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The flat-space limit of the one-loop effective potential for SO~10! GUT’s in spatially flat Friedmann-
Robertson-Walker cosmologies is applied to study the dynamics of the early universe. The numerical inte
tion of the corresponding field equations shows that, for such grand unified theories, a sufficiently lo
inflationary stage is achieved for suitable choices of the initial conditions. However, a severe fine-tuning
these initial conditions is necessary to obtain a largee-fold number. In the direction with residual symmetry
SU~4!PŜ SU(2)L^SU(2)R , one eventually finds parametric resonance for suitable choices of the free para
eters of the classical potential. This phenomenon leads in turn to the end of inflation.@S0556-2821~96!04414-1#

PACS number~s!: 98.80.Cq, 11.30.Qc, 12.10.Dm
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I. INTRODUCTION

Semiclassical effects in quantum field theory are at
very heart of many exciting developments in modern th
retical physics, e.g., radiative corrections to the Casimir fo
@1#, trace anomalies@2#, one-loop effective action@3,4#, sym-
metry breaking in the early universe@5–7#. In the latter class
of phenomena, the one-loop effective potential for grand u
fied theories~GUT’s! in curved backgrounds is used in th
field equations to determine the symmetry-breaking pat
which is relevant for the familiar low-energy phenomen
ogy of particle physics@6,7#. In particular, in a previous pa
per by the first two authors, the one-loop effective poten
for SO~10! GUT’s in de Sitter space was derived for the fir
time @8#. The main motivation of our work was the analys
of spontaneous symmetry breaking in the early unive
when GUT’s in good agreement with low-energy pheno
enology are studied. Among the nonsupersymmetric GU
the unified models based on SO~10! are still viable, and from
the phenomenological point of view they turn out to be t
most appealing ones for the following reasons@9–13#.

~i! SO~10! models make it possible to obtain mass
(MX) of the leptoquarks mediating proton decay which a
higher than the ones found within the minimal SU~5! model.
This happens by virtue of an intermediate symmetry group
between SO~10! and SU~3!C^SU(2)L^U(1)Y . By fixing,
in fact, at MW the values of the coupling constants a
sin2uW, and using the renormalization-group equations o
gets, due to the above intermediate symmetry, a large v
for the energy scale ('MX) at which the SO~10! gauge
group unifies interactions. Thus, for these models one rec
ers agreement with the experimental lower limit
9.031032 yr for proton decay@10#.

~ii ! In SO~10! the exact cancellation of chiral anomalies
obtained.

~iii ! The only SO~2n! group which contains a 16
dimensional representation is indeed SO~10!. This makes it
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possible to accommodate fermions and antifermions of eac
generation in a single 16-dimensional complex represent
tion.

~iv! On requiring that the GUT group should contain
SU~2! L andB2bL as local symmetries, while no exotic par-
ticles or mirror fermions should occur, one finds that SO~10!
is unique and hasB2L as generator~henceb51).

~v! SO~10! models predict masses fort andm neutrinos
of the order of magnitude relevant for cosmology and solar
neutrino astrophysics ~including the effects of
renormalization-group equations@12#!.

~vi! SO~10! has also the property to be the intermediate
symmetry of E6 , which is the low-energy limit of string
theory @14#.

On considering the particular mass matrix relevant for th
SU~3!C^SU(2)L^U(1)Y symmetry-breaking direction, our
main result was the numerical proof that, even when curva
ture effects are no longer negligible, the early universe ca
only reach the SU~4!PŜ SU(2)L^SU(2)R absolute mini-
mum @8#.

Of course, supersymmetric GUT models might also be
studied, and they are indeed receiving careful consideratio
in the current literature@15–20#. For example, unlike the
minimal SU~5! model, in the minimal supersymmetric SU~5!
model the three running coupling constants meet at a sing
unification point. This leads in turn to constraints on the new
physics which may appear at energy scales betweenMZ and
the unification scale@15#. However, on considering SO~10!
models and their supersymmetric version, it seems that on
in the former them-neutrino mass is close to that particular
value which could solve the solar-neutrino problem@21#.
Thus, because nonsupersymmetric SO~10! appears in agree-
ment with the whole set of observational data, we found i
appropriate to complete our previous investigations o
SO~10! models, before considering their supersymmetric
versions.

