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We study in this paper a new approach to the problem of relating solutions to the Einstein field equa
with Riemannian and Lorentzian signatures. The procedure can be thought of as a ‘‘real Wick rotation.’’
give a modified action for general relativity, depending on two real parameters, that can be used to contr
signature of the solutions to the field equations. We show how this procedure works for the Schwarzs
metric and discuss some possible applications of the formalism in the context of signature change, the pr
of time, and black hole thermodynamics.@S0556-2821~96!05714-1#
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I. INTRODUCTION

This paper is devoted to the study of the relationship
tween Riemannian~referred to in the following as ‘‘Euclid-
ean’’! and Lorentzian signature solutions to the Einstein fie
equations~EFE’s!.

The Schwarzschild metric is a good example for discu
ing the importance of having the possibility of relating E
clidean and Lorentzian metrics, and illuminates why t
usual approach fails. For Lorentzian signatures it is

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2~du21sin2udf2!. ~1!

In this case there is a simple way to obtain a Euclide
solution to the EFE’s: introduce a complex time variab
t5 i t , rewrite Eq. ~1! in the new coordinate system
(t,r ,u,f), and take advantage of the fact that the comp
nents of the metric do not have any explicit time dependen
We get then

dsE
25S 12

2M

r Ddt21S 12
2M

r D 21

dr2

1r 2~du21sin2udf2!, ~2!

which has Euclidean signature. The properties of Eq.~2! are
useful in the study of the thermodynamics of a Schwar
child black hole~see for example@1,2#!, and in particular to
understand the thermal nature of the Hawking radiation.

The strategy of analytic continuation used in the previo
example consists, more precisely, in trying to find a fou
dimensional complex manifold endowed with a compl
metric solution to the EFE’s, such that different real sectio
~real four-dimensional manifolds! exist, some of them with
Euclidean and others with Lorentzian signature. The prob
with this approach is that it can only be made to work
some very special examples, static space-times, for whic
is always possible to find coordinates such that theg0i com-
ponents of the metric are zero and the rest of them ti
independent. It is known that this method cannot be use
general and hence an alternative must be found.
54/96/54~2!/1492~8!/$10.00
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Another context in which the use of Euclidean metrics
~and even Euclidean metrics that evolve into Lorentzian
ones! is useful is the Euclidean path integral approach to
quantum cosmology and quantum gravity@3#. Some of the
reasons for this are technical. In many cases, the Euclidea
action is exponentially damped instead of being oscillatory
as its Lorentzian counterpart, thus improving the conver-
gence properties of the path integral. Lorentzian propagator
and related objects are obtained as analytic continuations o
the Euclidean ones. From the point of view of quantum cos-
mology some of the most appealing models for the very
early universe describe its origin as a quantum tunneling
from a Euclidean regime to a Lorentzian one, so the genera
problem of understanding how to ‘‘connect’’ Euclidean and
Lorentzian space-times, both at the quantum and the classic
level, seems to be an important one.

The main result of this paper is a prescription to find
families of metrics parametrized by two real numbersa,b
satisfying the following properties:~i! All of them are solu-
tions to the vacuum EFE’s~except for a zero measure set of
values ofa,b); ~ii ! Some members of the family have Eu-
clidean signature whereas the others have Lorentzian signa
ture.

The layout of the paper is the following. After this intro-
duction we discuss in Sec. II a modified action principle for
general relativity that describes both Euclidean and Lorentz-
ian vacuum solutions for general relativity in terms of an
auxiliary metric field. We study this by considering the
Hamiltonian formulation of the theory. In Sec. III we discuss
the interpretation of the constraints derived from the new
action. Section IV concentrates on the study of the new field
equations, and especially on how to construct solutions to the
EFE’s from them. We discuss in Sec. V a particular, and
physically relevant, example: Schwarzschild space-times; we
show that we recover the usual Euclidean and Lorentzian
solutions~1! and~2!. We end the paper in Sec. VI with some
comments, conclusions, and suggestions for future work
within this new approach.

