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The angular power spectrum of the cosmic microwave background~CMB! contains information on virtually
all cosmological parameters of interest, including the geometry of the Universe (V), the baryon density, the
Hubble constant (h), the cosmological constant (L), the number of light neutrinos, the ionization history, and
the amplitudes and spectral indices of the primordial scalar and tensor perturbation spectra. We review th
imprint of each parameter on the CMB. Assuming only that the primordial perturbations were adiabatic, we us
a covariance-matrix approach to estimate the precision with which these parameters can be determined b
CMB temperature map as a function of the fraction of sky mapped, the level of pixel noise, and the angula
resolution. For example, with no prior information about any of the cosmological parameters, a full-sky CMB
map with 0.5° angular resolution and a noise level of 15mK per pixel can determineV, h, andL with
standard errors of60.1 or better, and provide determinations of other parameters which are inaccessible with
traditional observations. Smaller beam sizes or prior information on some of the other parameters from oth
observations improves the sensitivity. The dependence on the underlying cosmological model is discusse
@S0556-2821~96!02014-0#

PACS number~s!: 98.70.Vc, 98.80.Bp, 98.80.Es
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I. INTRODUCTION

One of the fundamental goals of observational cosmol
today is measurement of the classical cosmological par
eters: the total density~or, equivalently, the geometry! of the
Universe,V; the cosmological constantL; the baryon den-
sity Vb ; and the Hubble constantH0 . Accurate measure
ment of these quantities will test the cornerstones of the
big-bang theory and will provide answers to some of
outstanding questions in cosmology. For example, dete
nation of the geometry of the Universe will tell us the ul
mate fate of the Universe and test the inflationary paradi
while an independent check ofVb can confirm the predic-
tions of big-bang nucleosynthesis.

In addition, parameters describing primordial perturb
tions are related to the origin of large-scale structure in
Universe and may shed light on a possible inflationary
och. Perhaps the most important of these are the norma
tion QS and spectral indexnS of the primordial spectrum o
scalar perturbations that gave rise to the observed struc
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Inflation may produce a spectrum of gravity waves, quanti-
fied by an amplitudeQT and spectral indexnT . A neutrino
species with a mass greater than 1 eV affects structure fo
mation, and so the numberNn of light ~meaningmn&1 eV!
neutrinos is another cosmological parameter of importance
The ionization history of the Universe is also certainly re-
lated to the evolution of structure in the Universe.

In this paper, we estimate how well cosmological param-
eters can be determined from a cosmic microwave back
ground ~CMB! temperature map. Since the initial detection
of temperature anisotropies in the CMB by the Cosmic Back
ground Explorer~COBE! satellite @1#, over a dozen other
balloon-borne and ground-based experiments have an
nounced anisotropy detections on smaller angular scales@2#.
With the existence of anisotropies now firmly established,
sights are shifting to accurate determination of the CMB
power spectrum over a wide range of angular scales. Sever
technological advances, including improved amplifiers, inter-
ferometry, and long-duration balloon flights, hold great
promise for high-precision measurements. Ultimately, a sat
ellite with subdegree angular resolution will provide a de-
tailed map of the entire microwave sky in multiple frequency
bands@3#.

A detailed map of the cosmic microwave background can
potentially provide a wealth of information on the values of
cosmological parameters. Roughly speaking, the amount o
1332 © 1996 The American Physical Society
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54 1333COSMOLOGICAL-PARAMETER DETERMINATION WITH . . .
information in a map is proportional to the number of pixe
on the sky, and this is inversely proportional to the square
the beam width. Thus, a map with a beam width of 0.5° w
contain over 100 times as much information as COB
which had a beam width of order 7°, and an 0.1°-resoluti
experiment would have, roughly speaking, 104 times as
much information. It should be no surprise, therefore, tha
map with good angular resolution should be able to det
mine many more cosmological parameters than COB
which really only constrains the normalization of the CM
power spectrum and the effective CMB spectral index
large angular scales.

We consider an experiment which maps a given fracti
of the sky with a given angular resolution and a given lev
of pixel noise. We use a covariance-matrix approach
evaluate the standard errors which would arise by fitting t
power spectrum obtained in this experiment to all the u
known cosmological parameters. We display results for
range of realistic values for the fraction of sky covered, lev
of pixel noise, and angular resolution. Our results are qu
promising: With minimal assumptions, realistic satellite e
periments could potentially determineV, L, and the infla-
tionary observables to far greater precision than any tra
tional measurements. Furthermore, the information provid
on other parameters will be competitive with~and with ad-
ditional reasonable assumptions, superior to! current probes.
Although we focus here only on models with primordia
adiabatic perturbations, we are confident that if the pertur
tions turn out to be isocurvature, it will be evident in th
temperature maps~and perhaps also in polarization map
spectral distortions, and non-Gaussian temperature distr
tions!, and that similar results on parameter determinati
will apply. Indeed, recent calculations of the CMB powe
spectrum in defect models@4# and in isocurvature models@5#
suggest that such models should be clearly distinguisha
from the adiabatic case. Although we have satellite mapp
experiments in mind, our results can also be applied
ground or balloon experiments, or to the combined results
several complementary measurements.

