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Generalized Killing equations and Taub-NUT spinning space
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The generalized Killing equations for the configuration space of spinning particles~spinning space! are
analyzed. Simple solutions of the homogeneous part of these equations are expressed in terms of Killing-
tensors. The general results are applied to the case of the four-dimensional Euclidean Taub-NUT man
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I. SPINNING PARTICLES AND CONSTANTS OF MOTION

The pseudoclassical limit of the Dirac theory of a spin 1
fermion in curved space-time is described by the supers
metric extension of the usual relativistic point particle@1#.
The configuration space of spinning particles~spinning
space! is an extension of an ordinary Riemannian manifo
parametrized by local coordinates$xm%, to a graded manifold
parametrized by local coordinates$xm,cm%, with the first set
of variables being Grassmann even~commuting! and the sec-
ond set Grassmann odd~anticommuting!. The equation of
motion of a spinning particle on a geodesic is derived fr
the action

S5E dtS 12 gmn~x!ẋmẋn1
i

2
gmn~x!cm

Dcn

Dt D . ~1!

The corresponding world-line Hamiltonian is given by

H5 1
2 g

mnPmPn , ~2!

wherePm5gmnẋ
n is the covariant momentum.

For any constant of motionJ(x,P,c), the brackets with
H vanish, $H,J%50, with the Poisson-Dirac brackets fo
functions of the covariant phase-space variables (x,P,c) de-
fined by

$F,G%5DmF
]G

]Pm
2

]F

]Pm
DmG2Rmn

]F

]Pm

]G

]Pn

1 i ~21!aF
]F

]cm

]G

]cm
, ~3!

where the notation used is

DmF5]mF1Gmn
l Pl

]F

]Pn
2Gmn

l cn
]F

]cl ,

Rmn5
i

2
crcsRrsmn , ~4!
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and aF is the Grassmann parity ofF: aF5(0,1) for
F5~even,odd!.

If we expandJ(x,P,c) in a power series in the canonical
momentum

J5 (
n50

`
1

n!
J ~n!m1•••mn~x,c!Pm1

•••Pmn
, ~5!

then the brackets$H,J% vanish for arbitraryPm if, and only
if, the components ofJ satisfy the generalized Killing equa-
tions @1#:

J~m1•••mn ;mn11!
~n! 1

]J~m1•••mn

~n!

]cs Gmn11)l
s cl

5
i

2
crcsRrsn~mn11

J ~n11!n
m1 . . . mn)

, ~6!

where the parentheses denote full symmetrization over th
indices enclosed.

The solutions of the generalized Killing equations~6! can
be divided into two clases@2,3#: genericones, which exist
for any spinning particle model~1! and nongenericones,
which depend on the specific background space considere
To the first class belong proper-time translations and supe
symmetry, generated by the Hamiltonian and supercharge:

Q05Pmcm. ~7!

In addition, there is also a ‘‘chiral’’ symmetry generated by
the chiral charge

G*5
i @d/2#

d!
Agem1•••md

cm1
•••cmd ~8!

and a dual supersymmetry whose generator is

Q*5 i $G* ,Q0%5
i @d/2#

~d21!!
Agem1•••md

Pm1cm2
•••cmd,

~9!

whered is the dimension of space-time.
The nongenericconserved quantities depend on the ex-

plicit form of the metricgmn(x). It was a great success of
Gibbonset al. @3# to have been able to prove that the Killing-
Yano tensors can be understood as objects generatingnon-
1398 © 1996 The American Physical Society
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54 GENERALIZED KILLING EQU
generic supersymmetries. A tensorfm1 . . . mr
is called a

Killing-Yano tensor of valencer if it is totally antisymmetric
and satisfies the equation

fm1•••mr21~mr ;l!50. ~10!

In order to solve the system of coupled differential equ
tions ~6! one starts with aJ̃m1•••mn

(n) solution of the homoge-

neous equation:

J̃~m1•••mn ;mn11!
~n! 1

]J̃~m1•••mn

~n!

]cs Gmn11)l
s cl50. ~11!