II. THE MODIFIED ACTION
FOR GENERAL RELATIVITY

The main point of this paper is the discussion of a new
action principle for general relativity. In what follows we
1492 © 1996 The American Physical Society
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54 1493FROM EUCLIDEAN TO LORENTZIAN GENERAL . . .
will use the Hamiltonian formulation of the theory exten
sively. As is well known the Arnowitt-Deser-Misner~ADM !
@4# formulations for Euclidean and Lorentzian general rela
tivity share the same phase space~coordinatized by three-
metricsqab and their canonically conjugate momentap̃ab)
and the same symplectic structure~i.e., Poisson brackets!.
The difference between both theories reduces ‘‘only’’ to th
relative sign between the potential and kinetic terms in th
Hamiltonian constraint. As it is important to be able to trac
the minus signs, and for the benefit of the reader, we gi
some details about the derivation of the ADM Hamiltonian
we will also use some of these results to study the new a
tion. For most of this part we follow@1#.

The notation used in the paper is the following. Tange
space indices are denoted asa,b,c . . . going from 0 to 3.
We will not use three-dimensional indices; tensor fields i
three dimensions will be naturally described by their projec
tion properties onto three-dimensional manifolds. Let us co
sider a four-dimensional manifoldM5S3R where the
three-dimensionalS is either compact without a boundary
or, if not compact, the falloff of the fields is taken such tha
the possible surface terms that appear do not give any co
tribution. We introduce inM a metricgab with Euclidean
signature~1111!.M can be foliated by three-dimensiona
surfaces defined by the constant value of a certain sca
function t. We take the foliation in the ‘‘noncompact direc-
tion’’ corresponding toR. Given this foliation we can write
the gradient one-form1

dt5~]at !dx
a. ~3!

With the help of the inverse four-metricgab we can define a
unit, ‘‘future directed,’’ normal to the foliation

na5
]at

~gbc]bt]ct !
1/2, na[gabnb , nan

a51. ~4!

The three-metricqab ~first fundamental form! induced in the
sheets of the foliation by the four-dimensionalgab is

qab[gab2nanb , qab[gab2nanb,

qa
b[da

b2nan
b5qacq

cb5qacg
bc, ~5!

where we have made use of the fact thatqabn
b50. Notice

that qa
b is a projector onto the three-dimensional sheets

the foliation. We give now a mapping that relates points i
different sheets by using a congruence of curves filling th
manifoldM and never tangent to them. Two points in dif-
ferent sheets are ‘‘connected’’ if they are on the same cur
of the congruence. In a rather loose sense the foliation allo
us to say if two points ofM are ‘‘simultaneous’’ and the
congruence if they are ‘‘at the same space point’’~see@5#!.
We parametrize the curves in the congruence with the help
t. If one such curve is given by the functionsxa(t) we have

dt5~]at !dx
a⇒15]at

dxa

dt
[ta]at, ~6!

1]a is any torsion-free derivative inM.
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whereta is the tangent vector to the congruence. We defin
‘‘partial time derivatives’’ as Lie derivatives along the direc-
tion given byta. Notice that this is consistent because Eq.~6!
implies

ṫ[LtWt5ta]at51. ~7!

Another way to see this is by building a coordinate system
M using t as the x0 coordinate, giving coordinates
(x1,x2,x3) to one sheet of the foliation and Lie-dragging
them to the rest ofM by using the congruence of curves. It
is obvious that by proceeding in this manner,] t is the same
asLtW .

At each pointP ofM the vector fieldta can be uniquely
written as a vector tangent to the foliation passing throug
P and a vector normal to the foliation atP:

ta5Nna1Na. ~8!

N andNa are known as the lapse and the shift, respectivel
and satisfy the properties

Nana50, N5tana , N5
1

na]at
5

1

~gab]at]bt !
1/2. ~9!

