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Evolution of distorted rotating black holes. Ill. Initial data
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In this paper we study a new family of black hole initial data sets corresponding to distorted “Kerr” black
holes with moderate rotation parameters, and distorted Schwarzschild black holes with even- and odd-parity
radiation. These data sets build on the earlier rotating black holes of Bowen and York and the distorted Birill
wave plus black hole data sets. We describe the construction of this large family of rotating black holes. We
present a systematic study of important properties of these data sets, such as the size and shape of their
apparent horizons, and the maximum amount of radiation that can leave the system during evolution. These
data sets should be a very useful starting point for studying the evolution of highly dynamical black holes and
can easily be extended to 3[(50556-282(196)04114-9

PACS numbeg(s): 04.25.Dm, 95.30.Sf, 97.60.Lf

[. INTRODUCTION metric initial data sets were combined to produce the NCSA
“Brill wave plus black hole” spacetimes, generalizing the

There is increasing interest in the study of black holessingle wormhole to a highly distorted black hole spacetime
from both astrophysical and theoretical points of view. Coa{10,17]. The evolution of these data sets has been very useful
lescing black hole binaries are considered an importanin understanding the dynamics of highly distorted black hole
source of gravitational waves for the Laser Interferometricspacetimes, and also in preparing for studies of colliding
Gravitational Wave ObservatofiIGO) [1], VIRGO[2] and  black holes, as colliding holes form a highly distorted single
other gravitational wave observatories. At the same time, nuhole immediately after the merging process. Rotating, sta-
merical studies of black holes are advancing to the pointionary black hole data sets, which are not time-symmetric,
where highly distorted, axisymmetric black holes4] and  were first discovered by Kefrl8] in 1963, and then a non-
black hole collisiond5,6] can be simulated, extracting im- stationary form was discovered by Bowen and Y1)
portant physics such as the gravitational wave forms emittedhe conformally flat Bowen and York construction for single
and the dynamics and properties of the event and apparehtack holes was then generalized to multiple conformally flat
horizons[7,8]. Recent progress has also been made in threkoles with angular momentum by a number of authdos
dimensional3D) [9] black hole spacetimes. These are somesxample, sef20]) leading to recently computed 3D data sets
of the reasons it is important to develop a series of initialfor two black holes with arbitrary spin and angular momen-
data sets to evolve. tum [21].

However, black hole initial data sets are interesting in In this paper we discuss a new family of distorted rotating
their own right, apart from evolutions. They are potentially black hole initial data sets, some of which were evolved and
useful for studying problems related to cosmic censorshipstudied in Refs[22-24. Although the constructions we
such as the Penrose inequaljty0]. Furthermore, it is pos- present here are axisymmetric, our approach is easily carried
sible to study greater numbers of data sets with higher resaut in 3D. These data sets combine a number of the ideas
lution than is practical to evolve numerically. This can leaddiscussed above, generalizing the Bowen and York construc-
to important observations of properties of apparent horizontion by including a “Brill wave” so that highly distorted,
and can help to identify particularly interesting spacetimegotating black holes with gravitational radiation can be stud-
for evolution studies. Initial data sets of the type described iried. In addition to these new data sets to be described below,
this paper can be used to analyze the most extreme types tfis family includes as special cases all previous single black
distortion and may have bearing on the hoop conjecturdiole data sets discussed above, including the Schwarzschild,
[11,12). The study of an apparent horizon in an initial dataKerr, Bowen and York, and NCSA “Brill wave plus black
set may provide valuable insight into which spacetimeshole” spacetimes.
might have the most distorted event horizons. As we have shown in Ref$7,23,25, these data sets are

Black hole initial data sets, based on the Einstein-Rosemteresting in their own right as dynamical black holes.
bridge constructiori13], have been developed over the last These black holes radiate both polarizations of the gravita-
few decades. In the early 1960s a series of time symmetri¢ional wave field, and their horizon geometries can be so
conformally flat wormhole data sets corresponding to twodistorted they cannot be embedded in a flat Euclidean space.
black holes were developed by Misngr4] and Brill and  In future papers we will continue to explore their dynamics
Lindquist [15]. At about the same time Brill developed an in detail. Moreover, just as in the nonrotating case, these data
initial data set for gravitational wave spacetimes that in-sets can be used to understand the late time behavior of coa-
volved specifying a free function in the conformal part of thelescing, multiple black hole systems, as highly distorted
three-metric that determined the distribution of the gravita-“Kerr” black holes will be formed in the process. These
tional wave energy in the spacetimh&6]. These time sym- data sets can be thought of as representing initial conditions
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for the late stages of that process, and should prove to be a dI2=wg[e 2%(d7?+ d#?) + sirPed ¢?], ©)
valuable system for studying it without having to evolve the
orbits leading up to the merger. where
The paper is organized as follows: In Sec. Il we detail the
mathematical construction of the data sets and discuss some Wo=glolsirto, (4a)

of their properties, such as their masses, for several sub-

classes of the spacetimes. Then in Sec. Il we discuss a series 4 > aof dr 2 (K)

of tools we have developed to study the initial data sets, such Woe *o=g; dy) =90 (4b)
as the apparent horizons and their intrinsic geometry. In Sec.

IV we survey many initial data sets, describe their featuresThus we see that our coordinate transformati@b) has re-
and discuss application of the hoop conjecture and Penrosgjlted in a “quasi-isotropic gauge[28] for the Kerr space-

inequality. Finally in Sec. V we summarize the results.  time. Notice also that ia=0 theng,=0 and we recover the
Schwarzschild three-metric. This metric is now in the form
Il. CONSTRUCTING DISTORTED, used in the previous NCSA black hole stud[@s4,17,29,
ROTATING BLACK HOLES although here the functiorgg andV, are determined by the

Kerr spacetime.

One may check that the three-metric defined by Bygis

In this section we provide details of the construction ofinvariant under the transformatiop— — 7, i.e., there is an
this new family of distorted, rotating black hole data sets.isometry operation across the throat of an Einstein-Rosen
Some details were provided in R¢R2], but as this paper bridge located aty=0, just as in the Schwarzschild space-
focuses exclusively on the initial value problem we present aime [30]. This construction has two geometrically identical
more comprehensive treatment here. To motivate the prolsheets connected smoothly at the throat, locateg=a@. In
lem, consider first the Kerr metric, written in Boyer- terms of the more familiar radial coordinates, this condition

A. Initial data

Lindquist form[26]: can be expressed as
g’ 0 0 g T—(m?—a?)/(4r), ®)
g 0 o0 — o o :
gK= ” wherer is a generalization of the Schwarzschild isotropic
e 0o 0 gy o0 | radius, defined as
g 0 0 gy _ ym?-a?
r=——x——=e". (69
ai'=p?A, ?
K)_ 2 T is related to the usual Boyer-Lindquist radial coordinate
990 =P via
gif = (a%sin9— 1)/ p?, J(l mta)( m—a) )
1 r=r| 1+ — +—.
@) 2r 2r
gty = —2amrsir?g/p?, _ _ _
Note that in the Kerr spacetime the horizon, located at
g((bK(;z[(r2+az)z—Aazsinza]sinzelpz, r=m+ym°—as, is_atr:\_/mz—a2/2 in ther coordinates,
or at =0, just as in previous studies of the Schwarzschild
A=r2—2mr+a2 spacetimg30]. The isometry conditiory— — 7 will be used
in the construction of more general initial data sets to be
p?=r2+a2co6, described below, and is also imposed during the evolution as
well [23].
wherem is the mass of the Kerr black hola,is the angular The three-metric, however, comprises only half of our
momentum parameter, and a superscri) (denotes the initial data. The extrinsic curvature on the initial slice is re-
Kerr spacetime. quired as well, and for the Kerr spacetime it is given by the

