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Energy losses by gravitational radiation in inspiraling compact binaries
to 5/2 post-Newtonian order
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This paper derives the total power or energy loss rate generated in the form of gravitational waves by an
inspiraling compact binary system to the 5/2 post-Newtori@8PN approximation of general relativity.
Extending a recently developed gravitational-wave generation formalism valid for arkistaryly moving
systems, we compute the mass multipole moments of the system and the relevant tails present in the wave zone
to 2.5PN order. In the case of two point masses moving on a quasicircular orbit, we find that the 2.5PN
contribution in the energy loss rate is entirely due to tails. Relying on an energy balance argument we derive
the laws of variation of the instantaneous frequency and phase of the binary. The 2.5PN order in the accumu-
lated phase is significantly large, being grossly of the same order of magnitude as the previous 2PN order, but
opposite in sign. However, finite mass effects at 2.5PN order are small. The results of this paper should be
useful when analyzing the data from inspiraling compact binaries in future gravitational-wave detectors such as
VIRGO and LIGO.[S0556-282(96)03012-3

PACS numbe(s): 04.25.Nx, 04.30.Db

I. INTRODUCTION balance argument by the total power emitted in the form of
gravitational waves by the system at infinity, or total lumi-
Compact binaries in their late stage of evolution are verynosity in the waves. To what level in a post-Newtonian ex-
relativistic systems in which the two compact objegisu-  pansion we should know the gravitational luminogity en-
tron stars or black holg®rbit around each other with veloci- €rgy los$ in order to guarantee an optimal detection of the
ties as large as 30% of that of light. The gravitational radia-Signal (given some power spectral density of the noise in a
tion these systems emit during the inspiral phase precedingetectoy is still unclear, but the theory of black-hole pertur-
the coalescence of the two objects is expected to be routineRations can be used to gain insights in this problem. Black-
analyzed in future detectors such as the Laser Interferometrfc!€ Perturbations, which deal with the special case of a test

Gravitational Wave Observatorft|GO) and VIRGO (see mass orbiting a massive black hole, have recently been the
[1-3] for reviews. Hundreds to tens of thousands of focus of intense activity13—17. It emerges from this field

gravitational-wave cycles should be monitored in the detecJEhat neglecting even such a high approximation as the third

tors’ sensitive frequency bandwidth. The combination Ofpost-Newtonian(SPN) one, i.e., neglecting the relativistic

hiah orbital velocities and a large number of observed rota_corrections in the luminosity which are of relative order
'9 e velocit ge nu v ¢~ % (or below, is likely to yield unacceptable systematic

tions., togethgr wit.h the fact that the emitted.vya\_/es are highl)érrors in the data analysis of binary signéist,15,18,19
predictable, implies that high-order relativistior post-  rpig shows how relativistic are inspiraling compact binaries,
Newtonian effects should show up in the gravitational sig- 55 compared, for instance, to the binary pulsar for which the
nals observed by VIRGO and LIGBI-10. Alternatively,  Newtonian approximation in the luminosit§Einstein quad-
this means that high-order post-Newtonian effects should bgpole formula is adequate. The post-Newtonian theory is
known in advance so that they can be included in the Conpresenﬂy Comp|eted through the second post-Newtonian
struction of theoretical filtergtemplateg to be cross corre- (2PN approximation, i.e., through relative order* (both
lated with the outputs of the detectors. in the wave form and in the associated energy )lo$svo
The relevant model for describing most of the observeccomputations were performed to this order, one by Blanchet,
inspiral phase is a model of two point masses moving on ®amour, and lyef20,21] based on a post-Minkowski match-
circular orbit. Radiation reaction forces tend to circularizeing formalism, and one by Will and Wisem#B2] using an
the orbit very rapidly. On the other hand, point masses campproach initiated by Epstein and Wagofh28] and gener-
be used in the case of nonrotating gimdtially) spherically  alized by Thorng24]. The common result of these two com-
symmetric compact objects up to a very high precigibtl. ~ putations for the energy loss was summarized in REZ],
This is due to a property owned by general relativity of “ef- and the wave form can be found [i&5].
facing” the internal structure. Even in the case of stars with In the present paper we develop the post-Minkowski
intrinsic rotations the dynamics of the binary is likely to be matching formalism one step beyond the work of Refs.
dominated by post-Newtonian gravitational effel@g]. [20,21] by computing the 2.5PN order in the energy loss of
High-order post-Newtonian effects that are measurabl@an inspiraling binary. This entails extending both R&0]
are mainly those affecting the orbital phase evolution of theon the general formalism valid for an arbitrastowly mov-
binary, which in turn is determined using a standard energyng) source, and Ref21] dealing with the specific applica-
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tion to the binary. The computation of the wave form of theselves dominantly of order 2.5PN beyond the Newtonian
binary to 2.5PN ordefthe square of which should give back term. The only method which is available presently in order
the 2.5PN energy logswill be left for future work. to deal with this problem is taassumethat the 2.5PN-
The post-Minkowski matching formalism is a wave gen- accurate radiation reaction forces are such that there is exact
eration formalism which is especially suited for “semirela- agreement between the loss of 2.5PN-accurate binding en-
tivistic” sources whose internal velocities can reachcOa8  ergy of the binary(as computed from the Damour-Deruelle
most(say), as in the case of inspiraling compact binafiese equations of motior{37]) and the 2.5PN-accurate energy
[26] for a review. The formalism combine§) an analytic  flux we shall compute below. This assumption is verified at
post-Minkowskian approximation scheme for the computathe 1.5PN order and sounds reasonable, but will have to be
tion of the gravitational field in the exterior of the source justified in future work.
where multipole expansions can be used to simplify the As an indication of the quantitative importance of the
problem,(ii) a direct post-Newtonian approximation scheme2.5PN approximation in the orbital phase of the binary, we
for the resolution of the field equations inside the near zon€ompute the contribution of the 2.5PN term to the number of
of the source, andii) an asymptotic matching between both gravitational-wave cycles between the entry and exit fre-
types of solutions which is performed in the exterior part ofquencies of some detector. Essentially we find that the 2.5PN
the near zone. The necessity of using a post-Minkowskiampproximation is of the same order of magnitude as the 2PN
approximation scheme first is because its validity extends ugerm (computed in12]), but opposite in sign. In the case of
to the regions far away from the system where the observewo neutron stars of mass M4, and of the frequency band-
is located, contrary to the post-Newtonian approximatiorwidth [10 Hz, 1000 Hz, the 2PN term contributed 9 units
whose validity is limited to the near zone. The exterior fieldto the total number of cyclegl2]. We find here that the
is computed using an algorithm developed in R27] which ~ 2.5PN term contributes-11 cycles in the same conditions.
set on a general footing previous investigations by Thorndhis shows the importance of the 2.5PN approximation for
[24] and Bonnof 28]. The implementation of the wave gen- constructing accurate theoretical templatgidowever, we
eration formalism(i)—(iii) was done at first with 1PN accu- find that the contribution of the finite mass effects in the
racy in Ref[29], which obtained the 1PN correction terms in 2.5PN term (which cannot be obtained in perturbation
the mass-type quadrupole moment of the souarel in fact  theory) is numerically small,
in all the mass-type multipole momeht3he dominant non- In the present paper we shall make a thorough investiga-
linear contribution in the radiation field was added in Ref.tion (see Secs. I, lll, and IV belowof all the relativistic
[30] and shown to be due to the contribution in the wavecorrections in the multipole moments of the system which
zone of the well-known “tail” effect. The inclusion of this contribute to the 2.5PN-accurate energy loss. However,
nonlinear contribution pushed the accuracy of the formalisnwhen we are interested only in the application to inspiraling
to 1.5PN order in the energy loss. The 2PN precision in botltompact binaries, this investigation can be sagosteriori
the energy loss and wave form was reached in R&] to be unnecessary. Indeed, the orbit of an inspiraling binary
where the secon{2PN) correction terms in the mass-type is circular, and we shall prove in this case that the 2.5PN
multipole moments and the fir§lPN) ones in the current- relativistic corrections in the multipole moments give in fact
type multipole moments were obtained. An equivalent exno contribution in the energy loss. As we said above, the
pression of the 1PN current-type moments had been deriveshly contribution is that of the tails present at this or¢ke
earlier[31] in a different form which is very useful in appli- Sec. V). A simple argumenfconcerning the result at 2.5PN
cations[21]. order of a contracted product of tensors made of the relative
The main result of the present paper is the expression afeparation and velocity of the bodjesould be used before-
the 2.5PN-accurate energy loss by gravitational radiatiomand to see that this is true. But because inspiraling compact
from a general(semirelativisti¢ source, and from an in- binaries may not constitute the only sources for which the
spiraling compact binary. In the latter case of application, the2.5PN approximation in the energy loss is needed, or simply
2.5PN contribution in the energy loss is found to be entirelybecause one may need in the future to consider the case of a
due to tails in the wave zonghis is like the 1.5PN contri- binary moving on an eccentric orbit, we have chosen in this
bution), and to reduce in the test-body limit to the known paper to compute systematically all the terms which enter the
result of perturbation theorj15-17. 2.5PN-accurate energy loss for general systems. This permits
With the energy loss one can derive the laws of variationus to show explicitly that all the terms but the tail terms give
of the inspiraling binary’s orbital frequency and phase usingzero in the energy loss fdcircular inspiraling binaries. The
an energy balance equation. However, note that this is aimple argument mentioned above may be used in future
weak point of the analysis because the latter energy balanagork to simplify the investigation of higher post-Newtonian
equation has been proved to hold only at the Newtoniarorders.
order (see[32-34 for general systems, ani@7] for binary The plan of this paper is as follows. In the following Sec.
systemg and more recently at the 1PN ord&8,39. It is II, and in the next one, Ill, we follow step by step the deri-
also known to hold for the specific effects of tails at 1.5PNvation done in Ref[20] of the near zone gravitational field
order[40,30. To prove this equation at the 2.5PN order asand the corresponding matching equation, and show how this
we would need below, one should in principle obtain thederivation can be extended to the 2.5PN order. In Sec. IV we
equations of motion of the binary up to the very high 5PNobtain the explicit 2.5PN corrections arising in the mass-type
order (or orderc™ %9 beyond the Newtonian acceleration. multipole moments. Section V deals with the derivation of
Indeed the radiation reaction forces which are responsible fahe energy loss formula valid for general systefinswever
the decrease of the binding energy of the binary are themsome coefficients are left unspecified in the formulai-
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nally, these results are applied in Sec. VI to inspiraling comwhereG is Newton’s constant, and whefes * denotes the
pact binaries. Appendix A derives a useful integration for-retarded integral operator
mula and Appendix B presents a relevant summary of the

2.5PN equations of motion. . 1 d3x’ o1 ,
Throughout this paper we refer to RE20] as paper land ~ (Hr (X 0)==7— X—X| flx',t= E|X_X []-
to Ref.[21] as paper II. 2.3

Il. THE GRAVITATIONAL FIELD IN THE NEAR ZONE Contrary to the sources &f andV; which are of comp_act
support,0V=—-47Go and OV;=—-47Go; whered is
Following the plan of paper | we first investigate the the d’Alembertian operator, the source of the potetwiglis
gravitational field generated by a slowly moving isolatednot of compact support, OW,j=—4nGojj— VoV
source in itsnear zonewhich is defined in the usual way as +%5ijakvakv_ Indeed, we have included W; the stress
being a zone whose size is of small extent with respect to ensity of the(Newtonian gravitational field itself since it is
typical wavelength of the emitted radiation. Two distinct f th y d ) ﬁ +o. (Note that "
methods are used. The first one is a direct post-Newtoniaﬂ € Same order as;; Whenc— = (Note at paper
iteration(speed of light— + =) of the field equations inside used the notatiohV;; for a closely related but different po-

the source, and is valid all over the near zone. The secon@ntial; here we do not fol!ow paper Il but st!qk to the nota-
method consists of reexpanding w 4o a solution of tion of paper I) To Newtonian order the densities and poten-

the vacuum field equations obtained by means of the multiyals so defined satisfy the equations of continuity and of

polar and post-Minkowskian iteration scheme of R&f7], motion:
and is valid only in the exterior part of the near zone.

