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Tensor-scalar gravity and binary-pulsar experiments
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Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation
interpreted as a scalar analogue of ferromagnetism: ‘‘spontaneous scalarization.’’ This phenomenon lead
very significant deviations from general relativity in conditions involving strong gravitational fields, notably
binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily va
when the weak-field scalar coupling tends to zero. We compute the scalar ‘‘form factors’’ measuring the
deviations, and notably a parameter entering the pulsar timing observableg through scalar-field-induced
variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation betwee
tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are alr
very tightly constrained by published data on three binary-pulsar systems. We contrast the probing powe
pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic tw
dimensional plane of tensor-scalar theories.@S0556-2821~96!04314-7#

PACS number~s!: 04.50.1h, 04.80.Cc, 97.60.Gb
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I. INTRODUCTION

Einstein’s general relativity theory postulates that gravi
is mediated only by a long-range tensor field. It has be
repeatedly pointed out over the years~starting with Kaluza
@1#! that unified theories naturally give rise to long-rang
scalar fields coupled to matter with gravitational streng
This led many authors, notably Jordan@2#, Fierz @3#, and
Brans and Dicke@4#, to study, as most natural alternatives t
general relativity, tensor-scalar theories in which gravity
mediated in part by a long-range scalar field. The motivati
for such theories has been recently revived by string the
which contains massless scalars in its gravitational sec
~notably the model-independent dilaton!.

We shall consider tensor-scalar gravitation theories co
taining only one scalar field, assumed to couple to the tra
of the energy-momentum tensor. The simplest example
such a theory is a scalar field only coupled to the gravi
tional sector through a nonminimal couplingjRF2 ~see Sec.
VI below!. For a study of the observable consequences
general tensor-scalar theories~containing one or several sca
lar fields!, see Ref.@5#.

Actually, one generically expects scalar fields not
couple exactly to the mass but to exhibit some ‘‘compositio
dependence’’ in their couplings to matter. However, a rece
study of a large class of viable string-inspired tensor-sca
models@6# has found that the composition-dependent effec
represent only a very small fraction (;1025) of the effective
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coupling to matter. Such fractionally small composition
dependent effects would be negligible in the gravitation
physics of neutron stars that we consider here.

The most general theory describing a mass-coupled lon
range scalar contains one arbitrary ‘‘coupling function
A(w) @3#. The action defining the theory reads

S5
c4

16pG*
E d4x

c
g
*
1/2~R*22g

*
mn]mw]nw!

1Sm@cm ;A
2~w!gmn* #. ~1.1!

Here, G* denotes a bare gravitational coupling constan
R*[g

*
mnRmn* the curvature scalar of the ‘‘Einstein metric’’

gmn* describing the pure spin-2 excitations, andw our long-
range scalar field describing spin-0 excitations.@We use the
signature2111 and the notationg*[2detgmn* .# The last
term in Eq. ~1.1! denotes the action of matter, which is a
functional of some matter variables~collectively denoted by
cm) and of the ‘‘physical metric’’g̃mn[A2(w)gmn* . Labora-
tory clocks and rods measure the metricg̃mn which, in the
model considered here, is universally coupled to matter. T
reader will find in Eqs.~6.1!–~6.7! below an explicit ex-
ample~nonminimally coupled scalar field! of how an action
of the type~1.1!, involving two conformally related metrics
gmn* and g̃mn5A2(w)gmn* , can naturally arise.

The field equations of the theory are most simply formu
lated in terms of the pure-spin variables (gmn* ,w). Varying
the action~1.1! yields

Rmn* 52]mw]nw1
8pG*
c4 S Tmn* 2

1

2
T* gmn* D , ~1.2a!

s-
che
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hg*w52
4pG*
c4

a~w!T* , ~1.2b!

with T
*
mn[2cg

*
21/2dSm /dgmn* denoting the material stress

energy tensor in ‘‘Einstein units’’ anda(w) the logarithmic
derivative ofA(w):

a~w![
] lnA~w!

]w
. ~1.3!

@All tensorial operations in Eqs.~1.2! are performed by using
the Einstein metric gmn* , e.g., hg*[g

*
mn¹m*¹n* ,

T*[gmn* T
*
mn .# As is clear from Eq.~1.2b!, the quantity

a(w) plays the role of measuring the~field-dependent! cou-
pling strengthbetween the scalar field and matter. It has be
shown in Refs.@5,7# that allweak-field~‘‘post-Newtonian’’!
deviations from general relativity~of any post-Newtonian
order! can be expressed in terms of the asymptotic value
a(w) at spatial infinity and of its successive scalar-field d
rivatives. Letw0 denote the asymptotic value ofw at spatial
infinity, i.e., the ‘‘vacuum expectation value’’ ofw far away
from the considered gravitating system. Let us also den
a0[a(w0), b0[]a(w0)/]w0 , and b08[]b(w0)/]w0 . At
the first post-Newtonian approximation, deviations from ge
eral relativity are proportional to the Eddington parameter

ḡ[gEdd21522a0
2/~11a0

2!, ~1.4a!

b̄[bEdd215
1

2
b0a0

2/~11a0
2!2, ~1.4b!

while at the second post-Newtonian approximation there

ters, beyondḡ and b̄ , two new parameters@5,7#

«5b08a0
3/~11a0

2!3, ~1.5a!

z5b0
2a0

2/~11a0
2!3. ~1.5b!

We see explicitly in Eqs.~1.4! and ~1.5! that all deviations
from general relativity tend to zero witha0 at least as fast as
a0
2 . This holds true forweak-fielddeviations of arbitrary

post-Newtonian order@7#. Therefore, light-deflection or
time-delay experiments@8# which set @through Eq.~1.4a!#
the following limit on the coupling strength of the scala
field,

a0
2,1023, ~1.6!

tightly constrain the theoretically expectable1 level of devia-
tion from general relativity in all other experiments probin
weak gravitational fields. Note that, in many physically mo
tivated models, there are much tighter limits ona0

2 coming
from equivalence principle tests~see, e.g.,@9#, which gets
a0
2&1027 in string-derived models!. These improved limits

crucially depend, however, on the detailed structure a
magnitude of equivalence-principle-violating effects~and

1We assume here the absence of unnaturally large dimension
numbers appearing in the successive derivatives ofa(w): b0 ,
b08 . . . .
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disappear in the subclass of metrically coupled theories!. To
stay model independent, we shall use the post-Newtonia
derived limit ~1.6! as our standard weak-field limit. As we
shall see later, the importance of the nonperturbative effe
discussed here is not uniformly decreased whena0 takes
smaller values, but can level off or even be amplified.

In a previous work@10#, we have shown that experiments
involving thestrong gravitational fieldsof neutron stars can
exhibit a remarkably different behavior from weak-field
solar-system experiments. We proved that when a cert
mild inequality restricting the curvature of the coupling func
tion lnA(w) was satisfied, namely,

b0[
]2lnA~w0!

]w0
2 &24, ~1.7!

nonperturbative strong-gravitational-field effects develop
in neutron stars and induced order-of-unity deviations fro
general relativity, even for arbitrary small values of the linea
coupling strengtha0

2 . The aim of the present paper is to
further study these nonperturbative phenomena and to p
pare the ground for a systematic application to binary-puls
experiments@11# by computing the observational effects de
pending upon the inertia moments of neutron stars. One
the main results of the present study will be to show expli
itly that binary-pulsar experiments are, in some regions
theory space, much more constraining than solar-system
periments. This will be illustrated in an exclusion plot dis
cussed below.

The organization of this paper is as follows. In Sec. II, w
show how the nonperturbative scalar-field effects discover
in @10# can be interpreted as a ‘‘spontaneous scalarizatio
of neutron stars, analogous to the spontaneous magnetiza
of ferromagnets. We write in Sec. III the field equations th
must be numerically integrated to study these nonperturb
tive effects in slowly rotating neutron stars. Section IV dis
cusses the ‘‘gravitational form factors’’ governing the phys
ics of neutron stars in tensor-scalar gravity, notably
parameter linked to the variation of a pulsar’s inertia mome
caused by the presence of an orbiting companion. The c
straints imposed by three binary-pulsar experiments on a
neric class of tensor-scalar models are then derived in S
V. Finally, the conclusions of our study are given in Sec. V

II. SPONTANEOUS SCALARIZATION

Before tackling the technical problems posed by the com
putation of various gravitational ‘‘form factors’’ in presence
of strong-scalar-field effects, let us clarify, at the conceptu
level, the physical origin of the nonperturbative effect dis
covered in@10#.

Let us consider a very simple coupling function of th
form

A~w!5Ab~w![expS 12bw2D , ~2.1!

corresponding to a coupling strengtha(w)5] lnA(w)/]w
5bw, whereb is a given parameter. The model~2.1!, where
lnA(w) is quadratic inw, is second in simplicity to the
Jordan-Fierz-Brans-Dicke model where lnA(w)5a0w is lin-

less
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ear inw. @We shall sometimes refer to model~2.1! as ‘‘the
quadratic model.’’# When b satisfiesb&24, we are in a
regime where nonperturbative effects develop for mass
enough neutron stars. The results of@10# raise a paradox in
the limit where the asymptotic value ofw0 tends toward
zero, i.e.,a05bw0→0. Indeed, in the casea5bw the right-
hand side of Eq.~1.2b! is proportional tow, andw(x)[0 is
an exact solution which satisfies the homogeneous bound
conditionsw→0 at spatial infinity. Equation~1.2b! being
elliptic in the stationary case of an isolated star, it wou
seem that the solution, with given boundary conditions, mu
be unique, and therefore that in the homogeneous c
w050 the only solution must be the trivial onew(x)50.
This conclusion is correct in the case of weakly se
gravitating systems~such as ordinary stars, white dwarfs, o
even low-mass neutron stars!. Should not then physical con-
tinuity require to take always as ‘‘correct’’ solution of Eq
~1.2b! the trivial one, even when considering strongly se
gravitating systems such as neutron stars? What can cau
discontinuity in the configuration of the scalar field~with
homogeneous boundary condition! for massive neutron
stars? In the simple case of the coupling function~2.1!, we
have the further paradox that the theory is symmetric und
the reflectionw→2w, so that it seems at face value that th
solution of Eqs.~1.2! corresponding to the self-symmetric
boundary conditionsw050 must be self-symmetric and
therefore identically zero.