We would like to put this in a form that is free of coor- equations
dinate singularities, and that has properties similar to the -

form used in the nonrotating black hole studfds17,27. K,g=am2r3(r’+a’+p?(r’=a’]sinfop~*, (7a
Generalizing the transformation used in Rpf,17,27 we "
define a new radial coordinate through Kgg=—2a%mrAYcogsin®op 4, (7b)
r=r_cost(5/2)—r _sint?( 5/2), (28 where we note the; =‘I’52Kij , and all extrinsic curvature
components excepting the two listed are zero. One can show
r.=m=m?—a. (2b)  that this metric and extrinsic curvature satisfy both the

Hamiltonian constraint
With this transformation the spatial part of the Kerr met-

ric can be written as R+K2-K'K;;=0 (8
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and the three-momentum constraints q=sin"6qg, (133
Vi(K=»TK)=0, 9 de=Qo(e >+ +e %), (13b
as they must. s.=(n* no)?lo?. (139

Finally we must specify the lapse and shift to complete_ ) . .
the system for evolution. The choices that make the station! Nis form of the Brill wave will be characterized by several

ary nature of this Kerr spacetime explicit are parametersQ, (its amplitudg, o (its width), 7, (its coordi-
nate locatiop, and n, specifying its angular dependence,
1 124 g2 which must be positive {:md even. We note t.hat E(qs) N
=142 mr<—r) (10)  simply provide a convenient way to parametrize the initial
a Ap data sets, and to allow us to easily adjust the “Brill wave”

part of the initial data. Many other devices are possible. To
and narrow the field of study, in this paper we restrict ourselves
to sets characterized hy=2, and =0 for all data sets,
and will commonly user=1.5
(11) With this form of the Brill wave functiory, a number of
black hole data sets can be constructed. As discussed above,
given the appropriate extrinsic curvature choice, the station-

We have now written the Kerr spacetime i B form, in  ary Kerr solution results ifj=0. For other choices the Bo-

a coordinate system like that used to evolve the nonrotatingven and York form results ifj= q,; a distortedBowen and
distorted black holes in previous work. This is a stationaryYork spacetime can be made by settipg sin"6gg+q; and
spacetime, and it can be evolved using a dynamic slicing distorted Kerr spacetime can be made by setting
condition just as the Schwarzschild spacetime has beeg=sin"6qs. Furthermore, for spacetimes without angular
evolved using maximal and other slicing conditions. But justmomentum this metric form contains both the NCSA Brill
as in the case of Schwarzschild, we can distort this rotatingvave plus black hole spacetimes and, as we will see below, a
black hole with a gravitational‘Brill” ) wave and study its new black hole spacetime corresponding to odd-parity dis-
response. tortions of the Schwarzschild spacetime.

We accomplish this by adding a free functiqfs, 8) to As a consequence of this generalization of the metric, we
the conformal three-metric in Ed3), just as in Ref[17]. must now solve both the Hamiltonian and momentum con-
Then the conformal facto¥,, which is a solution only for straints. The Hamiltonian constraint equati@ can be ex-
the stationary Kerr spacetime, will no longer satisfy thepanded in coordinate form to yield
Hamiltonian constraint8). Instead we must solve this con-

o —2amr
B T (r°+a®)?—a’Asire’

straint equation for the general conformal factbras we e R A v
discuss below. This generalization results in a three-metric 992 + 962 + Wcotﬂ— 4
n
with the form
AN N 9
d12=W4[ €209 (d 72+ d 62) + sirf4d ¢2]. (12 ~T 2 f7772(q do) (902(q do)
-7
Apart from the functiorg this is the same three-metric used - T(Hésinzz% HZ), (14)

for the nonrotating, distorted black hole spacetime. This il-
lustrates the fact that unlike the Schwarzschild spacetime thghere we have assumed the initial slice is maximal, i.e.,

undistorted Kerr spacetime isot conformally flat R#0,  tr K=0. There are in principle three momentum constraints
whereR is the scalar curvature of the conformal part of theto be satisfied by the extrinsic curvature components. How-
three-metrig. We may, in fact, make the spacetime confor-ever, in our spacetimes we require a “time-rotation” sym-
mally flat by adding a “Brill wave” [19] specified by metry about the initial slice, or invariance of the metric under
g=0p. This distorts the Kerr black hole, which breaks the(t,¢)—(—t,— ¢). Writing the extrinsic curvature tensor as
stationary nature of the spacetime. As we will show below, A R R
appropriate choices of this functian (along with appropri- Ha Hc Hesirfé
ate solutions to the momentum constraint for the extrinsic ~

20, -2 " i
curvature termscan lead also to Schwarzschild, the NCSA  Kij=¥ “Hi=¥"%  Hc  Hg  Hesind |,
distorted nonrotating black hol@s in Ref[17]), the Bowen HesirPd Hesing Hpsirfd
and York rotating black holgl9], or a distorted Bowen and (15

York black hole.

The functionq, representing the Brill wave, can be cho- this time-rotation symmetry requires that
sen somewhat arbitrarily, subject to symmetry conditions on N . N N
the throat, axis and equator, and falloff conditions at large Ha=Hg=Hc=Hp=0, (16)
radii [17,22). The functiong will be chosen to have an in- R R
version symmetrici.e., symmetric unde— — 5) Gaussian leaving onlyHg and Hg to be determined. This also auto-
part given by matically makes the initial slice maximal.
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Under these conditions the only nontrivial component ofequation\P+2(9,7\If=2e’7’2. The conformal factor is always
the momentum constraints is tlecomponent: symmetric at the throat, axis, and equator.
With this description of the problem and boundary condi-
~ ~ tions, we summarize a number of families of rotating black
anHEsm30+a0(HFsm20)—O. 17 hole solutions that are possible in this formulation.

Note that this equation is independent of the functiqrand 1. Kerr and distorted Kerr

do- This enables us to choose the solutions to these equa- As shown above, Eqs(12)—(17), together with the

tions independently of our choice of metric perturbation.  houndary conditions, are satisfied by the stationary Kerr
At this point we may regard Eq$12)—(17) as defining  spacetime with the transformatiof®—(7). In Eg. (12), this

the problem we wish to solve. The boundary conditions forgpacetime corresponds tp=0, but as we have mentioned

these equations, which are extensions of those used in Refpove, we may add a Brill wave functian= sin"fgg to dis-

[17], may be summarized as follows. tort the Kerr spacetime. From the standard Arnowitt-Deser-

Isometry conditionsAcross the throat of the black hole, \isner (ADM) expressions for the mass and angular mo-
labeled byn=0, we can demand a condition that the spacementum of the spacetin{@1] we have

time has the same geometry as- — 7. We can require this

not only for the initial data, but also throughout the evolution 2

of the spacetime. This condition may be stated in one of two M apm = — o fﬁ sVa(¥e 79dS, (189
ways (in axisymmetry to allow for different slicing condi-

tions. Each choice must result in a symmetig, and an 1 .

antisymmetricK ,, to be consistent with the Kerr solution. Pa=g jg s(Ha=7v.H)dS,, (18b)
Thus, the form of the isometry condition must be different

for the symmetric and antisymmetric lapse spacetimesyy in terms of the variables defined in this paper,

n— — 7 for the former, @, ¢)— (— n,— @) for the latter.

