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Qualitative viscous cosmology
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The full ~nontruncated! Israel-Stewart theory of bulk viscosity is applied to dissipative FRW spacetimes.
Dimensionless variables and dimensionless equations of state are used to write the Einstein-thermodynamic
equations as a plane autonomous system and the qualitative behavior of this system is determined. Entropy
production in these models is also discussed.@S0556-2821~96!03314-0#
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I. INTRODUCTION

In a recent paper@1#, isotropic and spatially homogeneou
viscous fluid cosmological models were investigated us
the truncated Israel-Stewart@2–4# theory of irreversible ther-
modynamics to model the bulk viscous pressure. Althoug
provides a causal and stable second order relativistic the
of thermodynamics, the truncated version of the theory
give rise to very different behavior than the full Israe
Stewart theory@5–8#. It can be argued that the truncate
theory agrees with the full theory if one uses, instead of
local equilibrium variables, a generalized temperature a
thermodynamic pressure@8,9#. However, there are difficul-
ties in modeling these generalized variables in cosmolo
Therefore the analysis of@1# can only be regarded as a firs
step in the study of dissipative processes in the universe
lizing the full ~nontruncated! theory.

For a Friedmann-Robertson-Walker~FRW! cosmology
the metric is given by

ds252dt21R~ t !2F dr2

12kr2
1r 2~du21sin2udf2!G ,

k50,61,

and the Einstein field equations and the energy conserva
equation are given by

Ḣ52H22
1

6
~3g22!r2

1

2
P, ~1!

ṙ523H~gr1P!, ~2!

H25
1

3
r2

k

R2 , ~3!
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whereH5Ṙ/R is the Hubble expansion rate~we restrict our-
selves to the expanding case only, i.e.,H.0), r is the en-
ergy density, and the local equilibrium pressure is assume
to obey

P5~g21!r, 1<g<2,

with g constant.
The bulk viscous pressureP obeys the evolution equation

@5,8#

P523zH2tṖ2
e

2
tPF3H1

ṫ

t
2

ż

z
2
Ṫ

TG , ~4!

wherez>0 is the bulk viscosity coefficient, 0<t ([zb0 in
@1#! is a relaxation coefficient for transient bulk viscous ef-
fects, andT>0 is the temperature. Equation~4! with e51
arises as the simplest way~linear in P) to satisfy theH
theorem~i.e., for entropy production to be non-negative@8#!.
The truncated theory effectively arises by settinge50, i.e., it
corresponds to the case where the term in square brackets
Eq. ~4! is negligible in comparison with the other terms~see
@10# for the appropriate conditions!.

The Israel-Stewart theory is derived under the assumptio
that the thermodynamical state of the fluid is close to equi
librium, which means that the nonequilibrium bulk viscous
pressure should be small when compared to the local equ
librium pressure: viz.,

uPu,P5~g21!r. ~5!

If this condition is violated, then one is effectively assuming
that the linear theory holds also in the nonlinear regime fa
from equilibrium. Such an assumption is unavoidable for vis-
cous inflationary cosmology@8#. For a fluid description of
the matter, Eq.~5! ought to be satisfied. However, note that
nonlinear viscous effects may arise in a phenomenologica
description of particle creation in the early universe@11#.

II. DYNAMICAL SYSTEM

Equations of state forz andt and a temperature law for
T are needed in order for the above system of equations to b
closed. Belinskiiet al. @12# takez andt to be proportional to
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powers ofr, and this assumption is extended toT in @6#. We
shall follow @1# and adopt ‘‘dimensionless’’ equations o
state. That is, defining the dimensionless density parame

x5V[
r

3H2 , ~6!

we shall assume thatz/H andtH are proportional to powers
of x: namely,

z

H
53z0x

m and
t21

H
5bxn, ~7!

wherem andn are constants which are assumed to be no
negative andz0 and b are positive parameters. Clearly th
equations of state employed will determine the qualitati
properties of the models@1,5–8,12,13#. Equations of state
~7!, which ensure that the asymptotic limit points represe
self-similar models@14#, are phenomological in nature an
are no less appropriate than the equations of state used
Belinskii et al. @12#. We note that the equations of state ch
sen in @12# and those above coincide in the important ca
m51/25n (q51/2 in @8#!.

From now on we shall take

n50, a[bz0 .

~Note thata,b are precisely the parameters used in@1#.!
Whenn50, it follows that the relaxation rate is determine
by the expansion rate:

t215bH. ~8!

