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Quialitative viscous cosmology
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The full (nontruncatel Israel-Stewart theory of bulk viscosity is applied to dissipative FRW spacetimes.
Dimensionless variables and dimensionless equations of state are used to write the Einstein-thermodynamic
equations as a plane autonomous system and the qualitative behavior of this system is determined. Entropy
production in these models is also discus§&®556-282(196)03314-F
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I. INTRODUCTION whereH=R/R is the Hubble expansion rafee restrict our-
selves to the expanding case only, il¢0), p is the en-
In a recent papdrl], isotropic and spatially homogeneous ergy density, and the local equilibrium pressure is assumed
viscous fluid cosmological models were investigated usingo obey
the truncated Israel-Stewd&—4] theory of irreversible ther-
modynamics to model the bulk viscous pressure. Although it P=(y=1)p, 1sy=2,
provides a causal and stable second order relativistic theory
of thermodynamics, the truncated version of the theory caiith ¥ constant. , _
give rise to very different behavior than the full Israel- _ The bulk viscous pressuié obeys the evolution equation
Stewart theory{5—8]. It can be argued that the truncated (5.8]
theory agrees with the full theory if one uses, instead of the
local equilibril_Jm variables, a generalized temperature and = —3§H—Tf[— ETH
thermodynamic pressufé@,9]. However, there are difficul-
ties in modeling these generalized variables in cosmology. . ) . . ,
Therefore the analysis ¢1] can only be regarded as a first Where{=0 is the bulk viscosity coefficient, 97 (= {8, in
step in the study of dissipative processes in the universe utld)) is a relaxation coefficient for transient bulk viscous ef-

lizing the full (nontruncateytheory. fects, andT=0 is the temperature. Equatida) with e=1
For a Friedmann-Robertson-WalkéFRW) cosmology ~arises as the simplest wainear in IT) to satisfy theH
the metric is given by theorem(i.e., for entropy production to be non-negat[\83).
The truncated theory effectively arises by setténgO, i.e., it
2 corresponds to the case where the term in square brackets in
ds?=—dt?+R(t)? 5 +r2(de?+sirfod¢?) |, Eq. (4) is negligible in comparison with the other terifsee
1=kr [10] for the appropriate conditioins
k=0,+1, The Israel-Stewart theory is derived under the assumption

that the thermodynamical state of the fluid is close to equi-
and the Einstein field equations and the energy conservatidiprium, which means that the nonequilibrium bulk viscous
equation are given by pressure should be small when compared to the local equi-
librium pressure: viz.,

: 1 1
H:_H2_6(3y_2)p_zn, (1) [II|<P=(y—1)p. )
If this condition is violated, then one is effectively assuming
p=—3H(yp+II), (2)  that the linear theory holds also in the nonlinear regime far

from equilibrium. Such an assumption is unavoidable for vis-
cous inflationary cosmolog}8]. For a fluid description of

szip_ —, (3)  the matter, Eq(5) ought to be satisfied. However, note that
3 R nonlinear viscous effects may arise in a phenomenological
description of particle creation in the early univef4d].
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powers ofp, and this assumption is extendedTtan [6]. We Equations(10) and (11) constitute a plane autonomous
shall follow [1] and adopt “dimensionless” equations of system of ordinary differential equatiof®DE’s) for x and
state. That is, defining the dimensionless density parametey. In the truncated theory= 0, whence the final term in Eq.
(12) is absent and there is no need to specify an equation for
X:QEL ©6) T. Hereafter we shall se¢=1, and adopt the temperature

3H?%’ power law[6—8]:
we shall assume th@tH andrH are proportional to powers y—1
of x: namely, T=Top =Tp3X'HZ with r= - (13
7_71
e 3¢x™ and " bx", (7)  where the form of the exponentfollows from the integra-

bility condition of the Gibbs equation wheR=(y—1)p
wherem andn are constants which are assumed to be nont10,159. When the local equilibrium state of the expanding
negative and’, andb are positive parameters. Clearly the ViSCOUS fluid is thermalized radiation, thgzrr 1/4, in line
equations of state employed will determine the qualitativeW'th the standard Stefan-Boltzmann relation. Consequently,
properties of the modelgl,5-8,12,13 Equations of state
(7), which ensure that the asymptotic limit points represent
self-similar modeld14], are phenomological in nature and
are no less appropriate than the equations of state used by
Belinskii et al.[12]. We note that the equations of state cho-where
sen in[12] and those above coincide in the important case
m=1/2=n (q=1/2 in [8]). Co=5+2r+(3y—2)(m+r), c;=1-m,

From now on we shall take

! !

