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Coleman-Weinberg SQ10) grand unified theories as inflationary models
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The flat-space limit of the one-loop effective potential for (3@ GUT'’s in spatially flat Friedmann-
Robertson-Walker cosmologies is applied to study the dynamics of the early universe. The numerical integra-
tion of the corresponding field equations shows that, for such grand unified theories, a sufficiently long
inflationary stage is achieved for suitable choices of the initial conditions. However, a severe fine-tuning of
these initial conditions is necessary to obtain a lazgeld number. In the direction with residual symmetry
SU4) ps® SU(2).® SU(2)g, one eventually finds parametric resonance for suitable choices of the free param-
eters of the classical potential. This phenomenon leads in turn to the end of infl80&%6-282196)04414-1

PACS numbds): 98.80.Cq, 11.30.Qc, 12.10.Dm

[. INTRODUCTION possible to accommodate fermions and antifermions of each
eneration in a single 16-dimensional complex representa-
on.

(iv) On requiring that the GUT group should contain
U(2), andB—bL as local symmetries, while no exotic par-

Semiclassical effects in quantum field theory are at theﬁ
very heart of many exciting developments in modern theo-
retical physics, e.g., radiative corrections to the Casimir force-S

[1], trace anomalief2], one-loop effective actiofB,4], sym-  y;cjaq or mirror fermions should occur, one finds that(SM
metry breaking in the early univer$g—7]. In the latter class g unique and haB—L as generatothenceb=1).
qf phenomena, th? one-loop effective potentigl for grqnd uni- (v) SO(10) models predict masses ferand x neutrinos
fied theories(GUT's) in curved backgrounds is used in the of the order of magnitude relevant for cosmology and solar-
field equations to determine the symmetry-breaking patterpeytrino  astrophysics (including the effects  of
which is relevant for the familiar low-energy phenomenol- renormalization-group equatiofis2]).
ogy of particle physic$6,7]. In particular, in a previous pa-  (vi) SO(10) has also the property to be the intermediate
per by the first two authors, the one-loop effective potentiakymmetry of E, which is the low-energy limit of string
for SO(10) GUT's in de Sitter space was derived for the first theory[14].
time [8]. The main motivation of our work was the analysis  On considering the particular mass matrix relevant for the
of spontaneous symmetry breaking in the early universSU(3) .® SU(2) ® U(1)y symmetry-breaking direction, our
when GUT'’s in good agreement with low-energy phenom-main result was the numerical proof that, even when curva-
enology are studied. Among the nonsupersymmetric GUT’sture effects are no longer negligible, the early universe can
the unified models based on 8l0) are still viable, and from  only reach the S ps2SU(2), ® SU(2); absolute mini-
the phenomenological point of view they turn out to be themum[8].
most appealing ones for the following reas¢fs13. Of course, supersymmetric GUT models might also be
(i) SO(10) models make it possible to obtain massesstudied, and they are indeed receiving careful consideration
(My) of the leptoquarks mediating proton decay which arein the current literaturd 15—20. For example, unlike the
higher than the ones found within the minimal SUmodel.  minimal SU5) model, in the minimal supersymmetric £
This happens by virtue of an intermediate symmetry group irmodel the three running coupling constants meet at a single
between SQ0) and SU3)-®SU(2) ®U(1)y. By fixing, unification point. This leads in turn to constraints on the new
in fact, at M,y the values of the coupling constants and physics which may appear at energy scales betWégmand
sirf4,, and using the renormalization-group equations onehe unification scal¢15]. However, on considering S00)
gets, due to the above intermediate symmetry, a large valu@odels and their supersymmetric version, it seems that only
for the energy scale~My) at which the SQLO) gauge in the former thew-neutrino mass is close to that particular
group unifies interactions. Thus, for these models one recowalue which could solve the solar-neutrino probléai].
ers agreement with the experimental lower limit of Thus, because nonsupersymmetric(B® appears in agree-

9.0X 10°? yr for proton decay10]. ment with the whole set of observational data, we found it
(if) In SO(10) the exact cancellation of chiral anomalies is appropriate to complete our previous investigations of

obtained. SO(10) models, before considering their supersymmetric
(i) The only S@2n) group which contains a 16- versions.

dimensional representation is indeed ($@. This makes it A naturally occurring question is whether the analytic for-

mulas obtained in Ref8] can be used to gain a better un-
derstanding of other phenomena occurring in the early uni-