This solution is introduced on the right-hand side~RHS!
of the generalized Killing equation~6! for Jm1•••mn21

(n21) and the

iteration is carried on ton50.
In fact, for the bosonic sector, neglecting the Grassma

variables$cm%, all the generalized Killing equations~6! are
homogeneous and decoupled. The first equation shows
J0 is a trivial constant, the next one is the equation for t
Killing vectors and so on. In general, the homogeneous eq
tion for a givenn defines a Killing tensor of valencen and
Jm1•••mn

(n) Pm1
•••Pmn is a first integral of the geodesic equa

tion @4#.
For the spinning particles, even if one starts with a Killin

tensor of valencen, solution of Eq.~11! in which all spin
degrees of freedom are neglected, the componentsJm1•••mm

(m)

(m,n) will receive a nontrivial spin contribution.
In what follows we should like to stress that the ve

starting homogeneous equation~11! can have solutions de
pending on the Grassmann coordinates$cm%. That is the
case of the manifolds admitting Killing-Yano tensors. F
example, for the first equation~11!, i.e.,n50,

J̃ ~0!5
i

4
f mncmcn ~12!

is a solution if f mn is a Killing-Yano tensor covariantly con
stant. MoreoverJ̃ (0) is a separately conserved quantity.

Going to the next equation~11! with n51, a natural so-
lution is

J̃m
~1!5Rm f lsclcs ~13!

whereRm is a Killing vector (R(m;n)50) and againf ls is a
Killing-Yano tensor covariantly constant. Introducing th
solution in the RHS of Eq.~6! with n50, after some calcu-
lations, we get, forJ (0),

J ~0!5
i

2
R@m;n# f lscmcnclcs, ~14!

where the square brackets denote antisymmetrization w
norm one. Finally, from Eq.~5! with the aid of Eqs.~13! and
~14!, we get a new constant of motion which is peculiar
the spinning case:

J5 f mncmcnSRlPl1
i

2
R@l;s#c

lcsD . ~15!
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Anotherc-dependent solution of then51, Eq. ~11! can
be generated from a Killing-Yano tensor of valencer :

J̃m1

~1!5 f m1m2•••mr
cm2 . . .cmr. ~16!

Following the above prescription we get, forJ (0),

J ~0!5
i

r11
~21!r11f @m1•••mr ;mr11#c

m1
•••cmr11 ~17!

and the constant of motion corresponding to these solution
of the Killing equations is

Qf5 f m1•••mr
Pm1cm2

•••cmr

1
i

r11
~21!r11f @m1•••mr ;mr11#c

m1
•••cmr11.

~18!

Therefore, the existence of a Killing-Yano tensor of va-
lencer is equivalent to the existence of a supersymmetry fo
the spinning space with superchargeQf which anticommutes
with Q0 . A similar result was obtained in Ref.@5# in which
the role of the generalized Killing-Yano tensors, with the
framework extended to include electromagnetic interaction
is discussed.

Finally, we should like to mention the special case of a
covariantly constant tensorJm1•••mn

(n) , symmetric in the first

r indices and antisymmetric in the remaining ones
Using such kind of tensor, the Killing equations are
decoupled even in the spinning case, the quantit
Jm1•••mn

(n) Pm1
•••Pmrcmr11

•••cmn being conserved along the

geodesics.
In the main, with some ability, it is possible to investigate

higher orders of Eq.~11!, but it seems that one cannot go
much far with simple, transparent expressions. Instead o
that, we shall apply the above constructions to a concre
case, namely, the four-dimensional Euclidean Taub
Newman-Unti-Tamburino~NUT! manifold.

II. TAUB-NUT SPINNING SPACE

Much attention has been paid to the Euclidean Taub-NU
metric, since in the long distance limit the relative motion of
two monopoles is described approximately by its geodesic
@6,7#. As it is well known, the geodesic motion of the Taub-
NUT metric admits the Kepler-type symmetry@8–11#. On
the other hand, the Kaluza-Klein monopole of Gross an
Perry @12# and of Sorkin@13# was obtain by embedding the
Taub-NUT gravitational instanton into five-dimensional
Kaluza-Klein theory.

In a special choice of coordinates, the Euclidean Taub
NUT metric takes the form

ds25V~r !~dr21r 2du21r 2sin2udw2!

116m2V21~r !~dx1cosudw!2, ~19!

with V(r )511 4m/r . There are four Killing vectors@8–11#

DA5RA
m]m , A50, . . . ,3 ~20!

1399ATIONS AND TAUB-NUT . . .
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1400 54DIANA VAMAN AND MIHAI VISINESCU
corresponding to the invariance of the metric~19! under spa-
tial rotations (A51,2,3) andx translations (A50). In the
purely bosonic case these invariances would correspond
conservation of angular momentum and ‘‘relative electr
charge’’ @8–10#:

jW5rW3pW 1q
rW

r
, ~21!

q516m2V~r !~ ẋ1cosuẇ!, ~22!

wherepW 5 @1/V(r )#rẆ is the ‘‘mechanical momentum’’ which
is only part of the momentum canonically conjugate torW.