A naturally occurring question is whether the analytic for-
mulas obtained in Ref.@8# can be used to gain a better un-
derstanding of other phenomena occurring in the early un
verse. Indeed, it is well known that, according to the
cosmological standard model based on Einstein’s gener
relativity, the early universe is spatially homogeneous an
1359 © 1996 The American Physical Society
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1360 54ESPOSITO, MIELE, AND SANTORELLI
isotropic @22,23#, and gravity couples to the energy
momentum tensor of matter. Under the previous assumpt
of symmetry and homogeneity~cf. Ref. @24#!, the space-time
metric can be locally cast in the form@22#

g52dt^dt1a2~ t !@dx ^dx1 f 2~x!~du1^du1

1sin2u1du2^du2!#, ~1.1!

where a(t) is the cosmic scale factor,u1P]0,p@ , u2
P]0,2p] and, denoting byk the constant curvature of th
three-dimensional spatial sections,f (x)5sinx,x or sinhx if
k51,0,21, respectively. Here we focus on spatially fl
Friedmann-Robertson-Walker~FRW! cosmologies, for
which k50.

The aim of the present work has been therefore to st
the relevance of SO~10! GUT models for gravitational phys
ics within the more general framework of FRW cosmologi
In this case, the analysis performed in Ref.@25# enables one
to use, at least for typical GUT-inflationary models chara
terized by a phase-transition temperature<1016 GeV, the
flat-space limit of the Coleman-Weinberg one-loop effect
potential@5#. What happens is that the one-loop field equ
tions in FRW cosmologies are an involved set of integ
differential equations@25#. In scalar electrodynamics, th
nonlocal correction to the Coleman-Weinberg effective p
tential results from the coupling of a scalar fieldfc to the
gravitational background and may lead to dissipative effe
in the early universe. More precisely, nonlocal terms in
field equations may be approximated very well by a funct
of the form @25#

2A~ t̃ !S Hafc1
dfc

dt̃
D dfc

dt̃
,

whereA is a positive-definite function of the conformal tim
t̃ . The first term in parentheses leads to a further quan
correction to the energy density of the scalar field~for slowly
varyingA), while the second term is purely dissipative@25#.
However, nonlocal termsdo not modify the pattern of
minima found in static de Sitter space. Thus, for numeri
purposes, even in the non-Abelian case, curvature effect
the one-loop potential are very small, and can be neglecte
the GUT energy scale. This is the basic approximation
which the present paper relies.

In Sec. II the scalar dynamics driving the inflationa
phase is described. Section III, relying on Ref.@8#, studies
SO~10! GUT models with Higgs field in the 210-dimension
irreducible representation. In the SO~10! internal space,
spherical coordinates for the Higgs field are used to obta
convenient parametrization of the classical part of the po
tial. The flat-space limit of the one-loop effective potential
then studied in Sec. IV. Semiclassical field equations
studied in Sec. V, and their numerical solution is found
Sec. VI. The reheating process is then briefly described
Sec. VII, while the concluding remarks are presented in S
VIII.
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II. INFLATION FROM SCALAR-FIELD DYNAMICS

In the inflationary models driven by scalar fields, the uni-
verse contains different species of matter, i.e., radiation an
scalar particles~inflatons!. The latter, characterized by a
higher energy level with respect to the others, completel
determine the dynamics of the universe, making all remain
ing contributions negligible. A theoretical scheme in which
fundamental scalar particles naturally occur~Higgs field! and
lead to symmetry breaking are the GUT’s. In this case th
energies involved are compatible with the levels required fo
anefficientinflation. Thus, we consider an inflationary model
in which the inflaton coincides with the Higgs field of a
GUT, corresponding to the highest energy scale of spontan
ous symmetry breaking. In particular, we choose the mos
relevant ones which are the SO~10! GUT’s with Higgs field
belonging to the 210-dimensional irreducible representatio
~210! @8#.

Within this framework ~we denote hereafter byf the
fields corresponding to scalar particles!, and assuming homo-
geneous field configurationsf5f(t), thesemiclassicalLa-
grangian reads

L56ȧ2aF~f!16ȧa2F8~f!ḟ1a3@ 1
2 ḟ22V~1!~f!#,

~2.1!

where the overdot stands ford/dt, the prime ford/df, and
F(f) denotes the arbitrary coupling off to the gravitational
background with scalar curvatureR56@ ä/a1ȧ2/a2#. In Eq.
~2.1! the classical potential has been replaced by the on
loop effective potentialV(1)(f); i.e., the gauge degrees of
freedom have been integrated over. Note also that the fir
two terms in Eq.~2.1! yield the coupling2a3F(f)R, after
integration by parts in the action.

Starting from Eq.~2.1! one gets the two semiclassical
equations of motion:

ä

a
1
1

2 S ȧaD
2

1F ȧa F8

F
ḟ1

1

2

F8

F
f̈1

1

2

F9

F
ḟ2G2

1

8

ḟ2

F

1
1

4

V~1!

