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From Euclidean to Lorentzian general relativity: The real way
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We study in this paper a hew approach to the problem of relating solutions to the Einstein field equations
with Riemannian and Lorentzian signatures. The procedure can be thought of as a “real Wick rotation.” We
give a modified action for general relativity, depending on two real parameters, that can be used to control the
signature of the solutions to the field equations. We show how this procedure works for the Schwarzschild
metric and discuss some possible applications of the formalism in the context of signature change, the problem
of time, and black hole thermodynami¢&0556-282196)05714-1

PACS numbd(s): 04.20.Cv, 04.20.Fy.

I. INTRODUCTION Another context in which the use of Euclidean metrics

(and even Euclidean metrics that evolve into Lorentzian

This paper is devoted to the study of the relationship beoneg is useful is the Euclidean path integral approach to

tween Riemanniafreferred to in the following as “Euclid- quantum cosmology and quantum gravi]. Some of the

ean”) and Lorentzian signature solutions to the Einstein fieldreasons for this are technical. In many cases, the Euclidean

equationg EFE’s). action is exponentially damped instead of being oscillatory

The Schwarzschild metric is a good example for discussas its Lorentzian counterpart, thus improving the conver-
ing the importance of having the possibility of relating Eu- gence properties of the path integral. Lorentzian propagators
clidean and Lorentzian metrics, and illuminates why theand related objects are obtained as analytic continuations of
usual approach fails. For Lorentzian signatures it is the Euclidean ones. From the point of view of quantum cos-

mology some of the most appealing models for the very

M -1 early universe describe its origin as a quantum tunneling

ds’=—|1- T>dt2+ ( 1- T) dr? from a Euclidean regime to a Lorentzian one, so the general
problem of understanding how to “connect” Euclidean and

+r2(d6?+sirfod¢?). (1)  Lorentzian space-times, both at the quantum and the classical

level, seems to be an important one.
In this case there is a simple way to obtain a Euclidean The main result of this paper is a prescription to find
solution to the EFE’s: introduce a complex time variablefamilies of metrics parametrized by two real numbesss
r=it, rewrite Eq. (1) in the new coordinate system satisfying the following propertiegi) All of them are solu-
(7,r,6,¢), and take advantage of the fact that the compodions to the vacuum EFE'&xcept for a zero measure set of
nents of the metric do not have any explicit time dependence/alues ofa, 8); (i) Some members of the family have Eu-

We get then clidean signature whereas the others have Lorentzian signa-
ture.
2M ) 2M\ 1 ) The layout of the paper is the following. After this intro-
dsg=|1- e dro+|1- e dr duction we discuss in Sec. Il a modified action principle for

general relativity that describes both Euclidean and Lorentz-
+r2(de?+sirfod¢?), (2)  ian vacuum solutions for general relativity in terms of an
auxiliary metric field. We study this by considering the
which has Euclidean Signature_ The properties of(Enare Hamiltonian formulation of the theory. In Sec. Il we discuss
useful in the study of the thermodynamics of a Schwarzsthe interpretation of the constraints derived from the new
child black hole(see for exampl§1,2]), and in particular to ~ action. Section IV concentrates on the study of the new field
understand the thermal nature of the Hawking radiation. ~ equations, and especially on how to construct solutions to the
The strategy of analytic continuation used in the previoud=FE’s from them. We discuss in Se¥ a particular, and
example consists, more precisely, in trying to find a four-physically relevant, example: Schwarzschild space-times; we
dimensional complex manifold endowed with a complexshow that we recover the usual Euclidean and Lorentzian
metric solution to the EFE’s, such that different real sectiongsolutions(1) and(2). We end the paper in Sec. VI with some
(real four-dimensional manifoldiexist, some of them with comments, conclusions, and suggestions for future work
Euclidean and others with Lorentzian signature. The problenwithin this new approach.
with this approach is that it can only be made to work in
some very special examples, static space-times, for which it
is always possible to find coordinates such thatghecom-
ponents of the metric are zero and the rest of them time
independent. It is known that this method cannot be used in The main point of this paper is the discussion of a new
general and hence an alternative must be found. action principle for general relativity. In what follows we

