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Energy losses by gravitational radiation in inspiraling compact binaries
to 5/2 post-Newtonian order

Luc Blanchet
Département d’Astrophysique Relativiste et de Cosmologie, Centre National de la Recherche Scientifique (UPR 176),

Observatoire de Paris, 92195 Meudon Cedex, France
~Received 21 July 1995!

This paper derives the total power or energy loss rate generated in the form of gravitational waves by an
inspiraling compact binary system to the 5/2 post-Newtonian~2.5PN! approximation of general relativity.
Extending a recently developed gravitational-wave generation formalism valid for arbitrary~slowly moving!
systems, we compute the mass multipole moments of the system and the relevant tails present in the wave zone
to 2.5PN order. In the case of two point masses moving on a quasicircular orbit, we find that the 2.5PN
contribution in the energy loss rate is entirely due to tails. Relying on an energy balance argument we derive
the laws of variation of the instantaneous frequency and phase of the binary. The 2.5PN order in the accumu-
lated phase is significantly large, being grossly of the same order of magnitude as the previous 2PN order, but
opposite in sign. However, finite mass effects at 2.5PN order are small. The results of this paper should be
useful when analyzing the data from inspiraling compact binaries in future gravitational-wave detectors such as
VIRGO and LIGO.@S0556-2821~96!03012-3#

PACS number~s!: 04.25.Nx, 04.30.Db
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I. INTRODUCTION

Compact binaries in their late stage of evolution are v
relativistic systems in which the two compact objects~neu-
tron stars or black holes! orbit around each other with veloc
ties as large as 30% of that of light. The gravitational rad
tion these systems emit during the inspiral phase prece
the coalescence of the two objects is expected to be routi
analyzed in future detectors such as the Laser Interferom
Gravitational Wave Observatory~LIGO! and VIRGO ~see
@1–3# for reviews!. Hundreds to tens of thousands
gravitational-wave cycles should be monitored in the det
tors’ sensitive frequency bandwidth. The combination
high orbital velocities and a large number of observed ro
tions, together with the fact that the emitted waves are hig
predictable, implies that high-order relativistic~or post-
Newtonian! effects should show up in the gravitational si
nals observed by VIRGO and LIGO@4–10#. Alternatively,
this means that high-order post-Newtonian effects should
known in advance so that they can be included in the c
struction of theoretical filters~templates! to be cross corre-
lated with the outputs of the detectors.

The relevant model for describing most of the observ
inspiral phase is a model of two point masses moving o
circular orbit. Radiation reaction forces tend to circulari
the orbit very rapidly. On the other hand, point masses
be used in the case of nonrotating and~initially ! spherically
symmetric compact objects up to a very high precision@11#.
This is due to a property owned by general relativity of ‘‘e
facing’’ the internal structure. Even in the case of stars w
intrinsic rotations the dynamics of the binary is likely to b
dominated by post-Newtonian gravitational effects@12#.

High-order post-Newtonian effects that are measura
are mainly those affecting the orbital phase evolution of
binary, which in turn is determined using a standard ene
540556-2821/96/54~2!/1417~22!/$10.00
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balance argument by the total power emitted in the form o
gravitational waves by the system at infinity, or total lumi-
nosity in the waves. To what level in a post-Newtonian ex-
pansion we should know the gravitational luminosity~or en-
ergy loss! in order to guarantee an optimal detection of the
signal ~given some power spectral density of the noise in a
detector! is still unclear, but the theory of black-hole pertur-
bations can be used to gain insights in this problem. Black
hole perturbations, which deal with the special case of a tes
mass orbiting a massive black hole, have recently been th
focus of intense activity@13–17#. It emerges from this field
that neglecting even such a high approximation as the thir
post-Newtonian~3PN! one, i.e., neglecting the relativistic
corrections in the luminosity which are of relative order
c26 ~or below!, is likely to yield unacceptable systematic
errors in the data analysis of binary signals@14,15,18,19#.
This shows how relativistic are inspiraling compact binaries,
as compared, for instance, to the binary pulsar for which the
Newtonian approximation in the luminosity~Einstein quad-
rupole formula! is adequate. The post-Newtonian theory is
presently completed through the second post-Newtonia
~2PN! approximation, i.e., through relative orderc24 ~both
in the wave form and in the associated energy loss!. Two
computations were performed to this order, one by Blanche
Damour, and Iyer@20,21# based on a post-Minkowski match-
ing formalism, and one by Will and Wiseman@22# using an
approach initiated by Epstein and Wagoner@23# and gener-
alized by Thorne@24#. The common result of these two com-
putations for the energy loss was summarized in Ref.@12#,
and the wave form can be found in@25#.

In the present paper we develop the post-Minkowski
matching formalism one step beyond the work of Refs.
@20,21# by computing the 2.5PN order in the energy loss of
an inspiraling binary. This entails extending both Ref.@20#
on the general formalism valid for an arbitrary~slowly mov-
ing! source, and Ref.@21# dealing with the specific applica-
1417 © 1996 The American Physical Society
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1418 54LUC BLANCHET
tion to the binary. The computation of the wave form of t
binary to 2.5PN order~the square of which should give bac
the 2.5PN energy loss! will be left for future work.

The post-Minkowski matching formalism is a wave ge
eration formalism which is especially suited for ‘‘semirel
tivistic’’ sources whose internal velocities can reach 0.3c at
most~say!, as in the case of inspiraling compact binaries~see
@26# for a review!. The formalism combines~i! an analytic
post-Minkowskian approximation scheme for the compu
tion of the gravitational field in the exterior of the sour
where multipole expansions can be used to simplify
problem,~ii ! a direct post-Newtonian approximation schem
for the resolution of the field equations inside the near z
of the source, and~iii ! an asymptotic matching between bo
types of solutions which is performed in the exterior part
the near zone. The necessity of using a post-Minkowsk
approximation scheme first is because its validity extends
to the regions far away from the system where the obse
is located, contrary to the post-Newtonian approximat
whose validity is limited to the near zone. The exterior fie
is computed using an algorithm developed in Ref.@27# which
set on a general footing previous investigations by Tho
@24# and Bonnor@28#. The implementation of the wave gen
eration formalism~i!–~iii ! was done at first with 1PN accu
racy in Ref.@29#, which obtained the 1PN correction terms
the mass-type quadrupole moment of the source~and in fact
in all the mass-type multipole moments!. The dominant non-
linear contribution in the radiation field was added in R
@30# and shown to be due to the contribution in the wa
zone of the well-known ‘‘tail’’ effect. The inclusion of this
nonlinear contribution pushed the accuracy of the formal
to 1.5PN order in the energy loss. The 2PN precision in b
the energy loss and wave form was reached in Ref.@20#
where the second~2PN! correction terms in the mass-typ
multipole moments and the first~1PN! ones in the current-
type multipole moments were obtained. An equivalent
pression of the 1PN current-type moments had been der
earlier@31# in a different form which is very useful in appli
cations@21#.

The main result of the present paper is the expressio
the 2.5PN-accurate energy loss by gravitational radia
from a general~semirelativistic! source, and from an in
spiraling compact binary. In the latter case of application,
2.5PN contribution in the energy loss is found to be entir
due to tails in the wave zone~this is like the 1.5PN contri-
bution!, and to reduce in the test-body limit to the know
result of perturbation theory@15–17#.

With the energy loss one can derive the laws of variat
of the inspiraling binary’s orbital frequency and phase us
an energy balance equation. However, note that this
weak point of the analysis because the latter energy bala
equation has been proved to hold only at the Newton
order ~see@32–36# for general systems, and@37# for binary
systems!, and more recently at the 1PN order@38,39#. It is
also known to hold for the specific effects of tails at 1.5P
order @40,30#. To prove this equation at the 2.5PN order
we would need below, one should in principle obtain t
equations of motion of the binary up to the very high 5P
order ~or order c210) beyond the Newtonian acceleratio
Indeed the radiation reaction forces which are responsible
the decrease of the binding energy of the binary are th
e
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selves dominantly of order 2.5PN beyond the Newtoni
term. The only method which is available presently in ord
to deal with this problem is toassumethat the 2.5PN-
accurate radiation reaction forces are such that there is ex
agreement between the loss of 2.5PN-accurate binding
ergy of the binary~as computed from the Damour-Deruell
equations of motion@37#! and the 2.5PN-accurate energ
flux we shall compute below. This assumption is verified
the 1.5PN order and sounds reasonable, but will have to
justified in future work.

As an indication of the quantitative importance of th
2.5PN approximation in the orbital phase of the binary, w
compute the contribution of the 2.5PN term to the number
gravitational-wave cycles between the entry and exit fr
quencies of some detector. Essentially we find that the 2.5
approximation is of the same order of magnitude as the 2
term ~computed in@12#!, but opposite in sign. In the case o
two neutron stars of mass 1.4M( and of the frequency band-
width @10 Hz, 1000 Hz#, the 2PN term contributed19 units
to the total number of cycles@12#. We find here that the
2.5PN term contributes211 cycles in the same conditions
This shows the importance of the 2.5PN approximation f
constructing accurate theoretical templates.@However, we
find that the contribution of the finite mass effects in th
2.5PN term ~which cannot be obtained in perturbatio
theory! is numerically small.#

In the present paper we shall make a thorough investig
tion ~see Secs. II, III, and IV below! of all the relativistic
corrections in the multipole moments of the system whic
contribute to the 2.5PN-accurate energy loss. Howev
when we are interested only in the application to inspiralin
compact binaries, this investigation can be seena posteriori
to be unnecessary. Indeed, the orbit of an inspiraling bina
is circular, and we shall prove in this case that the 2.5P
relativistic corrections in the multipole moments give in fac
no contribution in the energy loss. As we said above, t
only contribution is that of the tails present at this order~see
Sec. VI!. A simple argument~concerning the result at 2.5PN
order of a contracted product of tensors made of the relat
separation and velocity of the bodies! could be used before-
hand to see that this is true. But because inspiraling comp
binaries may not constitute the only sources for which t
2.5PN approximation in the energy loss is needed, or sim
because one may need in the future to consider the case
binary moving on an eccentric orbit, we have chosen in th
paper to compute systematically all the terms which enter
2.5PN-accurate energy loss for general systems. This perm
us to show explicitly that all the terms but the tail terms giv
zero in the energy loss for~circular! inspiraling binaries. The
simple argument mentioned above may be used in futu
work to simplify the investigation of higher post-Newtonia
orders.

The plan of this paper is as follows. In the following Sec
II, and in the next one, III, we follow step by step the der
vation done in Ref.@20# of the near zone gravitational field
and the corresponding matching equation, and show how
derivation can be extended to the 2.5PN order. In Sec. IV
obtain the explicit 2.5PN corrections arising in the mass-ty
multipole moments. Section V deals with the derivation
the energy loss formula valid for general systems~however
some coefficients are left unspecified in the formula!. Fi-
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54 1419ENERGY LOSSES BY GRAVITATIONAL RADIATION . . .
nally, these results are applied in Sec. VI to inspiraling com
pact binaries. Appendix A derives a useful integration fo
mula and Appendix B presents a relevant summary of t
2.5PN equations of motion.

Throughout this paper we refer to Ref.@20# as paper I and
to Ref. @21# as paper II.

II. THE GRAVITATIONAL FIELD IN THE NEAR ZONE

Following the plan of paper I we first investigate th
gravitational field generated by a slowly moving isolate
source in itsnear zone, which is defined in the usual way a
being a zone whose size is of small extent with respect t
typical wavelength of the emitted radiation. Two distinc
methods are used. The first one is a direct post-Newton
iteration~speed of lightc→1`) of the field equations inside
the source, and is valid all over the near zone. The sec
method consists of reexpanding whenc→1` a solution of
the vacuum field equations obtained by means of the mu
polar and post-Minkowskian iteration scheme of Ref.@27#,
and is valid only in the exterior part of the near zone.