F
50, ~2.2!

and

f̈13
ȧ

a
ḟ16F äa1

ȧ2

a2GF8~f!1
dV~1!

df
50. ~2.3!

In general, for a nonminimally coupled real scalar field,
F(f)5(1/16pG)1(j/2)f2. In our case, in the light of the
results obtained in Ref.@25#, we neglect all contributions of
the curvature to the scalar potential, and hence we can a
sume minimally coupled scalar fields~for which j vanishes!.

III. SO „10… GUT MODELS WITH HIGGS FIELD
IN THE 210 IRREDUCIBLE REPRESENTATION

In a gauge unifying theory such as SO~10!, the Higgs field
~fundamental scalar particles! belongs to one or more irre-
ducible representations~irreps! of the gauge group, and its
dynamics is ruled by a Higgs potential. These particles pro
vide the correct residual symmetry for the model in the low-
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energy limit, through a spontaneous symmetry-break
mechanism. To study the inflation corresponding to the hi
est energy scale (MX) of spontaneous symmetry breakin
~SSB!, we can consider the only contribution of the irrep
responsible for the SSB at that scale.

In the present case, we consider the most general re
malizable Higgs potential constructed by using a mass
and minimally coupled irrep210only, which is obtained by
the completely antisymmetrized product of four differe
10’s as

Fabcd5Nm@a^ nb^ rc^ sd] , ~3.1!

whereN is a normalization constant. The210 irrep has four
independent quartic invariants, i.e.,ifi4 and three nontrivial
invariants; hence, the Higgs potential we are going to c
struct is a function of these@8#:

V~f!5V01g1i~ff!45i21g2i~ff!210i21g3i~ff!1050i2

1lifi4, ~3.2!

whereg1 , g2 , g3 , andl are arbitrary coefficients, andV0 is
an arbitrary constant. We will see in due course what is
meaning of this constant and how it can be fixed. Unfor
nately, in view of the technical difficulties to express E
~3.2! in terms of the 210 degrees of freedom, we restrict o
analysis to the only directions invariant under the subgro
SU~3!C^SU(2)L^U(1)Y . This restriction, however, re-
mains relevant for the aims of this paper, since it leads to
correct electroweak phenomenology at low energies for
model. The most general singletf0 with respect to the group
SU~3!C^SU(2)L^U(1)Y contained in the210 representa-
tion is @8#

f0

if0i 5
1

A6
sinusinw~f12781f34781f56781f12901f3490

1f5690!1
1

A3
sinucosw~f12341f34561f5612!

1cosu~f7890!, ~3.3!

where uP@0,p# and wP@0,2p#. In particular, by varying
u and w in their ranges, one gets the following residua
symmetry groups@8#:

uP]0,p@ and w50,p→SU~3!C^SU~2!L^SU~2!R

^U~1!B2L , ~3.4a!

u5
p

2
and w50,p→SU~3!C^SU~2!L^SU~2!R

^U~1!B2L3D, ~3.4b!

u50,p→SU~4!PŜ SU~2!L^SU~2!R , ~3.4c!

u5arctan~3! and w5arctan~A2! or ~3.4d!

u52arctan~3!1p and w5arctan~A2!1p→SU~5!

^U~1!, ~3.4e!
ing
gh-
g
s,
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otherwise→SU~3!C^SU~2!L^U~1!T3R^U~1!B2L ,
~3.4f!

whereT3R is thez component of the SU(2)R group.
Inserting Eq.~3.3! into Eq. ~3.2! one finds the tree-level

potential

V~f0!5V01S a

8
f a1

g

4
f g1

d

9
f d1~l2d! D if0i4,

~3.5!

where@8#

a[ 4
945 ~2108g1128g21140g3!, ~3.6!

g[ 8
35 g1 , ~3.7!

d[2 1
10 g3 , ~3.8!

f a[sin4u1sin2usin2w@2sinucosw1A3cosu#2

1 3
4 sin

4usin4w, ~3.9!

f g[sin2uFcosucosw1
1

A3
sinusin2wG 2

1sin4usin2wcos2w1 f a , ~3.10!

f d[@2sin2ucos2w2 1
2 sin

2usin2w23cos2u#2130f g225f a .

~3.11!

Since in the following analysisd is always negative anda
may take negative values, the tree-level potential~3.5! is
unbounded from below, unless we impose the restriction@8#

l>
uau
8

~ f a!max1
udu
9

~ f d!max. ~3.12!