We denote the small post-Newtonian parameter by
e~v/c, wherev is a typical velocity in the source.g., the
relative orbital velocity of the two bodies in the case of a
binary system A remainder term of orde®(s") is abbre-  £rom these dynamical equations one deduces the differential
viated byO(n). In a vectorA* or a tensoB*”, the remain-  yentities
der term is denoted b@(n,p) or O(n,p,q), by which we

F7t0'+(7i0'i20(2), (24a

atO'i+(9j0'ij:0't9iV+O(2). (24b)

mean a term of orde®(n) in A° or B®, of orderO(p) in aNV+aV,=0(2), (2.59
Al or B or B'°, and of orderO(q) in B'. (Greek indices
range from 0 to 3, and latin indices range from 1 tpNost GV + W, =0(2). (2.5b)

of the notations used here are as in paper |I.

With the introduction in paper | of the retarded potentials
A. The inner gravitational field V, Vi, andW;;, a simple expression of the gravitational
ield h*? inside the source which is valid to some interme-

T« are the contravariant components of the stress-energy; .
iate accuracyD(6,5,6) was written: namely,

tensor(with dimension of an energy densitgf the material
source in some inner coordinate systext). The densities

: 4 4
of masso, of currento;, and of stresgr;; in the source are h%= — —V+ — (W;; —2V?) +O(6) (2.69
. il [
defined by c ¢
T00+ Tii 4
o=—c (2.19 h°i=—§vi+0(5), (2.6b
TO 4
Ti=— (2.1b h'lz—gwij+0(6). (2.60
oy =T1, (2.190  The field variable ish®=./-gg**— »“#, where g and

g*# are the determinant and inverse of the usual covariant
whereT" denotes the spatial trads;; T'/. These definitions Metricg,z, and where;®# is the Minkowski metrig(signa-
are such thatr, o;, ando;; have a finite nonzero limit as ture —+++). Note the important fact that there are no

c—+. From these matter densities one defines the reexplicit terms in Eqs(2.6) involving powers ofc™* which
tarded potentials are “odd” in the post-Newtonian senge.g., a term of order

~c7%in h% or h). This is because we have kept the po-

V=—47G0x'0, (2.29 tentialsV, Vi, andWj; in rgtarded form, without expanding
the retardation they contain whenr- + . The “odd” terms
in Egs. (2.6) could be easily computed using the post-
Newtonian expansions of the retarded potentials as given by
Eqgs.(4.4) below.

Paper | iterated the inner fiel@.6) from this intermediate
post-Newtonian order to the next order with the result that
(2.20  the field to the higher precisiod(8,7,8) could be written as

Vi=—47G0z 0, (2.2

W, =—4rGOR" 5

1 1
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167G — B Nap formed with/" spatial indicesL=i,i,---i,. The “order of

& MV, W) T+ A(V,W) | +0(8,7.8 multipolarity” / goes from zero to infinity for the “mass-

(2.7 type” moments M (t) and from 1 to infinity for the

- “current-type” momentsS, (t). The momentdM| and S,
where\ and A“? denote some explicit combinations of the are symmetric and trace-fré§TH in their / indices. The
inner gravitational potential¥/, V;, andW;; and their de- ~mass monopol&! is simply the total mass of the source or
rivatives. First, we have Arnowitt-Deser-MisnefADM) mass, the mass dipoM; is
the position of the center of maéa units of total mass and
the current dipoleS; is the total angular momentunM,
M;, and S are constant. Furthermore, we shall choose
M;=0 by translating the spatial origin of the coordinates to
which represents in fact the post-Newtonian expansion ofhe center of mass.
(minug the determinant of the metric, with term@(6) sup- Some external potentials playing a role analogous to the
pressed. Second, the components\6f read inner potentials but differing from them in both structural
form and numerical values are introduced. First, the poten-
tials V&, Vi, andV{* are given by their multipolar series

h*f=0g*

4 8
AV, W)=1+ =V F(W“—VZ) (2.9

0 14 8

A (V,W): - FﬁkV(%(V-I- Ee‘ —VﬁtV—ZVkﬂt&kV
2 S 2

~WindemV + 5 (41V)

1
+ =W NVm(HNVmt 39mVi) + ANV

parametrized by the multipole momerg (t) and S, (t):

*° /
Vext:GE ié’
=N

1 ( r
FMLt—E”, (2.113

2 5 (=) 1 r
. VieXt:_G/Zl I aLl{FMi(I})—l(t_E)
+ 23V I Wimm— Evakvakv], (2.99 i <y - . r
B 6 , /:l/T/TlsiabaaL—l i R g
A%(V,W) = ;[ WV (V= Vi) + ZﬂtVﬂiV] , (2.11b
(2.9b
S (=) 1 r
— 4 1 16 VE=G 2 —i—du-g TMIT o[ t— ¢
A (V,W)—? (9|V(9]V EéijakV&kV +Eg 2(9(|Vz9tV]) /=2 - r c
w /
— NIV = AN + 2V ) 27 1w ("
Vi Vi dkVidiV + 29 Vidy V) +G 3, o oy dag y faniSa| = g |
3
— 28 (V)2 = 8,V 3V (2.110

8

1 The notationd, is shorthand for a product of partial deriva-
+ 580V m( AN m= ImVid [ (299 tives, 9, =d; ;- d;, where ;=alox'. In a similar way
I -1=di -0, |, dal-1= a1, and so on. The super-
and represent the expansion of the effective nonlinear graviseript (n) indicatesn time derivatives, and the indices in
tational source of Einstein's equations in harmonic coordiparentheses are symmetrized. The potentials]) satisfy
nates, withO(8,7,8) terms suppressed. The overbah@nd  the source-free d’Alembertian equation and teeacy dif-
A% reminds us that these quantities are only determined uferential identities
to a certain post-Newtonian order. Tl@pproximate har-
monic coordinate condition is PAVAEAVEE ) (2.12a

95h*B=0(7,9). (2.10
P IV V=0, 2.12h

As we shall see, the post-Newtonian accuracy of the inner

field (2.7)—(2.10 is sufficient for our purpose. Furthermore\V;*is trace-freeV{*'= 0. Having defined these
potentials one introduces a more complicated potem@‘

by the formula

In the exterior we use a solution of the vacuum field equa-
tions which has in principle sufficient generality for dealing
with an arbitrary source of gravitational radiation. This solu-
tion is given as dnonlineaj functional of two infinite sets of
time-varying multipole momentdyi, (t) and S, (t). The in- + E&,& VXt Vext) (2.13
dex L carried by these moments represents a multi-index 2 % k ' ‘

B. The external gravitational field

Xt__ y yext -1
W=V Fg_ g

rB( _ &ivextaj VeXt



54 ENERGY LOSSES BY GRAVITATIONAL RADIATION ... 1421

The second term appearing here involves the retarded intdhis term is the solution of the linearizdgtacuum equa-

gral (2.3) but regularized by means of the analytic continua-tions on which is based the post-Minkowskian algorithm for
tion process defined in Ref27]. One multiplies the source the construction of the canonical metric in RE27]. The

by rB wherer =|x| andB is a complex number. Then apply- powers of ¢! in Egs. (2.17 are such that

ing the operatof ;' defines a function oB which can be h&=0(2,3,4). Finally, the termG®qgl, , in (2.15 is a
analytically continued all over the complex plane deprived ofparticular solution of the source-free wave equation which
the integers, but admitting there a Laurent expansion witthas to be added in order that the harmonic gauge condition
only some simple pole$27]. The looked-for solution is (2.16 be satisfied. It was proved in Appendix A of paper |
equal to the finite part @=0 (in shortFz_y) or constant that this term is of order

term ~BC in the Laurent expansion whedi— 0. This regu-

larization process is made indispensable by the fact that we qué‘;r(z)=0(7,7,7), (2.18

are looking for solutions of the wave equation in the form of
multipole expansions, which are valid only in the exterior of
the source and are singular when considered formally insid

the source. . o
) . work, investigating the 2.5PN order, the te(t18 cannota
t ext Xt
With the external potentia®®, V™, andWjj"one hasa  iori pe neglected. However, we shall see that the 2.5PN

result similar to Eq(2.6), namely, the expression of the ex- orqer is needed only in the sum of the 00 component and the
ternal fieldhf,, (where the notation “can” means that we are ¢ i

e b _ : atial trace of this term, i.eG3(q% i+ . Relyin
considering specifically the “canonical” construction of the oFr)1 OUr previous papers we kno(v?/CEtiR(ezl)t tﬂfé”(szgm is ?/na%e of
external field as defined in Sec. 4.3[@f7]) up to the inter-

. _ some retarded waves of the ty@gd r ~1X(t—r/c)] with sca-
mediate accurac(6,5,6): lar or dipolar multipolarity only £=0 or 1). Furthermore,
4 4 we know that the dependence en' of such a wave is
h% = — V& S TWEK—2(VeY2]+O(6), O(5+/1+/,— /) where/; and/, are the multipolarities

c c o . — — .
of the two interacting moments composing the wawe use

and thus can be safely neglected if we are interested in the
fhass multipole moments to 2PN order only. In the present

(2.143 the same notation as, e.g., in Appendix A of paper |; see also
_ 4 after Eq. (5.5 below]. With /=0 or 1 a term of order
hY =— V&4 0(5), (2.14h  O(7) necessarily hag’;+ /,=2 or 3. The term in question
¢ is made of the product of the mabt with the quadrupoles
) 4 M;; andS;; , or of the product of the mass dipdié; with the
hY ———V\/iejxt+o(6)_ (2.149 quadrupoleM;; . The first possibility is excluded because

o c* M;; andS;; are STF(thus no scalar or dipole wave with no
free index can be formgdand the second possibility does
not exist in a mass-centered frame whitge=0. So we have
proved that in a mass-centered frame we have

