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Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are
interpreted as a scalar analogue of ferromagnetism: “spontaneous scalarization.” This phenomenon leads to
very significant deviations from general relativity in conditions involving strong gravitational fields, notably
binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish
when the weak-field scalar coupling tends to zero. We compute the scalar “form factors” measuring these
deviations, and notably a parameter entering the pulsar timing obseryatiieough scalar-field-induced
variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between
tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already
very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of
pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-
dimensional plane of tensor-scalar theor{€0556-282(96)04314-7

PACS numbg(s): 04.50:+h, 04.80.Cc, 97.60.Gb

[. INTRODUCTION coupling to matter. Such fractionally small composition-
dependent effects would be negligible in the gravitational
Einstein’s general relativity theory postulates that gravityphysics of neutron stars that we consider here.
is mediated only by a long-range tensor field. It has been The most general theory describing a mass-coupled long-
repeatedly pointed out over the yedssarting with Kaluza range scalar contains one arbitrary “coupling function”
[1]) that unified theories naturally give rise to long-rangeA(¢) [3]. The action defining the theory reads
scalar fields coupled to matter with gravitational strength.
This led many authors, notably Jord@?|, Fierz [3], and

4 4
Brans and Dickég4], to study, as most natural alternatives to _ c j d_Xgl/z(R — 204", 00,0)
general relativity, tensor-scalar theories in which gravity is 167G, ) ¢ ** * * *oRTEY
mediated in part by a long-range scalar field. The motivation a2 .
for such theories has been recently revived by string theory + Sl dm A9, 1D

which contains massless scalars in its gravitational sector

(notably the modgl-lndependent dilajon o . Here, G, denotes a bare gravitational coupling constant,
We shall consider tensor-scalar gravitation theories con-, =~ “YR* the curvature scalar of the “Einstein metric”

taining only one scalar field, assumed to couple to the tracg* T2k

* Ry . L
of the energy-momentum tensor. The simplest example o¥~» describing the pure spin-2 excitations, apcbur long-

such a theory is a scalar field only coupled to the gravita/@ng€ scalar field describing spin-0 excnatla[rw.e use the
tional sector through a nonminimal couplig®? (see Sec. Signature—+ + + and the notation, = —deg,,, .] The last
VI below). For a study of the observable consequences ofe™™M in Eq.(1.1) denotes the action of matter, which is a
general tensor-scalar theori@ntaining one or several sca- functional of some matter variablésollectively denoted by
lar fields, see Ref[5]. ¥m) and of the “physical metric'g,,=A*(¢)g},, . Labora-
Actually, one generically expects scalar fields not totory clocks and rods measure the mewig, which, in the
Coup|e exacﬂy to the mass but to exhibit some “Compositionm0d6| considered here, is universally Coupled to matter. The
dependence” in their couplings to matter. However, a recenteader will find in Eqgs.(6.1)—(6.7) below an explicit ex-
study of a large class of viable string-inspired tensor-scalagmple(nonminimally coupled scalar fieldf how an action
models[6] has found that the composition-dependent effect$f the type(1.1), involving two conformally related metrics
represent only a very small fraction-L0~5) of the effective ~ g7, andd,,=A*(¢)g;,, can naturally arise.
The field equations of the theory are most simply formu-
lated in terms of the pure-spin variableg;( ,¢). Varying
* Also at the Dpartement d’Astrophysique Relativiste et de Cos-the action(1.1) yields
mologie, Observatoire de Paris, Centre National de la Recherche
Scientifique, F 92195 Meudon, France.
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471G, disappear in the subclass of metrically coupled thepries
Ugw o=~ —za—ale) Ty, (1.2b  stay model independent, we shall use the post-Newtonian-
derived limit (1.6) as our standard weak-field limit. As we
with T#"=2cg, V25S,, 15g%, denoting the material stress- shall see later, the importance of the nonperturbative effects

derivative ofA(e): smaller valqes, but can level off or even be amplifie.d.
In a previous worK 10], we have shown that experiments
JINA(¢) involving thestrong gravitational fieldof neutron stars can
a(p)= —(9()0 . (1.3 exhibit a remarkably different behavior from weak-field

solar-system experiments. We proved that when a certain
[All tensorial operations in Eq$1.2) are performed by using mild inequality restricting the curvature of the coupling func-

the Einstein metric g%,, eg. Og=g,"ViVvis, tionInA(e) was satisfied, namely,

T,=g,,T¢".] As is clear from Eq.(1.2b, the quantity SInA( o)

a(¢) plays the role of measuring th&eld-dependentcou- Bo= —2@05 —4 (1.7
pling strengthbetween the scalar field and matter. It has been e '

shown in Refs[5,7] that all weak-field(“post-Newtonian”)
deviations from general relativityof any post-Newtonian nonperturbative strong-gravitational-field effects developed
ordep can be expressed in terms of the asymptotic value ofn neutron stars and induced order-of-unity deviations from
a(¢) at spatial infinity and of its successive scalar-field de-general relativity, even for arbitrary small values of the linear
rivatives. Letp, denote the asymptotic value gfat spatial ~ coupling strengthe. The aim of the present paper is to
infinity, i.e., the “vacuum expectation value” af far away further study these nonperturbative phenomena and to pre-
from the considered gravitating system. Let us also denotpare the ground for a systematic application to binary-pulsar
ao=a(eg), Bo=da(po)ldpy, and Bo=dB(po)/dp,. At  experimentg1l] by computing the observational effects de-
the first post-Newtonian approximation, deviations from gen{ending upon the inertia moments of neutron stars. One of
eral relativity are proportional to the Eddington parameters the main results of the present study will be to show explic-
itly that binary-pulsar experiments are, in some regions of
Y=Yeaq— 1=—2a3/(1+ ad), (1.48  theory space, much more constraining than solar-system ex-
periments. This will be illustrated in an exclusion plot dis-
— 1 s 222 cussed below.
B=Bea— 1= 5/5'00‘0/(1+ @p)®, (1.4b The organization of this paper is as follows. In Sec. Il, we
show how the nonperturbative scalar-field effects discovered
while at the second post-Newtonian approximation there enin [10] can be interpreted as a “spontaneous scalarization”

ters, beyon and_, two new parameteris, 7 of neutron stars, analog_ous_ to the spontaneous magnetization
yondy and 8 P 7] of ferromagnets. We write in Sec. Il the field equations that

e=Bhadl(1+a?)?, (1.59  Mmust be numerically integrated to study these nonperturba-
tive effects in slowly rotating neutron stars. Section IV dis-
§=ﬂ§a§/(1+a§)3. (1.5b cusses the “gravitational form factors” governing the phys-

ics of neutron stars in tensor-scalar gravity, notably a
We see explicitly in Eqs(1.4) and (1.5) that all deviations parameter linked to the variation of a pulsar’s inertia moment
from general relativity tend to zero witl, at least as fast as caused by the presence of an orbiting companion. The con-
a3. This holds true forweak-fielddeviations of arbitrary —Straints imposed by three binary-pulsar experiments on a ge-
post-Newtonian ordef{7]. Therefore, light-deflection or neric class of tensor-scalar models are then derived in Sec.
time-delay experimentg8] which set[through Eq.(1.4a] V- Finally, the conclusions of our study are given in Sec. VI.
the following limit on the coupling strength of the scalar
field, Il. SPONTANEOUS SCALARIZATION

a§< 1073, (1.6) Before tackling the technical problems posed by the com-
putation of various gravitational “form factors” in presence

tightly constrain the theoretically expectablevel of devia-  of strong-scalar-field effects, let us clarify, at the conceptual
tion from general relativity in all other experiments probing level, the physical origin of the nonperturbative effect dis-
weak gravitational fields. Note that, in many physically mo-covered in[10].
tivated models, there are much tighter limits @f coming Let us consider a very simple coupling function of the
from equivalence principle tesisee, e.g.[9], which gets form
ags 10" 7 in string-derived mode)s These improved limits 1
crucially depend, however, on the detailed structure and _ _ 2
magnitZde gf equivalence-principle-violating effedtand A(QD)_AB(¢):eXF<§B¢ ) @D

corresponding to a coupling strengita( o) = dInA()/de

We assume here the absence of unnaturally large dimensionless B¢, whereg is a given parameter. The modgl1), where
numbers appearing in the successive derivativesx@p): B, InA(¢) is quadratic ing, is second in simplicity to the

By Jordan-Fierz-Brans-Dicke model whereA{@)=aqep is lin-
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ear in¢. [We shall sometimes refer to mod@.1) as “the —o
quadratic model.7 When B satisfiesp=<—4, we are in a

regime where nonperturbative effects develop for massive 0.6
enough neutron stars. The results|d0] raise a paradox in 04
the limit where the asymptotic value af, tends toward

zero, i.e.,ag= Bepy—0. Indeed, in the case= B¢ the right- 0.2
hand side of Eq(1.2b is proportional top, and¢(x)=0 is 0
an exact solution which satisfies the homogeneous boundary
conditions ¢—0 at spatial infinity. Equatior(1.2b being -0.2
elliptic in the stationary case of an isolated star, it would
seem that the solution, with given boundary conditions, must
be unique, and therefore that in the homogeneous case -0.6
¢o=0 the only solution must be the trivial ong(x)=0.
This conclusion is correct in the case of weakly self-
gravitating systemsgsuch as ordinary stars, white dwarfs, or
even low-mass neutron starShould not then physical con-

t'm;'lgy rhequ[re. tlo take alwayshas corr%ct . solution ?f quf experiments, and the dashed lines¢g=0 (“zero mode”). The
(1. ,) t'e trivial one, even when considering strongly se " dotted lines correspond to unstable configurations of the star.
gravitating systems such as neutron stars? What can cause a

discontinuity in the configuration of the scalar fiefaith
homogeneous boundary conditjofior massive neutron

stars? In the simple case of the coupling_ funct(ﬁnl),.we with B sufficiently negativgé the control parameter is the
have the further paradox that the theory is symmetric undetrOtal baryon masan, of the star. A simple model exhibiting

thel rtgflect:cogpe I ‘5’ so that it sde_em? ai;ace \?Iue thattt_hethe appearance of a “spontaneous scalarization” of a star in
solution of Egs.(1.2) corresponding to the self-symmetric absence of external field, is simply the usual Landau an-

boundary' con(jltlonwo:o must be self-symmetric and oo, near the criical  transition point: w(wa)
therefore identically zero. =3a(mg— M) wi+3bws. In absence of external field