A solution of these paradoxes, and a clearer understa
ing of the phenomena studied in@10#, is obtained by making
an analogy with the well-known phenomenon of spontaneo
magnetization of ferromagnets~below the Curie tempera-
ture!. In the latter case, a convenient order parameter is
total magnetizationM ~which is thermodynamically conju-
gate to the external magnetic fieldB0: M52]E/]B0). In
our ‘‘scalarization’’ case, we can take as order parameter
total scalar chargevA developed by the neutron star~labeled
A) in presence of an external scalar fieldw0; it is defined as
the coefficient ofG* /r in the far scalar field aroundA:
w(r )5w01G*vA /r1O(1/r 2) as r→`. As shown in@5#,
vA is energetically conjugate to the external scalar fie
w0 :

vA52]mA /]w0 , ~2.2!

wheremA denotes the total mass-energy of the star~in Ein-
stein units!. It is also the quantity which appears directly i
the Keplerian-order interaction energy between two sta
Vint52G*mAmB /r AB2G*vAvB /r AB , where the first term
comes from the exchange of a graviton and the second fr
the exchange of a scalaron. In the presence of a nonz
externalw0 , weaklyself-gravitating objects develop a scala
charge which is proportional tow0 in the limit w0→0 ~‘‘sca-
lar susceptibility,’’ the analogue to the magnetic susceptib
ity M5xB0 for weak external magnetic fields in the absen
of spontaneous magnetization!.

Following Landau, we can understand what happens
strongly self-gravitating objects by writing the total energ
to be minimized as a function of both the external field an
the order parameter,mA(vA ,w0)5m(vA)2vAw0 , and by
assuming that the~Legendre transform! energy function
m(vA) develops, when some control parameter varies
ive
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minimum at a nonzero value ofvA . In our case, if we fix the
shape of the coupling functionA(w) @for instance Eq.~2.1!
with b sufficiently negative#, the control parameter is the
total baryon massm̄A of the star. A simple model exhibiting
the appearance of a ‘‘spontaneous scalarization’’ of a star
absence of external fieldw0 is simply the usual Landau an-
satz near the critical transition point: m(vA)
5 1

2a(m̄cr2m̄A)vA
21 1

4bvA
4 . In absence of external field,

w050, the energymA is minimum at the unique~trivial!
solutionvA50 whenm̄A,m̄cr , while whenm̄A.m̄cr , there
appear two energetically favored nontrivial solution
vA56@b21a(m̄A2m̄cr)#

1/2. At the critical transition
m̄A5m̄cr , the slopedvA /dm̄A is infinite. As in the ferro-
magnetic case, the presence of an external fieldw0Þ0
smoothesthe transition. For instance, the ‘‘scalar susceptib
ity’’ xA5]vA /]w0 which blows up near the critical point as
um̄A2m̄cru21 when w050 becomes a rapidly varying but
smooth function ofm̄A when w0Þ0. The results of@10#
clearly exhibit the sharpening of the transition asw0→0.
This is illustrated in Fig. 1, which displays two curves co
responding tow052.431023 andw050 for the same theory
@b526 in Eq.~2.1!# and the same equation of state~EOS II
of Ref. @12#!. Note that, whenw0Þ0, it is the sign of the
externalw0 which determines the direction of the symmetr
breaking.

It is convenient, notably for the applications to binary
pulsar experiments, to replace the quantityvA by the related
quantity

aA[2
vA

mA
[

] lnmA

]w0
, ~2.3!

which measures the effective strength of the coupling b
tweenw and the star. It is the strong-field counterpart of th
weak-field coupling strengtha05a(w0) and reduces to it in
the case of negligible self-gravity. Correlatively, it is conve
nient to replace the scalar susceptibilityxA5]vA /]w0 by
the quantity

bA[
]aA

]w0
, ~2.4!

FIG. 1. Effective scalar coupling strength2aA[vA /mA versus
baryonic massm̄A , for the modelA(w)5exp(23w2). The solid line
corresponds to the maximum value ofw0 allowed by solar-system
experiments, and the dashed lines tow050 ~‘‘zero mode’’!. The
dotted lines correspond to unstable configurations of the star.
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which is the strong-field analogue of the quanti
b05]a(w0)/]w0 entering the Eddington paramete
bEdd21, Eq. ~1.4b!. The quantitybA directly enters many
observable orbital effects in binary-pulsar systems@5#.

Summarizing, we conclude that the nonperturbative p
nomenon discussed in@10# can be simply interpreted as
‘‘spontaneous scalarization’’ phenomenon, i.e., a scalar a
logue of ferromagnetism. The condition for this phenomen
to occur in actual neutron stars depends on the equatio
state of neutron matter. For a polytropic model represen
a realistic equation of state~with maximum baryonic mass o
2.23m( in general relativity!, we found that the critical bary-
onic mass2 for spontaneous scalarization is smaller th
about 1.5m( ~which corresponds to a general relativist
mass'1.4m() whenb0[]2lnA(w0)/]w0

2<25. For such val-
ues ofb0 , actual neutron stars observed in binary puls
would develop strong scalar charges even in absence of
ternal scalar solicitation@i.e., even ifa05a(w0)50#. For
values25<b0<24, one can still obtain important devia
tions from general relativity if the cosmological value o
a0 saturates the present weak-field limit~1.6!. In all cases,
the presence of a nonzero externala0 smoothes the phas
transition and leads to continuously~but fast! varying values
of the effective coupling parametersaA andbA as functions
of the mass. Figure 2 displays the dependencem̄ cr(b) for the
quadratic model~2.1!. Some representative numerical valu
are quoted in Table I. Forb0 above some critical value
b cr'24.34, the maximum mass is reached before the z
mode can develop. It is plausible~but difficult to confirm
numerically! that asb→bcr , the critical baryonic mass tend
to the general relativistic maximum baryonic ma
('2.23m( in our polytropic model!.

The behavior discussed above concerns the scalar mo
invariant under the reflection symmetryw→2w, such as
A(w)5exp(12bw2) or A(w)5cos(A2bw). A dissymmetric

2Note that one can determine the critical baryonic mass as a fu
tion of b, in the quadratic model~2.1!, by solving alinear problem.
Indeed, the onset of the transition happens when Eq.~1.2b! with
a(w)5bw ~andg* andT* replaced by a background general rel
tivistic solution! first admits a ‘‘zero mode,’’ i.e., a nontrivial ho
mogeneous solution with vanishing boundary conditions@10#.

FIG. 2. Critical baryonic massm̄cr versus the curvature param
eterb within the quadratic modelsA(w)5exp(12bw2).
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coupling function, such asA(w)5exp(12bw21 1
6b8w3),

would lead to hysteresis phenomena~first-order rather than
second-order phase transition!: For some values of the con
trol parameterm̄A , there will be two locally stable energy
minima available. The scalar configuration chosen by the
would depend on the route taken to evolve into its pres
mass state. Let us also mention that we would get an e
richer ~Goldstone-like! phenomenology if we were to con
sider models involving several scalar fields, with, e.g., spo
taneous breaking of a continuous symmetry in the sca
field space. Finally, let us make it clear that a negative va
for b0[]2lnA/]w0

2 does not mean at all that we are introdu
ing some pathology in our scalar-field model. The theor
we consider are well-behaved field models having on
positive-energy excitations. A negative value ofb0 means
only that scalar field nonlinearities can reinforce the na
rally attractive character of scalar interactions, so that it b
comes energetically favorable to generate more scalar-fi
energy.3

III. SLOWLY ROTATING NEUTRON STARS
IN TENSOR-SCALAR GRAVITY

One of the main objects of the present paper is to sh
how to compute the moments of inertia of slowly rotatin
neutron stars in tensor-scalar gravity, especially in the pr
ence of the nonperturbative strong-scalar-field effects
called above. We shall work in the Einstein conformal fram
within which the basic global mechanical quantities, such
total mass and total angular momentum, are conserved~in
absence of radiation or particle exchange! and can, as usual
be read off the asymptotic expansion of the metric. The to

nc-

a-
-

3The appearance of a negative critical value ofb0 can be easily
understood in the lowest approximation, where the scalar ene
functional to be minimized reads~when setting G5c51)
E@w#5*d3x@(1/8p)(] iw)

21r(11
1
2bw2)]. Indeed, let us consider

for instance the simplest trial continuous field configuration
w(r )5const5vA /R inside a star of massm5*d3xr and
w(r )5vA /r outside the star (r.R). This yields E@vA#5m
1

1
2CvA

2 , whereC5R21(11bm/R) becomes negative for a suffi
ciently negativeb. The missing stabilizing contribution1 1

4bvA
4

would come from taking into account higher-order nonlinearities

-

TABLE I. Critical baryonic massm̄cr ~and critical Einstein mass
mcr) for some values of the curvature parameterb within the qua-
dratic modelsA(w)5exp(12bw2).

b m̄cr /m( mcr /m(

210 0.69 0.66
29 0.78 0.74
28 0.89 0.84
27 1.04 0.98
26 1.24 1.16
25.5 1.38 1.28
25 1.56 1.43
24.5 1.84 1.65
24.35 2.01 1.78
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massmA ~in Einstein units! can be read off the 1/r behavior
of g00* or gi j* , while the z component of the total angular
momentumJA ~in Einstein units! can be read off the 1/r 2

behavior of the mixed componentg0i* . We consider only
stationary axisymmetric field configurations. It has be
shown by Hartle@13# ~see also@14#! that the metric corre-
sponding to a slowly rotating star could be written, whe
keeping only first-order terms in the angular velocit
V5uf/ut, as

ds
*
2 5gmn* dxmdxn52en~r!c2dt21em~r!dr21r2du2

1r2sin2u~df1@v~r,u!2V#dt!2. ~3.1!

