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Post-Newtonian expansion of gravitational waves from a patrticle in circular orbit
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Extending a method developed by Sasaki in the Schwarzschild case and by Shibata, Sasaki, Tagoshi, and
Tanaka in the Kerr case, we calculate the post-Newtonian expansion of the gravitational wave luminosities
from a test particle in circular orbit around a rotating black hole u@(o®) beyond the quadrupole formula.

The orbit of a test particle is restricted on the equatorial plane. We find that spin-dependent terms appear in
each post-Newtonian order, and that(w®) they have a significant effect on the orbital phase evolution of
coalescing compact binaries. By comparing the post-Newtonian formula of the luminosity with numerical
results we find that, for 3@ <r <100M, the spin-dependent terms@{v®) andO(v’) improve the accuracy

of the post-Newtonian formula significantly, but thoseQ{w®) do not improve[S0556-282(96)02714-3

PACS numbg(s): 04.25.Nx, 04.30.Db, 97.60.Lf

I. INTRODUCTION of the systems within 1% errd8]. Thus, much effort has
been expended to construct accurate theoretical templates
Among the possible sources of gravitational waves, coaf9].

lescing compact binaries are considered to be the most prom- The standard method to calculate inspiraling waveforms
ising candidates for detection by near-future, ground-baseffom coalescing binaries is the post-Newtonian expansion of
laser interferometric detectors such as the Laser Interferadhe Einstein equations, in which the orbital veloaityf the
metric Gravitational Wave ObservatofylGO) [1], VIRGO  binaries is assumed to be small compared to the speed of
[2], GEO600, TAMA, and AIGO. There are two reasons for light. Since, for coalescing binaries, the orbital velocity is
this: First, we can expect a sufficiently large amplitude ofnot so small when the frequency of gravitational waves is in
gravitational waves from these systems. Second, the estilGO-VIRGO band, it is necessary to carry the post-
mated event rate, for neutron star binaries, is several/yNewtonian expansion up to extremely high ordervin A
within 200 Mpc[3]. Furthermore, the observations of coa- post-Newtonian wave generation formalism which can
lescing compact binaries are potentially important becauskandle the high order calculation has been developed by
they bring us new physical and astronomical information.Blanchet and Damoyr0] and Damour and lydrll]. Based
They can be used to test general relatiyiy, and to mea- on this formalism, calculations have been carried out up to
sure cosmological parametel5] and neutron star radii. It post’>-Newtonian order o©(v°) beyond the leading order
may even be possible to obtain information about the equaguadrupole formulg12—23. Another formalism is also de-
tion of state of neutron staf§]. If a neutron star or a small veloped up tdO(v*) by Will and Wisemar{16,20 which is
black hole spirals into a massive black hole with masshased on the Epstein-Wagoner formaligi,22.
<300Mg, the inspiral waveform will be detected by the  Although the post-Newtonian calculation technique will
above detectors. Such waveforms carry detailed informatiobe developed and applied to the higher order calculation, it
about the spacetime geometry around the black hole, anayill become more difficult and complicated. Thus, it would
therefore, may be used to test the black hole no-hair theorefpe very helpful if we could have another reliable method to

[7]. calculate the higher order post-Newtonian corrections. Re-
When a gravitational wave signal is detected, matchedgently the post-Newtonian expansion based on black hole
filtering will be used to extract the binary’s parametérs.,  perturbation formalism is developed. In this analysis, one

masses, spins, eld.6]. In this method, the parameters are considers gravitational waves from a particle of maser-
determined by cross correlating the noisy signal from thebiting a black hole of mass when u<M. Although this
detectors with theoretical templates. If the signal and thanethod is restricted to the case wherM, one can calcu-
templates lose phase with each other by one cycle ovdate very high order post-Newtonian corrections to gravita-
~10°-10 cycles as the waves sweep through the LIGO-tional waves using a relatively simple algorithm in contrast
VIRGO band, their cross correlation will be significantly re- with the standard post-Newtonian analysis. This direction of
duced. This means that we need to construct theoretical tennesearch was first done analytically by Poisg§@3] who
plates which are accurate to better than one cycle duringorked to O(v®) and numerically by Cutleet al. [24] to
entire sweep through the LIGO-VIRGO baf#l. If we have  O(v°®). Subsequently, a highly accurate numerical calcula-
accurate templates, we can, in principle, determine the mag¢on was carried out by Tagoshi and Nakamdgb] to
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O(v®) in which they found the appearance of lterms in  the quadrupole formula are derived. In Sec. IV, we compare
the energy flux aD(v®) and atO(v®). They also clarified post-Newtonian formulas with numerical data which gives
that the accuracy of the energy flux to at le@tv®) is the exact value of gravitational wave luminosity and inves-

needed to construct template waveforms for coalescing bina{'-gatef the convergence property of the post-Newtqman ex
ries. Tagoshi and Sasal26], using the formulation built up pansion. Section V is devoted to a summary and discussion.

by Sasaki[27], performed analytic calculations which con- Throughout this paper we use the unitscet G=1.
firmed the result of Tagoshi and Nakamura. These calcula-

tions were extended to a rotating black hole case by Shibata, Il. GENERAL FORMULATION

Sasaki, Tagoshi, and Tanak&STT) [28] to O(v°). They
calculated gravitational waves from a particle in circular or- ] )
bit with small inclination from the equatorial plane to see the ~We consider the case when a test particle of massav-

effect of spin at high post-Newtonian orders. They found tha€!S in @ circular orbit around a Kerr black hole of mass
the effect of spin on the orbital phase is important atV!>#- We follow the notation used by SSTP8], but for

O(v®) order when one of the stars is a rapidly rotating neu_c.ieflnlteness, we recapitulate necessary formulas and defini-

o : . tions.
tron star with its pulse period less than 2 ms or a rapidl o . . .
P P pidly To calculate gravitational radiation from a particle orbit-

. . _ 2 . .
rotating black hole witig=Jg;/M“=0.2. This analysis was ing a Kerr black hole, we start with the Teukolsky equation

extended to the case of slightly eccentric orbits by Tagoshﬂ32 33. We focus on the radiation going out to infinity de-
[29]. The absorption of gravitational waves into the blaCkscri,bed by the fourth Newman-Penrose quantity [34]
hole horizon, appearing @@ (v®), was also calculated by which may be expressed as '

Poisson and Sasaki in the case when a test particle is in a
circular orbit around a Schwarzschild black hg8]. _