Note also that contributions proportional to a cubic term in
the potential are set to zero, since we are assuming
f→2f invariance of our model.

IV. ONE-LOOP EFFECTIVE POTENTIAL

As shown by Coleman and Weinberg@5#, the effects of
quantum fluctuations on the scalar potential, due to both
gauge bosons and self-interactions, may account for the
spontaneous symmetry breaking occurring in gauge theorie
without assuming from the beginning the presence of nega
tive quadratic terms for the Higgs field. These phenomena
are best tackled in terms of the one-loop effective potential
@5–8,25,26#. This provides, in our case, the appropriate tool
for studying the phase transition due to scalar dynamics.

The one-loop effective potentialV(1) corresponding to the
classical expression~3.5! in the flat-space limit is obtained in
Ref. @8#. On defining
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1362 54ESPOSITO, MIELE, AND SANTORELLI
h1[cos2u1sin2u@ 1
2 sin

2w1 2
3 cos

2w#

1A2

3
sinusinwFcosu1

2

A3
sinucoswG ,

~4.1!

h2[cos2u1sin2u@ 1
2 sin

2w1 2
3 cos

2w#2A2

3
sinucosusinw,

~4.2!

h3[
1
2 sin

2usin2w, ~4.3!

h4[
2
3 sin

2u, ~4.4!

h5
2[

3

2
h1
21

3

2
h2
21

h3
2

4
1
3

4
h4
2 , ~4.5!

one gets

V~1!~f0!;V01S a

8
f a1

g

4
f g1

d

9
f d1~l2d! D if0i4

2
3G4

8p2 if0i4F34 h12@32 ln~h1
2!#

1
3

4
h2
2@32 ln~h2

2!#1
h3
2

8
@32 ln~h3

2!#

1
3

8
h4
2@32 ln~h4

2!#2h5
2lnS G2if0i2

m2 D G , ~4.6!

whereG is the gauge coupling constant andm is the renor-
malization mass.

V. SEMICLASSICAL FIELD EQUATIONS

After defining the dimensionless timet[mt/G the Higgs
field f0 can be seen, in the SO~10!-space, as the position
vector in R3, given in spherical coordinates a
f̃0[(G/m)f05yêy . Thus, by taking its derivative with re-
spect tot one has

d

dt
f̃05

dy

dt
êy1y

du

dt
êu1ysinu

dw

dt
êw . ~5.1!

With our notation, it is convenient to introduce a dimensio
less expression for Eq.~4.6! obtained multiplying it by
G4/m4: i.e.,

Ṽ~1!~y,u,w!;Ṽ01S a

8
f a1

g

4
f g1

d

9
f d1~l2d! D y4

2
3G4

8p2 y
4F34 h12@32 ln~h1

2!#

1
3

4
h2
2@32 ln~h2

2!#1
h3
2

8
@32 ln~h3

2!#

1
3

8
h4
2@32 ln~h4

2!#2h5
2ln~y2!G . ~5.2!
-

As far as the constantṼ0 is concerned, it has to be fixed by
requiring that a vanishing potential energy should correspon
to the absolute minimum forṼ(1). By denoting withym ,
um , and wm the absolute-minimum coordinates, we have
Ṽ(1)(ym ,um ,wm)50. Moreover,ym makes it possible to de-
termine alsom, bearing in mind that the spontaneous
symmetry-breaking scale isMX , which is fixed for the par-
ticular model by the low-energy predictions, and then
m5MX /ym .

In this scheme, the semiclassical equations forf̃0 @27#
take the form~from now on, the dot denotes differentiation
with respect tot)

ÿ5y@ u̇21sin2uẇ2#23KẏAr̃f2
]

]y
Ṽ~1!~ f̃ !, ~5.3!

ü522
ẏ

y
u̇1sinucosuẇ223K u̇Ar̃f2

1

y2
]

]u
Ṽ~1!~ f̃ !,

~5.4!

ẅ522
ẏ

y
ẇ22

cosu

sinu
ẇ23KẇAr̃f2

1

y2sin2u

]

]w
Ṽ~1!~ f̃ !.

~5.5!

With our notation,K[A8pGm2/3G2, and

r̃f[ 1
2 @ ẏ21y2~ u̇21sin2uẇ2!#1V~1!~f!. ~5.6!

Inflation eventually ends when, by virtue of decay mecha
nisms, the energy stored in the scalar configuration is re
leased to lighter degrees of freedom~radiation!. This is the
so-called reheating process, and the knowledge of the val
of t, sayt f , for which this actually happens, enables one to
determine the totale-fold numberN(t f) of the inflationary
model by solving the differential equation

Ṅ~t![
d

dt
lnS a~t!

a~0! D5KAr̃f. ~5.7!

