de-

its minimum: pends on 4 eigenvalues of the central charge matrix and is
given in agreement with some class of solutiong &

A(d,p)
:WEZ(qvp!¢)|¢9E/ﬁ¢:0' (2)
4 A(q,p) . bt
=xl || 2 |zi[*-22 |z:]3zZ)|
4 _ i i>]
N=8
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Formula(5) corresponds to the Cremmer-JUli@ E(7) quar-  point (deduced by setting the gaugino variatién'?=0 but

tic invariant, not fixing the S dilaton). In N=4 we have thafZ,|=0
_ _ _ forces the dilaton to take the fixed val&=S;, and the
O =Tr(Z22)%— 3 (Tr22)%+ 4(PfZ+ Pf2), (6)  matter scalars to the poid?(a=1,...n,)=0. So
in the normal frame for the central charge mafi®}. Each (1219 ix=(12Z4] - |Zz|2)szsﬁxm_a=0. (10)
central charge depends on moduli and electromagnetic '
charges. But now we use the fact thatZ,|—|Z,|?) sna=o Is indepen-

One may have thought that the function to be extremizedient of S and this allows to give an explicit formula for
to get the area will be some combination of various centra’zlh_ in terms of 26+ n,) charges:
IX v -

charges ilN>2 theories generalizing the one central charge
situation inN=2 theories. However, this is not the case, the Ileﬁx=%W- (12)
result of our study is that the unbroken supersymmetry leads

to the universal formula for the area of the horizan all ~ Similarly in N=8, the attractor point is the value of the 70
d=4 extended supersymmetric theories. First, let us note thahoduli ¢= ¢y, for which |Z,|=|Z3|=|Z,|=0. This means
the energy of the space-time, or ADM mass is equal to thehat the area formula is given in terms of the Cartan’s quartic
largest eigenvalue of the central charge matrix from the reinvariant J which depends only on charges and does not

quirement of unbroken supersymmétry depend on moduli. The universality of the area formula
comes from the fact that the Cremmer-Juli@)Envariant at
E(d,p,#) =M apm(Q,p, ) =maxZc(q,p,#)|, the attractor point on one hand has to depend only on charges
and be E7) symmetric, and therefore has to coincide with
C=1,... N2 (7)  cartan’s invariant; on the other hand at the attractor it is
given by

We will find that the square of the minimal energy always
defines the area of the horizon of the supersymmetric blacT A(q,p))
N

holes:

(2 2123 [z 12

=

4 _ i
A(d,p) ’ 112
S CHL | P ® +8|leZZ3ZA|) ) =245,
1Z,]=1Z51=1Z4|=0
Let us relabel the central charges: the largest one
maxZc(a,p, ¢)|will be called|Z| so that (12)

maxZc(q,p,$)|=|Z|, therefore

and the remaining N/2—1) eigenvalues of the central
charge matrix will be labelled by the index which runs
from 1 to (N/2—1).

We will establish that the fixed point of attraction in the If Cremmer-Julia &7) invariant & is ¢ independent in

theories of extended supersymmetries With 2 is given by the generic point of the moduli space, which seems likely, in

the condition of t_he vqmshmg of all eigenvalues of the CeN- . case we have also
tral charge matrix which are smaller than the largest one,

1Z15= (VO ) g g, = VI, (13)

and this gives an explicit formula ¢Z, |2, in terms of the 56
charges.

defining the ADM mass: O =1, (14)
(ZJnd=0, c=1 E_ 1 @) as conjectured by Cremmer and JUIfd. In any case at the
e/ fix] 2 ' attractor point these two invariants coincide and this is the

reason for the universality of our area formula.
The area formula therefore is always given by the extremum  Similar results are also obtained fr=2,4 atd=5.
value of the central charge, or space-time energy, which is e find it useful to introduce here an additional object
the point where the other charges vanish. Let for example ir¥,(p)' for any scalar fieldg'(r), which forms part of the
N=4 case the first eigenvalue is larger than the secon@lack hole solution. It is typical for the attractor problem to
|Z4/>12Z5|. We will find that the area formula for black holes have a pair of phase space variableét),y(t)=x'(t)]. In

in N=4 supergravity witiN=4 vector multiplets is given by our case the corresponding pair consists of the scalar field
a duality symmetric formula which is also an extremum ofand the first derivative of the scalar field

the Arnowitt-Deser-Misne(ADM) mass defined by the van-
ishing of the next to the largest eigenvalue of the central o9
charge. 3l(p)= %d? (p). (19
A(g,p) can be explicitly computed, by noticing that
7(|1Z1] =1Z21%)z,—0=7(1Z1] —|Z,|?) at the matter attractor We have plotted the value of the dilat@12*?") and the
3. (p) for the dilaton U(1¥ black hole. We are using here the
radial variablepo= —1/r in terms of which the near horizon
For simplicity we consider only eveN. geometry is conformally flat. Figure(d shows that starting
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energy of the ground state. This picture may apply not only
for supersymmetric black holes. One may try to find out if
6*245 the analogous phenomenon takes place at least for near ex-
treme black holes, as suggested to us by L. Susskind. The
plausibility of this picture relies on the fact that we may be
dealing here with the critical phenomena which have some
specific range of applicability and in particular the attractor

behavior of the system may well describe the nearby trajec-
\i tories in the phase space of the system.
One should stress that the extremization of the energy

which we study here is performed under condition that the
scalar fields are constant as it is usually done in quantum
P field theory by looking for the minima of the energy in the
class of configurations with constant scalars. This is the main
feature of supersymmetric attractors, since we study the fixed
points of the differential equations where the scalars have
D vanishing derivative$l].