A solution of these paradoxes, and a clearer understand- 220 Ctrhe enep 4 ig minimum at the uniquetrivial) ’
ing of the phenomena studied [ih0], is obtained by making (P(())Iuti(;n —o W%ﬁﬂ/;q—<ﬁ while wherm. >qﬁ there
an analogy with the well-known phenomenon of spontaneou§l ear wtho ener et?call Cr'favored non?rivialcr’solutions
magnetization of ferromagnet$elow the Curie tempera- pp—+[b*1a(ﬁ—mg)]l’2y At the critical transition
ture). In the latter case, a convenient order parameter is th&€A~ —L A el

total magnetizatioM (which is thermodynamically conju- mA:nm?[i“ the sIo;t)r:ader/dm: N |r}f|n|rt1e. ﬁts r': :hf. ferr(())—
gate to the external magnetic fieBl: M= —JE/JBy). In agnetic case, the presence of an external fiphe

our “scalarization” case, we can take as order parameter th mootheshe transition. For instance, the “scalar susceptibil-

total scalar charge, developed by the neutron stdabeled '~ Xa=@a/deo which blows up near the critical point as

. A , —mg| ! when ¢y,=0 becomes a rapidly varying but
A) in presence of an external scalar figlg; it is defined as |Ma—me| w o
the coefficient ofG, /r in the far scalar field around\: smooth function ofm, when ¢, #0. The results off10]

@(r)= o+ G, walr +O(1Ir2) asr—o. As shown in[5], clearly exhibit the sharpening of the transition ag— 0.

: . . . This is illustrated in Fig. 1, which displays two curves cor-
wA. is energetically conjugate to the external scalar fleIdresponding tapy=2.4% 10" % andgy=0 for the same theory
o- [8=—6 in Eq.(2.1)] and the same equation of stdE0S I

or= — IMald 2.2 of Ref. [12]). Note that, whenp,#0, it is the sign of the
A AlCPo: ' externalgg which determines the direction of the symmetry
. breaking.
wherem, denotes the total mass-energy of the gfarEin- It is convenient, notably for the applications to binary-

stein unitg. It is also the quantity which appears directly in ; .
the Keplerian-order interaction energy between two stars.F:)lesar experiments, to replace the quanily by the related

0.4

FIG. 1. Effective scalar coupling strengthaa=wa /My versus
baryonic massn, , for the modelA(¢)=exp(—3¢?). The solid line
corresponds to the maximum value f allowed by solar-system

minimum at a nonzero value af, . In our case, if we fix the
shape of the coupling functioA(¢) [for instance Eq(2.1)

Vini=—G,.MaMg /Tt ag— G, wawg /T 55, Where the first term quantity

comes from the exchange of a graviton and the second from e dlnm

the exchange of a scalaron. In the presence of a nonzero ap=— Ao A7 (2.3
externaly,, weaklyself-gravitating objects develop a scalar Ma  d¢o

charge which is proportional t@, in the limit ¢,—0 (“sca- . . .
lar susceptibility,” the analogue to the magnetic susceptibil-Which measures the effective strength of the coupling be-
tweeng and the star. It is the strong-field counterpart of the

ity M= xB, for weak external magnetic fields in the absence . . g
of spontaneous magnetizatjon weak-field coupling strengtlyy= a(¢g) and reduces to it in

Following Landau, we can understand what happens fo}h_e case of negligible self-gravity. Cpr_r_elatively, it is conve-
strongly self-gravitating objects by writing the total energy N€nt o replace the scalar susceptibilgy=dwa/deo by
to be minimized as a function of both the external field and"e duantity
the order parametema(wa, o) = u(wp) —wa@g, and by
assuming that theglegendre transforin energy function A= dan

: o 2.9
u(wp) develops, when some control parameter varies, a deo
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TABLE . Critical baryonic massn,, (and critical Einstein mass

me,/m
e m,,) for some values of the curvature paramegewithin the qua-
15 dratic modelsA() =expGBe?).
] 1'25 B me./me Mer /Mo
4 1.
115 -10 0.69 0.66
. -9 0.78 0.74
] -8 0.89 0.84
4075 -7 1.04 0.98
405 -6 1.24 1.16
4 0.25 —-55 1.38 1.28
} ! ] ] ] ] 1 ] ] ] B -5 1.56 1.43
-20 -18 -16 -14 -12 -10 -8 -6 4 -2 0 —45 1.84 1.65
—-4.35 2.01 1.78

FIG. 2. Critical baryonic mass,, versus the curvature param-

eter 8 within the quadratic modeld(¢)=expGBe?).
coupling function, such asA(e)=exp(Be2+ i8¢,

which is the strong-field analogue of the quantity would lead to hysteresis phenomefiiast-order rather than
Bo=da(po)ldey entering the Eddington parameter second-order phase transitjofror some values of the con-
Beaq— 1, Eq. (1.4b. The quantityB, directly enters many trol parametem,, there will be two locally stable energy
observable orbital effects in binary-pulsar systdis minima available. The scalar configuration chosen by the star

Summarizing, we conclude that the nonperturbative phewould depend on the route taken to evolve into its present
nomenon discussed 0] can be simply interpreted as a mass state. Let us also mention that we would get an even
“spontaneous scalarization” phenomenon, i.e., a scalar anaicher (Goldstone-lik¢ phenomenology if we were to con-
logue of ferromagnetism. The condition for this phenomenorsider models involving several scalar fields, with, e.g., spon-
to occur in actual neutron stars depends on the equation édneous breaking of a continuous symmetry in the scalar-
state of neutron matter. For a polytropic model representindjield space. Finally, let us make it clear that a negative value
a realistic equation of statgvith maximum baryonic mass of for By= aZInA/&q:S does not mean at all that we are introduc-
2.23mg in general relativity, we found that the critical bary- ing some pathology in our scalar-field model. The theories
onic mas$ for spontaneous scalarization is smaller thanwe consider are well-behaved field models having only
about 1.5ng (which corresponds to a general relativistic positive-energy excitations. A negative value 8§ means
mass~1.4m) when 8= #’InA(¢o)/dga<—5. For such val- ~ only that scalar field nonlinearities can reinforce the natu-
ues of By, actual neutron stars observed in binary pulsargally attractive character of scalar interactions, so that it be-
would develop strong scalar charges even in absence of egomes_energetically favorable to generate more scalar-field
ternal scalar solicitatiorii.e., even if ag= a(¢y)=0]. For energy’
values—5=< By=<—4, one can still obtain important devia-
tions from general relativity if the cosmological value of
ag saturates the present weak-field lifilt6). In all cases,
the presence of a nonzero extergl smoothes the phase

transition and leads to continuouglyut fasj varying values One of the main objects of the present paper is to show
of the effective coupling parametess, and 8, as functions  how to compute the moments of inertia of slowly rotating
of the mass. Figure 2 displays the dependancg ) forthe  neutron stars in tensor-scalar gravity, especially in the pres-
quadratic mode(2.1). Some representative numerical valuesence of the nonperturbative strong-scalar-field effects re-
are quoted in Table I. FoB, above some critical value called above. We shall work in the Einstein conformal frame,
B o~ —4.34, the maximum mass is reached before the zergjithin which the basic global mechanical quantities, such as
mode can develop. It is plausibl®ut difficult to confirm  total mass and total angular momentum, are consefired
numerically that asB— B, the critical baryonic mass tends absence of radiation or particle exchanged can, as usual,
to the general relativistic maximum baryonic massbe read off the asymptotic expansion of the metric. The total
(=2.23mg in our polytropic model
The behavior discussed above concerns the scalar modets——
invariant under the reflection symmetey— — ¢, such as 3The appearance of a negative critical valueBgfcan be easily
A(p)=expEB¢?) or A(¢)=cos(/—B¢). A dissymmetric  understood in the lowest approximation, where the scalar energy
functional to be minimized readgwhen setting G=c=1)
E[¢]=[d3X[(1/87) (d;¢)2+ p(1+ 38¢?)]. Indeed, let us consider
2Note that one can determine the critical baryonic mass as a funder instance the simplest trial continuous field configurations,
tion of B, in the quadratic mod€R.1), by solving alinear problem.  ¢(r)=constw,/R inside a star of massm=[d3xp and
Indeed, the onset of the transition happens when(E@b with o(r)=wp/r outside the star r(>R). This yields E[wa]=m
a(p)= B¢ (andg, andT, replaced by a background general rela- +%Cwi, whereC=R™!(1+ Bm/R) becomes negative for a suffi-
tivistic solution first admits a “zero mode,” i.e., a nontrivial ho- ciently negativeB. The missing stabilizing contributior- %bwi
mogeneous solution with vanishing boundary conditit@. would come from taking into account higher-order nonlinearities.