Without loss of generality we can takeN.0. The extrinsic
curvature of the foliationKab ~second fundamental form! is
defined by

Kab5qa
cqb

d¹cnd5qa
c¹cnb ~10!

and is a symmetric tensor that ‘‘lives’’ on the sheets of th
foliation, i.e.,Kabn

a50, qa
bKbc5Kac . In the previous ex-

pressions¹a denotes the~covariant! derivative operator
compatible with the four-metricgab . It is possible to define
a three-dimensional covariant derivative on objects tange
to the foliationSa1•••

b1••• as

DaSa1•••
b1•••5qa

fqa1
f1 . . .qg1

b1¹ fSf1•••
g1••• . ~11!

It is straightforward to show that this is the unique operato
compatible withqab . With the help ofDa we can build the
intrinsic curvature of the sheets of the foliation and obtai
the Gauss-Codazzi equations

3Rabc
d5qa

eqb
fqc

gqh
d4Refg

h1KacKb
d2KbcKa

d , ~12!

DaKb
a2DbK54Rfen

fqb
e . ~13!

Contracting~12! with qacqbd we obtain

2Gabn
anb523R1K22KabK

ab, ~14!

whereGab[Rab21/2gabR is the four-dimensional Einstein
tensor andK[qabKab . Before we introduce the new action
we give an additional identity that we will use in order to
obtain the momenta canonically conjugate toqab in the
Hamiltonian formulation

q̇ab[LtWqab52NKab12D~aNb) . ~15!

Let us consider now the following action defined inM as
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S@gab ;a,b#5E
M
d4xAg@aGab1bRab#hahb , ~16!

wherea andb are constant real parameters and

ha5
]aF

~gbc]bF]cF!1/2
. ~17!

F is a fixedscalar function monotonically growing in theR
direction that can be interpreted as an external time variab2

The previous action is noncovariant in the sense that ther
a fixed field related to the structure of space-time that a
pears in the action and, hence, in the field equations~see, for
example, the discussion in@1#!. Before we continue, and
with the object of making the reader less suspicious w
respect to Eq.~16!, we make here the following comment~a
longer discussion will appear at the end of the paper!. In the
following we are going to perform a particular Legendr
transform on Eq.~16!. In order to do that we first write Eq.
~16! as the time integral~or rather the integral inF) of some
Lagrangian whose variables are defined with the help o
particular foliation ofM: that given by the level surfaces o
the scalar functionF. After that we perform a Legendre
transform to obtain the Hamiltonian and derive the co
straints. The dynamics defined by them can be shown to
that of general relativity~for most values ofa andb!. We
will see that we can choose the space-time signature sim
by changing the value of these parameters. Of course fo
tions other than the one given byF can be used. In that case
the Legendre transform is more complicated to perform b
the dynamics is the same as the one obtained by using
particular foliation given byF because they are derived b
performing Legendre transforms on the same action fun
tional.

By using Eq.~14! we get

aE
M
d4xAgGabhahb5

a

2EMd4xAg@23R1K22KabK
ab#,

~18!

where all the three-dimensional quantities refer to the fol
tion defined byF. The second term in Eq.~16! can be writ-
ten as

bE
M
d4xAgRabhahb5bE

M
d4xAg$¹a@hb¹bh

a#

2¹b@hb¹ah
a#1~¹bh

b!~¹ah
a!

2~¹ah
b!~¹bh

a!%. ~19!

The first two terms are surface terms. IfS is compact they
are not present. IfS is noncompact they are not zero but d
not give any contribution when varying the action becau

2The possibility of takingF as a dynamical field will be explored
below.
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the variations of the fields are zero at the boundaries.3 With
these remarks in mind we see that

bE
M
d4xAgRabhahb5bE

M
d4xAg@K22KabK

ab#.

~20!

Combining Eqs.~18! and ~20! we finally get

S@gab ;a,b#5E
M
d4xAgF2

a

2
3R1S a

2
1b D

3~K22KabK
ab!G . ~21!

The measure in the previous integral can be written as

d4xAg5dFd3xNAq. ~22!

Notice thatd3xAq is the measure in the three-dimensional
slices of the foliation defined by the induced metricqab . We
have then

S@gab ;a,b#5E
R
dFE

SF

d3xAqNF2
a

2
3R1S a

2
1b D

3~K22KabK
ab!G . ~23!