In this paper, we extend these analyses in the rotatingb4=(r—iaC039)_4f dwe 1ot
black hole case t@(v®) order. Once again, the calculation 7om
is based on the formalism developed by Sa$2K] to treat a
Schwarzschild black hole. Based on the post-Newtonian ex- ] ] ) ] .
pansion of the luminosity in the test particle limit when the Where _,S¢, is the spheroidal harmonic function of spin
central body is a Schwarzschild black hd®5,26, Cutler ~ Weights=—2, which is normalized as
and Flanagan31] estimated that we will have to calculate
post-Newtonian expansion of gravitational wave luminosity
at least up taO(v®) in order to obtain the theoretical tem-
plates which cause less systematic errors than statistical er-
e i DEP V0 P Tho el o .1 obeys th Teukosey quatn
phase of coalescing binaries would not be negligible if spinWlth spin weights=—2:
of the black hole was larggé.e., |q|~1). Also, the perturba- 4/1dR
tion study can provide accurate templates for binaries with 2 ( /mw) VIR =T mu(1), (23

A. Teukolsky equation

eimgo
\/ﬁ* Zssar‘;]( 0) R/mw( r )1
(2.1

fo | ,S% 2singd = 1. 2.2

M> u (for example, binaries of 100, black hole, 1.M4 driA dr
neutron star Since LIGO and VIRGO will be able to detect

gravitational wave signals from binaries with masses lesgyhereT,,,,(r) is the source term whose explicit form will

than ~300M g, it is important to construct templates for pe shown later, and =r2—2Mr +a2. The potentiaV(r) is
such binaries. The frequency of gravitational waves fromgiven by

such a massive binary, however, comes into the frequency

band for LIGO and VIRGO at/M~16(10M¢ /M)?? i.e., K2+ 4i(r—M)K
highly relativistic region. We do not know whether the con- Vir)=——
vergence property of the post-Newtonian approximation is A
good or not in such a highly relativistic motion. Hence, it is

an urgent problem to clarify at what point the convergencevhere K=(r>+a?)o—ma and \ is the eigenvalue of
property of the post-Newtonian expansion is good. For these >S5, -

+8iwr+N\, (2.9

purposes, we study the effect of spin bey@ ®) order in The solution of the Teukolsky equation at infinity
this paper. (r—o0) is expressed as
The paper is organized as follows. In Sec. Il, we present
the b_a5|c formallsm_ to perform the_ post-Newtonian expan- r3aior® o T/mw(f')Ri}]mw(r')
sion in our perturbative approach. First, we perform the post- R/me(H)— =——=7— ! -—
) 2|wB/mw ry A (r )

Newtonian expansion of the Teukolsky radial function using
the Sasaki-Nakamura equation. We also show the post-
Newtonian expansion of the angular equation, which is given
in Appendix F. In Sec. lll, we first describe the post-
Newtonian expansion of the source terms. We consider ciwherer, =M +M?—a? denotes the radius of the event
cular orbits in the equatorial plane around a Kerr black holehorizon andR”,,,, is the homogeneous solution which satis-
Then the gravitational wave luminosities @(v®) beyond fies the ingoing-wave boundary condition at the horizon,

=7 /ol 36 (2.5
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ikr*

. D,m,A% " for r*——o, o/l 2

R/m - * 4m = /+1
5] r3B?‘#] iwr* +r_1B/mw —ior for I’*—>+00, ( )

(2.6 (/+3)(/=1)(/+m+1)(/—m+1)|"2

(2/+1)(2/+3)

where k=w—ma/2Mr, andr* is the tortoise coordinate

defined by /o1 (/+2)(/=2)(/+m)(/—m) ]
Cm =T (2/+1)(2/-1)
dr* r2+a? )
FTE 2.7 S( ) is given by
2)_
For definiteness, we fix the integration constant such that 2 & m-2P 1, (211

r* is given explicitly by
where the nonzero componentsdjfr'n are given by

*—fdr*d . 2Mr | | r—r. 2Mr_ | r—r_
S B T L TV I S SR TV I ———[(c/+1) +(c/h2, (2.12
(2.8
for any 7, by
wherer . =M = \M?—aZ.
d/+1 3— ml/2 3+m 1/2
B. Post-Newtonian expansion of the homogeneous solution /m 32 \/—( i )

In the previous papef27,28, the post-Newtonian expan-
sion of the homogeneous solution was performe@te?) in d/ 2=
the Schwarzschild case ar@(€) in the Kerr case, where /m 176N_
e=2Mw. In this section, we extend those methods, perform-
ing the expansion of homogeneous solutions u@(e?). for /=2, and by

In order to calculate gravitational waves emitted to infin-
ity from a particle in a circular orbit, we need to know the /i1 2 2
explicit form of the source terrfi ,,,(r), which has support /m = 0\/—(4_”‘) (4+m)™%,

m 120y21

only at r=ry where ry is orbital radius in the Boyer-
Lindquist coordinate, the ingoing-wave Teukolsky function 1

RVm. (1) atr=rg, and its incident amplitud8?,,, at infin- d/ 2= (4—m)Y2( 44+ m)Y45—m)Y45+m)¥2
ity. We consider the expansion of these quantities in terms of 18011
a small parametar?=M/r . In addition, we need to expand
those quantity in terms of=2Mw since w=0({)) where S " 2
Q is the orbital angular velocity of the particle and dym = " 34 \/—(3 m)~43+m)
Mw=0(v?). In the case of a Kerr black hole, other combi-
nation of parameteraw appears in the Teukolsky equation.
We defineq=a/M and we havew =qe/2=0(v°).

First we perform the expansion of the spheroidal harmon-
ics _,S7y and their eigenvalues in terms ofaw. Since A=\g+tawh;+aw’\,+0((aw)?), (2.13
aw= O(v3) we have to calculate_,S’;, and A up to
O((aw)?). The eigenvalue. has already been evaluated up Wherexo=(/"—1)(/+2), \;=—2m(/*+/+4)I(/*+/), and
to O((aw)?) in a previous pape28]. We calculate the ex-
pansion of _,S2¢ at O((aw)?) in the Appendix F. As a No=—2(/+ 1)(C;+1)2+2/(C%1)2+E
result, the spheroidal harmonicsS’;, are given by 3

(3 m)l/2(3+ m)l/2(4 m)l/2(4+ m)l/Z

for /=3. We do not nee®?) for /=4 in this paper.
The eigenvalue. is given by

2 (/+48)(/=3)(/*+/—-3mP)
3 A/+1)(2/+3)(2/-1) (2.14

where _,P,, are the spherical harmonics of spin weight  Next we calculate the homogeneous solufh,, . Here
s=—2[35] and we only consider the case whemn>0. We must treat the
case w<0 separately. The Teukolsky equation is trans-

formed into the Sasaki-Nakamura equati@®6], which is
<1>_2 Cm-2P/rm (210 given by