As argued in @8#, for viscous expansion to be non
thermalizing, we should havet21,H, for otherwise the ba-
sic interaction rate for viscous effects could be sufficient
rapid to restore equilibrium as the fluid expands. Therefo
we impose the constraint

b,1

on the relaxation parameter.
Defining the dimensionless viscous pressurey and the

new time variablet̄ by

y5
P

H2 and
dt̄

dt
5H, ~9!

and using Eq.~1!, Eqs.~2! and ~4! become

x85~x21!@~3g22!x1y#, ~10!

y85y@22b1y1~3g22!x#29axm2
e

2
yC, ~11!

where

C[322
H8

H
2m

x8

x
2
T8

T
, ~12!

and the prime denotes a derivative with respect tot̄. Note
that the linear condition~5! becomes

uyu,3~g21!x.
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Equations~10! and ~11! constitute a plane autonomous
system of ordinary differential equations~ODE’s! for x and
y. In the truncated theorye50, whence the final term in Eq.
~11! is absent and there is no need to specify an equation fo
T. Hereafter we shall sete51, and adopt the temperature
power law@6–8#:

T5T0r
r5T03

rxrH2r with r5
g21

g
, ~13!

where the form of the exponentr follows from the integra-
bility condition of the Gibbs equation whenP5(g21)r
@10,15#. When the local equilibrium state of the expanding
viscous fluid is thermalized radiation, thenr51/4, in line
with the standard Stefan-Boltzmann relation. Consequently

C5322~11r !
H8

H
2~m1r !

x8

x
5c01c1y1c2x1c3

y

x
,

where

c05512r1~3g22!~m1r !, c1512m,

c25~3g22!c1 , c35m1r .

A. Flat universe

All of the FRW models are governed by Eqs.~10! and
~11! together with Eq.~3!. We note from~10! thatx51 is an
invariant set, where from Eq.~3! we see that this set repre-
sents the flat FRW models. Let us study this physically im-
portant zero-curvature case first. Whenx51, the thermody-
namic laws are simplified to Eqs.~8! and ~13! and, by Eq.
~7!, to

z}H. ~14!

Thus the bulk viscosity coefficient, like the relaxation rate, is
also determined by the expansion rate. Furthermore,

C5~c01c2!1~c11c3!y, ~15!

whence Eq.~11! becomes

y852
~r21!

2
y22by29a. ~16!

That is, the equations governing the evolution of the flat
FRW viscous fluid models reduce to a single autonomou
ODE in y. Since 0<r<1/2, Eq.~16! is a Riccati equation
with constant coefficients and its solutions can be found in
implicit form.

Defining the positive parameter

B1[b2118a~12r !,

it follows that there are two equilibrium points, one positive
and one negative:

y65g~b6AB1!, ~17!
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where one is a sink and the other is a source~with respect to
the invariant setx51, not the full set of all FRW models!.
The points~17! correspond to the special solutions found
@16# and rediscovered in@17#.

Therefore, the behavior of the flat models using the fu
~nontruncated! theory is qualitatively the same as the beha
ior in the truncated theory@1#. Of course, this qualitative
similarity only holds for the restrictive thermodynamic law
~8!, ~13!, and~14!.

B. Curved universes

Let us now return to the general curvature casexÞ1 @see
Eqs.~10! and ~11!#. Equation~11! can be written as

y852yF S b221
c0
2 D1x~3g22!S c12 21D1yS c12 21D

1
c3
2
yx21G29axm. ~18!

There are two equilibrium points lying in the invariant se
x51, namely, (1,y6) wherey6 is given by Eq.~17!. Previ-
ously ~in the case of the flat models! we considered the sta-
bility of the equilibrium points only with respect to the in
variant setx51; let us now discuss the stability of thes
equilibrium points with respect to the curved FRW mode
The equilibrium point (1,y1) is a source with the invariant
set x51 as one of its primary eigendirections. I
y213g.2, then the equilibrium point (1,y2) is a saddle
with x51 as the stable manifold. Ify213g,2, then the
equilibrium point (1,y2) is a sink and hence it represents
future asymptotic attractor. From Eq.~10!, the equilibrium
points (x̄,ȳ) not lying in the invariant setx51 satisfy
y 5̄2(3g22)x̄, and hence from Eq.~18! we obtain

9ax̄ m2
1

2
~3g22!~2b12r11!x̄50. ~19!

