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Generalized Killing equations and Taub-NUT spinning space

Diana Vaman and Mihai Visinescli
Department of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Magurele, Bucharest, Romania
(Received 5 February 1996

The generalized Killing equations for the configuration space of spinning parfg#sning spaceare
analyzed. Simple solutions of the homogeneous part of these equations are expressed in terms of Killing-Yano
tensors. The general results are applied to the case of the four-dimensional Euclidean Taub-NUT manifold.
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I. SPINNING PARTICLES AND CONSTANTS OF MOTION and ag is the Grassmann parity oF: ag=(0,1) for
F=(even,oddl

The pseudoclassical limit of the Dirac theory of a spin 1/2  If we expandJ(x,I1, ) in a power series in the canonical
fermion in curved space-time is described by the supersynmomentum
metric extension of the usual relativistic point parti¢lg.
The configuration space of spinning particléspinning .
spacg is an extension of an ordinary Riemannian manifold, _nEO ﬁj(n)”l" ST N1 PR | e ®)
parametrized by local coordinatgg“}, to a graded manifold

parametrized by local coordinatps”, ¢}, with the first set  then the bracketgH,J} vanish for arbitranfl, if, and only

of variables being Grassmann eeommuting and the sec- it the components off satisfy the generalized Killing equa-
ond set Grassmann oddnticommuting. The equation of tjons[1]:

motion of a spinning particle on a geodesic is derived from

the action (m)
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The corresponding world-line Hamiltonian is given by
where the parentheses denote full symmetrization over the
indices enclosed.

The solutions of the generalized Killing equatidés can

. ) be divided into two clasef2,3]: genericones, which exist

wherell,=g,,x" is the covariant momentum. ~ for any spinning particle modell) and nongenericones,

For any constant of motioty(x,11, ), the brackets with  which depend on the specific background space considered.
H vanish,{H,7}=0, with the Poisson-Dirac brackets for Tg the first class belong proper-time translations and super-
functions of the covariant phase-space variabiebl (i) de-  symmetry, generated by the Hamiltonian and supercharge:

H=3g*I1II,, 2

fined by
Qo=11,9*. 7
{FG}DF&G aFDGR oF 96 In addition, there is al hiral t ted b
Gt =D,F-=——"D,GC-R,, = -7 n addition, there is also a “chiral” symmetry generated by
JlL, oI, JiL, JIL, the chiral charge
IF 9G
Hi(=1)F (3) itere)
Yt i, r, :T\/afﬂl"‘:“ddlﬂl. - i (8)
where the notation used is and a dual supersymmetry whose generator is
\ oF . oF _ j[ar2]
DMF:’?MF+FMVHX(9TV_FMV$ &_1,0)‘ Q*=i{T', ,Qq}= (d_—l)!\/aeﬂlm#dnmlpuz. -y,
[ ©)
=—y"J°R , 4 . . . .
R 2 VA Rpoun @ whered is the dimension of space-time.
The nongenericconserved quantities depend on the ex-
plicit form of the metricg,,(x). It was a great success of
"Electronic address: DVAMAN@THEORL.IFA.RO Gibbonset al.[3] to have been able to prove that the Killing-
"Electronic address: MVISIN@THEOR1.IFA.RO Yano tensors can be understood as objects generating
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generic supersymmetries. A tensofru1 . is called a Another -dependent solution of the=1, Eq.(11) can
Killing-Yano tensor of valence if it is totally antisymmetric ~ Pe generated from a Killing-Yano tensor of valence
and satisfies the equation -~
T =gy PP (16)
fMl"‘Mrfl(,Urri)\):O' (10)

Following the above prescription we get, fgr®,
In order to solve the system of coupled differential equa-

tions (6) one starts with Q7M(f)ﬂn solution of the homoge- JO= : 1(_1)r+lf[M1"'Mr YL (17
neous equation: r+
97/ and the constant of motion corresponding to these solutions
Z(m (h1tn p=0. (11 Of the Kiling equations is
(my Hpiknt1) Y’ Hnt )N )