If a lapse that is antisymmetric across the throat is de- T .
sired, the metric elements with a singjeindex are antisym- M apm = fo e”(—9,¥+W¥/2)singdo, (199
metric across the throat, while those with zero or two indices
are symmetric. The extrinsic curvature components have the 1(n
opposite symmetry of their corresponding metric elements. J= p(/):ZJ WOH csirt 6d 6. (19
The shift 87 is antisymmetric across the throat, while all 0
other shifts are symmetric.

If a symmetric lapse is desired, the metric elements with
single » index or single¢ index (but not both will be anti-
symmetric at the throat and all others will be symmetric.
Extrinsic curvature components will have the same symme
tries as their corresponding metric elements. e and
B¢ shifts will be antisymmetric, and thg? shift will be
symmetric. With these symmetries enforced, the initial dat
and all subsequent time slices will be isometric across th
throat. One can verify that all Einstein equations respect
these symmetries during the evolution if they are satisfied
initially. Perhaps the simplest nontrivial choice of solution for the

Symmetry axisAll metric elements, extrinsic curvature momentum constraint is given by the Bowen and Y[iR]
components, and shift components with a singliadex are  solution
antisymmetric across the axis. The remainder are symmetric.

Af one evaluates these expressions for the undistorted Kerr
spacetime, =0), one recovers the expected results
Mapm=m (which should be evaluated ap=«) and
J=am (which may be evaluated at any radius in axisym-
metry). In practice, we evaluatm at the outer edge of our
grid, andJ is simply an input parameter. We have evaluated
nd verifiedJ at various radii, as reported in previous work
22].

2. Distorted Bowen and York

Equatorial plane At the equator there are two possible He=3J, (209
symmetries, the Kerr symmetry and the ‘“cosmic screw” -
symmetry(see Sec. Il A 4 beloy For the Kerr symmetry, He=0, (20D

06— w— 6, all metric components, extrinsic curvature com- ) i
ponents or shifts with a singlé index are antisymmetric. WhereJ is the total angular momentum of the spacetime.

The remainder are symmetric. For the cosmic-screw typé'his solution clearly satisfies the momentum constraint. In

boundary conditions the symmetry at the equator ign€ language of this paper, the original Bowen and York

(6,¢)— (m—0,— ¢) and those metric elements, extrinsic solution has a Brill wave function determined by

curvature components, or shift components that contain one - 21)

0 or one ¢ index (but not both are antisymmetric. The re- 9= -

mainder are symmetric. _ . i.e., it is conformally flat, but we may distort it by setting
Outer boundaryAt the outer boundary a Robin condition

is used for¥. This condition gives the correct asymptotic q=0qo+sinéqg. (22

behavior in the conformal factor to order?. For the metric

given in the form (120 ¥ has the form ¥=e”?  This is the solution we often use in constructing distorted

+(m/2)e" "2+ ... and therefore obeys the differential rotating black hole spacetimes, and a number of them have
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been evolved and discussed in R&3]. It is somewhat sim-  This solves the momentum constraint whége f,, andf;
pler to construct than the distorted Kerr because we caare arbitrary functions which satisfy the symmetries
choose our total angular momentum and distortion param-

eters without needing to know the ratiém? (an additional f1(0)=F (=) =TF(7—0), (259
value that we would need to initialize the Kerr momentum

solution. Knowing this parameter would require us to know fa(0)=—1f3(—0)=—1f3(7m—0), (25b)
the valuem, and we will not know that parameter until after

we solve the Hamiltonian constraint. It is possible, in prin- fo()="f,(—7), (250
ciple, to iterate between guesses for the paranitef and

solutions for the Hamiltonian constraint until arriving at a lim f,(7)=0. (250
correctly initialized Kerr momentum solution. o0

We noted above that the Kerr solution is not conformally
flat, while the Bowen and York solution is conformally flat. The Kerr solution is not a member of this class, but the
Therefore one can consider adding a Brill wave to the Kergowen and York solution does fit within it f(=3J,
solution, making it a conformally flat Bowen and York solu- f,=f3=0).
tion. One can study the form of the wave functiapsand Note that any spacetime with =0 will have zero angu-
0o to understand what sort of Brill wave is required to “flat- #C

" th luti ing th . . ar momentum, a§1E falls off for large values of the radial
ten” the Kerr solution. By equating the series expansions ok, inatey, and furthermore the angular part of the integral
go and our Brill wave functioricf. Eq. (4b)],

in Eq. (19b) is identically zero by construction. We require
f, to go to zero only so that we can make the spacetime
asymptotically Kerr.

We now turn to a solution that has no net angular momen-
tum, but one that is not time symmetric about the initial slice.
This solution corresponds to a “Schwarzschild” black hole
with both even- and odd-parity distortions. This generalizes
the NCSA Brill wave plus black hole spacetin]@$], which
allowed only even-parity distortions.

For this we choose the extrinsic curvature components

. 2y 2 . 2,2
qlalpprox:als|nz'9e ”/"1+a23|n40e 77/”2, (23

to second order iny and 6, one obtains relationships be-
tween the wave shape parametass a,, o;, ando, and
the Kerr parametersa and m. It turns out that for
a/m<0.9 we find that the sf® term dominates the sia
term, ando varies in value from 1.26 to 1.7 for rotation
parameters 0.62a/m=0.8. Furthermore the amplitucke,
varies smoothly from zero to about 0.38 for all rotation pa- , s
rameters 8a/m= 1. We conclude that the Bowen and York Such thatf;=0, f,=qg, andfs=cosssin” ~>¢. In order to
distortion is similar to a low amplituda=2, o=1.5 Brill  Obey symmetry and regularity conditions; must be odd
wave distortion on a Kerr black hole, which is quite similar @1d have a value of at least thr¢€his was arranged to be

in shape and size to the distorted, non-rotating black holeguggestive of a radiatiorf mode. Usingn=3 gives almost
evolved previously3]. pure/ =3, while usingn=5 gives almost a pur&=5 com-

To get a feel for the difference between thg function ~ Ponent[23].) _ . o
and its approximatiorg,pprox We calculated the ADM value A_s th|s data set (;ontalns the odd-parity polanzanpn of_the
of a/M spy as we would for the Kerr spacetime, except that9ravitational wave field, but no angular momentum, it is sim-

we used],pproxinstead ofgg in the metric. We found that the pler to evolve than than the rotating black holes describe_d
error ina/M ppy Was less than 1%, even fafm=0.9. above, but has richer physical content than the standard Brill

wave plus black hole data sets. A few of these data sets have
3. Odd-parity distorted Schwarzschild been evolved and discussed in Rg#3], where both even-

d odd-parit f tracted.
Odd-parity gravitational modes, as defined by Regge angln odc-partty wavelorms were extracte