Because this expression has the same form agZ=6), the
nonlinearities in the exterior field will have in turn the same
form as Eq.(2.9). Up to orderO(8,7,8) we obtain the “ca-
nonical” field 2 00 i
_ G“(dcar2) T Yearz) = O(8), (2.19
hg;n:th;q1)+qulé;r(z)“‘fB=OD§l[rBA”V(VEXt,\/\/eXI)]

which is all that will be needed in the following.
+0(8,7,8, (2.15

satisfying the(exac} harmonic gauge condition
IIl. THE MATCHING BETWEEN THE INNER

d,ha=0. (2.1 AND OUTER FIELDS
In the last term 0f2.15 the symbolF5-, and the regular- A. Relations between inner and outer potentials
ization factorr® have the_same meaning as @13. The Our matching requirement is that there exists a change of

effective nonlinear sourcé&*” is given by Eqs.(2.9) but  coordinates valid in the external near zone and transforming
expressed with the external potential§, Vi*, and WS the inner gravitational fielh®#(x) given by Eq.(2.7) into
instead of the inner potential, V;, andW,; appearing in  the outer fielchf(Xca) given by Eq.(2.15. Let this change

(2.7). The first termGhg,, 4y in Eq. (2.19 is linear in the  of coordinates be
external potentials:

Xear X) =X+ @*(X) (CRY
Gh®  =— 4 vext (2.173 : . .
cand)— 2V ' where x* are the inner coordinates used in Sec. Il A and
x£., the outer coordinates used in Sec. Il B. The veet6r
oi 4 has been shown in paper | to be of order
Gheny=— Vi, (2.17
e*=0(3,4). (3.2
o 4
ij — _ __\/ext
Cheary =~ 2 Viy™- (2170 Because the two coordinate systemts and x%, are har-
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monic [at least approximately; see E¢2.10 and (2.16],  where the (reduciblé multipole momentsV:, V-, and
and becausé*?=0(2,3,4), in addition to Eq(3.2), we W are
have

Oe#=0(7,9). (3.3

1
_ _ _ _ VL(t)zf d3x§<Lf dzé,(z)o(x,t+z|x|/c), (3.89
The matching equations consistent with the or@¢sB,7,8) -1

read from paper | as

hoad X) = h%%(x) + 9%+ 2% 3, ¢°— 3,,(h%%*) + 3, ¢°F; p° 1
ViL(t)zf d3xfo dzé (z)oy(x,t+z|x|/c),
-1

+0(8), (3.43
. _ _ (3.8b
h2 (x) =h%(x)+ 9¢% + O(7), (3.4b
hil (x)=hil(x)+ d¢'l +O(8), 3.4 !
ca X) =00+ e (8) (349 Wh(t)=fB:Of d3x|x|Bfo ldzé/(z) aij
where both the inner and outer fields are expressed in the -
same(innen coordinate systemm*. We denote by the 1 1
linear part of the coordinate transformation: + m( VIV — §5ij(9kV(9kV (x,t+2z|x|/c).
= g* "+ 9" " — pH7d, ™. (3.5 (3.80

The nonlinear part of the transformation enters to this order

only the 00 componer(B.48. The matching equations were The notatiork, is for the trace-free projection of the product

used in paper | first to obtain the relations between the exat ~ spatial vectorsx, =x; - --x; . The functions,(2) is
ternal potentials and theultipole expansions of the corre- . ! 4
given by

sponding inner potentials. The insertion of the intermediat
expressions oh#” andh%; valid up toO(6,5,6) and given
by (2.6) and(2.14) yields

27+ b, 1 3
VeXt:M(V)+C(5‘t(PO+O(4), (36a 5/(2)_ 27,+1/! (1_2 )", f_ldzg/(z)_l-
(3.9
C3
VPt=M(Vi) = 7 die%+0(2), (3.6b

Some explanations of the expressidBs7)—(3.9) are in or-

c? _ _ der. First, notice that the expressions of the multipole expan-
W= M(W;j) — Zlaiel+ae'— 8ij (909" 3k@")] sions of the potentialy’ andV; whose sources have a com-
pact support are quite standard. They can be found in this
+0(2). (3.60  form in Appendix B of Ref[29] (but were derived earlier in

. ] ] an alternative fornj41]). Notably, the presence of the func-
The script letterM 'refe.rs to _the multipole expansion. Note 5, 5,(2) is due to the time delays of the propagation of the
that the f.'rSt equation Is valid to post-Newtonian orfisee waves with finite velocityc inside the source. By contrast,
the. remaindeO(4)] wh|!e the two others are .Val'd to New- the expression of the multipole expansion of the potential
t(_)nlan order only[remalnderQ(Z)]. The multipole expan- W;; whose source extends everywhere in space is more com-
sions ofV, Vi, andW;; are given by pIi(J:ated. The second term in Eq3.70 ensures that
-y 1 r M(W;;) satisfies the correct equatipdeduced from2.29]
M(V)=G 2, v a| =V L(t— —” (3.73  outside the source, namely, OM(W;)=
/=0 7 At ¢ — MV GM(V) + 38, M(V)GM(V),  where  the
right side agrees numerically with d;Va;V+ gai,-akvakv

+

+eo /
M(V)=G Z %aL EV iL(t— E” (3.7b outside the source. This second term involves the multipole
= r ¢ expansionM (V) of the inner potential and nat itself. This
i . is in conformity with the use of the regularized operator
MW)=GS ia EWL " FOR* which is defined only when acting on multipole ex-
(Wij) = o 21 TH T C pansiongsuch as in Eq(2.13]. On the other hand, the in-

tegrand of(3.8¢ involves the noncompact supported source
of Wj;, where appears the potentidlitself, i.e., not in mul-
tipole expanded form. Thus the integrand(8f89 is valid
everywhere inside and outside the source. Very far from the
source it diverges because of the presence of the product

x, of / spatial vectors, behaving like&|” at spatial infinity.

+fBOD;1{ rB[ — BM(V)HM(V)

+ %&j(}’kM(V)o’*kM(V)H, (3.79
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The well-defined meaning of the integral results from theX®° was rightly neglected in paper | but has to be considered
presence of the regularization faciod® and the finite part here since it will contribute to the mass moments at 2.5PN
symbol. We notice that nad hocprescription is necessary in order.
order to obtain the multipole moments in a well-defined form  We are now in a position to write down a matching equa-
even in the case of a noncompact supported source. This i®n valid up to the neglect 0D(8,7,8) terms. The equation
proved in paper I. is obtained by insertion into Eq&3.4) of both the inner field
h#¥ given by (2.7) and the outer fieldh%,;, given by (2.15.
B. The matching equation Use is made of the link derived i{8.13 between the exter-

. o nal and internal nonlinearities. We find th@t*” cancels to
The relationg3.6) linking V&<, V&, and\/\/ﬁXt to the mul-

. . . the required order the nonlinear part of the coordinate trans-
tipole expansions\(V), M(V;), and M(W;;) serve us in

. . A - formation, so that only the linear pasip”” given by Eg.
reexpressing the nonlinearities in the external metric in term;;3 5) remains. The resulting matching equatifextending

of the potentials belonging to the inner metric. The result Ofthe less accurate E¢3.35 of paper | reads as

paper | is

_,uv ext X :_/.LV 2% » » _ 167G — —

AR VEEWE) = A (M(V), M(W))+00 +O(8’(73'8i’0) Ghiarig)+ G20l =0g* MV, W)TH"+ ARV, W)
where the components of the tengd#” are given by — Fo— DR {rBAR(M(V), M(W))]

— X"+ 9p*"+0(8,7,8. (3.1
8 o
Q%= = 5| M(V) e+ M(V)) 0= 23, (M(V) ¢#)
There are two new terms with respect(®35 in paper I

+0;¢°3;¢°, (3118  G®glany in the left side, and-X* in the right side which
are both terms of 2.5PN order. Now, by exactly the same
Qoi=0Qli=0. (3.11h  reasoning as in paper | one can transform the difference be-

tween the two retarded integrals in the right side into
The only nonzero component of this tensor is the 00 compoan explicit multipole expansion parametrized by some mo-

nent which is of order ments7{**(t): namely,
Q%=0(6). (3.12 4G (=) [1—
_ GhAY  +G2qh = — — >, ~——d| —T*"(t—rlc)
This is becauser®=0(3), ¢'=0(4). Both sides of Eq. cand) can?) ct <o Tt

(3.10 are multiplied byr®, and one applies afterwards the
retarded integraﬂ];l and takes the finite part &=0. We
find

— XM+ 9o+ 0(8,7,9. (317

These moments are given by
fB:ODle[I‘B/vw(VeXt,WEXI)] .
’]f”(t)=]—"B:0f d3x|x|B§<Lf dzs,(z) ™(x,t+2|x|/c)
-1

= Fa—oOR [rBA*" (M(V), M(W))] 318

+ QP+ XP 4+ 0(8,7,9, (3.13

where 7#” denotes the total stress-energy tensor of the ma-

where one must be careful that an extra tettf’ with re-  terjal and gravitational fieldévalid up to the considered pre-
spect to paper | arises whose components are given by cision),

X0= Fo_oOx [ rB00%— %, (3.143 B @
TRV, W) =NV, W) T+ + APV, W),
0i _ yij — 167G
X*'=X"=0. (3.14b (3.19
The only nonzero component of this term is the 00 compo- = .
nent, which satisfies which is conserved in the sense
OX%=0; X%=0(7). (3.15 9,™"=0(3,4). (3.20

The fact thatx® is a (retarded solution of the source-free |t is important to note that the effective stress-energy tensor
d’Alembert equation is clear from its definitiad®.143 and 7% is a functional of the potential¥, V;, andW;; valid

the main property of the operat@i;* which is the inverse everywhere inside and outside the source. There is no con-
of O (when acting on multipolar sourcesThe fact that tribution of the multipole expansions of the potentials in the
X% is of order O(7), that is, exactly one order it ! final result(see paper)l

smaller than the order of the correspond@d’, is not im- The left side of the matching equatidB.17) is a func-
mediately obvious but will be proved below. The quantity tional of the original multipole momentdl, andS, param-
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etrizing the exterior metric. On the other hand, the right sideholds. This is nothing but the vanishing of thedp compo-

is a functional of the actual densities of mass, current, andient of the linearized Riemann tensor when computed with
stress of the material fields in the source. To find the explicig$5'9% g ,&,+d,£,, . Applying (3.24 to the gauge term of
expressions oM andS, in terms of these source densities (3.21) and using the form of the multipole moment decom-
we decompose the right side into irreducible multipole mo-position th@;n(l)one finds

ments. Inspection of the reasoning done in Sec. IV A of

paper | shows that this reasoning is still valid in the present,

more accurate, case. As a result we find M =1+l +0(6), (3.253

Ghigy[ML,S ]+ G%qkin= Ghlarp[L,IL]— X+ 9gm”
+0(8,7,8, (3.21)

S, =J, +0(4), (3.25h

. . . . whereél | in the mass moments is of 2.5PN order and comes
where the last term is a linear coordinate transformation aSom the decomposition 0K (which, we recall, is a re-
sociated with the vectag“= ¢*+ w* wherew* is the same  5rqed solution of the wave equatjomto multipole mo-
as in Eq.(4.4) of paper I. The linearized metriGht;,1)in  ments according to
the right side takes the same expression as in the left side but
is parametrized instead &fl, and S, by the (STF source M

multipole momentd, andJ, given by 4G (-) [1
- - XOO:?_/E:O /Téﬁ_ F5I ,_(t—r/c) . (326)

S

1
I,_(t)=]—"B:oJ d3x|x|Bf dz
- There is no contribution coming frorG2q, ., in the left
4(2/+1) R side of(3.21) thanks to the result proved in E®.19 in the
T+ 1)(2/+3) 8/ +1(D)XiL 92 case where we are using a mass-centered frame. The result
(3.253 generalizes to 2.5PN order the resilt7a of paper
2(2/+1) A o= I. In a future work we shall investigate more systematically
T (/+2)(2/+5) 6/ +2(D)XijL %) the relations linking the exterior momerits_ andS; to the
source momentl, andJ, as they have been defined here.