Il. THE MODIFIED ACTION
FOR GENERAL RELATIVITY
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will use the Hamiltonian formulation of the theory exten- wheret? is the tangent vector to the congruence. We define
sively. As is well known the Arnowitt-Deser-Misn€ADM ) “partial time derivatives” as Lie derivatives along the direc-
[4] formulations for Euclidean and Lorentzian general rela-tion given byt?. Notice that this is consistent because &j.
tivity share the same phase spaceordinatized by three- implies

metrics q,, and their canonically conjugate momerga’) .

and the same symplectic structufiee., Poisson brackets t=Lit=t%,t=1. (7)
The difference between both theories reduces “only” to the o o ) )
relative sign between the potential and kinetic terms in theénother way to see th'SO'S by building a coordinate system in
Hamiltonian constraint. As it is important to be able to trackM1 ysing t as the x” coordinate, giving coordinates
the minus signs, and for the benefit of the reader, we givéX X",X") to one sheet of the foliation and Lie-dragging
some details about the derivation of the ADM Hamiltonian; them to the rest of\1 by using the congruence of curves. It
we will also use some of these results to study the new adS obvious that by proceeding in this mannerjs the same

tion. For most of this part we folloa]. asLy. _ _ _
The notation used in the paper is the following. Tangent At each pointP of M the vector field® can be uniquely
space indices are denoted @d,c ... going from 0 to 3. Written as a vector tangent to the foliation passing through

We will not use three-dimensional indices; tensor fields inP and a vector normal to the foliation &

three dimensions will be naturally described by their projec- A nal na

tion properties onto three-dimensional manifolds. Let us con- t"=Nn"+N" ®
sider a four-dimensional manifold1=%XR where the
three-dimensional is either compact without a boundary
or, if not compact, the falloff of the fields is taken such that
the possible surface terms that appear do not give any con- 1 1
tribution. We introduce inM a metricg,, with Euclidean N2n,=0, N=t?n,, N=
signature(++++). M can be foliated by three-dimensional

surfaces defined by the constant value of a certain Scale\lﬂlithout loss of generality we can také>0. The extrinsic

f_unciuont. We ta!<e the follatlon In the_ honcompact dlr_ec- curvature of the foliatiorK ,;, (second fundamental fornis
tion” corresponding taR. Given this foliation we can write defined by

the gradient one-forfn

N andN? are known as the lapse and the shift, respectively,
and satisfy the properties

naaat = (gabaatabt)l/Z' (9)

Kab=0a"0p"VcNg= 09,V N 10
dtZ(ﬁat)an. (3) ab=0a Up VcNd=0a Vo ( )
) ) b ] and is a symmetric tensor that “lives” on the sheets of the
With the help of the inverse four-metrg®® we can define a  ¢gjiation. i.e K,sn?=0, q,°Kp.=K,.. In the previous ex-
7 ey ’ a

unit, “future directed,” normal to the foliation pressionsV, denotes the(covarianj derivative operator

ot compatible with the four-metrig,,. It is possible to define
a

Na=—pe 7, NA=g?n,, nnd=1. (4) a three—dimensiorgql' 'covariant derivative on objects tangent
(97" ptdct) to the foliations, ™ as
The three-metrigy,;, (first fundamental forminduced in the by £ £y by 91
sheets of the foliation by the four-dimensiomgl, is Dasa1~-- “Ya s -G, stf1~- : (1D
Qab=0ap—NaNp, QG3°=g3°—n3n®, It is straightforward to show that this is the unique operator
b b ) ) ) compatible withg,,. With the help ofD, we can build the
Ua =085 —NaN’=0acd“"=0acg"", (5 intrinsic curvature of the sheets of the foliation and obtain