Ill. SLOWLY ROTATING NEUTRON STARS
IN TENSOR-SCALAR GRAVITY
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massmj (in Einstein unit$ can be read off the d/behavior 1 (u=)I2

of gf, or gj, while the z component of the total angular Ff9p[1045f("+’L)/2f9p(1)]Jr mﬁe(sm‘?’@ﬁe@
momentumJ, (in Einstein unity can be read off the 17

behavior of the mixed componewf;. We consider only _ 167G,

. . . . ) - — (n—v)I2
stationary axisymmetric field configurations. It has been c4 (€. +ps)e w- (3.9

shown by Hartleg[13] (see alsd 14]) that the metric corre-
sponding to a slowly rotating star could be written, whenAs in Refs.[13,14], a decomposition ob(p, #) in associated
keeping only first-order terms in the angular velocity Legendre polynomialsiP, (cost)/dcosy shows that there is

Q=u?/U!, as only a P contribution ¢=1), so that, in factw depends
only onp and not ond. Adding the scalar-modified diagonal
ds2 =g* dxtdx’= —e"Pc2d 2+ e P dp?+ p2d 6 Einstein equationgwritten in [10]), we finally get the fol-
oo lowing complete set of radial equations for our field vari-
+ p?sirf0(dp+[w(p, ) — Q]dt)%. (3.)  ables(a prime denotingl/dp):
Thanks to the neglect of fractional corrections of or€er, M’ :477?* p?AY(@)e+ Ep(p—ZM)apz, (3.69
the diagonal metric coefficientqp) andu(p) can be taken c 2
to be the solutions corresponding to a spherically symmetric prd
nonrotating star. The only new field variable which appears , 87G, p°A’(@)p ) (3.6b
in the slowly rotating case is the functian(p, ) entering VT p—2M Py p(p—2M)’ :
the mixed componers;, = p?sir*¢{ w(p,)—]. The subtrac-
tion of the star's angular velocity) is chosen for later o' =i, (3.60
conveniencé.The total angular momentuty, is read off the
1/p® behavior ofw: ,_AnG, pA*(e) ~_ g% -~ =
R m[a(w)(f P)+pi(e—p)]
G, 2J, ( 1)
w=Q——2—3 |- (32) 2(p_M)
p p -, 3.6
pip—2m) (369
Then the inertia momergin Einstein unit$ is defined, in the 4nG, p*AYe)p 1
| tation limit, as the rati P'=—(c+p * ~py?
slow rotation limit, as the ratio P (e+p) =Ty 2p¢
=2 002 3.3 PR 3.6
We need now to write down explicitly the field equations — L~ =3 p?
(1.2). As the scalar fieldp does not couple linearly to the M’ =4mmunA(e) ’—1—2M/p’ (3.6
rotation, the field equation fop is, modulo terms of order
0?2, the same as for a spherically symmetric, nonrotating star - (3.69
[thereforep will, modulo O(Q?), be spherically symmetr]c '
The field equation for the new variable comes from ,:4776* p? o285 o+ 4_w
C4 p_2M ¢ p w p
t ta 871G,
R*¢=2c7¢(pg* d.0+ TT*¢' (3.9 4
+ lﬂzp—; w. (3.6h

Simply from axisymmetry {,=0) we see that the scalar

contribution to the right-hand side of E(.4) vanishes ex- - o : . 2
g @4 Jdefined by writing the radial metric coefficierd,, as

actly. We are then left with the usual Einstein field equations ~ '™ 1 .
with a localized material source. Taking as usual a perfecf’ . —L1~2M(p)/p]™". As usual the value il (p) at in-

fluid description of nuclear mattewith energy densitye, NIty is the total Amowitt-Deser-MisnefADM) mass. The
and pressure, in Einstein units we can directly use the fuid vazlablgs have been expressed in physical units using
results of Refs[13,14]. (One must, however, be careful not Txx=A"(¢)T,. [It is in these units that one can write a
to use equations where the “diagonal” Einstein field equa-Usual equation of state="é(n), p=p(n), wheren denotes

tions have been replacedie find the following homoge- the physical number density of baryohg: and = are just
neous equation fow: intermediate notations for the radial derivatives @fand

w, respectively. Finally, we have added an equation for the
radial distribution of the baryonic massn,=M(R)
“With this definition of variables, the stress-energy tensor of the= My ANVg U °d®x =My [ 547 NA3(¢) p?(1—2M/p)~Ydp,
fluid gives simplyT}, ,= (e, +p,)e” "pwsirPd thanks to a combi- where R denotes the(Schwarzschild-coordinakeradius of
nation betweery;, and ) =u?/u’. the star (i.e., the value ofp where p and € vanish.

The notation used in Eq43.6) is the following: M(p) is
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Note that several of the right-hand sides of E¢B6  Comparing Eq.(3.8a with the Schwarzschild form(3.1)

contain terms proportional ?=(¢')? (i.e., proportional to  yields

the scalar-field energy densjityThese terms do not vanish

outside the star. However, one can avoid numerically inte- a\(@-b)i2a

grating Eqs.(3.6) up to p=« by matching the result of in- p=ril=r ’ (3.109
tegrating them up to the radil® of the star to the known

general form of the exact static, spherically symmetric exte- a a+b\ 2

rior solution. This is, however, a bit subtle because the gen- et={1-—||1- T (3.10b

eral exterior solution can only be written in closed form in
some special coordinates introduced by Ju%,16,3 or
(through a simple transformatiprin isotropic coordinates,
but not in the Schwarzschild coordinates we are using. Still
it was shown in[10] how to extract, via a matching across
the star's surface, the global quantities and a, from the 1
results of integrating Eq43.6) up to p=R. We need to do p=—In
here more work to extradt, (andl 4) from the results for the a
variablesw andw=dw/dp. . .

Outside the star, Eq3.5) (with d,=0) shows directly In terms ofp, the exact exterior solution fap reads
that p*e”("*#/29 o is a constant. From Eq3.2), this con- 6G. 1
stant is simply related to the total angular momentum, so that w=0+ 2—*2’*2

c“b(4b”—a“)
| |

Equation(3.7) gives one equation to determidg. We need (3.12
another equation to determir® and thenl ,=J, /(). Note
that the equation fow [e.g., Eq.(3.5)] is homogeneous in Combining the results just derived on the radial dependence
w. Therefore, we can start the radial integration with an arof @ with the results of10] for the matching of the other
bitrary (nonzerd value of w(p) at p=0, but we need to field variables, we can finally write a s_et of equqt_ions allow-
extract fromw(p) the value of the fluid angular velocit) ing one to extract al! the needgd phys_lcal guantities from the
implied by this arbitrary choice. To achieve this, it suffices tosurface values obtained from integrating E@s6) from the
integrate explicitly Eq.(3.7) with the boundary condition centerp=0 :
w(p)—Q whenp— [as is clear from Eq93.1) or (3.2)].

This integration can be done by rewriting E@§.7) in Just R=ps, (3.13a
radial coordinater. Indeed, the general exterior static,

Inserting these results into E.7) leads to an elementary
integral forw(r). To write explicitly the answer it is conve-
hient to introduce the parameter

a

1-—/. (3.1D

(epr— 1+ e?bpP

do G, elvtwP
ZG_ZJAT (outside the star (3.7

o 2b
dp c [coshap)—1]— ?sinr(ap)

X| | —
a

spherically symmetric solutiofil5,16,3 reads , 2M
p y sy i g VI=Ry2+ R(R_ZSM z (3.13h
S
ds? = —e’c?dt?+e [dr?+(r?—ar)(d6?+sirfed¢?)],
(3.839 2
ap=2e (3.130
a b/a Vg
e"= ( 1--] (3.8D
r _ 2\1/2
Q1=(1+an)™ (3.139
d a _ 1/2
(p(l'):gDO‘l' 5'”(1—F , (38@ Q2:(1_2M5/R) ’ (3136
. . . - 2 Q1
where the integration constangsb,d are constrained by yss——arctamé—,_l), (3.139
a’—b?=4d?, and are expressible in terms of the total Ein- Q1 1+2(Rv)
stein massan, and the effective coupling constaaf,, EqQ.
2.3, via 1 .
23 PO=Ps™ 5 AAVs, (3.139
b=2> 3.9
e (399 G, 1, 1,
FmAEEVSR QZEX EVS , (313h
a
E:\ll"raA, (39b) FAEWS, (313D

d 1 G, 1 4 1.
B = ECYA . (39Q ?‘JAE ngR QZeX - E Vs|, (3131)
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0 c* 3J, o214 4G, my -
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TG ami(3-ad) | © RZ ©°
2G,my . 1
X R*cz +e"s’zcosl‘(§Q1vs) (3.13K
Ja
=7 (3.13)

THIBAULT DAMOUR AND GILLES ESPOSITO-FAREE 54

IV. GRAVITATIONAL FORM FACTORS
OF ROTATING NEUTRON STARS

A. Scalar-field dependence of the inertia moment

Extending the analysis dfL0], we have studied the im-
pact of scalar-induced strong-field effects on the gravita-
tional form factors of neutron stars. By ‘“gravitational form
factor” we mean the set of coupling constants that appear,
within tensor-scalar theories, in the description of the rela-
tivistic motion and timing of binaryand isolated pulsars.

