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We find a general principle which allows one to compute the area of the horizBbir=&f extremal black
holes as an extremum of the central charge. One considers the ADM mass equal to the central charge as a
function of electric and magnetic charges and moduli and extremizes this function in the moduli(@pace
minimum corresponds to a fixed point of attracdiofhe extremal value of the square of the central charge
provides the area of the horizon, which depends only on electric and magnetic charges. The doubling of
unbroken supersymmetry at the fixed point of attractionNer2 black holes near the horizon is derived via
conformal flatness of the Bertotti-Robinson-type geometry. These results provide an explicit model-
independent expression for the macroscopic Bekenstein-Hawking entrdpy Bfblack holes which is mani-
festly duality invariant. The presence of hypermultiplets in the solution does not affect the area formula.
Various examples of the general formula are displayed. We outline the attractor mechaiNsm4 @& super-
symmetries and the relation to the=2 case. The entropy-area formula in five dimensions, recently discussed
in the literature, is also seen to be obtained by extremizing theehtral chargel S0556-282(196)03714-9

PACS numbes): 04.65+e, 04.70.Dy, 11.25.Mj, 11.20.Pb

I. INTRODUCTION The main result of this paper is the derivation of the uni-
versal property of the stable fixed point of the supersymmet-
Supersymmetry seems to be related to dynamical systentigs attractors: the fixed point is defined by the nprinciple
with fixed points describing the equilibrium and stabifity. of a minimal central chargeand the area of the horizon is
The particular property of the long-term behavior of dynami-Proportional to the square of the central charge, computed at
cal flows in dissipative systems is the following: In ap- the point where it is extremized in moduli space.Nr=2,
proaching the attractors the orbits lose practically alld=4 theories, which is the main object of our study in this
memory of their initial conditions, even though the dynamicspaper, the extremization has to be performed in the moduli
is strictly deterministic. space of the special geometry and is illustrated in Fig. 1. This
The first example known to us of such attractor behavioresults in the following formula for the Bekenstein-Hawking
in the supersymmetric system was discovered in the contex@ntropyS, which is proportional to the quarter of the area of
of N=2 extremal black holeEL,2]. The corresponding mo- the horizon:
tion describes the behavior of the moduli fields as they ap- A
proach the core of the black hole. They evolve according to S=—
a damped geodesic equatifsee Eq.(20) in [1]] until they 4
rundlnlm me fldxed.ptomt nearhthe b:aclt: hqle hOI‘IZOI‘]t.. Thef This result allows generalization for higher dimensions;
modull at Tixed points Were Snown 10 be gIven as ratios ok, example, in five-dimensional space-time one has
charges in the pure magnetic c44¢. Recently Strominger
has further shown that this phenomenon extends to the ge- A
neric case when both electric and magnetic charges are S= Z~|Zfix|3/2a d=5. 2
presenf2]. The inverse distance to the horizon plays the role
of the evolution parameter in the corresponding attractor. By There exists a beautiful phenomenon in black hole phys-
the time moduli reach the horizon they lose completely thedcs: According to the no-hair theorem, there is a limited num-
information about the initial conditions, i.e., about their val- ber of parametefswhich describe space and physical fields
ues far away from the black hole, which correspond to thdar away from the black hole. In application to the recently

=7T|Zﬁx|2, d:4 (1)

values of various coupling constants; see Fig. 1. studied black holes in string theory, these parameters include
*Electronic address: ferraras@cernvm.cern.ch 2We are assuming that the extremum is a minimum, as it can be
TElectronic address: kallosh@physics.stanford.edu explicitly verified in some models. However, for the time being we

IA point x, where the phase velocity(xg) is vanishing is  cannot exclude situations with different extrema or even where the
named afixed pointand represents the system in equilibrium, equationD;Z=0 has no solutions.
v(X5x) ~0. The fixed point is said to be attractor of some mo- 3This number can be quite large; e.g., fdF=8 supersymmetry
tion x(t) if lim_,X(t) ~ Xy (1) one can have 56 charges and 70 moduli.
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FIG. 1. Evolution of the dilaton from various initial conditions at infinity to a common fixed poimt=ad.

the mass, the electric and magnetic charges, and the asymp- A )
totic values of the scalar fields. S=77= 7|Ziy| = 7|pal. (6)
It appears that for supersymmetric black holes one can
prove a new, stronger version of the no-hair theorem: Blackrhis indeed coincides with the result obtained before by
holes lose all their scalar hair near the horizon. Black hole:ompletely different methodgt, 5.
solutions near the horizon are characterized only by those |n general supersymmetribl=2 black holes have an
discrete parameters which correspond to conserved charg@$)n massM depending on chargep(q) as well as on
associated with gauge symmetries, but not by the values Ghoduli z through the holomorphic symplectic sections
the scalar fields at infinity which may change continuously. (XM\(2),F,(2)); see the Appendix. The moduli present the
A simple example of this attractor mechanism is given byya|yes of the scalar fields of the theory far away from the
the dilatonic black holes of the heterotic string thefBy4;  pjack hole. The general formula for the mass of the state with
see Sec. |V for details. The modulus of the central charge ine-half of unbroken supersymmetry Nf=2 supergravity

question which is equal to the Arnowitt-Deser-Misner nieracting with vector multiplets as well as with hypermul-
(ADM) mass is given by the formula tiplets is[6—9]