the Gauss-Codazzi equations
where we have made use of the fact thggn®=0. Notice
thatq,” is a projector onto the three-dimensional sheets of  *Rapc?=0,%0,' 099, *Reg"+ KacKp '~ KpcKod, (12)
the foliation. We give now a mapping that relates points in
different sheets by using a congruence of curves filling the DaKba—Dsz“Rfenfqbe. (13
manifold M and never tangent to them. Two points in dif-
ferent sheets are “connected” if they are on the same curv€ontracting(12) with ¢2°g° we obtain
of the congruence. In a rather loose sense the foliation allows ab 3 ) ab
us to say if two points ofM are “simultaneous” and the 2Ggpn"n"= — R+ K= KypK™, (14)
congruence if they are “at the same space poif#€e[5]).
We parametrize the curves in the congruence with the help
t. If one such curve is given by the functior¥(t) we have

d@/hereGabE Ra.p— 1/29,0R is the four-dimensional Einstein
tensor anck =q3°K ,,,. Before we introduce the new action
we give an additional identity that we will use in order to

dx@ obtain the momenta canonically conjugate dg, in the
dt=(d,t)dxP=1= aatmztaaat, (6)  Hamiltonian formulation
Oab=Li0ap=2NKyp+2D,Np, . (15

19, is any torsion-free derivative in1. Let us consider now the following action definedAr as
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A b b the variations of the fields are zero at the boundariésth
S Gap;a.B]= JMd x\g[ @G+ BR®®] 7,7,, (16)  these remarks in mind we see that

wherea and B are constant real parameters and BJ’Md“X\/ﬁRab??a??b:ﬂfMd“X\@[Kz— KapK?].
(20)
3 P
”a_(gﬁcabcpac<p)172' 17) Combining Egs(18) and(20) we finally get
® is afixedscalar function monotonically growing in the o :f d'xal = Zor+ | &4
direction that can be interpreted as an external time varfable. S avi @] M \/5 2 2 A

The previous action is noncovariant in the sense that there is
a fixed field related to the structure of space-time that ap- X (K2— K 4K 2b)
L . . . ab

pears in the action and, hence, in the field equat{eas, for
example, the discussion ifl]). Before we continue, and
with the object of making the reader less suspicious withThe measure in the previous integral can be written as
respect to Eq(16), we make here the following commefat
longer discussion will appear at the end of the pagerthe d*x\/g=d®d3xNV/q. (22)
following we are going to perform a particular Legendre
transform on Eq(16). In order to do that we first write Eq. Notice thatd3
(16) as the time integrdlor rather the integral i) of some
Lagrangian whose variables are defined with the help of
particular foliation of M: that given by the level surfaces of
the scalar functiond. After that we perform a Legendre o
tran_sform to obtaln.the H_am|lton|an and derive the con- S[Qab;a,ﬂ]zf d(DJ d3x\/aN[—§3R+
straints. The dynamics defined by them can be shown to be R DAY
that of general relativityfor most values ofx and B). We
will see that we can choose the space-time signature simply X (K2— KabKab)}- (23
by changing the value of these parameters. Of course folia-
tions other than the one given dy can be used. In that case
the Legendre transform is more complicated to perform buffhe Lagrangiar. can be read off directly from the previous
the dynamics is the same as the one obtained by using tHermula. In order to obtain the corresponding Hamiltonian
particular foliation given byd because they are derived by we perform a Legendre transform in the usual way. We first
performing Legendre transforms on the same action funcdefine the momenta canonically conjugate to the configura-
tional. tion variableq,p:

By using Eq.(14) we get

: 1)

X+\/q is the measure in the three-dimensional
slices of the foliation defined by the induced metyjg,. We
#ave then