The notation used in Eq¢3.13 is that a suffixs denotes the As discussed in detdilin [5], the (/c)2-accurate orbital
surface value of any of the variables entering the first-ordeflynamics of binary systems depends, besides the Einstein

system(3.6). The only exceptioriapart fromv, which we

masses of the two objeats, andmg, on the effective scalar

redefine explicitly as the surface value of the right-hand sideoupling constantse,, ag, defined in Eq(2.3), as well as

of Eq. (3.6b] is v, which is the “correct” value ofv at the

on their scalar-field derivative8,, Bz, EQ. (2.4). It was

surface wherw is normalized as being zero at infinity. In- also shown in5] that the same parametesis, ,ag,8x,8s

deed, as the syste(B.6) is integrated from the centgstart-

suffice to express all radiation reaction effedisp to

ing with an arbitrary value of(0)] up to the surface, the O(v’/c)] in a tensor-scalar description of compact binary
surface value of(p) naively obtained from integrating Egs. systems. On the other hand, the relativistic timing of binary-
(3.6) is not the one to be used in any of the physically nor-pulsar systems involves, besides the abei® and 8’s, a

malized results.

new parameter describing the possible field dependence of

Let us finally mention the set of initial conditions, at the the inertia momenit, of the pulsar[In the following, we use

center, used for integrating Eg®.6). Actually, because of
the singular nature of the poipt=0, one numerically im-

poses initial conditions at a small but nonzero ragiys .
The values of some of the radial derivativeg’ & and

the labelA to indicate the timed pulsar, by opposition to the
companion labeled.] Indeed, as pointed out by Eardley
[17] (see alsd18]), the adiabatic invarianc@inder the slow
variation of the local scalar-field environment caused by the

o'=w) are determined so as to be consistent with regulamotion of the companic)nof the total angular momentum of

Taylor expansions at the origififor instance, writing

o(p)=@(x)=¢(0) + 5x*A@(0) +O(x*) determinese’(p)
~2pA@(0) asp—0]. The complete set of initial conditions
reads
M(pmin) =0, (3.143
V(pmin) =0, (3.14b
‘P(pmin): P (3-140
1 477G, ~ o
Y(Pmin) = (gpmin) TA4( (Pc)a((Pc)[’E(nc) - 3p(nc)];
(3.149
T(Pmin) :ﬁc , (3.14¢
M (prin) =0, (3.149
(pmin) =1, (3.149
1 167G,
m'(pmin):<§pmin>c— (Pc [~(n +p c)]w(pmin)-
(3.14h

Note that(as discussed aboyéhe initial conditions(3.14h
and(3.149 are arbitrary, and that we transform Eg.66 in
an evolution equation for the physical number dengitys-
ing the equation of state, i.ep’=(dp(n)/dn)xn’. The
choice ofe, andn, is discussed below.

the pulsard,=1,(es)Q, implies that the angular velocity

of the pulsarQ, will fluctuate in response to the orbital-
induced variations of the external scalar fiei'@g locally felt

by the pulsar. As discussed in more detail below, the observ-
able deviations from general relativity implied by this effect
are given by the parametéty=— agdlnl/dgg, in which

I o, denotes, as above, the inertia moment of the pulsar in
(local) Einstein units.

To computedinl,/dpy, we have numerically integrated
Egs.(3.6) with a suitable “shooting” strategy for the choice
of initial conditions. Indeed, the quantities that are physically
fixed areq, (the value ofe far from the starandm, (the
baryonic mass of the neutron stdiNote that when a deriva-
tive with respect toe, is taken, as in the definitions of
Ba, Eq.(2.4), or of K&, it must be performed for a fixed
value ofm,.] Therefore, by trial and error, one must vary
the initial conditionsp, andn, in Egs.(3.14) until they lead
to the desired values af, andm, . In the end, one wants to
explore the way the observablesm,,an,Ba.1A,
dInlzldgy, . . . depend uponp, andmy, .

The values ofm,,an, ... as functions ofp, and my
depend upon the equation of state used to describe the
nuclear matter in the neutron star. We shall discuss in a later
publication the dependence of our results on the choice of
the equation of state. In the present work, we shall consider,
for simplicity, only a fixed polytropic equation of state:

e K"n'o'rﬁb<ﬁ)r
=nmy+ r—1 |7

(4.18

SWe restrict here the more general result§5ifto the simple case
where there is only one scalar field.
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FIG. 3. Dependence upon the baryonic mass of the coupling parametera,, B85, the inertia moment,, and its derivative
dlnl/deg. These plots correspond to the modék) = exp(—3¢?) and the maximum value af, allowed by solar-system experiments. As
in Fig. 1, the dotted lines correspond to unstable configurations of the star.

n\t the factors (differing from unity by <107%) relating
P=Knom, )

= (4.1 g*-frame quantities to directly observable ones.

We present in Fig. 3 some of our numerical results for the
All quantities in Egs.(4.1) are in local physical units;: dependence upon the baryonic masse@f Ba, I [in units
M,=1.66x102* g is a fiducial baryon mass and of mg (G, mg/c9)7] anddlnla/dgy. All the results of these
Mo=0.1 fm 3 a typical nuclear number density. We shall figures have been computed within the tensor-scalar theory
use the following specific values of the polytropic param-defined by the particular coupling function
etersI” andK:

Ag(p)=exp —3¢?). (4.9
I'=2.34, K=0.0195, 4.2

This model belongs to the class of quadratic modalg),
which have been chosen to fit a realistic equation of stat@nd possesses a curvature parameter for the logarithm of the
which is neither too hard nor too soft: the equation of state licoupling function, ,8=Bo=azlnA/&go§=—6. In the limit
of Ref.[12]. (The polytropic constark should not be con- where ¢,— 0, this model exhibits a spontaneous scalariza-
fused with the parameteK? linked to the scalar-field- tion above a critical baryonic masa,=1.24n;. As ex-
induced variation of the inertia momenThe precise values Pplained in Sec. Il, the presence of a nonzero external scalar
(4.2 were adjusted to fit the curve giving, in general relativ-backgrounde,# 0 smoothes the scalarization and leads to
ity, the fractional binding energy=(m—m)/m as a func- continuous variations ofs,8a, ... as functions ofmy.
tion of the baryonic mass. In particular they lead to the samé&or _instance, instead of having a Curie-type blowup
maximum baryonic mass,=2.23n, in general relativ-  *|ma—mg|~* for the zero-external-field “susceptibility”
ity. Let us note in passing that to convert from the nuclearBa=daa/dey, We get a “resonance” bump B, when
fiducial quantities to more adequate astrophysical unitsna=~m.. There remains, however, an infinite blowup in

(mo for masses@, mg /c? for distancey it is convenientto 8 Wwhenm, reaches the maximum baryonic mass. It is easy

use the numerical value to see analytically that this blowup must be thdiighe same
remark applies todinl,/deg.) For definiteness, we have
47G, oMy (G, Mo\ 2 1 drawn Fig. 3 for the value
c? c® | 296.135 4.3
Po=@p¥=2.4x10"3, (4.5

For technical convenience, when comparing different theo-
ries we keep fixed G,=6.67x10%m’g 's"2 (and  which is the maximum value af, allowed by present weak-
me=1.99x 10** g, measured i* unit9). See Ref[5] for  field tests within the mode{4.4). This maximum value is
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obtained from considering not only the Iimi%< 103, Eq.

(1.6), coming from time-delay and light-deflection experi-

ments[8], but also the limit

| Bolad<1.2x1073, (4.6)

coming from the lunar-laser-ranging constraidtﬁ_|

<6x10* [19] on the Eddington parameter|p]

= Beg— 1~3Boa} [see Eq.(1.4D]. When |B|>1.2, the
limit (4.6) is more stringent than the lim{tl.6) and defines
the maximal allowed value forlay| and thereby for
| ool ~|ao!Bo| (see the exclusion plot in Sec. V D belpw
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tum J, is an action variabl@]:p¢:(1/27r)5ﬁpidqi] and
therefore an adiabatic invariant under slow changes of pa-
rameters. It remains therefore constant as the pulsar moves
on its orbit and feels a slowly changing, from its compan-

ion. This yieldsdT,=C'd7 /I for some new constant
C’. The latter equation can be approximately rewritten in
terms of some coordinate tinteused to describe the binary
motion:

dTa~C' V=g V1-Va/c2dt/Ia(pa(t),  (4.7)

where(to sufficient accurac)yv,z_\ is the Euclidean square of
the coordinate velocity of the pulsak=dz,/dt. Using(see

Besides the variation of the shapes of the curves in Fig. 85))

when g, is allowed to vary(which is always a sharpening of

the bumps and a stabilization of the other featf)rege have —g5o=1— Cx mZB +0 i4) , (4.83
also numerically explored the effect of varying the curvature I'ABC c

parameterB in Eq. (2.1). The two main effects of varying G Macr 1

B are (i) to enlarge the_ values of thg form .factolnsA|, ea(t) = po— — Bz B +O(—4), (4.80)
|Bal, |9Inlaldgy as — B increases, andii) to displace the I ABC c

location of the critical pointﬁcr._For instance, we find
[within the models (2.1)] m(B8=—5)=1.56amq,
mq(B=—4.5)=1.84n . These values are below thex-

pected maximum mass of a neutron star. However, observe

neutron stars have baryonic masses aroundnd.%corre-

sponding to general relativistic Einstein masses around
1.4mg); therefore, we expect that strong-scalar-field effects
can have significant observational consequences only when

B=-—5.

B. Scalar-field effects in the timing parametery

and the standard relations given by Newtonian orbital dy-
namics  [with effective Newtonian constant

$A5=G* (1+ apap)], we find a usual “Einstein” contribu-
i

on Ag= ysinu to the timing formulg20,21]. In Ag, u de-
notes the function of T, defined by solving
U—esinu=2m{(Ta—To)/Py— 3P ((Ta— To)/Pp)?], and?