1 M?2=|z|?, (7
MADM:|Z|:§(e %o/ p| +e?0|q]). 3 12]

where the central charge [i6]
In application to this case the general theory, developed in N K222 A A
this paper, gives the following recipe to get the area. 2(z.2,9,p) =" X2~ FA(2)P7]
(i) Find the extremum of the modulus of the central =(L g, —M,ph), (8
charge as a function of a dilat@t?o=g? at fixed charges;

so that
d 10/1 1 o
g/ 2l@p.a)=5 0| glpl+alal == czlpl+|al=0. MZom=1Z12=M20(2.2,p,0). 9)
@ The area, however, is only charge dependent:
i) Get the fixed value of the moduli:
() A=A(p,Q). (10
gfz- _ E’ (5) This happens since the values of the moduli near the horizon
X

ql are driven to the fixed point defined by the ratios of the
charges. This mechanism was explained befofdjand[2]
(iii) Insert the fixed value into the central charge formulaon the basis of the conformal gauge formulationNof 2
(3), and get the fixed value of the central charge: The squartheory[7].
of it is proportional to the area of the horizon and defines the This attractor mechanism is by no means an exclusive

Bekenstein-Hawking entropy property of onlyN=2 theory in four dimensions. Our analy-
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Note that in the Einstein-Maxwell system without scalar
|Z] 4 fields the ADM mass of the extreme supersymmetric black
hole simply coincides with the Bertotti-Robinson one, both
being functions of charges:

MZom(P,) = M3g(p,q). 17)

We will describe below a near-horizon black hole of
N=2 supergravity interacting with vector multiplets and hy-
permultiplets. The basic difference from the piNe=2 su-
pergravity solutions comes from the following. The metric
] near the horizon is of the Bertotti-Robinson-type, as before.
zgx(p, q) z However, the requirement of unbroken supersymmetry and

duality symmetry forces the moduli to become functions of
_ . the ratios of charges, i.e., take the fixed point values. We will
FIG. 2. Extremum of the central charge in moduli space.  jescribe these configurations, show that they provide the res-

. . . . toration of full unbrokerN=2 supersymmetry near the ho-
sis suggests that it may be a quite universal phenomenon ¥zon. We will call themN=2 attractors; see Sec. II. In Sec.

any supersymmetric theory. The main purpose of this Pap&f; e vill analyze some ofN=4 andN=8 attractors and

is to investigate the attractor mechanism in the Symplec“%rovide their interpretation from the point of view bf=2
covariant form ofN=2 theory, to analyze the attractors of theory. In Sec. IV examples dfi=4 andN=8 attractors

“ig ahndN=8 theory, and to reinterpret them in terms of will be presented using in each case the paramétatgac-

=2 theory. . . . Y tor variables”) which allow one to demonstrate explicitly the
. In this paper we will use the coor_dmatg-free formula- dependence of the ADM mass on charges as well as on
tion of the special geometry,6,9 which will allow us to  y54,i and the independence of the area on moduli. In the

present a symplectic-invariant description of the system. Wesst section we make some remarks on the possible develop-
will be able to show that the unbroken supersymmetry "®ments of ideas of this paper in the context of looking for the

quiresf t?]e f(ijxeoll_ point of att_raction to be defined by the SOIu'general links between the microscopic and macroscopic
tion of the duality symmetric equation physics in supersymmetric theories. The Appendix contains
D,Z=(d;+ 1K) Z(2.2,p,q)=0 (11) a short summary of the special geometry.
I I 21N 145 My 1]

which implies(see the Appendjx I N=2 ATTRACTOR
(12) The special role of the Bertotti-Robinson metric in the
context of the solitons in supergravity was explained by Gib-
bons[11]. He suggested to consider the Bertotti-Robinson
at (BR) metric as an alternative, maximally supersymmetric,
e oA vacuum state. The extreme Reissner-Noraistroetric spa-
Z=Zp=Z(L*(p,a),MA(p.,9),P.0). 13 tially interpolates between this vacuum and the trivial flat
one, as one expects from a soliton.
31 Near the horizon alN=2 extremal black holes with one-

P
E|Z|=O

The equation’;|Z| =0 exhibits theminimal area principle
in the sense that the area is defined by the extremum of t
central charge in the moduli space of the special geometr

see Fig. 2 illustrating this poi_n_t. Upon substitution of these f the subersymmetry near the horizon was discovered in the
extremal values of the moduli into the square of the centraE_ pPersy Y

charge we get the Bekenstein-Hawking entropy: instein-Maxwell system in11]. It was explained if12]
gewed ! wKing Py that the manifestation of this doubling of unbroken super-