49
2th

CORNL I P S, ¥
aJMdAX@Gabﬂaﬂb:%fMd4X@[_3R+Kz_KabKab]’ Per(X) Jo " OHed¥) 5a4()
(18 :\/a(g+,8)(KQab_Kab)y (24)

where all the three-dimensional quantities refer to the folia- = =
tion defined by®. The second term in Eq16) can be writ-  Which implies
ten as
K L P 2B#0, P=09p
ab_a-l-Zﬂ \/a 2qabp Pab|, at2B#0, pP=Q""Pgp.
BfMd4X@Rabﬂanb:BfMdAX\/a{Va[ 7°Von'] 25

— Vi 7°V 272+ (Vo 7°) (Van?) Whena+28=0 we find the primary constraifi®*=0 and
b a the theory is very different from the ones with+-23+#0.
~(Van”) (Vo)) (19) We will not discuss this here although understanding its
meaning may be relevant for the study of signature change.
The first two terms are surface terms.3fis compact they The Hamiltonian is now
are not present. [& is noncompact they are not zero but do
not give any contribution when varying the action because
3Surface terms are important for the consistency of the Hamil-
tonian formulation; the usual Einstein-Hilbert action must be modi-
°The possibility of takingDh as a dynamical field will be explored fied with the addition of surface integrals at the boundaries. None of
below. these will change the arguments presented here.
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o 2 1 (1 As we can see, we cannot change the relative sign between
Hzf d3x{ N 5\/E3R+ 25 - Eﬁz—ﬁa”ﬁab the kinetic and potential terms in the Hamiltonian constraint,
2o at2p \/a but we can choosk in such a way that we get a Hamiltonian

constraint proportional either to E¢29) or Eq. (30) (see
_2Nan"l5ab] ' (26) Fig. 1) .
This proves that Eq(27) and (28) are first class con-
straints for arbitrary values of the parameters with the excep-
and the constraints are tion of a+2B8=0 (for which they are not defingdNotice
that the constraints are also first class dotr 0 although the

E\/ESRJr 2 i(lﬁz—ﬁabﬁ ) _o 27 theory is neither Euclidean nor Lorentzian general relativity.
2 a+2p \/a 2 ab ! It is important to point out, also, that the canonical transfor-
mation introduced cannot be thought of as a coordinate trans-
DypP=0. (28)  formation: first of all because the coordinates are really kept

fixed and second, and more importantly, because there is no
coordinate transformation that can simultaneously change
the components of the covariant tenspg, and the contra-
variant tensor densitp?® as in Eq.(31).

As is well known the ADM constraints for general rela- ~ The evolution of initial data satisfying the constrai(23)
tivity in the Euclidean and Lorentzian formulations differ and (28) is given by the Hamiltoniar(26). The evolution
only in the relative signs between the kinetic and potentiaeduations forg,, andp®” are
terms, that is,

Ill. DISCUSSION AND INTERPRETATION
OF THE NEW CONSTRAINTS

. 2N 1 -
Y \/—a(p%b— 2Pap) +20caDpyN°,

1/1
Euclidean —\/E3R+—q Eﬁz—ﬁabﬁab):o, (29

=

*ab_a ab 1 ab N 1 ab{"“cd“ 1’“2}
Lorentzian + q®R+ i(z'ﬁz—ﬁabﬁab)zo. (30) P 2\/aN R™=34 at2p \/aq P Pea™ 3P
\/a 2
2N 1 —

We can see that we can get either E2p) or Eq.(30) from t— —[2p. PP —ppa]
Eq. (27) by a suitable choice of the parametersand 8. If at2p g
we takea=—2, B=+2 we get Eq.(29) whereasa= +2, o
B=0 gives Eq.(30). We arrive at the conclusion then, that + E\/a[qabDN—DanN]vLﬁ,:,b'ab. (35)

the action(16) describes both Euclidean and Lorentzian gen-

eral relativity depending on the values chosen for the param- . . . .
eters. A question arises now: What is the meaning of thdn the spirit of the canonical transformatid81) we intro-
action for values ofr and 3 other than the ones considered dUce NOW