Xg Gag(Ma+mg)n| 2?3
n 1+ aAaB C3

y=y"(my,mg)=

X[ Xg(1+ apag)+1+KE]. (4.9

Up to now, the non-Einsteinian effects linked to the field The timing parametery should not be confused with the
dependence of the inertia moment have been treated by @&uddington parameteygyy. Heree is the orbital eccentricity,

approximatior{17,18,9 which is insufficient for tackling the

n=2mx/P, the orbital circular frequency, Xg=mg/

nonperturbative phenomena discussed here. One of the maim,+mg), and the new contributioﬂ(ﬁ coming from the

aims of the present paper is to remedy this situation. Let Ugariation of I , under the influence of the compani@is
first clarify the observable effect of the variation of the pulsardefined by

inertia moment with the local scalar backgrofing,= @{S’,ﬁ

[17,18.

The central tool of binary-pulsar experiments is the “tim-

ing formula” (see, e.g.[20,21)), i.e., the mathematical func-
tion relating the “intrinsic time” of the pulsar clocKk to the

(4.10

Note the dissymmetric roles of the labefsand B. It is

arrival time on Earth of radio pulses. The successive ticks offPortant, for applications, to recognize that the dependence
the pulsar timeT are defined to correspond to successiveOf the correctiork; upon the two massesa,mg is factor-

2w rotations of the pulsar around itsel”>"=27T/P,,,
whereP,, is the intrinsic period of the pulsdfor simplicity

we neglect here the slowdown of the rotation of the pulsar as

well as aberration effecksIn other words, adding the label
A and passing to a differential formulatioT,=Cd¢, for
a certain constan€. In (local) Einstein units, the pulsar
angular momentum read$,=1,Qa=1,dda/d7s, wWhere
drs=|dsk|/c=(—g} dzkdzi)"%c is the Einstein proper
time in a local inertial frame aroundl. The angular momen-

ized(in the single scalar case that we consider hekecord-
ingly, it might be convenient to define the quantity

kA(mA)E_F)InIA/&QDo, (41])

so thatK¥(m, ,mg) =ka(mp) ag(mg).

The reasoning abovéased on the use of the Einstein
conformal framé could be done using the “physicallor
Jordan-Fierg conformal frame. Indeed, the angular momen-
tum is independent of the conformal frartieeing anaction
variablg. This meand ,Q ,=1,0Q4 so that the pulsar intrin-
sic time (which is a conformal invariant, being proportional

6See, for instance, Fig. 1 above which shows that the wide plateau

in a,, beyondm,,, varies very little whenp, tends to zero.
"This denotes the nearly uniform value gfon a sphere centered

8The notationy™(m,,mg) in Eq. (4.9 refers to the theoretical

on A having a radius much larger than the radius of the neutron staprediction, within tensor-scalar models, giving the phenomenologi-

A but much smaller than the distance to the companion.

cal timing parametely as a function of the masses. See below.
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same assumptions as in Fig[r®tably a maximally allowed

K = -0 (InIa/00) T
A= AT value of ¢y, Eq. (4.5]. We see in Fig. 4 that when

6L ma=1mg, we get very drastic modifications of the general
relativistic prediction fory (except in a small neighborhood
4r of my~1.3mg where Kﬁ vanisheg In particular, when
5L lLilsmp/mg=1.2, Kﬁ takes largistnegativevalues which
change the sign of the predictedl. [The minimum value of
0 03 ma/me K4 in Fig. 4 is reached forma=1.13m, and equals
2k 0=l Ka™=—3.45, vyielding y" (ma,my)=—-1.27yR] We
Ll !, computed alsdy for smaller values of the external scalar
u field ¢ and found(as usual by noywthat they cause a sharp-
6k ' 90=¢5" /10 ening of the “resonance” bump in Fig. 4. For instance, we

found thatK,™"=—6.68 for ¢o=¢®/10. Paradoxically,

FIG. 4. ParameteKa= — aa(dInl,/de;) versus the Einstein in-  smaller values of the weak-field coupling, predict larger
ertial masan,, within the modelA(¢) =exp(—3¢?). The solid line  values of the modificatioﬂ(ﬁ to the timing parametey,
corresponds to the maximum value of allowed by solar-system though concentrated over a smaller range of mass values.
e_xperiments, a_nd the dashed line to a tenfold s_maller valugoof This effect is even more spectacular fd{i when
(i.e., a 100 times smaller value of the Eddington parameternTB>ﬁA%Hu: In that case, the effective couplings tends
Year—1)- to a nonvanishing constant ag— 0, while dlnl 5/d¢y blows
to the angle ¢,) can be equivalently written 8s UP, SO that|K&| can take arbitrarily large values. For in-
dTo=C'd7%/1,=C'd7/T,. The calculation igas always ~ Stance, one getsKi™"=-820 for ¢o=¢g™, and
slightly more complicated in the Jordan-Fierz frame andKa™"=—23.82 for o= @f®10 [yielding yhmn(Ma,mg)
leads to a correctiok? instead of thek in Eq. (4.9), given ~ ~—23y°"]. Finally, varying the value of the curvature pa-
by the sum of two termdz,§= aoaB—aBﬂnTA/t?(Po, which is rametgrﬁ Ln the models(2.1) .dlsplaces the center qf the
(as it should found to be identically equal t62, Eq.(4.10,  Pump inKj, towards lower(highey values when— g in-
when using the IiniA=A(¢A)IA. creasegdecreases

In previous workg17,18,9 one had assumed, as an ap-
proximation, thatl , was simply a function of the local, ex- V. APPLICATION TO BINARY-PULSAR EXPERIMENTS
ternally imposed, value of the effective gravitational “con-

stant” G(¢a). Such an assumption is meaningful only in a6 jmpact of nonperturbative scalar effects on binary-pulsar

quasi-weak-field” approximation where one formally con- o, eriments. In a future publicatida 1], we shall confront
siders the compactness of a neutron star as a small expansion

. ) ) a systematic manner the predictions of tensor-scalar gravi-
parameter(see Sec. 8.1 of5]). This approximation breaks (ﬁ) y P g

q olv Wh h lar-field eff i ation theories with a more complete and updated set of
own precisely when the strong-scalar-field eflects studie inary-pulsar data. In the present work, we shall illustrate

here develofi.e., when|8|=4). Previous treatments intro- 1,y hinary-pulsar data give us very significant constraints
duced the parametera=—dInl,/dnG,. When it is mean-  on the strong-field regime of relativistic gravity by compar-
ingfully defined, the paramete, is linked to the parameter jng published dafd on PSR 191316, PSR 153412, and
ka=—dInla/dg, introduced above byka~ao+2a¢[l PSR 065564 with the predictions of tensor-scalar theories
+Bo/(1+af)] ka. This formula shows that, under the as- exhibiting the nonperturbative effects discussed above. In
sumptions of previous approximate treatments, the correctioref. [11], we shall also take into account data on certain
K& was proportional to the produelyag between thaveak-  nearly circular binary systems which test the strong equiva-
field scalar couplingxy and the possibly strong-field ampli- lence principle]22—24. We do not consider them here be-
fied effective couplingrg . As ag is observationally strongly cause they are less constraining than the systems we study.
constrained, this led always to small values K)ﬁ with [Indeed, the “Stark effect” is proportional to the product
nearly negligible observational effects. By contrast, the exacto(ap— @g) and, therefore, is already significantly con-
result (4.10 is fully sensitive to strong-scalar-field effects strained by the solar-system limits @t . ]

taking place both in the pulsar and its companion. To illus- The case of PSR 19#316 is the richest in that it involves
trate the order of magnitude of possible deviations from themany different types of strong-field effect§) modifications
general relativistic predictidfifor the timing parametey in  of the first post-Keplerian orbital motigiobservable through
systems made of two neutron stars, we plot in Fig. 4 théhe periastron advana®), (i) modification of gravitational
value of K% (corresponding to the cases wharg=m,) radiation dampingobservable through the orbital period de-
versusm, within the modelAg( ), Eq.(4.4), and using the cay Py), and(iii) sensitivity of the pulsar inertia moment to

We have now all the necessary tools in hand for exploring

Note in passing that the pulsar clock ticks neither the Einstein !Note that the pulsar community now uses an updated notation in
time nor the Jordan-Fierz one. Indeed, bdth and|~A fluctuate  which these pulsars are called PSR B 1918, PSR B 153412,
because of their dependence @g(t). and PSR B 065564, respectively. Here, the label(Br Besselian

¥The general relativistic prediction®3(m,,mg) is obtained  refers to the equatorial coordinate system based on the 1950 equi-
from Eq. (4.9) by settingasag=0, Gog=G, andK5=0. nox [while the letter Xfor Julian refers to the 2000 equindx
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an external scalar fiel@observable through the timing pa- Xa=m,/(ma+mg)=1—Xg. Finally, the theoretical pre-
rametery). As we shall discuss below, the case of PSRdiction for the(radiation-reaction drivenorbital period de-
1534+12 very usefully complements that of 19436 in  cay has been derived in R¢b] (with the full needed accu-
trading thePy, measurement against a measurement of theacy and for generic tensor-scalar theoridsis given as a
shape parametarof the gravitational delay. The scalar-field sum of contributions:

effects inw, Py,, ands have been already worked out with . . le. “divole . quadruole. auadrupol
sufficient accuracy in the literaturg5,21,1§, while the Pp(My M) = PPy, PRoiey, prraciinoiey pgiacripee

scalar-field effects iny have been discussed above. 1 (PYalGR y s pgal) (5.4

A. PSR 1913+16 experiment The first three contributions correspond to energy lost to sca-

We recall that, at present, one can phenomenologicallja’ Waves(of monopolar, dipolar, and quadrupolar type, re-
extract from the raw data of the binary pulsar PSR 1918 spectively. The fourth one corresp_onds. to tkle energy lost to
(following the methodology of21]) three well-measuretf ~ quadrupolar tensor wavegure spin-2 fieldgy,,). The ex-
observablesio® %S and PS. Here & denotes the plicit expressions of these four terms are given in E§52

secular rate of advar;ce of the periastrofi®s denotes the of [5]. The fifth contribution is the value of the galactic con-

observed value of the timing parameter discussed above, af@bution to the observabl®, computed in[27] within the
P9 denotes the secular change of the orbital period. Th@ssumptior(true in general relativitythat neutron stars fall

values we shall take for these observed parameterioste  'IK€ ordinary bodies in the gravitational field of the Galaxy.
Finally, the sixth and last contribution is the modification of