We denote the small post-Newtonian parameter
«;v/c, wherev is a typical velocity in the source~e.g., the
relative orbital velocity of the two bodies in the case of
binary system!. A remainder term of orderO(«n) is abbre-
viated byO(n). In a vectorAm or a tensorBmn, the remain-
der term is denoted byO(n,p) or O(n,p,q), by which we
mean a term of orderO(n) in A0 or B00, of orderO(p) in
Ai or B0i or Bi0, and of orderO(q) in Bi j . ~Greek indices
range from 0 to 3, and latin indices range from 1 to 3.! Most
of the notations used here are as in paper I.

A. The inner gravitational field

Tab are the contravariant components of the stress-ene
tensor~with dimension of an energy density! of the material
source in some inner coordinate system (x,t). The densities
of masss, of currents i , and of stresss i j in the source are
defined by

s5
T001Tii

c2
, ~2.1a!

s i5
T0i

c
, ~2.1b!

s i j5Ti j , ~2.1c!

whereTii denotes the spatial trace(d i j T
i j . These definitions

are such thats, s i , ands i j have a finite nonzero limit as
c→1`. From these matter densities one defines the
tarded potentials

V524pGhR
21s, ~2.2a!

Vi524pGhR
21s i , ~2.2b!

Wij524pGhR
21Fs i j1

1

4pG S ] iV] jV2
1

2
d i j ]kV]kVD G ,

~2.2c!
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whereG is Newton’s constant, and wherehR
21 denotes the

retarded integral operator

~hR
21f !~x,t !52

1

4pE E E d3x8
ux2x8u

f S x8,t2 1

c
ux2x8u D .

~2.3!

Contrary to the sources ofV andVi which are of compact
support,hV524pGs and hVi524pGs i whereh is
the d’Alembertian operator, the source of the potentialWij is
not of compact support, hWij524pGs i j2] iV] jV
1 1

2 d i j ]kV]kV. Indeed, we have included inWij the stress

density of the~Newtonian! gravitational field itself since it is
of the same order ass i j whenc→1`. ~Note that paper II
used the notationWij for a closely related but different po-
tential; here we do not follow paper II but stick to the nota-
tion of paper I.! To Newtonian order the densities and poten
tials so defined satisfy the equations of continuity and o
motion:

] ts1] is i5O~2!, ~2.4a!

] ts i1] js i j5s] iV1O~2!. ~2.4b!

From these dynamical equations one deduces the different
identities

] tV1] iVi5O~2!, ~2.5a!

] tVi1] jWi j5O~2!. ~2.5b!

With the introduction in paper I of the retarded potentials
V, Vi , andWij , a simple expression of the gravitational
field hab inside the source which is valid to some interme-
diate accuracyO(6,5,6) was written: namely,

h0052
4

c2
V1

4

c4
~Wii22V2!1O~6!, ~2.6a!

h0i52
4

c3
Vi1O~5!, ~2.6b!

hi j52
4

c4
Wij1O~6!. ~2.6c!

The field variable ishab[A2ggab2hab, where g and
gab are the determinant and inverse of the usual covaria
metricgab , and whereh

ab is the Minkowski metric~signa-
ture 2111). Note the important fact that there are no
explicit terms in Eqs.~2.6! involving powers ofc21 which
are ‘‘odd’’ in the post-Newtonian sense~e.g., a term of order
;c25 in h00 or hi j ). This is because we have kept the po-
tentialsV, Vi , andWij in retarded form, without expanding
the retardation they contain whenc→1`. The ‘‘odd’’ terms
in Eqs. ~2.6! could be easily computed using the post-
Newtonian expansions of the retarded potentials as given b
Eqs.~4.4! below.

Paper I iterated the inner field~2.6! from this intermediate
post-Newtonian order to the next order with the result tha
the field to the higher precisionO(8,7,8) could be written as
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hab5hR
21F16pGc4

l̄~V,W!Tab1L̄ab~V,W!G1O~8,7,8!

~2.7!

wherel̄ and L̄ab denote some explicit combinations of th
inner gravitational potentialsV, Vi , andWij and their de-
rivatives. First, we have

l̄~V,W!511
4

c2
V2

8

c4
~Wii2V2! ~2.8!

which represents in fact the post-Newtonian expansion
~minus! the determinant of the metric, with termsO(6) sup-
pressed. Second, the components ofL̄ab read

L̄00~V,W!52
14

c4
]kV]kV1

16

c6 H 2V] t
2V22Vk] t]kV

2Wkm]km
2 V1

5

8
~] tV!2

1
1

2
]kVm~]kVm13]mVk!1]kV] tVk

12]kV]kWmm2
7

2
V]kV]kVJ , ~2.9a!

L̄0i~V,W!5
16

c5 H ]kV~] iVk2]kVi !1
3

4
] tV] iVJ ,

~2.9b!

L̄i j ~V,W!5
4

c4 H ] iV] jV2
1

2
d i j ]kV]kVJ 1

16

c6 H 2]~ iV] tVj )

2] iVk] jVk2]kVi]kVj12]~ iVk]kVj )

2
3

8
d i j ~] tV!22d i j ]kV] tVk

1
1

2
d i j ]kVm~]kVm2]mVk!J , ~2.9c!

and represent the expansion of the effective nonlinear gr
tational source of Einstein’s equations in harmonic coor
nates, withO(8,7,8) terms suppressed. The overbar onl̄ and
L̄ab reminds us that these quantities are only determined
to a certain post-Newtonian order. The~approximate! har-
monic coordinate condition is

]bh
ab5O~7,8!. ~2.10!

As we shall see, the post-Newtonian accuracy of the in
field ~2.7!–~2.10! is sufficient for our purpose.

B. The external gravitational field

In the exterior we use a solution of the vacuum field eq
tions which has in principle sufficient generality for dealin
with an arbitrary source of gravitational radiation. This so
tion is given as a~nonlinear! functional of two infinite sets of
time-varying multipole moments,ML(t) andSL(t). The in-
dex L carried by these moments represents a multi-in
e
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formed withl spatial indices:L5 i 1i 2••• i l . The ‘‘order of
multipolarity’’ l goes from zero to infinity for the ‘‘mass-
type’’ moments ML(t) and from 1 to infinity for the
‘‘current-type’’ momentsSL(t). The momentsML and SL
are symmetric and trace-free~STF! in their l indices. The
mass monopoleM is simply the total mass of the source or
Arnowitt-Deser-Misner~ADM ! mass, the mass dipoleMi is
the position of the center of mass~in units of total mass!, and
the current dipoleSi is the total angular momentum.M ,
Mi , and Si are constant. Furthermore, we shall choos
Mi50 by translating the spatial origin of the coordinates to
the center of mass.

Some external potentials playing a role analogous to th
inner potentials but differing from them in both structural
form and numerical values are introduced. First, the poten
tials Vext, Vi

ext, andVi j
ext are given by their multipolar series

parametrized by the multipole momentsML(t) andSL(t):

Vext5G(
l 50

`
~2 ! l

l !
]LF1r MLS t2 r

cD G , ~2.11a!

Vi
ext52G(

l 51

`
~2 ! l

l !
]L21F1r M iL21

~1! S t2 r

cD G
2G(

l 51

`
~2 ! l

l !

l

l 11
« iab]aL21F1r SbL21S t2 r

cD G ,
~2.11b!

Vi j
ext5G(

l 52

`
~2 ! l

l !
]L22F1r M i jL22

~2! S t2 r

cD G
1G(

l 52

`
~2 ! l

l !

2l

l 11
]aL22F1r «ab~ iSj )bL22

~1! S t2 r

cD G .
~2.11c!

The notation]L is shorthand for a product of partial deriva-
tives, ]L5] i1] i2•••] i l where ] i5]/]xi . In a similar way

]L215] i1•••] i l 21
, ]aL215]a]L21 , and so on. The super-

script (n) indicatesn time derivatives, and the indices in
parentheses are symmetrized. The potentials~2.11! satisfy
the source-free d’Alembertian equation and the~exact! dif-
ferential identities

] tV
ext1] iVi

ext50, ~2.12a!

] tVi
ext1] jVi j

ext50. ~2.12b!

Furthermore,Vi j
ext is trace-free:Vii

ext50. Having defined these
potentials one introduces a more complicated potentialWij

ext

by the formula

Wij
ext5Vi j

ext1FB50hR
21F r BS 2] iV

ext] jV
ext

1
1

2
d i j ]kV

ext]kV
extD G . ~2.13!
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54 ENERGY LOSSES BY GRAV
The second term appearing here involves the retarded i
gral ~2.3! but regularized by means of the analytic continu
tion process defined in Ref.@27#. One multiplies the source
by r B wherer5uxu andB is a complex number. Then apply
ing the operatorhR

21 defines a function ofB which can be
analytically continued all over the complex plane deprived
the integers, but admitting there a Laurent expansion w
only some simple poles@27#. The looked-for solution is
equal to the finite part atB50 ~in shortFB50) or constant
term;B0 in the Laurent expansion whenB→0. This regu-
larization process is made indispensable by the fact that
are looking for solutions of the wave equation in the form
multipole expansions, which are valid only in the exterior
the source and are singular when considered formally ins
the source.

With the external potentialsVext, Vi
ext, andWij

ext one has a
result similar to Eq.~2.6!, namely, the expression of the ex
ternal fieldhcan

mn ~where the notation ‘‘can’’ means that we ar
considering specifically the ‘‘canonical’’ construction of th
external field as defined in Sec. 4.3 of@27#! up to the inter-
mediate accuracyO(6,5,6):

hcan
00 52

4

c2
Vext1

4

c4
@Wii

ext22~Vext!2#1O~6!,

~2.14a!

hcan
0i 52

4

c3
Vi
ext1O~5!, ~2.14b!

hcan
i j 52

4

c4
Wij

ext1O~6!. ~2.14c!

Because this expression has the same form as Eq.~2.6!, the
nonlinearities in the exterior field will have in turn the sam
form as Eq.~2.9!. Up to orderO(8,7,8) we obtain the ‘‘ca-
nonical’’ field

hcan
mn5Ghcan~1!

mn 1G2q can~2!
mn 1FB50hR

21@r BL̄mn~Vext,Wext!#

1O~8,7,8!, ~2.15!

satisfying the~exact! harmonic gauge condition

]nhcan
mn50. ~2.16!

In the last term of~2.15! the symbolFB50 and the regular-
ization factorr B have the same meaning as in~2.13!. The
effective nonlinear sourceL̄mn is given by Eqs.~2.9! but
expressed with the external potentialsVext, Vi

ext, andWij
ext

instead of the inner potentialsV, Vi , andWij appearing in
~2.7!. The first termGhcan(1)

mn in Eq. ~2.15! is linear in the
external potentials:

Ghcan~1!
00 52

4

c2
Vext, ~2.17a!

Ghcan~1!
0i 52

4

c3
Vi
ext, ~2.17b!

Ghcan~1!
i j 52

4

c4
Vi j
ext. ~2.17c!
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This term is the solution of the linearized~vacuum! equa-
tions on which is based the post-Minkowskian algorithm fo
the construction of the canonical metric in Ref.@27#. The
powers of c21 in Eqs. ~2.17! are such that
hcan(1)

mn 5O(2,3,4). Finally, the termG2qcan(2)
mn in ~2.15! is a

particular solution of the source-free wave equation whic
has to be added in order that the harmonic gauge condit
~2.16! be satisfied. It was proved in Appendix A of paper
that this term is of order

G2qcan~2!
mn 5O~7,7,7!, ~2.18!

and thus can be safely neglected if we are interested in
mass multipole moments to 2PN order only. In the prese
work, investigating the 2.5PN order, the term~2.18! cannota
priori be neglected. However, we shall see that the 2.5P
order is needed only in the sum of the 00 component and
spatial trace of this term, i.e.,G2(qcan(2)

00 1qcan(2)
i i ). Relying

on our previous papers we know that this sum is made
some retarded waves of the type]L@r

21X(t2r /c)# with sca-
lar or dipolar multipolarity only (l 50 or 1!. Furthermore,
we know that the dependence onc21 of such a wave is
O(51l 11l 22l ) wherel 1 and l 2 are the multipolarities
of the two interacting moments composing the wave@we use
the same notation as, e.g., in Appendix A of paper I; see a
after Eq. ~5.5! below#. With l 50 or 1 a term of order
O(7) necessarily hasl 11l 252 or 3. The term in question
is made of the product of the massM with the quadrupoles
Mi j andSi j , or of the product of the mass dipoleMi with the
quadrupoleMi j . The first possibility is excluded because
Mi j andSi j are STF~thus no scalar or dipole wave with no
free index can be formed!, and the second possibility does
not exist in a mass-centered frame whereMi50. So we have
proved that in a mass-centered frame we have

G2~qcan~2!
00 1qcan~2!

i i !5O~8!, ~2.19!

which is all that will be needed in the following.