A symmetry is the appearance of a covariantly constant on a
S= Z:7T|Zfix|2- (14)  shell superfield oN=2 supergravity. In the presence of a
dilaton this mechanism was studied[@8]. In the context of

The area of the black hole horizon has also an interpretatiof¥act four-dimensional black holes, string theory, and con-
as the mass of the Bertotti-Robinson univel@l describing ~ formal theory on the world sheet the BR space-time was

e
alf of unbroken supersymmetry restore the comphéte2

tinbroken supersymmetry. This phenomenon of the doubling

the near-horizon geometry: studied in[14]. In a more general setting the idea of vacuum
interpolation in supergravity via sup@rbranes was devel-
Aldr=M3p. (15  oped in[15].

We will show here using the most general supersymmet-

This mass, as different from the ADM mass, depends onlyic system ofN=2 supergravity interacting with vector mul-
on charges since the moduli near the horizon are in theitiplets and hypermultiplets how this doubling of supersym-
fixed point equilibrium positions, metry occurs and what is the role of attractors in this picture.
) ) ) The supersymmetry transformations for the gravitino, for the
Mgr=Zi|*=Mgr(p,q). (16)  gaugino, and for the hyperino are given in the manifestly
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symplectic covariant formalish{8,9] in the absence of fer- vature as well as the vector part vanish. Therefore both su-

mions and in the absence of gauging as follows: persymmetries are restored and we simply have a covariantly
_ B constant superfieléV,;(x,6). The new feature of the ge-
OYn, =D, ept €npl,, Ve, neric configurations which include vector multiplets and hy-
) permultiplets is that in addition to a covariantly constant su-
_ . i ; i i
iA_: o i AL - g~ _uv_ _AB perfield of supergravityW,z(x,6), we have covariantly
=i Ze+ 1 . g L
2 Vouz e 27w B (18 constant superfields, whose first component is given by the

scalars of the corresponding multiplets. However, now, dif-
8L, =iU3P9,9"y" € easCup. ferently from the trivial flat vacuum, which admits any val-

_ ues of the scalars, we have to satisfy the consistency condi-
where\', 4, are the chiral gaugino and gravitino fields, tions for our solution, which requires that the Ricci tensor be
{. is a hyperino,e, and €* are the chiral and antichiral defined by the product of graviphoton field strengths,
supersymmetry parameters, respectively, af@ is the

SQ(2) Ricci tensor. The moduli-dependent duality invariant REEQ,B,ZTMT—Q,ﬁ,, (22

combinations of field strength,,, F,,, are defined by Egs. _ . _

(31); UB* is the quaternionic vielbeifil6]. and that the vector multiplet vector field strength vanishes:
Our goal is to find solutions with unbrokéw=2 super- 7_.—/:”:0_ 23)

symmetry. The first one is a standard flat vacuum: The met-

ric is flat, there are no vector fields, and all scalar fields in thgggfgre analyzing these two consistency conditions in terms
vector multiplets as well as in the hypermultiplets take arbi-5f symplectic structures of the theory, let us describe the
trary constant values: black hole metric near the horizon.
- i The explicit form of the metric is taken as a limit near the
d=dxtdx’n,,, T.,=F.=0, P

horizonr =|x|—0 of the black hole metric:

I — 5l u_ ~Uu
=2, 0 =0p- (19 ds?= — e?Vdi2+ e~ 2Ydx2, (24)
This solves the Killing conditionssy,, = o\'"=5,=0

. g where
with constant unconstrained values of the supersymmetry pa-
rametere, . The unbroken supersymmetry manifests itself in Ae Y=0. (25)
the fact that each nonvanishing scalar field represents the
first component of a covariantly constavit 2 superfield for  We choose
the vector and/or hypermultiplet, but the supergravity super- )
field vanishes. o A Mg

The second solution with unbroken supersymmetry is € _47r|)2|2 T or2

much more sophisticated. First, let us solve the equations for
the gaugino and hyperino by using only a part of the previwhere the Bertotti-Robinson mass is defined by the black
ous ansatz: hole area of the horizon:

(26)

— | [ u_—
F.,=0, 4,2=0, 4,9"=0. (20 M§R=4i. 27
The Killing equation for the gravitino is not gauge invariant. 4
We may therefore consider the variation of the gravitino field We may show that this metric, which is the Bertotti-
strength the way it was done [12,13. Our ansatz for the Robinson metric

metric will be to use the geometry with the vanishing scalar
2

curvature and Weyl tensor and covariantly constant gravi- |x|? , Mgr -,
photon field strengt,,: dsig=— WB_Rdt + ME dxs, (28)
R=0, C,ns=0, D\(T,,)=0. (2D is conformally flat in the properly chosen coordinate system.