A brief description of the reheating mechanism for our par
ticular model is presented in Sec. VII.

VI. NUMERICAL ANALYSIS

A necessary requirement to perform a numerical analys
of the differential equations obtained in Sec. V, is a good
knowledge of the absolute minimum of the potential~5.2!.
As already stated in Sec. III, if the inequality~3.12! is satis-
fied, the effective potential is bounded from below, but un
fortunately, this does not ensure that quantum corrections
the tree-level potential will make it possible to fix the value
of the field at the minimum,ym , so that it is sensibly differ-
ent from zero. Thus, one has to choose among the values
a, g, d, andl satisfying Eq.~3.12!, the ones for which a
symmetry breaking actually occurs@8#.

In Table I, we report for two choices of the free param-
eters of the classical potential~3.5! the corresponding values
of um , wm , ym and hence the values ofm and Ṽ0 . The
parametersa,g,d andl have been chosen in such a way tha
small couplings are achieved, and the minimum ofy is of
order 1.
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TABLE I. Values ofum , wm , ym , m, andṼ0 for two choices of the free parameters of Eq.~3.5!.

a g d l um wm ym

m
(1016 GeV! Ṽ0

23.31022 5.31025 25.31026 1.31022 1.31 0.94 1.68 0.34 2.4931022

21.31024 5.31027 25.31028 3.3931025 1.70 1.35 2.09 0.27 3.5031022
f

l-
In Fig. 1, we plot the solution fory ~obtained by means of
the NAG Library routineD02CAF! corresponding to the initial
conditions relevant for the SU~4!PŜ SU(2)L^SU(2)R
symmetry-breaking direction @see Eq. ~3.4c!#, i.e.,
u(0)50,y(0)51025,u̇(0)50,ẏ(0)54.31028. Note that a
vanishing value ofu(0) andu̇(0) is the one resulting from
our particular choice of residual-symmetry direction, alon
which the inflationary dynamics evolves. Moreover, a ver
small value ofy(0), which approaches zero, reflects ou
choice to start from a singlet state which has a comple
SO~10! symmetry@hence,y(0)50#. Of course, ay(0) value
which differs from zero is only taken for numerical conve
nience, but our results are essentially independent ofy(0),
providing this is very small. For numerical purposes, it ha
been thus convenient to reexpress Eqs.~5.3!–~5.5! in terms
of the variables defined in Eqs.~A2!–~A4! of the Appendix.
However, we keep using they,u,w parametrization in our
paper, since it makes it easier to describe symmetry bre
ing. What happens is thaty characterizes the dynamics
which is independent of the symmetry-breaking directio
whereasu andw define the various symmetry-breaking di
rections. After a slow-roll phase which is not shown in Fig.

FIG. 1. The solution of Eq.~5.3! is plotted againstt, for the first
set of values ofa,g,d,l shown in Table I. After a slow-roll phase
which is not shown,y starts increasing until it reaches a region
where it oscillates in the neighborhood of a relative minimum.
g
y
r
te

-

s

ak-

n,
-
1

for the sake of clarity,y starts increasing until it reaches a
region where it oscillates in the neighborhood of a relative
minimum. The corresponding value ofu remains equal to
0. Interestingly, the time necessary to reach the region o
rapid oscillation fory is of order 4.310235 sec, and the
correspondinge-fold number@see Eq.~5.7!# is .100. How-
ever, such a largee-fold number is only achieved with the
help of a severe fine-tuning of theẏ(0) value. This is indeed
a peculiar property of Coleman-Weinberg potentials, which
have a relative maximum aty50. Further details about the
oscillating phase and the end of inflation will be given in
Sec. VII.

In Fig. 2, y is plotted againstt when the choice of
a,g,d, and l described on the second line of numerical
values of Table I is made. In such a case, the following
initial conditions are chosen:u(0)50, y(0)51025,
w(0)5p/4, u̇(0)5A231023, ẏ(0)53.31028, ẇ(0)50.
In this case, however,y oscillates in a neighborhood of the
absoluteminimum ~cf. Fig. 1!. The same happens foru and
w, whose evolution is not shown for brevity. Moreover, a
fine-tuning of the initial conditions leads again to ane-fold
number of order 100, and the duration of the inflationary
stage is the same as in Fig. 1.

The cases described in Figs. 1 and 2 are indeed also re
evant for the analysis of the reheating stage of the early

FIG. 2. The solution of Eq.~5.3! is plotted againstt, for the
second set of values ofa,g,d,l shown in Table I. Unlike Fig. 1,
y oscillates in a neighborhood of the absolute maximum.
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universe, as shown in Sec. VII, where a brief outline of su
a phenomenon is presented.

