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Evolution of distorted rotating black holes. III. Initial data

Steven R. Brandt and Edward Seidel
National Center for Supercomputing Applications, 605 East Springfield Avenue, Champaign, Illinois 61820 Department of P

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
~Received 10 January 1996!

In this paper we study a new family of black hole initial data sets corresponding to distorted ‘‘Kerr’’ black
holes with moderate rotation parameters, and distorted Schwarzschild black holes with even- and odd-parity
radiation. These data sets build on the earlier rotating black holes of Bowen and York and the distorted Brill
wave plus black hole data sets. We describe the construction of this large family of rotating black holes. We
present a systematic study of important properties of these data sets, such as the size and shape of their
apparent horizons, and the maximum amount of radiation that can leave the system during evolution. These
data sets should be a very useful starting point for studying the evolution of highly dynamical black holes and
can easily be extended to 3D.@S0556-2821~96!04114-8#

PACS number~s!: 04.25.Dm, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

There is increasing interest in the study of black ho
from both astrophysical and theoretical points of view. Co
lescing black hole binaries are considered an impor
source of gravitational waves for the Laser Interferome
Gravitational Wave Observatory~LIGO! @1#, VIRGO @2# and
other gravitational wave observatories. At the same time,
merical studies of black holes are advancing to the po
where highly distorted, axisymmetric black holes@3,4# and
black hole collisions@5,6# can be simulated, extracting im
portant physics such as the gravitational wave forms emi
and the dynamics and properties of the event and appa
horizons@7,8#. Recent progress has also been made in th
dimensional~3D! @9# black hole spacetimes. These are so
of the reasons it is important to develop a series of ini
data sets to evolve.

However, black hole initial data sets are interesting
their own right, apart from evolutions. They are potentia
useful for studying problems related to cosmic censors
such as the Penrose inequality@10#. Furthermore, it is pos-
sible to study greater numbers of data sets with higher re
lution than is practical to evolve numerically. This can le
to important observations of properties of apparent horiz
and can help to identify particularly interesting spacetim
for evolution studies. Initial data sets of the type described
this paper can be used to analyze the most extreme type
distortion and may have bearing on the hoop conject
@11,12#. The study of an apparent horizon in an initial da
set may provide valuable insight into which spacetim
might have the most distorted event horizons.

Black hole initial data sets, based on the Einstein-Ro
bridge construction@13#, have been developed over the la
few decades. In the early 1960s a series of time symme
conformally flat wormhole data sets corresponding to t
black holes were developed by Misner@14# and Brill and
Lindquist @15#. At about the same time Brill developed a
initial data set for gravitational wave spacetimes that
volved specifying a free function in the conformal part of t
three-metric that determined the distribution of the grav
tional wave energy in the spacetime@16#. These time sym-
540556-2821/96/54~2!/1403~14!/$10.00
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metric initial data sets were combined to produce the NCS
‘‘Brill wave plus black hole’’ spacetimes, generalizing the
single wormhole to a highly distorted black hole spacetim
@10,17#. The evolution of these data sets has been very use
in understanding the dynamics of highly distorted black ho
spacetimes, and also in preparing for studies of collidin
black holes, as colliding holes form a highly distorted sing
hole immediately after the merging process. Rotating, s
tionary black hole data sets, which are not time-symmetr
were first discovered by Kerr@18# in 1963, and then a non-
stationary form was discovered by Bowen and York@19#.
The conformally flat Bowen and York construction for singl
black holes was then generalized to multiple conformally fl
holes with angular momentum by a number of authors~for
example, see@20#! leading to recently computed 3D data se
for two black holes with arbitrary spin and angular momen
tum @21#.

In this paper we discuss a new family of distorted rotatin
black hole initial data sets, some of which were evolved a
studied in Refs.@22–24#. Although the constructions we
present here are axisymmetric, our approach is easily carr
out in 3D. These data sets combine a number of the ide
discussed above, generalizing the Bowen and York constr
tion by including a ‘‘Brill wave’’ so that highly distorted,
rotating black holes with gravitational radiation can be stu
ied. In addition to these new data sets to be described bel
this family includes as special cases all previous single bla
hole data sets discussed above, including the Schwarzsch
Kerr, Bowen and York, and NCSA ‘‘Brill wave plus black
hole’’ spacetimes.

As we have shown in Refs.@7,23,25#, these data sets are
interesting in their own right as dynamical black holes
These black holes radiate both polarizations of the gravi
tional wave field, and their horizon geometries can be
distorted they cannot be embedded in a flat Euclidean spa
In future papers we will continue to explore their dynamic
in detail. Moreover, just as in the nonrotating case, these d
sets can be used to understand the late time behavior of c
lescing, multiple black hole systems, as highly distorte
‘‘Kerr’’ black holes will be formed in the process. These
data sets can be thought of as representing initial conditio
1403 © 1996 The American Physical Society
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1404 54STEVEN R. BRANDT AND EDWARD SEIDEL
for the late stages of that process, and should prove to b
valuable system for studying it without having to evolve t
orbits leading up to the merger.

The paper is organized as follows: In Sec. II we detail t
mathematical construction of the data sets and discuss s
of their properties, such as their masses, for several s
classes of the spacetimes. Then in Sec. III we discuss a s
of tools we have developed to study the initial data sets, s
as the apparent horizons and their intrinsic geometry. In S
IV we survey many initial data sets, describe their featur
and discuss application of the hoop conjecture and Pen
inequality. Finally in Sec. V we summarize the results.

II. CONSTRUCTING DISTORTED,
ROTATING BLACK HOLES

A. Initial data

In this section we provide details of the construction
this new family of distorted, rotating black hole data se
Some details were provided in Ref.@22#, but as this paper
focuses exclusively on the initial value problem we presen
more comprehensive treatment here. To motivate the p
lem, consider first the Kerr metric, written in Boye
Lindquist form @26#:

gmn
~K !5S gtt~K ! 0 0 gtf

~K !

0 grr
~K ! 0 0

0 0 guu
~K ! 0

gtf
~K ! 0 0 gff

~K !

D ,
grr

~K !5r2/D,

guu
~K !5r2,

gtt
~K !5~a2sin2u2D!/r2,

~1!

gtf
~K !522amrsin2u/r2,

gff
~K !5@~r 21a2!22Da2sin2u#sin2u/r2,

D5r 222mr1a2,

r25r 21a2cos2u,

wherem is the mass of the Kerr black hole,a is the angular
momentum parameter, and a superscript (K) denotes the
Kerr spacetime.

We would like to put this in a form that is free of coor
dinate singularities, and that has properties similar to
form used in the nonrotating black hole studies@4,17,27#.
Generalizing the transformation used in Ref.@4,17,27# we
define a new radial coordinateh through

r5r1cosh
2~h/2!2r2sinh

2~h/2!, ~2a!

r65m6Am22a2. ~2b!

With this transformation the spatial part of the Kerr me
ric can be written as
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dl25C0
4@e22q0~dh21du2!1sin2udf2#, ~3!

where

C0
45gff

~K !/sin2u, ~4a!

C0
4e22q05grr

~K !S drdh D 25guu
~K ! . ~4b!