It was explained irf12,13 that such a configuration corre- In spherically symmedric coordinate system

sponds to a covariantly constant superfield\bf 2 super- r2 MéR
gravity W, 5(x, 6), whose first component is given by a two- dsip=— W_dt2+ —rz—(dr2+ r2dQ). (29
BR

component graviphoton field strength ;. The doubling of
supersymmetries near the horizon happens by the followin% i a2 T
reason. The algebraic condition for the choice of broken ver/Mte€r the change of variables=Mgg/p and |x|=Mgg/|yl
sus unbroken supersymmetry is given in terms of the comth® metric becomes obviously conformally flat:
bination of the Weyl tensor plus or minus a covariant deriva- M2 M2
tive of the graviphoton field strength, depending on the sign ds§R= _ @dt% —gR(dp2+p2dQ)
of the charge. However, near the horizon both the Weyl cur- p p
2
BR

“The notation is given ifi9]. |37|2

(—dt2+dy?), (30)
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which is in agreement with the vanishing of the Weyl tensor.statement about the fixed point for the scalz(s) as func-
Now we are ready to describe our solution in terms oftions of the distance from the horizan
symplectic structures, as defined |@]. The symplectic

structure of the equations of motion comes by defining the 9 _ _
Sp(2nv+ 2) symplectic (antiselfdual vector field strength or [2(r)]=0=D;Z=0. (38)
(FN60)-
Two symplectic invariant combinations of the symplectic Thus the fixed point is defined due to supersymmetry by the
field strength vectors are vanishing of the covariant derivative of the central charge.
At this point the critical values of moduli become functions
T =M,F *—L"G,, of charges, and two symplectic invariants become equal to
L o each other:
F =G (DM, F A-DjLAG)). (31
A oA L= 2= (12]*)p,2=0=Z |*. (39
The central charge as well as the covariant derivative of the o
central charge are defined as: The way to explicitly compute the above is by solving in a
gauge-invariant fashion E¢38):
z=—5[ T 32 DiZ=Dit gy~ NysDit 'p*=0. @0
S —
By contracting withD;L>G'' and using the property
1 — L o
ZiEDiZ:_EfSZFJGij . (33) DiLEGiiDTLA:_ %lm(N_l)EA_LELA, (41)

The central charge and its derivative are functions of modulWe get
and electric and magnetic charges. The objects defined by _—

Egs. (31) have the physical meaning of being ttraoduli- 2ZL*=ip*—Im(N "> gy +Im(N ) * ' ReNp4p®.
dependentvector combinations which appear in the grav- (42
itino and gaugino supersymmetry transformations, respeq_|ere we used the fact th@=L"q,—M ,p*. This finally
tively. In the generic point of the moduli space there are two

symplectic invariants homogeneous of degree 2 in electrlg

and magnetic chargd$]: 2iZLE=p +i(ImN ReNVp+ImAN~19)F (43
I, =Z|>+[D;z|?, and
1,=|Z2~|D,Z|2. (34) 2iZMs=(s +i (IMAp+ReNmA~ *ReNp
Note that — ReMImA ')y, (44)
so that
11=11(p,q,2,2)= _—PtM(MP, pA=i(Z_A—ZF\), qA=i(ﬂ/lA—ZWA). 9

o 1 From the above equations it is evident thatq) deter-
I,=15(p,q,2,2)=— EP‘M(J’E) P. (35 mine the sections up to &ahler) gauge transformation
(which can be fixed setting®=e*/?). Vice versa, the fixed
pointt* can only depend on ratios of charges since the equa-
tions are homogeneous mg.
The first invariant provides an elegant expression of
(A B) |Z sx|2 which only involves the charges and the vector kinetic

Here P=(p,q) and M(N) is the real symplectic
2n+2X2n+2 matrix:

c bl (36)  matrix at the fixed pointVi =Mt ,th ,Fasic, fasix):

where (1 Dm=(Z|?+|DiZ|?) = ——PtM(M.XP (1Zil?)

=ImN+ReVMimN 1 ReV, B=-ReMmN %, (46)

=—ImN ReN, D=ImN L (37 Indeed Eq(46) can be explicitly verified by using E¢47).
For magnetic solutions the area formula was deriveflLin
The vector kinetic matrix\'is defined in the Appendix. The This formula presents the area as the function of the zero
same type of matrix appears in EQq¥35 with  component of the magnetic charge and of thénlkapoten-
N—F=F,s. Both NV, F are Kaler invariant functions, tial at the fixed poinf
which means that they depend only on ratios of sections, i.e.,
only ont?,f, ; see the Appendix.
The unbroken supersymmetry of the near-horizon black %In this paper we have a normalization of charges which is differ-