VII. REHEATING

When the energy stored in the scalar-field configuration
released to the relativistic degrees of freedom~hereafterrR
denotes the corresponding energy density! and begins to
dominate the total energy of the universe, the evolution
dergoes the so-called reheating phase. Such a phase, wh
the necessary last stage of the inflationary dynamics, is
important as the exponential expansion itself, since it ensu
the end of the exponential growth and the reheating of
universe. In fact, if the radiation energy dominates the to
energy of the system, through the equation of state, the
ergy density and the pressurepR satisfy the condition
rR13pR54rR.0, which impliesä,0.

According to the recent models of reheating, this proc
can be divided into three stages@28–30#. In the first stage,
the scalar fieldf decays into massive bosons via paramet
resonance. The second stage consists in the decay of p
ously produced particles, and the last stage leads to ther
ization ~for our purposes, only the first two stages will b
considered!.

As far as the parametric resonance is concerned, it ca
studied starting from the equation for quantum fluctuatio
of a scalar fieldv, quadratically coupled tof. As shown in
Ref. @28#, on settingz5mft, such an equation may be ca
in the form

vk91@A~k!22qcos~2z!#vk50, ~7.1!

where the prime denotes differentiation with respect toz.
Moreover,A(k)5k2/mf

2a212q (kW /a being the physical mo-
mentum!, and q5g2F2/4mf

2 . In the model considered in
Refs.@28–30#, F is the amplitude of oscillations of the field
f, andg is a small coupling constant. Interestingly, an e
ponential instability of the solutions exists and it can be
terpreted as a rich particle production. This phenomeno
best tackled by studying the stability-instability chart of th
Mathieu equation@28–30#.

In particular, the fieldv may be given by the fluctuation
of the scalar fieldf itself. In such a case, one has to sta
from Eq. ~A9! of the Appendix, where the effect o
3Hddz/dt is neglected, following Ref.@28#. Parametric
resonance is only achieved ifM̃ (z1

0 ,z2
0 ,z3

0) therein is positive
for some values ofa,g,d,l, in the neighborhood of which
the scalar field starts oscillating. In Figs. 3 and 4, we plot
function M̃ againstu andw, for the values ofa,g,d, and
l reported on the first and second line of numerical values
Table I, respectively. In each figure, the closed curve rep
sents those values ofu andw for which M̃ vanishes. Within
the region bounded by such a curve,M̃ takes negative val-
ues, whereas it is positive outside.

Interestingly, in Fig. 3,um and wm lie in the region of
parametric resonance, i.e., outside the region whereM̃,0,
while the converse holds in Fig. 4. Of course, since Fig
corresponds to a case whenu remains equal to zero, para
ch

is

un-
ich is
as
res
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metric resonance is indeed achieved because, for this partic
lar choice of parameters,M̃ (y,u50,w) is positive, as shown
in Fig. 3.

Thus, our analysis shows that the inflationary dynamics
with residual symmetry SU~4!PŜ SU(2)L^SU(2)R @see Eq.
~3.4c!# leads to slow roll and also to parametric resonance
These properties add evidence in favor of SO~10! GUT mod-
els being physically relevant, although one should bear in
mind that fine-tuning problems remain. However, the case
described by Fig. 4 is not, by itself, ruled out. One has in-
stead to consider a scalar fieldv which is not given by the
fluctuations off itself @28–30#.

We now briefly consider the second stage of the reheatin
process. Once that the quantum fluctuations of the210 irrep
have been produced via parametric resonance, they have
decay into relativistic degrees of freedom, whose mass i
negligible with respect to theMX scale. Note that the decay
of the 210 representation into a fermion-antifermion pair
cannot occur, since it makes it necessary to introduce
Yukawa coupling of the210 to fermions, which would lead
in turn to an undesirable mass term for fermions of order
MX . On similar ground, any gauge boson coupled to210
would acquire mass at the scaleMX , and hence such a cou-
pling cannot lead to decays into relativistic degrees of free
dom. One is thus left with decays into other Higgs particles
of smaller mass. Indeed, the presence of lighter Higgs field
in GUT’s is particularly evident in SO~10!, where the spon-
taneous symmetry breaking which leads to the standard ele
troweak model occurs in two steps at different mass scales
i.e.,

SO~10!→
MX

G →
MR

SU~3!C^SU~2!L^U~1!Y , ~7.2!

whereMX is of order 10
15–1016 GeV to be compatible with

the lower limit on proton decay,G is one of the intermediate
symmetry groups appearing in Eqs.~3.4a!–~3.4f!, and the
scaleMR is the one relevant for neutrino physics. Note that
every breaking phase in Eq.~7.2! is mediated by a different
scalar field belonging to a irrep of SO~10!. A realistic model
can be constructed, for example, by considering in addition
to the 210 (f), the scalar fields (c, c̄) belonging to the
representation126%126, and two 10-dimensional irreduc-
ible representations (x) which mediate the electroweak sym-
metry breaking@31#:

SO~10! →
,f.