Thus we see that our coordinate transformation~2b! has re-
sulted in a ‘‘quasi-isotropic gauge’’@28# for the Kerr space-
time. Notice also that ifa50 thenq050 and we recover the
Schwarzschild three-metric. This metric is now in the form
used in the previous NCSA black hole studies@3,4,17,29#,
although here the functionsq0 andC0 are determined by the
Kerr spacetime.

One may check that the three-metric defined by Eq.~3! is
invariant under the transformationh→2h, i.e., there is an
isometry operation across the throat of an Einstein-Rose
bridge located ath50, just as in the Schwarzschild space-
time @30#. This construction has two geometrically identical
sheets connected smoothly at the throat, located ath50. In
terms of the more familiar radial coordinates, this condition
can be expressed as

r̄→~m22a2!/~4r̄ !, ~5!

where r̄ is a generalization of the Schwarzschild isotropic
radius, defined as

r̄5
Am22a2

2
eh. ~6a!

r̄ is related to the usual Boyer-Lindquist radial coordinate
via

r5 r̄ S 11
m1a

2r̄
D S 11

m2a

2r̄
D . ~6b!

Note that in the Kerr spacetime the horizon, located a
r5m1Am22a2, is at r̄5Am22a2/2 in the r̄ coordinates,
or at h50, just as in previous studies of the Schwarzschild
spacetime@30#. The isometry conditionh→2h will be used
in the construction of more general initial data sets to be
described below, and is also imposed during the evolution a
well @23#.

The three-metric, however, comprises only half of our
initial data. The extrinsic curvature on the initial slice is re-
quired as well, and for the Kerr spacetime it is given by the
equations

K̂hf5am@2r 2~r 21a2!1r2~r 22a2!#sin2ur24, ~7a!

K̂uf522a3mrD1/2cosusin3ur24, ~7b!

where we note thatKi j5C0
22K̂ i j , and all extrinsic curvature

components excepting the two listed are zero. One can sho
that this metric and extrinsic curvature satisfy both the
Hamiltonian constraint

R1K22Ki jKi j50 ~8!
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and the three-momentum constraints

¹ i~K
i j2g i j K !50, ~9!

as they must.
Finally we must specify the lapse and shift to comple

the system for evolution. The choices that make the stat
ary nature of this Kerr spacetime explicit are

1

a2 5112mrS r 21a2

Dr2 D ~10!

and

bf5
22amr

~r 21a2!22a2Dsin2u
. ~11!

We have now written the Kerr spacetime in 311 form, in
a coordinate system like that used to evolve the nonrota
distorted black holes in previous work. This is a stationa
spacetime, and it can be evolved using a dynamic slic
condition just as the Schwarzschild spacetime has b
evolved using maximal and other slicing conditions. But ju
as in the case of Schwarzschild, we can distort this rota
black hole with a gravitational~‘‘Brill’’ ! wave and study its
response.

We accomplish this by adding a free functionq(h,u) to
the conformal three-metric in Eq.~3!, just as in Ref.@17#.
Then the conformal factorC0 , which is a solution only for
the stationary Kerr spacetime, will no longer satisfy t
Hamiltonian constraint~8!. Instead we must solve this con
straint equation for the general conformal factorC as we
discuss below. This generalization results in a three-me
with the form

dl25C4@e2~q2q0!~dh21du2!1sin2udf2#. ~12!

Apart from the functionq0 this is the same three-metric use
for the nonrotating, distorted black hole spacetime. This
lustrates the fact that unlike the Schwarzschild spacetime
undistorted Kerr spacetime isnot conformally flat (R̂Þ0,
whereR̂ is the scalar curvature of the conformal part of t
three-metric!. We may, in fact, make the spacetime confo
mally flat by adding a ‘‘Brill wave’’ @19# specified by
q5q0 . This distorts the Kerr black hole, which breaks t
stationary nature of the spacetime. As we will show belo
appropriate choices of this functionq ~along with appropri-
ate solutions to the momentum constraint for the extrin
curvature terms! can lead also to Schwarzschild, the NCS
distorted nonrotating black hole~as in Ref.@17#!, the Bowen
and York rotating black hole@19#, or a distorted Bowen and
York black hole.

The functionq, representing the Brill wave, can be ch
sen somewhat arbitrarily, subject to symmetry conditions
the throat, axis and equator, and falloff conditions at la
radii @17,22#. The functionq will be chosen to have an in
version symmetric~i.e., symmetric underh→2h) Gaussian
part given by
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q5sinnuqG , ~13a!

qG5Q0~e
2s11e2s2!, ~13b!

s65~h6h0!
2/s2. ~13c!

This form of the Brill wave will be characterized by several
parameters:Q0 ~its amplitude!, s ~its width!, h0 ~its coordi-
nate location!, and n, specifying its angular dependence,
which must be positive and even. We note that Eqs.~13!
simply provide a convenient way to parametrize the initial
data sets, and to allow us to easily adjust the ‘‘Brill wave’’
part of the initial data. Many other devices are possible. To
narrow the field of study, in this paper we restrict ourselves
to sets characterized byn52, andh050 for all data sets,
and will commonly uses51.5

With this form of the Brill wave functionq, a number of
black hole data sets can be constructed. As discussed abov
given the appropriate extrinsic curvature choice, the station
ary Kerr solution results ifq50. For other choices the Bo-
wen and York form results ifq5q0; a distortedBowen and
York spacetime can be made by settingq5sinnuqG1q0; and
a distorted Kerr spacetime can be made by setting
q5sinnuqG . Furthermore, for spacetimes without angular
momentum this metric form contains both the NCSA Brill
wave plus black hole spacetimes and, as we will see below,
new black hole spacetime corresponding to odd-parity dis
tortions of the Schwarzschild spacetime.

As a consequence of this generalization of the metric, we
must now solve both the Hamiltonian and momentum con
straints. The Hamiltonian constraint equation~8! can be ex-
panded in coordinate form to yield

]2C

]h2 1
]2C

]u2
1

]C

]u
cotu2

C

4

52
C

4 S ]2

]h2 ~q2q0!1
]2

]u2
~q2q0! D

2
C27

4
~ĤE

2sin2u1ĤF
2 !, ~14!

where we have assumed the initial slice is maximal, i.e.
tr K50. There are in principle three momentum constraints
to be satisfied by the extrinsic curvature components. How
ever, in our spacetimes we require a ‘‘time-rotation’’ sym-
metry about the initial slice, or invariance of the metric under
(t,f)→(2t,2f). Writing the extrinsic curvature tensor as

Ki j5C22Ĥ i j5C22S ĤA ĤC ĤEsin
2u

ĤC ĤB ĤFsinu

ĤEsin
2u ĤFsinu ĤDsin

2u
D ,
~15!

this time-rotation symmetry requires that

ĤA5ĤB5ĤC5ĤD50, ~16!

leaving only ĤE and ĤF to be determined. This also auto-
matically makes the initial slice maximal.
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Under these conditions the only nontrivial component
the momentum constraints is thef component:

]hĤEsin
3u1]u~ĤFsin

2u!50. ~17!

Note that this equation is independent of the functionsq and
q0 . This enables us to choose the solutions to these e
tions independently of our choice of metric perturbation.

At this point we may regard Eqs.~12!–~17! as defining
the problem we wish to solve. The boundary conditions
these equations, which are extensions of those used in
@17#, may be summarized as follows.