Finally, there is a conserved vector analogous to t
Runge-Lenz vector of the Kepler-type problema,

KW 5
1

2
KW mnẋ

mẋn5
1

2 FpW 3 jW1S q24m24mED nWr G , ~23!

where the conserved energyE, from Eq. ~2!, is

E5
1

2
gmnPmPn5

1

2
V21~r !F rẆ 21S q

4mD 2G . ~24!

In the Taub-NUT geometry there are known to exist fo
Killing-Yano tensors@9#. The first three Killing-Yano ten-
sors f imn are covariantly constants~with vanishing field
strength!:

f i58m~dx1cosudw!`dxi2e i jk S 11
4m

r Ddxj`dxk .

~25!

The fourth Killing-Yano tensor is

f Y58m~dx1cosudw!`dr

14r ~r12m!S 11
r

4mD sinudu`dw, ~26!

having only one nonvanishing component of the fie
strength:

f Yru;w52S 11
r

4mD rsinu. ~27!

The corresponding supercharges~18! constructed from
the Killing-Yano tensors~25! and ~26! areQi andQY . The
superchargesQi together withQ0 from Eq. ~7! realize the
N54 supersymmetry algebra@14#:

$QA ,QB%522idABH, A,B50, . . . ,3, ~28!

making manifest the link between the existence of t
Killing-Yano tensors and the hyper-Ka¨hler geometry of the
Taub-NUT manifold.

Starting with these results from the bosonic sector of t
Taub-NUT space one can proceed with the spin contrib
tions. The first generalized Killing equation~6! shows that
with each Killing vectorRA

m ~20!, there is an associated Kill-
ing scalarBA @15#. A simple expression for the Killing scalar
was given in Ref.@14#:
to
ic

he

ur

ld

he

he
u-

BA5
i

2
RA@m;n#c

mcn. ~29!

Therefore the total angular momentum and ‘‘relative elec
tric charge’’ become, in the spinning case,

JW5BW 1 jW, ~30!

J05B01q, ~31!

whereJW5(J1 ,J2 ,J3) andBW 5(B1 ,B2 ,B3).
The above constants of motion are superinvariant:

$JA ,Q0%50, A50, . . . ,3. ~32!

The Lie algebra defined by the Killing vectors is realized
by the constants of motion~30! and ~31! through the
Poisson-Dirac brackets~3!.

Similarly, introducing the Killing tensorsKW mn ~23! into
the RHS of the second generalized Killing equation~6!, we
get the corresponding Killing vectorsRW m having a spin-
dependent partSW m @16#:

RW m5RW m1SW m , ~33!

where RW m are the standard Killing vectors. The
c-dependent parts of the Killing vectorsSW m contribute to the
Runge-Lenz vector for the spinning space:

KW 5 1
2KW mn• ẋ

mẋn1SW m• ẋ
m. ~34!

In terms of the superchargesQi andQY , the components
of the Runge-Lenz vectorKW are given by@14#

Ki5
i

2
$QY ,Qi%, i51,2,3. ~35!

The nonvanishing Poisson brackets are~after some alge-
bra!

$Ji ,Jj%5e i jkJk , ~36!

$Ji ,Kj%5e i jkKk , ~37!

$Ki ,Kj%5
1

4S J0
2

16m2 22ED e i jkJk , ~38!

similar to the results from the bosonic sector@9#.
Taking into account the existence of the Killing-Yano co

variantly constant tensorsf imn ~25!, three constants of mo-
tion can be obtained using the prescription~12!,

Si5
i

4
f imncmcn, i51,2,3, ~39!

which realize an SO~3! Lie algebra similar to that of the
angular momentum~36!:

$Si ,Sj%5e i jkSk . ~40!

These components of the spin are separately conserv
and can be combined with the angular momentumJW to define
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a new improved form of the angular momentumI i5Ji2Si
with the property that it preserves the algebra

$I i ,I j%5e i jk I k ~41!

and that it commutes with the SO~3! algebra generated by
the spinSi :

$I i ,Sj%50. ~42!

Let us note also the following Dirac brackets ofSi with
supercharges:

$Si ,Q0%52
Qi

2
, $Si ,Qj%5

1

2
~d i j Q01e i jkQk!. ~43!