5S2= P mtaeSi+(aw)?S2 +0((aw)®), (2.9

d2

d
d—*z—F(f)d?—U(f) X/me=0. (2.19

’
g r

Herec/, are nonzero only for”’ =/+1, explicitly,
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The explicit forms ofF(r) andU(r) are given in Appendix
A. The relation betweeR ., and X, IS

B
a—i——'r

A

B
R/mw:; X/mw_ZX/mw,r ) (216

where x /mo= X, moA/(r?+a?)*2, and the functionsy, 3,

and z are shown in Appendix A. Conversely, we can express
where L@, LM, Q™) and Q@ are differential operators

X,/me N terms ofR ., as

. (217

1
X/mwz(r2+a2)1’2r2JJ[r—zR/mw

whereJ_=(d/dr)—i(K/A). Then the asymptotic behavior

n

of the ingoing-wave solutiolX},,,,, which corresponds to Eq.

(2.6) is

out Liwr* in —ior* *
o A% e +AD e for r*—oo,
x/mw _ikr* *
ikr for r* — —oo,

(2.18
in out

The coefficientA/,,, A/n,,» andC,,, are, respectively,
related toB”,,,, B%r,,, andD ., , defined in Eq(2.6), by

/Mw

/me®

Mw

in  _ in
/Mo~ 4w2A/mw’

2
BOUt _ 4o AOUt
/me ™ Co /Mo 1

(2.19

D/mw:j;___c/mw!

/Mo
wherecg is given in Eq.(A3) of Appendix A and
A/ me= V2Mr [ (8—24iM w— 16M2w?)r?2
+(12am—16M + 16amMw + 24iM ?w)r ..
—4a’m?—12iamM+8M?2].
Now we introduce the variable= wr and

z, zZ_
In(z—z,)—
+—Z zZ,—Z_

Z*=z+e€ . In(z—z_)

=wr* + €lne,

(2.20

wherez. =wr . . To solveX/,, by expanding it in terms of

€, we set

Xmo= V22 +820%, n(2exd —id(2)],  (22)
where
K € 1 z—z,
qb(z):f dr(Z_w):Z*_z_iquJr—z_ Inz_z_,
(2.22

which generalizes the phase functian(r* —r) of the

Schwarzschild case. This prescription makes it easy to

implement the ingoing-wave boundary condition Xfi.., .
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Inserting Eq.(2.21) into Eq. (2.195 and expanding it in
powers ofe=2M w, we obtain

L(o)[f/m] = 6L(l)[§/m] + EQ(l)[g/m] + GZQ(Z)[g/m]

+ QP& ]+ QWL E, ]+ O(€°),
(2.23

given by
Lo d> 2 d (7 +1) 0y
2tz \tT T @29
L(l)_l d> (1 2i\d (4 i 1 -
22T\ 2t 7]\ 2ty @
igh, d 4im
w321 © d (2.26

T 222 dz 1(1+1)Z*

andQ®, Q) andQ are given in Appendix C. Note that
the real part oQ*) vanishes when we insert the expression
for A;. There aren; or \, in the formulas forQ® and
Q™). However, it is straghtforward to show that both and
N4 do not influence the results in this paper.

By expandingé, ., in terms ofe as

Em= 2, €"E0(2), (2.2

we obtain from Eq(2.23 the iterative equations
LO&MI=0, (2.29
LOLEMI=LPL NI+ QUL EMI=W,, (229

LO[2 =L+ QW]+ QP e 1=W2) |

(2.30
LO[ER =L+ QW R+ QP 1+ QP )]
=W, (2.31)

LOLERI=L PR+ QWIERN]+ QPR +QUIER]
+QUWLERI=WA. (232

The general solution to E42.28 is immediately obtained as
&=aPj,+p%n,, (2.33

wherej , andn, are the usual spherical Bessel functions. As
we discuss later, the boundary condition fo=2 is that
£ is regular az=0. Henceg!®=0 and we set{”=1 for
convenience.

To calculatez!), for n=1, we rewrite Eqs(2.29—(2.32
in the indefinite integral form by using the spherical Bessel

functions as

z z
Em=n, f dz2j W=, f dzZn Wi, (n=12).
(2.34
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The calculation fomn=1 was done in a previous pape8] and we have
(/=1(/+3) . /-4 a

1) (1); FYI : il B VRN :
ym— ¢, ) st 2(/+1)(2/+1)J/+1 2/(2/+1)J/ 1+2°(n/jo J/n0)10+k21 k+ Kr 1 Z2(n/j—J Mk
cic2 o Siio I imq/ /%+4 |\ img/ (/+1)%>+4 |\ )3
+n/[ I( Z)_y n Z] J/ I( Z)+IJ/nZ+ (2/+l) V- l+ 2 (//+1) (2/+1) Jr7+1, ( . 5)

where Cif) = — [ dtcog/t and Sik) = [dtsint/t are cosine and sine integral functionsis the Euler constant, arm‘l) is an
integration constant which represents the arbitrariness of the normallzatbdﬁ“gf We seta(l)—o for simplicity.
Next we conside¢?) . From Eqgs.(2.34 and(2.35, and by using formulas in the papi7], we obtainé(?) as

£2 =tP+ig@+k2(q)+ a2, +B%n,, (2.3

wheref(z) andg(z) are the real and imaginary part @Sizm in the Schwarzschild case, respectivéd%(q) exists only in Kerr
case, andz(z) and8%2) are arbitrary constants. The explicit formsfét andg'? are given in a previous papg27]. The term
k®)(q) is given for/=2 by

191 = mPg%j, mqj, 68 q° 73mPg? 7mq13 i i i q2j4
Kom=1g0M%0~ "35 ~ T10 3™ 3022”1764 2" 180 qJ3+324”“““420mql4 392