The LagrangianL can be read off directly from the previous
formula. In order to obtain the corresponding Hamiltonian
we perform a Legendre transform in the usual way. We firs
define the momenta canonically conjugate to the configura
tion variableqab :

p̃ab~x!5
dL

dq̇ab~x!
5E

SF

d3y
dL

dKcd~y!

dKcd~y!

dq̇ab~x!

5AqS a

2
1b D ~Kqab2Kab!, ~24!

which implies

Kab5
2

a12b

1

Aq
F12 qabp̃2 p̃abG , a12bÞ0, p̃[qabp̃ab .

~25!

Whena12b50 we find the primary constraintp̃ab50 and
the theory is very different from the ones witha12bÞ0.
We will not discuss this here although understanding it
meaning may be relevant for the study of signature chang
The Hamiltonian is now

3Surface terms are important for the consistency of the Hamil
tonian formulation; the usual Einstein-Hilbert action must be modi
fied with the addition of surface integrals at the boundaries. None o
these will change the arguments presented here.
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H5E
SF

d3xHNFa

2
Aq3R1

2

a12b

1

Aq S 12 p̃22 p̃abp̃abD G
22NaDbp̃

abJ , ~26!

and the constraints are

a

2
Aq3R1

2

a12b

1

Aq
S 12 p̃22 p̃abp̃abD50, ~27!

Dbp̃
ab50. ~28!

III. DISCUSSION AND INTERPRETATION
OF THE NEW CONSTRAINTS

As is well known the ADM constraints for general rela
tivity in the Euclidean and Lorentzian formulations diffe
only in the relative signs between the kinetic and potent
terms, that is,

Euclidean 2Aq3R1
1

Aq
S 12 p̃22 p̃abp̃

abD50, ~29!

Lorentzian 1Aq3R1
1

Aq
S 12 p̃22 p̃abp̃

abD50. ~30!

We can see that we can get either Eq.~29! or Eq. ~30! from
Eq. ~27! by a suitable choice of the parametersa andb. If
we takea522, b512 we get Eq.~29! whereasa512,
b50 gives Eq.~30!. We arrive at the conclusion then, tha
the action~16! describes both Euclidean and Lorentzian ge
eral relativity depending on the values chosen for the para
eters. A question arises now: What is the meaning of t
action for values ofa andb other than the ones considere
above? In particular we would like to know if the constrain
~27! and~28! are first class for arbitrary values of the param
eters. To answer these questions let us consider the follow
canonical transformation withkPR andk.0:

qab→kqab ,

p̃ab→k21p̃ab. ~31!

We imposek.0 in order to keep the signature of the three
metricqab positive. Under this transformation we have

3R→k21 3R,

Aq→k3/2Aq, ~32!

so Eqs.~27! and ~28! will become

a

2
k1/2Aq3R1

2

~a12b!k3/2
1

Aq
S 12 p̃22 p̃abp̃abD50,

~33!

1

k
Dbp̃

ab50. ~34!
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As we can see, we cannot change the relative sign betwee
the kinetic and potential terms in the Hamiltonian constraint,
but we can choosek in such a way that we get a Hamiltonian
constraint proportional either to Eq.~29! or Eq. ~30! ~see
Fig. 1!.

This proves that Eq.~27! and ~28! are first class con-
straints for arbitrary values of the parameters with the excep
tion of a12b50 ~for which they are not defined!. Notice
that the constraints are also first class fora50 although the
theory is neither Euclidean nor Lorentzian general relativity.
It is important to point out, also, that the canonical transfor-
mation introduced cannot be thought of as a coordinate trans
formation: first of all because the coordinates are really kept
fixed and second, and more importantly, because there is n
coordinate transformation that can simultaneously change
the components of the covariant tensorqab and the contra-
variant tensor densityp̃ab as in Eq.~31!.