For m.0, there exists a singular point at the origin (0,0
@Note, however, that the system of ODEs as given by E
~10! and~18! is not defined atx50 except whenc350 and
therefore the point (0,0) may not be a well-defined equili
rium point of the system.# Changing to polar coordinates, i
can be shown that this singular point is saddlelike in natu
~hyperbolic sectors! if m,1. If m.1, then the point (0,0)
has parabolic and hyperbolic sectors.

If mÞ1, then there is a second equilibrium point at

~ x̄,ȳ!5S F ~3g22!

18a
~2b12r11!G1/~m21!

,2~3g22!x̄D .
~20!

If

B2[~3g22!~2b12r11!218a.0,

then x̄.1, and whenm,1, this point is a saddle. IfB2,0,
then x̄,1, and whenm.1, this equilibrium point is again a
saddle. There is a variety of other possible behaviors.
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III. DISCUSSION

A. Exact solutions and asymptotic behaviors

The qualitative behavior of the flat FRW models has bee
determined completely. The unphysical flat models evolv
from the equilibrium pointy5y1 at t̄52`, wherey5y1

corresponds to the solution~after recoordination!

R~ t !5R0t
2/~y113g!, H~ t !5

2

y113g
t21,

r~ t !5
12

~y113g!2
t22, P~ t !5

4y1

~y113g!2
t22, ~21!

towards either points at infinity or to the pointy5y2 ~at
t̄ 52`), which, if y2Þ23g, has the solution

R~ t !5R0~ t2t0!
2/~y213g!, H~ t !5

2

y213g
~ t2t0!

21,

r~ t !5
12

~y213g!2
~ t2t0!

22,

P~ t !5
4y2

~y213g!2
~ t2t0!

22. ~22!

@Note that ify213g.0, then the solution~22! can be reco-
ordinatized such thatt050.# These models and the equilib-
rium point y5y1 are unphysical since they have positive
bulk viscous pressure. Those models which evolve toward
y5y2 have negative bulk viscous pressure after a certai
time, and may be considered as physical models after th
time. The models which are physical for all times~i.e., which
have P,0 for all times! are Eqs.~22! and those which
evolve from infinity at t̄52` towardsy5y2 at t̄5`. ’ ’
@Note that, by Eqs.~9!, ~21!, and~22!, t̄52` corresponds to
t50, while t̄5` corresponds tot5`.#

If y2523g, then the solution has the form

R~ t !5R0e
H0t, H~ t !5H0 , r~ t !53H0

2,

P~ t !5y2H0
2. ~23!

The exponential inflationary solution~23! clearly violates
the condition~5! ~cf. @8#!. The solution~22! violates the con-
dition ~5! if y213g,3, when the expansion is driven by a
large and effective nonlinear bulk viscous pressure. The ex
pansion is from a big bang, and is more rapid than in th
corresponding equilibrium solution (y250). Indeed, if

y213g,2, ~24!

then the solution represents a power-law inflationary solu
tion. Knowing that condition~24! is also the requirement that
the equilibrium point (1,y2) be stable, we can conclude that
the power-law inflationary solution~23! is the future asymp-
totic attractor for all bulk-viscous inflationary FRW models.

We emphasize that bulk viscous inflationary solutions
such as the solution~22!, violate the condition~5!, so that
their existence is dependent on assuming that the theo
holds in the nonlinear regime. Furthermore, these inflation
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ary solutions are limited by the simple equation of sta
P5(g21)r, so that, in particular, they cannot account fo
the processes necessary to provide an exit from inflation. T
solutions are at most valid during inflation, and more real
tic models would be needed to incorporate exit and rehe
ing.

B. Entropy production

On physical grounds, one expects thaty<0, since the
evolution of specific entropy is given by@5,8#

ṡ52
3HP

nT
, ~25!

wheren is the number density. We note that solution~22!
always satisfiesy<0. From Eq. ~25!, it follows that the
growth of entropy in a comoving volume between time
t0,t,t1 is given by

S~ t1!2S~ t0!52
3

kEt0
t1PHR3

T
dt, ~26!

wherek is the Boltzmann constant. The amount of entrop
generated can be calculated for each of the solutions~21!,
~22!, and ~23!. Analyzing the physically more relevant cas
~22!, we find that ~reinstating constants previously set t
unity!,

S~ t1!2S~ t0!5
g3~12r !c2

8pGk SR0
3

T0
D S 2

y213g D 2~12r !

3~ t1
22y2/@g~y213g!#2t0

22y2/@g~y213g!#!,

~27!

wherec is the speed of light andG is the gravitational con-
stant. By Eqs.~22!, we must havey213g.0 for an ex-
panding solution. This ensures that Eq.~27! gives
S(t1).S(t0).