7%, 13 mgj 13maj | -i 13 13 c -
“Tas20 6 MV TT5 oo )2t MAkT goMak)SY mqn1+ gmans|C(2) (2.3
and, for/=3,
k(2)_3527 . 2mPgfj; mqj, i . 5i 379 g% 7mzq2j3+3mqj4 i
820 MIhT 315 3 5029 12T 2o 412" 360MAl T 360~ 720 T 160 ~ 140% 1
[ 97 . @%js 17mPgfjs 103 . 25 13mqj2+ 5mqj, |
T T120™ et 5040~ 360~ 040 48 MM g MA| o T 5
~13 5 13 5i . -
+| 126 MAl2~ ggMala S(z)+ ToeMdn+ ggman, (2), (2.38

where Cg¢) =Ci2z— y—In2z and Sg¢) = Si2z. Note that to obtain the above two formulas, we have added terms proportional
to j, to simplify the formulas ofA, below. As noted previously, the source tefim,,, has support only at=r, and
wro=0(v). Hence we only neeX},, at z=0O(v)<1 to evaluate the source integral, apart from the value of the incident
amplitude A", . Hence the post-Newtonian expansion %§,, corresponds to the expansion not only in terms of
e=0(v?), but alsoz by assuminge<z<1. In order to evaluate the gravitational wave luminosityQ¢v®) beyond the
leading order, we must calculate the series expansicﬁﬁ”,bﬁn powers ofz forn=0 to /=6, forn=1 to /=5, forn=2 to
/=4, forn=3 to /=3, and forn=4 to /=2 (see Appendix C of SSTT

When we evaluatd” , we examine the asymptotic behavior&F), at infinity. Since the accuracy @",, we need is
O(€?), we do not have to caIcuIaré and g(‘” in closed analytic form. We need only the series expansion formulas for
£3) and &%) aroundz=0, which is easily obtained by E@2.34. Inserting£!"). into Eq. (2.21) and expanding it by and
€ assuminge<<z<<1, we obtain

2 —i 7mq i mg® m3g® manz i
(3)____ _ 2.2 _ _ 2
=30 32T 30" T80 509 T a6 " g0 30 3gmd Nz
319 100637 *  17mfg® 83 ¢ 6L s, Nz 108 0 o
2| 5300+ 241000™9 180" 1132 " 5880"% 13230" 9 T 15~ 1575MUNZT gpMmaing)
+0(2%) + asni»+ Bona. (2.39
4
q B
E= o3+ Oz ) + afli+ sz, (2.40
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5(3)_ —i m? q i

|
“n=1260"9" Tao5~ 12609~ 3780™ U O+ akhist Bimns. (247

The boundary condition of{", that correctly represent the boundary conditiorX®f,, [Eq. (2.18] is thatz£!"), must be no
more singular thaz” *1~™ atz—0. Since we need(”) only up ton=4, we set,B(”) =0 for all of / andn in this paper. As
for o), they still remain arbitrary and we sef/)—o for all of /, m, andn=3,4.

Inserting g“‘) into Eqg. (2.22 and expanding it in terms of=2M w, we obtalnx/mw which are shown in Appendix C.
Using the transformation of Eq2.16), we obtainR",, which are also shown in Appendix D.

Next, we consideA”. . —at O(e?). Using the relationj,.;~ —j,_1~ (—1)"""n,,_, at z~=, etc., we obtain the
asymptotic behavior of}) and ¢(2) atz~ as

O~ P+ (@l =Inz)n, +ij Inz, (2.42
[P+ ainz—(I2)2]j , + (9= pViinz)n, +ipPj Anz+i (g~ Inz)n, Inz, (2.43
where
aa
Pim=—7% (2.44
g - y i1 (/=1 (/+3) 2img 04
/—51!/( )+ ( +)+W—n—m, (2.45
/-1 1
W)= gl Y (2.46
for any /" and
457y  y?  @? i 457 In2 i (In2)?
(2)— _ _ _ _
Pam= 210~ 2 +524 18YMAt g Y2~ ggman2— —5—, (247
— 4577 7 5mq i i in2
(2)—_ "~ _ 24 2n2
52y Y 52 In2 i (In2)?
(2) — _ _ _
D=1 5 *554 73N gy — 2 gzmdna— 249

—26m7 oy 67mq i i 17 win2

(2) — + — 2 2+
Bm="21 "2 1440 122" 360q 12060 4 T2 (250

Then noting that exp{i¢)~exd —i(z* —2)] at z~«, the asymptotic form of(/mw is expressed as
Xmo= N2t @20exp —i ){f 0+ etlp+ 600+ -}~ (zhPe?)[ 1+ e(ply+ialy) + E(pfy+iafy)]

e7 (zhMe 7)1+ e(pU—iqh) + €2(p2—ig'2h)], (2.5

whereh® andh(®) are the spherical Hankel functions of the From these equations, noting * = z* — elne, we obtain
first and second kinds, respectively, which are given by

1
i A/mw_ /+l Ielne[1+6(p(l)+Iq(1))+62(p +|q(2)
hM=j, +in,—(— 1)/+1e 2!

o] (2.53

—iz

e - - - - i _
h®=j, —in,—(—1) *1o—. (2.52 The corresponding incident amplitu@,,,, for the Teukol
’ z

sky function are obtained from EQ.19.
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Ill. GRAVITATIONAL WAVE LUMINOSITY TO o(Vv?®) w dz* dz*
14

v —_-__ - 00O — _ _
A. Geodesic equations T Ssingdt/dr dr dr 3(r=ro)8(6=m/2) 5o = (1)).
In this section, we solve the geodesic equation for circular (34

motion in the equatorial plane. The geodesic equations in th§he source term of the Teukolsky equation is given by
Kerr geometry are given by

s
T/mw Jdetp '.7_1(Bz+B/*)e—lmzp+lwt \72_/”1,
de |2 1/2
ek _ 201 _E?2 z =@ 3.
24 i[C co§0{a(1 E)+Sm20” 0(0), (3.9
where
1
d | a ' _ 871 -4 -Z =1
Ed—f=—(aE— ] 2Ereat —al =0, By=—5p%L 1lp *Lo(p %0 *Tan)]
1
N 8pAZL_4[p~p?Is(p %p A" )],
dt l, _ r’+a? _—
Ed—T - aE—m asirf 9+ [E(r?+a? —al,] ) L . L
T B =— 2P pA3:lp " Ji(p “pTam)]
1
——=p%pA%3, [p AL _1(p % *Twn)],
dr \/_ 2\/5
=+
LR (3.9 (3.6
with
whereE, |,, andC are the energy, the component of the p=(r—iacosd) %,

angular momentum, and the Carter constant of a test particle,

respectivelyS =r?+ a’cos6 and m _

Ls=d,t+ Sing awsing+ scotd,

R=[E(r?+a? —al,]>~A[(Ea—1,)2+r?+C]. (3.2
J,=d,+iKI/A, 3.7

Since we consider a motion of a particle in the equatorial ___

planed= /2, we can se€=0. We define the orbital radius andp denotes the complex conjugate @f