The evolution of initial data satisfying the constraints~27!
and ~28! is given by the Hamiltonian~26!. The evolution
equations forqab and p̃

ab are

q̇ab5
2N

a12b

1

Aq
~ p̃qab22p̃ab!12qc~aDb)N

c,

p8 ab5
a

2
AqNFRab2

1

2
qabG2

N

a12b

1

Aq
qabF p̃cdp̃cd2 1

2
p̃2G

1
2N

a12b

1

Aq
@2p̃c

ap̃cb2 p̃p̃ab#

1
a

2
Aq@qabhN2DaDbN#1LNW p̃ab. ~35!

In the spirit of the canonical transformation~31! we intro-
duce now

hab[kqab ,

p̃ab[k21p̃ab. ~36!

The evolution equations forhab and p̃ab are then

ḣab5
2Nk3/2

a12b

1

Ah
~p̃hab22p̃ab!12hc(aDb)N

c,

p8 ab5
a

2
Ahk21/2NFRab~h!2

1

2
R~h!habG

2
Nk3/2

a12b

1

Ah
habF p̃cdp̃cd2

1

2
p̃2G

1
2Nk3/2

a12b

1

Ah
@2p̃c

ap̃cb2p̃p̃ab#

1
a

2
k21/2Ah@habhhN2Dh

aDh
bN#1LNW p̃ab,

~37!
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where bothRab and the covariant derivatives are built with
hab . From every solution to Eq.~35! we can obtain a solu-
tion to the EFE’s for both Euclidean and Lorentzian gravi
in the following way. Choosek and define new lapse and
shift (N, andNa respectively! such that Eqs.~37! have ex-
actly the form of the equations derived from the Hamiltonia
constraints~29! or ~30! but written in terms ofhab , p̃ab,
N, andNa. In particular, let us take Eq.~36! with k5 1

2

Aua(a12b)u and define

Na5Na, N5
2Nk3/2

ua12bu
. ~38!

Note that, in general, theqab from whichhab is built depends
on a andb in a nontrivial way. From these objects we ca
build the four-dimensional metricgab

Eins solution to the
EFE’s for both Euclidean and Lorentzian signatures if w
know qab , N, and N

a @that we can get, for example, by
solving the field equations derived from Eq.~16! after a cer-
tain foliation has been introduced#. Although it is possible to
give a concrete prescription to buildgab

Eins in terms ofN,
Na, hab and the foliation given byF it is better to do this
directly in four dimensions. This is the scope of the ne
section.

IV. THE FIELD EQUATIONS

In this section we return to the four-dimensional form o
the action~16! and derive the field equations for a fixedF.
The solutions to them are always four-metrics with Eucli
ean signature. These metrics are taken as auxiliary fie
from which we can build solutions to the EFE’s. We sho
how this is done in this section and discuss some spec
solutions in the next. In order to show all the dependence
gab of the action~16!, and in order to simplify the field
equations it is convenient to rewrite it as

S@gab ;a,b#5E
M
d4xAgF ~a1b!Rab

]aF]bF

gcd]cF]dF
2
1

2
aRG .

~39!

Notice that this action reduces to the usual Euclide
Einstein-Hilbert action ifa1b50, so the field equations
must reduce exactly to the Euclidean EFE’s in this ca
Varying Eq.~39! with respect togab we get

a

2
Gab1~a1b!H F12 gab1hahbGRcdh

chd1¹c¹
~a~hb)hc!

2
1

2
gab¹c¹d~hchd!22hdh

~aRb)d2
1

2
h~hahb!J 50,

~40!

whereha is given by Eq.~17!. According to the discussion
in the previous sections, for any givenha the solutions to
these equations give rise to solutions to the EFE’s either
Euclidean or Lorentzian general relativity. ForaÞ0 and
a12bÞ0 all the solutions to Eq.~40! can be interpreted in
this way and no new solutions are introduced in the theo
Notice that, with the exception ofa1b50, for which Eq.
~40! actually reduces to the Euclidean EFE’s, the solutions
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the previous equations~even if the values ofa andb corre-
spond to Euclidean gravity! are not solutions to the EFE’s
themselves; we need a prescription to build them from th
solutions to Eq.~40! and the scalar fieldF. From the argu-
ment in Sec. III, and especially from Eqs.~36! and~38!, we
find out thatgab

Eins can be written in terms ofgab andF as

gab
Eins5

1

2
Aua~a12b!uS gab22

a1b

a12b
hahbD . ~41!