III. THE MATCHING BETWEEN THE INNER
AND OUTER FIELDS

A. Relations between inner and outer potentials

Our matching requirement is that there exists a change
coordinates valid in the external near zone and transform
the inner gravitational fieldhab(x) given by Eq.~2.7! into
the outer fieldhcan

ab(xcan) given by Eq.~2.15!. Let this change
of coordinates be

xcan
m ~x!5xm1wm~x! ~3.1!

where xm are the inner coordinates used in Sec. II A an
xcan

m the outer coordinates used in Sec. II B. The vectorwm

has been shown in paper I to be of order

wm5O~3,4!. ~3.2!

Because the two coordinate systemsxm and xcan
m are har-

1421ITATIONAL RADIATION . . .
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monic @at least approximately; see Eqs.~2.10! and ~2.16!#,
and becausehab5O(2,3,4), in addition to Eq.~3.2!, we
have

hwm5O~7,8!. ~3.3!

The matching equations consistent with the orderO(8,7,8)
read from paper I as

hcan
00 ~x!5h00~x!1]w0012h0m]mw02]m~h00wm!1] iw

0] iw
0

1O~8!, ~3.4a!

hcan
0i ~x!5h0i~x!1]w0i1O~7!, ~3.4b!

hcan
i j ~x!5hi j ~x!1]w i j1O~8!, ~3.4c!

where both the inner and outer fields are expressed in
same~inner! coordinate systemxm. We denote by]wmn the
linear part of the coordinate transformation:

]wmn5]mwn1]nwm2hmn]lwl. ~3.5!

The nonlinear part of the transformation enters to this or
only the 00 component~3.4a!. The matching equations wer
used in paper I first to obtain the relations between the
ternal potentials and themultipoleexpansions of the corre
sponding inner potentials. The insertion of the intermedi
expressions ofhmn andhcan

mn valid up toO(6,5,6) and given
by ~2.6! and ~2.14! yields

Vext5M~V!1c] tw
01O~4!, ~3.6a!

Vi
ext5M~Vi !2

c3

4
] iw

01O~2!, ~3.6b!

Wij
ext5M~Wij !2

c4

4
@] iw

j1] jw
i2d i j ~]0w

01]kw
k!#

1O~2!. ~3.6c!

The script letterM refers to the multipole expansion. Not
that the first equation is valid to post-Newtonian order@see
the remainderO(4)# while the two others are valid to New
tonian order only@remainderO(2)#. The multipole expan-
sions ofV, Vi , andWij are given by

M~V!5G(
l 50

1`
~2 ! l

l !
]LF1r V LS t2 r

cD G , ~3.7a!

M~Vi !5G(
l 50

1`
~2 ! l

l !
]LF1r V i

LS t2 r

cD G , ~3.7b!

M~Wij !5G(
l 50

1`
~2 ! l

l !
]LF1rW i j

L S t2 r

cD G
1FB50hR

21H r BF2] iM~V!] jM~V!

1
1

2
d i j ]kM~V!]kM~V!G J , ~3.7c!
the

der
e
ex-
-
ate

e

-

where the ~reducible! multipole momentsV L, V i
L , and

W i j
L are

V L~ t !5E d3xx̂LE
21

1

dzd l ~z!s~x,t1zuxu/c!, ~3.8a!

V i
L~ t !5E d3xx̂LE

21

1

dzd l ~z!s i~x,t1zuxu/c!,

~3.8b!

W i j
L ~ t !5FB50E d3xuxuBx̂LE

21

1

dzd l ~z!Fs i j

1
1

4pG S ] iV] jV2
1

2
d i j ]kV]kVD G~x,t1zuxu/c!.

~3.8c!

The notationx̂L is for the trace-free projection of the produc
of l spatial vectorsxL[xi1•••xi l . The functiond l (z) is

given by

d l ~z!5
~2l 11!!!

2l 11l !
~12z2! l , E

21

1

dzd l ~z!51.

~3.9!

Some explanations of the expressions~3.7!–~3.9! are in or-
der. First, notice that the expressions of the multipole expa
sions of the potentialsV andVi whose sources have a com
pact support are quite standard. They can be found in t
form in Appendix B of Ref.@29# ~but were derived earlier in
an alternative form@41#!. Notably, the presence of the func
tion d l (z) is due to the time delays of the propagation of th
waves with finite velocityc inside the source. By contrast,
the expression of the multipole expansion of the potent
Wij whose source extends everywhere in space is more co
plicated. The second term in Eq.~3.7c! ensures that
M(Wij ) satisfies the correct equation@deduced from~2.2c!#
outside the source, namely, hM(Wij )5
2] iM(V)] jM(V)1 1

2 d i j ]kM(V)]kM(V), where the
right side agrees numerically with2] iV] jV1 1

2 d i j ]kV]kV

outside the source. This second term involves the multipo
expansionM(V) of the inner potential and notV itself. This
is in conformity with the use of the regularized operato
FhR

21 which is defined only when acting on multipole ex
pansions@such as in Eq.~2.13!#. On the other hand, the in-
tegrand of~3.8c! involves the noncompact supported sourc
of Wij , where appears the potentialV itself, i.e., not in mul-
tipole expanded form. Thus the integrand of~3.8c! is valid
everywhere inside and outside the source. Very far from t
source it diverges because of the presence of the prod
x̂L of l spatial vectors, behaving likeuxu l at spatial infinity.
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The well-defined meaning of the integral results from t
presence of the regularization factoruxuB and the finite part
symbol. We notice that noad hocprescription is necessary i
order to obtain the multipole moments in a well-defined fo
even in the case of a noncompact supported source. Th
proved in paper I.

B. The matching equation

The relations~3.6! linking Vext, Vi
ext, andWij

ext to the mul-
tipole expansionsM(V), M(Vi), andM(Wij ) serve us in
reexpressing the nonlinearities in the external metric in te
of the potentials belonging to the inner metric. The result
paper I is

L̄mn~Vext,Wext!5L̄mn
„M~V!,M~W!…1hVmn1O~8,7,8!,

~3.10!

where the components of the tensorVmn are given by

V0052
8

c3 FM~V!] tw
01M~Vi !] iw

02
c

2
]m~M~V!wm!G

1] iw
0] iw

0, ~3.11a!

V0i5V i j50. ~3.11b!

The only nonzero component of this tensor is the 00 com
nent which is of order

V005O~6!. ~3.12!

This is becausew05O(3), w i5O(4). Both sides of Eq.
~3.10! are multiplied byr B, and one applies afterwards th
retarded integralhR

21 and takes the finite part atB50. We
find

FB50hR
21@r BL̄mn~Vext,Wext!#

5FB50hR
21@r BL̄mn

„M~V!,M~W!…#

1Vmn1Xmn1O~8,7,8!, ~3.13!

where one must be careful that an extra termXmn with re-
spect to paper I arises whose components are given by

X005FB50hR
21@r BhV00#2V00, ~3.14a!

X0i5Xi j50. ~3.14b!

The only nonzero component of this term is the 00 com
nent, which satisfies

hX0050; X005O~7!. ~3.15!

The fact thatX00 is a ~retarded! solution of the source-free
d’Alembert equation is clear from its definition~3.14a! and
the main property of the operatorFhR

21 which is the inverse
of h ~when acting on multipolar sources!. The fact that
X00 is of order O(7), that is, exactly one order inc21

smaller than the order of the correspondingV00, is not im-
mediately obvious but will be proved below. The quant
he

n
rm
is is

rms
of

po-

e

po-

ity

X00 was rightly neglected in paper I but has to be consider
here since it will contribute to the mass moments at 2.5P
order.

We are now in a position to write down a matching equ
tion valid up to the neglect ofO(8,7,8) terms. The equation
is obtained by insertion into Eqs.~3.4! of both the inner field
hmn given by ~2.7! and the outer fieldhcan

mn given by ~2.15!.
Use is made of the link derived in~3.13! between the exter-
nal and internal nonlinearities. We find thatVmn cancels to
the required order the nonlinear part of the coordinate tran
formation, so that only the linear part]wmn given by Eq.
~3.5! remains. The resulting matching equation@extending
the less accurate Eq.~3.35! of paper I# reads as

Ghcan~1!
mn 1G2qcan~2!

mn 5hR
21F16pGc4

l̄~V,W!Tmn1L̄mn~V,W!G
2FB50hR

21@r BL̄mn
„M~V!,M~W!…#

2Xmn1]wmn1O~8,7,8!. ~3.16!

There are two new terms with respect to~3.35! in paper I:
G2qcan(2)

mn in the left side, and2Xmn in the right side which
are both terms of 2.5PN order. Now, by exactly the sam
reasoning as in paper I one can transform the difference
tween the two retarded integrals in the right side in
an explicit multipole expansion parametrized by some m
mentsT̄Lmn(t): namely,

Ghcan~1!
mn 1G2qcan~2!

mn 52
4G

c4 (
l 50

1`
~2 ! l

l !
]LF1r T̄Lmn~ t2r /c!G

2Xmn1]wmn1O~8,7,8!. ~3.17!

These moments are given by

_T̄Lmn~ t !5FB50E d3xuxuBx̂LE
21

1

dzd l ~z!t̄mn~x,t1zuxu/c!

~3.18!

where t̄mn denotes the total stress-energy tensor of the m
terial and gravitational fields~valid up to the considered pre-
cision!,

t̄mn~V,W!5l̄~V,W!Tmn1
c4

16pG
L̄mn~V,W!,

~3.19!

which is conserved in the sense

]nt̄mn5O~3,4!. ~3.20!

It is important to note that the effective stress-energy tens
t̄mn is a functional of the potentialsV, Vi , andWij valid
everywhere inside and outside the source. There is no c
tribution of the multipole expansions of the potentials in th
final result~see paper I!.

The left side of the matching equation~3.17! is a func-
tional of the original multipole momentsML andSL param-
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etrizing the exterior metric. On the other hand, the right si
is a functional of the actual densities of mass, current, a
stress of the material fields in the source. To find the expli
expressions ofML andSL in terms of these source densitie
we decompose the right side into irreducible multipole m
ments. Inspection of the reasoning done in Sec. IV A
paper I shows that this reasoning is still valid in the prese
more accurate, case. As a result we find

Ghcan~1!
mn @ML ,SL#1G2qcan~2!

mn 5Ghcan~1!
mn @ I L ,JL#2Xmn1]jmn

1O~8,7,8!, ~3.21!

where the last term is a linear coordinate transformation
sociated with the vectorjm5wm1vm wherevm is the same
as in Eq.~4.4! of paper I. The linearized metricGhcan(1)

mn in
the right side takes the same expression as in the left side
is parametrized instead ofML andSL by the ~STF! source
multipole momentsI L andJL given by

I L~ t !5FB50E d3xuxuBE
21

1

dzFd l ~z!x̂LS̄

2
4~2l 11!

c2~ l 11!~2l 13!
d l 11~z!x̂iL] tS̄i

1
2~2l 11!

c4~ l 11!~ l 12!~2l 15!
d l 12~z!x̂i jL ] t

2S̄i j G
3~x,t1zuxu/c!, ~3.22a!

JL~ t !5FB50E d3xuxuBE
21

1

dzFd l ~z!«ab, i l
x̂L21.aS̄b

2
2l 11

c2~ l 12!~2l 13!
d l 11~z!«ab, i l

x̂L21.ac] tS̄bcG
3~x,t1zuxu/c!. ~3.22b!

To obtain these expressions from Eq.~3.17! one uses some
techniques similar to the ones employed by Damour and I
@52# in the case of linearized gravity. We have posed

S̄5
t̄001 t̄ i i

c2
, ~3.23a!