-14 -12 -10 -8 -6 -4 -2

dix(p)—0, p—oe. (16)

- L Lo The massless black holésolutions with ADM mass going

to zerg which one would tend to associate with the mini-
mum of the ADM energy, do not fit into the class of attrac-
tors with constant scalars in the fixed point and has to be
studied separately.

From the point of view of supersymmetry, this distinction
comes from the following fact. The graviphoton charge,
(b) which is a linear combination of moduli and electromagnetic
charges, always represents the ADM mass for supersymmet-
ric solutions, i.e., the energy of the space-time. The minimi-
zation in the class of configurations with constant scalars by
supersymmetry requires all vector fields of the matter mul-
tiplets to vanish at the attractor. Their charges also are given
by some linear combinations of moduli and electro-magnetic
with any initial conditions ap=0 (r—«) the field is driven  charges, which vanish at attractor. This leads to Bertotti-
to an attractor value gi— —o (r=0). Figure 1b) shows Robinson-type geometry and black holes with nonvanishing
how the derivative evolves. The initial condition for the de- area of the horizon.
rivative of the scalar field ap=0 (r—o) is equal to the On the other hand one may be interested in the opposite
so-called scalar charg® . It is a function of the moduli at situation when the graviphoton charge tends to zero, leading
p=0 (r—=) and electromagnetic charges, therefore the scato a specific relation between the moduli and electromagnetic
lar charge is also called a secondary hair of the black holecharges, corresponding to massless black holes. The matter
When evolving into the core of the black hole, independentlymultiplet charges do not vanish, otherwise the solution
of the initial value of the scalar charge @=0 (r —=), the  would be trivial. By supersymmetry it follows that the sca-
derivative(i.e., the effective scalar chargg(p) goes to zero lars do not tend to a constant near the black hole core, the
atp=——o (r=0). geometry is very different from the Bertotti-Robinson-type

The physical picture of this phenomenon was suggested tgeometry and this class of configurations has to be studied
us by A. Linde. It reflects the fact that the values of electricseparately.
and magnetic charges are protected by gauge invariance andAlso the configurations with the zero area which have
the associated Gauss low. One can measure the actual valudsubled or quadrupled number of unbroken supersymmetries
of electric and magnetic charges being far away from thecomparatively to those with nonvanishing area, do not have
black hole, which explains why these charges are called théixed points for the scalar fields near the horiZag].
black hole hair. The scalar charges which can be measured In what follows we will explain how the result described
far away from the black hole are not protected by any conabove follows from unbroken supersymmetry. In Sec. Il we
servation low. This is why the derivative of the scalar fieldswill explain the particular case of pufd=4 supergravity,
decreases when moving into the core of the black hole; seihe U(1¥ model. We will present the complete theory of
Fig. 2(b). Whereas the electric and magnetic charges are corattractors inN=4 supergravity interacting with arbitrary
served and their presence and stability supports the existenoember ofN=4 vector multiplets in Sec. Ill. The area for-
of an infinite throat of the Bertotti-Robinsd®] geometry, mula is presented in various forms which show the manifest
the derivative of the scalar chargdp)—0 atp—x, i.e.,it SandT duality as well as moduli independence as the con-
does not penetrate into the throat to keep its dilze area of sequence of supersymmetry. On top of it the area formula is
the black hole horizognminimal. This results in the minimal finally reduced to the universal one in terms of the minimi-

FIG. 1. Evolution of the dilaton fielé~2¢ and of the effective
dilaton chargeX (p)=—d¢/dp for various initial conditions at
p=0 (r=x) to a common fixed point gi=—x (r=0).
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zation of the ADM mass in the moduli space. In Sec. IV we[5] we have the following situation near the horizon: for
will analyze the simpleN=8 model, anSTU attractor, positive pq the unbrokerN=2 supersymmetry consists of
which presents in a nice way the gross features of the attra¢he third and the fourth ones, and for negative valugspit

tors with extended supersymmetries. The genbral8 at- is reverse, the first and the second supersymmetries are un-
tractor is described in Sec. V. Cartan’s quartic invariantbroken whereas the third and the fourth are broken. The di-
which reflects the &) symmetry of the theory is miracu- latino transformations rules in the notation[&f is

lously reduced to the simple and universal formula for the
area as the minimum of the largest eigenvalue of the centra|