In order to show that this is the case we will computeN and
hab , the lapse and the three-metric defined bygab

Eins and the
foliation, and write them in terms ofN andqab ~defined by
gab andF). To this end we need

gEins
ab5

2

Aua~a12b!u
S gab22

a1b

a
hahbD , ~42!

ha
Eins5

uau
21/2ua~a12b!u1/4

ha , ~43!

where gEins
abha

Einshb
Eins52sgn@a(a12b)#[z.4 Taking

into account that

N5
1

ugEins
ab]aF]bFu1/2

, ~44!

we obtain

N
N

5
~gab]aF]bF!1/2

ugEins
ab]aF]bFu1/2

5
1

ugEins
abhahbu1/2

5
uau

21/2ua~a12b!u1/4

~45!

which coincides with the result given by Eq.~38!. In the
same fashion we find

4z511 andz521 for Lorentzian and Euclidean signatures, re-
spectively.

FIG. 1. Regions in the (a,b) plane corresponding to Euclidean
and Lorentzian signatures (E andL, respectively!. The metrics in
the line a1b50 are actual solutions to the Euclidean EFE’s. If
a12b50 the theory is singular and ifa50 it is not general rela-
tivity.
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hab5gEins
ab1zha

Einshb
Eins5

1

2
Aua~a12b!u~gab2hahb!

5
1

2
Aua~a12b!uqab . ~46!

Notice thatgab
Eins will depend, in general, ona andb, both

through the explicitly parameter-dependent factors and
(a,b) dependence ofgab andha .

In view of Eq. ~41! there is an alternative way to unde
stand what we are doing. Let usdefine

ĝab[
1

2
Aua~a12b!uS gab22

a1b

a12b
hahbD ~47!

and compute

Ŝ@gab ;a,b#52sgn@a#E
M
d4xAuĝuR@ ĝab#, ~48!

whereĝ[detĝab . Throwing away surface terms we get, pr
cisely, Eq.~39! if a(a12b)Þ0, so we conclude that ou
action~16! reduces to the Einstein-Hilbert action for metri
with either signature and Eq.~40! are the Einstein field equa
tions. Notice, however, that ifa(a12b)50 then Eq.~42! is
not defined becauseĝ50. In this case the action~39! and the
field equations~40! provide a generalization of general rel
tivity for degenerate metrics. The degrees of freedom of
degenerate theory are contained in the auxiliary Euclid
metricgab even ifa50 although in this case we do not hav
the possibility of interpreting them as describing a spa
time metric@it would be zero, according to Eq.~47!#.

Once we know that our action is the Einstein-Hilbert a
tion we can couple matter very easily, just by adding
usual matter terms written with the help ofĝab . We will not
discuss this issue further here.

In the canonical framework used in Secs. II and III w
derived the field equations for a fixedF and argued that the
noncovariance of the action should play no role as we
free to choose any foliation when performing the Legen
transform from the Lagrangian to the Hamiltonian formu
tion. Now it is clear why this is so: we are just using th
Einstein-Hilbert action written in the form given by Eq.~48!.

Let us consider now the case in whichF is taken as a
dynamical field~and thus we have a covariant action!. As we
showed above, the action~16! is really the Einstein-Hilbert
action for the metricĝab defined by Eq.~47!. If the scalar
field is dynamical, i.e., not fixed, Eq.~16! has a new gauge
symmetry: the invariance under local transformations ofF
that do not change the combination ofgab andF defined by
Eq. ~47! ~modulo four-dimensional diffeomorphisms!. The
choice of a particularF should be considered as a gau
fixing of this new symmetry; given two solutions to the fie
equations~40! (gab