S̄i5
t̄0i

c
, ~3.23b!

S̄i j5 t̄ i j . ~3.23c!

The equation~3.21! can be solved uniquely for the multipole
momentsML andSL . To do so it suffices to notice that for
any gauge term]jmn[]mjn1]njm2hmn]ljl the identity

1

2
] i j
2 @]j001]jkk#1]0@] i]j0 j1] j]j0i #

1]0
2F]j i j1

1

2
d i j ~]j002]jkk!G[0 ~3.24!
de
nd
cit
s
o-
of
nt,

as-

but

yer

holds. This is nothing but the vanishing of the 0i0 j compo-
nent of the linearized Riemann tensor when computed w
gmn
gauge5]mjn1]njm . Applying ~3.24! to the gauge term of

~3.21! and using the form of the multipole moment decom
position ofhcan(1)

mn one finds

ML5I L1dI L1O~6!, ~3.25a!

SL5JL1O~4!, ~3.25b!

wheredI L in the mass moments is of 2.5PN order and com
from the decomposition ofX00 ~which, we recall, is a re-
tarded solution of the wave equation! into multipole mo-
ments according to

X005
4G

c2 (
l 50

1`
~2 ! l

l !
]LF1r dI L~ t2r /c!G . ~3.26!

There is no contribution coming fromG2qcan(2)
mn in the left

side of~3.21! thanks to the result proved in Eq.~2.19! in the
case where we are using a mass-centered frame. The re
~3.25a! generalizes to 2.5PN order the result~4.7a! of paper
I. In a future work we shall investigate more systematical
the relations linking the exterior momentsML andSL to the
source momentsI L andJL as they have been defined here

IV. EXPLICIT EXPRESSIONS
OF THE MULTIPOLE MOMENTS

Two things must be done in order to obtain the expre
sions of the momentsML andSL of Eqs. ~3.25!. First, one
must expand whenc→1` the source momentsI L andJL of
Eqs.~3.22! up to consistent order. Secondly, one must eva
ate the 2.5PN modificationdI L entering the mass moments
~3.25a!.

A. The source multipole moments

The post-Newtonian expansion of the source mome
~3.22! is straighforwardly performed using a formula whic
was given in Eq.~B.14! of Ref. @29#: namely,

E
21

1

dzd l ~z!S̄~x,t1zuxu/c!

5S̄~x,t !1
x2

2c2~2l 13!
] t
2S̄~x,t !

1
x4

8c4~2l 13!~2l 15!
] t
4S̄~x,t !1O~6!. ~4.1!

Explicit expressions of the densitiesS̄, S̄i , andS̄i j have also
to be inserted intoI L andJL ; these are easily evaluated with
the help of Eqs.~2.8!, ~2.9!, ~3.19!, and~3.23! with the result
~identical to paper I!
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S̄5F11
4V

c2
2

8

c4
~Wii2V2!Gs2

1

pGc2
] iV] iV

1
1

pGc4 H 2V] t
2V22Vi] t] iV2Wij ] i j

2V2
1

2
~] tV!2

12] iVj] jVi12] iV] iWj j2
7

2
V] iV] iVJ , ~4.2a!

S̄i5F11
4V

c2 Gs i1
1

pGc2 H ]kV~] iVk2]kVi !1
3

4
] tV] iVJ

1O~4!, ~4.2b!
S̄i j5s i j1
1

4pG H ] iV] jV2
1

2
d i j ]kV]kVJ 1O~2!.

~4.2c!

Note the important fact that the remainder in Eq.~4.1! is
O(6) and notO(5), and thus does not contribute to the
2.5PN order@similarly, the other remainders in~4.2! will not
contribute#. With Eqs. ~4.1! and ~4.2! we recover the same
expressions as in Eqs.~4.12! and ~4.13! of paper I for the
source moments in raw form:
I L~ t !5FB50E d3xuxuBH F11
4

c2
V2

8

c4
~Wii2V2!G x̂Ls2

1

pGc2
x̂L] iV] iV1

1

pGc4
x̂LF2V] t

2V22Vi] t] iV2Wij ] i j
2V

2
1

2
~] tV!212] iVj] jVi12] iV] iWj j2

7

2
V] iV] iVG1

uxu2x̂L
2c2~2l 13!

] t
2F S 11

4V

c2 Ds2
1

pGc2
] iV] iVG

1
uxu4x̂L

8c4~2l 13!~2l 15!
] t
4s2

2~2l 11!uxu2x̂iL
c4~ l 11!~2l 13!~2l 15!

] t
3s i2

4~2l 11!x̂iL
c2~ l 11!~2l 13!

] tF S 11
4V

c2 Ds i

1
1

pGc2 H ]kV~] iVk2]kVi !1
3

4
] tV] iVJ G1

2~2l 11!x̂i jL
c4~ l 11!~ l 12!~2l 15!

] t
2Fs i j1

1

4pG
] iV] jVG J 1O~6!, ~4.3a!

JL~ t !5FB50«ab, i l E d3xuxuBH x̂L21.aS 11
4

c2
VDsb1

uxu2x̂L21.a

2c2~2l 13!
] t
2sb1

1

pGc2
x̂L21.aF]kV~]bVk2]kVb!1

3

4
] tV]bVG

2
~2l 11!x̂L21.ac

c2~ l 12!~2l 13!
] tFsbc1

1

4pG
]bV]cVG J 1O~4!. ~4.3b!
The remaindersO(6) andO(4) are negligible. The retarded
potentialsV, Vi , andWij are then replaced by their post
Newtonian expansions whenc→1`. It is easily seen that
the accuracy of the expansions ofV andWij given in paper I
is not sufficient and has to be pushed one order farther. T
relevant expansions are

V5U1
1

2c2
] t
2X2

2G

3c3
K ~3!1O~4!, ~4.4a!

Vi5Ui1O~2!, ~4.4b!

Wij5Pi j2
G

2c FQi j
~3!1

1

3
d i j K

~3!G1O~2!, ~4.4c!

where the Newtonian-like potentialsU, X, Ui , andPi j are
defined as in paper I by
-

he

U~x,t !5GE d3x8
ux2x8u

s~x8,t !, ~4.5a!

X~x,t !5GE d3x8ux2x8us~x8,t !, ~4.5b!

Ui~x,t !5GE d3x8
ux2x8u

s i~x8,t !, ~4.5c!

Pi j ~x,t !5GE d3x8
ux2x8u Fs i j1

1

4pG S ] iU] jU

2
1

2
d i j ]kU]kU D G~x8,t !, ~4.5d!

and where the new terms involve the trace-free quadrupole
momentQi j and moment of inertiaK associated with the
mass distributions: namely,

Qi j ~ t !5E d3xs~x,t !x̂i j , ~4.6a!
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K~ t !5E d3xs~x,t !x2. ~4.6b!

When substituting the expansions~4.4! into the source mo-
ments~4.3! all the terms coming from the Newtonian-like
potentialsU, X, Ui , andPi j lead to the same expressions a
in paper I, while the terms coming from the momentsQi j
and K lead to some correction terms~in I L only!. Let us
write
s

I L5 Ĩ L1d Ĩ L1O~6!, ~4.7a!

JL5 J̃L1O~4!, ~4.7b!

where Ĩ L and J̃L are the 2PN-accurate moments which were
obtained in paper I, and whered Ĩ L denotes a 2.5PN correc-
tion term @which is distinct fromdI L found in Eq.~3.25a!#.
After the transformation ofĨ L as in Sec. IV B of paper I one
can write Ĩ L and J̃L in the form
Ĩ L~ t !5FB50E d3xuxuBH x̂LFs1
4

c4
~s i i U2sPii !G1

uxu2x̂L
2c2~2l 13!

] t
2s2

4~2l 11!x̂iL
c2~ l 11!~2l 13!

] tF S 11
4U

c2 Ds i

1
1

pGc2 S ]kU@] iUk2]kUi #1
3

4
] tU] iU D G1

uxu4x̂L
8c4~2l 13!~2l 15!

] t
4s2

2~2l 11!uxu2x̂iL
c4~ l 11!~2l 13!~2l 15!

] t
3s i

1
2~2l 11!

c4~ l 11!~ l 12!~2l 15!
x̂i jL ] t

2Fs i j1
1

4pG
] iU] jUG1

1

pGc4
x̂LF2Pi j ] i j

2U22Ui] t] iU

12] iU j] jUi2
3

2
~] tU !22U] t

2UG J , ~4.8a!

J̃L~ t !5FB50«ab, i l E d3xuxuBH x̂L21.aS 11
4

c2
U Dsb1

uxu2x̂L21.a

2c2~2l 13!
] t
2sb1

1

pGc2
x̂L21.aF]kU~]bUk2]kUb!1

3

4
] tU]bUG

2
~2l 11!x̂L21.ac

c2~ l 12!~2l 13!
] tFsbc1

1

4pG
]bU]cUG J . ~4.8b!
lds

i-
The momentsĨ L andJ̃L constituted the central result of pap
I and they were the basis of the application to inspiral
compact binaries in paper II. On the other hand, the 2.5
correction termd Ĩ L is obtained by simple inspection of Eq
~4.3a!. A simplifying fact in obtainingd Ĩ L is that the mo-
mentsQi j and K are only functions of time so that the
spatial gradients vanish. We obtain

d Ĩ L5FB50E d3xuxuBH 2G3c5K ~3!s x̂L1
1

2pc5
Qi j

~3!x̂L] i j
2UJ .

~4.9!

The second term is an integral havinga priori a noncompact
support. However, it can be transformed into a manifes
compact-support form by means of the formula

FB50E d3xuxuB
x̂L

ux2yu
52

2p

2l 13
uyu2ŷL . ~4.10!

This formula is proved by noticing that the integral defin
by I B5*d3xuxuBx̂Lux2yu21 is proportional to a prefacto
uyuB and satisfiesDyI B524puyuBŷL . These two facts imply
that I B5Dy

21(24puyuBŷL) where Dy
21 is defined as in

Eq. ~3.9! of Ref. @27#, and thus that
I B524puyuB12ŷL /(B12)(B12l 13), which yields
~4.10! after taking the finite part. The more complicated fo
mula ~4.23! in paper I can interestingly be compared wi
~4.10!. Thanks to~4.10! we can write
er
ing
PN
.

ir

tly

ed
r

r-
th

d Ĩ L5
G

c5E d3xH 23K ~3!s x̂L2
1

2l 13
Qi j

~3!s] i j
2 @ uxu2x̂L#J .

~4.11!

Expanding the spatial derivatives in the second term yie
finally

d Ĩ L5
G

c5 H 23K ~3!QL2
4l

2l 13
Qk, i l

~3! QL21.k

2
l ~ l 21!

2l 21
Q, i l i l 21

~3! KL22.J ~4.12!

where we have posed

QL~ t !5E d3xs x̂L , ~4.13a!

KL22~ t !5E d3xsx2x̂L22 . ~4.13b!

These definitions are in conformity with the earlier defin
tions ~4.6!. ~The brackets, . denote the STF projection.!

B. The 2.5PN modification of the mass moments

In addition to the previous contributiond Ĩ L which is part
of the source multipole momentsI L , we have seen in Eq.
~3.25a! that there exists also a 2.5PN contributiondI L enter-
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ing ML . Evidently the contributiondI L is as important as
d Ĩ L in that it contributes also to the asymptotic wave for
depending on the momentsML . @Note that the terminology
referring toI L andJL asthemultipole moments of the sourc
by contrast toML andSL which are viewed as some inter
mediate moments devoid of direct physical significance
somewhat arbitrary. All that matters in the end is to expre
~by any convenient means! the asymptotic wave form in
terms of physical quantities belonging to the source.#

The 2.5PN termdI L results from the multipole decompo
sition of the quantityX00 which is itself determined from the
other quantityV00; see Eqs.~3.26!, ~3.14a!, and~3.11a!. The
first step in the computation ofdI L is to find the vectorw

m of
the coordinate transformation between the inner and exte
metrics. Sincewm is of orderO(3,4) and is d’Alembertian-
free to orderO(7,8) @see Eqs.~3.2! and ~3.3!#, there exist
four sets of STF tensorsWL(t), XL(t), YL(t), and ZL(t)
such that

w052
4G

c3 (
l >0

~2 ! l

l !
]LF1r WL~ t2r /c!G1O~7!, ~4.14a!

w i5
4G

c4 (
l >0

~2 ! l

l !
] iLF1r XL~ t2r /c!G

1
4G

c4 (
l >1

~2 ! l

l ! H ]L21F1r YiL21~ t2r /c!G
1

l

l 11
« iab]aL21F1r ZbL21~ t2r /c!G J 1O~8!.