The amount of entropy generated in the de Sitter mod
@solution~23!# is the same as that calculated by Maartens@8#:
namely,

S~ t1!2S~ t0!5
3~12r !c2

8pGk SR0
3

T0
DH0

222r~e3H0t12e3H0t0!.

~28!

It is shown that bulk viscous inflation can generate signi
cant amounts of entropy without reheating. For the de Sit
model, using typical parameters of inflation, and assumi
that almost all of the entropy is produced by inflation, on
finds the following value for the amount of entropy produce
during exponential inflation@8#:

S'2.131087, ~29!

which is in agreement with the expected value. The pow
law inflationary solution~22! @with y213g,2, i.e., satisfy-
ing Eq.~24!# has less efficient entropy production, but non
theless can also produce significant amounts of entropy.

In the above, we have only considered entropy product
in the models corresponding to the equilibrium points of th
te
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dynamical system. By considering a simple example, we
investigate the entropy production in the more general
FRW models. We choose parameter valuesr51/4 ~necessar-
ily g54/3), a51/27, andb51/4. In this case the differen-
tial equation~16! reduces to

y85 3
8 @~y2 1

3 !221#, ~30!

which has a solution of the form~neglecting the constants o
integration!

y5H 1
3 2tanh~ 3

8 t̄ !, uy2 1
3 u,1,

1
3 2coth~ 3

8 t̄ !, uy2 1
3 u.1.

~31!

The Hubble parameter is given by

H5H e213 t̄ /6cosh4/3~ 3
8 t̄ !, uy2 1

3 u,1,

e213 t̄ /6sinh4/3~ 3
8 t̄ !, uy2 1

3 u.1,
~32!

andR5R0e
t̄ . The change in entropy in a comoving volum

produced between timest̄0, t̄, t̄1 is then given by

S~ t̄1!2S~ t̄0!5S 321/4c2R0
3

16pGkT0
D @62~e2 t̄ 1/42e2 t̄ 0/4!

1~e2 t̄ 12e2 t̄ 0!1~et̄ 1/22et̄ 0/2!#. ~33!

It can be concluded in this simple model fort̄1 / t̄0.1 that as
t̄ 1 increases the entropy in a comoving volume grows ex
nentially with respect tot̄1 .

IV. CONCLUSIONS

The behavior of the viscous fluid FRW models where t
bulk viscous pressure satisfies the full Israel-Stewart the
of irreversible thermodynamics has been analyzed. The
bility of the equilibrium point (0,0) representing the Miln
model depends upon the value ofm which appears in the
equation of state for the bulk viscosity. The equilibriu
point (x̄,ȳ) can represent either an open, flat, or closed FR
model depending upon the value of the parameterB2 . Exact
determination of the nature of this particular equilibriu
point is extremely difficult. However, a partial result is po
sible: IfB2(12m).0, then the equilibrium point is a saddle
There exist two equilibrium points with qualitative behavio
similar to that found using the truncated Israel-Stew
theory.

It can be concluded that the behavior of the FRW mod
in which the bulk viscous pressure satisfies the full Isra
Stewart theory can in principle be qualitatively similar to th
behavior of the FRW models in the truncated theory. O
cannot say, however, that the full theory has the same beh
ior as the truncated theory in all cases because it is not a
clear what effects the presence of anisotropies or differ
equations of state will have. For example, in the mod
studied here, it was the equations of state for the tempera
and for the bulk viscosity coefficient that played major rol
in determining the dynamics of the models. In the case o
relativistic Maxwell-Boltzmann gas, which has very differe
equations of state, the truncated and full theories can lea
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very different behavior, with the truncated theory leading
pathological behavior of the temperature in many cases@5#.

As stated above, the consistency condition that visc
expansion should be nonthermalising requiresb,1. Further
constraints may arise from entropy arguments. The evolu
equation~4! already guarantees that entropy production
non-negative. But one may place constraints on the rate
amount of entropy production. If we impose the requirem
that the specific entropy’s, should increase with expans
but at a decreasing rate, then we havey,0 and possibly
further constraints onr ~equivalentlyg) andm.

A complete analysis of the asymptotic behaviors of th
viscous fluid models depending on the~many! free param-
to

ous

tion
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and
ent
ion,

ese

eters in the model (a,b,g,m) and utilizing the energy con-
ditions can be made. However, the next step in this research
program is to attempt to use results from kinetic theory in
order to motivate physically plausible equations of state or,
at the very least, to limit the form of the phenomological
equations of state used.
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