. A 1 — _ _ Via— _ ~ -_J
charge. Section VI presents supersymmetric attractors ire A=~ Y €19, b+ \/5‘7“ (e ’F,,my—e’G,,B) €
d=5. We present the area formulashh=1,2,4 theories. In
particular, the cubic ) invariant is described in connection =0. (17)

with three central charges of the maximally extendied 4
theory ind=5. The universality of the area formula again The first term in Eq(17) vanishes at the fixed point, since
follows from the vanishing of all eigenvalues of the centralwe are looking for¢’=0. Thus at the attractor we get, for
charges except the largest one. One more miracle of supepd>0, J=3,4 as well as forpg<0, J=1,2 the second
symmetry and we get the universal formula for the area irterm in Eq.(17)
terms of the minimization of the ADM energy for all cases 1 g $ ;
considered. S e'=3 (e ’|p|—e?|a])sx €=0, (18
zat-irohnefr? erriztgléi ?Eggs;%l?/nitgrosgcl:ggisctzgr)i:/lgzoor: i%egf_ra“vvhich leads to the cor!dition of the vanishing of the dilaton
pected to correct the entropy formula for small values Ofcharge at the atiractor:
charges. This is of course related to the fact that Einstein Iq
gravity is onIy_ the pointlike limit approximation of the more S =3 (7% p|—e?la))sx :O@egxz‘ﬁ:—_ (19
general theories. ||

Our study of supersymmetric black holes and their attrac-
tor behavior suggest the following interpretation: we hav
computed the exact energy of the ground state in supersy
metric gravity as the function of electric and magnetic (Z13)ix €=0. (20)
charges. The presence of these chakgesitations of a su- 1fix

perstrings in the vacuum leads to spontaneous breaking ofor pg>0,e3 €* are nonvanishing, therefore at the attractor

supersymmetry, resulting in a duality symmetric positive enysing also the gravitino transformation rule we learn that
ergy of the ground state associated with the nonvanishing

area of the black hole horizon. The recent success in the Z3,=0, |le|=(MADM)234:0pq>O, (21
calculation of the area of the horizon of some five- and four-

dimensional black hole$11] from the point of view of and for pq<0,e!,e? are nonvanishing, therefore at the at-
counting string states with the use DBf-brane technology tractor

[12] naturally fits into our interpretation. The nontrivial part

of this picture is related to the fact that the extreme black Z1,=0, |234|:(MADM)212:0pq<0. (22
holes with the nonvanishing area of the horizon have a con-
formal isometry which exchanges the two asymptotic re-
gions. Therefore the calculation of the area of the horizon of
such extreme black holes can be interpreted as the evaluation
of the square of the energy of the ground state of this system. The geometry of theN=4 supergravity coupled to
The corresponding conformal factor has one parameter, the matter vector multiplefs is based on the nonlinear
area of the horizon, or the mass of the Bertotti-Robinsonsigma model SU(1,1)/U(y¥O(6n,)/O(6)xO(n,). The
universe. The relevance of the computation of the area of thgu(1,1)/U(1) manifold is parametrized by a complex scalar

extreme black hole horizon to spontaneous supersymmetield S and the vector multiplet manifold by the coset repre-
breaking is explained in Sec. VII of the paper. sentatived A = (L1l ,L3):

e We may also rewrite the dilatino transformation rule at
ntibe attractor in the form

Ill. ATTRACTOR IN N=4 SUPERGRAVITY WITH n,
VECTOR MULTIPLETS: GENERAL CASE

iy * —1 ijkl
IIl. ATTRACTOR IN PURE N=4 SUPERGRAVITY, LA LA AijT2€ L ki (23

2
U(1)" MODEL where i,j=1,2,3,4A=1,...,6+n,,a=1,...n,, and

The basic feature of the extended supersymmetry attradhere are orthogonality relations
tors can be easily understood already in the case of pure a . ar A
N=4 supergravity with one gravitational multiplet only. The —Lilas+LiLsij=ms, Lilp=—4d5, (29
bosonic fields in the SU(4) version consist of a complex
axion-dilaton scalar, three vectors and three axial vectors and—
the metric. It was explained ifL0] that near the horizon the  ?We describe here the version Nf=4 theory closely related to
unbroken supersymmetry of the U@1Black hole is doubled. the one in[13]. The version here has the property of being sym-
Instead of 1/4 oN=4 supersymmetry, near the horizon 1/2 plectic covariant. The details of this construction will be presented
of N=4 supersymmetry is restored. In the basis chosen imlsewhere.
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and Note that the @+n,) electric and magnetic charges form an
- o SU(1,1) doublet and6, n,) Lorentzian vectors. This coin-
LiLy=1 (8101, L?\Lﬁzo. (25  cides with the minimum of the ADM mass,
The vector field(complexified kinetic matrix is A(Q,p) =47(Mipm) smrog—0s (35
NAEZ(S_g)LRLE”. +Sys (26)  in the axion-dilaton and matter moduli space.
We would like to stress here that [8] we have intro-
and the symplectic sections are duced the concept of attractor variables for the black hole
solutions: variables in which the ADM mass depend on
(Lf} ,NAELﬁZSLA”), charges and moduli, however, the area depends only on
charges. The area formu(@4) in the attractor variables ap-
LA AsLE=SL,.). 2 pea_red in the recently rewsed. version of .REIS]. Our
(La Naska ra) @9 choice of what are attractor variables is defined by the for-
In terms of these sections the central chaZgeis mulation of the theory with manifest symplectic symmetry.
Simultaneously this form provides the proof of the indepen-
Z; :eKIZ[Li/J_XqA_SL”ApA], (28) dence of the area from the moduli and leads to the univer-

whereK = —Ini(S—§is the S-field Kahler potential. For the
x-independent scalarss(Lj} ,
point