Qf:fﬂl...ﬂrnmlﬁﬂz' et
This solution is introduced on the right—h%nd SifRHS) .
. . : ne

.Of the. geherallz.ed Killing equatiof®) for ‘7#(1' Ry and the n '_(_ 1)r+1f[ o PP
iteration is carried on tm=0. r+1 et

In fact, for the bosonic sector, neglecting the Grassmann (18)
variables{¢*}, all the generalized Killing equatior{§) are
homogeneous and decoupled. The first equation shows that Therefore, the existence of a Killing-Yano tensor of va-
Jo is a trivial constant, the next one is the equation for thelencer is equivalent to the existence of a supersymmetry for
Killing vectors and so on. In general, the homogeneous equahe spinning space with supercha@ewhich anticommutes
tion for a givenn defines a Killing tensor of valenae and  with Q,. A similar result was obtained in Ref] in which
jﬂ(;‘?,,ﬂnl'[“l- --IT#n is a first integral of the geodesic equa- the role of the generalized Killing-Yano tensors, with the

tion [4]. framework extended to include electromagnetic interactions
For the spinning particles, even if one starts with a Killing 1S discussed. . . _

tensor of valencen, solution of Eq.(11) in which all spin Finally, we should like to mention the special case of a

degrees of freedom are neglected, the componﬁ;j;{@z " coyarlfamtly constant 'tenstﬂl,ff,): b symmetric "f] 'the first

(m<n) will receive a nontrivial spin contribution. r indices and antisymmetric in the remaining ones.

In what follows we should like to stress that the very USing such kind of tensor, the Kiling equations are
starting homogeneous equati¢hl) can have solutions de- decoupled even in the spinning case, the quantity
pending on the Grassmann coordinafes}. That is the J .., [1#1- - TI¥rgke=1. .. y#n being conserved along the
case of the manifolds admitting Killing-Yano tensors. Forgeodesics.
example, for the first equatiofil), i.e.,n=0, In the main, with some ability, it is possible to investigate
higher orders of Eq(11), but it seems that one cannot go
much far with simple, transparent expressions. Instead of
that, we shall apply the above constructions to a concrete
case, namely, the four-dimensional Euclidean Taub-
is a solution iffw is a Killing-Yano tensor covariantly con- Newman-Unti-TamburingNUT) manifold.
stant. Moreover7 (V) is a separately conserved quantity.

Going to the next equatiofll) with n=1, a natural so- Il. TAUB-NUT SPINNING SPACE
lution is

TO= gty (12

Much attention has been paid to the Euclidean Taub-NUT
'jpfl): RﬂfxalﬂW” (13) metric, since in t_he long _distance Iim.it the relati\{e motion Qf
two monopoles is described approximately by its geodesics
whereR,, is a Killing vector R(,.,,=0) and agairf,,, is a [6,7]. As it_is well_known, the geodesic motion of the Taub-
Killing-Yano tensor covariantly constant. Introducing this NUT metric admits the Kepler-type symmetf§—11. On

solution in the RHS of Eq(6) with n=0, after some calcu- the other hand, the Kaluza-Klein monopole of Gross and
lations, we get, for7 © ’ Perry[12] and of Sorkin[13] was obtain by embedding the

Taub-NUT gravitational instanton into five-dimensional
i Kaluza-Klein theory.
j<°>=§R[M;V]fM¢“WW‘¢”, (14) In a special choice of coordinates, the Euclidean Taub-
NUT metric takes the form

where the square brackets denote antisymmetrization with d2=V(r)(dr2+r2d 62+ r2sirf6d >
norm one. Finally, from Eq5) with the aid of Eqs(13) and (N{dri+rid6™+ risim éde”)
(14), we get a new constant of motion which is peculiar to +16m2V - 1(r)(dy+cosfde)?, (19

the spinning case:
_ with V(r)=1+ 4m/r . There are four Killing vectors8—11]
[
T= 9| RIT + 5 Ry 97 | (15 Da=R4d,, A=0,....3 (20