*Electronic address: esposito@napoli.infn.it verse. Indeed, it is well known that, according to the
TElectronic address: miele@napoli.infn.it cosmological standard model based on Einstein’'s general
*Electronic address: santorelli@napoli.infn.it relativity, the early universe is spatially homogeneous and
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isotropic [22,23, and gravity couples to the energy- II. INFLATION FROM SCALAR-FIELD DYNAMICS
momentum tensor of matter. Under the previous assumptions
of symmetry and homogeneifgf. Ref.[24]), the space-time
metric can be locally cast in the forp22]

In the inflationary models driven by scalar fields, the uni-
verse contains different species of matter, i.e., radiation and
scalar particles(inflatong. The latter, characterized by a
higher energy level with respect to the others, completely

- +a2 +f2 Qeterming thg dynami_c; of the univer_se, making a!l remain-
g dtedt+a’(tidyedy (x)(df,@d ing contributions negligible. A theoretical scheme in which
+sirf9,d6,2d6,)], (1.)  fundamental scalar particles naturally oc@diggs field and

lead to symmetry breaking are the GUT’s. In this case the

energies involved are compatible with the levels required for
where a(t) is the cosmic scale factorg,e]0,7[, 6,  anefficientinflation. Thus, we consider an inflationary model
€]0,27] and, denoting byk the constant curvature of the in which the inflaton coincides with the Higgs field of a
three-dimensional spatial sectiorf§,y) =siny,x or sinhy if =~ GUT, corresponding to the highest energy scale of spontane-
k=1,0,—1, respectively. Here we focus on spatially flat ous symmetry breaking. In particular, we choose the most
Friedmann-Robertson-Walker(FRW) cosmologies, for relevant ones which are the §ID) GUT’s with Higgs field

which k=0. belonging to the 210-dimensional irreducible representation
The aim of the present work has been therefore to study210 [8].
the relevance of S@Q0) GUT models for gravitational phys- Within this framework (we denote hereafter by the

ics within the more general framework of FRW cosmologies fields corresponding to scalar partiglesnd assuming homo-
In this case, the analysis performed in R@b] enables one geneous field configurations= ¢(t), the semiclassical a-
to use, at least for typical GUT-inflationary models charac-grangian reads
terized by a phase-transition temperatusd0'® GeV, the . _
flat-space limit of the Coleman-Weinberg one-loop effective  £=6aaF(¢$)+6aa’F'(¢)p+a’[3 »>— VI (¢)],
potential[5]. What happens is that the one-loop field equa- (2.1
tions in FRW cosmologies are an involved set of integro-
differential equationg25]. In scalar electrodynamics, the Where the overdot stands fdfdt, the prime foré/ ¢, and
nonlocal correction to the Coleman-Weinberg effective po+(¢) denotes the arbitrary coupling ¢f to the gravitational
tential results from the coupling of a scalar fiefg to the background with scalar curvatuRe=6[&/a+a*a?]. In Eq.
gravitational background and may lead to dissipative effect§2.1) the classical potential has been replaced by the one-
in the early universe. More precisely, nonlocal terms in thdoop effective potentiaV™)(4); i.e., the gauge degrees of
field equations may be approximated very well by a functionfreedom have been integrated over. Note also that the first
of the form[25] two terms in Eq.(2.1) yield the coupling—a®F ()R, after
integration by parts in the action.
Starting from Eq.(2.1) one gets the two semiclassical

2| Haos do. dd’c, equations of motion: |
dr ) dr a 1a)2 [aF' . 1F . 1F. ] 142
at2lal HaF? 2 FE?t 2 E? }‘5?
whereA is a positive-definite function of the conformal time 1 v
7. The first term in parentheses leads to a further quantum t7 70 (2.2

correction to the energy density of the scalar figta slowly
varying A), while the second term is purely dissipati5].  and
However, nonlocal termgdo not modify the pattern of
minima found in static de Sitter space. Thus, for numerical .oa.
purposes, even in the non-Abelian case, curvature effects on ¢+3g ¢+6 F'(¢)+ 5_¢:0- 2.3
the one-loop potential are very small, and can be neglected at
the GUT energy scale. This is the basic approximation onn general, for a nonminimally coupled real scalar field,
which the present paper relies. F($)=(1/167G)+(£/2)¢. In our case, in the light of the

In Sec. Il the scalar dynamics driving the inflationary results obtained in Ref25], we neglect all contributions of
phase is described. Section IlI, relying on Rd], studies the curvature to the scalar potential, and hence we can as-