hole requires the consistency conditi(®8), which is also a ent from[1] due to the use of the conventions[8f and not[7].
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A=m(p°?2e K, (47)  decomposition oN=8 to N=2 gives 15 vector multiplets,
n,=15, and 10 hyper multipletsn,=10. Therefore any
In the symplectic invariant formalism we may check that themodel will have those numbers as upper bounds for vector
area formula(47) which is valid for the magnetic solutions and hypermultiplets. To get a consistent truncation one must
(or for generic solutions but in a specific gauge 9rnihdeed  choose a subgroupl of SU(8) such that the two residual
can be brought to the symplectic invariant fof] supersymmetries atd singlets. TheH-invariant states will
_ N2 —K_ ’ ’ then give a consisterii=2 theory. In particular, the scalar
A=m(p°)°e " =4mn(|Z|*+[DiZ|*)s field manifold will be a subspace &,/ SU(8) of the form
= 4m(|Z5|?) = — 27p N ImF, s p. 4g  S(n,)xQ(ny), whereS(n,) and Q(n,) are special and
quaternionic manifolds of complex and quaternionic dimen-
One can also check the first consistency condition of unsionsn, andny, respectively.
broken supersymmeti§22), which relates the Ricci tensorto A convenient way for obtaining such theories is by con-
the graviphoton. Using the definition of the central charge irsidering the untwisted moduli off ¢/Zy orbifolds with
the fixed point we are led to the formula for the area of theH=2ZyC SU(3). In this way, by considering type IIA and
horizon (which is defined via the mass of the Bertotti- IIB theories on such orbifolds, one obtains pairs of models
Robinson geometpyin the form related by ac map[17]:

A A A A B_ A B_ A
MER:E:(|Z|2)DiZ:O, S:Z:WMZBR' (49) (n;,ny)  (ny=ny—1, ny=n; +1), (59

The new area formul&9) has various advantages follow- Where ny=hi;, nﬁfh22+ 1. Here htl)l_' hi’_z are Hodge
ing from manifest symplectic symmetry. It also implies the numbers of the untwisted moduli. This |r’r_1plles tingtcan be
principle of the minimal mass of the Bertotti-Robinson uni- &t most Ybecausey®*= 10). The bound is saturated for the
verse, which is given by the extremum in the moduli spacels/Z3 orbifold for which
of the special geometry:

n,=9, n,=1 or n,=0, n,=10 (55
&iMBRZO' (50)
in types lIA and IIB, respectively. Since the hypermultiplets
. N=4,8=N=2 do not matter at the level di=2 this theory appears to be
Pure N=4 supergravity consists ol=2 supergravity € richest example. In the two cases,

and oneN=2 vector multiplet. This can be regarded as a 1) S(n,=9)= SU@3.3)
SU(2)XSU(4) invariant truncation ofN=8. The N=4 Y SU(3)x SU(3)xU(1) ’
theory exists in two formulations, the $0 and SU4). They o(n=1)= SU(2,1)
are related by duality6], but for our purpose it is important h SU(2)XU(1)
to observe that the first corresponds to a prepotential Es
F(X)=—iX°X!, while the second has no prepotential and (2 Q(Nh=10)= SU(2)xSU(6)
corresponds to a symplectic change of the basis: The N=8 area formul422] is a square root of a quartic-

S0 w0 2 o1 - 1 invariant constructed out of 58,5 central charges; under
X°=X", Fo=Fo, X'=-F;, F;=X". (5] N=2 reductions S(8) =SU(2)xX SU(6) we get

The charges in these two theories are as follows.

Po, P1=PoRe, Qo=0, gi=polmt. (52 5o that the S(®)-invariant part is Z,Z;). Z is the N=2
central charge and alf;=D;Z vanish at the fixed point. In

The central charge at the fixed point i$Znl*  this way we necessarily get

=p3 Ret=pyp; and is given by the product of the two mag-

netic charges. 1712

2 Su@) A=zl

Po, P1=0, Qy=poimt, q;=pgRe. (53) as expected. Indeed, working out a couple of models and
examples, which are a consistent truncatiorNef 8, SU8)

In these equations=X*/X°. The central charge at the supergravity, we reproduced the result given by the
fixed point is|Z|2= paRet = poq; and is given by the prod- E--invariant formula[22]. In the first example we expect to
uct of electric and magnetic charge. This is expected for theecover theN=8 formula as a function of ten electric and
dilatonic black hole; see the next section. ten magnetic charges. We will derive this formula from a

In what follows we would like to outline some results special geometry in the case where two electric and two
concerning the attractive behavior =2 theory and magnetic charges exists. Also we will set to zero the electric
N=8 theory by taking a consisterli=2 reduction of and magnetic charges of the other sikllJgauge fields. This
N=38. In this way one can easily obtali=2 models with a corresponds to a submanifold SU1)/U(1) X0(2,2)/
variety of vector multiplets and hypermultiplets. The particle[ 0(2)X 0(2)] in SU(3,3)/[SU)X SUR)x U(1)].
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The appropriate parametrization for a symplectic section

in a covariant @2,2) basis[6] is

(XA!FA:SXA)! XA: 77/\2)(21
where ,s=(++,——) is a Lorentz metric of @,2):
XAX, =0, K=—Ini(S—S)—InX X, .