asr=ry. ThenE andl, are determined byR(ry,)=0 and In the present case, the tetrad components of the energy-
aRIar|,_, =0 as momentum tensofT,,, Tmn, andTym, take the form
—'o
_ 2 3
_ 1-2v+qu Tan= S|n0
(1-3v2+2qv3) "
reu(1-2qv+q%?) Tn= Smg (0—m/2) (¢ = (1)),
2 (1-3vt+2qud) P
5r—r 8(0—ml2) 6 t 3.8
wherev =(M/ry) Y2 After these preparations, we can easily mm= smf) ( o) Jole—e), (38
obtain ¢(t) as where
e(t)=0Ot,
Cnn 423t[E(r +3.2) alz]2
Ml/2
Q=?,2—[1—qv3+q206+0(v9)]. (3.3 p "
0 _ 2 2y i _
Con 2\/EEZ.I[E(r +a“)—al,]|isind| aE s?—e”
B. Integration of the source term 2 | 2
z
Using results of the previous section, we can now derive Cim= >t ising| aE— m” ; 3.9

the source term of the Teukolsky equation and integrate it to

give the amplitude of the Teukolsky function at infinity. andt=dt/dr.
The energy-momentum tensor of a test particle of mass Substituting Eq.(3.6) into Eq. (3.5 and integrating by

M is given by parts, we obtain
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A%p
wdtf dee'“t- 'm«’(t){ LI p 2L (p3S)}Crnp 2 26(r — 1) 8(6— 77/2)+T[LTS+|a(p p)singS]

p

1
X 3. {Crnp ™29 2A18(r —10) 80— w/2)} + ——=LY{p®S(p% ) }CimAp %o~ 28(r — 1) 8(0— w/2)

(3.10

1446
T/mw \/—
22
1 SA283.{p 4. [pp 2Cid(r —r1y) 8(0— /2
2P Ap ™ lpp “Camd(r—ro) 8(0—ml2) ]} |,
[
where

m
—— +awsind+ scotd,

Ls=d= sing

(3.11

andS denotes_,S2¢ () for simplicity.
We further rewrite Eq(3.10 as

T/me= f dte! ' M OAZ[(Agn ot A o+ Afimo) S(F o)

rO)},r

- rO)},rl’] O=ml2»

+{(Amn 1+ Amm) 8(r —

+{Amm20(r (3.12

where A, o, etc., are given in Appendix B. Inserting Eq.

(3.12 into Eq. (2.5, we obtainZ ,, as
- 27m6(w—mQ)

/Mo /mw{Ann0+Amn ot Amm 0}

2 wB/mw

d / )
- {Amn 1+AW1}

dZR/mw
S dr?

mm 2

r=rq,0=ml2

=8(w—m)Z, - (3.13

om(0) at 6=/2, it is straightfor-

Using characters of , rai
0 =(=1)T, ., whereT, ., is

ward to show thal, _, _
the complex conjugate of , -

Since the homogeneous

C. Results

In this section, we calculate the gravitational wave lumi-
nosity up toO(v®) beyond the quadrupole formula. From
Eqg. (2.2), ¢, atr—o takes a form

1 6 / awg
Ya=" S 7. “2T/M Gwg(r* —t)+ime
/L w 1

r’=2m==, o J2m

(3.19

where wg=m(}. At infinity, «, is related to the two inde-
pendent modes of gravitational wavies andh, as

1. .
ba=5 (R —ih). (315

From Egs.(3.13, (3.14), and(3.15, the gravitational wave
luminosity is given by

dE
dt/
In order to express the post-Newtonian corrections to the
luminosity, we definep,,, as
dE

al alw

i =557 7/m
dt/ =~ 2\dt/ m
where @E/dt)y is the Newtonian quadrupole luminosity:

2pn 3 2
dE) _32uMT _32[p)" 4
dt/,  5rg 5\M '

|Z/mwo|2

(3.19

/.m 47Tw§

(3.17

Teukolsky equation is invariant under the complex conjugate

followed by m——-m and w——w, we haveZ, _, _
_( 1) Z/mw

. 10%°
772,2_ 21

428w
21

2
132320

[
34241n2 1712Inv| (191367 163928
~ 7105 105 /¢ 1323 11907

4784
+ (47— 6q)v3+(

2071677q 4560287

+8mP— 12q3)v7+(—

366368 In2 183184 I

We only show 7%,, for the m>0 mode since

N/ m=N/,—m-

8830y
567

4216 o (99210071 1712 167°
189 1091475 105 ' 3

27956920577 183184y 171272
81265275 | 2205 63

v8, (3.18

189 9261 2205

2205
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v? qud 17 o, (= 793q 2215 mq 859q2
Mor=mn— | — oot vt | o |0 | e
1736 12 504 16 18 907 254016 6 @ 1512)°
—177 1186 2 719
_+—:n+ﬂ_i v7
252 ' 190512 8 12
15707221 107y =° 10457q 118943¢ q* 107In2 107\
*126195400 945 T 27 4536 190512+16 945 945 |V

(3.19

Putting together the above results, we obtale(dt) , == ,(dE/dt) ,,, for /=2 as

(dE) _(dE) { 127 %3 ( 73q) 3+(37915 33q2) +( 25617 2015751)

at), " lar) |PT 252 14T 2]V T | 10584 16 126 ' 9072

2116278473 1712 1672 _ 169 7321112 34241n2 17121\
23284800 105 | 3 6 ' 4536 105 105 /Y

(7618777 376387 657> 151q3) ; ( 2455920939443 548803y 512972 708777Tq
v —

5292 * 27216+ 8 12 7151344200 6615 189 648

6483543112+ 179* N 219671 In2+ 548803 Iy
1333584 ' 16 1323 6615

08]. (3.20

For /=3, we obtain

121%?% 121%% (364577 1215q) (243729 364512) ( 3645 1319494)

7357 "goe 112 | 448 112 9856 | 896 56 1792

25037019729 47385y+3645772 3280577q+34627512 47385In2 47385In3 47385Iv) .
125565440 1568 = 224 448 14336 1568 1568 1568 |

(3.21

4 5 2 2
504 400w ( 193 SOq) +(2077 35an (86111 160mq 40q> 322

73253 189 567 567 63 1701 "\280665 189 '« 27

v? vt T 17qz) . 437 17 I 360]q
N31= - + - v >+ -—=+
178064 1512 |4032 907 266112 2419 756 ' 43545

1137077 13y N w2 145anr 41183¢ 13In2 131w\
~ 50854003200 42336 6048 36288 3483648 42336 42336