above? In particular we would like to know if the constraints

(27) and(28) are first class for arbitrary values of the param- hap= KGap,
eters. To answer these questions let us consider the following b 1ab
canonical transformation witke R andk>0: 7=k P (36)
Jab— K0ap The evolution equations fdr,, and 72 are then
PPk~ 1p2b, (31 . Nk 1 N
b:—_(’ﬁh b_27T b)+2h Db Nc,
We imposek>0 in order to keep the signature of the three- P at2p Vh : : <@rh
metric q,;, positive. Under this transformation we have
. a 1
SR—k ™! R, ﬁab=§Jﬁxl’2N[Rab(h)— ER(h)hab}
\/6—}k3/2\/a, (32) NK3/2 1 . 1~
_ _— phab 77Cd77cd_ _772
so Eqgs.(27) and (28) will become a+2B \h 2
2Nk%2 1
& i 3 2 i 1~2_~ab~ _ + ——— —[27 27— 7P
2k \/aR+(a+2ﬂ)k32\/a 2p P™"Pab _O’ a'+2,[3\/ﬁ ¢
(33

o —~
+ Ex_l/zx/ﬁ[hathN—DhaDth] + Lo,

1 ~ab_
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where bothR,, and the covariant derivatives are built with I
h,,. From every solution to Eq.35) we can obtain a solu-

tion to the EFE’s for both Euclidean and Lorentzian gravity

in the following way. Choosec and define new lapse and E
shift (N, and A? respectively such that Eqs(37) have ex- L
actly the form of the equations derived from the Hamiltonian
constraints(29) or (30) but written in terms ofh,,, 72°,

N, and A2. In particular, let us take Eq(36) with k=3

Jla(a+2B)] and define (b :
2NK3/2
=N2 =T
Ne=N? N lat28]" (38 L
E
Note that, in general, thg,,, from whichh, is built depends
on « and B in a nontrivial way. From these objects we can at+f=0
Eins

build the four-dimensional metrig,," - solution to the

EFE’s for both Euclidean and Lorentzian Signatures if we FIG. 1. Regions in thed, 8) plane corresponding to Euclidean

know g, N, and N® [that we can get, for example, by and Lorentzian signature€(andL, respectively. The metrics in

solving the field equations derived from EA6) after a cer- the line a+8=0 are actual solutions to the Euclidean EFE’s. If

tain foliation has been introducgdlthough it is possible to  a+28=0 the theory is singular and #=0 it is not general rela-

give a concrete prescription to builg,5"™ in terms of \, ftivity.

M2, h,, and the foliation given byb it is better to do this

directly in four dimensions. This is the scope of the nextthe previous equationi@ven if the values o& and g corre-

section. spond to Euclidean gravityare not solutions to the EFE’s

themselves; we need a prescription to build them from the
IV. THE FIELD EQUATIONS solutiqns to Eq(40) and the. scalar field. From the argu-
ment in Sec. lll, and especially from Eq86) and (38), we
In this section we return to the four-dimensional form of find out thatg,5"™ can be written in terms af,, and® as

the action(16) and derive the field equations for a fixdd

The solutions to them are always four-metrics with Euclid- Eins. L atp

ean signature. These metrics are taken as auxiliary fields Yab :EVla(a+2'B)|(gab_2a+zlg Ma™b

from which we can build solutions to the EFE’s. We show

how this is done in this section and discuss some specifith order to show that this is the case we will compifend

solutions in the next. In order to show all the dependence oh,y,, the lapse and the three-metric definedgg™ and the

Oap Of the action(16), and in order to simplify the field foliation, and write them in terms dfl andq,, (defined by

. (4D

equations it is convenient to rewrite it as Jap @and®). To this end we need
3 Dap® 1 2 atp
ca,B]= | d*%Vg| (a+B)RP—1 - -aR|. ?b:—< ab_o— I a b) 42
S Gap; @, L] JM g/ (a+p) O Dad 2 OEins ol 28] g o T, (42
(39
Notice that this action reduces to the usual Euclidean N = o (43