(1) ,F (1)) and (gab
(2) ,F (2)) it is always

possible, ifaÞ0, to use the new gauge freedom in order
haveF (1)5F (2), i.e., refer them to the same scalar field.
this sense the particular choice ofF is irrelevant. It is also
obvious that the additional field equation obtained by va
ing the action with respect toF is redundant, i.e., identically
satisfied for anygab andF that solve Eq.~40! because by
varyingF we only generate a particular variation inĝab .
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V. SOME SOLUTIONS TO THE NEW FIELD EQUATIONS

Equation~40! looks, arguably, more complicated than the
usual Einstein field equations; nevertheless some simple s
lutions to it can be found, and Eq.~41! can be used to obtain
some familiar space-time metrics. We will concentrate on
obtaining a solution to Eq.~40! that describes both Euclidean
and Lorentzian Schwarzschild black holes. Let us consider

gab5DiagF12
2M

r
,S 12

2M

r D 21

,r 2,r 2sin2uG , ~49!

ha5S 12
2M

r D 1/2@1,0,0,0#. ~50!

Notice that the previousha is obtained fromF5x0 and has
unit length. As it is well known the Ricci tensor computed
from the previousgab is zero so it is enough to show that
gab andha satisfy

¹c¹
~a~hb)hc!2

1

2
gab¹c¹d~hchd!2

1

2
h~hahb!50.

~51!

A straightforward computation shows that this is indeed the
case. Plugging Eqs.~49! and ~50! in Eq. ~41! we get the
following solution to the EFE’s:

gab
Eins5

1

2
Aua~a12b!uDiagF2

zuau
ua12bu

3S 12
2M

r D ,S 12
2M

r D 21

, r 2,r 2sin2u G . ~52!

By suitably rescaling thex0 and r coordinates we can write
Eq. ~52! as the Schwarzschild solution with mass
M̄5221/2ua(a12b)u1/4M and either Euclidean or Lorentz-
ian signature. Hence we see how the Schwarzschild solutio
is recovered in our formalism. Some features of this solution
are worthy of discussion at this point. First of all we notice
that, in this case,gab is independent ofa andb. This is not
expected to be a feature of general solutions to Eq.~40! but
only of those already satisfyingRab50. Second, it is worth-
while pointing out that Eq.~52! is not well defined for
a12b50 and is zero fora50, but Eq.~49! is always well
defined, so there are solutions to the field equations in th
a50 case that do not admit a space-time interpretation
Their degrees of freedom are contained in the auxiliary ob
jectgab . Third, the solution to Eq.~40! describes a family of
Schwarzschild black holes with a mass that depends ona
andb, and both signatures.

VI. COMMENTS AND CONCLUSIONS

The main result presented in this paper is the introduction
of a modified action principle for general relativity that has
the merit of describing space-times of Lorentzian or Euclid-
ean signature by introducing some free parameters in th
action. The solutions to the field equations can be interprete
as families of solutions to the EFE’s whose signature can b
chosen at will; some members of these families are Lorent
zian and some others are Euclidean. The problem of findin
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a Euclidean solution associated to a certain Lorentzian
can be solved in this framework by taking members o
certain two parametric family of solutions to the new fie
equations and choosing two of them with different sign
tures. At least in some simple cases, like Schwarzschild,
gets the same result as applying the usual Wick rotation~ob-
tained by introducing a purely imaginary time coordinat!.
The action used in the paper can be useful in order to ob
generalizations of general relativity and offers some intere
ing possibilities. For example, the fact that Eq.~16! is written
in terms of a Euclidean signature metric allows us to u
compact internal symmetry groups if we want to use a tet
formalism. In this respect it should be pointed out that t
Ashtekar formalism for general relativity@6# can be derived
from the, so-called, Samuel-Jacobson-Smolin@7# action that
is written in terms of a tetrad and a self-dual SO~3,1! con-
nection. The fact that the internal group is SO~3,1! has the
consequence of requiring the use of complex fields thus c
plicating the, otherwise, very elegant formalism. Althoug
there are some actions that lead to real Ashtekar-like form
lations @8,9# it is interesting to explore alternative formula
tions in the spirit of the present paper.