®°"=4.226 62111)° yr 1, (5.139 the galactic contribution due to the fact that, in tensor-scalar
gravity, neutron stars fall differently from weakly self-
y°oP5=4.2952)x 103 s, (5.1  gravitating bodie$Eq. (9.22 of [5]].
As usual, given a specific tensor-scalar theory, a value for
pgbsz —2.4226)x107 12, (5.190 the externally imposed asymptotic boundary conditief

and a specific nuclear equation of state, the three equations

where figures in parentheses representibicertainties in the  »™(ma,mg) =, y"(ma,mg) =" and PN(m,,mg)

last quoted digits. We shall also need the Keplerian param= pgbs define three curveén fact threestrips) in the two-

eters dimensional plane of the masseas,mg). If the three strips
meet in a small region, the considered tensor-scalar theory is
Pp=27906.980 780¢5) s, (5.28 consistent with the binary-pulsar data. If they do not meet,
the considered theory is inconsistent with the pulsar obser-
e=0.617 130 84). (52D yations.

Before presenting the results of such a confrontation for

The important pointwhich is the basis of the param- scalar models exhibiting nonperturbative effects, it is instruc-

etrized post-Keplerian approa®l]) is that the observables
(5.1 have been extracted from the raw pulsar daitnout
assuming any specific gravitation thedat least within the mg/me
very wide class of boost-invariant theonie©ne can then
use the three pieces of datd.1l) to constrain theories of
gravitation. To do this one must compute, within the theory
to be tested, what are the predictions it makesdfpory, and

Py, asfunctionsof the two (a priori unknown massesn,,
mg. We have written in Eq(4.9) above the theoretical pre-
diction for the timing parametet;(m, ,mg), within tensor- i
scalar gravity models. The theoretical prediction for the pe- 1k
riastron advance rate has been worked out in R&%21,5

1.5F

and reads, with the notation of the present paper, [ -
2/3 i
. 3n GAB(mA+ mB)n 1_ % apdp 05k
"(my,mg) = > [
: 1-e cs 1+ apap -
XABBai—i_xBIBAaé (53) AU EEE N T NS NS S SR SR S ma/m
— . o]
6(1+ apap)® 0 0.5 1 L5
The notation in Eq(5.3 is the same as in Eq4.9. We FIG. 5. The ¢ -y -Pp)1913: 16 test for general relativityGR),

recall that n=2n/P,, Gpg=G,(l+aaas), and the Jordan-Fierz-Brans-Dicke theofyFBD), and the quadratic
model A(¢)=exp(+3¢?) (corresponding to a positive-curvature
parameterB= +6). The widths of the thre® lines correspond to
12Two more observables’® ands°®® are measured with low pre- 1o standard deviations. The"= &®® andy"= y**®lines are wider
cision[25]. than 1o errors, and cannot be distinguished for the three theories.
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ma/mg

. é mA/mo

FIG. 6. The @ -y -Pb)lgm 16 test for the quadratic mod@l( ¢) =expéﬁ¢2) with 8= —4.5, wheng, takes the maximum value allowed
by solar-system experimenteft pane), and a 30 times smaller valggght pane). In this figure and the following onesgldeviations are
smaller than the width of the lines.

tive, for making a contrast, to discuss two other cad®s  mass® neutron stars do not constrain more severely than
sides the general relativistic ondi) the case of the well- solar-system data theories with logarithmic coupling func-
known Jordan-Fierz-Brans-DickdFBD) theory[2—4] and  tions InA(p) which are either lineafor nearly lineay in ¢
(i) the case of scalar-tensor models wjtbsitivecurvature  [28] or have apositive curvature[i.e., convex functions
of the coupling function. The JFBD theory contains only onelnA(¢)]. Note that theP, curve of a quadratic model with
free parametety, and is defined by the coupling function  positive curvature lies between the general relativistic and
the JFBD ones. The fact that in Fig. 5 th€~"°® curve
almost overlaps with thé curve is a numerical coincidence
Asreol ) =explage). (5.5  caused by our choices f@ and ¢;.
By contrast, tensor-scalar theories involving sufficiently
concavefunctions IiA(¢), i.e., models(2.1) with B suffi-
The scalar coupling strength in this theory is constantciently negative, show a very different behavior when con-
a(@)=dInAldp=ay. As a consequendsee Sec. )| it can-  fronted to pulsar data. This is illustrated in the remaining
not exhibit nonperturbative effects. All deviations from gen-figures. The left panel of Fig. 6 shows that although the
eral relativity, be they in weak-field or strong-field condi- quadratic modelAzg(¢) [i.e., B=—4.5 in Eq.(2.1)] can
tions, are proportional ta2, and are uniformly constrained Pass all - present solar-system tests, it fails the
by the solar-system limit1.6). On the other hand, as dis- (¢ -7 -Pb)1013+1 t€St. For such a model, pulsar observations
cussed in[10], scalar-tensor models belonging to the qua_.constraln more strongly the 'gheory than wea.k—ﬂ.eld tests..Thls
dratic class(2.1) with 8>0 exhibit nonperturbative effects is further illustrated in the right panel of th|s figure, which
of a deamplification type: Deviations from general relativity shows that one needs a smaller_ valuepgf i.e., a smaller
are exponentially suppressed by strong-field effects, i.e., ar alue Ofao.z'g‘po’ than the maX|m_aI one allgwed by solar .
. 5 . ata. We did not make an exhaustive numerical search but it
proportional toagexp(—36s,), wheresy,~0.2 is a measure hat luePSRe L, ic the correct order of
of the strength of the self-gravity of the considered neutrom oo that a valueq 30%0solar 1S g
star. magnltud.e that pglsar data can tolena_te. Note that, in t(;,-rms of
As one of the aims of the present work is to delineate théhe— basic Edldmggon .parametersyz YEdd™ 1~=2ag,
cases where binary-pulsar data give more stringent con =Bedau— 1~32B0ap, this means that binary-pulsar data
straints than solar system data on tensor-scalar theories, @€ 1000 times more constraining than solar-system tests,
shall draw the figures belowexcept when otherwise indi- constrainingy and g[for the considered modél;=(¢)] be-
cated under the assumption that the externally impoggd low the 10 ° level.
always takes the maximum value allowed by solar-system In the above cased= —4.5), the fact that the maximal
tests. As said above, the corresponding valuggtiepends weak-field-allowed value ofp, was forbidden, while a 30
on the theory considered and is determined from combining
the two inequalities(1.6) and (4.6). Figure 5 exhibits the
curves defined by the observablés y, and P, in PSR BAs emphasized by Eardiefi7], the situation is different for
1913+16 when interpreted in the framework of three differ- unequal mass systems thanks to the presence of scalar dipole radia-
ent theories: general relativity, Jordan-Fierz-Brans-Dicketion o« (as—ag)?. This shows up in Fig. 5 as a strong distortion of
and the quadratic mod¢R.1) with 8= +6. This plot illus-  the P, curve away from the diagonah,=mg. See below our
trates the fact that binary pulsars involving nearly equalstudy of the unequal mass system PSR 0655.
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FIG.7. The @ -y -Pb) 1013+ 16 t€St for the quadratic modal(¢) =exp(—3¢?) (i.e., 8= —6), wheng, takes the maximum value allowed
by solar-system experimenteft pane), and a 100 times smaller valyeght pane).

times smaller one was allowed, was due to the presence tiie range—6<B<—4.5 shows that values g8 smaller
significant nonperturbative scalar effects fap= (a0, than—>5 are already excludefiThis will be illustrated by an
which tended to zero whep,— 0. This smooth disappear- exclusion plot discussed belojwVe conclude that present
ance of nonperturbative effects wheg—0 was connected PSR 1913-16 data already exclude all “quadratic” models
to the fact that the critical value of the massg, (above (2.1 with B<—5.

which spontaneous scalarization occurs in zero-external-field

conditiong is slightly larger than the actual mass of the stars B. PSR 153412 experiment

[Me( 8= —4.5)~1.84m while m2estit~mbestitc 1 5m.].