Isometry conditions. Across the throat of the black hole
labeled byh50, we can demand a condition that the spa
time has the same geometry ash→2h. We can require this
not only for the initial data, but also throughout the evoluti
of the spacetime. This condition may be stated in one of t
ways ~in axisymmetry! to allow for different slicing condi-
tions. Each choice must result in a symmetricKhf and an
antisymmetricKhu to be consistent with the Kerr solution
Thus, the form of the isometry condition must be differe
for the symmetric and antisymmetric lapse spacetim
h→2h for the former, (h,f)→(2h,2f) for the latter.

If a lapse that is antisymmetric across the throat is
sired, the metric elements with a singleh index are antisym-
metric across the throat, while those with zero or two indic
are symmetric. The extrinsic curvature components have
opposite symmetry of their corresponding metric elemen
The shift bh is antisymmetric across the throat, while a
other shifts are symmetric.

If a symmetric lapse is desired, the metric elements wit
singleh index or singlef index ~but not both! will be anti-
symmetric at the throat and all others will be symmetr
Extrinsic curvature components will have the same symm
tries as their corresponding metric elements. Thebh and
bf shifts will be antisymmetric, and thebu shift will be
symmetric. With these symmetries enforced, the initial d
and all subsequent time slices will be isometric across
throat. One can verify that all Einstein equations resp
these symmetries during the evolution if they are satisfi
initially.

Symmetry axis. All metric elements, extrinsic curvatur
components, and shift components with a singleu index are
antisymmetric across the axis. The remainder are symme

Equatorial plane. At the equator there are two possib
symmetries, the Kerr symmetry and the ‘‘cosmic screw
symmetry~see Sec. II A 4 below!. For the Kerr symmetry,
u→p2u, all metric components, extrinsic curvature com
ponents or shifts with a singleu index are antisymmetric.
The remainder are symmetric. For the cosmic-screw ty
boundary conditions the symmetry at the equator
(u,f)→(p2u,2f) and those metric elements, extrins
curvature components, or shift components that contain
u or onef index ~but not both! are antisymmetric. The re
mainder are symmetric.

Outer boundary. At the outer boundary a Robin conditio
is used forC. This condition gives the correct asymptot
behavior in the conformal factor to orderr22. For the metric
given in the form ~12! C has the form C5eh/2

1(m/2)e2h/21••• and therefore obeys the differentia
of
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equationC12]hC52eh/2. The conformal factor is always
symmetric at the throat, axis, and equator.

With this description of the problem and boundary condi-
tions, we summarize a number of families of rotating black
hole solutions that are possible in this formulation.

1. Kerr and distorted Kerr

As shown above, Eqs.~12!–~17!, together with the
boundary conditions, are satisfied by the stationary Ker
spacetime with the transformations~2!–~7!. In Eq. ~12!, this
spacetime corresponds toq50, but as we have mentioned
above, we may add a Brill wave functionq5sinnuqG to dis-
tort the Kerr spacetime. From the standard Arnowitt-Deser
Misner ~ADM ! expressions for the mass and angular mo
mentum of the spacetime@31# we have

MADM52
1

2p R S¹a~Ce2h/2!dSa, ~18a!

Pa5
1

8p R S~Ha
b2ga

bH !dSb , ~18b!

or, in terms of the variables defined in this paper,

MADM5E
0

p

eh/2~2]hC1C/2!sinudu, ~19a!

J5Pf5
1

4E0
p

C6HEsin
3udu. ~19b!

If one evaluates these expressions for the undistorted Ke
spacetime, (q50), one recovers the expected results
MADM5m ~which should be evaluated ath5`) and
J5am ~which may be evaluated at any radius in axisym-
metry!. In practice, we evaluatem at the outer edge of our
grid, andJ is simply an input parameter. We have evaluated
and verifiedJ at various radii, as reported in previous work
@22#.

2. Distorted Bowen and York

Perhaps the simplest nontrivial choice of solution for the
momentum constraint is given by the Bowen and York@19#
solution

ĤE53J, ~20a!

ĤF50, ~20b!

where J is the total angular momentum of the spacetime
This solution clearly satisfies the momentum constraint. In
the language of this paper, the original Bowen and York
solution has a Brill wave function determined by

q5q0 ; ~21!

i.e., it is conformally flat, but we may distort it by setting

q5q01sinnuqG . ~22!

This is the solution we often use in constructing distorted
rotating black hole spacetimes, and a number of them hav
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been evolved and discussed in Ref.@23#. It is somewhat sim-
pler to construct than the distorted Kerr because we c
choose our total angular momentum and distortion para
eters without needing to know the ratioJ/m2 ~an additional
value that we would need to initialize the Kerr momentu
solution!. Knowing this parameter would require us to kno
the valuem, and we will not know that parameter until afte
we solve the Hamiltonian constraint. It is possible, in prin
ciple, to iterate between guesses for the parameterJ/m2 and
solutions for the Hamiltonian constraint until arriving at
correctly initialized Kerr momentum solution.

We noted above that the Kerr solution is not conforma
flat, while the Bowen and York solution is conformally flat
Therefore one can consider adding a Brill wave to the Ke
solution, making it a conformally flat Bowen and York solu
tion. One can study the form of the wave functionsq and
q0 to understand what sort of Brill wave is required to ‘‘flat
ten’’ the Kerr solution. By equating the series expansions
q0 and our Brill wave function@cf. Eq. ~4b!#,

qapprox5a1sin
2ue2h2/s1

2
1a2sin

4ue2h2/s2
2
, ~23!

to second order inh and u, one obtains relationships be
tween the wave shape parametersa1 , a2 , s1 , ands2 and
the Kerr parametersa and m. It turns out that for
a/m,0.9 we find that the sin2u term dominates the sin4u
term, ands1 varies in value from 1.26 to 1.7 for rotation
parameters 0.01<a/m<0.8. Furthermore the amplitudea1
varies smoothly from zero to about 0.38 for all rotation p
rameters 0<a/m<1. We conclude that the Bowen and Yor
distortion is similar to a low amplituden52, s51.5 Brill
wave distortion on a Kerr black hole, which is quite simila
in shape and size to the distorted, non-rotating black ho
evolved previously@3#.

To get a feel for the difference between theq0 function
and its approximation,qapprox, we calculated the ADM value
of a/MADM as we would for the Kerr spacetime, except th
we usedqapproxinstead ofq0 in the metric. We found that the
error ina/MADM was less than 1%, even fora/m50.9.

3. Odd-parity distorted Schwarzschild

Odd-parity gravitational modes, as defined by Regge a
Wheeler @32#, are metric perturbations with parity
(21)l 11 wherel is the angular index of the tensor spher
cal harmonic describing the wave. These modes, in axisy
metry, are formed only from perturbations ingrf andguf .
The evolution of these modes does not couple linearly to
even-parity modes, and if there is no odd-parity disturban
on the initial slice of the spacetime these modes are ne
excited even when the full nonlinear equations are used.

We can create odd-parity distorted nonrotating spacetim
simply by finding solutions to the momentum constrai
equation~17! which drive the evolution ofguf , which sat-
isfy the boundary conditions, and yieldJ50 when the inte-
gral given in Eq.~19b! is performed.