SQ(10) GUT models with Higgs field in the 210-dimensional sume minimally coupled scalar fiel@®r which ¢ vanishes
irreducible representation. In the §l0) internal space,

spherical coordinateg for the Higgs fielq are used to obtain a lll. SO (10) GUT MODELS WITH HIGGS FIELD
convenient parametrization of the classical part of the poten- IN THE 210 IRREDUCIBLE REPRESENTATION

tial. The flat-space limit of the one-loop effective potential is

then studied in Sec. IV. Semiclassical field equations are In a gauge unifying theory such as 8©), the Higgs field
studied in Sec. V, and their numerical solution is found in(fundamental scalar particleelongs to one or more irre-
Sec. VI. The reheating process is then briefly described imucible representation@rreps of the gauge group, and its
Sec. VII, while the concluding remarks are presented in Sealynamics is ruled by a Higgs potential. These particles pro-
VIII. vide the correct residual symmetry for the model in the low-

- ~2
—+
a a?
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energy limit, through a spontaneous symmetry-breaking OtherWise_’SU(3)C®SU(2)L®U(l)T3R®U(l)B—Lv
mechanism. To study the inflation corresponding to the high- (3.4

est energy scaleMy) of spontaneous symmetry breaking
(SSB), we can consider the only contribution of the irreps,Whenﬂ3R is thez component of the SU(2)group.

responsible for the SSB at that scale. Inserting Eq.(3.3) into Eq. (3.2) one finds the tree-level
In the present case, we consider the most general reNofstential

malizable Higgs potential constructed by using a massless
and minimally coupled irre210 only, which is obtained by

the completely antisymmetrized product of four different V(o) =Vo+ b

y 1)
fa+ ny_l— §f6+()\_ 5) ||¢OH41

10s as 8
(3.9
Papcd=Nua®@ vp®pc®@ oy, 3.1
where[8]
whereN is a normalization constant. TI#0irrep has four
independent quartic invariants, i.t$|* and three nontrivial _ 4 N n
invariants; hence, the Higgs potential we are going to con- = gas (—1089: + 2895+ 14093), 3.6
struct is a function of thes8]:
2 2 2 Y= % gl7 (37)
V() =Vot gull(d)ad “+ 9ol (# D) 21d “+ 93/l (H D) 105d
+ Il 3.2 o=—%gs, (3.9
wheregq, g,, g3, and\ are arbitrary coefficients, and, is . _ . . )
an arbitrary constant. We will see in due course what is the f ,=sint 6+ sir? OsirP o[ 2sindcosp + \3cod]
meaning of this constant and how it can be fixed. Unfortu- s A
nately, in view of the technical difficulties to express EQq. + g sinfosirf', 3.9
(3.2) in terms of the 210 degrees of freedom, we restrict our
analysis to the only directions invariant under the subgroup 1 2
SU(3)c®SU(2),®U(1)y. This restriction, however, re- f.=sin?g| cosfcosp+ —sindsinte
mains relevant for the aims of this paper, since it leads to the V3
correct electroweak phenomenology at low energies for the
model. The most general singlgt, with respect to the group +sintsirfecogp+f,, (3.10
SUB) c®SU(2).®U(1)y contained in the210 representa-
tion is [8] f s=[2sirPocoSe— 1 sirgsirPe—3cog6]2+30f — 25f , .
bo (3.11

1. .
Teol ~ J_—SmlgS'n(P( b1278t Paargt Pseret Pr200t P3a00 o ' o _
0 6 Since in the following analysi$ is always negative and

may take negative values, the tree-level potent8b) is

1 . : ;
+ bsgo0) + 35|n0003p(¢1234+ basset Dss10) unbounded from below, unless we impose the restridiijn
|al 9]
+ o 7890 s (3.3 A= ?(fa)max"_ ?(fé)max- (3.12

where #e[0,77] and ¢ €[0,27]. In particular, by varying
# and ¢ in their ranges, one gets the following residual- Note also that contributions proportional to a cubic term in
symmetry group$8]: the potential are set to zero, since we are assuming