A quite different situation arises for values efg large
enough to maken,, smaller than the masses of the stars.
This case is illustrated in Fig. 7 where one confronts pulsa
data with the modelAg, Eg. (4.4). [In this model
me(B=—6)~1.24m;.] This figure shows that the model
Ag fails very badly the { -y -Pp) 19131 16 t€St, while it can

One conceivable deficiency in the above argument is the
possible presence of a cosmological variatiorpgf Indeed,
a nonzero value oby=de,/dt, entails a secular variation
bf the strength of scalar gravity and produces an additional
contribution in P{". From the observed?™, one cannot
decorrelatep, effects from scalar modifications to radiation

. damping. One way to decorrelaig, effects is to consider
pass all present solar-system tests. Especially remarkable ﬁ%lsar experiments which are insensitiveqtg. Such is the

the wild beha\gor Of. they curve, Wh'(’fh s due tc_> the Iarg_e case of the measurements of the three observabfé$
values of theK; deviation discussed in the previous section_obs ,.4<%sin PSR 1534 12. Heres®®s denotes a phenom-

(see Fig. 4 thene In that case, this disagreement betweeng,|ogical parameter measuring the shape of the gravita-

theory and experiment isiot alleviated by considering qna| time delay[20,21. The values we shall take for these
smaller values o, as illustrated on the right panel of Fig. red5 observable parameters 423]
7. From our numerical results, we find that the

(@ -y -Pp) 1913+ 16 t€St can be passed, if at all, only for ex- @o=1.755 734)° yr 1, (5.63
tremely fine-tuned values of the masses in close neighbor-
hoods of the critical valuesmy~mg~m. Barring any y°P$=2.08116) X 10" 3, (5.6b
fine-tuned coincidence, we conclude that the tensor-scalar
theory defined byAg(¢) is incompatible with pulsar data s°*°=0.9818). (5.60

whatever be the value apy, even infinitely smaller than

@oear This remarkable conclusion proves explicitly that We shall also need the Keplerian observables

pulsar data arqualitatively different from solar-system data P,=36 351.702 672) s, (5.73
in their probing power of relativistic gravity. The theory de-

fined byAg(¢) could always be made compatible with solar- e=0.273 677 14), (5.7b
system tests of any precisidfwhile it is already falsified by

existing pulsar observations. As the critical masg de- x=3.729 4582) s. (5.79

creases when— 3 increases, the confrontation between
theory and pulsar experiments can only get worse whefhe theoretical predictions fas™ and y™" have been written
— B>6. Furthermore, oufpartia) numerical exploration of above. That fos™ reads[21]

YFor argument's sake we assume here that general relatithgis  ®We do not consider here the other observabi®$ and Pgbs
correct theory of gravity. which are measured with low fractional precision.
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mp/me The fact that the observed value Bf in PSR 0655-64 is
very small(and, in fact, consistent with zeroonstrains very
much the magnitude of the effective coupling strengih,

and therefore the possibility of nonperturbative effects. The
experimental data we need for our analysis are taken from

Ref. [23]:
P,=88877.061 94) s, (5.103
gh="o e<3x107°, (5.10bh
e x=(aysin)/c=4.125 602) s, (5.100
P,=(1*4)x10 13 (5.109

The masses of the pulsar and its companion are not known
independently. From the observed mass functionathgori
T T ma/mg statistics of the inclination angle and the observed small
0 0.5 1 1.5 2 25 statistical spread of neutron star masses around,3%ne
can deduce a range of probable values for the pair
FIG. 8. The { -y -S) 1534+ 12 test for general relativityGR) and ~ (Ma.Mg): Essentially, one is limited to a subregion of the
for the quadratic model\(¢)=exp(3¢?) (i.e., B=—6) when rectanglemy=(1.35+0.05)my, mg=(0.8+=0.1)my, in the
¢, takes the maximum value allowed by solar-system experimentdnass plan® [23]. In our calculations, we will choose the
The widths of the strips correspond te- tandard deviations. The mass pair which gives the most conservative bounds on
arrow indicates the intersection of the three strips in general relatensor-scalar gravity, namelym,=1.30ny, mg=0.7m .
tivity. In the modelB= -6, the three strips do not intersect. Finally, using the fact that the self-gravity of the white
dwarf companion is negligible compared to that of the pulsar
nx (so thatag=~ ag), we get from Egs(5.9) and (5.10 the 1r
$= 3 [Gas(Ma+ mg)n/c®] ™13, (5.8  level constraint
B

[aa(my) — ap]?<3X10 4, (5.11)

where we have used the same notation as in Eq9) and ) o ) ) )
(5.3 above, and wher&=a,s/c is the projection of the D. Exclusion plots within a generic twq-dlmen3|onal plane
semimajor axis 4,) of the pulsar orbit on the line of sight of tensor-scalar theories
(in light-seconds It is instructive to contrast the pulsar constraints on
We have plotted the three curves defined by thistensor-scalar gravity with the constraints obtained from
(@ -y -S) 1534+ 12 test for various values oB and ¢,. For  solar-system experiments. We can use the class of quadratic
instance, we exhibit the cagg= —6, ¢o= ¢gear in Fig. 8  models(2.1) as a generic description of the shape of the
(together with the case of general relatiyitffrom our(par-  coupling function around the current cosmological value of
tial) numerical study, we conclude that the quadratic modelsp. In other words, we can parametrize an interesting class of
Ag fail the (o -y -S) 1534 10 test wheng<—5.5. The corre-  tensor-scalar models by two parametErsay, ao= a( o)
sponding exclusion plot is very similar to that defined byand Bo=da(¢g)/d¢g. (In quadratic modelsgy= B¢y, and
PSR 1913-16 (see below Bo= B is field independentWe can then interpret all experi-
mental data(solar-system and pulsar oness constraints in
the two-dimensional theory plane,8). For instance, ne-
C. PSR 0655-64 experiment glecting the correlations in the measurements of the two Ed-
The binary pulsar PSR 065%4 is composed of a neu- dington parametergeqgandBeqq, solar-system data rule out
tron star of mass=1.4mg and a white dwarf companion of the regions of the 4,,80) plane where the inequalities
mass~0.8m . They move around each other on a nearly| veas— 1|<2x107% (e, §<10®) [8] and
circular orbit in a period of about 1 day. In tensor-scalar| Beqq— 1| <6X107* (i.e., | Bo| @3<1.2x1073%) [19] are not
gravity, such a dissymmetrical system is a powerful emitter
of dipolar scalar waves, especially in the presence of nonper-—
turbative scalar effects. The theoretical predic{ibhfor the 18we use here the fact that the scalar modifications to the link
corresponding orbital period decay is dominated by thebetween the observed mass functiot(a,sini)® and the Einstein

O(v3/c®) dipole contribution in Eq(5.4) above: massesm,, Mg due to the factorGag/G=1+ a,ag are small
) becausexg~ « for the white dwarf companion.
~th __ pydipole_ 27G, mamgn 1+e“/2 "This two-parameter class of models is representative of the large
Pp(Ma,mg)~P "= —

(ma+mg)c® (1—e?)5? class of coupling function&(¢) which admit a local minimum and

5 contain no large dimensionless parametens., we assume that
U_5> (5.9 higher derivativesBy=3d8(¢o)!/ d¢o, Be=3B" (@)l d¢y are of or-
C

X (aa— aB)2+O der unity]
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O the case of a strictly massless scalar fig|dor at least when
Mpgg—11 < 2x10™° its mass m,<fiHy/c?~h;px2.13x10 % eV, where
40035 \ (655464 Ho=h100X100 km s 1/Mpc denotes Hubble’s constant. In-
AN / deed, in such a case it was found, both in traditional
AR equivalence-principle-respecting tensor-scalar thed

and in string-inspired models with a massless dilaton or
modulug[6], that the cosmological evolution naturally drives
the vacuum expectation value af toward minima of
InA(¢). As the latter vacuum expectation value coincides
(modulo smallfractional corrections due to spatial fluctua-
tions of the gravitational potentidl7]) with our externally
imposedeg, a natural prediction of these massless models is
Bo that ag= dInA(pg)/d¢y is small and thaBy= (92|nA((po)/0gog is
positive The former result concerningg is in agreement
. with observational data, but the latter one concerngig
FIG. 9. Regions of thedy, 3o) plane allowed by solar-system giyes the wrong sign for spontaneous scalarization effécts.
experl_ments and three binary-pulsar experiments. In view of the On the other hand, our results are relevant to the wide
o e b S0 e o e e class of models _compising scalar flds of rafe
g y 4 10° kms)\=ﬁ/m¢cscH51. Assuming that the endemic

The PSR 065%64 test constrains the values @f and 3, to be “Polonvi blenm” h din th
between the two dashed lines. The region allowed by the PSR olonyi problem” [too much energy stored in the cosmo-

1913+16 and PSR 153412 tests lies to the right of th@pproxi- logical oscillations ofo(t)] [30] of such models is some-

mate wavy line. The region simultaneously allowed by all the testshOW solved[31] or fine-tuned to provide = pi/pe=1
is shaded. [32], the condition for these models to be naturally compat-

ible with solar-system constraints is simply that the location
satisfied. The corresponding exclusion plot is represented im, of the minimum of the ¢ potential, V(@)= (c*
Fig. 9. In the same plot, we can represent the constraintSwG*)mi(go—gpo)z, coincide (or nearly coincidg with an
brought by pulsar data on tensor-scalar models. The PSBxtremunof the coupling functiomA(¢). Such a coincidence
1913+16 and PSR 153412 data give constraints which are would, for instance, naturally follow from a discrete symme-
numerically similar. Taken together, they exclude the regiortry  about ¢,, say, a reflection symmetry
to the left of the wavy line indicated on Fig. 9. This line is (¢— ¢g)— —(¢— o) [6]. Under such a condition, the
approximate and was obtained by interpolating between gresent value of the weak-field scalar coupling
few values ofag andB,. We leave to future work a detailed ay=dInA(py)/dp, would be naturally extremely small, and
study of the precise region of ther§, o) plane excluded by the sign of the curvaturgd,= 32InA(¢)/des could be ex-
these pulsar data. pected to be negative with priori 50% probability.