G →
,c.

SU~3!C^SU~2!L^U~1!Y

→
,x.

SU~3!C^U~1!Q . ~7.3!

In this model, to obtain the above symmetry-breaking pat-
tern, one has to replace the simple tree-level potential of Eq
~3.2! by a much more complicated expressionV(f,c,c̄,x)
@see Eqs.~7!–~11! of Ref. @31##. Still, as far as the inflation at
the highest energy scale is concerned, only the terms of th
potential containing uniquely the210 representation with the
associated scalars are relevant. This is why we neglected
Eq. ~3.2! the contributions resulting from the other represen-
tations. The other terms, however, are important when th
second stage of reheating is considered, since they can m
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FIG. 3. The function defined in Eq.~A10!, divided byy2, is plotted againstu andw, for the first set of values ofa,g,d,l given in Table
I. Note thatum andwm lie in the region of parametric resonance, i.e., outside the region whereM̃ is negative.
-

-

l-

f

ra-
ro-
of

g
y

diate the decay of the massive Higgs particles in the ligh
c, c̄, andx. The interacting terms between different sca
representations are the ones actually relevant in that the
not provide mass for light particles, while decay proces
are allowed. Such interacting terms occur in quartic for
involve the whole set of representations of SO~10!, and,
hence, being linear inf, do not provide mass for the lighte
Higgs particles@Eq. ~11! of Ref. @31##.

VIII. CONCLUDING REMARKS

Our paper has studied the relevance for inflationary c
mology of a nonsupersymmetric GUT which is consiste
with the available data on nucleon lifetimes. This is t
SO~10! model in the 210-dimensional irreducible represen
tion @12#.

Starting from a quartic tree-level potential in the case
minimal coupling, we have studied the flat-space limit of t
semiclassical field equations, where the one-loop effec
ter
lar
y do
ses
m,

r

os-
nt
he
ta-

of
he
tive

potential contains the logarithmic terms which result from
the Coleman-Weinberg method for the evaluation of radia
tive corrections@5#. Following Ref.@8#, when the Higgs sca-
lar field belongs to the 210-dimensional irreducible represen
tation of SO~10! ~this corresponds to the highest energy
levels!, attention has been restricted to the mass matrix re
evant for the SU~3!C^SU(2)L^U(1)Y symmetry-breaking
direction, to agree with the low-energy phenomenology o
the standard model of particle physics.

The main result of our investigation is that the
inflationary dynamics with residual symmetry SU
(4)PŜ SU(2)L^SU(2)R leads to a sufficiently long infla-
tionary stage, and then a reheating process occurs via pa
metric resonance and subsequent decay of the particles p
duced previously. Such processes are three-body decays
210 into the massless components of the126, 126, and10
representations, and result from the mutual quartic couplin
of all irreducible representations. The intermediate symmetr
SU(4)PŜ SU(2)L^SU(2)R has been extensively studied in
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FIG. 4. The function defined in Eq.~A10!, divided byy2, is plotted againstu andw, for the second set of values ofa,g,d,l given in
Table I. Unlike Fig. 3,um andwm lie outside the region of parametric resonance.
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the literature on particle physics, since it occurs in the m
promising SO~10! models@9–13#. Thus, a natural and dee
link between low-energy phenomenology, grand unificatio
inflationary cosmology, and physical processes in the v
early universe seems to emerge from our work.

Of course, we have only studied someparticular values
of the parameters of the tree-level potential. Although p
ticle physics and cosmology lead to restrictions on such
rameters, our choices are by no means exhaustive. It
appears interesting to get a more quantitative understan
of the reheating process outlined in Sec. VII. Moreover, fro
the point of view of perturbative properties of quantum fie
theory, it is necessary to study in detail the nonlocal con
butions to the semiclassical field equations. These arise
ready in scalar electrodynamics@25#, by virtue of the cou-
pling of the scalar field to the gravitational background, a
are receiving careful consideration since they are related
dissipative and nondissipative phenomena in the early u
verse@25,32#. In particular, it appears desirable to extend o
ost
p
n,
ery

ar-
pa-
now
ding
m
ld
tri-
al-

nd
to
ni-
ur

analysis of semiclassical field equations to other FRW mo
els, i.e., closed or open and hyperbolic. As a first step of th
program, work is in progress by some of us on the semicla
sical field equations of scalar electrodynamics in a clos
FRW universe@33#. After completing such a calculation, it
will be possible to extend it to the non-Abelian models re
evant for grand unification.