(3.23

Then we obtain

dE| (dE| [136%° 3256®" (16403t 896q 152122 341q2 —1399%r 401966@
dt), "\ dt) | 1008 " 3024 '\ 2016 81 6237 * 81 )" "\ 216 ' “madm2

5712521850527 79963y+6151772 192005rq+1116837112 79963 In2
28605376800 2646 378 2592 435456 2646

47385In3 7996310 .
T 1568 2646 )

(3.29
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For /=4, we have

_1280;4 151808° (102407 1280@ . 560069632 5120:42 -
144~ "5g7 6237 567 567 |7 6243237 | 567 (3.29
_729° 729qu7 28431 3645q2 -
7432280 1792 T\ 24640 14336)° (326
&t 437u6 20 80q 7199152 200q2 -
742-3969 43659 | 3969 39697 ' |218513295 2778 (3.27
_ v’ qu’ N 101 N 502 8 32
1417582240 112896 | 4656960 903168 " (3.28
Then we obtain
dE|\ (dE| [8963* 84479081° (239007 596211 51619996697 660848952 -
dt . dt Ly 3969 3492720 | 1323 2592 582702120 7112448 (3.29
[
For /=5 we have For /=6 we have
9765625° 2568359376° (3.30 262448
755— - s .
572433024 47443968 Eubenitdl
766~ 3575 (3.39
_4096)8 23
754 13365' (3:30 131072°
764~ GEECoTL (3.37
| 218%° 150903° ia 9555975
1537450560 2928640' (332
408 33
8 —_
_ (3.33 6.2~ 5733585 (3.39
7527 20095 '
L6 1798 and 7g5, 763, 761 becomeO(v®). Then we have
1517127733760 2490808320 (334
dE dE\ 210843872°
Then we have =gt (3.39

dt/, | 28667925

(dE) _(dE) [ 1002569° 314539684&8]
dt/ . \dt) | 249480 58378320 Finally, gathering all the above results, the total luminos-

(3.35 ity up to O(v®) is expressed as

7)o, (4471t 33q2 ~819Lr  374a)
T ——|v3+ 44 +
12 9072 16 672 336

dE| _(dE) [, 124%° .

dt/~\at) [ 33
6643730519 1712y 167 169mq 3419F 3424In2 171210
69854400 105 = 3 6 ' 168 105 105 /Y

. —162857r+838194 657 151q3 323105549467+ 23259% 1369772+33897Tq
504 1296 8 12 3178375200 4410 126 96

1240912 17q* 399311n2 47385In3 232597 I
T 9072 | 16 | 204 1568 | 4410

US]. (3.40
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In Appendix G, we present formulas fay, ,, anddE/dt in 2.5<r/M=<12 in Fig. 2. The error in the post-Newtonian
terms ofv’'=(M Q) for the sake of convenience to calcu- formula is defined as
late the phase function for an inspiraling wavefdi.

Setting q=0, above reproduces the previous results 1 d_E d_E
[25, 26 in a Schwarzschild case. Up ®(v°®), the results error= dt/ dt/
agree with those obtained by SST28] in the case when the
test particle moves a circular orbit in the equatorial planewhere @E/dt)py and (dE/dt) g denote the post-Newtonian
For /=5 and 6, there are no contributions due to the blackPN) formula and the numerical results, respectively. As for
hole spin and the results are identical to the SchwarzschilddE/dt)py, we have used 2-PN, 2.5-PN, 3-PN, 3.5-PN, and

, 4.9

case. . 4-PN formulas. Here, we defimePN formula as the expres-
In Eq. (3.40, the numerical value of terms at order sion for dE/dt which includes post-Newtonian terms up to
O(v®) is given by v%(115.7-88.48]  O(v2") beyond the quadrupole formula. In each figure, the

+20.3%°—16.30lv). We find that the spin-dependent open square, solid triangle, open triangle, solid circle, and

terms are not so small compared to the other two terms igpen circle denote the error of 2-PN, 2.5-PN, 3-PN, 3.5-PN,

|q| is of order unity. Thus, we see that spin-dependent termand 4-PN formulas, respectively. We note that in Fig. 2, the

atO(v°®) will give a significant effect to template waveforms errors in the 2.5-, 3-, and 4-PN formulas become greater than

of coalescing binaries when spin of a black hole is large. unity for very small radius, because in such a region,
Finally we note that the angular momentum flux can bedE/dt for those PN formulas becomes negative.

easily calculated from From these figures, we find the following.
(1) If we use the 2-PN or 2.5-PN formula, the error is
dJ\ 1/dE always greater than I¢ whenr=<100M irrespective ofg.
<a> = 5<a> (3.4) If we use the 3-PN formula, however, the error decreases

significantly, and it becomes less thar #Gor r >60M, and
less than 102 for r>30M irrespective of.
IV. COMPARISON WITH NUMERICAL RESULTS (2) If we adopt the 3.5-PN formula, the aCCL.lracy becomes
better than that of 3-PN formula. The error is always less
As discussed in Sec. |, it is important to investigate thethan 10* when r is greater than~30M and less than
detailed convergence property of the post-Newtonian api0-> whenr is greater than-60M. This feature does not
proximation. Therefore we compare the formula #d#/dt, depend ong. However, if we use the 4-PN formula, the
derived above, with numerical results and investigate the acaccuracy is not improved compared with the 3.5-PN formula.
curacy of the post-Newtonian expansiondd/dt. In particular, this tendency is remarkable for smaller radius.
In this section, we consider the total mass of the binary (3) The accuracy of the 3.5-PN or 4-PN formula is not
systems including black holes-(2-300M¢ because always better than that of the lower-PN one ingide where
gravitational waves from such binaries can be detected by, <5M for q=0.5 and 0.9,r.~10M for q=0 and —0.5,
LIGO and VIRGO. In particular, we pay attention to the andr,~15M for q=—0.9. Thus, the convergence of the
accuracy of post-Newtonian formula fodE/dt when  post-Newtonian expansion seems rather poor aroynd
r<100M (or v=0.1), because gravitational waves from  Using the above results, we investigate the accuracy of
these binary systems will be detected when the orbital sepahe post-Newtonian formulas as templates for various binary
ration becomes less thah’% 1QG\A- Here, we ignore the ef- systems. As explained in Sec. |, to investigate the accuracy
fect of absorption of gravitational waves by the black hole.of the post-Newtonian formulas as templates, it is useful to
We will briefly discuss its effect in the next section. check if they can predict the number of cycles of the gravi-
A numerical study ofdE/dt from a particle in a circular tational wavesN, with accuracy less than 1. compact binary
orbit in the equatorial plane around a Kerr black hole hasystems, the cycles are mainly accumulated aroud@ Hz

been performed by Shibafa9]. Since nothing was assumed which is the lowest-frequency region in the LIGO band, and
about the velocity of a test particle, those results are correqy is approximately given by

relativistically in the limit u<M. In that work,dE/dt was
calculated with accuracys 10" 4. However, we found that 1Mo\ %3 M
this accuracy is not sufficient to compare it with the post- N~1.9x10° T) (ﬂ)
Newtonian formula for dE/dt including terms up to

O(v®). Thus, in this paper, we calculatde/dt again requir-  whereM andu are the total mass and reduced mass, respec-
ing the accuracy to be-10™°. In the numerical calculations, tively. This means that the template must have an accuracy
we have taken into account the contribution from theless than
/' =2-6 modes idE/dt which is consistent with the post-
Newtonian formula.