Thanks to the neglect of fractional corrections of orderV2,
the diagonal metric coefficientsn(r) andm(r) can be taken
to be the solutions corresponding to a spherically symme
nonrotating star. The only new field variable which appea
in the slowly rotating case is the functionv(r,u) entering
the mixed componentgtf* 5r2sin2u@v(r,u)2V#. The subtrac-
tion of the star’s angular velocityV is chosen for later
convenience.4 The total angular momentumJA is read off the
1/r3 behavior ofv:

v5V2
G*
c2

2JA
r3

1OS 1r4D . ~3.2!

Then the inertia moment~in Einstein units! is defined, in the
slow rotation limit, as the ratio

I A5
JA
V

1O~V2!. ~3.3!

We need now to write down explicitly the field equation
~1.2!. As the scalar fieldw does not couple linearly to the
rotation, the field equation forw is, modulo terms of order
V2, the same as for a spherically symmetric, nonrotating s
@thereforew will, moduloO(V2), be spherically symmetric#.
The field equation for the new variablev comes from

R
* f
t 52]fwg

*
ta]aw1

8pG*
c4

T
* f
t . ~3.4!

Simply from axisymmetry (]f50) we see that the scala
contribution to the right-hand side of Eq.~3.4! vanishes ex-
actly. We are then left with the usual Einstein field equatio
with a localized material source. Taking as usual a perf
fluid description of nuclear matter~with energy densitye*
and pressurep* in Einstein units! we can directly use the
results of Refs.@13,14#. ~One must, however, be careful no
to use equations where the ‘‘diagonal’’ Einstein field equ
tions have been replaced.! We find the following homoge-
neous equation forv:

4With this definition of variables, the stress-energy tensor of t
fluid gives simplyT

* f
t 5(e*1p* )e

2nr2vsin2u thanks to a combi-
nation betweengtf* andV5uf/ut.
n

n
y

ric
rs

s

tar

s
ct

t
-

1

r4
]r@r4e2~n1m!/2]rv#1

e~m2n!/2

r2sin3u
]u~sin3u]uv!

5
16pG*
c4

~e*1p* !e~m2n!/2v. ~3.5!

As in Refs.@13,14#, a decomposition ofv(r,u) in associated
Legendre polynomialsdPl (cosu)/dcosu shows that there is
only a P contribution (l 51), so that, in fact,v depends
only onr and not onu. Adding the scalar-modified diagonal
Einstein equations~written in @10#!, we finally get the fol-
lowing complete set of radial equations for our field vari-
ables~a prime denotingd/dr):

M 85
4pG*
c4

r2A4~w!ẽ1
1

2
r~r22M !c2, ~3.6a!

n85
8pG*
c4

r2A4~w! p̃

r22M
1rc21

2M

r~r22M !
, ~3.6b!

w85c, ~3.6c!

c85
4pG*
c4

rA4~w!

r22M
@a~w!~ ẽ23p̃!1rc~ẽ2 p̃!#

2
2~r2M !

r~r22M !
c, ~3.6d!

p̃852~ ẽ1 p̃!F4pG*
c4

r2A4~w! p̃

r22M
1
1

2
rc2

1
M

r~r22M !
1a~w!c G , ~3.6e!

M̄ 854pm̃bñA
3~w!

r2

A122M /r
, ~3.6f!

v85Ã, ~3.6g!

Ã85
4pG*
c4

r2

r22M
A4~w!~ ẽ1 p̃!S Ã1

4v

r D
1S c2r2

4

r DÃ. ~3.6h!

The notation used in Eqs.~3.6! is the following:M (r) is
defined by writing the radial metric coefficientgrr as
em(r)[@122M (r)/r#21. As usual the value ofM (r) at in-
finity is the total Arnowitt-Deser-Misner~ADM ! mass. The
fluid variables have been expressed in physical units usin
T
* m
n 5A4(w)T̃m

n . @It is in these units that one can write a
usual equation of stateẽ5 ẽ(ñ), p̃5 p̃(ñ), whereñ denotes
the physical number density of baryons.# c andÃ are just
intermediate notations for the radial derivatives ofw and
v, respectively. Finally, we have added an equation for th
radial distribution of the baryonic massm̄A5M̄ (R)
5m̃b*AñAg̃ ũ 0d3x5m̃b*0

R4pñA3(w)r2(122M /r)21/2dr,
whereR denotes the~Schwarzschild-coordinate! radius of
the star ~i.e., the value ofr where p̃ and ẽ vanish!.

e
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Note that several of the right-hand sides of Eqs.~3.6!
contain terms proportional toc25(w8)2 ~i.e., proportional to
the scalar-field energy density!. These terms do not vanish
outside the star. However, one can avoid numerically int
grating Eqs.~3.6! up to r5` by matching the result of in-
tegrating them up to the radiusR of the star to the known
general form of the exact static, spherically symmetric ext
rior solution. This is, however, a bit subtle because the ge
eral exterior solution can only be written in closed form i
some special coordinates introduced by Just@15,16,5# or
~through a simple transformation! in isotropic coordinates,
but not in the Schwarzschild coordinates we are using. St
it was shown in@10# how to extract, via a matching across
the star’s surface, the global quantitiesmA andaA from the
results of integrating Eqs.~3.6! up to r5R. We need to do
here more work to extractJA ~andI A) from the results for the
variablesv andÃ[dv/dr.

Outside the star, Eq.~3.5! ~with ]u50) shows directly
that r4e2(n1m)/2]rv is a constant. From Eq.~3.2!, this con-
stant is simply related to the total angular momentum, so th

dv

dr
56

G*
c2

JA
e~n1m!/2

r4
~outside the star!. ~3.7!

Equation~3.7! gives one equation to determineJA . We need
another equation to determineV and thenI A[JA /V. Note
that the equation forv @e.g., Eq.~3.5!# is homogeneous in
v. Therefore, we can start the radial integration with an a
bitrary ~nonzero! value of v(r) at r50, but we need to
extract fromv(r) the value of the fluid angular velocityV
implied by this arbitrary choice. To achieve this, it suffices t
integrate explicitly Eq.~3.7! with the boundary condition
v(r)→V whenr→` @as is clear from Eqs.~3.1! or ~3.2!#.
This integration can be done by rewriting Eq.~3.7! in Just
radial coordinater . Indeed, the general exterior static
spherically symmetric solution@15,16,5# reads

ds
*
2 52enc2dt21e2n@dr21~r 22ar !~du21sin2udf2!#,

~3.8a!

en~r !5S 12
a

r D
b/a

, ~3.8b!

w~r !5w01
d

a
lnS 12

a

r D , ~3.8c!

where the integration constantsa,b,d are constrained by
a22b254d2, and are expressible in terms of the total Ein
stein massmA and the effective coupling constantaA , Eq.
~2.3!, via

b52
G*
c2

mA , ~3.9a!

a

b
5A11aA

2, ~3.9b!

d

b
5
1

2
aA . ~3.9c!
e-

e-
n-
n

ill,

at

r-

o

,

-

Comparing Eq.~3.8a! with the Schwarzschild form~3.1!
yields

r5r S 12
a

r D ~a2b!/2a

, ~3.10a!

em5S 12
a

r D S 12
a1b

2r D 22

. ~3.10b!

Inserting these results into Eq.~3.7! leads to an elementary
integral forv(r ). To write explicitly the answer it is conve-
nient to introduce the parameter

p[
1

a
lnS 12

a

r D . ~3.11!

In terms ofp, the exact exterior solution forv reads

v5V1
6G* JA

c2b~4b22a2! H e2bp211e2bp

3F S 2ba D 2@cosh~ap!21#2
2b

a
sinh~ap!G J .

~3.12!

Combining the results just derived on the radial dependenc
of v with the results of@10# for the matching of the other
field variables, we can finally write a set of equations allow-
ing one to extract all the needed physical quantities from th
surface values obtained from integrating Eqs.~3.6! from the
centerr50 :

R[rs , ~3.13a!

ns8[Rcs
21

2Ms

R~R22Ms!
, ~3.13b!

aA[
2cs

ns8
, ~3.13c!

Q1[~11aA
2 !1/2, ~3.13d!

Q2[~122Ms /R!1/2, ~3.13e!

n̂s[2
2

Q1
arctanhS Q1

112~Rns8!21D , ~3.13f!

w0[ws2
1

2
aAn̂s , ~3.13g!

G*
c2

mA[
1

2
ns8R

2Q2expS 12 n̂sD , ~3.13h!

m̄A[M̄ s , ~3.13i!

G*
c2

JA[
1

6
ÃsR

4Q2expS 2
1

2
n̂sD , ~3.13j!
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V[vs2
c4

G
*
2

3JA
4mA

3~32aA
2 !

H e2n̂s211
4G*mA

Rc2
en̂s

3F2G*mA

Rc2
1en̂s/2coshS 12Q1n̂sD G J , ~3.13k!

I A[
JA
V
. ~3.13l!

The notation used in Eqs.~3.13! is that a suffixs denotes the
surface value of any of the variables entering the first-or
system~3.6!. The only exception@apart fromns8 , which we
redefine explicitly as the surface value of the right-hand s
of Eq. ~3.6b!# is n̂s , which is the ‘‘correct’’ value ofn at the
surface whenn is normalized as being zero at infinity. In
deed, as the system~3.6! is integrated from the center@start-
ing with an arbitrary value ofn(0)# up to the surface, the
surface value ofn(r) naively obtained from integrating Eqs
~3.6! is not the one to be used in any of the physically no
malized results.