Wheeler [32], are metric perturbations with parity
(—1)"** where/ is the angular index of the tensor spheri-
cal harmonic describing the wave. These modes, in axisym- There is another solution related to the odd-parity dis-
metry, are formed only from perturbations g, andg, . torted Schwarzschllq data set discussed above. Whlle.that
The evolution of these modes does not couple linearly to thélata set has equatorial plane symmetry, we can alternatively
even-parity modes, and if there is no odd-parity disturbanc&onstruct a solution that has something like an opposite sense
on the initial slice of the spacetime these modes are neveélf rotation below the equatorial plane. As discussed above,
excited even when the full nonlinear equations are used. this symmetry is ¢, ¢)— (7— 6, — ¢), thus requiringHe to

We can create odd-parity distorted nonrotating spacetimelse antisymmetric andl ¢ to be symmetric across the equator.
simply by finding solutions to the momentum constraint Axisymmetric data sets describing the collision of two
equation(17) which drive the evolution of,,, which sat-  counter-rotating black holes have been dubbed “cosmic
isfy the boundary conditions, and yield=0 when the inte- screws.” As our data sets contain only one black hole, it can

4, Cosmic screws

gral given in Eq.(19b) is performed. be considered to represent a later stage of evolution of cos-
As a framework for momentum solutions, we consider themic screws, where the holes have already merged. Such data
simple class defined by sets should be useful in studying the late time behavior of

. colliding spinning black holes, and will be evolved in a fu-

He=1,(60)+ ()[4 copf3(0)+sindd,fz(6)], (248  ture paper. The formalism of the previous section carries
R over, but now the symmetry conditions on the equator are
HF=—<9,7f2(77)sin26f3(6). (24b reversedf,(0)=—fi(7— 0) andf;(0)="f3(7— 6).
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With these considerations in mind, we see
f,=3Jcod, andf,=f;=0 is suggestive of a cosmic screw
spacetimg(in this case we do not claim thdtis an angular
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thatthat ¢ must be equal to this value to within 0.1%. If it is not,

we regard our choice for value of,5, the outer boundary
of our grid, to be too small and adjust accordingly.

momentum, but use this notation because it is suggestive of

the angular momentum of one of the colliding black holes in

a cosmic-screw spacetime
We can also choosé;=0, f,=qg, and f3=sin“/‘20

which is similar to our odd-parity distortion of Schwarzs-

those of the cosmic screw. Hené should be even and have

a value of at least 2 in order to obey symmetry and regularit)(/ersion of this analysis

requirements.

B. Numerical techniques

C. Limits on the magnitude of Brill wave amplitudes

Cantor and Brill[33] showed that for a certain class of
spacetimes there are limits on the value of the amplitude of
the Brill wave in a spacetime with topolody®. Their basic

etechnique can be applied to these rotating black hole space-

times, which have topologRx S?>. We present a simplified

The strategy is to derive an inequality that contains an
arbitrary functionf, but does not explicitly contain the con-
formal factor¥, and which requires asymptotic flatness of

To solve the Hamiltonian constraint equation we use dhe spacetime as one of its conditions for validity. We use
Newton-Raphson iteration procedure. The conformal factofhe freedomirf to locate Brill wave parameter spaces which
in the constraint equation is linearized about a trial functionfail to satisfy the inequality. When the inequality fails, it is
The initial trial function, ¥y, is usually chosen to be then clear that the assumption of asymptotic flatness has

2 cosh@y/2), because that is the solution for a spherical blackeen violated, and the value of the input Brill wave param-

hole with masdv =2. At a given iteration we assume the
solution has the formr =v;+ 6V, where sV is a small
correction function. We then evaluate the residgabf this
guess for¥;,

Vi o 2
&=AVi+ 7 (9%(dGo) + 95(q—do))

vyl -
—%(HésinzaJrHﬁ), (263

and use it as a source term for the correction functid

ov 2 2
A8V + —=(9,(d—0o) + I5(A— o))

-8

+75\P+(Hésin20+ H2)=—¢. (26b

Equation(263g is used merely to evaluatg, but Eq.(26b) is
solved with a numerical elliptic solver fof¥. The bound-
ary conditions on the grid are given as follow®V is sym-

eters which specify it are outside our domain of interest.
For this section, we define the metric as

ds?= W42 e24-%)(d 2+ d?) + sirtad?].  (29)

Brill started by considering the volume integral

f VE.VidV, (29
where f=uW, and whereu or f is an arbitrarily chosen
function. We can expand the above integral fan terms of
u and¥:
V- (UWVE) — W A U=2uPVu- V¥ +u2V .V,
(30)

We have now obtained both a surface and a volume piece for
the integral. Because we want a final equation which does
not include¥, we discard the terms under the integral which
still contain it explicitly after our transformation. Since these
terms are manifestly positive, the remainder must be less

metric across the throat, the axis, and the equator. At théan our original integral. We now have an inequality. Next

outer boundary we use the Robin conditiod, 6V
=—15V. Typically we usee=10"’ as our stopping crite-

rion.

Once 6V¥ is obtained, we try again, with

we require that¥ not vanish(this is only necessary if we
have nonzero extrinsic curvatyyés finite, and thaVu go to
zero faster tham %2,

To evaluate the surface terms we make use of the asymp-

i = -2
W, =W+ 5¥. We repeat this procedure until a solution to {otic properties of?’, namely that¥=1+m/2r+0O(r %) at

Eq. (14) with appropriately small errofmaximum value of
€; on the grid is achieved 20].

Some of the data sets considered in this paper use Brill
waves that are very wide. Because of this, one may worry

large radii. The surface term is

35 u2PV¥.ds. (31)

whether the outer boundary of the grid is sufficiently large to ) . .
get an appropriate asymptotic behavior for the HamiltonianThis last expression will be-27 times the ADM mass of

constraint. To determine whether the position %f., is
valid, we measure the quantity
£=9,In|¥—e"? (27)

which should approach-1/2 in a spacetime that asymptoti-

cally approaches the Kerr spacetime. We adopt the criterion

the system if we choosa—¥ ! at »—=. If we choose
u—0 as »p—oo then the integral will not evaluate to the
ADM mass(in fact it will obtain zerg. When we perform
this surface integral at the throat of our spacetime we exploit
the isometry

d,(We”?)=0, (32
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o ] TABLE I. Upper limits onQ,. The parameters, wx, andn are
Finding Min/Max Q, arbitrary parameters and were chosen in an attempt to find the
smallest upper bound for the allowed valuesQf, the wave am-

e plitude, as a function of the wave width.
200.0 o € M n QO
0.25 1.726 —2.928 0 3.283
% 0.50 1.078 —3.186 0 5.122
g 1000 1 0.75 0.8455 —3.64 0 7.516
% 1.00 0.7042 —4.037 0 10.74
1.25 0.6171 1.096 4 11.97
00 1 ] 1.50 0.5580 1.097 4 10.99
1.75 0.5049 1.087 4 10.35
2.00 0.4587 1.076 4 9.914
%50 00 50 00 50 100 3.00 0.3300 1.046 4 8.993
¢ 100.0 0.0100 1.014 4 7.6113

FIG. 1. We plot the range of the Brill wave amplitude function
Q, which are inconsistent with asymptotically flat solutions of the
Hamiltonian constraint for a given “trial function’{see text In
this example plot, the values outside the range
—2.31KQy<56.24 are excluded.