517 174 Ma >
Einstein-Hilbert action ifa+8=0, so the field equations 2" a(a+2p)|

must reduce exactly to the Euclidean EFE’s in this case. ab__ Eins_ Eins 4 .
. ; where Ogine?a 7o =—SOMa(a+2B)]=¢." Taking
Varying Eq.(39) with respect tog,;, we get into account that

a 1

=G+ (a+B)1 | 5 9%+ 729° |Rean®n®+ V. VA5 ) _ 1

2 2 N 5 5 (44
|gEinsﬁa¢ﬁbq)|

1 1
— 59%°VeVa(7°7%) — 2747 * RV = S0(5*7°) | =0, we obtain

40 N (g*°0,@5,®)"? 1 |al

N 0227 ®g.d|72  |g2P 2~ 212 0 (qt 2 )7
where 7, is given by Eq.(17). According to the discussion 19eina® AP |Geinsinas e '8(|45)

in the previous sections, for any givep, the solutions to

these equations give rise to solutions to the EFE’s either fowhich coincides with the result given by E¢38). In the
Euclidean or Lorentzian general relativity. Far#=0 and same fashion we find

a+2B+#0 all the solutions to Eq40) can be interpreted in

this way and no new solutions are introduced in the theory.

Notice that, with the exception af+ 8=0, for which Eq. 4=+1 and{=—1 for Lorentzian and Euclidean signatures, re-
(40) actually reduces to the Euclidean EFE'’s, the solutions tapectively.
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. L1 V. SOME SOLUTIONS TO THE NEW FIELD EQUATIONS
hao=0eist{ma "y = 5| @(@+28)|(Jab= 7a7b)

Equation(40) looks, arguably, more complicated than the
1 usual Einstein field equations; nevertheless some simple so-
=5 Na(a+28)|dap. (46) lutions to it can be found, and E¢41) can be used to obtain
some familiar space-time metrics. We will concentrate on
Eins obtaining a solution to Eq40) that describes both Euclidean

Notice thatg,, ~ will depend, in general, ow and 8, both - 54| grentzian Schwarzschild black holes. Let us consider
through the explicitly parameter-dependent factors and the

(«,B) dependence o, and 7, . _ 2M 2m\ 7t
In view of Eq. (41) there is an alternative way to under- 9ap=Diag 1———,[1———] ror sing|, (49
stand what we are doing. Let a&fine
1/2
.1 atf =l1-—] [1,0,0,0 (50
Gab= §V|a(a+2ﬁ)| gab—zm Nab (47) a r R

Notice that the previous, is obtained from® =x° and has
unit length. As it is well known the Ricci tensor computed

- T from the previousy,, is zero so it is enough to show that
S gap; @, Bl=—sgria] fMd x\[a[R[Gan], (48 g, and 7, satisfy

and compute

V\{heregzde@ab: Throwing away surface terms we get, pre- v _V(@( 5P 5¢)— %gabvcvd( 7°n9) — %D( 725°)=0.
cisely, Eq.(39) if a(a+2B)+#0, so we conclude that our
action (16) reduces to the Einstein-Hilbert action for metrics (51
with either signature and E¢40) are the Einstein field equa-
tions. Notice, however, that it («+28) =0 then Eq(42) is
not defined becausg=0. In this case the actio{39) and the
field equationg40) provide a generalization of general rela-
tivity for degenerate metrics. The degrees of freedom of this 1 | al
degenerate theory are contained in the auxiliary Euclidean Uap =5V a(a+ 2,8)|Diag{— ——
. e . . 2 |a+2p]
metricg,, even ifa= 0 although in this case we do not have
the possibility of interpreting them as describing a space-
time metric[it would be zero, according to E¢47)]. X
Once we know that our action is the Einstein-Hilbert ac-

tion we can couple matter very easily, just by adding thegy gyjtably rescaling tha® andr coordinates we can write
usual matter terms written with the help @f,. We will not Eg. (520 as the Schwarzschild solution with mass

discuss this issue further here. M=2"Ya(a+2B)|Y*M and either Euclidean or Lorentz-