Let us finally mention the set of initial conditions, at th
center, used for integrating Eqs.~3.6!. Actually, because of
the singular nature of the pointr50, one numerically im-
poses initial conditions at a small but nonzero radiusrmin .
The values of some of the radial derivatives (w8[c and
v8[Ã) are determined so as to be consistent with regu
Taylor expansions at the origin@for instance, writing
w(r)5w(x)5w(0)1 1

6x
2Dw(0)1O(x4) determinesw8(r)

;1
3rDw(0) asr→0#. The complete set of initial conditions

reads

M ~rmin!50, ~3.14a!

n~rmin!50, ~3.14b!

w~rmin!5wc , ~3.14c!

c~rmin!5S 13 rminD4pG*
c4

A4~wc!a~wc!@ ẽ~ ñc!23p̃~ ñc!#,

~3.14d!

ñ~rmin!5ñc , ~3.14e!

M̄ ~rmin!50, ~3.14f!

v~rmin!51, ~3.14g!

Ã~rmin!5S 15 rminD16pG*c4
A4~wc!@ ẽ~ ñc!1 p̃~ ñc!#v~rmin!.

~3.14h!

Note that~as discussed above! the initial conditions~3.14b!
and~3.14g! are arbitrary, and that we transform Eq.~3.6e! in
an evolution equation for the physical number densityñ us-
ing the equation of state, i.e.,p̃85(dp̃(ñ)/dñ)3ñ8. The
choice ofwc and ñc is discussed below.
der
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IV. GRAVITATIONAL FORM FACTORS
OF ROTATING NEUTRON STARS

A. Scalar-field dependence of the inertia moment

Extending the analysis of@10#, we have studied the im-
pact of scalar-induced strong-field effects on the gravit
tional form factors of neutron stars. By ‘‘gravitational form
factor’’ we mean the set of coupling constants that appe
within tensor-scalar theories, in the description of the re
tivistic motion and timing of binary~and isolated! pulsars.
As discussed in detail5 in @5#, the (v/c)2-accurate orbital
dynamics of binary systems depends, besides the Eins
masses of the two objectsmA andmB , on the effective scalar
coupling constantsaA , aB , defined in Eq.~2.3!, as well as
on their scalar-field derivativesbA , bB , Eq. ~2.4!. It was
also shown in@5# that the same parametersaA ,aB ,bA ,bB

suffice to express all radiation reaction effects@up to
O(v7/c7)# in a tensor-scalar description of compact bina
systems. On the other hand, the relativistic timing of binar
pulsar systems involves, besides the abovea ’s and b ’s, a
new parameter describing the possible field dependence
the inertia momentI A of the pulsar.@In the following, we use
the labelA to indicate the timed pulsar, by opposition to th
companion labeledB.# Indeed, as pointed out by Eardley
@17# ~see also@18#!, the adiabatic invariance~under the slow
variation of the local scalar-field environment caused by t
motion of the companion! of the total angular momentum of
the pulsarJA5I A(w0A

loc)VA implies that the angular velocity
of the pulsarVA will fluctuate in response to the orbital-
induced variations of the external scalar fieldw0A

loc locally felt
by the pulsar. As discussed in more detail below, the obse
able deviations from general relativity implied by this effec
are given by the parameterKA

B[2aB] lnIA /]w0, in which
I A denotes, as above, the inertia moment of the pulsar
~local! Einstein units.

To compute] lnIA /]w0, we have numerically integrated
Eqs.~3.6! with a suitable ‘‘shooting’’ strategy for the choice
of initial conditions. Indeed, the quantities that are physica
fixed arew0 ~the value ofw far from the star! and m̄A ~the
baryonic mass of the neutron star!. @Note that when a deriva-
tive with respect tow0 is taken, as in the definitions of
bA , Eq. ~2.4!, or of KA

B , it must be performed for a fixed
value of m̄A .# Therefore, by trial and error, one must var
the initial conditionswc andñc in Eqs.~3.14! until they lead
to the desired values ofw0 andm̄A . In the end, one wants to
explore the way the observablesmA ,aA ,bA ,I A ,
] lnIA /]w0, . . . depend uponw0 andm̄A .

The values ofmA ,aA , . . . as functions ofw0 and m̄A
depend upon the equation of state used to describe
nuclear matter in the neutron star. We shall discuss in a la
publication the dependence of our results on the choice
the equation of state. In the present work, we shall consid
for simplicity, only a fixed polytropic equation of state:

ẽ 5ñm̃b1
Kñ0m̃b

G21 S ññ0D
G

, ~4.1a!

5We restrict here the more general results of@5# to the simple case
where there is only one scalar field.
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FIG. 3. Dependence upon the baryonic massm̄A of the coupling parametersaA , bA , the inertia momentI A , and its derivative
] lnIA /]w0. These plots correspond to the modelA(w)5exp(23w2) and the maximum value ofw0 allowed by solar-system experiments. As
in Fig. 1, the dotted lines correspond to unstable configurations of the star.
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p̃5Kñ0m̃bS ññ0D
G

. ~4.1b!

All quantities in Eqs. ~4.1! are in local physical units;
m̃b[1.66310224 g is a fiducial baryon mass and
ñ0[0.1 fm23 a typical nuclear number density. We sha
use the following specific values of the polytropic param
etersG andK:

G52.34, K50.0195, ~4.2!

which have been chosen to fit a realistic equation of st
which is neither too hard nor too soft: the equation of state
of Ref. @12#. ~The polytropic constantK should not be con-
fused with the parameterKA

B linked to the scalar-field-
induced variation of the inertia moment.! The precise values
~4.2! were adjusted to fit the curve giving, in general relati
ity, the fractional binding energyf[(m̄2m)/m as a func-
tion of the baryonic mass. In particular they lead to the sa
maximum baryonic massm̄max52.23m( in general relativ-
ity. Let us note in passing that to convert from the nucle
fiducial quantities to more adequate astrophysical un
(m( for masses,G*m( /c2 for distances!, it is convenient to
use the numerical value

4pG* ñ0m̃b

c2 SG*m(

c2 D 25 1

296.135
. ~4.3!

For technical convenience, when comparing different the
ries we keep fixed G*56.6731028cm3g21s22 ~and
m(51.9931033 g, measured ing* units!. See Ref.@5# for
ll
-

ate
II

v-

me

ar
its

o-

the factors ~differing from unity by &1023) relating
g* -frame quantities to directly observable ones.

We present in Fig. 3 some of our numerical results for t
dependence upon the baryonic mass ofaA , bA , I A @in units
of m((G*m( /c2)2# and] lnIA /]w0. All the results of these
figures have been computed within the tensor-scalar the
defined by the particular coupling function

A 6̄ ~w![exp~23w2!. ~4.4!

This model belongs to the class of quadratic models~2.1!,
and possesses a curvature parameter for the logarithm o
coupling function, b5b05]2lnA/]w0

2526. In the limit
wherew0→0, this model exhibits a spontaneous scalariz
tion above a critical baryonic massm̄cr51.24m( . As ex-
plained in Sec. II, the presence of a nonzero external sc
backgroundw0Þ0 smoothes the scalarization and leads
continuous variations ofaA ,bA , . . . as functions of m̄A .
For instance, instead of having a Curie-type blow
}um̄A2m̄cru21 for the zero-external-field ‘‘susceptibility’’
bA5]aA /]w0 , we get a ‘‘resonance’’ bump inbA when
m̄A'm̄cr . There remains, however, an infinite blowup
bA whenm̄A reaches the maximum baryonic mass. It is ea
to see analytically that this blowup must be there.~The same
remark applies to] lnIA /]w0.) For definiteness, we have
drawn Fig. 3 for the value

w05w0
max[2.431023, ~4.5!

which is the maximum value ofw0 allowed by present weak-
field tests within the model~4.4!. This maximum value is



-
es

-

e

i-

1482 54THIBAULT DAMOUR AND GILLES ESPOSITO-FARÈSE
obtained from considering not only the limita0
2,1023, Eq.

~1.6!, coming from time-delay and light-deflection exper
ments@8#, but also the limit

ub0ua0
2,1.231023, ~4.6!

coming from the lunar-laser-ranging constraintu b̄ u
,631024 @19# on the Eddington parameteru b̄ u
[bEdd21' 1

2b0a0
2 @see Eq.~1.4b!#. When ub0u.1.2, the

limit ~4.6! is more stringent than the limit~1.6! and defines
the maximal allowed value forua0u and thereby for
uw0u'ua0 /b0u ~see the exclusion plot in Sec. V D below!.

Besides the variation of the shapes of the curves in Fig
whenw0 is allowed to vary~which is always a sharpening o
the bumps and a stabilization of the other features6!, we have
also numerically explored the effect of varying the curvatu
parameterb in Eq. ~2.1!. The two main effects of varying
b are ~i! to enlarge the values of the form factorsuaAu,
ubAu, u] lnIA /]w0u as2b increases, and~ii ! to displace the
location of the critical pointm̄cr . For instance, we find
@within the models ~2.1!# mcr(b525)51.56m( ,
m̄cr(b524.5)51.84m( . These values are below the~ex-
pected! maximum mass of a neutron star. However, observ
neutron stars have baryonic masses around 1.5m( ~corre-
sponding to general relativistic Einstein masses arou
1.4m(); therefore, we expect that strong-scalar-field effec
can have significant observational consequences only w
b<25.