We choose the gauge X°=1, X =t and
p*=po( ReX?), qr=po(ReF,); moreover, we choose
t1,t3 imaginary andt? real. The fixed point value of the
central charge becoméZ,|?= — p3lmS[ 1— (Ret?)?]. This
finally can be reduced to

A~(p5—p2)(a5—a3)| = VImemae, ey, (56)

where we sety=py— P2, My=pP,+pPy, €,=03;—d;, and

e3=(s+q; This gives the area formula for the solutions

found in[18,21,22 and described in appropriatattractoy
variables in the next section.

IV. EXAMPLES OF N=4,8 ATTRACTORS

SERGIO FERRARA AND RENATA KALLOSH

e_ZU:Hle, e2¢:H2/H1,

y=*H;' x==H;', (59
where the condition on the functioms; ,H, is that they be
harmonic,

(QiﬁiH]_:O, (9i0”iH2:0' (60)
We use isotropic coordinateé=x? and we define, different
from [13] and[4],

|al |pl

As already mentioned in the Introduction, we will present The dilaton is

here the well-known black hole solutions Nf=4,8 theories

for the convenience of the reader but we will do it using the
adequate variables so that the mass depends on moduli

Hime™%o+ 70, Hp=eTh+ =2 (6])
The metric becomes
Ou =i :ezu:<e_¢0+ |ri| (e+¢0+ @)
1+ e “lp|+e’a| ngll .
r r
82%%- 63)

whereas the area obviously does not. To the best of our un- . . .
derstanding, this form has not appeared before, neither fofhis explains everything: The mass defined by thetéfm
theN=4 nor for theN=8 case. We will call these variables in this expression whem—o depends on charges and

“attractor variables.”
N=4 dilaton dyonic black hole§3,4] near the horizon

moduli, whereas the area, defined by the?1lterm when
r—0, depends only on the chargesndq. The masd and

give an example of a stable attractor. We follow here thehe dilaton charges. are related to the () electricq and

description of the black holes near the horizon 1:3]. All
notations(up to the\2 factorg are those of4]. The action
we will use is the part of the S@) version of the
N=4, d=4 supergravity action without an axion:

1
= —— | d*J—ql =
I 16 fd Xy g[ R+2d"¢d, ¢

1 ~
—E(e*2¢F“”Fﬂy+e2¢G“VGMD) , (57

where the SO field G
G,,6 as

uv IS related to the SU) field

nv

- i 1
GHY=— _e_2¢6MV)\56)\§.

58

This means that each time we have an electri¢d@eld, it

corresponds to the magnetic 8\ one and vise versa. For
extreme supersymmetric dilatonic black holes, the fields arg izon in the limitr—0. i.e.

built out of two functionsH; andH, [4]:

ds?=e?Vdt2—e 2Vdx?,

A=ydt, B=ydt,

F=dyAdt, G=dy/Adt,

magneticp charges as

1 1
M= 5 (e"“|p|+e®al), X=z(e"%|p|-e’q]).
(64)

Thus the black hole solution is characterized by three inde-
pendent parameters: two charges| and the value of the
dilaton at infinity,e”%0. In particular, the mass of the black
hole depends on all three parameters. We will now find that
the black hole solution near the horizon is described com-
pletely by the two charges: The value of the dilaton at infin-
ity becomes irrelevant. No matter what was the value of the
dilaton e~ %0 at infinity, near the horizon it is driven to the
fixed point given by

Consider the extrempqg#0 dilatonic black holes near the
in the limit ¥=p—«. The
metric in Egs.(59) becomes

r? lpq
ds?=——dt?°—~ ——dr?— dQ?2. 65
Ipd] r2 |pal (65)

This metric is precisely the BR metric. The dilaton for these
solutions behaves as
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e %o|p|— e?o|q| We may keep in mind the standard definition of the moduli

5 lal
e =1 +0(1/p? |, (66) in terms of the constant values 8fT,U fields at infinity:

—_ +—
|pl |palp

and so we see that the term linear ip id proportional to the e 7=ImS, e “o=ImT, e fo=ImU. (73

dilaton charge®,. The electric and magnetic fields are given

by The metric becomes

1 - 1 On = 0i =€V = (Yrhaxoxa) V2 (74
F=—dr/Adt, G=—dr/\dt (67)
q P At infinity r—oo it is

or, equivalently, in terms of dual fields, 1
“1_q. — (a(=m0—09—pg)/2 (170+ 00— po)/2

Ezqsinada/\d¢, G=psingd6/\d ¢. (69 G =G 1¥ 2r (e Al +e [P

The dilaton has a vanishing derivative @t>, which is a +el " 0770t P0lZ| gy 4 el 0m T0 P2 py )+

fixed point. The value of the dilaton given in E§6) shows (75)

that close to the fixed point the dilaton has a positive deriva-

tive or a negative derivative depending on the sign of thelhis shows that the mass depends heavily on the values of

dilaton charge,. An example of a basin of attraction for the moduli, in addition to dependence on charges. However, near

dilaton is given in Fig. 1. Independently of initial conditions the horizonr —0 we get a nice and simple dependence only

for the dilaton at infinity all trajectories are attracted to aon charges:

fixed point @ 2?) 1,=4 nearr =0.