H X
\If=3—2(1+r)W—(m+ r);=co+c1y+c2x+c3:(—/,

n=0, a=b{,. c,=(3y—2)cy, Cz=m+r.

(Note thata,b are precisely the parameters used[1i].) A. Flat universe
Whenn=0, it follows that the relaxation rate is determined All of the FRW models are governed by Eq40) and

by the expansion rate: (11) together with Eq(3). We note from(10) thatx=1 is an

7 1=DbH. (8)  invariant set, where from Ed3) we see that this set repre-

sents the flat FRW models. Let us study this physically im-

As argued in[8], for viscous expansion to be non- portant zero-curvature case first. When 1, the thermody-
thermalizing, we should have <H, for otherwise the ba- namic laws are simplified to Eq$8) and (13) and, by Eq.
sic interaction rate for viscous effects could be sufficiently(7), to
rapid to restore equilibrium as the fluid expands. Therefore
we impose the constraint JoH. (14

b<1 Thus the bulk viscosity coefficient, like the relaxation rate, is

. also determined by the expansion rate. Furthermore,
on the relaxation parameter.

Defining the dimensionless viscous pressyrand the U =(Cy+Cy) + (C1+Ca)Y, (15)
new time variablg by
I dt whence Eq(11) becomes
y=1z anda=H, 9 1
'=— 2_py—09a. 16
and using Eq(1), Egs.(2) and(4) become y 2 Y y (16

X'=(X=1D[(3y—2)x+y], (100 That is, the equations governing the evolution of the flat
FRW viscous fluid models reduce to a single autonomous
ODE iny. Since G6sr=<1/2, Eq.(16) is a Riccati equation
with constant coefficients and its solutions can be found in
implicit form.
where Defining the positive parameter
’ XI T/ 9
V=3-2--m—— =, (12 Bi=b“+18a(1-r),

y'=y[2—b+y+(3y—2)x]—9ax™— gy\lf, (11

it follows that there are two equilibrium points, one positive

and the prime denotes a derivative with respect.t®lote .
and one negative:

that the linear conditiori5) becomes

ly|<3(y—1)x. y*=y(b=\B,), (17)
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where one is a sink and the other is a souith respect to Ill. DISCUSSION

the invariant sek=1, not the full set of all FRW models

The points(17) correspond to the special solutions found in

[16] and rediscovered ifiL7]. The qualitative behavior of the flat FRW models has been
Therefore, the behavior of the flat models using the fulldetermined completely. The unphysical flat models evolve

(nontruncatelitheory is qualitatively the same as the behav-from the equilibrium poiny=y™ att=—o, wherey=y"

ior in the truncated theory1]. Of course, this qualitative corresponds to the solutidafter recoordination

similarity only holds for the restrictive thermodynamic laws

A. Exact solutions and asymptotic behaviors

2
(8), (13), and(14). —p 20yT+3y) e
B. Curved universes - 12 2 . 4y+ 2 o1
Let us now return to the general curvature casgel [see p (y++37)2 ) (y++37)2 )

Egs.(10) and(11)]. Equation(11) can be written as
towards either points at infinity or to the poigt=y~ (at

y' =—y (b—2+%)+x(37—2) %—1 +y %—1) 't =—w), which, if y~# — 3y, has the solution
C — _ 2y~ +3y) — _ -1
+ Egyx*l —9ax™, (18 R(D)=Ro(t=1to) » H) y‘+3y(t to) %
. . _ . . 12
There are two equilibrium points lying in the invariant set p(t)= T(t_to)—Z’
x=1, namely, (Iy*) wherey~ is given by Eq.(17). Previ- (y Y)
ously (in the case of the flat modelsve considered the sta- _
bility of the equilibrium points only with respect to the in- (t)= 4y (t—ty) 2. (22)
variant setx=1; let us now discuss the stability of these (y +3y)°

equilibrium points with respect to the curved FRW models. ) )