B. Scalar-field effects in the timing parameterg

Up to now, the non-Einsteinian effects linked to the fie
dependence of the inertia moment have been treated by
approximation@17,18,5# which is insufficient for tackling the
nonperturbative phenomena discussed here. One of the m
aims of the present paper is to remedy this situation. Let
first clarify the observable effect of the variation of the puls
inertia moment with the local scalar background7 wA[w0A

loc

@17,18#.
The central tool of binary-pulsar experiments is the ‘‘tim

ing formula’’ ~see, e.g.,@20,21#!, i.e., the mathematical func-
tion relating the ‘‘intrinsic time’’ of the pulsar clockT to the
arrival time on Earth of radio pulses. The successive ticks
the pulsar timeT are defined to correspond to successi
2p rotations of the pulsar around itself:fPSR52pT/Pp ,
wherePp is the intrinsic period of the pulsar~for simplicity
we neglect here the slowdown of the rotation of the pulsar
well as aberration effects!. In other words, adding the labe
A and passing to a differential formulation,dTA5CdfA for
a certain constantC. In ~local! Einstein units, the pulsar
angular momentum readsJA5I AVA5I AdfA /dtA* , where
dtA*5udsA* u/c5(2gmn*

AdzA
mdzA

n )1/2/c is the Einstein proper
time in a local inertial frame aroundA. The angular momen-

6See, for instance, Fig. 1 above which shows that the wide plat
in aA , beyondm̄cr , varies very little whenw0 tends to zero.
7This denotes the nearly uniform value ofw on a sphere centered

onA having a radius much larger than the radius of the neutron s
A but much smaller than the distance to the companion.
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tum JA is an action variable@J5pf5(1/2p)rpidqi # and
therefore an adiabatic invariant under slow changes of pa
rameters. It remains therefore constant as the pulsar mov
on its orbit and feels a slowly changingwA from its compan-
ion. This yields dTA5C8dtA* /I A for some new constant
C8. The latter equation can be approximately rewritten in
terms of some coordinate timet used to describe the binary
motion:

dTA'C8A2g00*
AA12vA

2/c2dt/I A„wA~ t !…, ~4.7!

where~to sufficient accuracy! vA
2 is the Euclidean square of

the coordinate velocity of the pulsarvA5dzA /dt. Using~see
@5#!

A2g00*
A512

G*mB

rABc
2 1OS 1c4D , ~4.8a!

wA~ t !5w02
G*mBaB

r ABc
2 1OS 1c4D , ~4.8b!

and the standard relations given by Newtonian orbital dy
namics @with effective Newtonian constant
GAB5G* (11aAaB)#, we find a usual ‘‘Einstein’’ contribu-
tion DE5gsinu to the timing formula@20,21#. In DE , u de-
notes the function of TA defined by solving
u2esinu52p@(TA2T0)/Pb2

1
2Ṗb((TA2T0)/Pb)

2], and8

g[g th~mA ,mB!5
e

n

XB

11aAaB
SGAB~mA1mB!n

c3 D 2/3
3@XB~11aAaB!111KA

B#. ~4.9!

The timing parameterg should not be confused with the
Eddington parametergEdd. Heree is the orbital eccentricity,
n[2p/Pb the orbital circular frequency,XB[mB /
(mA1mB), and the new contributionKA

B coming from the
variation of I A under the influence of the companionB is
defined by

KA
B[2aB

] lnI A
]w0

. ~4.10!

Note the dissymmetric roles of the labelsA and B. It is
important, for applications, to recognize that the dependenc
of the correctionKA

B upon the two massesmA ,mB is factor-
ized~in the single scalar case that we consider here!. Accord-
ingly, it might be convenient to define the quantity

kA~mA![2] lnI A /]w0 , ~4.11!

so thatKA
B(mA ,mB)5kA(mA)aB(mB).

The reasoning above~based on the use of the Einstein
conformal frame! could be done using the ‘‘physical’’~or
Jordan-Fierz! conformal frame. Indeed, the angular momen-
tum is independent of the conformal frame~being anaction
variable!. This meansI AVA5 Ĩ AṼA so that the pulsar intrin-
sic time ~which is a conformal invariant, being proportional

eau

tar

8The notationg th(mA ,mB) in Eq. ~4.9! refers to the theoretical
prediction, within tensor-scalar models, giving the phenomenolog
cal timing parameterg as a function of the masses. See below.
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to the angle fA) can be equivalently written as9

dTA5C8dtA* /I A5C8dt̃A / Ĩ A . The calculation is~as always!
slightly more complicated in the Jordan-Fierz frame a
leads to a correctionK̃A

B instead of theKA
B in Eq. ~4.9!, given

by the sum of two terms:K̃A
B5a0aB2aB] lnĨA /]w0, which is

~as it should! found to be identically equal toKA
B , Eq.~4.10!,

when using the linkĨ A5A(wA)I A .
In previous works@17,18,5# one had assumed, as an a

proximation, thatĨ A was simply a function of the local, ex
ternally imposed, value of the effective gravitational ‘‘co
stant’’ G̃(wA). Such an assumption is meaningful only in
‘‘quasi-weak-field’’ approximation where one formally con
siders the compactness of a neutron star as a small expa
parameter~see Sec. 8.1 of@5#!. This approximation breaks
down precisely when the strong-scalar-field effects stud
here develop~i.e., whenubu*4). Previous treatments intro
duced the parameterkA[2] lnĨA /]lnG̃A . When it is mean-
ingfully defined, the parameterkA is linked to the paramete
kA[2] lnIA /]w0 introduced above bykA'a012a0@1
1b0 /(11a0

2)]kA . This formula shows that, under the a
sumptions of previous approximate treatments, the correc
KA
B was proportional to the producta0aB between theweak-

field scalar couplinga0 and the possibly strong-field ampl
fied effective couplingaB . Asa0 is observationally strongly
constrained, this led always to small values ofKA

B with
nearly negligible observational effects. By contrast, the ex
result ~4.10! is fully sensitive to strong-scalar-field effec
taking place both in the pulsar and its companion. To illu
trate the order of magnitude of possible deviations from
general relativistic prediction10 for the timing parameterg in
systems made of two neutron stars, we plot in Fig. 4
value of KA

A ~corresponding to the cases wheremB5mA)
versusmA within the modelA 6̄(w), Eq. ~4.4!, and using the

9Note in passing that the pulsar clock ticks neither the Eins
time nor the Jordan-Fierz one. Indeed, bothI A and Ĩ A fluctuate
because of their dependence onwA(t).
10The general relativistic predictiongGR(mA ,mB) is obtained

from Eq. ~4.9! by settingaAaB50, GAB5G, andKA
B50.

FIG. 4. ParameterKA
A52aA(] lnIA /]w0) versus the Einstein in-

ertial massmA, within the modelA(w)5exp(23w2). The solid line
corresponds to the maximum value ofw0 allowed by solar-system
experiments, and the dashed line to a tenfold smaller value ow0

~i.e., a 100 times smaller value of the Eddington parame
gEdd21).
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same assumptions as in Fig. 3@notably a maximally allowed
value of w0 , Eq. ~4.5!#. We see in Fig. 4 that when
mA*1m( , we get very drastic modifications of the genera
relativistic prediction forg ~except in a small neighborhood
of mA;1.3m( where KA

A vanishes!. In particular, when
1.1<mA /m(<1.2, KA

A takes largishnegativevalues which
change the sign of the predictedg th. @The minimum value of
KA
A in Fig. 4 is reached formA51.13m( and equals

KA
Amin523.45, yielding gmin

th (mA ,mA)521.27gGR.# We
computed alsoKA

A for smaller values of the external scalar
field w0 and found~as usual by now! that they cause a sharp-
ening of the ‘‘resonance’’ bump in Fig. 4. For instance, we
found thatKA

Amin526.68 for w05w0
max/10. Paradoxically,

smaller values of the weak-field couplinga0 predict larger
values of the modificationKA

A to the timing parameterg,
though concentrated over a smaller range of mass valu
This effect is even more spectacular forKA

B when
m̄B.m̄A'm̄cr : In that case, the effective couplingaB tends
to a nonvanishing constant asw0→0, while ] lnIA /]w0 blows
up, so thatuKA

Bu can take arbitrarily large values. For in-
stance, one getsKA

Bmin528.20 for w05w0
max, and

KA
Bmin5223.82 for w05w0

max/10 @yielding gmin
th (mA ,mB)

'223gGR#. Finally, varying the value of the curvature pa-
rameterb in the models~2.1! displaces the center of the
bump inKA

A , towards lower~higher! values when2b in-
creases~decreases!.

V. APPLICATION TO BINARY-PULSAR EXPERIMENTS

We have now all the necessary tools in hand for explorin
the impact of nonperturbative scalar effects on binary-puls
experiments. In a future publication@11#, we shall confront
in a systematic manner the predictions of tensor-scalar gra
tation theories with a more complete and updated set
binary-pulsar data. In the present work, we shall illustrat
how binary-pulsar data give us very significant constrain
on the strong-field regime of relativistic gravity by compar
ing published data11 on PSR 1913116, PSR 1534112, and
PSR 0655164 with the predictions of tensor-scalar theorie
exhibiting the nonperturbative effects discussed above.
Ref. @11#, we shall also take into account data on certai
nearly circular binary systems which test the strong equiv
lence principle@22–24#. We do not consider them here be-
cause they are less constraining than the systems we stu
@Indeed, the ‘‘Stark effect’’ is proportional to the product
a0(aA2aB) and, therefore, is already significantly con-
strained by the solar-system limits ona0 .#

The case of PSR 1913116 is the richest in that it involves
many different types of strong-field effects:~i! modifications
of the first post-Keplerian orbital motion~observable through
the periastron advancev̇), ~ii ! modification of gravitational
radiation damping~observable through the orbital period de
cay Ṗb), and~iii ! sensitivity of the pulsar inertia moment to

tein 11Note that the pulsar community now uses an updated notation
which these pulsars are called PSR B 1913116, PSR B 1534112,
and PSR B 0655164, respectively. Here, the label B~for Besselian!
refers to the equatorial coordinate system based on the 1950 eq
nox @while the letter J~for Julian! refers to the 2000 equinox#.
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an external scalar field~observable through the timing pa-
rameterg). As we shall discuss below, the case of PS
1534112 very usefully complements that of 1913116 in
trading theṖb measurement against a measurement of t
shape parameters of the gravitational delay. The scalar-field
effects inv̇, Ṗb, ands have been already worked out with
sufficient accuracy in the literature@5,21,18#, while the
scalar-field effects ing have been discussed above.