The example of thé&l=8 attractor is given using the trun- -1 |d1P203P4
cated action oN=8 supergravity. The form of this solution Y =Gi— r2
is a slight modification of the one obtained[ib8—22. The
modification makes the area independence of moduli maniwhich defines the properties of the area formula. The fixed

|12
(76)

fest: point values of moduli at the attractor-0 are
_ P2P4 _ P2ds
d*xy— (R— SL(am?+(90)?+(9p)%] e 27 =‘ =, 2%) —‘ :
16 Gf ( )fIX 0103 ( )fIX q1P4
Xe[e” P(Fy)?+e’ P(Fy)°+e 7 P(Fy)? 0.0
_ 493
(e Zp)fix:‘ﬁ : (77
+e 7TP(Fy)?] ), (69) o
The previousN=4 case is the special case of this solution
ds?=—e?dt?+e dx?,  e*V=y¢axoxa, with trivial T,U:
Ly s, Y, Y lau=laal.  [pa2l=[pal- (78)
e M=——, e “I=—— e P=——
X2Xa X2¥3 3xa
V. DISCUSSION
Fi==dys/Adt, Fo=2dy,/\dt, In this paper we have found a complete description of
_ = N=2, d=4 attractors which serve to define the entropy-area
Fa==dys/\dt, Fu==xdy,/\dt, (70 central charge formula of the most general extremal black
where holes in N=2 superg'ravity interacting wiFh the arbitrary
number of vector multiplets and hypermultiplets.
lal, To support our point of view that the extremization of the
Y= (e(”°+”°+p°)’2+ ) , central charge in moduli space is the generic phenomenon of
any supersymmetric theory describing nonrotating black
Ip| holes with the nonvanishing area of the horizon we discuss
Xo=| €700t P02 2) , (71 the extension of the above analysis, in five dimensi@m,
M2 when 5D black holes are considered. Details will be given
elsewhere.
a= (e“’o T0=po)/2 4 |q|3) , In N=1 case(which reduces tdN=2 of d=4) the un-
rs derlying geometry of vector multiplets is ref23] (called
“very special geometry” in Ref[24)). It is defined in terms
Ya=| e 1070 p02) 4 |p|4) , (72) ?efrfr)]/mmetric constants,gc which multiply the geometrical
la

and magnetic potentials  correspond t0E2,4

ABC_ AAEBAEC _
=e7*("P)F% . Here an asterisk denotes the Hodge dual. @ fA AFEAFRS, ABC=0....n,, (79
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to build thed,gcw”BC term in the effective action. The cen- It would be interesting to find the general class of 5D
tral charge i426] black holes with 1/2 of unbrokemN=1, d=5 (N=2 of
d=4) supersymmetry with the area of the horizon realizing
Z(2,q)=tX(2)0a, (80)  the formula(87).

It was emphasized over the years by Susskizid that
the Bekenstein-Hawking entropy of a ground state of a sys-
Ar BN 1Cl oy — tem is a logarithm of a number of microstates of string
dact™ (D (DtH(2)=1. (81) theory. Therefore it cannot vary continuously and should de-

HereZ' denote real coordinate of the, dimensional mani- pend on charges since the charges are discrete and not con-

wheret” is subject to the constraint

fold with the metric tinuous parameters. This idea become particularly appealing
from the time that the entropy of (W) ? dilatonic black holes
Gij=—3d;t"dag(t) 9;t®, (82) was shown to be proportional to the product of charges

PQ in U(1)2 theory[4] and to P;Q,P3Q, in U(1)* case
wheredag(t(2))=dapct®(2) (da=dagt®, dadit®=0).Un-  [18]. This idea was studied and further developef28,19.
broken supersymmetry for the BR metric requires, as in  The important property of the entropy of supersymmetric
d=4, black holes was proved if#]: According to the supersym-

metric nonrenormalization theorem the entropy does not

4iZ(t(2),q)=0. (83) change when quantum corrections are taken into acqaunt
The BR mass is the@(q)=Z(t(2),q)|,7_o. The area is theories where there are no supersymmetry anomalié®
_ o H9z=0- 7 _ basic reason for the supersymmetric nonrenormalization
proportional toZ**(q) and therefore it is possible to give a thegrem comes from the fact that the unbroken supersymme-
general expression at=5 for N=1 extremal black hole vy of the bosonic configuration is associated with the fermi-
entropy: onic isometries in the superspace. Using Berezin’s integra-
A tion rules over anticommuting variables one can show the
S=—~[2(q)]*? (84)  absence of quantum corrections to the effective Euclidean
4 on-shell action related to the entropy.