As a framework for momentum solutions, we consider t
simple class defined by

ĤE5 f 1~u!1 f 2~h!@4 cosu f 3~u!1sinu]u f 3~u!#, ~24a!

ĤF52]h f 2~h!sin2u f 3~u!. ~24b!
an
m-

m
w
r
-

a

lly
.
rr
-

-
of

-

a-
k

r
les

at

nd

i-
m-

the
ce
ver

es
nt

he

This solves the momentum constraint wheref 1 , f 2, and f 3
are arbitrary functions which satisfy the symmetries

f 1~u!5 f 1~2u!5 f 1~p2u!, ~25a!

f 3~u!52 f 3~2u!52 f 3~p2u!, ~25b!

f 2~h!5 f 2~2h!, ~25c!

lim
h→`

f 2~h!50. ~25d!

The Kerr solution is not a member of this class, but the
Bowen and York solution does fit within it (f 153J,
f 25 f 350).
Note that any spacetime withf 150 will have zero angu-

lar momentum, asĤE falls off for large values of the radial
coordinateh, and furthermore the angular part of the integral
in Eq. ~19b! is identically zero by construction. We require
f 2 to go to zero only so that we can make the spacetime
asymptotically Kerr.

We now turn to a solution that has no net angular momen-
tum, but one that is not time symmetric about the initial slice.
This solution corresponds to a ‘‘Schwarzschild’’ black hole
with both even- and odd-parity distortions. This generalizes
the NCSA Brill wave plus black hole spacetimes@29#, which
allowed only even-parity distortions.

For this we choose the extrinsic curvature components
such thatf 150, f 25qG8 , and f 35cosusinn823u. In order to
obey symmetry and regularity conditions,n8 must be odd
and have a value of at least three.~This was arranged to be
suggestive of a radiationl mode. Usingn53 gives almost
purel 53, while usingn55 gives almost a purel 55 com-
ponent@23#.!

As this data set contains the odd-parity polarization of the
gravitational wave field, but no angular momentum, it is sim-
pler to evolve than than the rotating black holes described
above, but has richer physical content than the standard Bril
wave plus black hole data sets. A few of these data sets hav
been evolved and discussed in Ref.@23#, where both even-
and odd-parity waveforms were extracted.

4. Cosmic screws

There is another solution related to the odd-parity dis-
torted Schwarzschild data set discussed above. While tha
data set has equatorial plane symmetry, we can alternativel
construct a solution that has something like an opposite sens
of rotation below the equatorial plane. As discussed above
this symmetry is (u,f)→(p2u,2f), thus requiringĤE to
be antisymmetric andĤF to be symmetric across the equator.

Axisymmetric data sets describing the collision of two
counter-rotating black holes have been dubbed ‘‘cosmic
screws.’’ As our data sets contain only one black hole, it can
be considered to represent a later stage of evolution of cos
mic screws, where the holes have already merged. Such da
sets should be useful in studying the late time behavior of
colliding spinning black holes, and will be evolved in a fu-
ture paper. The formalism of the previous section carries
over, but now the symmetry conditions on the equator are
reversed:f 1(u)52 f 1(p2u) and f 3(u)5 f 3(p2u).
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With these considerations in mind, we see th
f 153Jcosu, and f 25 f 350 is suggestive of a cosmic scre
spacetime~in this case we do not claim thatJ is an angular
momentum, but use this notation because it is suggestiv
the angular momentum of one of the colliding black holes
a cosmic-screw spacetime!.

We can also choosef 150, f 25qG8 , and f 35sinn822u
which is similar to our odd-parity distortion of Schwarz
child except that the equatorial boundary conditions are l
those of the cosmic screw. Heren8 should be even and hav
a value of at least 2 in order to obey symmetry and regula
requirements.

B. Numerical techniques

To solve the Hamiltonian constraint equation we use
Newton-Raphson iteration procedure. The conformal fac
in the constraint equation is linearized about a trial functio
The initial trial function, C0 , is usually chosen to be
2 cosh(h/2), because that is the solution for a spherical bla
hole with massM52. At a given iterationi we assume the
solution has the formC5C i1dC, wheredC is a small
correction function. We then evaluate the residuale i of this
guess forC i ,

e i5nC i1
C i

4
„]h

2~q2q0!1]u
2~q2q0!…

2
C i

27

4
~ĤE

2sin2u1ĤF
2 !, ~26a!

and use it as a source term for the correction functiondC:

ndC1
dC

4
„]h

2~q2q0!1]u
2~q2q0!…

17dC
C i

28

4
~ĤE

2sin2u1ĤF
2 !52e i . ~26b!

Equation~26a! is used merely to evaluatee i , but Eq.~26b! is
solved with a numerical elliptic solver fordC. The bound-
ary conditions on the grid are given as follows:dC is sym-
metric across the throat, the axis, and the equator. At
outer boundary we use the Robin condition,]hdC

52 1
2dC. Typically we usee51027 as our stopping crite-

rion.
Once dC is obtained, we try again, with

C i115C i1dC. We repeat this procedure until a solution
Eq. ~14! with appropriately small error~maximum value of
e i on the grid! is achieved@20#.

Some of the data sets considered in this paper use B
waves that are very wide. Because of this, one may wo
whether the outer boundary of the grid is sufficiently large
get an appropriate asymptotic behavior for the Hamilton
constraint. To determine whether the position ofhmax is
valid, we measure the quantity

j5]hlnuC2eh/2u ~27!

which should approach21/2 in a spacetime that asymptot
cally approaches the Kerr spacetime. We adopt the crite
at
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thatj must be equal to this value to within 0.1%. If it is not,
we regard our choice for value ofhmax, the outer boundary
of our grid, to be too small and adjust accordingly.

C. Limits on the magnitude of Brill wave amplitudes

Cantor and Brill@33# showed that for a certain class of
spacetimes there are limits on the value of the amplitude o
the Brill wave in a spacetime with topologyR3. Their basic
technique can be applied to these rotating black hole spac
times, which have topologyR3S2. We present a simplified
version of this analysis.

The strategy is to derive an inequality that contains a
arbitrary functionf , but does not explicitly contain the con-
formal factorC, and which requires asymptotic flatness of
the spacetime as one of its conditions for validity. We use
the freedom inf to locate Brill wave parameter spaces which
fail to satisfy the inequality. When the inequality fails, it is
then clear that the assumption of asymptotic flatness ha
been violated, and the value of the input Brill wave param
eters which specify it are outside our domain of interest.

For this section, we define the metric as

ds25C̃4e2h@e2~q2q0!~dh21du2!1sin2udf2#. ~28!

Brill started by considering the volume integral

E ¹̂ f •¹̂ f dV, ~29!

where f5uC̃, and whereu or f is an arbitrarily chosen
function. We can expand the above integral forf in terms of
u andC̃:

¹̂•~u2C̃¹̂C̃!2u2C̃ n̂ C̃52uC̃¹̂u•¹̂C̃1u2¹̂C̃•¹̂C̃.
~30!

We have now obtained both a surface and a volume piece f
the integral. Because we want a final equation which doe
not includeC̃, we discard the terms under the integral which
still contain it explicitly after our transformation. Since these
terms are manifestly positive, the remainder must be les
than our original integral. We now have an inequality. Nex
we require thatC̃ not vanish~this is only necessary if we
have nonzero extrinsic curvature!, is finite, and that¹̂u go to
zero faster thanr23/2.