SLipt—L3q,=0, (29

while unbrokenN=1 supersymmetry for the dilating' re-
quires that the central chardjg,|<|Z;,|=M apy given by

|Z,2=3% (Zijﬁ_ \/(Zij?)z_ i1e€Mz,24% (30

should vanish. EquatiofB0) fixes the value ofS at its at-
tractor point:
Z,=0. (31

It can be proved using the symplectic formulationNvf4
theory given above that the quantity

|Zl|2_|22|2:%\/(zijzij)2_ ileMziz? (32

is S independent. This would be sufficient to prove the

moduli independence of this expression in pNire 4 super-
gravity. However, in presence df=4 vector multiplets this

L2) unbroken supersymmetry
for the matter gaugino's>A?=0 requires at the attractor

sality of the area formula in terms of the extrema of the
ADM mass in the moduli space. On the other hand the het-
erotic area formula given ifl5] as well as our proof of
independence on all moduli at the attractor point applied to
the expression for central chargeq i@] provides the link to
the properties of a string theory. Indeed the corresponding
attractor variables are the conserve3 charge vectors of
string theory introduced into the black hole physics by Sen
[16] a long time before it was realized that the area of super-
symmetric black holes depends only @3 by the reason of
supersymmetry, as explained in this paper. Qer4 results
and formulas, since they entirely rely on general theory of
N=4 supergravity coupled to vector multiplets, should
equally apply to the heterotic string compactifiedTanor to

the type Il string compactified o3 X T,.

IV. STU ATTRACTOR IN N=8 SWU8) SUPERGRAVITY

In [3] we have described STU model in the attractor vari-
ables. Here, as the preparation to genétal8 attractor we
would like to check whether the main principle of the mini-
mization of the largest eigenvalue of the central charge will
produce the moduli independent area. We will denote
e 7=ImS=s, e o=ImT=t, e Po=ImU=u.

The ADM mass considered as a function of charges in
generic point of the moduli spacs,{,u) is

expression as a function of attractor variables corresponding
to «,B charge vectors of string theory does depend on the
scalars of these multiplefshe asymptotic value of the ma-
trix M used in various black holes constructipriBhis was The variation of the mass over the moduli gives three attrac-
established ifi14] [see Eq(8.13 of this pape} starting with  tOr equations:

ten dimensional supersymmetry and using the Witten-Israel-
Nestor construction. However our formalism shows that at
the matter attractor point defined in EQ9) this expression
does not depend on matter moduli anymore and becomes the
function of charges only:

(|Zl|2_|22|2)|22|=0: V9°p*—(q-p)*,

where Lorentzian O(6,) norm forq, ,p" doublet is under-
stood. It then follows that the area is

A=2m\q’p*~(q-p)*.

1 S u t
MADM:Z(StU|q1|+m|q3|+§|p2|+aj|p4|)- (36)

s u t s
stuldy|+ o ldsl = gPal = g5 lPal | =0,

S u t
StU|0I1|—E|QS|+S—t|D2|—§J|D4| =0,
(33

S u t
(stUIqll—mlqsl—s—tlpzl+§jlp4l)=0. (37

The solution of these equations puts the moduli into the fixed

(39 points where they become functions of charges:
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i NMA:DMEA'f‘ZABMV’yVEB, (44)

u t
swdal=(g] 1[5 0[] Ipal -
(39) OxnBc=ZaBur0" "€c) - (45)

Let us decompos&N=8 into SU(4)XSU(4) as(4,) +

We get the useful relations
g (1,4), keeping all fields oN=8 theory. TherN=8 super-

[P |qsl |pal gravity multiplet will split into one gravitational multiplet of
(Sztz)fix:ﬁv (Uztz)ﬁx:ﬁ, (Szuz)fix:ﬁv N=4 theory,
(39 [(2)4(3/2)6(1)4(1/2)2(0)],
and four spin 3/2 multiplets
|P29apal| ¥
(stu)g= W . (40 4[(3/2)4(1)6+1(1/2)8(0)],

. and six vector multiplets
This allows to get the value of the ADM mass at the attrac- P

tor: 6[(1)4(1/2)6(0)].
- - /
(M aom)ix = (StWsix| 41| =[d1p203P4l (4D The eight-dimensional indeA is split asA=(i,a) where
We may now conjecture that the generalization of the foud =104 and a=1,...,4. The fermions are