We can combine these two SO~3! algebras~40! and ~41!
to obtain the generators of a conserved SO~4! symmetry
among the constants of motion, a standard basis which
spanned byMi

65I i6Si @14#. We should like to remark that
there is no spin component such as in Eq.~39! to be used for
a improved ‘‘relative electric charge’’J0 . The reason is that
the fourth Killing-Yano tensorf Y ~26! is not covariantly con-
stant. Of course, we can add toJ0 a combination of the three
separately conserved quantitiesSi but this is not a natural
‘‘improved relative electric charge.’’ Moreover, it is impos
sible to modify a particular solutionJ0 ~31! of the general-
ized Killing equation~6! for n50 and Killing vectors in the
RHS by adding solutions of the homogeneous part of th
equation in order to recover the conserved quantity~22! from
the standard Taub-NUT case as it was suggested in Ref.@17#.

In fact, from Eq.~31!, in the spinning case,q is not sepa-
rately conserved and we have@15#

q̇~J02q!5q̇B052B0Ḃ05
256m4

~4m1r !5
ṙG* . ~44!

Therefore,q is not separately conserved in the spinnin
space excepting the caseG*50. G* can be zero if there is a
relation between Grassmann variablescm. Such a relation
can be realized imposing, for example,Q050. This con-
straint can be correlated with the absence of an intrinsic el
tric dipole moment of physical fermions~leptons and quarks!
@1#. The conservation ofQ0 guarantees that this condition
can be satisfied at all times, irrespective of the presence
external fields.

However, in general, the motion of a spinning partic
governed by the action~1!, does not fix the value of the
superchargeQ0 . We have the freedom to choose its valu
and any choice gives a consistent model@1#. On the other
hand, in Refs.@15,18#, a simple exact solution of the gener
alized Killing equations, corresponding to trajectories lyin
on a cone, is given. Again, this particular solution requir
that G*50 and the constant of motionJ0 reduces to the
standard ‘‘relative electric charge’’q.

Finally, let us consider a solution of the homogeneo
equation~11! for n51 of the type~13!. Using the Killing
vectors~20! and the Killing-Yano tensors~25!, we can form
the combinations

J̃A jm~1!5RAm f jlsclcs, A50, . . . ,3; j51,2,3. ~45!
is
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After some algebra we get the new constants of motion of
the form ~15!:

JA j5 f j lsclcsSRAmPm1
i

2
RA@a;b#c

acbD
524iSjJA, A50, . . . ,3; j51,2,3 ~46!

where we used Eqs.~15!, ~29!–~31!, and~39!. Strictly speak-
ing, the constantsJA j are not completely new, being ex-
pressed in terms of the constantsJA andSj . However, the
combinations~46! arise in a natural way as solutions of the
generalized Killing equations and appear only in the spin-
ning case. Moreover, we can form a sort of Runge-Lenz
vector involving only Grassmann components,

Li5
1

m
e i jkSjJk , i , j ,k51,2,3, ~47!

with the commutation relations such as in Eqs.~37! and~38!:

$Li ,Jj%5e i jkLk , ~48!

$Li ,L j%5~SWJW2SW 2!
1

m2 e i jkJk . ~49!

Note also the following Dirac brackets ofLi with super-
charges:

$Li ,Q0%52
1

2m
e i jkQjJk, ~50!

$Li ,Qj%5
1

2m
~e i jkQ0Jk2d i j QkMk

21QiM j
2!. ~51!

III. CONCLUDING REMARKS

The constants of motion of a scalar particle in a curved
space-time are determined by the symmetries of the mani
fold, and are expressible in terms of the Killing vectors and
tensors, i.e., if a space-time admits a Killing tensor
Km1•••mr

of valence r , then the quantity

Km1•••mr
Pm1

•••Pmr is conserved along the geodesic. On the
other hand, the Killing-Yano tensors can be understood as
objects generatingnongenericsupersymmetries@3#. They
have been also used to investigate the motion of spinning
particles including electromagnetic interactions@5# and tor-
sion @19#. The aim of this paper was to point out the role of
the Killing-Yano tensors to generate solution of the homoge-
neous parts of the generalized Killing equations. This solu-
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tion must be included in the complete solution of the syst
of coupled Killing equations. The general procedure was
plied to the particular case of the Taub-NUT spinning spa
The extension of these results for the motion of spinn
particles in spaces with torsion and/or in the presence o
electromagnetic field will be discussed elsewhere.
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