X (x,t+2|x|/c), (3.223

_ IV. EXPLICIT EXPRESSIONS
8,(2)€ap<i XL -1>ap OF THE MULTIPOLE MOMENTS

1
JL(t):FB:Of d3X|X|BJ dz
-1

Two things must be done in order to obtain the expres-
sions of the momentM, and S, of Egs.(3.25. First, one
must expand wheo— + o the source moments andJ, of
Eqgs.(3.22 up to consistent order. Secondly, one must evalu-
ate the 2.5PN modificatiodl entering the mass moments

. . 3.253.

To obtain these expressions from E§.17) one uses some ( 3

techniques similar to the ones employed by Damour and lyer

[52] in the case of linearized gravity. We have posed A. The source multipole moments

2/+1 ) _
- CZ(/+ 2)(2/+ 3) 5,/+1(Z)Sab<i/XL—1>ac‘9tEbc

X(x,t+2z|x|/c). (3.22b

The post-Newtonian expansion of the source moments
— (3.233  (3.22 is straighforwardly performed using a formula which

c was given in Eq(B.14) of Ref.[29]: namely,
__ o 1 _
giz?, (3.23h fﬁldzé/(z)ﬁ(x,t+z|x|/c)
S=. (3.239 o @ B
— 2
=200 Sz gy A

The equatior(3.21) can be solved uniquely for the multipole
momentsM, andS, . To do so it suffices to notice that for x4

V— v v _ v A : :
any gauge terndét’=g* £+ 9" ¢4 — p#v o, & the identity + 8c%(2/13)(2/15)

IS (x,1)+0(6). (4.1

1 : _
T 221 0500 4 skk 9£0] 4 9 2200 _ _
2 i€+ 9ET]+ dp[ 9067 + 9,07 ] Explicit expressions of the densiti&s 3, , and; have also

to be inserted intd, andJ, ; these are easily evaluated with
the help of Eqs(2.8), (2.9), (3.19, and(3.23 with the result

+ 32 ag‘i+iﬁii(ag°°— &R =0 (3.29 °TE
0 2 (identical to paper)l
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— 8 1
2: 1+ ?—— F(Wn —VZ) g— mo”ivaiv
2 2 1 2
5|~ VRV 2ViaaV - W, dEV = S (aV)
7
— 1 3
Ei: 1+ 32— 0'i+ m akV((?in_ r?kV,)-I- Z&tV&,V

+0(4), (4.2b

4 8 ,
1+ V= (Wi —V?)

IL(t):]:B=OJ d3x|x|®

. 1 . 1 .
XLO'_ —’7TGC2 X,_o"iVo'?iV—i- —7TGC4XL

1

1
" 4G "2
(4.20

Note the important fact that the remainder in E4.1) is
0O(6) and notO(5), andthus does not contribute to the
2.5PN ordefsimilarly, the other remainders i#.2) will not
contributgd. With Egs.(4.1) and (4.2) we recover the same
expressions as in Eq§4.12) and (4.13 of paper | for the
source moments in raw form:

—VaV=2V3dV — Wi a5V

1 7 | |2‘ 4v 1
2 52
IX| %, X 2(2/+1)|x/ %, 5 42/+ L)X, 4V
tod 5 z ho— 71— 7 VO 2 || 1+ — |0
8c*(2/+3)(2/+5) cH(/+1)(2/+3)(2/+5) c(/+1)(2/4+3) c
b A= + 2 avav] |+ 227+ D px ! ——gVo,V|[+0(6), (4.3
7TGC2 k ( iVk k i) 4 t i 4(/+1)(/+2)(2/+5) UI] 475G ( )l ( . 3
(D)= FaoEapei fdx|x|Bx 1+4v |X| ARE 25 + X A V(9pV aV)+3avav
L B=0%ab<i, L-1>a c2 2 (2/+3) t9 T g2 L 1>a %k bVk™ %kVb tVOb
(2/+ D)X —1>ac 1
T2 +227+3)" Opet 7 Gabva V|t +0(4). (4.3b
|
The remainder©(6) andO(4) are negligible. The retarded
potentialsV, V;, andW;; are then replaced by their post- Uxt)= Gj =X (T(X 1), (4.59
Newtonian expansions whean— +o. It is easily seen that
the accuracy of the expansions\fandW;; given in paper |
is not sufficient and has to be pushed one order farther. The X(x,t)=GJ d3x'|x—x'|o(x' 1), (4.5b
relevant expansions are
Ui(x,t —Gj ax "t 4.5
i(Xt)= ng(x ), (4.50
V=Udt oo X GK<3>+O(4) (4.43
2c2t" 3c? ’ ‘ 1
P”(X t) GJ| 0'” 417G (9|U(9]U
=U. 1
V;=U;+0(2), (4.4b — §5ij‘9ku‘9ku) (x',1), (4.50
3 3 and where the new terms involve the trace-free quadrupole
Wij=Pij — Q T3 5 K®+0(2), (449 momentQ; and moment of inerti& associated with the

mass distributioro: namely,

where the Newtonian-like potentiald, X, U;, andP;; are
defined as in paper | by

Q”(t):f d3XO'(X,t)§(ij, (46@
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K(t)=J Pra(x,1)%. (4.6D I =1+ 61, +008), “.79

3 =3 +0(4), a.7b
When substituting the expansiof%.4) into the source mo- ~ ~ )
ments (4.3 all the terms coming from the Newtonian-like Wherel, andJ, are the 2PN-accurate moments which were

potentialsU, X, U;, andP;; lead to the same expressions asobtained in paper |, and whed _ denotes a 2.5PN correc-
in paper I, while the terms coming from the mome®s tion term[which is distinct fromsl found in Eq.(3.253].
and K lead to some correction termi@ 1, only). Let us  After the transformation of_ as in Sec. IV B of paper | one
write can writel, andJ, in the form

X%, 42/ +1)%,

T2 )T A2 3

4 4u
O'+?(O'”U_O'Pii) 1+€2— (O

TL(t):fszoJ d3X|X|B: XL

+ 2t oUMaU—au +38U¢9U) + X% 4 2(2/+1)[x| %, 2
76| ALAUkm A+ za04 8c*(2/+3)(2/+5 7 H/+1)(2/+3)(2/+5) 17
22720 Xij 07 L UaU|+ —— % |~ P, 2U—2U,0,0U
T/ 2)(27+5) Nk i T gpg YAV | T g aX TRidiY T 2lidd,
3 2 2

+20U0Ui= 5(3U)2= U U |, (4.83
3 3y|y|Bl & 4 |X|?X 154 5 1 | 3
JL(t):fBzosab<i/ d X|X| XL -1>a 1+ ?U opt —2C2(2/+3) &tO'b"r‘ —’7TGC2XL_1>a &kU(&bUk—akUb)+Z&tU&bU

(2/+ )X —1>ac 1
T 7227 +3) 2| Tt 2z WYY |- (4.8b

The momentEL andjL con_stituted the centrgl resuIF of paper - G a2 3) o 1 (3) 2120

| and they were the basis of the application to inspiraling 5|L—§f d*| zKPox = 5= Qi o dLIX "] -
compact binaries in paper Il. On the other hand, the 2.5PN (4.11)
correction termél_ is obtained by simple inspection of Eq.

(4.3a. A simplifying fact in obtainingsl, is that the mo- Expanding the spatial derivatives in the second term yields
mentsQ;; and K are only functions of time so that their finally
spatial gradients vanish. We obtain

~ G2
=—1 kP, — (3).
J 2G ~ P .2 5|L CS[ 3K QL 2/+3Qk<|/QL—l>k
§|L:fB:0f d3X|X|B @K(B)UXL—FZ CSQi(j )XLaijU .
i A9 /-1
“.9 Y2 <ii, Ki-2> (4.12

The second term is an integral haviagpriori a noncompact h h q
support. However, it can be transformed into a manifestly’V'€'¢ We have pose
compact-support form by means of the formula
) Qu(t)= f d3xox, , (4.133
X|_ 2 ~

3 B _ 2
Fooo| MNP == g VL. @10

KL,Z(t)=j d3XoX?% 5. (4.13b
This formula is proved by noticing that the integral defined

byBIB=fd3>§|x! PR x—y| "t is g[oportmnal to a prefactor Thege definitions are in conformity with the earlier defini-
|y|® and Saf'ff'e$y|B:f47T|y| YL These two facts imply  tions (4.6). (The brackets< > denote the STF projection.
that 1g=A,*(—47|y[®y,) where A" is defined as in
Eq. (39 of Ref. [27], and thus that
lg=—4x|y|®B"2%y /(B+2)(B+2/+3), which vyields —
(4.10 after taking the finite part. The more complicated for-  In addition to the previous contributiofl, which is part
mula (4.23 in paper | can interestingly be compared with of the source multipole moments, we have seen in Eq.
(4.10. Thanks to(4.10 we can write (3.253 that there exists also a 2.5PN contributiéin enter-

B. The 2.5PN modification of the mass moments
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ing M. Evidently the contributionsl, is as important as  The (noncompact-supportgdtress density;; is defined by
Sl in that it contributes also to the asymptotic wave formEq. (4.29. Having written(4.15 and(4.16 and knowing the
depending on the moments, . [Note that the terminology explicit multipole decompositions off" and Vi given by
referring tol _ andJ, asthemultipole moments of the source Egs.(2.11h and(2.1109, it is a simple matter to compute the
by contrast toM, and S, which are viewed as some inter- tensorsW,,... Z, by decomposition of the integrands
mediate moments devoid of direct physical significance is, ¢; and §<L2ij entering (4.16) into irreducible tensorial
somewhat arbitrary. All that matters in the end is to expresgieces with respect to theif+1 and/ +2 indices. We do
(by any convenient meanshe asymptotic wave form in not detail this computation but simply give the result, which

terms of physical quantities belonging to the source. is
The 2.5PN termsl results from the multipole decompo-
sition of the quantityx®® which is itself determined from the 2/+1 3o
other quantity2%; see Eqs(3.26), (3.143, and(3.113. The W'-:(/+ 1)(2/+3) d™>XiLoi+0(2), (4.173
first step in the computation @, is to find the vectogp* of
the coordinate transformation between the inner and external 2/+1 o
metrics. Sincep” is of orderO(3,4) and is d’Alembertian- XLZZ(//+1)(/'+ 2)(2/+5)~7:Bzof d3X|X|BXijLEij
free to orderO(7,8) [see Eqs(3.2) and (3.3)], there exist i ' ’
four sets of STF tensorgV, (t), X, (t), Y. (1), and Z (t) +0(2), (4.179
such that
p _ 3/(2r-1) J s ioigl < —
0=-205 UX, Bwit-rio) o), (414a SvESVFZEs Tl Rl K
c’ o r
1. —
¢ = & A /0 diL rXL(t r/c) i1