In the canonical framework used in Secs. Il and Ill wej,, signature. Hence we see how the Schwarzschild solution

derived the field equations for a fixabl and argued that the g recovered in our formalism. Some features of this solution
noncovariance of the action should play no role as we arg o \yqorthy of discussion at this point. First of all we notice
free to choose any foliation when performing the Legendre[hat in this caseg,, is independent of and 8. This is not
transform from the Lagrangian to the Hamiltonian formula-exp'ected to be a?‘eature of general solutions to(E6) but

tion. Now it is clear why this is so: we are just using the onl f oy _ e
; L . . . . y of those already satisfying,,=0. Second, it is worth-
Einstein-Hilbert action written in the form given by E@8). |, 1ile pointing out that Eq.(52§1bis not well defined for

q Let us lcf(_)r;side(rj nr?W the r::ase in whidh is take; asa  ,+28=0 and is zero fow=0, but Eq.(49) is always well
ynamical fieldand t us we have a covariant aclj_m SWE€  defined, so there are solutions to the field equations in the
showed above, the actidd6) is really the Einstein-Hilbert  _ 5" o< that do not admit a space-time interpretation.

action for the metriag,, defined by Eq.(47). If the scalar i jegrees of freedom are contained in the auxiliary ob-

field is dy_namigal, l.e., not fixed, Eq16) has a NEW gauge jactg,,. Third, the solution to Eq40) describes a family of
symmetry: the invariance under local transformationsbof Schwarzschild black holes with a mass that dependsron
that do not change the combination®f, and® defined by and 8, and both signatures

Eq. (47) (modulo four-dimensional diffeomorphismsThe
choice of a particuladd should be considered as a gauge
fixing of this new symmetry; given two solutions to the field
equations(40) (g,5”,®™) and @7, ®?) it is always The main result presented in this paper is the introduction
possible, ifa# 0, to use the new gauge freedom in order toof a modified action principle for general relativity that has
haved® =) je., refer them to the same scalar field. In the merit of describing space-times of Lorentzian or Euclid-
this sense the particular choice ®f is irrelevant. It is also ean signature by introducing some free parameters in the
obvious that the additional field equation obtained by vary-action. The solutions to the field equations can be interpreted
ing the action with respect t® is redundant, i.e., identically as families of solutions to the EFE’s whose signature can be
satisfied for anyg,, and® that solve Eq(40) because by chosen at will; some members of these families are Lorent-
varying® we only generate a particular variationgg, . zian and some others are Euclidean. The problem of finding

A straightforward computation shows that this is indeed the
case. Plugging Eq949) and (50) in Eq. (41) we get the
following solution to the EFE’s:

2M
1— —
r

2M

-1
,(1—7) , r2r?sirfg|. (52

VI. COMMENTS AND CONCLUSIONS
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a Euclidean solution associated to a certain Lorentzian one (ii) Quantum gravity As suggested in the introduction,
can be solved in this framework by taking members of ahaving the possibility of associating to any Lorentzian solu-
certain two parametric family of solutions to the new field tion to the EFE’s a Euclidean one can be used to derive some
equations and choosing two of them with different signa-interesting properties of black holes, for example the thermal
tures. At least in some simple cases, like Schwarzschild, ongature of the Hawking radiation in the Schwarzschild case. If
gets the same result as applying the usual Wick rotfbR  the new field equations can be solved for families containing
tained by introducing a purely imaginary time coordinate more general black hole solutionsith or without mattey it