The equilibrium point () is a source with the invariant [Note thatify™+3y>0, then the solutiori22) can be reco-

set x=1 as one of its primary eigendirections. If ordinatized such thatt,=0.] These models and the equilib-

y~+3y>2, then the equilibrium point (§,) is a saddle fium pomtyzy+ are unphysical since they have positive

with x=1 as the stable manifold. §~ +3y<2, then the bulk viscous pressure. Those models which evolve towards

equilibrium point (1y~) is a sink and hence it represents aY=Y have negative bulk viscous pressure after a certain

future asymptotic attractor. From E€10), the equilibrium ~ time, and may be considered as physical models after this

points &,y) not lying in the invariant sex=1 satisfy time. The models Whlch are physical for aIItln'(e.e.,whlt_:h

y =—(3y—2)x, and hence from Eq18) we obtain have II1<0 for all timeg are EQs.(22) and those which
evolve from infinity att=—« towardsy=y~ at t=o."
[Note that, by Eqs(9), (21), and(22), t= — o corresponds to

_ 1 _
9ax M— 5(37_2)(2b+ 2r+1)x=0. (199 t=0, whilet=o corresponds té=.]
If y~=—3v, then the solution has the form
For m>0, there exists a singular point at the origin (0,0). R(t)=Rpe"o!, H(t)=H,, p(t)=3H02,
[Note, however, that the system of ODEs as given by Egs.
(10) and(18) is not defined ak=0 except wherc;=0 and I(t)=y HZ. (23

therefore the point (0,0) may not be a well-defined equilib-

rium point of the systeni.Changing to polar coordinates, it~ The exponential inflationary solutigi23) clearly violates
can be shown that this singular point is saddlelike in naturehe condition(5) (cf. [8]). The solution(22) violates the con-
(hyperbolic sectopsif m<1. If m>1, then the point (0,0) dition (5) if y~+3y<3, when the expansion is driven by a

has parabolic and hyperbolic sectors. large and effective nonlinear bulk viscous pressure. The ex-
If m# 1, then there is a second equilibrium point at pansion is from a big bang, and is more rapid than in the
corresponding equilibrium solutiory( =0). Indeed, if
L (37_2) 1/(m-1)
(x,y)=([ g (2b+2r+1) ,—(3y—2)7>. y +3y<2, (24)
(20)

then the solution represents a power-law inflationary solu-
tion. Knowing that conditior{24) is also the requirement that
the equilibrium point (1) be stable, we can conclude that
the power-law inflationary solutio(23) is the future asymp-
B,=(3y—2)(2b+2r+1)-18a>0, totic attractor for all bulk-viscous inflationary FRW models.
We emphasize that bulk viscous inflationary solutions,
thenx>1, and wherm<1, this point is a saddle. B,<O0, such as the solutio22), violate the condition(5), so that
thenx<1, and wherm> 1, this equilibrium point is again a their existence is dependent on assuming that the theory
saddle. There is a variety of other possible behaviors. holds in the nonlinear regime. Furthermore, these inflation-
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ary solutions are limited by the simple equation of statedynamical system. By considering a simple example, we can
P=(y—1)p, so that, in particular, they cannot account for investigate the entropy production in the more general flat
the processes necessary to provide an exit from inflation. ThHERW models. We choose parameter valuesl/4 (necessar-

solutions are at most valid during inflation, and more realis-ily y=4/3), a=1/27, andb=1/4. In this case the differen-
tic models would be needed to incorporate exit and reheatial equation(16) reduces to

Ing' r _ 3 1\2
y'=s[(y—3)"—1], (30

which has a solution of the forifneglecting the constants of
On physical grounds, one expects that0, since the integration
evolution of specific entropy is given H¥,8]

B. Entropy production

j-tanh(3t), |y—3[<1,
N aHII y= 3 l«(8_) |y 3| (31)
= (25) s—coth§), |y—3[>1.