Another interesting consequence of the analysis prese
here is the realization of the fact that one can describ
covariant theory with a noncovariant action; just notice th
for a fixedF the action~16! may be written in the obviously
noncovariant form

S5E
M
d4xF ~a1b!

R00

g00
2
1

2
aRG , ~53!

whereF5x0. Of course the fact that the field equations of
covariant theory~or, rather, the solutions to them! can be
derived from a noncovariant action should not be conside
as very surprising. A finite function, for example, does n
have to be periodic in order to have periodic extrema; j
considerf (x)5e2xsin2x. Not even the field equations hav
to be periodic but only have periodic solutions as it happe
in this case. We briefly discuss now some applications of
formalism.

~i! The problem of time. The problem of understanding th
meaning of time in general relativity is a difficult one. Fo
example, one can try to find some function of the configu
tion variable~a three-metric in the ADM formalism or the
Ashtekar connection! such that evolution can be defined o
described with respect to it. In the asymptotically flat ca
where the ADM energy is different from zero, one can thi
of time as the object canonically conjugate to it. In a rath
loose sense it can be said that this time is some kind
boundary condition for certain operators that must be s
plied by hand@10#. The scalar field used in this paper has
natural interpretation as time, not only because it provid
slicings of the space-time and is used to define ‘‘evolution
but also because it gives us the time direction that we nee
order to get Lorentzian metrics from the auxiliary Euclide
metric used in Eq.~41!. In the asymptotically flat case a
function of F might be interpreted as the time canonica
conjugate to the ADM energy. This issue will be consider
in future work.
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~ii ! Quantum gravity. As suggested in the introduction,
having the possibility of associating to any Lorentzian solu
tion to the EFE’s a Euclidean one can be used to derive som
interesting properties of black holes, for example the therma
nature of the Hawking radiation in the Schwarzschild case. I
the new field equations can be solved for families containin
more general black hole solutions~with or without matter! it
would be possible to study if the arguments valid for the
Schwarzschild black hole still hold in more general cases. I
a different context, the possibility of writing actions for gen-
eral relativity with different kinds of fields may be useful in
order to find extensions of the theory that, considered from
perturbative point of view, may behave better that the usua
Einstein-Hilbert action or its higher derivative extensions.

~iii ! Signature change. Signature change has become a
popular subject since the suggestion by Hawking that th
present Lorentzian regime of gravity could have derived
from a Euclidean space-time via quantum tunneling. The is
sue of finding solutions to the EFE’s with signature chang
and, especially, the joining conditions at the hypersurface o
signature change has received much attention in recent yea
@11#. If the parameters of the action~16! can be provided
with some dynamics the metric~41! can change signature
while still being a solution to the EFE’s. The issue of junc-
tion conditions may be looked at not in the solutions to the
EFE’s but in the auxiliary Euclidean metric. Notice that in
the Schwarzschild case considered above the auxiliary metr
is independent of the parameters and so, even ifa and b
‘‘evolve’’ in such a way thatgab

Eins changes signature,gab
remains perfectly regular. We do not know if this is true in
more general situations. In our opinion this issue deserves
closer look and will be explored in the future.

The main open question that remains to be answered
the issue of the regularity~analyticity?! of the solutions to
the new field equations in the parametersa andb. In par-
ticular it would be desirable to see if the following state-
ments are true.

~i! If gab
(1)(a,b) andgab

(2)(a,b) are solutions to Eq.~40!
corresponding to the sameF, anda0 , b0 , a1 , b1 exist such
that gab

(1)(a0b0)5gab
(2)(a1b1) ~modulo four-dimensional

diffeomorphisms!, then for anya andb it is possible to find
a8 andb8 such thatgab

(1)(a,b)5gab
(2)(a8b8) ~modulo four-

dimensional diffeomorphisms!. In other words, if the
gab

(1)(a,b) and gab
(2)(a,b) share an element then they are

the same family of solutions to Eq.~40!.
~ii ! Every solution to Eq.~40! is sufficiently regular~for

example, analytic! in the parametersa andb.
These issues will be explored in future work.
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