Other interesting problems arise in finite-temperature c
culations@34–38#. Temperature-induced symmetry-changin
phase transitions in quantum field theory play indeed an i
portant role in the investigation of physical phenomena in t
very early universe. As shown in Ref.@36#, in some of the
improved one-loop calculations, difficulties result from th
naive replacement of improved propagators in the one-lo
effective potential. One needs instead a self-consistent lo
expansion of the effective potential in terms of the fu
propagator, along the lines of the technique developed
Ref. @39#. The extension of these techniques to GUT mode
in FRW cosmologies is a highly nontrivial task which migh
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shed new light on inflationary cosmology, leading to a bet
understanding of the nature of phase transitions and of
behavior of the Higgs field@40,41#. On the other hand, the
whole perturbative approach might fail in the neighborhoo
of a phase transition. Thus, a thorough understanding of n
perturbative properties of thermal field theory is necessary
investigate such issues. This goes well beyond the aims
our paper and the knowledge of the authors, and appear
one of the main open problems of inflationary cosmolog
Last, it also appears worth applying the technique describ
in Ref. @42# to our semiclassical analysis of GUT models i
cosmological backgrounds.
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APPENDIX

To obtain the equation for the quantum fluctuations of t
210 irrep, we follow the notation of Ref.@8#, for which the
most general singletf0 with respect to the gauge group
SU(3)C^SU(2)L^U(1)Y is written down in Eq. ~3.3!.
Within this framework, the Lagrangian for scalar fields onl
which are assumed to be spatially homogeneous, reads

Lf0
5a3F12 S dz1dt D

2

1
1

2 S dz2dt D
2

1
1

2 S dz3dt D
2G1(

l51

3

gi j zl ,izl , j

2V~z1 ,z2 ,z3!, ~A1!

where there is summation over the repeated indicesi and
j . We now take the one-loop expansion of Eq.~A1! by writ-
ing zi5zi

01dzi , and we make the ansatzdzi5dz for sim-
plicity. The three independent degrees of freedom of the s
lar field turn out to be

z1
05if0isinucosw, ~A2!

z2
05if0isinusinw, ~A3!

z3
05if0icosu. ~A4!

Thus, the tree-level potential~3.5! can be rewritten in terms
of Eqs.~A2!–~A4! by pointing out that

if0i25~z1
0!21~z2

0!21~z3
0!2, ~A5!
ter
the

d
on-
to
of

s as
y.
ed
n

us

n-
n.

he

y,

ca-

f aif0i4[@~z1
0!21~z2

0!2#21~z2
0!2~2z1

01A3z30!21 3
4 ~z2

0!4,
~A6!

f gif0i4[S z10z301 ~z2
0!2

A3 D 21~z1
0z2

0!21 f aif0i4, ~A7!

f dif0i4[~30f g225f a!if0i4

1S 2~z1
0!22

~z2
0!2

2
23~z3

0!2D 2. ~A8!

One thus gets the following equation for the quantum fluc-
tuation:

d2dz

dt2
13H

ddz

dt
1F k2a2 1M̃ ~z1

0 ,z2
0 ,z3

0!Gdz50, ~A9!

wherek[AkW2, M̃ (z1
0 ,z2

0 ,z3
0) is defined as

M̃ ~z1
0 ,z2

0 ,z3
0![ 2

3 @c110z1
0z2

01c101z1
0z3

01c011z2
0z3

01c200~z1
0!2

1c020~z2
0!21c002~z3

0!2#, ~A10!

and thecabd coefficients are given by

c110[~31A3!a17S 11
1

A3D g1
80

9
~21A3!d18l,

~A11!

c101[
A3
2

a1S 11
7

2A3D g1
40

9
A3d18l, ~A12!

c011[S 321A3D a1S 31
7

A3D g1
80

9
A3d18l,

~A13!

c200[
3
2 a1 7

2 g1 40
9 d110l, ~A14!

c020[
1

2 S 398 1A3D a1
1

2 S 454 1
7

A3D g

1
20

9
~512A3!d110l, ~A15!

c002[
3
8 a1g110l. ~A16!
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