$— — ¢ invariance of our model.
0e]0,7[ and ¢=0,7—SU(3)c®SU(2) ® SU(2)r

QU(1l)g_, , (3.43 IV. ONE-LOOP EFFECTIVE POTENTIAL
- As shown by Coleman and Weinbef§], the effects of
625 and ¢=0,7—SU(3)c®SU(2) ®SU(2)r quantum fluctuations on the scalar potential, due to both
gauge bosons and self-interactions, may account for the
®U(1)g_ XD, (3.4p  spontaneous symmetry breaking occurring in gauge theories

without assuming from the beginning the presence of nega-

6=0,m— SU(4)ps2 SU(2), @ SU(2)R, (3.49 tive quadratic terms for the Higgs field. These phenomena

are best tackled in terms of the one-loop effective potential

9=arctart3) and ¢=arctar J2) or (3.4 [5-8,25,26. This provides, in our case, the appropriate tool
for studying the phase transition d(llj)e to scalar dynamics.
__ _ The one-loop effective potenti&l'~’ corresponding to the
o arctan3)+m and p=arctart \/EH m—SUS) classical expressiof8.5) in the flat-space limit is obtained in

®U(1), (3.4e Ref.[8]. On defining
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h;=cog 6+ sirP [ 3 sirfe+ 2 coSe]
3sinbsing

2
h,=cog 6+ sirtd[ 3sirfe+ 3coe]— \[gsinecosﬁsincp,

2
Ccosf+ —sinfcospy |,
o
(4.1

(4.2
hy= 3sirfésirfe, 4.3
h,= §sire, (4.4)

23,3, h% 3.5
h555h1+§h2+z+zh4, (45)

one gets
a o
V(o) ~Vo+ §fa+ s g fs+(N=38) || dol*

3g* 3
- ﬁwoll“[zhi[S— In(h)]

3 2 2 hg 2
+Zh33=In(h3)1+ 3~ In(h3)]

2 2
+§h§[3—ln(h§)]—héln(g |Lﬁ°” ” (4.6)

whereg is the gauge coupling constant apdis the renor-
malization mass.

V. SEMICLASSICAL FIELD EQUATIONS

After defining the dimensionless time= ut/G the Higgs

field ¢y can be seen, in the $0D)-space, as the position
in spherical coordinates as A prief description of the reheating mechanism for our par-

vector in R® given
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As far as the constant, is concerned, it has to be fixed by
requiring that a vanishing potential energy should correspond
to the absolute minimum fow®). By denoting withy,,,

0, and ¢, the absolute-minimum coordinates, we have

VO(y,,,6m,0,) =0. Moreover,y,,, makes it possible to de-
termine alsow, bearing in mind that the spontaneous
symmetry-breaking scale My, which is fixed for the par-
ticular model by the low-energy predictions, and then
u=Mylyn. -

In this scheme, the semiclassical equations ¢gr[27]
take the form(from now on, the dot denotes differentiation
with respect tor)

- . _ 9 e~
y=Yy[ 6*+sir?06%] — 3Ky \p @w”(fp), (5.3
=—220+smacosﬂ 2_3KO\py— — a~ (),
y ¢ Ps= 256"
(5.4
.y, cos. . vt
¢ 2y<p Zsme(’o 3Kevpy— ySIn29&<p ().
(5.9
With our notation K= 87Gr?/3G?, and
Po= Y2y (0P +siP0p) ]+ V(). (5.6

Inflation eventually ends when, by virtue of decay mecha-
nisms, the energy stored in the scalar configuration is re-
leased to lighter degrees of freeddgmadiatior). This is the
so-called reheating process, and the knowledge of the value
of 7, say;, for which this actually happens, enables one to
determine the totaé-fold numberN(7;) of the inflationary
model by solving the differential equation

2|y 5

N(T) —In a(0)

(5.7)

$0=(Gl1) po=Yy&,. Thus, by taking its derivative with re- ticular model is presented in Sec. VII.

spect tor one has

d~ dy,

de de
qbo ey+yd e(,+ysm¢9d (5.9

VI. NUMERICAL ANALYSIS

A necessary requirement to perform a numerical analysis
of the differential equations obtained in Sec. V, is a good

With our notation, it is convenient to introduce a dimension-knowledge of the absolute minimum of the potential2).
less expression for Eq4.6) obtained multiplying it by As already stated in Sec. llI, if the inequalit$.12 is satis-

Glu e,

1)
f +

~ ~ a
VO, 0,0)~Vo+| glat zf,+ 5Tt =0) |y*

g4
~ g2y { hZ[3-In(h?)]