Quite recently a dramatic progress was achieved in under-
standing the microstates of the string theory, which has al-
: . lowed a comparison of the macroscopic and the microscopic
d=4) d=5 black holes of type Il strings, compactified on ¢ic\jjation of the entropj29—32. This again at the moment
K3x Sy, recently discussed in the literatuf@9,20. The  5eq from one striking example to another. The most recent

point is that there is a sector in common with the heterotiGayiew of the known dyonic extremal black holes with non-
string compactified oKX S; [25] which hasN=1 super- vanishing area can be found i20].

symmetry ad=5. The se_ctor contalns_three ve_ctors, the dual \we pelieve that the general property of extremization of
of B,,, Bue: ue, and in the heterotic case gives two mat- yhe central charge in moduli space which was found in this
ter vectors and the graviphoton. By denoting bypaner in the context of four-dimensionl=2 supergravity
€, €, € their charges and using the vector parametrizayn siatic extremal black holes may be generalized for higher
tion of Z as in Ref.[26] it is straightforward to show that supersymmetries, higher dimensidfise we have shown it
Zl 7o~ (£c8165) 3 85) in d=5 cas&_, and rotf';\tir_lg statiqnary_ black holes. It may
%2=0 “AEsELR2) become a universal principle, which will control the value of
the area of the horizon and the Bekenstein-Hawking entropy
of the extreme black holes and other extreme objects with
7302 I~ Az nonvanishing area of the horizon. This principle may finally
A~Z"52-0~ VQuQE, (86) make it possible to not merely accumulate various examples
> 2 2 of amazing things happening with supersymmetric solitons,
whereQu=e;, Qr=Q =6;,6;, andQF=Qr=QL=€18; servegas ag:ink bpe‘iweerglJ macrosgopi)c/ and microscopic

in the notation of Ref[29]. . . . )
The formula above is a particular case of a general for-syStemS including  black holes, - stringg-branes, - and

mula forZ valid for anyN=1, d=5 theory which we report d-branes.
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where Z(q) is given below. This formula for particular
choices ofdagc can be also applied to tHé=2 (N=4 of

and therefore
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APPENDIX: SUMMARY OF THE SPECIAL GEOMETRY ()=, 17=7 5% (A10)

Symplectic sections are defined as . . . i . .
ymp i.e., the sections® can be identified with the moduli coor-

(LA M), A=01,...n, (A1) dinates (" are called special coordinajesn this frame one
can further show thafF , is integrable, i.e.F,=d,F, and
where (,M) obey the symplectic constraint that F(X) = (X°)2f(t) and
i(LAM,—LAM,)=1. (A2)

1 d
N = o . . WaAF: If(t),fo(t)=2f(t)—taaaf(t) .
L*(z,z) andM ,(z,z) depend ore,z, which are the coordi- a

nates of “moduli space.” Special geometry relations are . . .
P P g y Since |Lo|=€?X%, by a Kéler transformation

M,=N,sL>, XA Xx2e~ ) we can seX®=1 and ge{L|=€X"? as in the
o . conformal gauge of7]. If e is not invertible, no prepoten-
DM, =N,sD7L>. (A3) tial exists in the chosen symplectic basis. This is what hap-
N ) o pens in some examples of Sec. Ill.
L™ and M, are covariantly holomorphi¢with respect to Note thatX"(z) are subject to holomorphic redefinitions
Kahler connectioh e.g., (sections of a holomorphic line bundfie
Ne(g— 1 A_
DiL*= (9= 2KiL==0. (A4) XA (2)—XM(z)e @, (A11)
This equation can be solved by settin
a y ¢ so that
LA=e"2XA, My=ef?F (g X =0xF,=0). _
(A5) LMz)—LA(z)el T2~ @12, (A12)
The Kenler potential is This occurs because=eK2X* and K—K+f+f under
K= —Ini (X_AFA_ XAF_A), (A6) Kahler transformations, so that
and the Kaler metric G;7=4,07K with the inverse metric Z(q,p,z2)—2(q,p,z)el f @~ 1@72], (A13)
G*=G'.
”It is obvious that the ratios We will show in what follows thatD;Z=0 implies
(9||Z| = O o
tA_E_X_A (A7) Generically Z is  covariantly  holomorphic:
L% x° DZ=(d;— 3 K;)Z=0, which leads tod,Z= 3 K;Z; how-

ever, D;Z=(d;+ 2K;))Z#0. Only at the fixed point do

are holomorphic in the coordinates and gauge invariant: ] ° PR
we have to satisfy the constrairD;Z=0, which im-

atM(z,2)=0, t'=tA(2). (A8)  plies D;ZZ=0, D;(ZZ)=0. It follows that D;ZZ+ZD,Z
Consider now the quadratic matrix =(9i+ 3K)ZZ+2(3,~ 3 K)Z=42Z+20Z= 52|
=2|z|4|z|=o0.
e*(z)=0t%(z), a=1,...n, t°=1. (A9) |Z| is both symplectic and Kder gauge invariant; this is
why the connection drops and;Z=0 (D7Z=0) entails
If e is invertible, we can choose a frame where di|Z|=0.
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