Z =— me:Of d3X|X|Baab<i/;(Lfl>bcEac

r

AG o (—) 1
+F/21 Vi (&L—l[_YiL—l(t_r/C)

+0(2). (4.179
+%SiabﬂaL—l[lsz—l(t—f/C) +0(8). The tensorW, is manifestly of compact-supported form.
+1 r There is agreement for this tensor with the previous result

(4.14n  obtained in Egs(2.223 and(2.199 of Ref.[29]. As they are

written, the other tensorX,, Y, , andZ, do not have a

The powers of ¥ in front of these terms are such that compact-supported form. Howevel, can be rewritten
W, , ...,Z, have a nonzero limit when— +c. We com-  €quivalently in such a form:

pute these tensors to the lowest order in. Vo do this let us

recall the relations betweevi™ and W and the multipole v, — [ ¢3¢ ﬂ)‘( PYP o EUU
. . . L //+1)(2/+3) iLvtYi L ii 2
expansionsM(V;) and M(W;;) as obtained in Eqg3.6b (
and (3.69. We have +0(2). 4.179
(- [1 c? The transformation of into the form(4.17¢ is done using
ext__ = _ — 9.0 L
Vi —GZO /) L rViL(t ric) 4 die"+0(2), the resultq4.2) and(4.18 of paper I.
(4.153 The quantities®® and X°° can now be evaluated. As is
clear from its structure and the form @f* and M(V),
-y [1 4 ‘ M(V;), the quantityQ® is made up of a sum of quadratic
VﬁXt= G/zo /T&L th(t— ric)|— Z[(M,J +0,¢ products of retarded waves. We shall write
— 8ij(909°+ a1+ 0(2) (4.15D o_ts |l 3l X
ij (do@™+ dye : : Q :;% dp| —F(t=rlc)|dg| ~G(t—r/c)|+O(10)
where we have transformed the relation Wﬁ“ into a sim- (4.18
pler relation forViert, and where the moments take to lowest\yhereF andG are some functions of the retarded time sym-
order the form{see Eqs(3.80 and(3.80]: bolizing some derivatives of the function& and V- and
W, X_, Y., andZ, (all indices suppress@¢dWe assume
ViL(t):J A3 o (x,t) + O(2), (4.163 (as can always be dond¢hat the derivative operators are
trace-free: apza<ilai2-~-aip> and aQsa<jlaj2~--ajq>.

The power of 1¢ in front indicates the true order of magni-
tude of Q% whenc— += [see(3.12], and the remainder
0O(10) comes from the uncontrolled remainder terms in

w h(t)=}'Bzof d3x|x| B%LE_”(x,t)JrO(Z).
(4.165  (4.14. To evaluateX® we need to know the action of the
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operatorJ—‘B:OD,gerD—l, wherel denotes the unit opera- G2 3) 2 JA(D) )

tor, on the generic term composiff°. Actually we shall be =51 3K7Q-zK QU+ 565 Q1>
interested only in that part of°° which is strictly larger than

the remainderO(8) we neglect in(3.16. In that case, a +0O(7). (4.29

useful formula shows that all the terms 2% which are
composed of the product of two waves with multipolarities
p=1 and ¢=1 yield negligible terms ifX. This formula,
which is proved in Appendix A, reads

Summarizing the results so far, we have explicitly com-
puted the mass multipole momeMt, given by Eq.(3.253.
It contains a 2.5PN contribution issuing from the source mo-
ment || and computed in Eq4.12, and also the direct
J 2.5PN modification computed in E¢4.24. We can write

(fB_ODerBD—Jl)[éP ~“F(t—r/c) aQ{ G(t—r/c)

M, =1,+Al_+0(6) (4.25

+0(3) (4.19 WhereT,_ is given by Eq.(4.83 (this was the result of paper
1), and whereAl, =&l + 8l is given by

~ 1
— 1 1
S7Q F(apyolﬂ 'G+ 8yqFG™)

(6p,q is the Kronecker symbapl When bothp=1 andqg=1 G4 >

the right side of(4.19 is of orderO(3) relatively to the left A L= [ K®Q, — _K(Z)Q(l)

side and the corresponding termXf° is of negligible order

0(9). We canthus limit our consideration to the terms in /(/—1)
000 involving at least one monopolar waye=0 or q=0. — 2/—_1K<'-—2Qi(f)71i/>_ 2/'+3Q§<3<)i/QL—l>k
We insert into Eq.(3.113 the multipole expansion§3.73 ’ 4

and (3.7b together with those ofand ¢' given by (4.14). 4/
By straightforward application d#.19 to each of the result- + ?G@/QL_D +0(7). (4.26
ing terms one finds
16G2 (— )/ 1 We recall that the tenso®, , K, _,, andG; are defined in
X00= 7 P W<2>V —wdy D Egs.(4.13 and(4.23h. The low orders iy’ read
/=0
4G
i Al=-—=MK®+0(7), (4.273
+/YE) VL 12) [+0(9), (4.20 3c
wh_ere the functiondV(t) anQYi(t) are given by(4.173 in Ali=4—GsMGi(2)+O(7), (4.27H
which /=0 and by(4.179 in which /=1, and where we 3)

have used the law of conservation of mass implying

VN=0(2) and our assumption of mass-centered frame im-, , _ 4 3) 2 @A _ B3_ A3

plying VW=0(2). [See the definitions of the functions Al=gs| 3KTQu—3K7Qy KQj Q"<in>k
L L ; .

V- andV in Egs.(3.89 and(3.8b); in (4.20 we denote +0(7), 4.270

Y.=V'andVy, _,=V""1 for the function(3.83 although
this notation is_ slightly ambiguous wit{8.80).] To lowest  \yhere M is the total mass such th®=M+0(2), and
order the function (t) reduces to where we have used a frame such tQat O(2). Thequa-
_ drupolar correction terni4.279 will contribute to the as-
=QL+ . . .
N=Qut0(2), (4.29 ymptotic wave form at the 2.5PN order. The dipolar correc-

whereQ, (t) is the moment defined in E¢4.133. On the  ftion term (4.27h will be used to determine the center of
other handW(t) satisfies mass of the system at this order.

1 1 -
W= EJ' d3XXi0'i+O(2)= EK(l)"'O(Z): 4.22 V. THE 2.5PN-ACCURATE GRAVITATIONAL

LUMINOSITY
whereK(t) is the moment of inertig4.6b). Similarly, one The mass and current multipole momeMs andS, are
finds determined up to the neglect &f(6) andO(4) terms, re-

spectively, and can be used to compute the gravitational lu-
minosity (or energy loss rajeof the system at 2.5PN order.

Yingi(l)Jfo(Z) (4233 To compute the wave form at the same order would neces-
sitate a more accurate determination of the current moments,
where the vecto6;(t) reads up to the neglect 0O(5) terms. We shall leave this compu-
tation for future work.
_ 3 ) Let X#=(cT,X) be a coordinate system valid in the
Gi_f dX| 0iX"— 5 XX (4.230  npeighborhood of future null infinity and such that the metric

admits a Bondi-type expansion wheR=|X|— +o with
With this notation we end up with the 2.5PN correction termTg=T— R/c staying constant. S4&2] for the proof(within
Sl [compare(3.26 and (4.20], the present formalisimof the existence and construction of
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such a coordinate system. The relation betw&grand the XnLaYnLNM(Lal)Mf_aZ)' ) ,S(Lan)_ (5.5
retarded time of the harmonic coordinates,, is ! 2 n
I'can 2GM l'can ; i i i .
Tr=tear— — — —3—In| = | +O(1/r ¢y +O(5), (5.1)  The notation in Eqs(5.4) and(5.5) is the same as in paper |;
¢ ¢ cb in particular,>/; denotes the total number of indices on the

n moments in the term in question, aBd’; denotes the sum

be consistent with the 2.5PN precision one should considg/iJrS wheres is the number/of current moments. He_re we
also the next-order post-Newtonian term in E8.1); how- shall need only the fact that/, is larger than the multipo-

ever, this term will not be needed in the followifgt is '@ty /by an even positive integerk2which represents the
sufficient to control the transverse and trace-free projectioffumbper of contracted indices between the moments compos-
of the leading-order term-R~ ! in the spatial metric. A mul- N9 the term(with the current moments carrying their asso-
tipole decomposition yields a parametrization into two andciated Levi-Civitasymbo): i.e.,

only two sets of STF momentd, andV, which depend on

Tr and can be referred to as the “radiative” or “observ-

able” mass and current moments. These are chosen so that 2 /=0 +2k. (5.6)

they reduce in the limit— + to the /th time derivatives -

of the ordinary Newtonian mass and current moments of the

source. The total luminosity=L(Tg) of the gravitational
wave emission when expressed in termdJefandV, reads

whereb is some arbitrary constant time scal@ctually, to

With the latter equation it is simple to control the type of
nonlinearities which are present in the radiative moments to

[24] 2.5PN order. Since the reasoning has already been done in
oo , paper | to 2PN order we consider only the case which is
L= 2G+1 : (/+/1/)(/+”2) udu® further needed, that of a term of pure 2.5PN order in the
e T (/=D N2+ D mass-type quadrupole momedy; (having/=2). By Egs.
4/(/+2) (5.49 and (5.6) this case corresponds tor8{1)+2k=5.

ZVf_l)Vf_l)]. (5.20  The only solution .isn=2. (quadratic nonlineariy and
k=1 (one contraction of indices between the momgnts
With two moments, one contraction and=2 one has
/1+/»=4. Furthermore, one of the two moments is non-
static, hence”,=2, say, so we obtain only two possibilities,

D D2 s e

ConsideringL to 2.5PN order one retains i(5.2) all the
terms up to the neglect of a remaind@¢6), andfinds

(71, /2)=(1,3) or(2,2. The first possibility is excluded
GJ1 (D 111 (L)1) 16 (1)y (1) Seae A ; ;
£=; gUij Ui; +Ez 1_89Uiijijk+4_5Vij Vi because the moment havin¢, =1 is necessarily the con-
stant mass dipol&1; which has been set to zero. There re-
11 U U +iv.<.1>v.<.1> +oe6)). mains the sef:ond pqsabﬂm_ﬁlzfzzz WhICh_ corresponds
c?l 9o72- iikm~ijkm ™ gg Vijk Vijk either to the interaction between two mass-type quadrupole

momentsM;; or to the interaction of théconstant current-
(5.3 type dipoleS; with Mj; .
. . We combine these facts with the study done in R&f]
Because the powers ofcligo by steps of two inZ, this of the occurrence of “hereditary” terms in the asymptotic

expression is in fact the same as already used in paper I. metric at the quadratic approximation=2. Two and onl
The only problem is to find the relations between the ra- d PP ' y

diative momentsJ, , vy and the momentst,, S, we have 0 SR B VRS AN T B DEE LR
previously determined. We rely on previous papgi29,30 9 P