~4.14b!

The powers of 1/c in front of these terms are such tha
WL , . . . ,ZL have a nonzero limit whenc→1`. We com-
pute these tensors to the lowest order in 1/c. To do this let us
recall the relations betweenVi

ext andWij
ext and the multipole

expansionsM(Vi) andM(Wij ) as obtained in Eqs.~3.6b!
and ~3.6c!. We have

Vi
ext5G(

l >0

~2 ! l

l !
]LF1r ViL~ t2r /c!G2

c3

4
] iw

01O~2!,

~4.15a!

Vi j
ext5G(

l >0

~2 ! l

l !
]LF1rWi j

L ~ t2r /c!G2
c4

4
@] iw

j1] jw
i

2d i j ~]0w
01]kw

k!#1O~2!, ~4.15b!

where we have transformed the relation forWij
ext into a sim-

pler relation forVi j
ext, and where the moments take to lowe

order the form@see Eqs.~3.8b! and ~3.8c!#:

V i
L~ t !5E d3xx̂Ls i~x,t !1O~2!, ~4.16a!

W i j
L ~ t !5FB50E d3xuxuBx̂LS̄i j ~x,t !1O~2!.

~4.16b!
m

e
-
is
ss

-
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t
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The ~noncompact-supported! stress densityS̄i j is defined by
Eq. ~4.2c!. Having written~4.15! and~4.16! and knowing the
explicit multipole decompositions ofVi

ext andVi j
ext given by

Eqs.~2.11b! and~2.11c!, it is a simple matter to compute the
tensorsWL , . . . ,ZL by decomposition of the integrands
x̂Ls i and x̂LS̄i j entering ~4.16! into irreducible tensorial
pieces with respect to theirl 11 andl 12 indices. We do
not detail this computation but simply give the result, whic
is

WL5
2l 11

~ l 11!~2l 13!
E d3xx̂iLs i1O~2!, ~4.17a!

XL5
2l 11

2~ l 11!~ l 12!~2l 15!
FB50E d3xuxuBx̂i jL S̄i j

1O~2!, ~4.17b!

YL5
3l ~2l 21!

~ l 11!~2l 13!
FB50E d3xuxuBS x̂i,L21S̄i l . i

2
1

3
x̂LS̄i i D1O~2!, ~4.17c!

ZL52
2l 11

~ l 12!~2l 13!
FB50E d3xuxuB«ab, i l

x̂L21.bcS̄ac

1O~2!. ~4.17d!

The tensorWL is manifestly of compact-supported form
There is agreement for this tensor with the previous res
obtained in Eqs.~2.22a! and~2.19c! of Ref. @29#. As they are
written, the other tensorsXL , YL , and ZL do not have a
compact-supported form. However,YL can be rewritten
equivalently in such a form:

YL5E d3xH 3~2l 11!

~ l 11!~2l 13!
x̂iL] ts i2 x̂LS s i i2

1

2
sU D J

1O~2!. ~4.17e!

The transformation ofYL into the form~4.17e! is done using
the results~4.2! and ~4.18! of paper I.

The quantitiesV00 andX00 can now be evaluated. As is
clear from its structure and the form ofwm andM(V),
M(Vi), the quantityV00 is made up of a sum of quadratic
products of retarded waves. We shall write

V005
1

c6(p,q ]̂PF1r F~ t2r /c!G ]̂QF1r G~ t2r /c!G1O~10!

~4.18!

whereF andG are some functions of the retarded time sym
bolizing some derivatives of the functionsVL and ViL and
WL , XL , YL , andZL ~all indices suppressed!. We assume
~as can always be done! that the derivative operators are
trace-free: ]̂P[], i1

] i2•••] i p. and ]̂Q[], j 1
] j 2•••] j q. .

The power of 1/c in front indicates the true order of magni-
tude ofV00 when c→1` @see~3.12!#, and the remainder
O(10) comes from the uncontrolled remainder terms
~4.14!. To evaluateX00 we need to know the action of the
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operatorFB50hR
21r Bh21, where1 denotes the unit opera

tor, on the generic term composingV00. Actually we shall be
interested only in that part ofX00 which is strictly larger than
the remainderO(8) we neglect in~3.16!. In that case, a
useful formula shows that all the terms inV00 which are
composed of the product of two waves with multipolariti
p>1 and q>1 yield negligible terms inX00. This formula,
which is proved in Appendix A, reads

~FB50hR
21r Bh21!H ]̂PF1r F~ t2r /c!G ]̂QF1r G~ t2r /c!G J

5
1

c
]̂PQF1r ~dp,0F

~1!G1d0,qFG
~1!!G1O~3! ~4.19!

(dp,q is the Kronecker symbol!. When bothp>1 andq>1
the right side of~4.19! is of orderO(3) relatively to the left
side and the corresponding term inX00 is of negligible order
O(9). We canthus limit our consideration to the terms i
V00 involving at least one monopolar wavep50 or q50.
We insert into Eq.~3.11a! the multipole expansions~3.7a!
and ~3.7b! together with those ofw0andw i given by ~4.14!.
By straightforward application of~4.19! to each of the result-
ing terms one finds

X005
16G2

c7 (
l >0

~2 ! l

l !
]LF1r ~W~2!VL2W~1!V L

~1!

1l Y, i l
~1! VL21.!G1O~9!, ~4.20!

where the functionsW(t) andYi(t) are given by~4.17a! in
which l 50 and by~4.17c! in which l 51, and where we
have used the law of conservation of mass implyi
V(1)5O(2) and our assumption of mass-centered frame
plying Vi(1)5O(2). @See the definitions of the function
V L andV i

L in Eqs. ~3.8a! and ~3.8b!; in ~4.20! we denote
VL[V L andVL21[V L21 for the function~3.8a! although
this notation is slightly ambiguous with~3.8b!.# To lowest
order the functionVL(t) reduces to

VL5QL1O~2!, ~4.21!

whereQL(t) is the moment defined in Eq.~4.13a!. On the
other hand,W(t) satisfies

W5
1

3E d3xxis i1O~2!5
1

6
K ~1!1O~2!, ~4.22!

whereK(t) is the moment of inertia~4.6b!. Similarly, one
finds

Yi5
1

5
Gi

~1!1O~2! ~4.23a!

where the vectorGi(t) reads

Gi5E d3xS s ix
22

1

2
s j xixj D . ~4.23b!

With this notation we end up with the 2.5PN correction te
dI L @compare~3.26! and ~4.20!#,
s

g
m-

m

dI L5
G

c5 H 23K ~3!QL2
2

3
K ~2!QL

~1!1
4l

5
G, i l

~2! QL21.J
1O~7!. ~4.24!

Summarizing the results so far, we have explicitly com
puted the mass multipole momentML given by Eq.~3.25a!.
It contains a 2.5PN contribution issuing from the source mo
ment I L and computed in Eq.~4.12!, and also the direct
2.5PN modification computed in Eq.~4.24!. We can write

ML5 Ĩ L1DI L1O~6! ~4.25!

whereĨ L is given by Eq.~4.8a! ~this was the result of paper
I!, and whereDI L5d Ĩ L1dI L is given by

DI L5
G

c5 H 43K ~3!QL2
2

3
K ~2!QL

~1!

2
l ~ l 21!

2l 21
K,L22Qi l 21i l .

~3! 2
4l

2l 13
Qk, i l

~3! QL21.k

1
4l

5
G, i l

~2! QL21.J 1O~7!. ~4.26!

We recall that the tensorsQL , KL22 , andGi are defined in
Eqs.~4.13! and ~4.23b!. The low orders inl read

DI5
4G

3c5
MK ~3!1O~7!, ~4.27a!

DI i5
4G

5c5
MGi

~2!1O~7!, ~4.27b!

DI i j5
G

c5 H 43K ~3!Qi j2
2

3
K ~2!Qi j

~1!2
2

3
KQi j

~3!2
8

7
Qk, i

~3! Qj.kJ
1O~7!, ~4.27c!

whereM is the total mass such thatQ5M1O(2), and
where we have used a frame such thatQi5O(2). Thequa-
drupolar correction term~4.27c! will contribute to the as-
ymptotic wave form at the 2.5PN order. The dipolar correc
tion term ~4.27b! will be used to determine the center of
mass of the system at this order.

V. THE 2.5PN-ACCURATE GRAVITATIONAL
LUMINOSITY

The mass and current multipole momentsML andSL are
determined up to the neglect ofO(6) andO(4) terms, re-
spectively, and can be used to compute the gravitational
minosity ~or energy loss rate! of the system at 2.5PN order.
To compute the wave form at the same order would nece
sitate a more accurate determination of the current momen
up to the neglect ofO(5) terms. We shall leave this compu-
tation for future work.

Let Xm5(cT,X) be a coordinate system valid in the
neighborhood of future null infinity and such that the metri
admits a Bondi-type expansion whenR[uXu→1` with
TR[T2R/c staying constant. See@42# for the proof~within
the present formalism! of the existence and construction of
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such a coordinate system. The relation betweenTR and the
retarded time of the harmonic coordinatesxcan

m is

TR5tcan2
r can
c

2
2GM

c3
lnS r cancb D1O~1/r can!1O~5!, ~5.1!

whereb is some arbitrary constant time scale.@Actually, to
be consistent with the 2.5PN precision one should cons
also the next-order post-Newtonian term in Eq.~5.1!; how-
ever, this term will not be needed in the following.# It is
sufficient to control the transverse and trace-free project
of the leading-order term;R21 in the spatial metric. A mul-
tipole decomposition yields a parametrization into two a
only two sets of STF momentsUL andVL which depend on
TR and can be referred to as the ‘‘radiative’’ or ‘‘observ
able’’ mass and current moments. These are chosen so
they reduce in the limitc→1` to the l th time derivatives
of the ordinary Newtonian mass and current moments of
source. The total luminosityL5L(TR) of the gravitational
wave emission when expressed in terms ofUL andVL reads
@24#

L5 (
l 52

1`
G

c2l 11 H ~ l 11!~ l 12!

~ l 21!l l ! ~2l 11!!!
UL

~1!UL
~1!

1
4l ~ l 12!

~ l 21!~ l 11!! ~2l 11!!! c2
VL

~1!VL
~1!J . ~5.2!

ConsideringL to 2.5PN order one retains in~5.2! all the
terms up to the neglect of a remainderO(6), andfinds

L5
G

c5 H 15Ui j
~1!Ui j

~1!1
1

c2 F 1

189
Ui jk

~1!Ui jk
~1!1

16

45
Vi j

~1!Vi j
~1!G

1
1

c4 F 1

9072
Ui jkm

~1! Ui jkm
~1! 1

1

84
Vi jk

~1!Vi jk
~1!G1O~6!J .

~5.3!

Because the powers of 1/c go by steps of two inL, this
expression is in fact the same as already used in paper

The only problem is to find the relations between the
diative momentsUL , VL and the momentsML , SL we have
previously determined. We rely on previous papers~ @29,30#
and paper I! having written the general form of these rel
tions as

UL~TR!5ML
~ l !~TR!1 (

n>2

Gn21

c3~n21!1(l i2l
XnL~TR!, ~5.4a!

«ai l i l 21
VaL22~TR!5«ai l i l 21

SaL22
~ l 21!~TR!