To evaluate the surface terms we make use of the asym
totic properties ofC̃, namely thatC̃511m/2r1O(r22) at
large radii. The surface term is

R u2C̃¹̂C̃•dS. ~31!

This last expression will be22p times the ADM mass of
the system if we chooseu→C21 at h→`. If we choose
u→0 as h→` then the integral will not evaluate to the
ADM mass ~in fact it will obtain zero!. When we perform
this surface integral at the throat of our spacetime we explo
the isometry

]h~C̃eh/2!50, ~32!
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to obtain the final form for our inequality

2p f h5`
2 MADM1E S ¹̂ f •¹̂ f1

1

8
f 2R̂DdV

.pE
0

p

f h50
2 sinudu. ~33!

where we have assumed thatf is independent ofu at large
h. This inequality can only fail if our assumptions about th
form of C̃ are incorrect. Therefore, when it does fail, we c
conclude that an asymptotically flat metric cannot be form
by the given Brill wave parameters.

We explored the regime wher
q5sinnuqG1q052Q0sin

2ue2h2/s2 and found two forms forf
which provided us with good bounds on the integral. The
forms are

f5exp~2eh22mh/2! ~34!

and

f5cos4uexp~2eh22mh/2!. ~35!

Replacing the inequality with an equality in Eq.~33!, per-
forming the integral, and then solving forQ0 provides us
with a functionQ0(m,e,s) whose range supplies the forbid
den amplitude valuesQ0 and whose domain ise.0, s.0,
andm is a real number.

The functionsQ0(m,e,s) that we obtained were able t
provide both an upper and a lower bound for the allow
values of the input parameterQ0 because they trace out
function similar to an hyperbola inm space for given values
of s ande. The behavior of one function is illustrated in Fig
1. In this figure we see two distinct extrema. One extrem
is a greatest possible negative value forQ0 and provides us
with a lower bound for this parameter. The other is a mi
mum in the possible positive values forQ0 and this provides
us with a maximum value forQ0 .

FIG. 1. We plot the range of the Brill wave amplitude functio
Q0 which are inconsistent with asymptotically flat solutions of t
Hamiltonian constraint for a given ‘‘trial function’’~see text!. In
this example plot, the values outside the ran
22.317,Q0,56.24 are excluded.
e
n
ed

se

-

ed

.
m

i-

In Table I we have give the strictest upper bound for the
function Q0 that we were able to find using the above in-
equality, Eq.~33!, and trial functions, Eqs.~34! and ~35!.
These bounds, together with the parametersm and e which
were chosen to minimize them, are given in the table.

If one explores them51 form of this distortion and takes
the limits s→` and e→0 in that order one arrives at the
amplitudeQ057.577. Thus, it seems that while there are
more strict limits on larger width waves in general, there is
no reason to suspect that any width is too large.

In Table II we have the strictest lower bound for the func-
tion Q0 that we were able to find using the methods of this
section.

It is interesting to note, however, that the pure Bowen and
York spacetime~which is parametrized byJ, notQ0 and can
be regarded as a distortion of the Kerr spacetime! can be
specified apparently without limit. This is consistent with the
calculation done here, because the conformal Ricci scalar
vanishes for conformally flat spacetimes such as the Bowen
and York spacetime. This assures us that the inequality given
in Eq. ~33! is trivially satisfied. Numerical evaluations of the
Bowen and York black hole~see@34#! seem to get asymp-
totically closer to the extremal Kerr spacetime asJ is in-
creased, i.e.,J/m25a/m gets ever closer to unity confirming
this observation.

n
e

e

TABLE I. Upper limits onQ0 . The parameterse, m, andn are
arbitrary parameters and were chosen in an attempt to find the
smallest upper bound for the allowed values ofQ0 , the wave am-
plitude, as a function of the wave widths.

s e m n Q0

0.25 1.726 22.928 0 3.283
0.50 1.078 23.186 0 5.122
0.75 0.8455 23.64 0 7.516
1.00 0.7042 24.037 0 10.74
1.25 0.6171 1.096 4 11.97
1.50 0.5580 1.097 4 10.99
1.75 0.5049 1.087 4 10.35
2.00 0.4587 1.076 4 9.914
3.00 0.3300 1.046 4 8.993
100.0 0.0100 1.014 4 7.6113

TABLE II. Lower limits onQ0 . The parameterse, m, andn are
arbitrary parameters and were chosen in an attempt to find the
greatest lower bound for the allowed values of the wave amplitude
Q0 , and the wave widths.

s e m n Q0

0.25 0.0025 2.81 0 21.261
0.50 0.0025 2.31 0 21.437
0.75 0.0558 1.94 0 21.486
1.00 0.1053 1.62 0 21.456
1.25 0.1133 1.44 0 21.404
1.50 0.1081 1.33 0 21.351
1.75 0.1001 1.26 0 21.303
2.00 0.0921 1.21 0 21.260
100.0 0.0487 1.00 0 20.765
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1410 54STEVEN R. BRANDT AND EDWARD SEIDEL
We note also that we can use Eq.~33! to obtain a lower
bound on the ADM mass for numerically derived data se
Using f51 we obtain

MADM.11
1

4E0
p

~q2q0!sinudu, ~36!

where the integral is evaluated on the throat. We calcul
this after computingC on the initial slice to determine
whether the ADM mass of the spacetime is consistent w
asymptotic flatness.

III. APPARENT HORIZONS

A. The numerical method

We will use the same method for finding the AH~appar-
ent horizon! as described in previous work@10,23#, where
surfaces that satisfy the trapped surface equation

Dis
i1Ki j s

isj2K50 ~37!

are sought. In the above,si is an outward pointing unit nor-
mal vector which defines the surface. For initial data sets
the type considered in this paper, the terms containing
extrinsic curvature drop out, and therefore finding the app
ent horizon reduces to finding an extremal surface. We w
however, be using a different strategy for searching than
used when we were evolving our spacetimes@22,23#. For
extremely distorted data sets we found that multiple trapp
surfaces may exist, and it is important to find theoutermost
surface. Therefore, we use a ‘‘brute force’’ approach a
repeatedly call the solver, using many constant radial zo
covering the inner portion of the grid as an initial gues
After the horizon finder has finished executing for each in
tial guess, the solution with the largest radial coordinate p
sition that satisfied the tolerance of the solver was det
mined to be the apparent horizon.

This strategy relies on our previous experience, which h
shown us that even horizons with highly distorted geome
are nearly spherical in coordinate space, in our choice
coordinates. Moreover, we know, from Gibbons@35#, that
our apparent horizon must have the topology of a tw
sphere. As in previous papers@23,25#, we will study the in-
trinsic geometry of the black hole horizon as a measure of
distortion.