A. PSR 1913116 experiment

We recall that, at present, one can phenomenologica
extract from the raw data of the binary pulsar PSR 1913116
~following the methodology of@21#! threewell-measured12

observablesv̇obs, gobs, and Ṗb
obs. Here v̇obs denotes the

secular rate of advance of the periastron,gobs denotes the
observed value of the timing parameter discussed above,
Ṗb
obs denotes the secular change of the orbital period. T

values we shall take for these observed parameters are@26#

v̇obs54.226 621~11!° yr21, ~5.1a!

gobs54.295~2!31023 s, ~5.1b!

Ṗb
obs522.422~6!310212, ~5.1c!

where figures in parentheses represent 1s uncertainties in the
last quoted digits. We shall also need the Keplerian para
eters

Pb527 906.980 780 4~6! s, ~5.2a!

e50.617 130 8~4!. ~5.2b!

The important point~which is the basis of the param-
etrized post-Keplerian approach@21#! is that the observables
~5.1! have been extracted from the raw pulsar datawithout
assuming any specific gravitation theory~at least within the
very wide class of boost-invariant theories!. One can then
use the three pieces of data~5.1! to constrain theories of
gravitation. To do this one must compute, within the theo
to be tested, what are the predictions it makes forv̇, g, and
Ṗb as functionsof the two ~a priori unknown! massesmA ,
mB . We have written in Eq.~4.9! above the theoretical pre-
diction for the timing parameter,g th(mA ,mB), within tensor-
scalar gravity models. The theoretical prediction for the p
riastron advance rate has been worked out in Refs.@18,21,5#
and reads, with the notation of the present paper,

v̇ th~mA ,mB!5
3n

12e2
SGAB~mA1mB!n

c3
D 2/3F12 1

3 aAaB

11aAaB

2
XAbBaA

21XBbAaB
2

6~11aAaB!2
G . ~5.3!

The notation in Eq.~5.3! is the same as in Eq.~4.9!. We
recall that n[2p/Pb , GAB5G* (11aAaB), and

12Two more observablesr obs andsobs are measured with low pre-
cision @25#.
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XA[mA /(mA1mB)[12XB . Finally, the theoretical pre-
diction for the~radiation-reaction driven! orbital period de-
cay has been derived in Ref.@5# ~with the full needed accu-
racy and for generic tensor-scalar theories!. It is given as a
sum of contributions:

Ṗb
th~mA ,mB!5 Ṗw

monopole1 Ṗw
dipole1 Ṗw

quadrupole1 Ṗg*
quadrupole

1~ Ṗgal!GR1d th~ Ṗgal!. ~5.4!

The first three contributions correspond to energy lost to sca
lar waves~of monopolar, dipolar, and quadrupolar type, re-
spectively!. The fourth one corresponds to the energy lost to
quadrupolar tensor waves~pure spin-2 fieldgmn* ). The ex-
plicit expressions of these four terms are given in Eqs.~6.52!
of @5#. The fifth contribution is the value of the galactic con-
tribution to the observableṖb computed in@27# within the
assumption~true in general relativity! that neutron stars fall
like ordinary bodies in the gravitational field of the Galaxy.
Finally, the sixth and last contribution is the modification of
the galactic contribution due to the fact that, in tensor-scala
gravity, neutron stars fall differently from weakly self-
gravitating bodies@Eq. ~9.22! of @5##.

As usual, given a specific tensor-scalar theory, a value fo
the externally imposed asymptotic boundary conditionw0 ,
and a specific nuclear equation of state, the three equatio
v̇ th(mA ,mB)5v̇obs, g th(mA ,mB)5gobs, and Ṗb

th(mA ,mB)
5 Ṗb

obs define three curves~in fact threestrips! in the two-
dimensional plane of the masses (mA ,mB). If the three strips
meet in a small region, the considered tensor-scalar theory
consistent with the binary-pulsar data. If they do not mee
the considered theory is inconsistent with the pulsar obse
vations.

Before presenting the results of such a confrontation fo
scalar models exhibiting nonperturbative effects, it is instruc

FIG. 5. The (v̇ -g -Ṗb)1913116 test for general relativity~GR!,
the Jordan-Fierz-Brans-Dicke theory~JFBD!, and the quadratic
model A(w)5exp(13w2) ~corresponding to a positive-curvature
parameterb516). The widths of the threeṖ lines correspond to
1s standard deviations. Thev̇ th5v̇exp andg th5gexp lines are wider
than 1s errors, and cannot be distinguished for the three theories
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FIG. 6. The (v̇ -g -Ṗb)1913116 test for the quadratic modelA(w)5exp(12bw2) with b524.5, whenw0 takes the maximum value allowed
by solar-system experiments~left panel!, and a 30 times smaller value~right panel!. In this figure and the following ones, 1s deviations are
smaller than the width of the lines.
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tive, for making a contrast, to discuss two other cases~be-
sides the general relativistic one!: ~i! the case of the well-
known Jordan-Fierz-Brans-Dicke~JFBD! theory @2–4# and
~ii ! the case of scalar-tensor models withpositivecurvature
of the coupling function. The JFBD theory contains only o
free parametera0 and is defined by the coupling function

AJFBD~w!5exp~a0w!. ~5.5!

The scalar coupling strength in this theory is consta
a(w)[] lnA/]w5a0. As a consequence~see Sec. II!, it can-
not exhibit nonperturbative effects. All deviations from ge
eral relativity, be they in weak-field or strong-field cond
tions, are proportional toa0

2 , and are uniformly constrained
by the solar-system limit~1.6!. On the other hand, as dis
cussed in@10#, scalar-tensor models belonging to the qu
dratic class~2.1! with b.0 exhibit nonperturbative effects
of a deamplification type: Deviations from general relativi
are exponentially suppressed by strong-field effects, i.e.,
proportional toa0

2exp(23bsA), wheresA;0.2 is a measure
of the strength of the self-gravity of the considered neutr
star.

As one of the aims of the present work is to delineate
cases where binary-pulsar data give more stringent c
straints than solar system data on tensor-scalar theories
shall draw the figures below~except when otherwise indi
cated! under the assumption that the externally imposedw0
always takes the maximum value allowed by solar-syst
tests. As said above, the corresponding value ofw0 depends
on the theory considered and is determined from combin
the two inequalities~1.6! and ~4.6!. Figure 5 exhibits the
curves defined by the observablesv̇, g, and Ṗb in PSR
1913116 when interpreted in the framework of three diffe
ent theories: general relativity, Jordan-Fierz-Brans-Dic
and the quadratic model~2.1! with b516. This plot illus-
trates the fact that binary pulsars involving nearly equ
ne

nt:
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mass13 neutron stars do not constrain more severely tha
solar-system data theories with logarithmic coupling func
tions lnA(w) which are either linear~or nearly linear! in w
@28# or have apositive curvature @i.e., convex functions
lnA(w)#. Note that theṖb curve of a quadratic model with
positive curvature lies between the general relativistic an
the JFBD ones. The fact that in Fig. 5 theṖb

b516 curve
almost overlaps with thev̇ curve is a numerical coincidence
caused by our choices forb andw0 .

By contrast, tensor-scalar theories involving sufficiently
concavefunctions lnA(w), i.e., models~2.1! with b suffi-
ciently negative, show a very different behavior when con
fronted to pulsar data. This is illustrated in the remaining
figures. The left panel of Fig. 6 shows that although the
quadratic modelA4.5(w) @i.e., b524.5 in Eq. ~2.1!# can
pass all present solar-system tests, it fails the
(v̇ -g -Ṗb)1913116 test. For such a model, pulsar observations
constrain more strongly the theory than weak-field tests. Th
is further illustrated in the right panel of this figure, which
shows that one needs a smaller value ofw0 , i.e., a smaller
value ofa05bw0 , than the maximal one allowed by solar
data. We did not make an exhaustive numerical search but
seems that a valuea0

PSR; 1
30a0solar

max is the correct order of
magnitude that pulsar data can tolerate. Note that, in terms
the basic Eddington parametersḡ[gEdd21'22a0

2 ,
b [̄bEdd21' 1

2b0a0
2 , this means that binary-pulsar data

are 1000 times more constraining than solar-system tes

constrainingḡ and b̄ @for the considered modelA4.5(w)# be-
low the 1026 level.

In the above case (b524.5), the fact that the maximal
weak-field-allowed value ofw0 was forbidden, while a 30

13As emphasized by Eardley@17#, the situation is different for
unequal mass systems thanks to the presence of scalar dipole rad
tion }(aA2aB)

2. This shows up in Fig. 5 as a strong distortion of
the Ṗb curve away from the diagonalmA5mB . See below our
study of the unequal mass system PSR 0655164.
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FIG. 7. The (v̇ -g -Ṗb)1913116 test for the quadratic modelA(w)5exp(23w2) ~ i.e.,b526), whenw0 takes the maximum value allowe
by solar-system experiments~left panel!, and a 100 times smaller value~right panel!.
e
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ta-
times smaller one was allowed, was due to the presenc
significant nonperturbative scalar effects forw05w0solar

max

which tended to zero whenw0→0. This smooth disappea
ance of nonperturbative effects whenw0→0 was connected
to the fact that the critical value of the massm̄cr ~above
which spontaneous scalarization occurs in zero-external-
conditions! is slightly larger than the actual mass of the st
@m̄cr(b524.5)'1.84m( while m̄A

best fit'm̄B
best fit'1.5m(#.