Mmoo
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corresponding to the invariance of the mefti®) under spa- i

tial rotations @=1,2,3) andy translations A=0). In the Ba=5 Raun¥“ 4" (29)
purely bosonic case these invariances would correspond to

conservation of angular momentum and “relative electric Therefore the total angular momentum and “relative elec-

charge” [8-10]: tric charge” become, in the spinning case,
. LT =B+
f=ixp+ar, 2 M (30
JOZ Bo+q, (31)
q=16m?V(r)(x+cosfe), (22)

Wherej:(Jl,Jz,J3) and éZ(Bl,Bz,BQ,).

wherep= [1/V(r)]? is the “mechanical momentum” which The above constants of motion are superinvariant:

is only part of the momentum canonically conjugate to {Jp,Qo}=0, A=0,...,3. (32
Finally, there is a conserved vector analogous to the
Runge-Lenz vector of the Kepler-type problema, The Lie algebra defined by the Killing vectors is realized

by the constants of motiof30) and (31) through the

I | . n isson-Di
K=K, k== | pxj+ q——4mE) L P0|s.so.n DlraF: brack§(§). N ) _
2 2 4m r Similarly, introducing the Killing tensor« ,, (23) into
h h q ¢ Eq.(2) i the RHS of the second generalized Killing equat{6n we
where the conserved energy from Eq. (2), is get the corresponding Killing vectoréM having a spin-
1 1 : q\2 dependent par$, [16]:
— MV — -1 Z2 _r
E 2g I1,1T, 2V (r)|re+ 4m) . (24 L

R,=R,+S,, (33

"
In the Taub-NUT geometry there are known to exist four - .
Killing-Yano tensors[9]. The first three Killing-Yano ten- Where R, are the standard Kiling vectors. The

sors f;,, are covariantly constantéwith vanishing field -dependent parts of the Killing vecto% contribute to the
strength: Runge-Lenz vector for the spinning space:
4m K= 1K, X*X"+ S, - XH. 34
fi:8m(dx+coa9dgo)/\dxi—eijk(l+T de/\ka. 2Bur XX X ( )
(25) In terms of the supercharg€} andQy , the components
- ) of the Runge-Lenz vectof are given by[14]
The fourth Killing-Yano tensor is
[
fy=8m(dy+cos9de)/\dr Ki=5{Qv.Qi}, =123 (35)
+4r(r+2m)| 1+ 4L) singd6/\d g, (26) The nonvanishing Poisson brackets éa#ier some alge-
m bra)
having only one nonvanishing component of the field {3:,3 =€ dk, (36)
strength: SO
; 130K} = € Kk, (37
fyrg.o=2| 1+ m)rsino. (27 1 JS
{]Ci ’ch}:Z W—ZE Gijk‘]k’ (38)

The corresponding superchargékd) constructed from
the Killing-Yano tensor¢25) and(26) areQ; andQy. The  gimilar to the results from the bosonic secter.
supercharge®); together withQ, from Eqg. (7) realize the Taking into account the existence of the Killing-Yano co-
N=4 supersymmetry algebfa4]: variantly constant tensorf,,, (25), three constants of mo-

. ti tai i h ipti ,
(Qn.Qgl=—2i8:gH, AB=0,...3, (28 ion can be obtained using the prescriptidr)

i
making manifest the link between the existence of the Sizzfm,,dﬂw, i=1,2,3, (39
Killing-Yano tensors and the hyper-Kker geometry of the
Taub-NUT manifold. which realize an S@) Lie algebra similar to that of the

Starting with these results from the bosonic sector of theangular momentun(36):
Taub-NUT space one can proceed with the spin contribu-
tions. The first generalized Killing equatid®) shows that {Si .S} = €ijc S (40)
with each Killing vectorR4 (20), there is an associated Kill- _
ing scalaB, [15]. A simple expression for the Killing scalar ~ These components of the spin are separately conserved
was given in Ref[14]: and can be combined with the angular momenfuta define
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a new improved form of the angular momentuJ;,— S After some algebra we get the new constants of motion of
with the property that it preserves the algebra the form (15):
il = el (41 _
i
and that it commutes with the $8) algebra generated by Inj=Tj, o™ 47| Ra, IT#+ ERA[a;ﬁ]lﬂ“lﬂﬁ
the spinS;:

=—4iSJs, A=0,...,3; =123 (46

Let us note also the following Dirac brackets §f with where we used Eq$15), (29)—(31), and(39). Strictly speak-
supercharges: ing, the constants7,; are not completely new, being ex-
Q 1 pressed in terms of the constadig and S;. However, the
__ xi N 1— (s - combinations(46) arise in a natural way as solutions of the
{S,Qol 2 {S.Qf 2(6”Q0+6'“<Qk)' “3 generalized Killing equations and appear only in the spin-
ning case. Moreover, we can form a sort of Runge-Lenz
We can combine these two $&) algebrag40) and(41)  vector involving only Grassmann components,
to obtain the generators of a conserved(§0symmetry
among the constants of motion, a standard basis which
spanned byM . =1;=S; [14]. We should like to remark that .
there is no spin component such as in B39) to be used for Li:ﬁfijksi‘]k’ k=123, (47)
a improved “relative electric charged,. The reason is that
the fourth Killing-Yano tensof (26) is not covariantly con-
stant. Of course, we can adddg a combination of the three with the commutation relations such as in E(@) and(38):
separately conserved quantiti§s but this is not a natural
“improved relative electric charge.” Moreover, it is impos-
sible to modify a particular solutiod, (31) of the general- {Li .3} = €L, (48)
ized Killing equation(6) for n=0 and Killing vectors in the
RHS by adding solutions of the homogeneous part of this
equation in order to recover the conserved quat#igy from 1
the standard Taub-NUT case as it was suggested in R&f. {Li,Lj}=(S3— SZ)W €ijk Ik - (49
In fact, from Eq.(31), in the spinning casey is not sepa-
rately conserved and we haj/g5]

S

) 256m* Note also the following Dirac brackets &f with super-
Q(JO_Q):qBOZ_BoBo:mfr* . (44 charges:

Therefore,q is not separately conserved in the spinning 1
space excepting the cabg =0.I", can be zero if there is a {L;,Qo}=— %e”ijJk, (50
relation between Grassmann variabl#$. Such a relation
can be realized imposing, for exampl@,=0. This con-
straint can be correlated with the absence of an intrinsic elec- 1
tric dipole moment of physical fermiorieptons and quarks CA— s - M-
[1]. T?]e conservationpoéo guarantees F:hat this c?)ndition {L.Qj} 7m €iikQodi™ 8 QM+ QiMj ). (51)
can be satisfied at all times, irrespective of the presence of
external fields.

However, in general, the motion of a spinning particle Il. CONCLUDING REMARKS
governed by the actiofil), does not fix the value of the
Supercharg@o_ We have the freedom to choose its value The constants of motion of a scalar partiCle in a curved
and any choice gives a consistent moftEl On the other space-time are determined by the symmetries of the mani-
hand, in Refs[15,18, a simple exact solution of the gener- fold, and are expressible in terms of the Killing vectors and
alized Killing equations, corresponding to trajectories lyingtensors, i.e., if a space-time admits a Killing tensor
on a cone, is given. Again, this particular solution requiresK,,...,, ~0f valence r, then the  quantity
thatI', =0 and the constant of motiod, reduces to the K, .., I1#1..-II*ris conserved along the geodesic. On the

standard “relative electric charged. other hand, the Killing-Yano tensors can be understood as
Fmglly, let us consider a solution of t_he homoge_zneousobjects generatingiongeneric supersymmetrie$3]. They
equation(11) for n=1 of the type(13). Using the Killing  have been also used to investigate the motion of spinning
vectors(20) and the Killing-Yano tensor&25), we can form  particles including electromagnetic interactidis§ and tor-
the combinations sion[19]. The aim of this paper was to point out the role of
~ \ ) the Killing-Yano tensors to generate solution of the homoge-
Inip=Raufinet¢?, A=0,....3; j=123. (45 neous parts of the generalized Killing equations. This solu-
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