B. Measures of the horizon

There are a number of geometric quantities that can
used to measure the apparent horizon that provide insigh
the physical characteristics of the black hole. Examples
its shape, area, and local curvature. One straightforw
measure of a black hole’s shape in axisymmetry is the ra
of its polar circumference,Cp , to its equatorial circumfer-
ence,Ce . This ratio has been used previously, but we poi
out that it has an inadequacy. If used to study the surface
an event horizon, this number may be infinitely large f
some configurations; one need merely consider the c
where two equal mass black holes are colliding and are j
touching so thatCe vanishes. Although we do not expect thi
problem to affect the apparent horizon, however, we wou
like to use the same measure of oblateness for both appa
s.
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and event horizons, one which better captures the intuit
concept of oblateness. One such measure isCp /CA , where
CA52p(2AA/16p) is the ‘‘areal circumference.’’ Note that
the quantityCp /CA tends to be much smaller thanCp /Ce .
For the case of as53.5, Q055.64, black hole apparent
horiozon we haveCp /CA585 andCp /Ce5193103.

Another important quantity that can be obtained from th
horizon is its mass

MAH
2 5

A

16p
1
4pJ2

A
, ~38!

and the related quantity, the maximum radiation loss~MRL!,

MRL512MAH /MADM . ~39!

The MRL is the amount of energy that can be emitted if th
black hole swallows none of the radiation energy prese
outside the horizon on the initial slice during its subseque
evolution.

We will also be interested in discussing what we call th
‘‘transition points’’ of the horizon. These are points in pa
rameter space of the initial data problem at which the app
ent horizon ceases to be on the throat~which is always a
trapped surface! of the spacetime. The transition points ca
be accompanied by discontinuous changes in the characte
the horizon, as measured by the quantities discussed her

IV. SURVEY OF INITIAL DATA SETS

We now apply a number of these horizon measures dev
oped above to analyze a series of initial data sets, beginn
with distorted, nonrotating holes.

A. Time-symmetric Brill wave data

First we begin by examining the shape paramet
Cp /CA , for a series of Brill wave plus black hole space
times. These nonrotating black holes provide a good start
point for our survey. Figure 2 showsCp /CA for a set of
black holes withs51.5, and the Brill wave amplitude,
Q0 , in the range21,Q0,7.

The apparent horizon generally becomes prolate if it
distorted with a positive amplitude Brill wave, and oblate
it is distorted by a negative amplitude Brill wave@10#. How-
ever, the shape of the horizon undergoes two sharp tra
tions, one at aboutQ0520.65 @10# and the other at about
Q054.5. Between these two values ofQ0 the horizon is on
the throat, and the ratioCp /CA grows exponentially. The
further we move outside this region the further out the a
parent horizon moves, and the more spherical the black h
becomes.

The spacetime behaves as if increasing amounts of ene
were being deposited in the region somewhat away from
horizon asuQ0u is increased. Beyond a certain critical thresh
old, one would expect a new horizon would be formed. B
yond this range, the spacetime is still becoming more d
torted, but the distortion is driving the apparent horizo
further out on the grid and as a result the distortion is no
primarily interior to the apparent horizon. Thus the exteri
region becomes more spherical as this parameter is increa
~see also Beig and O´ Murchadha@42# for understanding this
effect!.
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Next we show the effect of changing the width of the Bri
wave. In Fig. 3 we show a set of spacetimes like those sho
above, but a larger width Brill wave is used (s53.5). We
see that the horizon stays on the throat for larger values
Q0 , thereby making the maximum distortion paramet

FIG. 2. We plot the apparent horizon shape parame
Cp /CA , whereCp andCA are the polar and ‘‘areal’’ circumfer-
ences of the surface, for a set of nonrotating distorted black h
initial data sets. The shape parameter is plotted againstQ0 , the
amplitude of the distorting Brill wave. All spacetimes shown he
have the same Brill wave width,s51.5, the width that best char-
acterizes the geometry of the Kerr spacetime. This plot shows
same data as computed on three grids with increasingly more zo
which illustrates how close we are to the exact solution. The
results are second-order convergent.

FIG. 3. This plot illustrates the basic properties of the appare
horizon shape parameter,Cp /CA , for the large width Brill wave,
s53.5. The apparent horizon becomes extremely distorted n
Q055.65, withCp /CA'90. This plot shows the same data as com
puted on three grids with increasingly more zones.
ll
wn

of
er

much larger. This results in a value ofCp /CA that is about
an order of magnitude larger than thes51.5 distortion. The
lower transition is still at aboutQ0520.65, but now the
upper transition has moved toQ055.65. The decrease in
Cp /CA as we move away to values ofQ0 larger than 5.65
also becomes less sudden.

In Fig. 4 we now show the data from the previous two
graphs along with a number of spacetimes with varying Bri
wave widths,s. The values ofs considered are 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, and 3.5. We will call this group of space
timesset 1a. We see that the functionCp /CA of Q0 changes
only slightly ass is varied for a large portion of the plot.
There is a sharp transition that occurs for positive amplitud
distortions which is strongly dependent on the width of th
wave. Beyond this transition point the AH ceases to be o
the throat. There is another transition point for the negativ
amplitude Brill wave spacetimes, and for all but the narrow
est of the Brill waves considered (s50.5) it lies at about
Q0520.65. The region between these two transitions co
stitutes what we will call the ‘‘main branch’’ and is relatively
independent ofs. The ‘‘main branch’’ for the range
1.8,Q0,5.6 is approximated to an accuracy of 1% or les
by

Cp /CA5exp~20.28705510.728645Q010.019728Q0
2!,
~40!

and is plotted by a heavy dashed line in Fig. 4. Since th
horizon is simply the throat (h50) for the ‘‘main branch’’
spacetimes it is not surprising that log(Cp /CA) should depend
linearly onQ0 as it is simply reflecting the effect ofQ0 upon
the conformal metric.

Also worthy of note is that aboves52.0 the upper tran-
sition point becomes nearly fixed atQ055.65. Some small
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FIG. 4. We illustrate the prolateness~largeCp /CA) of the ap-
parent horizon for spacetimes with Brill wave distortions of varying
amplitude,Q0 , and a variety of widths,s. Also plotted is a fit of
the ‘‘main branch,’’ a curve on which horizons lie for all distorted
black hole spacetimes considered. For each family we consid
there is a transition point, a critical amplitude above which th
horizon jumps off the throat and becomes more spherical.
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1412 54STEVEN R. BRANDT AND EDWARD SEIDEL
variation occurs, but not much. Roughlys52 is a width
above which the most prolate spacetime occurs at ab
Q055.6 with a shape characterized byCp /CA'88. Like-
wise, it appears thats51 is a width above which the most
oblate spacetime occurs at aboutQ0520.65 with a shape
characterized byCp /CA'0.77.

In Fig. 5 we see the effect ofQ0 ands on the MRL of the
spacetime forset 1a. For reference we have marked the pos
tiveQ0 transition points, the peaks in the plot ofCp /CA that
are seen in Fig. 4, with diamonds in Fig. 5. The MRL in
creases, in all cases, as we increaseuQ0u until it reaches some
maximum value. As we increaseuQ0u further, we arrive at a
transition point. Along the path of increasinguQ0u, the en-
ergy of the spacetime first increases primarily because we
adding wave energy outside the horizon. As we travel furth
in this parameter space the mass increases primarily beca
energy is being added to the hole itself. Another feature th
can be observed in Fig. 5 is that the MRL of the transitio
point begins to rise much more rapidly with increasingQ0
after the Brill wave width becomes greater than 2.