2

h
- 2h§[3—|n(h§)]+ 5 [3-In(h3)]

(5.2

+ ghi[S—lnmi)]—héln(yz) .

fied, the effective potential is bounded from below, but un-
fortunately, this does not ensure that quantum corrections to
the tree-level potential will make it possible to fix the value
of the field at the minimumy,,,, so that it is sensibly differ-
ent from zero. Thus, one has to choose among the values of
a, vy, 6, and\ satisfying Eq.(3.12, the ones for which a
symmetry breaking actually occuf8].

In Table I, we report for two choices of the free param-
eters of the classical potentid.5) the corresponding values
of 6, ©m, Ym and hence the values @f and V,. The
parametersy,y, 6 and\ have been chosen in such a way that
small couplings are achieved, and the minimumyofs of
order 1.
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TABLE I. Values of 6y, ©m, Ym: M, and\~/0 for two choices of the free parameters of E8.5).

M ~
@ Y o A Om Pm Ym (10*° GeV) Vo
-3Xx107%? 5x10° -5x10°% 1.x10%2 131 094 1.68 0.34 2.4910°?
-1.x10"* 5x107 -5x10% 3.39x10°° 1.70 1.35 2.09 0.27 3.5010 2

In Fig. 1, we plot the solution foy (obtained by means of for the sake of clarityy starts increasing until it reaches a
the NAG Library routineno2car) corresponding to the initial region where it oscillates in the neighborhood of a relative
conditions relevant for the SW¥)ps®SU(2) ®@SU(2)k minimum. .The corresponding value @f remains equallto
symmetry-breaking direction [see Eq. (3.49], ie., O Interestingly, the time necessary to rsesach the region of
0(0)=0,y(0)=10"5,6(0)=0y(0)=4.X 10"8. Note that a rapid oscnlgtlon fory is of order 4x10 » sec, and the

o - . . correspondinge-fold number{see Eq(5.7)] is =100. How-
vanishing value o®(0) and¢(0) is the one resulting from o\ e "gych a large-fold number is only achieved with the
our partlcu_lar c_h0|ce of re3|d_ual-symmetry direction, alonghe|p of a severe fine-tuning of th&0) value. This is indeed
which the inflationary dynamlcs evolves. Moreover, a veryy peculiar property of Coleman-Weinberg potentials, which
small value ofy(0), which approaches zero, reflects our haye a relative maximum at=0. Further details about the

choice to start from a singlet state which has a completgyscillating phase and the end of inflation will be given in
SQO(10) symmetryhencey(0)=0]. Of course, &/(0) value  Sec. VII.

which differs from zero is only taken for numerical conve- In Fig. 2, y is plotted againstr when the choice of
nience, but our results are essentially independent(0),  «,v,8, and A described on the second line of numerical
providing this is very small. For numerical purposes, it hasvalues of Table | is made. In such a case, the following
been thus convenient to reexpress E§s3)—(5.5) in terms  initial conditions are chosen:#(0)=0, y(0)=10"%,

of the variables defined in EqeA2)—(A4) of the Appendix.  ¢(0)= /4, 6(0)=2x10"2, y(0)=3.Xx10"8, ¢(0)=0.
However, we keep using thg, 6,¢ parametrization in our In this case, howeves; oscillates in a neighborhood of the
paper, since it makes it easier to describe symmetry breakabsoluteminimum (cf. Fig. 1). The same happens ferand
ing. What happens is thagy characterizes the dynamics ¢, whose evolution is not shown for brevity. Moreover, a
which is independent of the symmetry-breaking direction fine-tuning of the initial conditions leads again to esfiold
whereasf and ¢ define the various symmetry-breaking di- number of order 100, and the duration of the inflationary

rections. After a slow-roll phase which is not shown in Fig. 1stage is the same as in Fig. 1. .
The cases described in Figs. 1 and 2 are indeed also rel-
evant for the analysis of the reheating stage of the early

oo b b e b e b b e b b e
3250 3252 3254 3256 3258 3260 3262 3264 3266 3268 32702 | | | | | | |
x 10 3550 3551 3552 3553 3554 3555 3556 3557 3558Z
- x 10

FIG. 1. The solution of Eq5.3) is plotted against, for the first
set of values ofy, y,5,\ shown in Table I. After a slow-roll phase FIG. 2. The solution of Eq(5.3) is plotted against, for the
which is not showny starts increasing until it reaches a region second set of values af,v,5,A shown in Table I. Unlike Fig. 1,
where it oscillates in the neighborhood of a relative minimum.  y oscillates in a neighborhood of the absolute maximum.
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universe, as shown in Sec. VII, where a brief outline of suchmetric resonance is indeed achieved because, for this particu-

a phenomenon is presented. lar choice of parameters~/,l(y,0=0,<p) is positive, as shown
in Fig. 3.
Thus, our analysis shows that the inflationary dynamics
VII. REHEATING with residual symmetry Si4) p<® SU(2), ® SU(2) [see Eq.