In Table | we have give the strictest upper bound for the
function Q, that we were able to find using the above in-
equality, Eq.(33), and trial functions, Eqs(34) and (35).
These bounds, together with the paramegerand e which
were chosen to minimize them, are given in the table.

If one explores the.=1 form of this distortion and takes
P R the limits c—« and e—0 in that order one arrives at the
V- Vi+ gsz)dV amplitude Q,=7.577. Thus, it seems that while there are

more strict limits on larger width waves in general, there is
LOPRE no reason to suspect that any width is too large.
>7Tf0 fy=0sin@do. (33 In Table Il we have the strictest lower bound for the func-
tion Qq that we were able to find using the methods of this
where we have assumed thats independent of) at large  Section.
7. This inequality can only fail if our assumptions about the  Itis interesting to note, however, that the pure Bowen and
form of ¥ are incorrect. Therefore, when it does fail, we can YOrk spacetiméwhich is parametrized by, notQ, and can

conclude that an asymptotically flat metric cannot be formed’®@ regarded as a distortion of the Kerr spaceliwan be
by the given Brill wave parameters. specified apparently without limit. This is consistent with the

We explored the regime where Calculation done here, because the conformal Ricci scalar
q=sin“0qG+q0=2Qosin20e"72"’2 and found two forms foff vanishes for conformally flat spacetimes such as the Bowen

. . . . nd York spacetime. This assures us that the inequality given
which provided us with good bounds on the integral. Thes% Eq. (33 is trivially satisfied. Numerical evaluations of the

to obtain the final form for our inequality

27Tf§]:mMADM+ f

forms are Bowen and York black holésee[34]) seem to get asymp-
f=exp —en’— unl2) (34)  totically closer to the extremal Kerr spacetime &ss in-
creased, i.eJ/m?=a/m gets ever closer to unity confirming
and this observation.
— 2
f=cos dexp( — 7’ — u7/2). (39 TABLE II. Lower limits on Q. The parameters, u, andn are

arbitrary parameters and were chosen in an attempt to find the
greatest lower bound for the allowed values of the wave amplitude
Qp, and the wave widthr.

Replacing the inequality with an equality in E(3), per-
forming the integral, and then solving f&, provides us
with a functionQgq(u«,€,0) whose range supplies the forbid-
den amplitude value®, and whose domain is>0, o>0,

. o € M n Qo
and u is a real number.

The functionsQy(u,€,0) that we obtained were able to 0.25 0.0025 2.81 0 —1.261
provide both an upper and a lower bound for the allowed).50 0.0025 2.31 0 —1.437
values of the input paramet€), because they trace out a 0.75 0.0558 1.94 0 —1.486
function similar to an hyperbola ip space for given values 1.00 0.1053 1.62 0 —1.456
of o ande. The behavior of one function is illustrated in Fig. 1.25 0.1133 1.44 0 —1.404
1. In this figure we see two distinct extrema. One extremur.50 0.1081 1.33 0 —-1.351
is a greatest possible negative value @@y and provides us 1.75 0.1001 1.26 0 —1.303
with a lower bound for this parameter. The other is a mini-2.00 0.0921 1.21 0 —1.260
mum in the possible positive values Qg and this provides 100.0 0.0487 1.00 0 —0.765

us with a maximum value foQ,.
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We note also that we can use E83) to obtain a lower and event horizons, one which better captures the intuitive
bound on the ADM mass for numerically derived data setsconcept of oblateness. One such measui€,C,, where
Using f=1 we obtain Ca=2m(2A/16m) is the “areal circumference.” Note that
the quantityC,/C, tends to be much smaller thady, /C,.

For the case of ar=3.5, Qy=5.64, black hole apparent
horiozon we haveC,/C,=85 andC,/C,=19x 10°.

Another important quantity that can be obtained from the
where the integral is evaluated on the throat. We calculat@orizon is its mass
this after computing? on the initial slice to determine
whether the ADM mass of the spacetime is consistent with , A 4m)?

1 (=
0

asymptotic flatness. Ma=1671 A 38)
lIl. APPARENT HORIZONS and the related quantity, the maximum radiation IG4RL ),
A. The numerical method MRL=1—Man/Mppy - (39

We will use the same method for finding the ABppar-  The MRL is the amount of energy that can be emitted if the
ent horizon as described in previous woflk0,23, where  plack hole swallows none of the radiation energy present
surfaces that satisfy the trapped surface equation outside the horizon on the initial slice during its subsequent

i il 1 evolution.
Dis +Kjjss'=K=0 (37) We will also be interested in discussing what we call the
“transition points” of the horizon. These are points in pa-

i . . . . _
are sought. In the abovs; is an outward pointing unit nor fameter space of the initial data problem at which the appar-

mal vector which defines the surface. For initial data sets o

the type considered in this paper, the terms containing th?r';t hgé'zsor;fggscffefhéosbzcg?nt]ze 'It'ﬂ??rtz:rfgt!inalvg?r)\/tss ian
extrinsic curvature drop out, and therefore finding the appar; PP u P Ime. iion p

ent horizon reduces to finding an extremal surface. We wiIIbe accompanied by discontinuous changes in the character of

however, be using a different strategy for searching than Wghe horizon, as measured by the quantities discussed here.

used when we were evolving our spacetinigg,23. For
extremely distorted data sets we found that multiple trapped

surfaces may exist, and it is important to find th&ermost We now apply a number of these horizon measures devel-
surface. Therefore, we use a “brute force” approach anchped above to analyze a series of initial data sets, beginning
repeatedly call the solver, using many constant radial zonegith distorted, nonrotating holes.

covering the inner portion of the grid as an initial guess.