1 (
n>2

Gn21

c3~n21!1(l i2l
YnL~TR!, ~5.4b!

where the functionsXnL andYnL represent some nonlinea
~and in general nonlocal! functionals of the momentsML and
SL . The powers of 1/c in Eqs. ~5.4! come from the dimen-
sionality of the functionalsXnL andYnL , which is chosen to
be that of a product ofn multipole moments and their time
derivatives. We can write symbolically
ider

ion

nd

-
that

the

I.
ra-

a-

r

XnL ,YnL;ML1

~a1!ML2

~a2!
•••SLn

~an! . ~5.5!

The notation in Eqs.~5.4! and~5.5! is the same as in paper I;
in particular,(l i denotes the total number of indices on the
n moments in the term in question, and(l i denotes the sum
(l i1s wheres is the number of current moments. Here we
shall need only the fact that(l i is larger than the multipo-
larity l by an even positive integer 2k which represents the
number of contracted indices between the moments compo
ing the term~with the current moments carrying their asso-
ciated Levi-Civitásymbol!: i.e.,

( l i5l 12k. ~5.6!

With the latter equation it is simple to control the type of
nonlinearities which are present in the radiative moments t
2.5PN order. Since the reasoning has already been done
paper I to 2PN order we consider only the case which i
further needed, that of a term of pure 2.5PN order in th
mass-type quadrupole momentUi j ~having l 52). By Eqs.
~5.4a! and ~5.6! this case corresponds to 3(n21)12k55.
The only solution isn52 ~quadratic nonlinearity! and
k51 ~one contraction of indices between the moments!.
With two moments, one contraction andl 52 one has
l 11l 254. Furthermore, one of the two moments is non-
static, hencel 2>2, say, so we obtain only two possibilities,
(l 1 , l 2)5(1,3) or ~2,2!. The first possibility is excluded
because the moment havingl 151 is necessarily the con-
stant mass dipoleMi which has been set to zero. There re-
mains the second possibilityl 15l 252 which corresponds
either to the interaction between two mass-type quadrupo
momentsMi j or to the interaction of the~constant! current-
type dipoleSi with Mi j .

We combine these facts with the study done in Ref.@30#
of the occurrence of ‘‘hereditary’’ terms in the asymptotic
metric at the quadratic approximationn52. Two and only
two types of hereditary terms were found: the ‘‘tail’’ terms
coming from the interaction between the monopoleM and
nonstatic multipoles, and the nonlinear ‘‘memory’’ term
which is made of the interaction between two nonstatic mul
tipoles. The tail terms are of orderc23 and have been in-
cluded in paper I, but the memory term arises at the orde
c25 ~in the radiative quadrupoleUi j ). The latter term can be
straightforwardly computed from Eqs.~2.42a!, ~2.21!, and
~2.11a! in Ref. @30#. An equivalent result can be found in
Ref. @43#. For discussions on the memory term, see Refs
@44,45#. It is clear by the previous reasoning that the memory
term represents the hereditary part of the 2.5PN contributio
in the radiative momentUi j , corresponding to the interac-
tion of two momentsMi j . Associated with this term there
are also some instantaneous terms having the same struct
and exhausting~a priori! the possibilities of sharing time
derivatives between the two moments.

Gathering these results with the results of Ref.@30# and
paper I we obtain the expression of the radiative quadrupo
Ui j to 2.5PN order as
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Ui j ~TR!5Mi j
~2!~TR!1

2GM

c3 E
0

1`

dtF lnS t

2bD 1
11

12GMi j
~4!

3~TR2t!1
G

c5 H 2
2

7E2`

TR
duMk, i

~3! ~u!M j.k
~3! ~u!

1aMk, i
~3! M j.k

~2! 1bMk, i
~4! M j.k

~1! 1gMk, i
~5! M j.k

1lSkMm, i
~4! « j.kmJ 1O~6!. ~5.7!

The constantb in the term of orderc23 ~tail integral! is the
same as in Eq.~5.1!. The memory term is the integral in th
braces of orderc25. The qualitatively different nature o
these two integrals can be clearly understood when ta
the limit TR→1` corresponding to very late times after t
system has ceased to emit radiation. In this limit the th
and higher time derivatives ofMi j are expected to tend t
zero, so the tail term tends to zero, while by contrast
memory term tends to the finite lim
2(2G/7c5)*2`

1`duMk, i
(3) M j.k

(3) ~see Refs.@44,45#!. The coef-
ficients a, b, g, andl are some purely numerical coef
cients in front of instantaneous terms~which depend onTR
only!. These coefficients can be obtained by a long com
tation using the algorithm of Ref.@27#; however, we shall no
need them in the application below~they will be computed in
a future work!. The higher-order radiative moments ta
similar expressions but are needed only to a lower precis
The relevant expressions forUi jk andVi j have been written
in paper I, and read

Ui jk~TR!5Mi jk
~3!~TR!1

2GM

c3 E
0

1`

dtF lnS t

2bD1
97

60G
3Mi jk

~5!~TR2t!1O~5!, ~5.8a!

Vi j ~TR!5Si j
~2!~TR!1

2GM

c3 E
0

1`

dtF lnS t

2bD1
7

6G
3Si j

~4!~TR2t!1O~5!, ~5.8b!

while the other needed moments are given by

Ui jkm~TR!5Mi jkm
~4! ~TR!1O~3!, ~5.9a!

Vi jk~TR!5Si jk
~3!~TR!1O~3!. ~5.9b!

The expressions~5.7!–~5.9! of the radiative moments ar
to be inserted into the gravitational luminosity~5.3!. This
leads to a natural~though not unique! decomposition ofL
into instantaneous and tail contributions,

L5Linst1Ltail . ~5.10!

The contributionLinst depends only on the instantTR and is
given by

Linst5
G

c5 H 15Mi j
~3!Mi j

~3!1
1

c2 F 1

189
Mi jk

~4!Mi jk
~4!1

16

45
Si j

~3!Si j
~3!G

1
1

c4 F 1

9072
Mi jkm

~5! Mi jkm
~5! 1

1

84
Si jk

~4!Si jk
~4!G
e
f
king
he
ird
o
the
it

fi-

pu-
t

ke
ion.

e

1
2G

5c5
Mi j

~3!@~a22/7!Mik
~3!M jk

~3!1~a1b!Mik
~4!M jk

~2!

1~b1g!Mik
~5!M jk

~1!1gMik
~6!M jk1lSkMmi

~5!« jkm#

1O~6!J . ~5.11!

Note that this involves the term coming from the nonlinea
memory which is instantaneous in the energy loss~the
memory effect exists only in the wave form!. The tail con-
tribution depends on all instantsTR2t anterior toTR and
reads

Ltail5
4G2M

c5 H 1

5c3
Mi j

~3!~TR!E
0

1`

dtMi j
~5!~TR2t!lnS t

2b1
D

1
1

189c5
Mi jk

~4!~TR!E
0

1`

dtMi jk
~6!~TR2t!lnS t

2b2
D

1
16

45c5
Si j

~3!~TR!E
0

1`

dtSi j
~5!~TR2t!lnS t

2b3
D

1O~6!J , ~5.12!

where we have set for simplicity

b15be211/12, b25be297/60, b35be27/6. ~5.13!

The luminosity ~5.10!–~5.13! in which the moments have
been determined in Sec. IV is our final result for the gener
case of a~semirelativistic! isolated system.

VI. APPLICATION TO INSPIRALING COMPACT
BINARIES

The authors of Ref.@21# ~paper II! applied the results of
paper I to an inspiraling compact binary system modeled
two point masses moving on a circular orbit. Here we do th
same for the results derived previously and obtain the ene
loss rate and associated laws of variation of the frequen
and phase of the binary to 2.5PN order.

A. The equations of motion

The equations of motion of two point masses at the 2.5P
approximation are needed for this application. These equ
tions have been obtained in the same coordinates as u
here by Damour and Deruelle@37# studying the dynamics of
the binary pulsar. For inspiraling compact binaries one nee
only to specialize these equations to the case of an or
which is circular~apart from the gradual inspiral!. A relevant
summary of the Damour-Deruelle equations of motion
presented for the reader’s convenience in Appendix B. He
we quote the results valid for circular orbits, following
mostly the notation of paper II. Mass parameters are deno
by

m[m11m2 , X1[
m1

m
,X2[

m2

m
, n[X1X2 ~6.1!
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~the total mass is henceforth denoted bym to conform with
paper II!. The individual positions of the two bodies in ha
monic coordinates arey1

i and y2
i . Their relative separation

and relative velocity are

xi5y1
i 2y2

i , v i5
dxi

dt
. ~6.2!

A small ordering post-Newtonian parameter is defined to

g5
Gm

rc2
~6.3!

with r5uxu. Next we use the fact that the origin of th
coordinate system is located at the center of mass of
binary. This means thatMi50 whereMi is the dipole mass
moment of the external field. By Eqs.~4.25! and~4.27b! this
meansĨ i1DI i5O(6) whereĨ i is the dipole moment which
was computed in paper II~beforeexpressing it in the relative
frame! and where DI i5(4G/5c5)mGi

(2)1O(7) where
Gi5*d3x(s ix

22 1
2 s j xixj ). For circular orbits one findsGi

5mn(X22X1)r
2v i1O(2) and thus DI i5(4G/5c5)

Gm3n(X12X2)(v
i /r )1O(7). This readily shows how the

relations~3.7! of paper II are to be extended to 2.5PN ord
We find

y1
i 5@X213ng2~X12X2!#x

i2
4

5

G2m2n

rc5
~X12X2!v

i

1O~6!, ~6.4a!

y2
i 5@2X113ng2~X12X2!#x

i2
4

5

G2m2n

rc5
~X12X2!v

i

1O~6!. ~6.4b!

This result is in agreement with the 2.5PN-accurate cente
mass theorem of Refs.@37#. The assumption that the orbit i
circular apart from the adiabatic inspiral due to reaction
fects of orderO(5) implies that the scalar product ofxi and
v i is of smallO(5) order:x•v[(xv)5O(5). By Eqs.~6.4!
this implies also (nv1)5O(5) and (nv2)5O(5) where
ni[xi /r . These facts drastically simplify the equations
motion of the binary given by Eqs.~B1!–~B2! in Appendix
B. The result when expressed in the relative frame sim
reads

dv i

dt
52v2PN

2 xi2
32

5c5
G3m3n

r 4
v i1O~6!, ~6.5!

where we have introduced the angular frequencyv2PN de-
fined by

v2PN
2 [

Gm

r 3 F12~32n!g1S 61
41

4
n1n2Dg2G . ~6.6!

This frequency represents the orbital frequency of theexact
circular periodic orbit at the 2PN order@see Eq.~3.11! in
paper II#. The relation between the norm of the relative v
locity v5uvu andv 2PN is obtained by multiplying both side
r-

be

e
the

er.

r of
s
ef-

of

ply

e-
s

of ~6.5! by xi . Using (xv)5O(5) and d(xv)/dt5O(10)
@becaused(xv)/dt is of the same order as the square o
reaction effects# we find

v5rv2PN1O~6!. ~6.7!

Finally, we write the result for the orbital energy
E[E 2.5PNentering the left side of the energy balance equa
tion dE/dt52LN1O(6) derived in Eq.~B10! of Appendix
B. This energy is computed from Eqs.~B6! and ~B11!, in
which one uses the circular orbit assumption, together wi
~6.7!. The result is

E52
c2

2
mngH 12

1

4
~72n!g2

1

8
~7249n2n2!g2J

1O~6!. ~6.8!

There are no terms of orderg5/25O(5) for circular orbits
because the termO(5) in Eq. ~B11! is proportional to
(nv) and thus vanishes in this case.

B. The energy loss rate

The gravitational luminosityL of a general source was
split into two contributions, an instantaneous oneLinst given
by Eq. ~5.11! and a tail oneLtail given by Eq.~5.12!. We
shall basically show that onlyL tail contributes to the 2.5PN
order in the case~but only in this case! of a binary system
moving on acircular orbit.

Let us consider first the contributionLinst. The only mo-
ment it contains which is required with full 2.5PN accuracy
is the mass quadrupole moment

Mi j5 Ĩ i j1DI i j1O~6! ~6.9!

where Ĩ i j results from Eq.~4.8a! andDI i j is given by Eq.
~4.27c!. For a circular orbit, the moment of inertiaK is con-
stant@indeedK5mnr 21O(2)#: hence,DI i j reduces to two
terms only:

DI i j5
G

c5 H 2
2

3
KQi j

~3!2
8

7
Qk, i

~3! Qj.kJ 1O~7!. ~6.10!