3.49] leads to slow roll and also to parametric resonance.

When the energy stored in the scalar-field configuration i hese properties add evidence in favor of( S® GUT mod-

released to the relativistic degrees of freedgrereafterpg els being physically relevant, although one should bear in

denotes the corresponding energy depsapd begins to mind that fine-tuning problems remain. However, the case

dominate the total energy of the universe, the evolution un- : X 4 ! i
: ._described by Fig. 4 is not, by itself, ruled out. One has in-
dergoes the so-called reheating phase. Such a phase, which f%ad o corsllsidgr a scalar fi yl {which is not given by the

the necessary last stage of the inflationary dynamics, is ictuations of¢b itself [28—30)

important as the exponential expansion itself, since it ensur W briefl ider th d st f the reheat
the end of the exponential growth and the reheating of the € now bri€lly consider the second stage of the reneating
rocess. Once that the quantum fluctuations of2b@irrep

universe. In fact, if the radiation energy dominates the tota b duced vi i thev h i
energy of the system, through the equation of state, the e d_ave g(?[n pr? ty(':et' v&a paramefn;: rejonancerzl, €y have 1o
ergy density and the pressum; satisfy the condition ecay Into refativistic degrees of freedom, WNose mass 1S
pr+3pr=4pg>0, which impliesa<0 negligible with respect to th# y scale. Note that the decay
R R™ 4PR—Y, : i i i i ; i
According to the recent models of reheating, this procesgf the 210 reprgsentqﬂon Into a ferm|on-ant|ferm|on paur
cannot occur, since it makes it necessary to introduce a

can be divided into three stagg28—30. In the first stage, . ) :
the scalar fieldp decays into massive bosons via parametric;YUKaWa coupling of _thélOto fermions, which \.NOUId lead
j{:\ turn to an undesirable mass term for fermions of order

resonance. The second stage consists in the decay of preyi- on similar around. an boson e
ously produced particles, and the last stage leads to thermal-X" simiiar ground, any gauge boson couple
would acquire mass at the scal,, and hence such a cou-

ization (for our purposes, only the first two stages will be X o
( U y g pling cannot lead to decays into relativistic degrees of free-

considereg ; ; . > .
As far as the parametric resonance is concerned, it can &iom. One is thus left with decays into other Higgs particles
0

studied starting from the equation for quantum fluctuations smaI’Ier_ mass. Indeed, t_he presence of lighter Higgs fields
of a scalar fielgw, quadraticgllly coupledqte;s. As shownin M CGUT'sis particularly evident in SC10), where the spon-

Ref. [28], on settingz=m,t, such an equation may be cast taneous symmetry breqkmg which Ieads_to the standard elec.-
in the form troweak model occurs in two steps at different mass scales:

ie.,

My Mg
wi+[A(K) —29c0g22) Jw,=0, (7.9 SQ(10)— G —SU3)c®@SU(2) ®@U(1)y, (7.2

whereMy is of order 18°-10'° GeV to be compatible with
where the prime denotes differentiation with respectzto the lower limit on proton decay is one of the intermediate
Moreover,A(k) = k?/m2a?+ 2q (k/a being the physical mo- symmetry groups appearing in Eq&.43—(3.4f), and the
mentum), and q=g2®g/4m§,. In the model considered in scaleMg, is the one relevant for neutrino physics. Note that
Refs.[28-30, ® is the amplitude of oscillations of the field every breaking phase in E(7.2) is mediated by a different
¢, andg is a small coupling constant. Interestingly, an ex-scalar field belonging to a irrep of $0). A realistic model
ponential instability of the solutions exists and it can be in-can be constructed, for example, by considering in addition
terpreted as a rich particle production. This phenomenon i® the 210 (¢), the scalar fields «, ¢) belonging to the
best tackled by studying the stability-instability chart of the representatior126126, and two 10-dimensional irreduc-
Mathieu equatior}28—30. ible representationsy) which mediate the electroweak sym-