In Figs. Xa-1e), we show the error in the post-
Newtonian formulas as a function of the Boyer-Lindquist
coordinate radius wheq=—0.9, —0.5, 0, 0.5, and 0.9. In when the frequency of gravitational wave becomes 10 Hz.
these figures, we show the error fo=8/M <100. Since the First we consider equal mass binary systems, that is,
radius of the inner stable circular orbit foq=0.9 is M=4u. At 10 Hz, the orbital separation of a binary of total
ro=2.32M and a stable circular orbit is possible for massM is approximately given by/M=347(M/M)?3,
r>rs,, we also show the errors in the case wigen0.9 for ~ We find that the 2-PN and 2.5-PN formulas are insufficient if

4.2

5/3

4.3

4p
~ —4 =
5x10 (10|\/|O M )
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M=5Mg, and the 3-PN formula is needed. The 3-PN for-for binaries of mass greater than70M, we need higher
mula seems adequate irrespectivegof post-Newtonian corrections beyond 4-PN order.

On the other hand, the situation is slightly different in the  Binary systems of total mass greater thaiOOM o can
case when a neutron star of masd.4M spirals into a be detected whem is smaller than~15M. However, as
larger black hole. In such a case, the number of the cycles ahentioned in Eq(3) above, the convergence property of the
the gravitational waves is large compared with the equapost-Newtonian expansion becomes bad for small orbital
mass case when the total mass is the same. Thus, it seeseparations. In particular, fay~—1, the accuracy of the
that we need at least the 3.5-PN formula for binaries of maspost-Newtonian expansion seems bad atl5M. Thus, it
greater than~30M  to obtain the required accuracy. Also, may not be appropriate to use the post-Newtonian approxi-
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Error q=0.9 multipole expansion of the Kerr metr{€q. (10.6 of Ref.
o 1 T T T T 1 . [40]]. In this way, we find that the dominant effect of the
8 R multipole moments of a Kerr black hole wE/dt can be
T = . o L = expressed agtl]
— A a -
- g oa N .
» . . 8 3 o -
1 ‘. o ’ - dE  32( u)\2 8
= o s = o~ 110 1 _ — 13_ 14 17
= e, © C3 TR (M) v (l 3510 2Mov '+ 4S50
n "o 7
[o) A
01 3 5
01 g oo E + ——M§+—M4)u’8], (5.1)
-y . - 2 2
B L 1 TR R . 3
10 .
FM whereM , andS, are mass and current multipole moments

of a Kerr black hole given b ,+iS,=M(ia)”. Now we

FIG. 2. Error of the post-Newtonian formula gj=09 for 2" interpret the term- 12937 as the effect of thge current
2.5<r/M=12. The open square, solid triangle, open triangle, solidoCtOpOIe moment of a black hole and the teqﬁ? as the
circle, and open circle denote the error of 2-PN, 2.5-PN, 3-pn Effect of both the mass quadrupole moment aid4 mass
3.5-PN, and 4-PN formulas, respectively. multipole moment of a black hole.

As for /=2 andm=1 mode, there are termsqu’'?/

12, q?v'416, —7q°%'"/24, and q*v'%/16. The terms
mation for binaries of total mass 100M,, with large mass —quv'3/12 andg®v'#/16 can be explained as the correction
ratio u<<M. A more detailed investigations of the conver- to the radiative current quadrupole momgh2,42. We ex-
gence of the post-Newtonian expansion will require the calpect that the terms-7q3%v' /24 andq*v'®/16 can also be
culation to be carried beyond 4-PN order. derived simply in a similar way.

In Sec. IV, by comparing post-Newtonian formulas for
dE/dt with numerical data, we indicated that the conver-
gence of the post-Newtonian expansion seems bad when or-

V. SUMMARY AND DISCUSSION bital radii of binaries become less tharl5M. This suggests
) . that the post-Newtonian expansion may not be appropriate to
In this paper, we have performed a post-Newtonian exg,ngiryct theoretical templates for large mass ratio binaries
5 e e e b e St e h o mass i greate hadO0M . because grav:
rial plane and the calculations .are accurat©o®) beyoqnd tational waves from such binaries enter the LIGQ-VIRGO
frequency band when=15M. Nevertheless, the higher or-

the quadrupole level. We have performed the post r post-Newtonian terms gradually improve the accuracy of
Newtonian expansion of the Sasaki-Nakamura equation an%? P wioni gradually Improv uracy

obtained the Green function of the radial Teukolsky equatior'€ €MPplates. Hence, it is very natural to ask whether the
up to O(€?) using methods developed previously. Then Wepost-Newtgman expansion is always appropriate or not, and
obtained all the necessary radial functions to the requiredf @ppropriate, up to what order do we need the post-
accuracy. We have also calculated the spin-weighted Sphé\Lewton_la_n terms to construct accurate templates._ Fortu-
roidal harmonics up t®((aw)?). The outgoing wave am- hately, it is possible to obtain the formulas fE/dt which

plitude of the Teukolsky function and the gravitational waveinclude post-Newtonian order terms beyoqv®) by ex-

luminosities were derived up 1©(v®) beyond the quadru- tending techniques developed in this paper. Extension of the

pole formula. present work up to the higher post-Newtonian order, beyond
It is worth noting that in the formula fom,, in Ap- O(v?®), is very important and that is our future work.
pendix G, there are terms such as &3)quv’3, 2q%v'%, The analysis, in this paper, has been restricted to the case