- = i i W a= (¥, W) and xasc=(Xijk s Xiab: Xaij :Xabd) - IN
| f th | ch MA i pal _ABC _|]k iab X aij ab
elgenvalues o thiN=8 supergrawty central ¢ argé@] IS N=4 theoryxijk IS In spin 2 IIIU|t|p|etaXaij »Xabc belong to

spin 3/2 multiplet and;,p, to spin 1 multiplet. We may solve
) Egs.(45) using the ansatz

u N t
s_t|p2| s_u|p4|

S
421:(5tU|Q1|+m|Q3|) +

S u t Eazou Ei:{61,62$0,63:6420}. (46)
422:(Stu|Q1|+ E|Q3|) _(s_t“)leL ﬁ'p“')’ The transformation of four gravitino from the gravitational
multiplets and of those from the spin 3/2 multiplets are
S u t _
423:(Stu|Q1|_E|Q3|)+(S—t|p2|—§|p4|), 5¢Mi:D/¢5i+ZijM7V€|: (47)
| | > | | ( . | | : | |> ( 2) 5%“‘: D#Ea+zaiuv7lyei- (48)
4Z,=|stuqy— —|as| | —| =|pal— —|pal |. (4
) e tu i st P2 su P The central charge matrix can be put into the normal frame

| by means of a SW) transformation. In this frame the

. . [8
Now one can see that indeed the three attractor equatlorgﬁ]c diagonal elementZ,, are absentZ,;=0
(37) mean exactly ai ai=0.

22223224:0,

z, 0 )
. (49)

Z =
AB 0 Zab

z = (M o) = —E(p.q). (43
1|22:23:24:O (M apm)iix=a1P203P4| = E(P,q). (43) Matricesz,; andZy are diagonal

This example makes it natural to look for the geneyat 8 70 0
. o . 102 230 0
attractor expecting to get the area from the minimum in the 7 = 3%2 (50)
moduli space of the largest of the four eigenvalues of the 4 0 Zzyop) “ab 0 z40,)’
central charge matrix.
where
V. N=8 ATTRACTOR: GENERAL CASE 0 1
N=8 theory has only one gravitational multiplet. There- 02=i( _1 0). (51)

fore all 28 vector fields are graviphotons, there are no vector

fields which are not supersymmetric partners of the gravitonyp s the transformation of 4 gravitino from spin 3/2 multi-
The 28 electric and 28 mag_neUc charges all together are Blets vanishesy,,=0 due to the fact that 4, supersym-
56 fundamental representation of & The black hole solu-  etries are broken and that in the normal frame the off di-

tions of this theory with 1/8_ of_ supersymmetry un_broken ar€agonal elements of the central charge makix are absent.
known to have a nonvanishing area. The manifestty) E 1nq variation of spin 1/2 fields vanishes

symmetric area formula is given by the unique quartic invari-

ant of H7). However, how can we find out if the area is SXabc=0, OXaij=Zij€at Zia€j=0. (52)
independent on 70 moduli and depends only on 56 charges?

Let us first analyze the supersymmetry transformation rule$f remains to check the spin 1/2 transformations from the
[7] near the attractor where all 70 moduli tend to a constangravitational multiplet and from the vector multiplet of
values: N=4 theory at the attractor point:
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8Xiab=Zabu0™"€r (53  wheregq;; is a 27 integer charge vector transforming under
E¢(Z) (integer valuedEg group.
5Xi].k:z”wgﬂvei_ (54) TheseN=4 results are expected to apply to the type I

strings compactified on the five-torus or eleven-dimensional
The first of these two equations implies thag,=0, i.e., supergravity(or M theory on the six-torus.
z3=24,=0. The second one yields=0, as inN=4. Thus
we have proved that the attractor condition indeed requiresy||. EXACT TOTAL ENERGY OF THE GROUND STATE

all eigenvalues of the central charge which are smaller thammnD SPONTANEOUS BREAKING OF SUPERSYMMETRY
the one equal to the ADM mass to vanish. This again leads

us to the universal formula for the area, starting with 4 E ~ We would like to use here the experience from the study
symmetric formula. of supersymmetric black holes in string theory, accumulated

in the community over the recent years and also some ideas
from duality symmetric quantization of superstring theory
[18] to learn about the properties of the exact Hamiltonian in
The general formulas fol=4, N=8 derived in this pa- quantum theories with local supersymmetry. It has been
per have an obvious extensiondst 5. In our previous paper pointed out in[18] that the consistent quantization of
[3] we gave the general area formula for an arbitrsiey 1 x-symmetry in the backgrounds with unbroken supersymme-

VI. ATTRACTORS IN d=5,N=2,4 THEORIES

theory ind=5 in terms of the symmetric constathf g try can be performed with the help of the supercharge of the
background in which the extendedsymmetric object can
A~Z32=[d”B(q) "1ga0s]®* (55  exist. The supercharge of the gravitational supersymmetric

theory was defined by Teitelboifd9] as the surface integral
where d*®(q) ' is the inverse of the moduli dependent in terms of the gravitino¥', field of the configuration, solv-
matrix dag=dasct® computed at the attraction ing the field equations
point Z=Z;, . There was only one central chargé
=tA(2)ga (dapct?tPt€=1) andg,Z=0=2=2Z,.