After the horizon finder has finished executing for each ini- A. Time-symmetric Brill wave data

tial guess, the solution with the largest radial coordinate po-

sition that satisfied the tolerance of the solver was deter.. ' 'St We begl_n by examining the shape parameter,
mined to be the apparent horizon Cp/Ca, for a series of Brill wave plus black hole space-

This strategy relies on our previous experience, which hagmes. These nonrotating black holes provide a good starting

shown us that even horizons with highly distorted geometr)PIOinlt( fgrlour s_urr]vez.lFslguredZ ﬁhO\gs_ﬁ/CA for a Sf_: ?jf
are nearly spherical in coordinate space, in our choice ol? ack ﬁes wit ‘71_ " z;n the Brill wave amplitude,
coordinates. Moreover, we know, from Gibbof&5], that Qo, In the range- <.Q0< : o
our apparent horizon must have the topology of a two- The apparent horizon generally b(_acomes prolate if |t_|s
sphere. As in previous papei23,25, we will study the in- distorted with a positive amplitude Brill wave, and oblate if

trinsic geometry of the black hole horizon as a measure of itd I distorted by a negative amplitude Brill way0]. How-
distortion. ever, the shape of the horizon undergoes two sharp transi-

tions, one at abou®,=—0.65[10] and the other at about
0=4.5. Between these two values @f the horizon is on
the throat, and the rati€,/C, grows exponentially. The
There are a number of geometric quantities that can béurther we move outside this region the further out the ap-
used to measure the apparent horizon that provide insight tearent horizon moves, and the more spherical the black hole
the physical characteristics of the black hole. Examples arbecomes.
its shape, area, and local curvature. One straightforward The spacetime behaves as if increasing amounts of energy
measure of a black hole’s shape in axisymmetry is the ratiovere being deposited in the region somewhat away from the
of its polar circumferenceC,, to its equatorial circumfer- horizon agQy| is increased. Beyond a certain critical thresh-
ence,C,. This ratio has been used previously, but we pointold, one would expect a new horizon would be formed. Be-
out that it has an inadequacy. If used to study the surface ofond this range, the spacetime is still becoming more dis-
an event horizon, this number may be infinitely large fortorted, but the distortion is driving the apparent horizon
some configurations; one need merely consider the caderther out on the grid and as a result the distortion is now
where two equal mass black holes are colliding and are jugsrimarily interior to the apparent horizon. Thus the exterior
touching so thaC, vanishes. Although we do not expect this region becomes more spherical as this parameter is increased
problem to affect the apparent horizon, however, we wouldsee also Beig and ®lurchadhd 42] for understanding this
like to use the same measure of oblateness for both apparesiffec?.

IV. SURVEY OF INITIAL DATA SETS

B. Measures of the horizon
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Brill Wave Spacetimes Main Branch
o=1.5
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FIG. 2. We plot the apparent horizon shape parameter FIG. 4. We illustrate the prolatenegiarge C,/Cy) of the ap-
C,/Ca, whereC, and C, are the polar and “areal” circumfer- parent horizon for spacetimes wnh Brill wave dlstortloqs of varying
ences of the surface, for a set of nonrotating distorted black hol@Mplitude,Qo, and a variety of widthsy. Also plotted is a fit of
initial data sets. The shape parameter is plotted ag&gstthe the “main branch,” a curve on which horizons lie for all distorted
amplitude of the distorting Brill wave. All spacetimes shown herePlack hole spacetimes considered. For each family we consider,
have the same Brill wave widthr=1.5, the width that best char- there is a transition point, a critical amplitude above which the
acterizes the geometry of the Kerr spacetime. This plot shows thBorizon jumps off the throat and becomes more spherical.
same data as computed on three grids with increasingly more zones, _ _ _
which illustrates how close we are to the exact solution. Thesdnuch larger. This results in a value Gf,/C, that is about
results are second-order convergent. an order of magnitude larger than the= 1.5 distortion. The

lower transition is still at abou@Q,=—0.65, but now the

Next we show the effect of changing the width of the Brill UPPer transition has moved 1Q,=5.65. The decrease in
wave. In Fig. 3 we show a set of spacetimes like those showkrp/Ca as we move away to values &f, larger than 5.65
above, but a larger width Brill wave is used£3.5). We @lso becomes less sudden. _
see that the horizon stays on the throat for larger values of In Fig. 4 we now show the data from the previous two

wave widths,o. The values ofo considered are 0.5, 1.0,

1.5, 2.0, 2.5, 3.0, and 3.5. We will call this group of space-
timesset 1a We see that the functio@,/C, of Q, changes
only slightly aso is varied for a large portion of the plot.
There is a sharp transition that occurs for positive amplitude
distortions which is strongly dependent on the width of the
wave. Beyond this transition point the AH ceases to be on
y the throat. There is another transition point for the negative
amplitude Brill wave spacetimes, and for all but the narrow-
' est of the Brill waves consideredr&0.5) it lies at about
Qo= —0.65. The region between these two transitions con-
stitutes what we will call the “main branch” and is relatively
independent ofe. The “main branch” for the range
1.8<Q(<5.6 is approximated to an accuracy of 1% or less

Brill Wave Spacetimes

0=3.5
100 T T

high res, C,/C,
........... med res, C /C,
---- lowres, C/C,

by
A C,/Ca=exp( —0.2870550.728648), + 0.01972&3),
(40)
Toohe te 20 29 40 80 89 7% and is plotted by a heavy dashed line in Fig. 4. Since the

horizon is simply the throat:{=0) for the “main branch”
FIG. 3. This plot illustrates the basic properties of the apparenfPacetimes it is not surprising that I@(C,) should depend
horizon shape parameteg,, /C,, for the large width Brill wave, linearly onQq as it is simply reflecting the effect @, upon
o=3.5. The apparent horizon becomes extremely distorted nedh€ conformal metric.
Qo=5.65, withC,,/C,~90. This plot shows the same data as com-  Also worthy of note is that above=2.0 the upper tran-
puted on three grids with increasingly more zones. sition point becomes nearly fixed ,=5.65. Some small
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Effect of Brill wave width on MRL Oblate Brill Wave Spacetimes

0.97
08

C,/C

0.87

02

0.0

-2.0 -1.2 -0.8 -0.2

FIG. 5. This plot illustrates the maximum radiation loss, or
MRL, for spacetimes with Brill wave distortions of varying ampli-
tude,Qq, and a variety of widthsg. The diamonds mark the loca-
tion of the maximally prolate horizon for each curve.

FIG. 6. This plot illustrates the behavior of the negative ampli-
tude, narrower width Brill wave spacetimes. The behavior here is
qualitatively similar to the larger width positive amplitude space-
times depicted in Fig. 4, except that the apparent horizons are all
oblate. AsQ, becomes more negative the apparent horizon jumps

variation occurs, but not much. Roughty=2 is a width  off the throat at a transition point and the spacetime becomes more
above which the most prolate spacetime occurs at aboupherical.

Qo=15.6 with a shape characterized I8y,/C,~88. Like-
wise, it appears thar=1 is a width above which the most pjitude of the distortion is negative. In this regime we find a
oblate spacetime occurs at abd§=—0.65 with a shape pehavior that is qualitatively similar to the behavior seen for
characterized bf,/Co~0.77. positive amplitude distortions iset 1a but we found that we

In Fig. 5 we see the effect @, ando on the MRL of the  needed to use narrower Brill waves to explore this effect for
spacetime foset 1a For reference we have marked the posi-pegative amplitude spacetimes. If we consider Fig. 4 we see
tive Qo transition points, the peaks in the plot@f/Cx that  that all but theo=0.5 curves are very similar for the nega-
are seen in Fig. 4, with diamonds in Fig. 5. The MRL in- tiye amplitude portion of the graph. Because of this we use
creases, in all cases, as we increl@@st until it reaches some  \idths0=0.3, 0.4, 0.5, . . ,0.9 and we plot this data in Fig.
maximum value. As we increas$€,| further, we arrive at a . \We label this data aset 1b
transition point. Along the path of increasin@q|, the en- Note in Fig. 6 that the maximum distortiofminimum
ergy of the spacetime first increases primarily because we axg /C,) is increased by widening the Brill wave until a lim-
adding wave energy outside the horizon. As we travel furthefting value is reached, a behavior similar to that observed for
in this parameter space the mass increases primarily becauggsitive amplitudes in Fig. 4. There is also a continuation of
energy is being added to the hole itself. Another feature thaghe main branch for the segment of the spacetimes in which

can be observed in Flg 5 is that the MRL of the tranSitionthe wave is on the throat, a|th0ugh we have not Computed a
point begins to rise much more rapidly with increasiQg fit in this case.

after the Brill wave width becomes greater than 2.