(—8/3)g%'’, and g*v’®. In a previous papef28], we when a test particle moves in a circular orbit on the equato-
pointed out that the termd®v’* can be explained in terms rial plane. However, as shown in a previous paj2s], in-

of the quadrupole formula as the contribution of the quadru<lination of the orbital plane from the equatorial plane will
pole moment of the Kerr black hole to the orbit of the testsignificantly affect the orbital phase evolution. Hence, the
particle. A similar explanation is possible for@/3)q%v '’ present work should be considered as a first step toward the
andg*v’8. We can derive those terms by using the quadrucomplete calculation of the energy and angular momentum
pole formuladE/dt=32/5.F*Q°, wheret is the orbital luminosities including the orbital inclination.

radius of a test particle in de Donder coordinates. If multi- Finally, we comment on the effect of absorption of gravi-
pole moments of the black hole exist, the orbital radius istational waves by the black hole event horizon which should
changed due to the influence of those multipole mom@nts be taken into account when we consider the orbital evolution
if we fix the orbital radius() is changed due to the multipole of black hole binaries. According to Gal'ts¢%3], the lowest
moments of black hole We can calculate the leading order order contribution of the gravitational wave absorption to
effect of the multipole moments to the orbital radius by usingdE/dt is given by
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dE [dE\ v® q AU, AG
| 3 A2\ _ 2 _ 2 T
at (dt)N 5 [v (1+V1=-0%)— 5 (1+30q%). UD=Grgzz t ' gz FG. (A9)

(5.2

where

Thus, the effect of absorption appears fr@w"®) if q+0.

Although the coefficient is small compared with that of 2(r—M) A

dE/dt for the outgoing wave even in the cagg~1, we G=——5— s

need the expression falE/dt due to the black hole absorp- retas  (retaf)”

tion to obtain an accurate template up@¢uv®). Therefore,

to obtain the higher order post-Newtonian corrections to the )

black hole absorption is a problem for the future. U.=V+ A 5 Brl  nr B
1= F oz—l—T 7 a+T ,

T
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_ 2A
B=24| —iK+r-M-—]. (A5)

APPENDIX B: FUNCTIONS IN THE SOURCE TERM

In this appendix, we show th&’s in Eq. (3.5):

. -2
APPENDIX A: THE FORMULAS OF F AND U Anno= \/Z—AzCnnpizp_ill-z—{piéll-;(/ﬁs)}’
In this appendix we show the potential functiofsand T’
U of the SN equation2.15. Details of the derivation are
given in Ref.[36].

The functionF(r) is given b 2 _ iK
() g y Aﬁoz—\/;ACﬁp 3 (L;S)(X_FP_FF)
7y A . K __
== —asindS—(p—p) |,
F(r) y TP al (AL) NG P)}
where A 1 3_C—S{ (K) K? o K}
mmo= ~ =P PCmmS ~I| x| ~Aaz 2Py
N Al A A
N=Co+Cy/r+Cylr2+cg/r3+c,/r?, (A2)
2 L
with Amn 1=mp CinlL, Stiasind(p—p)S],
Co=— 12 wM+A(A+2)—12aw(aw—m),
e 2 .. [K
c,=8ia[3aw—\N(aw—m)], Aml:_\/T_wp pCiS IK+p ,
c,=—24iaM(aw—m)+12a[1—2(aw—m)?],
cy=24ia’(aw—m)—24Ma?, 1
T4 aemm A=~ =p pCrS

c,=12a* (A3)

The functionU(r) is given by whereS denotes_,S>, .
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APPENDIX F: SPHEROIDAL HARMONICS

In this appendix, we describe the expansion of the spheroidal harmop&%, at orderO((aw)?).
The spheroidal harmonics of spin weight —2 obey the equation

! d) gl 2,,2sir2 9 (m_2C089)2+4 $—2+2man+ |, =0 F1
sing dé Sin a0 —a‘“w’sl TSl awCoY— maw -2°/m~— Y- (F1

We expand_,S7;, and\ as
—3Sm= 2P /mtanSAh +(aw)?S/+ O((aw)),
A=\o(/)+awk (/) +a%w’\,(/)+0((aw)?), (F2)

where _,P ., are the spherical harmonics of spin weight —2 and\,, are given in Sec. Il B. Here we explicitly represent
the / dependence aof, for later convenience. We set the normalization_gP ., as

fo | 5P ml?singd6=1. (F3

Inserting Eq.(6.2) into Eq.(6.1) and collecting the terms of ordeag)?, we obtain
LoSA+No(/)SHn=—[4cog+2m+X1(/) ]S~ [Nao(/) = SIPO]_oPm, (F4)

where L, is the operator for the spin-weighted spherical harmonics,

Lol 2P, ml=

d ] ~ (m—2co¥)?

1 .
Wﬁ‘smeﬁ —szg -2 72P/m (F5)

=—No—2P/m. (F6)

By setting
=2 ¢/m-2Psrm,
/!
=2 2P rm, (F7)
/!

we insert it into Eq.(6.4), multiply it by _»,P,,, and integrate it ovef. Then we have

1

d/m= W[ —[2m+ Ny (NN 8,0 yaa+ Com 8 so1)— 8,1 Ao(F)

—40%1[ d(cosﬂ),ZP/,m,ZP/+1mcosﬁ—4c§;1j d(co) _oP, 2P, 17COSH

. (F8)

+ f d(cosd) _,P 1 oPSint o

The integrals in this equation are given [87,38
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5_4
2/ +
J d(cos?) _,P,1m_ 2P mcosh= /,+1</ 1,m,0/",m){/,1,2,0/",2),
2 2 2/+
f d(co) _,P 1 oP /mSin? 0= 5/, = 2/,Jr1</2m0|/’ my(/,2,2,0/",2),

where(jq,j»,my,m,|J,M) is a Clebsch-Gordan coefficient. Then, #6=2 and 3, we obtaimif,’n (7" # /) which are given
in Sec. Il B. As ford?m, we consider the normalization of,P ., [EQ. (2.2)]. Inserting Eq(6.2) into Eq.(2.2), and using the

orthogonality of_zp/m, we obtain

=f dasin0|_25/m|2=f dasina[(_zP/m)z+2awz 2P i oP st (aw)? Z oo oP i oP im
O 0 // ///

+2(aw)?Y, d%zP//mzP/mm((aw)S)J
/r

=1+(aw)?>, (c/m)?+2(aw)?d)+0((aw)?).
/!

Then we have
/ 1 /+1\2 /—1\2

d/:_i{(c/m )5+ (Crm ) (F9)
APPENDIX G: THE EXPRESSION OF THE LUMINOSITY BY MEANS OF THE ORBITAL ANGULAR FREQUENCY

For the sake of convenience to calculate the orbital phase error, we describe the formula of gravitational wave luminosity
by means ob’=(MQ)*3. In this appendix, we defing, , as
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