For N=2, N=4 in d=5 we have two and three central
charges respectively17]. Again the ADM mass is given by
the largest eigenvalue. Let us calldtand the otheZ,. As  The surface over which the integration has to be performed
before, depends on the choice of configuration. In all cases it is the

same surface the integration over which defines the ADM
A~(2)32, (56) mass of a given system or the ADM mass per unit area
(length. The on-shell backgrounds with some number of su-
For N=2 coupled ton, matter multiplets there are-6n, persymmetries unbroken in bosonic sectors have the vanish-
electric charges. They are in ti&n,) vector representation ing supersymmetry variation of the gravitino, when the pa-
of O(5, n,) + a singlet. The singlet is the charge of the rameters are Killing spinors:
vector dual to theB,,, field.
. The general formula for at the attractor po_lnt coincides O = é dE#Vy’“’"&E v,= fﬁ dEWV"”WmﬁO.
with the macroscopic formula given by Strominger and Vafa g3 k as

o- 55 ds,, 74, . (59
9%

[11]: (60)
Z| :(QHQIZ:)1/3' (57) For anti-Killing spinors the supercharge is not vanishing. For
fix the black hole multiplets it defines the so-called superhair of

where Qy is the singlet charge an(DE is a Lorentzian the black hole:

(5,n,) norm of the other 5-n, charges. ~
For theN=4 theory we have 27 charges which are in the Ssuperhai= Dk = 3§ dEWy”“”AV)\e,T. (61
27 irreducible representation ofgE The formula forZ is 7=

given by the cubic root of the uniquegEinvariant con-  the concept of thesuperhairwas defined for the first time
structed out of the 27 dimensional representation @f E for extreme Reissner-Nordétro black holes in[20] and

which is the central chargg; (i,j=1,...,8)[note thatthe  gy,died more recently in the context of more general extreme
27 can be represented as a traceless Sp(8) symplectic Mgz ck holes inf21].
trixJ: In the theories with local supersymmetry the total-energy
' - operator(Hamiltoniar) [22] is defined via the quadratic com-
Z|,, = (28)"= (02 g™, Q) (58 pination of supercharges

[\ZES

Q% - (62)

N
Po=(87GhN)"1Y,
=1 1

3The reason why ifN=4 supergravity ind=5 there are only
three central charges in the normal frame is due to the fact that the
Z; (i,j=1,...,8) central charge matrix is traceleg;Q''=0 The computation of the area of the horizon of the supersym-
with respect to the Sp(8) metria" = —-Q!". By reducingd=5to  metric black holes performed above via the extremum of the
d=4 on S, one gets a fourth charge from Kaluza-Klein vector ADM energy suggest the following interpretation: the ADM
0,5 mass at the extremum in the moduli space is the value of the

A
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total-energy operataiHamiltonian of the ground state. The ground vanishes the transformation of gravitino does not for
ground state has a nonvanishing vacuum energy due to thenvanishing charges,=q,p. This causes the main differ-
presence of electric and magnetic charges, which cause spognce with the trivial asymptotically flat vacuum with zero

taneous breaking of supersymmetry: energy:
A(p, 1 )
Hyac=E(p,q) = \/ (4p7Tq). (63) dsus ¥,)sr#0, € #0, €#0, (68)

. . . S v=0, €'+#0, €#0. 69
The electric and magnetic charges are due to the excitation of susv ¥ € € (69

the microscopical degrees of freedom of the string theory or.

. . he ground state energy, which is proportional to the square
alternatively due to the near horizon black hole geometry Ofroot of the area of the black hole horizéor to the Bertotti-

Bertotti-Robinson, which exists only when the charges "R obinson magss positive, duality symmetric and presents a
nonvanishing. For the string theory interpretation of the L ; .
p_ontnwal computation of an eigenvalue of the energy-

ground state energy the appropriate formulas are: for the he " d f . Th
erotic string compactified ofig (or type Il compactified on operator of a ground state of quantum gravity system. The
6 energy of the ground state

K3XT,) the SL(2Z)XS0O(6,22Z) symmetric expression
for the ground state energy is

A(p,q)

N 4
(Po)vac=(87GhN 12 X (Qa)ias (70
E(p.Qhe= \——=(@p°—(a-p))™ (64 -

) . is always non-negative, however, for the ground state to have
where the 2(6+22) electric and magnetic charges form 5 hositive energy one has to require that the supercharge of
SL(2Z) doublets and6,22) Lorentzian vectors. For type Il the ground state is nonvanishing. This happens in our system
string compactified off s the vacuum energy is given by the gjnce the ground state supercharge does not vanish in pres-
E7(Z) symmetric expression. ence of the covariantly constant graviphoton field strength:

E(q.p), =J% 65) This makes the calculation of the grou_nd state energy of the

T ' theory with local supersymmetry consistent with the idea of

where the quartic Cartan(B invariant is spontaneous breaking of supersymmetry with the nonvanish-
ing constant value of the vacuum supercharge.