We prove that the contribution inLinst which is due toDI i j is
in fact zero. Indeed, this contribution is made of the con
tracted product betweenQi j

(3) and DI i j
(3) @recall that

Mi j5Qi j1O(2)#, and hence of the contracted product
Qi j
(3)Qi j

(6) andQi j
(3)Qik

(62q)Qjk
(q) . But in the circular case an

odd number of time derivatives ofQi j yields a term propor-
tional to x, iv j. while an even number yields either
x, ixj. or v, iv j.. Thus a contracted product of the type
Qi j
(n)Qi j

(p) wheren1p is odd necessarily involves one scalar
product (xv) and is thus zero; similarly, a product of the type
Qi j
(n)Qik

(p)Qjk
(q) wheren1p1q is odd is also zero. The same is

true of a product like« i jkQjm
(r )Qkm

(s) wherer1s is even. These
simple facts show that~6.10! cannot contribute to the energy
loss rate. Furthermore, we find that all the terms inLinst
which involve the contracted products ofthree moments
@i.e., all the terms of orderc25 in Eq. ~5.11!# are also zero.
Hence we can write, in the circular orbit case,
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Linst5
G

c5 H 15 Ĩ i j~3! Ĩ i j
~3!1

1

c2 F 1

189
Ĩ i jk

~4! Ĩ i jk
~4!1

16

45
J̃i j

~3!J̃i j
~3!G

1
1

c4 F 1

9072
Ĩ i jkm

~5! Ĩ i jkm
~5! 1

1

84
J̃i jk

~4!J̃i jk
~4!G1O~6!J .

~6.11!

Now recall that the momentsĨ L and J̃L are the ones which
were used as the starting point in the computation of pa
II. In using paper II one must be careful that in this paper t
equations of motion have a precision limited to 2PN inste
of 2.5PN. We first note that the 2.5PN terms in the mas
centered frame relations~6.4! will cancel out when express-
ing the quadrupole mass moment in terms of the relat
variables. Furthermore, during the computation of this m
ment in paper II the equations of motion were used only
reduce some terms which were already of 1PN order. Th
all the expressions of the momentsĨ L and J̃L computed in
paper II ~but not the expressions of their time derivative!
can be used in the present paper without modification. No
bly, the mass quadrupoleĨ i j takes the expression~3.74! of
paper II, modulo negligibleO(6) terms:

Ĩ i j5STFi jnmH xi j F12
g

42
~1139n!

2
g2

1512
~461118395n1241n2!G1

r 2

c2
v i j F1121~123n!

1
g

378
~160721681n1229n2!G J 1O~6!. ~6.12!

However, we need the third time derivative of~6.12! which
does involve, because of the more precise equations of m
tion, some new terms with respect to paper II. We find

Ĩ i j
~3!5STFi jnmH 28

Gm

r 3
xiv jF12

g

42
~149269n!

1
g2

1512
~704327837n13703n2!G

1
64

5

G3m3n

r 4c5 FGmr 3 xi j23v i j G J 1O~6!. ~6.13!

But for the same reason as before these new terms will
contribute to the energy loss for circular orbits. Thus w
conclude thatLinst is exactly given by the expression foun
in Eq. ~4.12! of paper II modulo negligible terms of relative
orderO(6)[O(g3). We can thus write

Linst5
32c5

5G
n2g5H 12S 2927336

1
5

4
n Dg1S 2933839072

1
380

9
n Dg2

1O~g3!J . ~6.14!

Let us now turn our attention to the tail part of the grav
tational luminosity as defined by Eq.~5.12!. The correct for-
mula to compute the tail integrals inLtail is
er
e
d
s-

ve
o-
to
us

ta-

o-

ot
e

i-

E
0

1`

dt lnS t

2bD cos~Vt!52
p

2V
, ~6.15!

whereV denotes the~real! angular frequency of the radia-
tion. It was proved in Ref.@46# that this formula is to be
applied as it stands~i.e., even though the integral is not ab-
solutely convergent! to a fixed ~nondecaying! orbit whose
frequency is equal to the current value of the orbital fre-
quencyv[v2PN(TR). The numerical errors made in apply-
ing this formula were shown to be of relative order
O(lnc/c5), which is always negligible for our purpose here
~because of the explicit powers ofc21 in front of the tail
integrals!. Thus we replace in the integrand of~5.12! the
momentsML and SL by their expressions valid for fixed
circular orbits and up to the appropriate precision. The nec-
essary formulas~taken from paper II! are

Mi j
~3!528 STFi j

Gm2n

r 3
xiv jF12

g

42
~149269n!G1O~4!,

~6.16a!

Mi j
~5!532 STFi j

G2m3n

r 6
xiv jF12

g

42
~2752111n!G1O~4!,

~6.16b!

Mi jk
~4!53~X22X1!STFi jk

Gm2n

r 3 H 7Gmr 3 xi jk220xiv jkJ
1O~2!, ~6.16c!

Mi jk
~6!53~X22X1!STFi jk

G2m6n

r 6 H 261
Gm

r 3
xi jk1182xiv jkJ

1O~2!, ~6.16d!

Si j
~3!52~X22X1!STFi j

Gm2n

r 3
«abiv j xavb1O~2!,

~6.16e!

Si j
~5!5~X22X1!STFi j

G2m3n

r 6
«abiv j xavb1O~2!.

~6.16f!

The quadrupole moment includes 1PN terms while the othe
moments are Newtonian. The computation ofLtail involves
many scalar products betweenxi or v i given at the current
time TR , i.e., x

i[xi(TR) or v
i[v i(TR), with the same vec-

tors but evaluated at an arbitrary earlier timeTR2t, say,
x8 i[xi(TR2t) and v8 i[v i(TR2t). Relevant formulas for
these scalar products are

~xx8!5r 2cos~vt!, ~6.17a!

~vv8!5r 2v2cos~vt!, ~6.17b!

~xv8!52~vx8!5r 2vsin~vt!, ~6.17c!

wherev is the current value of the frequency. The reduction
of Ltail is quite straightforward. We need to use
v25(Gm/r 3)@12(32n)g1O(g2)# ~the 1PN correction in
v2 is sufficient! and the formula~6.15! whereV5v, 2v, or
3v. One uses also (X22X1)

25124n. The result reads
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Ltail5
32c5

5G
n2g5H 4pg3/22S 25663672

1
109

8
n Dpg5/2

1O~g3!J . ~6.18!

The complete 2.5PN-accurate gravitational luminos
generated by an inspiraling compact binary moving on a q
sicircular orbit is therefore obtained as the sum of Eqs.~6.14!
and ~6.18!. We obtain

L5
32c5

5G
n2g5H 12S 2927336

1
5

4
n Dg14pg3/2

1S 2933839072
1
380

9
n Dg2

2S 25663672
1
109

8
n Dpg5/21O~g3!J , ~6.19!

where we recall that the post-Newtonian ordering param
is g5Gm/rc2 with r being the harmonic-coordinate orbit
separation. This expression was already obtained to 1PN
der in Refs. @23,47,48#, to 1.5PN order in Refs
@30,13,49,46#, and to 2PN order in Refs.@20–22,12#. The
2.5PN order added in this paper is like the 1.5PN order
to the presence of the radiation tails in the wave zone
indicated by the irrational numberp in factor coming from
the formula~6.15!. Hence there is up to 2.5PN order a cle
separation between the integer post-Newtonian approxi
tions which come from instantaneous relativistic effects
the source multipole moments and the half-integer appr
mations which are due to hereditary effects in the wave zo
However, the next post-Newtonian approximation~3PN! is
expected to involve both types of effects.

C. The orbital phase

Once the energy loss has been derived in a particular
ordinate system it can be re-expressed in a coordin
independent way by using the directly observable freque
v[v2PN instead of the parameterg. Defining
x5(Gmv/c3)2/3, we obtain the inverse of Eq.~6.6! as

g5xF11S 12
n

3D x1S 12
65n

12 D x21O~x3!G , ~6.20!

which is substituted into Eq.~6.19! with the result

L5
32c5

5G
n2x5H 12S 1247336

1
35

12
n D x14px3/2

1S 2
44711

9072
1
9271

504
n1

65

18
n2D x2

2S 8191672
1
535

24
n Dpx5/21O~x3!J . ~6.21!

An important check is obtained in the test-body limitn→0
of this result, which is found to agree with the 2.5PN tru
cation of the result of perturbation theory known through
equivalent of 4PN order@15–17# @see Eq.~43! of Ref. @17##.
ity
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As for the orbital energyE[E2.5PNwhich has been given in
Eq. ~6.8! following the equations of motion summarized in
Appendix B, it reads in terms ofx as

E52
c2

2
mnxH 12

1

12
~91n!x2

1

8 S 27219n1
n2

3 D x2
1O~x3!J . ~6.22!

The laws of variation of the frequencyv and phasef of
the binary during the orbital decay will be computed using
the energy balance equation

dE

dTR
52L, ~6.23!

whereTR is the retarded time in the wave zone. Note that we
meet here the remarks made in the Introduction. Up to now
the analysis has been rigorous within the framework of pos
Newtonian theory; namely,L has been computed from a
well-defined formalism based on convergent integrals for th
multipole moments~see Sec. IV!. The reduction ofL to bi-
nary systems usingd functions to describe the compact ob-
jects can probably be justified at the 2.5PN order by usin
the results of Ref.@11# ~see paper II!. Furthermore,E is
computed directly from the Damour-Deruelle equations o
motion @37#. We now postulatethe validity of the energy
balance equation~6.23! where bothE andL take their full
2.5PN accuracy. This equation has been proved here@in Eq.
~B9! of Appendix B# only whenL takes its Newtonian value
LN. It was proved before to Newtonian order in Refs.@32–
37#. On the other hand, the balance equation is also known
hold at 1PN order@38,39#, and even for tails at 1.5PN order
@40,30#. To prove it at 2.5PN order such as in~6.23! would
mean knowing all the radiation reaction effects in the bina
ry’s equations of motion up to 5PN order. To palliate this it
has been customary in this field ~see Refs.
@7–9,13,14,18,19,12,21#! to compute the binary’s orbital de-
cay assuming that the energy balance equation is valid
high order~the angular momentum balance equation is un
necessary for circular orbits!.

Adopting the same approach to the problem, we introduc
as in paper II the adimensional time

u5
c3n

5Gm
TR . ~6.24!

Equation~6.23! is then transformed into the ordinary differ-
ential equation

dx

du
564x5H 12S 743336

1
11

4
n D x14px3/2

1S 3410318144
1
13661

2016
n1

59

18
n2D x2

2S 4159672
1
173

8
n Dpx5/21O~x3!J . ~6.25!
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On the other hand, the differential equation for the instan
neous phasef of the binary isdf5vdTR5(5/n)x3/2du or,
equivalently,

df

dx
5

5

64n
x27/2H 11S 743336

1
11

4
n D x24px3/2

1S 3 058 6731 016 064
1
5429

1008
n1

617

144
n2D x2

2S 7729672
1
3

8
n Dpx5/21O~x3!J . ~6.26!

The frequency and phase follow from the integration of th
equations. The frequency~or x parameter! reads

x5
1

4
Q21/4H 11S 7434032

1
11

48
n DQ21/42

p

5
Q23/8

1S 19 583254 016
1

24 401

193 536
n1

31

288
n2DQ21/2

1S 2
11 891

53 760
1

29

1920
n DpQ25/81O~Q23/4!J ,

~6.27!

whereQ5uc2u denotes the~adimensional! time left till the
final coalescence, and the phase is

f52
1

32n H x25/21S 37151008
1
55

12
n D x23/2210px21

1S 15 293 3651 016 064
1
27 145

1 008
n1

3085

144
n2D x21/2

1S 38 6451 344
1
15

16
n Dp lnS xx0D1O~x1/2!J , ~6.28!

where the constantx0 is determined by initial conditions. By
substituting Eq.~6.27! into ~6.28! one obtains the phase as
function of time:

f52
1

n H Q5/81S 37158064
1
55

96
n DQ3/82

3p

4
Q1/4

1S 9 275 49514 450 688
1
284 875

258 048
n1

1 855

2 048
n2DQ1/8

2S 38 645172 032
1

15

2 048
n Dp lnS Q

Q0
D1O~Q21/8!J ,

~6.29!

whereQ0 denotes some constant. Note the presence of
logarithm of the frequency or coalescing time in the phas
the 2.5PN approximation. The expressions~6.25!–~6.29! are
valid only in the post-Newtonian regime.