In particular, the fieldo may be given by the fluctuations metry breakind31]:

of the scalar fields itself. In such a case, one has to start

from Eq. (A9) of the Appendix, where the effect of 1 <¢>  <¥> 5 1
3Hdsz/dt is neglected, following Ref[28]. Parametric SQ10 = G — SUB)c®SU2) e U(L)y
resonance is only achievedNf(z9,23,23) therein is positive

for some values ofy,y,8,\, in the neighborhood of which <1>>SU(3)C® U(1)q (7.3

the scalar field starts oscillating. In Figs. 3 and 4, we plot the

function M againsté and ¢, for the values ofw,y,6, and  |n this model, to obtain the above symmetry-breaking pat-

A reported on the first and second line of numerical values ofern, one has to replace the simple tree-level potential of Eq.

Table I, respectively. In each figure, the closed curve reéprer3 ) by a much more complicated eXpI’eSSM(]d),l//,I)()

sents those values dfand ¢ for which M vanishes. Within  [see Eqs(7)—(11) of Ref.[31]]. Still, as far as the inflation at

the region bounded by such a curi, takes negative val- the highest energy scale is concerned, only the terms of the

ues, whereas it is positive outside. potential containing uniquely th210representation with the
Interestingly, in Fig. 3,6, and ¢, lie in the region of  associated scalars are relevant. This is why we neglected in

parametric resonance, i.e., outside the region wiikreO, Eq. (3.2) the contributions resulting from the other represen-

while the converse holds in Fig. 4. Of course, since Fig. ltations. The other terms, however, are important when the

corresponds to a case whénremains equal to zero, para- second stage of reheating is considered, since they can me-
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i " i N 1 . . . N I . i . . I . 1 i N . i 1 . . . . A

0 0.5 1 1.5 2 2.5 3

FIG. 3. The function defined in E¢A10), divided byy?, is plotted againsé and¢, for the first set of values af, y,5,\ given in Table
I. Note thaté,,, and ¢, lie in the region of parametric resonance, i.e., outside the region vileeenegative.

diate the decay of the massive Higgs particles in the lightepotential contains the logarithmic terms which result from
¥, ¥, andy. The interacting terms between different scalarthe Coleman-Weinberg method for the evaluation of radia-
representations are the ones actually relevant in that they dive correctiond5]. Following Ref.[8], when the Higgs sca-
not provide mass for light particles, while decay processesar field belongs to the 210-dimensional irreducible represen-
are allowed. Such interacting terms occur in quartic formtation of S@10) (this corresponds to the highest energy
involve the whole set of representations of (3@, and, levels, attention has been restricted to the mass matrix rel-
hence, being linear iw, do not provide mass for the lighter evant for the SI(B).®SU(2) ®U(1)y symmetry-breaking
Higgs particledEq. (11) of Ref. [31]]. direction, to agree with the low-energy phenomenology of
the standard model of particle physics.

The main result of our investigation is that the
inflationary dynamics with residual symmetry SU

Our paper has studied the relevance for inflationary cost4)ps® SU(2) ® SU(2)g leads to a sufficiently long infla-
mology of a nonsupersymmetric GUT which is consistenttionary stage, and then a reheating process occurs via para-
with the available data on nucleon lifetimes. This is themetric resonance and subsequent decay of the particles pro-
SO(10) model in the 210-dimensional irreducible representaduced previously. Such processes are three-body decays of
tion [12]. 210 into the massless components of th26 126, and 10

Starting from a quartic tree-level potential in the case ofrepresentations, and result from the mutual quartic coupling
minimal coupling, we have studied the flat-space limit of theof all irreducible representations. The intermediate symmetry
semiclassical field equations, where the one-loop effectiv&U(4)ps® SU(2), ® SU(2)g has been extensively studied in

VIIl. CONCLUDING REMARKS
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FIG. 4. The function defined in EGA10), divided byy2, is plotted against and ¢, for the second set of values af vy, d,\ given in
Table I. Unlike Fig. 3,0,, and ¢, lie outside the region of parametric resonance.