The action used in the paper can be useful in order to obtaigquid be possible to study if the arguments valid for the
generalizations of general relativity and offers some interestg ey arzschild black hole still hold in more general cases. In
ing possibilities. For example, the fact that BE6) is written 5 yitterent context, the possibility of writing actions for gen-
in terms of a Euclidean signature metric allows us to “S‘%rau relativity with different kinds of fields may be useful in

compact internal symmetry groups if we want to use a teira rder to find extensions of the theory that, considered from a

formalism. In this respect it should be pointed out that the . . .
Ashtekar formalism for general relativifig] can be derived perturbative point of view, may behave better that the usual

from the, so-called, Samuel-Jacobson-Smpifihaction that Ein?ein—.Hilbert action or it; higher derivative extensions.
is written in terms of a tetrad and a self-dual 8Q) con- (i ) Slgna}ture .changeS|gnature.change has'become a
nection. The fact that the internal group is (1) has the ~Popular subject since the suggestion by Hawking that the
consequence of requiring the use of complex fields thus corrRrésent Lorentzian regime of gravity could have derived
plicating the, otherwise, very elegant formalism. Althoughfrom & Euclidean space-time via quantum tunneling. The is-
there are some actions that lead to real Ashtekar-like formusue of finding solutions to the EFE'’s with signature change
lations [8,9] it is interesting to explore alternative formula- and, especially, the joining conditions at the hypersurface of
tions in the spirit of the present paper. signature change has received much attention in recent years
Another interesting consequence of the analysis presentddl1]. If the parameters of the actiofi6) can be provided
here is the realization of the fact that one can describe with some dynamics the metri@l) can change signature
covariant theory with a noncovariant action; just notice thatwhile still being a solution to the EFE'’s. The issue of junc-
for a fixed® the action(16) may be written in the obviously tion conditions may be looked at not in the solutions to the
noncovariant form EFE’s but in the auxiliary Euclidean metric. Notice that in
the Schwarzschild case considered above the auxiliary metric
is independent of the parameters and so, evem &nd 8

00 . i .
1 “evolve” in such a way thatg,E"™ changes signaturey
= 4 — ab ab
S fMd X (atp) g06 2 aR|, (53 remains perfectly regular. We do not know if this is true in

more general situations. In our opinion this issue deserves a
closer look and will be explored in the future.
where®=x°. Of course the fact that the field equations of a The main open question that remains to be answered is
covariant theory(or, rather, the solutions to thénzan be the issue of the regularitfanalyticity of the solutions to
derived from a noncovariant action should not be considerethe new field equations in the parametersaind 8. In par-
as very surprising. A finite function, for example, does notticular it would be desirable to see if the following state-
have to be periodic in order to have periodic extrema; jusfnents are true.
considerf(x) =e *sir’. Not even the field equations have (i) If g,i(«,8) andg,{?)(«,B) are solutions to Eq40)
to be periodic but only have periodic solutions as it happensorresponding to the sande, andag, By, a1, 81 exist such
in this case. We briefly discuss now some applications of thishat g,{(@oB0) =0, («181) (modulo four-dimensional
formalism. diffeomorphismg then for anya andg it is possible to find
(i) The problem of timeThe problem of understanding the 4’ andg’ such thag,{(«,8)=g.{%(a'B’) (modulo four-
meaning of time in general relativity is a difficult one. For dimensional diffeomorphisms In other words, if the

example, one can try to find some function of the configuray N(a,p) andg,?(a,B) share an element then they are
tion variable(a three-metric in the ADM formalism or the {na same family Sf solutions to E640).

Ashtekar connectionsuch that evolution can be defined or (i) Every solution to Eq(40) is sufficiently regular(for
described with respect to it. In the asymptotically flat Casegyample, analyticin the parameters and 3.

where the ADM energy is different from zero, one can think  Thase issues will be explored in future work.

of time as the object canonically conjugate to it. In a rather

loose sense it can be said that this time is some kind of

boundary condition for certain operators that must be sup-
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