A quite different situation arises for values of2b large
enough to makem̄cr smaller than the masses of the sta
This case is illustrated in Fig. 7 where one confronts pu
data with the modelA 6̄ , Eq. ~4.4!. @In this model
m̄cr(b526)'1.24m( .# This figure shows that the mod
A 6̄ fails very badly the (v̇ -g -Ṗb)1913116 test, while it can
pass all present solar-system tests. Especially remarkab
the wild behavior of theg curve, which is due to the larg
values of theKA

B deviation discussed in the previous sect
~see Fig. 4 there!. In that case, this disagreement betwe
theory and experiment isnot alleviated by considering
smaller values ofw0 , as illustrated on the right panel of Fi
7. From our numerical results, we find that t
(v̇ -g -Ṗb)1913116 test can be passed, if at all, only for e
tremely fine-tuned values of the masses in close neigh
hoods of the critical valuesm̄A'm̄B'm̄cr . Barring any
fine-tuned coincidence, we conclude that the tensor-sc
theory defined byA 6̄(w) is incompatible with pulsar dat
whatever be the value ofw0 , even infinitely smaller than
w0solar
max . This remarkable conclusion proves explicitly th

pulsar data arequalitativelydifferent from solar-system dat
in their probing power of relativistic gravity. The theory d
fined byA 6̄(w) could always be made compatible with sol
system tests of any precision,14 while it is already falsified by
existing pulsar observations. As the critical massm̄cr de-
creases when2b increases, the confrontation betwe
theory and pulsar experiments can only get worse w
2b.6. Furthermore, our~partial! numerical exploration o

14For argument’s sake we assume here that general relativity ithe
correct theory of gravity.
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the range26,b,24.5 shows that values ofb smaller
than25 are already excluded.@This will be illustrated by an
exclusion plot discussed below.# We conclude that present
PSR 1913116 data already exclude all ‘‘quadratic’’ models
~2.1! with b,25.

B. PSR 1534112 experiment

One conceivable deficiency in the above argument is th
possible presence of a cosmological variation ofw0 . Indeed,
a nonzero value ofẇ0[dw0 /dt0 entails a secular variation
of the strength of scalar gravity and produces an addition
contribution in Ṗb

th . From the observedṖb
obs, one cannot

decorrelateẇ0 effects from scalar modifications to radiation
damping. One way to decorrelateẇ0 effects is to consider
pulsar experiments which are insensitive toẇ0 . Such is the
case of the measurements of the three observablesv̇obs,
gobs, andsobs in PSR 1534112. Heresobsdenotes a phenom-
enological parameter measuring the shape of the gravi
tional time delay@20,21#. The values we shall take for these
three15 observable parameters are@23#

v̇obs51.755 73~4!° yr21, ~5.6a!

gobs52.081~16!31023, ~5.6b!

sobs50.981~8!. ~5.6c!

We shall also need the Keplerian observables

Pb536 351.702 67~2! s, ~5.7a!

e50.273 677 1~4!, ~5.7b!

x53.729 458~2! s. ~5.7c!

The theoretical predictions forv̇ th andg th have been written
above. That forsth reads@21#

s 15We do not consider here the other observablesr obs and Ṗb
obs

which are measured with low fractional precision.
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s5
nx

XB
@GAB~mA1mB!n/c3#21/3, ~5.8!

where we have used the same notation as in Eqs.~4.9! and
~5.3! above, and wherex5a1s/c is the projection of the
semimajor axis (a1) of the pulsar orbit on the line of sigh
~in light-seconds!.

We have plotted the three curves defined by t
(v̇ -g -s)1534112 test for various values ofb and w0 . For
instance, we exhibit the caseb526, w05w0solar

max in Fig. 8
~together with the case of general relativity!. From our~par-
tial! numerical study, we conclude that the quadratic mod
Ab fail the (v̇ -g -s)1534112 test whenb,25.5. The corre-
sponding exclusion plot is very similar to that defined
PSR 1913116 ~see below!.

C. PSR 0655164 experiment

The binary pulsar PSR 0655164 is composed of a neu
tron star of mass'1.4m( and a white dwarf companion o
mass'0.8m( . They move around each other on a nea
circular orbit in a period of about 1 day. In tensor-sca
gravity, such a dissymmetrical system is a powerful emit
of dipolar scalar waves, especially in the presence of non
turbative scalar effects. The theoretical prediction@5# for the
corresponding orbital period decay is dominated by
O(v3/c3) dipole contribution in Eq.~5.4! above:

Ṗb
th~mA ,mB!' Ṗw

dipole52
2pG*mAmBn

~mA1mB!c3
11e2/2

~12e2!5/2

3~aA2aB!21OS v5c5D . ~5.9!

FIG. 8. The (v̇ -g -s)1534112 test for general relativity~GR! and
for the quadratic modelA(w)5exp(23w2) ~i.e., b526) when
w0 takes the maximum value allowed by solar-system experime
The widths of the strips correspond to 1s standard deviations. The
arrow indicates the intersection of the three strips in general r
tivity. In the modelb526, the three strips do not intersect.
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The fact that the observed value ofṖb in PSR 0655164 is
very small~and, in fact, consistent with zero! constrains very
much the magnitude of the effective coupling strengthaA ,
and therefore the possibility of nonperturbative effects. The
experimental data we need for our analysis are taken from
Ref. @23#:

Pb588 877.061 94~4! s, ~5.10a!

e,331025, ~5.10b!

x[~a1sini !/c54.125 60~2! s, ~5.10c!

Ṗb5~164!310213. ~5.10d!

The masses of the pulsar and its companion are not know
independently. From the observed mass function, thea priori
statistics of the inclination anglei , and the observed small
statistical spread of neutron star masses around 1.35m( , one
can deduce a range of probable values for the pai
(mA ,mB): Essentially, one is limited to a subregion of the
rectanglemA5(1.3560.05)m( , mB5(0.860.1)m( in the
mass plane16 @23#. In our calculations, we will choose the
mass pair which gives the most conservative bounds o
tensor-scalar gravity, namely,mA51.30m( , mB50.7m( .

Finally, using the fact that the self-gravity of the white
dwarf companion is negligible compared to that of the pulsa
~so thataB'a0), we get from Eqs.~5.9! and ~5.10! the 1s
level constraint

@aA~mA!2a0#
2,331024. ~5.11!

D. Exclusion plots within a generic two-dimensional plane
of tensor-scalar theories

It is instructive to contrast the pulsar constraints on
tensor-scalar gravity with the constraints obtained from
solar-system experiments. We can use the class of quadra
models ~2.1! as a generic description of the shape of the
coupling function around the current cosmological value of
w. In other words, we can parametrize an interesting class o
tensor-scalar models by two parameters:17 say,a0[a(w0)
andb0[]a(w0)/]w0 . ~In quadratic models,a05bw0 , and
b05b is field independent.! We can then interpret all experi-
mental data~solar-system and pulsar ones! as constraints in
the two-dimensional theory plane (a0 ,b0). For instance, ne-
glecting the correlations in the measurements of the two Ed
dington parametersgEddandbEdd, solar-system data rule out
the regions of the (a0 ,b0) plane where the inequalities
ugEdd21u,231023 ~i.e., a0

2,1023) @8# and
ubEdd21u,631024 ~i.e., ub0ua0

2,1.231023) @19# are not

16We use here the fact that the scalar modifications to the link
between the observed mass functionn2(a1sini)

3 and the Einstein
massesmA , mB due to the factorGAB /G511aAaB are small
becauseaB'a0 for the white dwarf companion.
17This two-parameter class of models is representative of the larg

class of coupling functionsA(w) which admit a local minimum and
contain no large dimensionless parameters@i.e., we assume that
higher derivativesb08[]b(w0)/]w0 , b09[]b8(w0)/]w0 are of or-
der unity#.
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satisfied. The corresponding exclusion plot is represente
Fig. 9. In the same plot, we can represent the constra
brought by pulsar data on tensor-scalar models. The P
1913116 and PSR 1534112 data give constraints which ar
numerically similar. Taken together, they exclude the reg
to the left of the wavy line indicated on Fig. 9. This line
approximate and was obtained by interpolating betwee
few values ofa0 andb0 . We leave to future work a detailed
study of the precise region of the (a0 ,b0) plane excluded by
these pulsar data.

As for the PSR 0655164 data, they define through Eq
~5.11! ~with the conservative valuemA51.30m() another
limit on tensor-scalar models. We have numerically co
puted the region of the (a0 ,b0) plane defined by the in-
equality ~5.11!. The corresponding allowed region is con
tained within the two dashed lines labeled 0655164 on Fig.
9. The region simultaneously allowed by all the tests
shaded.

To prevent any confusion, let us note that the limit on t
2PN parameterz[b0

2a0
2/(11a0

2)3, obtained in a recent sim
plified analytical study of combined pulsar data@7#, is valid
only for ubu&1. Indeed, the approximate treatment of@7#
assumed the absence of any nonperturbative effect, i.e
absolute value ofb0 appreciably smaller than 4. The PS
0655164 constraint studied here should merge with the lim
b0
2a0

2,431023 derived in@7# when ub0u&1. @We use here
the inequality~5.24c! of Ref. @7# together with the theoretica
constraint thatb0

2a0
2 be positive.# This merging occurs any-

way in a region which is already excluded by solar-syst
data.