. . nonstatic multipoles, and the nonlinear “memory” term
and paper )l having written the general form of these rela- .~ . . .
tions as which is made of the interaction between two nonstatic mul-

tipoles. The tail terms are of order ® and have been in-
G-t cluded in paper I, but the memory term arises at the order
UL(TR =M (TR + 2, = m—prs-—%n(Tr), (548 ¢ ° (in the radiative quadrupole;;). The latter term can be
n=2 C - straightforwardly computed from Eq$2.4239, (2.21), and
(2.113 in Ref.[30]. An equivalent result can be found in

2ai i, Va-2(TR) =2aii,_ S{_5(TR) Ref. [43]. For discussions on the memory term, see Refs.
G-t [44,49. Itis clear by the previous reasoning that the memory
n 3(n—1)+2/i—/YnL(TR)a (5.4b) term represents the hereditary part of the 2.5PN contribution

n=2 C in the radiative moment;; , corresponding to the interac-
tion of two momentsM;; . Associated with this term there
where the functions(,,, andY,_ represent some nonlinear are also some instantaneous terms having the same structure
(and in general nonlocefunctionals of the momentsl, and and exhaustinga priori) the possibilities of sharing time

S, . The powers of ¥ in Eqgs. (5.4 come from the dimen- derivatives between the two moments.

sionality of the functional¥,_andY,_, which is chosen to Gathering these results with the results of R80] and

be that of a product of multipole moments and their time paper | we obtain the expression of the radiative quadrupole

derivatives. We can write symbolically Uj; to 2.5PN order as
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Uij (TR =MP(Tr) + T T e MY GM<3> —2MPMP + (a+BMEIM (P
ij(Ir ij UR —3_ 711N %b 12 5 5 [(a DIMIM 7+ (a+ B)M "M ¢
G| 2(T +(B+VIMEMP + yMEIM +ASM D e ]
X(Tr=7)+ 5 —7J7 duMZ (uMZy(u) * "
+0(6) . (5.11

3 2
Ivl(k<)|M( )k+:8ME<4<)|M(1)k+ 7Mk<)|MJ>k

Note that this involves the term coming from the nonlinear
memory which is instantaneous in the energy Igtse
memory effect exists only in the wave foynThe tail con-
The constanb in the term of ordec ™2 (tail integra) is the  tribution depends on all instanfsg— 7 anterior toTr and
same as in Eq5.1). The memory term is the integral in the reads
braces of ordec™°. The qualitatively different nature of

these two integrals can be clearly understood when taking ,
the limit T— + o corresponding to very late times after the =t~ 5
system has ceased to emit radiation. In this limit the third
and higher time derivatives d¥l;; are expected to tend to
zero, so the tail term tends to zero, while by contrast the
memory term tends to the finite limit
—(26/7c%) T 2duMP M (¥, (see Refs[44,45). The coef-
ficients «, B, y, and\ are some purely numerical coeffi-
cients in front of instantaneous terrwhich depend ok

+AskM£;‘Lisj>km’ +0(6). (5.7)

4G°M [ 1
{ CSM“)(TRf drM{P(Tr— T)|I’1(T)

b M@Te [ MO (Tae Pin| 2
Tages Miik(Tr) , 97 iik(Tr—7)In 2b,

+ 20 st )J+deSi<5)(T T
45c5 1 R ] IR 2bg

only). These coefficients can be obtained by a long compu-

tation using the algorithm of Reff27]; however, we shall not + 0(6)} ' (5.12
need them in the application beldgthey will be computed in

a future work. The higher-order radiative moments take where we have set for simplicity

similar expressions but are needed only to a lower precision.

The relevant expressions fal;;, andV;; have been written b,=be 12 p,=pe 90 p,=phe 6 (5.13

in paper |, and read

Ui T =M+ o | s In( e
XM(Tr=7)+0(5), (5.89
Vij(TR) =S (Tg T In(ZL +g
xS (Tr=1)+0(5), (5.80)
while the other needed moments are given by
Uijkm(TR) =M {jin(TR) +O(3), (5.99
Vijk(Tr) =S (Tr)+O(3). (5.99)

The expression&.7)—(5.9) of the radiative moments are

to be inserted into the gravitational luminosit§.3). This
leads to a naturalthough not unigquedecomposition ofC
into instantaneous and tail contributions,

L= Linstt Liail - (5.10
The contributionZ;.,s; depends only on the instafi and is
given by

4 4
MM 22

G 1
Cra=x [ SMEMP+ 5 s.<3>s.<3>}

21189

1
+ 1| gg7oM

9072 IjkmlvI I(jEI)()m—’_ _Sljk SI(J4k)

The luminosity (5.10—(5.13 in which the moments have
been determined in Sec. IV is our final result for the general
case of asemirelativistig isolated system.

VI. APPLICATION TO INSPIRALING COMPACT
BINARIES

The authors of Ref[21] (paper 1) applied the results of
paper | to an inspiraling compact binary system modeled by
two point masses moving on a circular orbit. Here we do the
same for the results derived previously and obtain the energy
loss rate and associated laws of variation of the frequency
and phase of the binary to 2.5PN order.

A. The equations of motion

The equations of motion of two point masses at the 2.5PN
approximation are needed for this application. These equa-
tions have been obtained in the same coordinates as used
here by Damour and Deruell87] studying the dynamics of
the binary pulsar. For inspiraling compact binaries one needs
only to specialize these equations to the case of an orbit
which is circular(apart from the gradual inspinalA relevant
summary of the Damour-Deruelle equations of motion is
presented for the reader’s convenience in Appendix B. Here
we quote the results valid for circular orbits, following
mostly the notation of paper Il. Mass parameters are denoted
by

my mo
X =— X2— y
m

mEm1+m2, m

VEX]_XZ (61)
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(the total mass is henceforth denotedrbyto conform with  of (6.5 by x'. Using (xv)=0(5) and d(xv)/dt=0(10)
paper I). The individual positions of the two bodies in har- [becaused(xv)/dt is of the same order as the square of
monic coordinates arg; andy,. Their relative separation reaction effectswe find
and relative velocity are
U=rwypnt O(6). (6.7
i\ _dx : i i
X=Y17 Y2 V=gt (6.2 Finally, we write the result for the orbital energy
E=E 25PNentering the left side of the energy balance equa-
A small ordering post-Newtonian parameter is defined to bdion dE/dt= —£N+0(6) derived in Eq(B10) of Appendix
B. This energy is computed from Eg&6) and (B11), in
Gm which one uses the circular orbit assumption, together with

Y= 162 (6.3  (6.7). The result is

2
with r=|x|. Next we use the fact that the origin of the E:_C_m,,y 1_5(7_,,)7_3(7_49,,_ 12) 2
coordinate system is located at the center of mass of the 2 4 8

binary. This means thd¥;=0 whereM; is the dipole mass +0(6).

moment of the external field. By Eqg}.25 and(4.27 this

meansl;+Al;=0(6) wherel; is the dipole moment which There are no terms of order®2=0(5) for circular orbits
was computed in paper (beforeexpressing it in the relative pecause the tern®(5) in Eq. (B11) is proportional to
frameg and where Al;=(4G/5¢®)mG?+0(7) where (ny) and thus vanishes in this case.

G;=Jd*(0oix*~ 30jXX;). For circular orbits one find§;

=mv(X2—X1)rzv.i+O(2) and thus Al;=(4G/5c®) B. The energy loss rate
Gmeu(X;—X,)(v'/r)+0O(7). This readily shows how the

: The gravitational luminosityC of a general source was
\r;\a/?t;ﬁ:&s(&?) of paper |l are to be extended to 2.5PN Order'split into two contributions, an instantaneous abg; given

by Eg. (5.1) and a tail onel,y given by Eq.(5.12. We
’ 4 G2y shall b_asically show that o_nlﬂ tail contributes_to the 2.5PN
Y1=[Xo+3vyA (X1 = Xp) IX' = 5 —5— (X1 = X)v' order in the casgbut only in this caseof a binary system
S rc moving on acircular orbit.
+0(6), (6.43 Let us consider first the contributiofy,,i;. The only mo-
ment it contains which is required with full 2.5PN accuracy
G2m2y is the mass quadrupole moment

(X1=X2)v'

(6.9

) 4
yo=[—X1+3vyA (X1 — X)X — TS

+0(6). (6.40

M;;=T;;+Al;;+O(6) (6.9

wherel;; results from Eq.(4.89 and Alj; is given by Eq.
This result is in agreement with the 2.5PN-accurate center df+-270. For a C|rcular2 orbit, the moment of inertia.is con-
mass theorem of Ref§37]. The assumption that the orbit is StantlindeedK=mur+0(2)]: hence,Al;; reduces to two
circular apart from the adiabatic inspiral due to reaction eflerms only:
fects of orderO(5) implies that the scalar product ®f and G 5 8
v' is of smallO(5) order:x-v=(xv)=0(5). By Egs.(6.4) 2 _tko®_20®3 ..
this implies also tw;)=0(5) and Qw,)=0(5) where Alij=gs] ~ 3KQ ~ 7Q<iQ=k TO(7). (610
n'=x'/r. These facts drastically simplify the equations of
motion of the binary given by Eq$Bl)_(BZ) in Appendix We prove that the contribution iﬁinstWhiCh is due tAl ij is
B. The result when expressed in the relative frame S|mp|yn fact zero. Indeed, this contribution is made of the con-
reads tracted product betweerQ{” and AI{® [recall that
M;;=Q;;+0(2)], and hence of the contracted products
do' , . 32Gmy Qi(]é’)Qi(f”J and QPQR~PQ{Y . But in the circular case an
Gt YN T EE T A Y +0(6), 6.9 odd number of time derivatives @;; yields a term propor-
tional to x~'v!” while an even number yields either
where we have introduced the angular frequengyy de- X~ 'x)~ or v='v)”. Thus a contracted product of the type
fined by Q{’Q{P wheren+p is odd necessarily involves one scalar
product &v) and is thus zero; similarly, a product of the type

m 41 QWP QP wheren+ p+q is odd is also zero. The same is
2 = 1 _ = 2| .2 ij ik <k
wzen= 3 | 1B vy | 6+ vty } ©8 e ofa product likes;;x Q{1 Qi wherer + s is even These

simple facts show tha6.10 cannot contribute to the energy
This frequency represents the orbital frequency ofdakact loss rate. Furthermore, we find that all the terms/(gs
circular periodic orbit at the 2PN ord¢see Eq.(3.11) in  which involve the contracted products tiiree moments
paper ll. The relation between the norm of the relative ve-[i.e., all the terms of ordez™° in Eq. (5.11)] are also zero.
locity v=|v| andw ,py is Obtained by multiplying both sides Hence we can write, in the circular orbit case,
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G| 1- 101~y 162~ vo | g -
—_— ] @3 44 4 T3 1(3) _ -
£|nst_c5[5|” IIJ +Ez 189||]k||]k+45J|J \J” } fo dTIn(Zb)COiQT)— 20" (615)
P B O R C I 10 L 0(6) where ) denotes therea) angular frequency of the radia-
c*| 9072 likmiijkm T gg=ijk ik ' tion. It was proved in Ref[46] that this formula is to be
applied as it stand6.e., even though the integral is not ab-
(6.11)

solutely convergentto a fixed (hondecaying orbit whose

Now recall that the momenﬁ's_ andj,_ are the ones which frequency is equal to the curre_nt value of the o_rbital fre-
were used as the starting point in the computation of pape?nuentﬁi/;’zfoar’rz];’j‘l(;-R\)A‘/e-lr-:es?;Tvir'ctil %réorcs)f mr?a(lj:ti\l/r:a agﬁ'ﬁ;
. In using paper Il one must be careful that in this paper the ?Inc/cS) which is alwavs nealigible for our purpose here
equations of motion have a precision limited to 2PN instea ’ way 99 1 purp .