J=0"pia'pii— 7 9 pi;a*'pui+ 95 (€1™Ppy; PiPmPop

- VIIl. DISCUSSION
+6ijk|mnopq”qqumnq0p)- (66)
i . In this paper we have established the universality of the
and the charges’ and pj;, i,j=1,...,8 span the 56- pjack hole area formula for extended supersymmetric theo-
dimensional space. Our interpretation is supported by thges N=2 in d=4. It is based on the fact that all central
followmg space-time picture. The bIac_k_hoIe conﬁguragonscharges of the theory except the one which equals the ADM
interpolate between two vacua, one trivial at asymptotic inynass have to vanish near the black hole horizon by require-
finity and the §ecpnd one described by the Bertotti-Robinsop,ent of supersymmetry. In this way supersymmetry realizes
geometry, which is known to have an unbrokér 2 super-  ihe principle of lowest possible ground state. The fact that
symmetry[23,24,10,3. In particular, due to conformal flat- he ADM mass as a function of charges and moduli is equal
ness of the geometry and due to covariantly constant gravig the central charge does not mean yet that it is a ground
photon field strength, the supersymmetry variation of thesiate. Since the central charge depends on conserved electric
combination of the supersymmetry parameter to vanish:  gnergy is not the minimal one. One has to minimize it in the
moduli space and this is how we get the minimal energy of
SsusvDrut,))er=0, €'#0, €*#0, the grourrl)d State. 9 9y
o 1 2 This universality can be understood also from the fact that
Osus Dt =0,  €#0,  €#0, CL supersymmetric theories with asymptotically flat spaces

At asymptotic infinity the trivially flat vacuum is also char- there exists a well defined universal expression for the
acterized by the unbroken space-time supersymmetry. Mordi@miltonian in terms of the sum over all superchargeg.
over, for the trivial vacuum the variation of the gravitino 1he presence of an extended microscopic object like super-
itself vanishes, since both spin connections as well as vectditfing introduces spontaneous breaking of the supersymme-
field strengths vanish at asymptotic infinity. Consider nowtry. from the point of view of the space-time Hamiltonian,
the second vacuum, the near horizon configuration of th&ince it has a nonvanishing value on the ground state of the
supersymmetric black holes. The space is only conformallpyStem. The electric and magnetic charges which are inter-
flat, it is characterized by some electric and magnetid®reted as chargesy(p) defining the Bertotti-Robinson ge-
charges. The unique parameter, characterizing the geometi§metry and defining the size of its infinite throatq,p),

the Bertotti-Robinson mass, is given by duality symmetricflom the point of view of string theory are simply the con-
function of all available electric and magnetic charges. Oneserved charge vectors of string theary3).

can check that despite the fact that the supersymmetry trans- If one accepts the point of view that the calculation of the
formation of the field strength of gravitino in this back- area of the black hole horizon was a tool to get the ground
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state energy, it become clear that any supersymmetric black E(q,p)? r2
hole solution with particular area formula actually provides 7= 2
the calculation of the i - P E(a.p)
ground state energy and gives a spe
cific example of the ground state energy calculation. How-Thus the total stability of this picture of the space-time ge-
ever, the general expression for the energy of the groundmetry is constrained severely by the fact that the space-time
state is simultaneously universal and duality invariant as exenergy of the ground statE(q,p) is not vanishing. The
plained in this paper, existence of these charges is explained by the existence of
the string states. Moreover, from the point of view of string
E(q.p)=E(a B):(A(q'p) theory the twoM* do not seem to be distinguishable. This is
' ' 4 one possible explanation of the spontaneous supersymmetry
breaking behind the nonvanishing of the ground state energy
This result can be associated with the fact discovered bE(q,p)qﬁo_ When the energy of the ground state vanishes
Gaillard and Zumind25] that the energy momentum tensor ang the area of the black hole horizon shrinks to zero this
in supergravities is duality invariant whereas the oﬁ-shellpicture of two asymptoticallM* regions is not valid any-
Lagrangian is not. Our analysis also predicts that the moshore, scalar fields do not stop evolving inside the throat. In
generalS and T duality invariant area formulas in the het- the duality symmetric area formulas the vertices described in
erotic theory compactified ofis [or type Il, compactified on  [5 6] are reached, double or quadruple number of supersym-
K3XT, , given in Eq.(64) or with U duality for type Il metries is restored and singularities become naked unless the
string theory compactified ofg as given in Eqs.(65]  ground state energf(q,p) is nonvanishing. Our macro-
should be reachable by the counting of string states, as it wagopic formulas are supposed to be valid for large values of
already demonstrated in particular examjles]. charges but one may expect corrections to them from micro-
The space-time picture is that the most general four discopic physics, for example one can find some disagreement
mensional supersymmetric black holes with the nonvanishpetween microscopic and macroscopic calculation of the en-
ing area of the horizon, covering the Singularities, interpolatqropy for small Chargesl]_]_ Therefore the status of the zero

between four dimensional Minkowski space-tiiié, at spa- entropy limit may be changed by microscopic physics.
tial infinity r —o andad$S,x S? down the infinite wormhole

throatr —0 as was noticed by Gibbo&3] with respect to ACKNOWLEDGMENTS

Reissner-Nordsfra geometry. In addition the near horizon We h had t fruitful and enlightening di . f
geometry upon the change of variables e have had most fruitful and enlightening discussions o

the results of this work with E. Bergshoeff, A. Linde, T.
E%(p,q) Orti n, L. Susskind, and E. Verlinde, and an interesting cor-

r=- p (72) respondence with E. Cremmer and B. Julia gi)Bnvari-
ants. S.F. was supported in part by DOE under Grant No.
was also interpreted ifi3] as the second conformally flat DE-FGO3-91ER40662, Task C and by EEC Science pro-
M*. The conformal factor relating these two asymptotic re-gram SC1*ct92-0789 and INFN. R.K. was supported by NSF

(73

1/2

(71)

gionsM*(r) andM*(p) was found to be equal 8] Grant No. PHY-9219345.