As for the PSR 065564 data, they define through Eq.  As a simple example of such models, we can consider a
(5.11) (with the conservative valuen,=1.30mg) another finite-range scalar field coupled only to the gravitational sec-
limit on tensor-scalar models. We have numerically com-tor through a multiplicative coupling to the scalar curvature,
puted the region of theafy,B,) plane defined by the in-  say,
equality (5.11). The corresponding allowed region is con-
tained within the two dashed lines labeled 0648} on Fig. o dix
9. The region simultaneously allowed by all the tests is g= f_’§1/2(_z(q>)'§w(9 D9, —U(D)
shaded. 167G, J ¢ e

To prevent any confusion, let us note that the limit on the =~ pe
2PN parametef= B5a3/(1+ a3)®, obtained in a recent sim- FRPIR)FSpl Ym0, ©®.D
plified analytical study of combined pulsar dafd], is valid _ o _
only for |B|=1. Indeed, the approximate treatment [@ where we have introduced the possibility of an arbitrary
assumed the absence of any nonperturbative effect, i.e., di¢/d-dependent normalization of the kinetic termdf One
absolute value of3, appreciably smaller than 4. The PSR transforms Eq.(6.1) into our canonical form(1.1) [com-
0655+64 constraint studied here should merge with the limitPleted by a _e-potential  term V(g)=(c
B2a2<4x 1072 derived in[7] when|B,|<1.[We use here 167G, )F~“(®)U(®)] by defining
the inequality(5.249 of Ref.[7] together with the theoretical
constraint thatBSaé be positive] This merging occurs any-

. R . . 18 H :
way in a region which is already excluded by solar-system ~ Note, however, that a coupling function of the type
data. INA()= + E¢p°—N\2¢", with a sufficiently smalle and a sufficiently

large\, would reconcile gvery localized minimum ate=0 with

a mainly concave coupling function leading to nonperturbative ef-

fects. We do not wish to consider here such fine-tuned cases.
Before summarizing the main results of the present work, °The lower bound comes from the requirement thabe effec-

we wish to indicate briefly the frameworks within which our tively massless on the scale of a typical binary pulsar. If it is vio-

findings might be physically relevant. First, let us note thatlated, one must correct our formulas by Yukawa exponential fac-

(barring any unnatural fine tunipghey are not relevant in tors.

Bpgg-1l < 6x107

-0 8 6 4 2 0 2 4 6 8 10

VI. CONCLUSIONS
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g%, =F(®)F,,, (6.2a
3F2(®) 12Z(d)]Y?
‘P:f 417 ey T2 Flo) (6.2
This corresponds to a coupling function
Ale)=F~ " ®). (6.3
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Let us now summarize the main results of the present
work.

We have clarified the physical meaning of the nonpertur-
bative strong-gravitational-field effects discoveredif] by
interpreting them, by analogy with ferromagnetism, as a phe-
nomenon of “spontaneous scalarization.” Negative values
of the curvature paramete®, (like negative values of the
coupling between magnetic momerhts =g u;p;) favor the
spontaneous creation of a scalar field when considered in the

The simplest example of such models is a massive scalafontext of gravitationally compact objectseutron stans
having a nonminimal dimensionless coupling to curvature: The critical baryonic mass for the spontaneous scalarization

S fﬂalfz(—’g‘wa 9,0 —mid2+ ERP2+R)
167G, ) ¢ wr o=

+ Sm[ wm ;"j#u] '

This corresponds to Z(d)=1, U((D)=mfl,<bz, and
F(®)=1+&d2. In that case, one can integrate H§.2b)
explicitly. Assuming for instance that(1+6&)>0 and in-

troducing the notatiory=+£&(1+6¢), one gets

X
3

(6.9

IN[1+ 2xP (V1 + x2DZ+ xP)]
VI+2d2— 6

1+ £P?

2\2(¢—¢o)=

+/6In[1-26&d

(6.5
Note that (p— ¢o) = P/2+O(P3) whend—0. From Egs.

transition is<1.5mg whenBy< —5. See Table | and Fig. 2
for precise values. The presence of some externally imposed
scalar field backgroundey, with ag= JdINA(pg)/dpy#0
smoothes the scalarization transitiganalogously to the
presence of an external magnetic field for the ferromagnetic
transition.

The developmentthrough the previous mechanigmof
strong scalar fields in neutron stars leads to very significant
deviations from general relativity. These deviations are mea-
sured by some gravitational form factomi,,BA,K,? which
enter the effects observable in binary-pulsar experiments. In
our previous work10] we focused on the effective scalar
coupling constant «p. Here, we gave results for
Ba=dapldgy (see alsd34]) and for KE=— agdlnl,/de,
which enters the parametrized post-Keplerian timing param-
etery. To computeK,Ei, we generalized to a tensor-scalar
context the work of Hartl§13] on the general relativistic
inertia. momentsl 5 of slowly rotating neutron stars. We
found thatKE could cause very drastic deviations from gen-

(6.2) and(6.3), one gets easily the parametric representationgya| relativity in tensor-scalar theories containing no large

A(e)=(1+ED?) "1, (6.6a
I
ate)= "o Beali o072
(6.6b
#’InA
B(qo)=Tg(PL—25(1+§<I>2)[1+§(1+6§)<D2]2-
(6.60
In particular the value of the curvature parameter arounqo]
o reads
PInA( @)
po=Ble="g? | =2t (6
® ®=0

Therefore, positive values of [which, in the formulation

dimensionless parameters. This is achieved without fine-
tuning and in theories having only positive-energy excita-
tions.

We presented a preliminary investigation of the confron-
tation between scalar models exhibiting nonperturbative ef-
fects and actual binary-pulsar experiments. We contrasted
the probing power of pulsar experiments to that of solar-
system ones by working in the two-dimensional
[ ag=dInA(¢g)/ Iy, BOEaZInA(goO)/agoS] plane describing a
generic class of tensor-scalar models. Using published data
n PSR’s 191316, 1534+12, and 0655 64 (and a specific
uclear equation of statewe found that binary-pulsar ex-
periments exclude a large domain of theories compatible
with solar-system experimentsee the exclusion plot, Fig.
9). In particular, they constraif, (independently ofx,) to

Bo>—5. 6.9

(6.4), seem preferred because unable to cause a change loterestingly, this bound can be expressed in terms of the

sign of the coefficient (+ é®2?) of the kinetic term for

well-known weak-field Eddington parameters

9,.] correspond to the “interesting” case where spontane-

ous scalarization effects can océfr.

Beda—1
Yeda— 1

<1.3. (6.9

2%n our conventions, the so-called “conformal coupling” corre- The singular (0/0) nature of the ratio on the left-hand side

sponds toé= —% and to a coupling functiom\(¢) = coshg/+/3).

Note, however, that only the action  S.y¢
=[d*g Y41 -9*9,Pd,d— tRD?] (without bare Einstein terin
exhibits a conformal invariancg83]. The actionS,,, involves a
spin-2 but no spin-0 excitation.

vividly expresses the fact that such a conclusion could never
be obtained in weak-field experimeritd least until they find

a significant deviation from general relativityit must be
kept in mind that the inequality6.9) is one sided only, and
that Bgqq— 1 andygqq— 1 must be taken with their signs.
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Let us note that, on the whole, the fact that pulsar datahink that a combined discussion of all pulsar tests will lead
tend to exclude sufficiently negative values &f is nicely  to limits on oy and B, similar to the ones we have obtained
compatible with the expectation from cosmological attractorhere, and, in addition, to significant limits am,.
scenarios[29,6] that ¢, be dynamically driven toward a Finally, let us note that the strong scalar field effects dis-
minimumof InA(¢). Though our results have been derived bycussed if10] and the present paper could have a very sig-
assuming a particularly simple coupling function betweennificant impact on several aspects of the theory of gravita-
the scalar field and matte¢‘quadratic model”: InPA(¢)  tional radiation from compact objedi® addition to the ones
=1B,¢?), we think they hold in general classes of couplingtaken into account in Sec. 6.2 [&] and Eq.(5.4) abovd. Of
functions containing no small or large dimensionless paramparticular interest would b&) the opening of a new, signifi-
eters. In a future publicatiofil1], we shall present a more cant energy-loss channel {spherically symmetricgravita-
systematic confrontation between tensor-scalar theories aritbnal collapse and neutron-star binary coalescences(ignd
binary-pulsar experiments. important modifications in the conditions for the onset of

Before ending this paper, we would like to stress some ofadiative instabilities in fast-rotating neutron stars
the limitations of our treatment that we intend to overcome(Chandrasekhar-Friedman-Schutz instabilit$5]. Both is-
in future work: (i) We considered here only one specific sues are particularly worthy of further study.
equation of state, modeled as a simple polytrope; a more
complete study should consider a selection of realistic equa-
tions of state(ii) In the present paper, we did not consider
the effect of a cosmological variation a@f,. We are aware We thank J.H. Taylor and S.E. Thorsett for informative
that a nonzerap, of order the Hubble parameter could sig- discussions. The work of T. Damour at the Institute for Ad-
nificantly modify the interpretation of some of the pulsar vanced Study was supported by the Monell Foundation. The
tests discussed above. However, as one disposes of sevevairk of G. Esposito-Fase at Brandeis University was sup-
independent pulsar tests, some of which do not involveported by Centre National de la Recherche Scientifique; par-
¢o-sensitive observablesuch as the ¢ -y -S)1534-1, test  tial support by NSF Grant No. PHY-9315811 is also grate-
considered above and several “Stark” te$&2-24], we fully acknowledged.
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