In both Figs. 2 and 3 we have plotted the curves for Brill
waves with widthso=1.5 ando = 3.5 respectively at three
different grid resolutions: 60096, 300<48, and 15& 24. ) . ) . ]
We note that in both cases the resolution lines are very close N this section we discuss spacetimes with=1.5,

together and that the convergence exporerds defined by —1<Qo<7 and angular momentum parameté+ 0.25,
J=0.5, andJ=5, and we will call this collectiorset 2a We

Cp

Ca

D . plot C,/C, for this set in Fig. 7. One can see from the figure
~le, x(An)st- .-, (41 that the rotating black holes still lie along the main branch,
num true but the transition points occur earliéfior smallerQy).
is very nearly 2 at all points on both graphs. The larger width Adding angular momentum to Brill wave spacetlme§ re-
Brill waves were more difficult to calculate, but our code is duces the value oC,/C,, therepy makl_ng the spacetime
capable of calculating these spacetimes accurately. _more_oblate. For the Iqrger amplitude Br.'” waves this effect
is quite marked. In Fig. 8 we make this point clearer by
graphically depicting the embeddings of several distorted
black hole spacetimes. Three Brill wave spacetimes are taken
In this section we focus on the region of the time- as starting pointsQ,=—0.1, 0.0, and 0.1, and are plotted
symmetric distorted black hole spacetime in which the amwith thick lines. Next to each of these lines is a thinner one

C. Brill wave distortions of Bowen and York
rotating black holes

B. Negative amplitude Brill wave distortions
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Effect of J on Minimum C,/C,

0.7790

0.7780 |

c/C,

07760 |

0.7750 . v :
-0.6570 -0.6565 -0.6560 -0.6555 -0.6550

Q

FIG. 7. This figure illustrates the effect on the apparent horizon FIG. 9. In this plot we see data sets which cover input param-
of a Brill wave distortion on a Bowen and York black hole. The €ters in the range—0.657<Q,<—0.655, with ¢=1.5 and
addition of angular momentum makes the transition point, the poinf <J<10 (set 2b. It illustrates that althougl usually makes a
where the horizon leaves the throat, occur sooner, although fopOrizon more oblate, it can also cause the horizon to leave the throat

small values ofQ, the value ofC,/C, is very close to the “main for sufficiently negative values o®, and thereby make it more
branch.” spherical rather than more oblate.

depicting the shape of the horizon after settihg10. This ~ fime usually makes an AH more oblate, this is not always
general trend, that angular momentum makes a horizon mof&€- In fact, the addition of the Bowen and York distortion
oblate was a feature that was observed previously by Smafpakes the minimunC,/C, as a function ofQ, larger. In
for the Kerr spacetim@36]. othgr words, while adding a negative ampl!tude Br|ll wave to
As mentioned above, one generally expects that rotating 9iven black holeanmake it more oblate, increasingalso
black holes will be potentially more oblate than nonrotatingMakes the horizon jump off the throat at a smaller value of
spacetimes. However, there is an exception to this. In Fig. 9Qol SO that it does not achieve the maximum oblateness
we extend the above plots to show in more detail the effec®en with no rotation. _
of rotation on the negative amplitude spacetimes. We see Although we do not provide a plot, we note that as the
data sets which cover input parameters in the rang@arameter:] is increased for these spacetimes, the MRL de-
—0.657< Q< —0.655, witho=1.5 and 0<J<10 (set 2. ~ Creases.

Thus, while the addition of angular momentum to a space-
D. Brill wave distortions of end-stage “cosmic screws”

We next examine a collection of “cosmic screw” space-
times, referred to aset 3 The data irset 3is identical to the
data inset 2a(distorted Bowen and York black holewith
the exception that it uses the cosmic screw form of the per-
turbation. The value ol Clearly creates a much smaller
distortion of the horizon than the Bowen and York angular
momentum parameter of the same value, as is evident in Fig.
. 10. Indeed, it is almost impossible to distinguish the

02 | Jscrew= 0.5,0.25 spacetimes. This is reasonable since this dis-
N ~ =~ J=10, Q=-0.1 tortion can be thought of as two counterrotating and there-

R A | fore counteracting Bowen and York distortions.

Embedding of Bowen and York

12 +

07 r

03

E. Odd-parity distortions of Schwarzschild

08 ¢ In this section we examinset 4 which comprises odd-

parity distortions of the fornf,=0, f,=qg, andf;=cos¥
, [see Eg. (24)], with parameters 7,=0, 0<Qy<100,
12 o=0.5, 1.5, 2.0, 2.5, 3.0, and 3.5.
This family of spacetimes, depicted in Fig. 11, displays

FIG. 8. In this plot we see the embeddings of several distortedn® same property of the pure Bowen and York data distor-
black hole spacetimes. The heavy lines are spacetimes distorted BNs (in which J, the angular momentum parameter, can be
Brill waves: a prolate spacetime with,=0.1, an oblate spacetime thought of as representing the amplitude of the extrinsic cur-
with Qu=—0.1, and a Schwarzschild spacetime w@th=0.0. The  vature distortiol namely that there is no limit to the mag-
lighter lines represent these same spacetimes with angular momenitude of the parametekthat is possible, either theoretically
tum added. or in any numerical test done to date. We do not feature the
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Cosmic Screw Black Hole Horizons Odd-Parity Schwarzschild MRL
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-1.0 0.0 1.0 20 30 40 5.0 6.0 7.0 FIG. 12. This plot shows the MRL for a variety of odd-parity

data sets. Qualitatively it has the same features observed in Fig. 5,
FIG. 10. This figure illustrates the effect on the apparent horizone_xcept that the magnltude_ of the MRL.'S much smaller. As in Fig. 5,
of a Brill wave distortion on a black hole with a “cosmic screw” diamonds mark the amplitudes at which a given black hole space-

distortion(counterrotating above and below the equatorial plane pufiMe has its maximum value @, /Cy .

without net angular momentum, see text for dejais in the case . . . . .
of the Bowen and York black holes, the boundary conditions thelion is in the extrinsic curvature and affects the three-metric

cosmic screw have is the effect of smoothing out@hgC, curve, only through the conformal factor, it is not the standard Brill

although it has a lesser effect than a Bowen and York distortiowave distortion.
with the a distortion parameter of equal value. Figure 12 shows the behavior of the MRL function et

_ _ _ _ 5. As in set lathis data set has its peak MRL somewhat
negative amplitude distortions of these sets because the rejefore the horizon departs from the throat. It is otherwise

evant terms are squared in the Hamiltonian constraint, makgualitatively similar to the MRL curves depicted in Fig. 5.
ing their overall sign unimportant.