[1] S. Ferrara, R. Kallosh, and A. Strominger, Phys. Re\6D) port No. hep-th/9602051unpublishe¢t J. Breckenridge, R.
5412(1995. Myers, A. Peet, and C. Vafa, Report No. hep-th/960206%

[2] A. Strominger, “Macroscopic Entropy oN=2 Extremal publisheq; J. Maldacena and A. Strominger, Report No. hep-
Black Holes,” Report No. hep-th/96021Xtinpublishedl th/9603060(unpublishegt C. V. Johnson, R. R. Khuri, and R.

[3] S. Ferrara and R. Kallosh, this issue, Phys. Re\64D1514 C. Myers, Report No. hep-th/96030€anpublishegl
(1996, [12] J. Polchinski, Phys. Rev. Leff5, 4724(1995.

[13] E. Bergshoeff, I.G. Koh, and E. Sezgin, Phys. L&&5B, 71
(1985.
[14] M.J. Duff, J.T. Liu, and J. Rahmfeld, Nucl. PhyB459, 125

[4] F. Larsen and F. Wilczek, “Internal Structure of Black
Holes,” Report No. hep-th/9511064inpublishegl

[5] R. Kallosh, A. Linde, T. Ofin, A. Peet, and A. Van Proyen, (1996.
Phys. Rev. D46, 5278(1992. [15] M. Cvetic and A.A. Tseytlin, Phys. Rev. B3, 5619(1996.
[6] R. Kallosh and B. Kol, Phys. Rev. B3, 5344(1996. [16] A. Sen, Phys. Lett. B03 22 (1993.
[7] E. Cremmer and B. Julia, Nucl. Phy8159, 141 (1979. [17] E. Cremmer, inSuperspace and Supergravigdited by S.W.
[8] S. Ferrara, C. A. Savoy, and B. Zumino, Phys. L880B, 393 Hawking and M. Roeck (Cambridge University Press, Cam-
(1981). bridge, England, 1992p. 255; M. Gnaydin, G. Sierra, and P.
[9] T. Levi-Civita, R. C. Acad. LinceR6, 519(1917; B. Bertotti, K. Townsend, Nucl. PhysB242 244 (1984; B253 573
Phys. Rev116, 1331(1959; I. Robinson, Bull. Acad. Pol7, (1989; M. Awada and P.K. Townsendibid. B255 617
351(1959. (1989; B. de Witt and A. Van Proeyen, Phys. Lett.283 94
[10] R. Kallosh and A. Peet, Phys. Rev.4B, 5223(1992. (1992; A.C. Cadavid, A. Ceresole, R. D’Auria, and S. Ferrara,
[11] A. Strominger and C. Vafa, Report No. hep-th/9601Gae- ibid. 357, 76 (1999; G. Papadopoulos and P.K. Townsend,

published; C. Callan and J. Maldacena, Report No. hep-th/ ibid. 357, 300(1995; I. Antoniadis, S. Ferrara, and T.R. Tay-
9602043(unpublishe@t G. Horowitz and A. Strominger, Re- lor, Nucl. Phys.B460, 489(1996.



1534 SERGIO FERRARA AND RENATA KALLOSH 54

[18] R. Kallosh, Phys. Rev. 32, 6020(1995. [21] R. Brooks, R. Kallosh, and T. Ortin, Phys. Rev.32, 5797

[19] C. Teitelboim, Phys. Lett69B, 240 (1977; S. Deser, J.H. (1995.
Kay, and K.S. Stelle, Phys. Rev. 1B, 2448(1977. [22] S. Deser and C. Teitelboim, Phys. Rev. L&®, 249 (1977).

[20] G.W. Gibbons and C.M. Hull, Phys. Lett09B, 190 (1982); [23] G.W. Gibbons, inSupersymmetry, Supergravity and Related
P.C. Aichelburg and R. Gugn, Phys. Rev. Lett51, 1613 Topics edited by F. del Aguila, J. de Azmaga, and L. Ibaez
(1983; P.C. Aichelburg and F. Embacher, Phys. Rev3D) (World Scientific, Singapore, 1985p. 147.

3006(1986); 37, 338(1988; 37, 911(1988; 37, 1436(1988; [24] R. Kallosh, Phys. Lett. 82 80 (1992.
37, 2132(1988. [25] M.K. Gaillard and B. Zumino, Nucl. Phy$193 221 (1981).