wheren is the number density. We note that soluti@?)  The Hubble parameter is given by
always satisfiesy<0. From Eq.(25), it follows that the

growth of entropy in a comoving volume between times H 6_13”6COSW3(§t_), ly-3l<1, 32
to<t<t, is given b = " —
0 1189 y e 18sint3(3t), |y—i|>1,
3 (ullHR3 _
2(t) —2(to) =~ Eft T dt, (260 andr= Roe'. The change in entropy in a comoving volume
produced between timdg<<t<t, is then given by

wherek is the Boltzmann constant. The amount of entropy 4203
generated can be calculated for each of the soluti@d} 3 (1))~ 3 (tg) = 3 Ry [+2(e“71/4— e—To/4)
(22), and(23). Analyzing the physically more relevant case 1 0 167GkTy) -

yzing phy y 0
(22), we find that(reinstating constants previously set to — — — —
unity), +(e f1i—e to)+(ef12-e'0?)]. (33

y31 N2 (RS 2 \21-n It can be concluded in this simple model tgr't,>1 that as

2(t)—2(to) = 8wGk | To/ly +3y t 1 increases the entropy in a comoving volume grows expo-

nentially with respect ta; .
< t—2y7/[7(y7+37>]_t—2y’/[7(y’+37)])
(ty 0 :

27 IV. CONCLUSIONS

The behavior of the viscous fluid FRW models where the
bulk viscous pressure satisfies the full Israel-Stewart theory
: ! . . of irreversible thermodynamics has been analyzed. The sta-
panding _ solution. This ensures that Eq27) gives bility of the equilibrium point (0,0) representing the Milne

S (t)>2(tg). : .
The amount of entropy generated in the de Sitter moderInOdeI depends upon the value wf which appears in the

[solution(23)] is the same as that calculated by Maartgis equation of state for the bulk viscosity. The equilibrium
namely point (x,y) can represent either an open, flat, or closed FRW

model depending upon the value of the paramBter Exact
3 determination of the nature of this particular equilibrium
(—) HE ?'(e3Hot1—g3Holo), point is extremely difficult. However, a partial result is pos-
To 28) sible: If B,(1—m)>0, then the equilibrium point is a saddle.
There exist two equilibrium points with qualitative behavior

It is shown that bulk viscous inflation can generate signifi-Similar to that found using the truncated Israel-Stewart

cant amounts of entropy without reheating. For the de SitteF€0rY- _
model, using typical parameters of inflation, and assuming !t ¢an be concluded that the behavior of the FRW models
that almost all of the entropy is produced by inflation, onell which the bulk viscous pressure satisfies the full Israel-

finds the following value for the amount of entropy producedStewart theory can in principle be qualitatively similar to the
during exponential inflatiofig]: behavior of the FRW models in the truncated theory. One

cannot say, however, that the full theory has the same behav-

S ~2.1x10%, (29 ior as the truncated theory in all cases because it is not at all

clear what effects the presence of anisotropies or different

which is in agreement with the expected value. The powerequations of state will have. For example, in the models

law inflationary solution(22) [with y~+3vy<2, i.e., satisfy-  studied here, it was the equations of state for the temperature
ing Eq.(24)] has less efficient entropy production, but none-and for the bulk viscosity coefficient that played major roles
theless can also produce significant amounts of entropy. in determining the dynamics of the models. In the case of a
In the above, we have only considered entropy productiomelativistic Maxwell-Boltzmann gas, which has very different

in the models corresponding to the equilibrium points of theequations of state, the truncated and full theories can lead to

wherec is the speed of light an is the gravitational con-
stant. By Egs.(22), we must havey” +3y>0 for an ex-

(1-1c2

2“1)_2(%): 87Gk
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very different behavior, with the truncated theory leading toeters in the modeld,b,y,m) and utilizing the energy con-
pathological behavior of the temperature in many c4S¢s  ditions can be made. However, the next step in this research
As stated above, the consistency condition that viscouprogram is to attempt to use results from kinetic theory in
expansion should be nonthermalising requiesl. Further  order to motivate physically plausible equations of state or,
constraints may arise from entropy arguments. The evolutioat the very least, to limit the form of the phenomological
equation(4) already guarantees that entropy production isequations of state used.
non-negative. But one may place constraints on the rate and
amount of entropy production. If we impose the requirement
that the specific entropy’s, should increase with expansion,
but at a decreasing rate, then we hawe0 and possibly This work was supported by research grants from the
further constraints on (equivalentlyy) andm. Natural Sciences and Engineering Research Council of
A complete analysis of the asymptotic behaviors of these&Canada(A.A.C.) and Portsmouth UniversitfR.M.) and
viscous fluid models depending on tlmany free param- through the Izaak Walton Killam Fun@.V.D.H.).
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