In both Figs. 2 and 3 we have plotted the curves for Bri
waves with widthss51.5 ands53.5 respectively at three
different grid resolutions: 600396, 300348, and 150324.
We note that in both cases the resolution lines are very clo
together and that the convergence exponentj, as defined by

S Cp

CA
D
num

2S Cp

CA
D
true

}~Dh!j1•••, ~41!

is very nearly 2 at all points on both graphs. The larger wid
Brill waves were more difficult to calculate, but our code i
capable of calculating these spacetimes accurately.

B. Negative amplitude Brill wave distortions

In this section we focus on the region of the time
symmetric distorted black hole spacetime in which the am

FIG. 5. This plot illustrates the maximum radiation loss, o
MRL, for spacetimes with Brill wave distortions of varying ampli-
tude,Q0 , and a variety of widths,s. The diamonds mark the loca-
tion of the maximally prolate horizon for each curve.
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plitude of the distortion is negative. In this regime we find a
behavior that is qualitatively similar to the behavior seen fo
positive amplitude distortions inset 1a, but we found that we
needed to use narrower Brill waves to explore this effect fo
negative amplitude spacetimes. If we consider Fig. 4 we s
that all but thes50.5 curves are very similar for the nega-
tive amplitude portion of the graph. Because of this we us
widthss50.3, 0.4, 0.5,. . . ,0.9 and we plot this data in Fig.
6. We label this data asset 1b.

Note in Fig. 6 that the maximum distortion~minimum
Cp /CA) is increased by widening the Brill wave until a lim-
iting value is reached, a behavior similar to that observed f
positive amplitudes in Fig. 4. There is also a continuation o
the main branch for the segment of the spacetimes in whi
the wave is on the throat, although we have not computed
fit in this case.

C. Brill wave distortions of Bowen and York
rotating black holes

In this section we discuss spacetimes withs51.5,
21,Q0,7 and angular momentum parameterJ50.25,
J50.5, andJ55, and we will call this collectionset 2a. We
plotCp /CA for this set in Fig. 7. One can see from the figure
that the rotating black holes still lie along the main branch
but the transition points occur earlier~for smallerQ0).

Adding angular momentum to Brill wave spacetimes re
duces the value ofCp /CA , thereby making the spacetime
more oblate. For the larger amplitude Brill waves this effec
is quite marked. In Fig. 8 we make this point clearer b
graphically depicting the embeddings of several distorte
black hole spacetimes. Three Brill wave spacetimes are tak
as starting points:Q0520.1, 0.0, and 0.1, and are plotted
with thick lines. Next to each of these lines is a thinner on

r FIG. 6. This plot illustrates the behavior of the negative ampl
tude, narrower width Brill wave spacetimes. The behavior here
qualitatively similar to the larger width positive amplitude space
times depicted in Fig. 4, except that the apparent horizons are
oblate. AsQ0 becomes more negative the apparent horizon jump
off the throat at a transition point and the spacetime becomes mo
spherical.
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depicting the shape of the horizon after settingJ510. This
general trend, that angular momentum makes a horizon m
oblate was a feature that was observed previously by S
for the Kerr spacetime@36#.

As mentioned above, one generally expects that rota
black holes will be potentially more oblate than nonrotat
spacetimes. However, there is an exception to this. In F
we extend the above plots to show in more detail the ef
of rotation on the negative amplitude spacetimes. We
data sets which cover input parameters in the ra
20.657,Q0,20.655, withs51.5 and 0,J,10 ~set 2b!.
Thus, while the addition of angular momentum to a spa

FIG. 7. This figure illustrates the effect on the apparent hori
of a Brill wave distortion on a Bowen and York black hole. T
addition of angular momentum makes the transition point, the p
where the horizon leaves the throat, occur sooner, although
small values ofQ0 the value ofCp /CA is very close to the ‘‘main
branch.’’

FIG. 8. In this plot we see the embeddings of several disto
black hole spacetimes. The heavy lines are spacetimes distort
Brill waves: a prolate spacetime withQ050.1, an oblate spacetim
with Q0520.1, and a Schwarzschild spacetime withQ050.0. The
lighter lines represent these same spacetimes with angular mo
tum added.
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time usually makes an AH more oblate, this is not alway
true. In fact, the addition of the Bowen and York distortion
makes the minimumCp /CA as a function ofQ0 larger. In
other words, while adding a negative amplitude Brill wave t
a given black holecanmake it more oblate, increasingJ also
makes the horizon jump off the throat at a smaller value o
uQ0u so that it does not achieve the maximum oblatene
seen with no rotation.

Although we do not provide a plot, we note that as th
parameterJ is increased for these spacetimes, the MRL de
creases.

D. Brill wave distortions of end-stage ‘‘cosmic screws’’

We next examine a collection of ‘‘cosmic screw’’ space
times, referred to asset 3. The data inset 3is identical to the
data inset 2a~distorted Bowen and York black holes! with
the exception that it uses the cosmic screw form of the pe
turbation. The value ofJscrewclearly creates a much smaller
distortion of the horizon than the Bowen and York angula
momentum parameter of the same value, as is evident in F
10. Indeed, it is almost impossible to distinguish th
Jscrew50.5,0.25 spacetimes. This is reasonable since this d
tortion can be thought of as two counterrotating and ther
fore counteracting Bowen and York distortions.

E. Odd-parity distortions of Schwarzschild

In this section we examineset 4, which comprises odd-
parity distortions of the formf 150, f 25qG8 , and f 35cosu
@see Eq. ~24!#, with parametersh050, 0,Q0,100,
s50.5, 1.5, 2.0, 2.5, 3.0, and 3.5.

This family of spacetimes, depicted in Fig. 11, display
the same property of the pure Bowen and York data disto
tions ~in which J, the angular momentum parameter, can b
thought of as representing the amplitude of the extrinsic cu
vature distortion!, namely that there is no limit to the mag-
nitude of the parameterJ that is possible, either theoretically
or in any numerical test done to date. We do not feature th
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FIG. 9. In this plot we see data sets which cover input param
eters in the range20.657,Q0,20.655, with s51.5 and
0,J,10 ~set 2b!. It illustrates that althoughJ usually makes a
horizon more oblate, it can also cause the horizon to leave the thr
for sufficiently negative values ofQ0 and thereby make it more
spherical rather than more oblate.
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1414 54STEVEN R. BRANDT AND EDWARD SEIDEL
negative amplitude distortions of these sets because the
evant terms are squared in the Hamiltonian constraint, ma
ing their overall sign unimportant.

Unlike the Bowen and York spacetime, for which the ho
rizon remains on the throat for very largeJ, the horizon
moves away from the throat in the odd-parity distortion o
Schwarzschild for sufficiently largeQ0 . In this respect these
data sets are similar toset 1a. They also resembleset 1ain
that larger width distortions make it possible to achieve mo
distorted horizons.Set 4is unlikeset 1ain that the distortion
never becomes even remotely as large~note that this distor-

FIG. 10. This figure illustrates the effect on the apparent horizo
of a Brill wave distortion on a black hole with a ‘‘cosmic screw’’
distortion~counterrotating above and below the equatorial plane b
without net angular momentum, see text for details!. As in the case
of the Bowen and York black holes, the boundary conditions th
cosmic screw have is the effect of smoothing out theCp /CA curve,
although it has a lesser effect than a Bowen and York distorti
with the a distortion parameter of equal value.