VI. CONCLUSIONS

Before summarizing the main results of the present wo
we wish to indicate briefly the frameworks within which ou
findings might be physically relevant. First, let us note th
~barring any unnatural fine tuning! they are not relevant in

FIG. 9. Regions of the (a0 ,b0) plane allowed by solar-system
experiments and three binary-pulsar experiments. In view of
reflection symmetrya0→2a0 , we plot only the upper half plane
The region allowed by solar-system tests is below the solid li
The PSR 0655164 test constrains the values ofa0 andb0 to be
between the two dashed lines. The region allowed by the P
1913116 and PSR 1534112 tests lies to the right of the~approxi-
mate! wavy line. The region simultaneously allowed by all the tes
is shaded.
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the case of a strictly massless scalar fieldw, or at least when
its mass mw!\H0 /c

2;h10032.13310233 eV, where
H05h1003100 km s21/Mpc denotes Hubble’s constant. In
deed, in such a case it was found, both in tradition
equivalence-principle-respecting tensor-scalar theories@29#
and in string-inspired models with a massless dilaton
modulus@6#, that the cosmological evolution naturally drive
the vacuum expectation value ofw toward minima of
lnA(w). As the latter vacuum expectation value coincide
~modulo smallfractional corrections due to spatial fluctua
tions of the gravitational potential@7#! with our externally
imposedw0 , a natural prediction of these massless models
thata05] lnA(w0)/]w0 is small and thatb05]2lnA(w0)/]w0

2 is
positive. The former result concerninga0 is in agreement
with observational data, but the latter one concerningb0
gives the wrong sign for spontaneous scalarization effects18

On the other hand, our results are relevant to the wi
class of models comprising scalar fields of range19

106 km&l5\/mwc&cH0
21 . Assuming that the endemic

‘‘Polonyi problem’’ @too much energy stored in the cosmo
logical oscillations ofw0(t)# @30# of such models is some-
how solved @31# or fine-tuned to provideV5r tot /rcr51
@32#, the condition for these models to be naturally compa
ible with solar-system constraints is simply that the locatio
w0 of the minimum of the w potential, V(w)5(c4/
8pG* )mw

2(w2w0)
2, coincide ~or nearly coincide! with an

extremumof the coupling functionA(w). Such a coincidence
would, for instance, naturally follow from a discrete symme
try about w0 , say, a reflection symmetry
(w2w0)→2(w2w0) @6#. Under such a condition, the
present value of the weak-field scalar couplin
a05] lnA(w0)/]w0 would be naturally extremely small, and
the sign of the curvatureb05]2lnA(w0)/]w0

2 could be ex-
pected to be negative witha priori 50% probability.

As a simple example of such models, we can conside
finite-range scalar field coupled only to the gravitational se
tor through a multiplicative coupling to the scalar curvatur
say,

S5
c4

16pG*
E d4x

c
g̃1/2„2Z~F!g̃mn]mF]nF2U~F!

1F~F!R̃…1Sm@cm ;g̃mn#, ~6.1!

where we have introduced the possibility of an arbitra
field-dependent normalization of the kinetic term ofF. One
transforms Eq.~6.1! into our canonical form~1.1! @com-
pleted by a w-potential term V(w)5(c4/
16pG* )F

22(F)U(F)# by defining

18Note, however, that a coupling function of the typ
lnA(w)51e2w22l2w4, with a sufficiently smalle and a sufficiently
largel, would reconcile a~very localized! minimum atw50 with
a mainly concave coupling function leading to nonperturbative e
fects. We do not wish to consider here such fine-tuned cases.
19The lower bound comes from the requirement thatw be effec-

tively massless on the scale of a typical binary pulsar. If it is vi
lated, one must correct our formulas by Yukawa exponential fa
tors.
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gmn* 5F~F!g̃mn , ~6.2a!

w5E dFF34 F82~F!

F2~F!
1
1

2

Z~F!

F~F!G
1/2

. ~6.2b!

This corresponds to a coupling function

A~w!5F21/2~F!. ~6.3!

The simplest example of such models is a massive sc
having a nonminimal dimensionless coupling to curvatur

S5
c4

16pG*
E d4x

c
g̃1/2~2g̃mn]mF]nF2mF

2 F21jR̃F21R̃!

1Sm@cm ;g̃mn#. ~6.4!

This corresponds to Z(F)51, U(F)5mF
2 F2, and

F(F)511jF2. In that case, one can integrate Eq.~6.2b!
explicitly. Assuming for instance thatj(116j).0 and in-
troducing the notationx[Aj(116j), one gets

2A2~w2w0!5
x

j
ln@112xF~A11x2F21xF!#

1A6lnF122A6jF
A11x2F22A6jF

11jF2 G .
~6.5!

Note that (w2w0)5F/A21O(F3) whenF→0. From Eqs.
~6.2! and~6.3!, one gets easily the parametric representati

A~w!5~11jF2!21/2, ~6.6a!

a~w!5
] lnA~w!

]w
52A2jF@11j~116j!F2#21/2,

~6.6b!

b~w!5
]2lnA~w!

]w2 522j~11jF2!@11j~116j!F2#22.

~6.6c!

In particular the value of the curvature parameter arou
w0 reads

b05b~w0!5
]2lnA~w!

]w2 U
F50

522j. ~6.7!

Therefore, positive values ofj @which, in the formulation
~6.4!, seem preferred because unable to cause a chang
sign of the coefficient (11jF2) of the kinetic term for
g̃mn# correspond to the ‘‘interesting’’ case where sponta
ous scalarization effects can occur.20

20In our conventions, the so-called ‘‘conformal coupling’’ corr
sponds toj52

1
6 and to a coupling functionA(w)5cosh(w/A3).

Note, however, that only the action Sconf
[*d4xg̃ 1/2@2g̃mn]mF]nF2

1
6R̃F2] ~without bare Einstein term!

exhibits a conformal invariance@33#. The actionSconf involves a
spin-2 but no spin-0 excitation.
alar
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Let us now summarize the main results of the presen
work.

We have clarified the physical meaning of the nonpertur
bative strong-gravitational-field effects discovered in@10# by
interpreting them, by analogy with ferromagnetism, as a phe
nomenon of ‘‘spontaneous scalarization.’’ Negative value
of the curvature parameterb0 ~like negative values of the
coupling between magnetic momentsHi j5gmimj ) favor the
spontaneous creation of a scalar field when considered in t
context of gravitationally compact objects~neutron stars!.
The critical baryonic mass for the spontaneous scalarizatio
transition is&1.5m( whenb0&25. See Table I and Fig. 2
for precise values. The presence of some externally impos
scalar field backgroundw0 with a05] lnA(w0)/]w0Þ0
smoothes the scalarization transition~analogously to the
presence of an external magnetic field for the ferromagnet
transition!.

The development~through the previous mechanism! of
strong scalar fields in neutron stars leads to very significa
deviations from general relativity. These deviations are mea
sured by some gravitational form factorsaA ,bA ,KA

B which
enter the effects observable in binary-pulsar experiments.
our previous work@10# we focused on the effective scalar
coupling constant aA . Here, we gave results for
bA5]aA /]w0 ~see also@34#! and for KA

B52aB] lnIA /]w0

which enters the parametrized post-Keplerian timing param
eter g. To computeKA

B , we generalized to a tensor-scalar
context the work of Hartle@13# on the general relativistic
inertia momentsI A of slowly rotating neutron stars. We
found thatKA

B could cause very drastic deviations from gen-
eral relativity in tensor-scalar theories containing no larg
dimensionless parameters. This is achieved without fine
tuning and in theories having only positive-energy excita
tions.

We presented a preliminary investigation of the confron
tation between scalar models exhibiting nonperturbative e
fects and actual binary-pulsar experiments. We contraste
the probing power of pulsar experiments to that of solar
system ones by working in the two-dimensional
@a0[] lnA(w0)/]w0, b0[]2lnA(w0)/]w0

2# plane describing a
generic class of tensor-scalar models. Using published da
on PSR’s 1913116, 1534112, and 0655164 ~and a specific
nuclear equation of state!, we found that binary-pulsar ex-
periments exclude a large domain of theories compatib
with solar-system experiments~see the exclusion plot, Fig.
9!. In particular, they constrainb0 ~independently ofa0) to

b0.25. ~6.8!

Interestingly, this bound can be expressed in terms of th
well-known weak-field Eddington parameters

bEdd21

gEdd21
,1.3. ~6.9!

The singular (0/0) nature of the ratio on the left-hand sid
vividly expresses the fact that such a conclusion could nev
be obtained in weak-field experiments~at least until they find
a significant deviation from general relativity!. It must be
kept in mind that the inequality~6.9! is one sided only, and
thatbEdd21 andgEdd21 must be taken with their signs.

e-
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Let us note that, on the whole, the fact that pulsar d
tend to exclude sufficiently negative values ofb0 is nicely
compatible with the expectation from cosmological attrac
scenarios@29,6# that w0 be dynamically driven toward a
minimumof lnA(w). Though our results have been derived
assuming a particularly simple coupling function betwe
the scalar field and matter~‘‘quadratic model’’: lnA(w)
5 1

2b0w
2), we think they hold in general classes of coupli

functions containing no small or large dimensionless para
eters. In a future publication@11#, we shall present a mor
systematic confrontation between tensor-scalar theories
binary-pulsar experiments.

Before ending this paper, we would like to stress some
the limitations of our treatment that we intend to overco
in future work: ~i! We considered here only one speci
equation of state, modeled as a simple polytrope; a m
complete study should consider a selection of realistic eq
tions of state.~ii ! In the present paper, we did not consid
the effect of a cosmological variation ofw0 . We are aware
that a nonzeroẇ0 of order the Hubble parameter could si
nificantly modify the interpretation of some of the puls
tests discussed above. However, as one disposes of se
independent pulsar tests, some of which do not invo
ẇ0-sensitive observables@such as the (v̇ -g -s)1534112 test
considered above and several ‘‘Stark’’ tests@22–24##, we
ata

tor

by
en

ng
m-
e
and
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ore
ua-
er
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ar
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think that a combined discussion of all pulsar tests will lea
to limits ona0 andb0 similar to the ones we have obtaine
here, and, in addition, to significant limits onẇ0 .

Finally, let us note that the strong scalar field effects d
cussed in@10# and the present paper could have a very si
nificant impact on several aspects of the theory of gravi
tional radiation from compact objects@in addition to the ones
taken into account in Sec. 6.2 of@5# and Eq.~5.4! above#. Of
particular interest would be~i! the opening of a new, signifi-
cant energy-loss channel in~spherically symmetric! gravita-
tional collapse and neutron-star binary coalescences, and~ii !
important modifications in the conditions for the onset o
radiative instabilities in fast-rotating neutron star
~Chandrasekhar-Friedman-Schutz instability! @35#. Both is-
sues are particularly worthy of further study.
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