of 2.5PN. We first note that the 2.5PN terms in the massrbecause of the explicit powers of. in front of the tail
centered frame relation(®.4) will cancel out when express- integralg. Thus we replace in the integrand (5.12 the

ing the quadrupole mass moment in terms of the relativénomemSM'- and S_ by their expressions valid for fixed

variables. Furthermore, during the computation of this mo-CIrCUIar orbits and up to the appropriate precision. The nec-

ment in paper |l the equations of motion were used only tg°Ssary formulagtaken from paper )iare

reduce some terms which were already of 1PN order. Thus Gmlr y
all the expressions of the momeriis and J_ computed in Mi(f)= —8 STH; r—3x'v' 1- 4—2(149— 6911)}-1—0(4),
paper Il (but not the expressions of their time derivatives (6.163
can be used in the present paper without modification. Nota- '
bly, the mass quadrupole; takes the expressiof8.74 of s G2mdy . . y
paper Il, modulo negligibl®©(6) terms: M{»=32 STF; r—ex'vJ 1-45(275-111) |+ O(4),
(6.16b
~ i 4
L= . iil1— =
I STF”vm[x 1 42(1+39v) w Gmy( Gm N .
) ) Mle:3(x2_Xl)STFIJkr—3 7r_3XJ —20x Ul
Y 2 i E‘ —
1512(461+ 18395+ 241v°) | + 2V 21(1 3v) +0(2), (6.160
Y G2mby Gm o
+ %(1607— 1681v+229%2?) || + O(6). (6.12 Mi(jﬁ;():s(XZ_Xl)STFljk_r(S_[ _6173_XIJK+ 182('1)”(]
However, we need the third time derivative @12 which +0(2), (6.160
does involve, because of the more precise equations of mo- o
. . . T
tion, some new terms with respect to paper Il. We find Sfjg): — (Xo—Xy)STF, o sabiyIxa,b 1 O(2).
- Gm . 6.16
I1¥=STF;vm{ —8—5x'v 1- - (149-690) (6169
! r 42 2 3
(5) CM bi jva b
V2 , Si;’=(X;—X1)STF; 5 e v +0(2).
+ —1512(7043— 7837w+ 37037) (6,160
64 G*m®v[Gm ' ' The quadrupole moment includes 1PN terms while the other
T 5 A5 | 73X —3v"|1+0(6). (613  moments are Newtonian. The computationf; involves

many scalar products betweahor v' given at the current

But for the same reason as before these new terms will ndtMe Tr. i.e.,X'=X'(Tg) or v'=v'(Tg), with the same vec-
contribute to the energy loss for circular orbits. Thus wetors but evaluated at an arbitrary earlier tifig— 7, say,
conclude that;,g is exactly given by the expression found X''=X'(Tr—7) andv''=v'(Tg— 7). Relevant formulas for
in Eq. (4.12 of paper Il modulo negligible terms of relative these scalar products are

orderO(6)=0(»%). We can thus write

(xx")=r?coq w7), (6.173
32c° 2927 5 293383 380 ' 2 2
-3 - I TR B et T 2 (vv')=r<wco wT), (6.17b
Linst=5g " 7( (336+4V 7+( 9072 " 9 V)7
(xv")=—(vX')=r?wsino7), (6.179

3
+Oly )]' (6.14 wherew is the current value of the frequency. The reduction

of Ly IS quite straightforward. We need to use
Let us now turn our attention to the tail part of the gravi- w?=(Gm/r®)[1—(3— ) y+O(¥?)] (the 1PN correction in
tational luminosity as defined by E€6.12). The correct for-  w? is sufficien} and the formulg@6.15 whereQ = w, 2w, or
mula to compute the tail integrals ifi,; is 3w. One uses alsoX,— X;)2=1—4v. The result reads
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3¢ , . oy (25663 109 5 As for the orbital energf=E2>*"Nwhich has been given in
Lai =g VY1 4TV |\ e T g VY Eq. (6.8) following the equations of motion summarized in
Appendix B, it reads in terms of as
3
+O(7)]' o = Cmix|1- 20 L 27 100+ L |2
= ?mVX —1—2( +V)X—§ - V+? X

The complete 2.5PN-accurate gravitational luminosity
generated by an inspiraling compact binary moving on a qua- 3
sicircular orbit is therefore obtained as the sum of E<l4) +0(x )} : (6.22
and(6.18. We obtain

The laws of variation of the frequeney and phasep of

32c® 5[ (2927 5

L= vy ——+ v |y+4my®? the binary during the orbital decay will be computed using
5G 33% 4 the energy balance equation
+(293383+ 380 ) ’
“on70 " o V|7 dE
9072 ' 9 de
a7, L, (6.23
25663+ 109 ) 512, ol 3)] 6.19
Nt —=v|7 , .
672 8 4 4 whereTg is the retarded time in the wave zone. Note that we

) ) meet here the remarks made in the Introduction. Up to now
where we regall_ that the post-Newtonian ordering parametef,e analysis has been rigorous within the framework of post-
is y=Gm/rc with r being the harmonic-coordinate orbital \ewtonian theory: namelyZ has been computed from a
separation. This expression was already obtained to 1PN Ofje||_gefined formalism based on convergent integrals for the
der in Refs. [23,47,48, to 1.5PN order in Refs. multipole momentgsee Sec. IY. The reduction ofZ to bi-
[30,13,49,48 and to ZPN order In Refs{20—22,12. The nary systems using functions to describe the compact ob-
2.5PN order added in this Paper 1s !|ke_ the 1.5PN order du?ects can probably be justified at the 2.5PN order by using
to the presence of the radiation tails in the wave zone, a8, results of Ref[11] (see paper )l Furthermore,E is
indicated by the irrational number in factor coming from o5 teqd directly from the Damour-Deruelle equations of
the formula(6.15. Hence there is up to 2.5PN order a cleanp, o [37]. We now postulatethe validity of the energy
separation between the integer post-Newtonian approximgsgiance equatio6.23 where bothE and £ take their full
tions which come from instantaneous relativistic effects in, gpy accuracy. This equation has been proved fierEq.

the source multipole moments and the half-integer approxi(Bg) of Appendix B] only whenc takes its Newtonian value
mations which are due to hereditary effects in the wave ZONERN 1t \was proved before to Newtonian order in Refa2—
Howe\t/e(;, tth? nelxt pt;)sttr;l\tlevvtonl?nf?p?rommat((m?l\l) IS 37]. On the other hand, the balance equation is also known to
expected 1o involve both types of effects. hold at 1PN ordef38,39, and even for tails at 1.5PN order
_ [40,30. To prove it at 2.5PN order such as (.23 would
C. The orbital phase mean knowing all the radiation reaction effects in the bina-

Once the energy loss has been derived in a particular cdy's equations of motion up to 5PN order. To palliate this it
ordinate system it can be re-expressed in a coordinatdi@s been customary in this field(see Refs.
independent way by using the directly observable frequencl/—9.13,14,18,19,12,2)ito compute the binary’s orbital de-

w=w,py instead of the parametery. Defining Cay assuming that the energy balance equation is valid to
x=(Gmw/c3)?3 we obtain the inverse of E¢6.6) as high order(the angular momentum balance equation is un-
necessary for circular orbjts

v 65v) , 3 Adopting the same approach to the problem, we introduce
=X 14| 1= o x+| 1= 75 X"+ 0(X) |, (620 a5 in paper Il the adimensional time
which is substituted into Eq6.19 with the result c3y

32c® 1247 35 ,

L= 5G 12x5 1— %4’1—21/ X+ 4mx32
Equation(6.23 is then transformed into the ordinary differ-
44711 9271 65 ) , ential equation
+(_ 9072 " 504" " 18" )X
dx_., 5[1 (743+ L
8191 535 g -0 Ll qqp T 7 V| XT4amX
) Dt 5/2 3 de 336 4
( 672+ o7V X+ O(X )]. (6.21)

(34103 13661 59 2) ,
+ X

An important check is obtained in the test-body limit-0 18144Jr 2016 vt 18"
of this result, which is found to agree with the 2.5PN trun-
cation of the result of perturbation theory known through the _ ( 4159 173

_ _ 5/2 3
equivalent of 4PN orddi5—17 [see Eq(43) of Ref.[17]]. 672 8 ”)”X +O(x )]' (6.29
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On the other hand, the differential equation for the instantabe indicative of the relative orders of magnitude of the dif-

neous phase of the binary isd¢= wd Tg= (5/r)x¥d @ or,
equivalently,

d¢_ 5 ~712) 4 743 11 4
&_@X + §6+ ZV x— 4arx®

11016 064" 1008" " 144”

7729 3
672 8"

(3058 673 5429 617 2) )

x>+ 0(x 3)]. (6.26)

ferent terms in the phase. A full analysis would require the

knowledge of the power spectral density of the noise in a

detector, and a complete simulation of the parameter estima-
tion using matched filterinfi7—9,50,51. The contribution to

N due to the 2.5PN term i(6.28) is

Nasen=— 480 16Y

1 (38645 15 | (o
1344 T 16”7/

). (6.30

In the case of the inspiral of two neutron stars of mass
1AMy, and with the valueso;/w=10 Hz (set by seismic
noise and w;/7=1000 Hz(set by photon shot noigewe

The frequency and phase follow from the integration of thesdind, from Ref.[12] and Eq.(6.30

equations. The frequendpr x parameterreads

1 743 11 -
—_@ 14 _ - a-14_ " o-3/8
x=50 [1+(4032+48V 20
19583 24401 31 | .,
*1254016" 103536" " 288"

( 11891 29

5/8 3/4
53760 1920 )’T@) +0(6” )]

(6.27)

where® = 6.— 6 denotes théadimensionaltime left till the
final coalescence, and the phase is

3715 55
- _ 5/2 - —3/2__ -1
¢ 321/{’( (1008+ 12”) 10mx

(15 293365 27145 3085

1016064 1008"" 144
(38 645 15 )
in| —

1/2) X71/2

(6.28

1/
1344 " 16" ;) TOK 2)}

where the constany, is determined by initial conditions. By
substituting Eq(6.27) into (6.28 one obtains the phase as a

function of time:

1 3715 55 37
__Zl@ss 29 sis_ 2T A4
¢ y{ +(8064+96V)® 7 ©
9275495 284875 1855 ,
+ + @l/S
14 450 688 258 048" 2 048"
38645 15 | (O o e
172032 2048"|™" @9,
(6.29

where ®, denotes some constant. Note the presence of the
logarithm of the frequency or coalescing time in the phase at
the 2.5PN approximation. The expressiga25—(6.29 are

valid only in the post-Newtonian regime.