the literature on particle physics, since it occurs in the mosanalysis of semiclassical field equations to other FRW mod-
promising S@10) models[9-13]. Thus, a natural and deep els, i.e., closed or open and hyperbolic. As a first step of this
link between low-energy phenomenology, grand unificationprogram, work is in progress by some of us on the semiclas-
inflationary cosmology, and physical processes in the vergical field equations of scalar electrodynamics in a closed
early universe seems to emerge from our work. FRW universe[33]. After completing such a calculation, it
Of course, we have only studied sorparticular values  will be possible to extend it to the non-Abelian models rel-
of the parameters of the tree-level potential. Although parevant for grand unification.
ticle physics and cosmology lead to restrictions on such pa- Other interesting problems arise in finite-temperature cal-
rameters, our choices are by no means exhaustive. It noaulations[34—38. Temperature-induced symmetry-changing
appears interesting to get a more quantitative understandirghase transitions in quantum field theory play indeed an im-
of the reheating process outlined in Sec. VII. Moreover, fromportant role in the investigation of physical phenomena in the
the point of view of perturbative properties of quantum fieldvery early universe. As shown in Rdf36], in some of the
theory, it is necessary to study in detail the nonlocal contriimproved one-loop calculations, difficulties result from the
butions to the semiclassical field equations. These arise ahaive replacement of improved propagators in the one-loop
ready in scalar electrodynami¢®5], by virtue of the cou- effective potential. One needs instead a self-consistent loop
pling of the scalar field to the gravitational background, andexpansion of the effective potential in terms of the full
are receiving careful consideration since they are related tpropagator, along the lines of the technique developed in
dissipative and nondissipative phenomena in the early uniRef.[39]. The extension of these techniques to GUT models
verse[25,32. In particular, it appears desirable to extend ourin FRW cosmologies is a highly nontrivial task which might



54 COLEMAN-WEINBERG S@10) GRAND UNIFIED ... 1367

shed new light on inflationary cosmology, leading to a better 4_7(50\24 (5012124 (50250 0\2 3 (,0\4
understanding of the nature of phase transitions and of thef“”(ﬁO|| =L@+ ()1 + (2)%(220+ 329)+ § (Zz(gé)
behavior of the Higgs field40,41]. On the other hand, the

whole perturbative approach might fail in the neighborhood (22)2
of a phase transition. Thus, a thorough understanding of non- £l poll*= 2
perturbative properties of thermal field theory is necessary to i J3
investigate such issues. This goes well beyond the aims of

our paper and the knowledge of the authors, and appears as f sl ol *=(30f ,— 25f ,)[| ol *
one of the main open problems of inflationary cosmology. 02
Last, it also appears worth applying the technique described 2 (z3)
in Ref.[42] to our semiclassical analysis of GUT models in 2
cosmological backgrounds.

2

2073+ +(2329)%+ Tl doll*, (A7)

+{2(29)

2
—3(23)2) . (A8)

One thus gets the following equation for the quantum fluc-
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APPENDIX v

M(20,23,29)= S [CL1?1Z5+ C10:2923+ C112523 + Cood 20)°
To obtain the equation for the quantum fluctuations of the 0\ 2 0\ 2

210irrep, we follow the notation of Ref8], for which the *+Co2d(Z2) "+ CooA 23) 1, (A10)

most general singleth, with respect to the gauge group

SU(3)c®SU(2), ®U(1)y is written down in Eq.(3.3.

Within this framework, the Lagrangian for scalar fields only,

and thec,,4 coefficients are given by

which are assumed to be spatially homogeneous, reads cp=(3+3)a+7| 1+ % v+ %)(2+ V3)5+8\,
1(dz\? 1(dz\2 1(dz\?] & . (A11)
=ad=|— —_| = | = iz .7
Lap=23 dt) +2<dt AR IR Y
v Al V3 + 1+—7 +4O\/§5+8)\ (A12)
- YA ;Z 1Z ] C =—auo J— ,
(21,22,25) (A1) 101~ 2.3 Y9

where there is summation over the repeated indicasd
j.- We now take the one-loop expansion of E41) by writ-
ing zi=z?+ 6z;, and we make the ansatiz;= 6z for sim- Co11=

3
§+ \/§)a+

7 80
3+ —) y+ 3\/§5+8>\,

J3

plicity. The three independent degrees of freedom of the sca-

lar field turn out to be (AL3)
20=| | sinfcosp, (A2) Coo= 5 a+ 5 y+ & 5+10\, (A14)
29=| ¢||sinésing, (A3) o }(3_9+ \/§) - 1(4_5+ l) y
2= ollcoss. (A%) w2 AR
Thus, the tree-level potentiéB.5) can be rewritten in terms + §J(5+ 24/3)5+ 10\, (A15)
of Egs.(A2)—(A4) by pointing out that 9
| poll>= (2> +(29)*+(23)?, (AS5) Cooz= 3 ar+ y+ 10\, (A16)
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