Unlike the Bowen and York spacetime, for which the ho-
rizon remains on the throat for very large the horizon . ] ] ) )
moves away from the throat in the odd-parity distortion of An important question that we wish to discuss is “How
Schwarzschild for sufficiently larg®,. In this respect these distorted can a black hole be?” The hoop conjecfur 12
data sets are similar teet 1a They also resemblset 1ain  States that an event horizon will form if and only if the mat-
that larger width distortions make it possible to achieve morder is sufficiently compact in all directions. This conjecture
distorted horizonsSet 4is unlike set 1ain that the distortion Would seem to suggest that the black hole horizon should

never becomes even remotely as lafgete that this distor- also be sufficiently compact in all directions. Although inter-
esting work has been done on the hoop conjecture for black

hole spacetimeésee, e.d37,38) much remains to be done.
Odd-Parity Schwarzschild As we have seen above, black halgparenthorizons can
be extremely distorted, nonspherical objects as measured by
the shape parameté&,/C,. We have shown cases where
the AH is extremely prolate G,/C,~88) or oblate
(Cp/Ca=0.77). However, these results are for the apparent
horizon, and not theventhorizon. A careful study of dis-
torted event horizons, and implications on the hoop conjec-
ture will be presented elsewhere. In this section we restrict
our attention to the apparent horizons we have found, and
discuss whether there is a limit to how distorted they can be.
The fact that there are limits on the amplitude parameter
(Qo) is somewhat suggestive of a limit on the degree of
distortion possible for the apparent/event horizon of the
/ black holes considered hefsince the amplitude parameter
9% 200 200 500 800 1000 controls the degree of distortion of the black Holadeed, it
@ allows one to demonstrate the limit numerically for a Brill

FIG. 11. This plot shows the prolateness of the horizon,wave of a given shapes given by, 7o, andn).
C,/Ca, for a odd-parity data sets with a variety of distortion ~ However, there may also be a good reason to suppose that
widths o. As was the case for the Brill wave distorted spacetimesthere is no limit on how large or small the quant@y,/C,
(compare to Fig. 4 aboyethe maximum in th€,/C, curve marks ~ may become for an asymptotically flat spacetime. We might
the place where the apparent horizon moves away from the throabe able to engineer spacetimes with two gravity wave distor-

F. Hoop conjecture

1.015

1.010

c,/C.

1.005 -
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tions: one widely extended, the other more comparable to thsible to foliate the region of the spacetime exterior to the
size of the hole. In effect, the larger distortion can be used t@apparent horizon with a sequence of nested two-surfaces,
“fool” the black hole into thinking that the spacetime is not which are asymptotically spheres at large radii, using a
asymptotically flat. Thus, it may be that we can find space-‘lapse” whose value is equal to the inverse of the extrinsic
times with arbitrarily largeC,/C, if we combine distortions curvature of those two-surfacgse have not shown that
on a variety of scales. This possibility is not investigatedthis condition is actually satisfied for the wide class of black
here. hole spacetimes considered here, but we have seen that this
inequality is preserved in all spacetimes considered in this
G. Maximum prolateness paper. Bernstein also sought for and failed to find a violation
e . . of the Penrose inequalify.0,17] using the Brill wave distor-
Itis difficult to pin down a maximum prolateness for al tigns of the non-rotating black hole, but did not consider the

the types of spacetimes considered here. It seems reasonabextreme distortions used in this paper. A violation of the

however, to simply focus on Brill wave spacetimes since th ; . . .
. . . enrose inequality would result in a negative value for the
odd-parity and momentum distortions usually make the ) : :
RL, and we can see that this does not occur if we review

spacetime more oblate or have small effect. For any giver).

value ofo it is a straightforward matter to obtain the value of igs. 5 and 12.

Qo Which maximizesC,/C, because we can search the en-

tire range of possible values f@, (which we know from V. SUMMARY AND FUTURE WORK

Sec. Il C must have a value less than 10.0 In this paper we have described the construction of new

In all these data sets, the horizon remains on the throaHﬂtial data sets for distorted rotating black holes in detail.

until some critical Vallf'e Qo IS reached and thgn I departs These data sets correspond to a large family of black hole
and moves outward in coordinate space. Until the horizon

| he th Ic ) b .- spacetimes, generalizing the Kdrt8], Bowen and York
e v H: diored Sehrasch ack hols7).and shoud
C./C, continues a), is increased Lmtil a value dBy is provide a rich testing ground for evolutions of highly dy-
pivA o2 990 12 X i 0 namic, rotating and nonrotating black holes.
reached which is inconsistent with asymptotic flathess. The We, have analyzed many of the properties of extreme pa-
mgst distorted spacetime oceurs when the largest value ?gmeter choices of these data sets. We have, for example,
oS usehd, al_though tZetgrO\évth tlshv?frytﬁIO\;v aféerthgf\;alzue %Yocated the analytic upper and lower limits to the possible
exp(ol) at‘; Inf(::ﬁasti ko hal out hall the Tundame distortion parameters for these spacetimes, located the tran-
wavelengin ot the black hole. sition points beyond which multiple trapped surfaces exist,

. t\é\/h'lg ;he_:t mformatlonbwet tc:]btameq does not _Elrowdel l,:sand identified spacetimes with the most oblate/prolate appar-
with a detinite answer about the maximum possible prolateq i 1,qi70ns in our family of data sets. Furthermore, we in-

ness of the apparent horizon in these spacetimes, it SlJgge?f@stigated the effect of rotation and cosmic-screw type dis-

that there is some limiting value oZ,/C,. The largest tortions on these data sets. This investigation should help

value we have measured @, /C,=88. However, it is pos- rovide a roadmap to interesting, distorted black hole space-
sible that despite the observed trends the quar@ifyCpa 'Ei)mes for evolutior?in both 2D agr;d 3D. P

may be made to grow without limit for some untried Birill In the near future we intend to apply the horizon finding

wave shape or combination of shapes. code described in Ref41] to some of the above data sets, to
) determine to what extent the behavior of the event horizons
H. Maximum oblateness is in agreement with the behavior of the more extremely
How oblate can a black hole be? To get a feel for thedistorted apparent horizons. Do spacetimes with strongly dis-
meaning of the raticC,/C, we note that for an infinitely torted apparent horizons _have strongly distorted event hor_i-
thin disk in Euclidean space we ha@/C,=0.900 and for zons? This research provides us with important data for this
an extremal Kerr black holea(m=1) we have a smaller investigation. In parti_culara=2_ configurationg with ampli-
value,C,/C,=0.860. Thus, although these ratios are quitefudesQo=>3.5 seem likely to yield the most distorted space-
close to unity, they actually represent extremely distortedimes. We also plan to evolve the cosmic screw spacetimes
surfaces. For a very wide range of Brill wave parameters wénd study them in more detail.
have seen a robust lower bound fGy,/C,~0.77, with
Qo= —10.65, as discussed above. This seems to follow the
trend discussed above for the prolate black hole spacetimes. ACKNOWLEDGMENTS
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