Let us evaluate the contribution of each post-Newtonian

term in the phas€6.28 to the accumulated numbey of

Newtonian 1PN 1.5PN 2PN 2.5PN

N 16 050 439 —208 9 -11

[Note that as long as the final frequeney is determined
only by the detector’s characteristi@nd not by the location
of the innermost stable orbijtthe term\, sp\ depends on the
masses only through the mass ratid

In this (indicative example we see that the contribution
of the 2.5PN order more than compensates the contribution
of the previous 2PN orde(But of course both contributions
have to be included in the filters since they have different
functional dependences on the frequehdyowever, note
that finite mass effect§proportional tor) are numerically
small at the 2.5PN order, contrary to the 2PN order where
they are quite significarft21,12. In the previous example,
they contribute only to—0.1 cycle as compared to
Nospn=—11.

APPENDIX A: THE PROOF OF A FORMULA

To prove the formuld4.19 we begin with the identity
rBOf=0(rBf)—B(B+1)r®2f—2Br® 14,f (A1)

which permits the transformation of the left side @19,
namely,

1
FF(t—r/c)

Psz(fB_omgerD—l)lbp

1
xaQ G(t—r/c)

] (A2)
into
PXQ:fB=ODR1< - BI’Bfl[Zﬁr-i—r*l]

x{ 9p G(t—r/c)

)

~ |1
&QF

1
FF(t—r/c)

gravitational-wave cycles between some initial and final fre-Because of the presence of the explicit faddoin the inte-

guenciesw; and ws .

Note that such a computation can only grand, the equatiofA3) appears to be theesidueof the
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Laurent expansion of the retarded integral nBar0 (we
have discarded a term proportionalB8 which is known to

give zero contribution Residues of retarded integrals have

been investigated in Eq4.26) of Ref. [40] and yield re-

tarded solutions of the wave equation. By a simple dimen-

sional analysis we find thatXy admits the structure

rar2d | g
pXg~ IZ,O 1L FF(a)(t—r/c)G(m(t—r/c).
(A4)

Here,[(p+q)/2] is the integer part off+q)/2, :9|_ denotes
a trace-free derivative operator composed/okpatial de-
rivatives where/’=p+q—2k, and the number of time de-
rivatives onF andG is a+b=2k+ 1. Omitted in(A4) are

pure dimensionless coefficients and numerous Kronecker

symbols. The explicit dependence o ptesent in Eq(A4)

shows that if we are interested only in the leading-order term

whenc— +o we can limit ourselves to the computation of
the terms having thenaximumnumber of space derivatives,
i.e.,” max=P+q (corresponding t&x=0). The errors made in
keeping only such terms are of relative or@®{3). We use
to compute(A3) the formula

A1 X Fht—r/c
ap[_F(t_r/C) =fip>, aP pf(l T+ ), (A5)
r b cP7'r
where the numerical coefficient is
(—=)P(p+i)!
&= (p—i)! (A6)

[see Eq(A35a) in [27]]. This yields a double sum of terms
having in front the product of the trace-free tensopsand
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pXQ= % aipa?fs_oﬂglr —Br8 hpg[2d,+1 1]

FP=D(t—r/c)G9 D(t—r/c)
Cp+qf|71r2+|+1

+0(3), (A7)

where the remainde®(3) comes from the errors made in
the replacemenipng—Npq. The integrand ifA7) is easily
transformed into a sum of terms of the form
r® XApgH(t—r/c) times the factoB, whereK is an inte-
ger. Using the fact that the residues of such terms exist only
whenK=p+q+ 3 [see Eq(4.26 in [40]], one finds that the
summation indices andj in (A7) must satisfyi+j=p+q

or p+qg—1. This greatly simplifies the computation @7)
which is done using the expressiGh6) of the coefficients

aP and Eq.(4.26) in [40]. The result is

~ 1
pXq=po E((Sp,OF(l)GvL SogFG™M) [+0(3), (A8)

where g,  denotes the usual Kronecker symbol.

APPENDIX B: THE DAMOUR-DERUELLE
EQUATIONS OF MOTION

We present a summary of results concerning the equations
of motion of two point masses moving under their mutual
gravitational influence up to the 2.5PN order. These equa-
tions were obtained by Damour and Derudl®y] (see also
the presentatiofil1] to which we are close hereThe equa-
tions of motion of body Isay) take the Newtonian-like form

dy;

PR (Bla
dvil i i i i
E—Al-l— B+ =2Ci+ ;D1+O(6), (B1lb)

wherey} andv! denote the instantaneous position and coor-

ﬁQ. This product can be decomposed into trace-free tensominate velocity of body 1(in the harmonic coordinate sys-

of multipolarities/=p+q—2k with k=0, ... [(p+q)/2];
however, if we are looking only for the term having
/' max=P+0q one can simply replace the produting by the
trace-free tenso?po (with 1 as a coefficient in fromt Hence

tem), _A'1 is the usual Newtonian acceleration of the body,
andB), C!, andD) represent the relativistic corrections of
order 1PN, 2PN, and 2.5PN, respectively. The equations
(12.97—(12.12 in Ref.[11] give these terms as

i Gm,
i Gm, i 2 2 3 2 My Gm, i i
Blz_r2_ n —vl—2v2+4(vlv2)+§(nv2) +5 ; +4 . +(vi—vy)[4(nvy)—3(nvy) ]y, (B2b)
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Gmy[ . 3 9 15 Gm[ 15
'1=—rz—[n' — 203+ 403(0102) ~ 2(0102)*+ SVE(NV2) 2+ S05(N02)2 = B(v1v2) (W)= (Muy)*+ ——| = ui
2 39 2 17 2 My 2 2
+sz—§(vlvz)+?(nvl) —=39%nvq)(nvy) + ?(nvz) (4v3—8(v1v,)t+2(Nvy)—4(nvy)(NVy)
2 i i 2 2 2 2 9 3
—6(nNvy)%) |+ (vi—vy)|vi(Nvy) +4vs(Nvy) —5v5(Nv,) —4(vwe)(Nvy) +4(v1vo) (NVy) —6(N 1) (NVy) +§(nvz)
Gm,[ 63 55 Gm, G®m, [ 57 , 69
+ . ‘Z(”Ul”z(”vz) +T(—2(nv1)—2(nv2)) + 7 n' _Zml 9m2—?m1m2, (B20)
-4 G?’mym, [ . Gm Gm . Gm;, 52Gm
'1=§r—312[v' —v?42—— 8= = 4ni(nv)| 30?6~ —+ = —— ] (B2d)

wherem; andm, are the two masses,i andu'2 the two velocitiesy = |y1_— y,| the separation, and‘:(yil—yiz)/r. Scalar
products are denoted by, €.9;; v,=(v1v,). In the last equation' —vl v,. The equations of the second body are obtained
by exchanging the labels 1 and 2, being careful of the factrthandv' change sign in the exchange. The acceleration term

1 is responsible for the dominant damping or radiation reaction effects in the dynamics of the binary.

The equations of motion when truncated to 2PN or@eglecting the damping termil) admit a Lagrangian formulation
and the associated conservations 1a4@#. The 2PN Lagrangian in harmonic coordinates depends not only on the positions
and velocities of the two bodies, but also on their acceleratigns dvy Jdt: L*"N=L1L2"Ny,v,a). It is given by

1Gmm, 1 Gmm,|3 7 1 1Gm| 1
L?"Ny,v,a)= 2( m1U1 > +§mlv‘11+ ; ivi—z(vlvz) —(nvq)(nvy) — > 16m1U1
Gmm, |7 4y 15 1 , 5 3 3 ) )
t—|gu1t 1601U2 205 (v1v,) + 5 (Ulvz) 8(n01) 02+Z(nvl)(nvz)(0102)+1_6(nvl) (nvy)
G'mimy[1 , 7 , 7 7,1 T 7
Yz |zvit ZUZ_Z(UlU2)+ E(nvl) +§(nvz) _E(nvl)(nvz) +Gmymy| (nay) gl2
1 |7 G®mmy(1 , 1 , 19
—g(nvz) _Z(Uzal)(nvz) +T §m1+ Emz-i- Zmlmz . (83)

The summation symbol runs over the two bodies 1 and 2. The equations obtained by variation of this Lagrangian, and in which
the accelerations are replacaiter variation by theiNewtonian values, are equivalent to the 2PN equations of mdius.
(B1) and(B2) whereD'; = 0] modulo negligibleO(6) terms. From this Lagrangian one constructs the 2PN integral of energy,

2PN 2PN 2PN
EZPNZE " JL _ E L al L — 2PN (B4)
Noavy  dt ga) b gal ’
and one replaces in it the accelerations by tkewtonian values, resulting in
E®™Ny,v,a)=E2"Ny,0)+0(6). (B5)

The explicit expression of the ener@f" as a function of the positions and velocities is

1Gmm, 3 Gmm,|3 7 1 1Gm 5
E*PNy,v)= 2( SMi=—5 —— gz Muit — 2 |5vi~ 7(wa2)— Z(Nua)(Nug)+ 5 —— |+ Teamuvi
Gmm,[21 , 31 ,, 55, 17 , 13 , 5 9 , 3
| g it gl g vivwa) + g (01v2) g (vy)wa— g(nuy)(nug)vat 7 (Nvg)(Nug)(vaws)
3 3 G?m?m,[ 3 7 29 1
+ g (012) (M) 2+ (1) 2(Mu2) 2+ 5 (N01) (Nv2)° |+ — 77— | = ST+ Zui+ 7 (M) + 5 (Nv2)?

13
= (og)(noy)

G’mmy[1 , 1 , 19
—W §m1+ §m2+ Zmlmz . (B6)
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The fact thaE?"Nis the integral of energy of the 2PN equations of motion implies B8t as a function of the positions and
velocities satisfies the identity

2PN

) 1 . 1 .
|1+ ?Bll‘f‘ ?CE}TUE—}EO(G), (B7)

2PN
St S
ay'

1

from which we find the law of variation dE?N under the complete 2.5PN dynamics of the binary: namely,

d EZPN 1 &EZPN

ey §D'l——av,1 +0(6). (B8)

This equation makes it clear how the damping acceleration [éfrdrives the variation of the enerdgee Eq(15.3 in Ref.
[11]]. Since the right side ofB8) is a small post-Newtonian term it can be evaluated by inserting in plade®d} its
Newtonian value given by the first two terms (B6). Thus

dE2PN
dt

1
=> ?mlv'lD'l—l—O(G). (B9)

Using the expressiofB2d) of the damping term we arrive after a short calculation at the balancelike equation

dE2.5PN
gt =—£N+0(6), (B10)

which involves in the left side the 2PN ener{f§6) augmented by a pure 2.5PN term, namely,

8 GZm3»?
E25PN_ £ 2PN, TS (nv)v?, (B11)
and in the right side the expression
N 8 G3m*y? ) )
L :E r—4(12v - 1l(nU) ) (5126)

It is simple to rewrite the latter expression in the well-known form
N G (3)(3)

As this is the standar@Newtoniar) quadrupole formula we conclude that E§10) proves the energy balance between the
loss of orbital energf2°"N of the binary and the Newtonian energy flux carried out by the gravitational waves. Note that it
is important that the energy which enters the left side of the balance equation is giveimstmataneousunctional of the two
world lines of the binarysee Damouf11] for a discussion
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