FIG. 11. This plot shows the prolateness of the horizo
Cp /CA , for a odd-parity data sets with a variety of distortion
widthss. As was the case for the Brill wave distorted spacetime
~compare to Fig. 4 above!, the maximum in theCp /CA curve marks
the place where the apparent horizon moves away from the thro
rel-
k-

-

f

re

tion is in the extrinsic curvature and affects the three-metri
only through the conformal factor, it is not the standard Brill
wave distortion!.

Figure 12 shows the behavior of the MRL function forset
5. As in set 1a this data set has its peak MRL somewhat
before the horizon departs from the throat. It is otherwise
qualitatively similar to the MRL curves depicted in Fig. 5.

F. Hoop conjecture

An important question that we wish to discuss is ‘‘How
distorted can a black hole be?’’ The hoop conjecture@11,12#
states that an event horizon will form if and only if the mat-
ter is sufficiently compact in all directions. This conjecture
would seem to suggest that the black hole horizon shou
also be sufficiently compact in all directions. Although inter-
esting work has been done on the hoop conjecture for blac
hole spacetimes~see, e.g@37,38#! much remains to be done.

As we have seen above, black holeapparenthorizons can
be extremely distorted, nonspherical objects as measured
the shape parameterCp /CA . We have shown cases where
the AH is extremely prolate (Cp /CA'88) or oblate
(Cp /CA'0.77). However, these results are for the apparen
horizon, and not theeventhorizon. A careful study of dis-
torted event horizons, and implications on the hoop conjec
ture will be presented elsewhere. In this section we restric
our attention to the apparent horizons we have found, an
discuss whether there is a limit to how distorted they can be

The fact that there are limits on the amplitude paramete
(Q0) is somewhat suggestive of a limit on the degree o
distortion possible for the apparent/event horizon of the
black holes considered here~since the amplitude parameter
controls the degree of distortion of the black hole!. Indeed, it
allows one to demonstrate the limit numerically for a Brill
wave of a given shape~as given bys, h0 , andn).

However, there may also be a good reason to suppose th
there is no limit on how large or small the quantityCp /CA
may become for an asymptotically flat spacetime. We migh
be able to engineer spacetimes with two gravity wave disto

n

ut

e
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n,

s

at.

FIG. 12. This plot shows the MRL for a variety of odd-parity
data sets. Qualitatively it has the same features observed in Fig.
except that the magnitude of the MRL is much smaller. As in Fig. 5
diamonds mark the amplitudes at which a given black hole spac
time has its maximum value ofCp /CA .
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tions: one widely extended, the other more comparable to
size of the hole. In effect, the larger distortion can be use
‘‘fool’’ the black hole into thinking that the spacetime is no
asymptotically flat. Thus, it may be that we can find spa
times with arbitrarily largeCp /CA if we combine distortions
on a variety of scales. This possibility is not investigat
here.

G. Maximum prolateness

It is difficult to pin down a maximum prolateness for a
the types of spacetimes considered here. It seems reason
however, to simply focus on Brill wave spacetimes since
odd-parity and momentum distortions usually make
spacetime more oblate or have small effect. For any gi
value ofs it is a straightforward matter to obtain the value
Q0 which maximizesCp /CA because we can search the e
tire range of possible values forQ0 ~which we know from
Sec. II C must have a value less than 10.0!.

In all these data sets, the horizon remains on the th
until some critical value ofQ0 is reached and then it depar
and moves outward in coordinate space. Until the horiz
leaves the throat,Cp /CA continues to grow, but as soon as
departs this ratio begins to decrease. This downward tren
Cp /CA continues asQ0 is increased until a value ofQ0 is
reached which is inconsistent with asymptotic flatness. T
most distorted spacetime occurs when the largest valu
s is used, although the growth is very slow after the value
exp(s) has increased to about half the fundamentall 52
wavelength of the black hole.

While the information we obtained does not provide
with a definite answer about the maximum possible prola
ness of the apparent horizon in these spacetimes, it sug
that there is some limiting value ofCp /CA . The largest
value we have measured isCp /CA588. However, it is pos-
sible that despite the observed trends the quantityCp /CA
may be made to grow without limit for some untried Br
wave shape or combination of shapes.

H. Maximum oblateness

How oblate can a black hole be? To get a feel for
meaning of the ratioCp /CA we note that for an infinitely
thin disk in Euclidean space we haveCp /CA50.900 and for
an extremal Kerr black hole (a/m51) we have a smalle
value,Cp /CA50.860. Thus, although these ratios are qu
close to unity, they actually represent extremely distor
surfaces. For a very wide range of Brill wave parameters
have seen a robust lower bound forCp /CA'0.77, with
Q0520.65, as discussed above. This seems to follow
trend discussed above for the prolate black hole spacetim

I. Penrose inequality

In 1973 Penrose proposed a criterion for a spacet
which, if violated, would indicate cosmic censorship wou
be violated@39#. The criteria is simply that the irreducibl
apparent horizon mass must be less than or equal to
ADM mass.

Jang and Wald proved@40# the inequality for spacetime
with a single AH of topologyS2 which also satisfies a certai
mathematical condition.~It essentially states that it is pos
the
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sible to foliate the region of the spacetime exterior to th
apparent horizon with a sequence of nested two-surfac
which are asymptotically spheres at large radii, using
‘‘lapse’’ whose value is equal to the inverse of the extrinsi
curvature of those two-surfaces.! We have not shown that
this condition is actually satisfied for the wide class of blac
hole spacetimes considered here, but we have seen that
inequality is preserved in all spacetimes considered in th
paper. Bernstein also sought for and failed to find a violatio
of the Penrose inequality@10,17# using the Brill wave distor-
tions of the non-rotating black hole, but did not consider th
extreme distortions used in this paper. A violation of th
Penrose inequality would result in a negative value for th
MRL, and we can see that this does not occur if we revie
Figs. 5 and 12.

V. SUMMARY AND FUTURE WORK

In this paper we have described the construction of ne
initial data sets for distorted rotating black holes in detai
These data sets correspond to a large family of black ho
spacetimes, generalizing the Kerr@18#, Bowen and York
@19#, distorted Schwarzschild black holes@17#, and should
provide a rich testing ground for evolutions of highly dy-
namic, rotating and nonrotating black holes.

We have analyzed many of the properties of extreme p
rameter choices of these data sets. We have, for examp
located the analytic upper and lower limits to the possib
distortion parameters for these spacetimes, located the tr
sition points beyond which multiple trapped surfaces exis
and identified spacetimes with the most oblate/prolate app
ent horizons in our family of data sets. Furthermore, we in
vestigated the effect of rotation and cosmic-screw type di
tortions on these data sets. This investigation should he
provide a roadmap to interesting, distorted black hole spac
times for evolution in both 2D and 3D.

In the near future we intend to apply the horizon finding
code described in Ref.@41# to some of the above data sets, to
determine to what extent the behavior of the event horizo
is in agreement with the behavior of the more extreme
distorted apparent horizons. Do spacetimes with strongly d
torted apparent horizons have strongly distorted event ho
zons? This research provides us with important data for th
investigation. In particular,s52 configurations with ampli-
tudesQ0.3.5 seem likely to yield the most distorted space
times. We also plan to evolve the cosmic screw spacetim
and study them in more detail.
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