Let us evaluate the contribution of each post-Newton
term in the phase~6.28! to the accumulated numberN of
gravitational-wave cycles between some initial and final f
quenciesv i andv f . Note that such a computation can on
ta-

ese

a

the
e at

ian

re-
ly

be indicative of the relative orders of magnitude of the dif-
ferent terms in the phase. A full analysis would require the
knowledge of the power spectral density of the noise in a
detector, and a complete simulation of the parameter estima
tion using matched filtering@7–9,50,51#. The contribution to
N due to the 2.5PN term in~6.28! is

N2.5PN52
1

48n S 38 6451344
1
15

16
n D lnS v f

v i
D . ~6.30!

In the case of the inspiral of two neutron stars of mass
1.4M( , and with the valuesv i /p510 Hz ~set by seismic
noise! andv f /p51000 Hz ~set by photon shot noise!, we
find, from Ref.@12# and Eq.~6.30!

Newtonian 1PN 1.5PN 2PN 2.5PN

N 16 050 439 2208 9 211

@Note that as long as the final frequencyv f is determined
only by the detector’s characteristics~and not by the location
of the innermost stable orbit!, the termN2.5PNdepends on the
masses only through the mass ration.#

In this ~indicative! example we see that the contribution
of the 2.5PN order more than compensates the contribution
of the previous 2PN order.~But of course both contributions
have to be included in the filters since they have different
functional dependences on the frequency.! However, note
that finite mass effects~proportional ton) are numerically
small at the 2.5PN order, contrary to the 2PN order where
they are quite significant@21,12#. In the previous example,
they contribute only to20.1 cycle as compared to
N2.5PN5211.

APPENDIX A: THE PROOF OF A FORMULA

To prove the formula~4.19! we begin with the identity

r Bh f5h~r Bf !2B~B11!r B22f22BrB21] r f ~A1!

which permits the transformation of the left side of~4.19!,
namely,

PXQ[~FB50hR
21r Bh21!H ]̂PF1r F~ t2r /c!G

3 ]̂QF1r G~ t2r /c!G J , ~A2!

into

PXQ5FB50hR
21S 2BrB21@2] r1r21#

3H ]̂PF1r F~ t2r /c!G ]̂QF1r G~ t2r /c!G J D . ~A3!

Because of the presence of the explicit factorB in the inte-
grand, the equation~A3! appears to be theresidueof the
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Laurent expansion of the retarded integral nearB50 ~we
have discarded a term proportional toB2 which is known to
give zero contribution!. Residues of retarded integrals have
been investigated in Eq.~4.26! of Ref. @40# and yield re-
tarded solutions of the wave equation. By a simple dime
sional analysis we find thatPXQ admits the structure

PXQ; (
k50

@~p1q!/2#
1

c2k11 ]̂LF1r F ~a!~ t2r /c!G~b!~ t2r /c!G .
~A4!

Here,@(p1q)/2# is the integer part of (p1q)/2, ]̂L denotes
a trace-free derivative operator composed ofl spatial de-
rivatives wherel 5p1q22k, and the number of time de-
rivatives onF andG is a1b52k11. Omitted in~A4! are
pure dimensionless coefficients and numerous Kroneck
symbols. The explicit dependence on 1/c present in Eq.~A4!
shows that if we are interested only in the leading-order ter
whenc→1` we can limit ourselves to the computation o
the terms having themaximumnumber of space derivatives,
i.e., l max5p1q ~corresponding tok50). The errors made in
keeping only such terms are of relative orderO(3). We use
to compute~A3! the formula

]̂PF1r F~ t2r /c!G5n̂P(
i50

p

ai
p F

~p2 i !~ t2r /c!

cp2 i r 11 i , ~A5!

where the numerical coefficient is

ai
p5

~2 !p~p1 i !!

2i i ! ~p2 i !!
~A6!

@see Eq.~A35a! in @27##. This yields a double sum of terms
having in front the product of the trace-free tensorsn̂P and
n̂Q . This product can be decomposed into trace-free tens
of multipolaritiesl 5p1q22k with k50, . . . ,@(p1q)/2#;
however, if we are looking only for the term having
l max5p1q one can simply replace the productn̂Pn̂Q by the
trace-free tensorn̂PQ ~with 1 as a coefficient in front!. Hence
n-

er

m
f

ors

PXQ5(
i , j

ai
paj

qFB50hR
21H 2BrB21n̂PQ@2] r1r21#

3
F ~p2 i !~ t2r /c!G~q2 j !~ t2r /c!

cp1q2 i2 j r 21 i1 j J 1O~3!, ~A7!

where the remainderO(3) comes from the errors made in
the replacementn̂Pn̂Q→n̂PQ . The integrand in~A7! is easily
transformed into a sum of terms of the form
r B2Kn̂PQH(t2r /c) times the factorB, whereK is an inte-
ger. Using the fact that the residues of such terms exist on
whenK>p1q13 @see Eq.~4.26! in @40##, one finds that the
summation indicesi and j in ~A7! must satisfyi1 j5p1q
or p1q21. This greatly simplifies the computation of~A7!
which is done using the expression~A6! of the coefficients
ai
p and Eq.~4.26! in @40#. The result is

PXQ5 ]̂PQF 1rc ~dp,0F
~1!G1d0,qFG

~1!!G1O~3!, ~A8!

wheredp,0 denotes the usual Kronecker symbol.

APPENDIX B: THE DAMOUR-DERUELLE
EQUATIONS OF MOTION

We present a summary of results concerning the equatio
of motion of two point masses moving under their mutua
gravitational influence up to the 2.5PN order. These equa
tions were obtained by Damour and Deruelle@37# ~see also
the presentation@11# to which we are close here!. The equa-
tions of motion of body 1~say! take the Newtonian-like form

dy1
i

dt
5v1

i , ~B1a!

dv1
i

dt
5A1

i 1
1

c2
B1
i 1

1

c4
C1
i 1

1

c5
D1
i 1O~6!, ~B1b!

wherey1
i andv1

i denote the instantaneous position and coor
dinate velocity of body 1~in the harmonic coordinate sys-
tem!, A1

i is the usual Newtonian acceleration of the body
andB1

i , C1
i , andD1

i represent the relativistic corrections of
order 1PN, 2PN, and 2.5PN, respectively. The equation
~12.7!–~12.12! in Ref. @11# give these terms as
A1
i 52

Gm2

r 2
ni , ~B2a!

B1
i 5

Gm2

r 2 H niF2v1
222v2

214~v1v2!1
3

2
~nv2!

215
Gm1

r
14

Gm2

r G1~v1
i 2v2

i !@4~nv1!23~nv2!#J , ~B2b!
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C1
i 5

Gm2

r 2 H niF22v2
414v2

2~v1v2!22~v1v2!
21

3

2
v1
2~nv2!

21
9

2
v2
2~nv2!

226~v1v2!~nv2!
22

15

8
~nv2!

41
Gm1

r S 2
15

4
v1
2

1
5

4
v2
22

5

2
~v1v2!1

39

2
~nv1!

2239~nv1!~nv2!1
17

2
~nv2!

2D1
Gm2

r
~4v2

228~v1v2!12~nv1!
224~nv1!~nv2!

26~nv2!
2!G1~v1

i 2v2
i !Fv12~nv2!14v2

2~nv1!25v2
2~nv2!24~v1v2!~nv1!14~v1v2!~nv2!26~nv1!~nv2!

21
9

2
~nv2!

3

1
Gm1

r S 2
63

4
~nv1!1

55

4
~nv2! D1

Gm2

r
~22~nv1!22~nv2!!G J 1

G3m2

r 4
ni H 2

57

4
m1
229m2

22
69

2
m1m2J , ~B2c!

D1
i 5

4

5

G2m1m2

r 3 H v iF2v212
Gm1

r
28

Gm2

r G1ni~nv !F3v226
Gm1

r
1
52

3

Gm2

r G J , ~B2d!

wherem1 andm2 are the two masses,v1
i andv2

i the two velocities,r5uy12y2u the separation, andni5(y1
i 2y2

i )/r . Scalar
products are denoted by, e.g.,v1•v25(v1v2). In the last equationv

i5v1
i 2v2

i . The equations of the second body are obtained
by exchanging the labels 1 and 2, being careful of the fact thatni andv i change sign in the exchange. The acceleration term
D1
i is responsible for the dominant damping or radiation reaction effects in the dynamics of the binary.
The equations of motion when truncated to 2PN order~neglecting the damping termD1

i ) admit a Lagrangian formulation
and the associated conservations laws@37#. The 2PN Lagrangian in harmonic coordinates depends not only on the position
and velocities of the two bodies, but also on their accelerationsa1,2

i 5dv1,2
i /dt: L2PN5L2PN(y,v,a). It is given by
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m1m2G . ~B3!

The summation symbol runs over the two bodies 1 and 2. The equations obtained by variation of this Lagrangian, and in w
the accelerations are replacedafter variation by their~Newtonian! values, are equivalent to the 2PN equations of motion@Eqs.
~B1! and~B2! whereD1

i 50# modulo negligibleO(6) terms. From this Lagrangian one constructs the 2PN integral of energy

Ẽ2PN5( H v1i S ]L 2PN

]v1
i 2

d

dt

]L2PN

]a1
i D 1a1

i ]L2PN

]a1
i J 2L2PN, ~B4!

and one replaces in it the accelerations by their~Newtonian! values, resulting in

Ẽ2PN~y,v,a!5E2PN~y,v !1O~6!. ~B5!

The explicit expression of the energyE2PN as a function of the positions and velocities is

E2PN~y,v !5( H 12m1v1
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The fact thatẼ2PN is the integral of energy of the 2PN equations of motion implies thatE2PN as a function of the positions and
velocities satisfies the identity

( H v1i ]E2PN

]y1
i 1FA1

i 1
1

c2
B1
i 1

1

c4
C1
i G]E2PN

]v1
i J [O~6!, ~B7!

from which we find the law of variation ofE2PN under the complete 2.5PN dynamics of the binary: namely,

dE2PN

dt
5(

1

c5
D1
i ]E2PN

]v1
i 1O~6!. ~B8!

This equation makes it clear how the damping acceleration termD1
i drives the variation of the energy@see Eq.~15.3! in Ref.

@11##. Since the right side of~B8! is a small post-Newtonian term it can be evaluated by inserting in place ofE2PN its
Newtonian value given by the first two terms in~B6!. Thus

dE2PN

dt
5(

1

c5
m1v1

i D1
i 1O~6!. ~B9!

Using the expression~B2d! of the damping term we arrive after a short calculation at the balancelike equation

dE2.5PN

dt
52LN1O~6!, ~B10!

which involves in the left side the 2PN energy~B6! augmented by a pure 2.5PN term, namely,

E2.5PN5E2PN1
8

5c5
G2m3n2

r 2
~nv !v2, ~B11!

and in the right side the expression

LN5
8

15c5
G3m4n2

r 4
„12v2211~nv !2…. ~B12a!

It is simple to rewrite the latter expression in the well-known form

LN5
G

5c5
Qi j

~3!Qi j
~3!1O~7!. ~B12b!

As this is the standard~Newtonian! quadrupole formula we conclude that Eq.~B10! proves the energy balance between the
loss of orbital energyE2.5PNof the binary and the Newtonian energy flux carried out by the gravitational waves. Note tha
is important that the energy which enters the left side of the balance equation is given as aninstantaneousfunctional of the two
world lines of the binary~see Damour@11# for a discussion!.
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