An important issue facing any likelihood analysis is th
choice of the space of models considered. Here we cons
models with primordial adiabatic perturbations. Our space
models allows a cosmological constant, an open~or closed!
Universe, tensor modes~with a free spectral index!, varia-
tions in the baryon density and Hubble constant, tilted p
mordial spectra, and primordial spectra that deviate fro
pure power laws. We assume that the dark matter is co
however, the CMB power spectrum is only slightly altered
mixed and hot-dark-matter models@6#, and we allow the
number of massless neutrinos to vary. Therefore, our conc
sions on parameter determination will be virtually indepe
dent of the fraction of hot dark matter.

In the following section, we describe our calculation o
the power spectrum. In Sec. III, we illustrate the effect
each cosmological parameter that we consider on the C
spectrum. In Sec. IV, we discuss the covariance matrix.
illustrate, in Sec. V, we present results for the standard err
to the parameters that would be obtained assuming the
cosmological model is standard cold dark matter~CDM!. We
also discuss how these results change if the underly
model differs from the canonical standard-CDM model.
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Sec. VI, we discuss the validity of the covariance-matrix
approach to the analysis. In Sec. VII, we make some con
cluding remarks and discuss some future areas of investiga
tion.

II. CALCULATION OF THE CMB SPECTRUM

In many areas of astrophysics, it is difficult to make de-
tailed quantitative predictions as properties of complex sys
tems depend on the nonlinear physics of poorly measure
and poorly understood phenomena. Fortunately, the earl
Universe was very simple and nearly uniform. The density
fluctuations are all in the linear regime (dr/r;1024) and
nonlinear effects are unimportant. Different groups using dif-
ferent gauge choices and numerical algorithms make ver
similar predictions for CMB fluctuations for a given model.
This simple linearity makes possible the detailed paramete
determination that we describe in this paper.

The CMB angular power spectrumC(u) is defined as

C~u![ K DT

T0
~m̂!

DT

T0
~ n̂!L , m̂•n̂5cosu, ~1!

where the angular brackets represent an ensemble avera
over all angles and observer positions. HereDT(n̂)/T0 is the
fractional temperature fluctuation in the directionn̂, and the
mean CMB temperature isT052.72660.010K @7#. This
power spectrum is conveniently expressed in terms of its
multipole momentsCl , defined by expanding the angular
dependence in Legendre polynomials,Pl(x):

C~u!5(
l52

`
2l11

4p
ClPl~cosu!. ~2!

Given a model for structure formation, calculation of the
multipole moments is straightforward and is accomplished
by solution of the coupled system of Boltzmann equations
for each particle species~i.e., photons, baryons, massless and
possibly massive neutrinos, and cold dark matter! and Ein-
stein equations for the evolution of the metric perturbations
The l51 term is indistinguishable from the Doppler shift
due to proper motion with respect to the microwave back-
ground rest frame and is conventionally ignored. For theorie
with Gaussian initial perturbations, the set ofCl completely
specifies the statistical properties of the theory. Since we ca
only observe from a single vantage point in the Universe
the observed multipole momentsCl

obs will be distributed
about the mean valueCl with a ‘‘cosmic variance’’
s l.A2/(2l11)Cl ; no measurement can defeat this vari-
ance. Power-spectrum predictions and measurements are t
ditionally plotted asl ( l11)Cl versusl .

For the purposes of covariance-matrix evaluation, as wel
as for likelihood maximization@8# and Monte Carlo analy-
sis, it is useful to have an algorithm for rapid evaluation of
the CMB spectrum for a given set of cosmological param-
eters. We begin with a semianalytic solution of the coupled
Boltzmann, fluid, and Einstein equations developed by Hu
and Sugiyama@9# for flat cold-dark-matter models, which we
generalize to accommodate an open Universe, a cosmolog
cal constant, tensor modes, and reionization. The code is fa
enough to enable likelihood analyses requiring tens o
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thousands of power-spectrum evaluations. We have chec
that our semianalytic calculation agrees with the results o
publicly available numerical code@10# for several param-
eters. Here we briefly describe our calculation.

The multipole moments are expressed as

Cl5Cl
S1Cl

T , ~3!

whereCl
S is the contribution from scalar perturbations an

Cl
T is the contribution from tensor modes. The scalar cont

bution is given by

Cl
S5

2

pE0
`

dkk2uQ l~h0 ,k!u2, ~4!

whereh0 is the conformal time today~the conformal time
h5*dt/a with a the scale factor of the Universe normalize
to unity at matter-radiation equality!. The contribution of
wave numberk to the l th multipole moment is@9#

Q l~h0 ,k!.@Q01C#~k,h* ! j l~kh02kh* !

1Q1~k,h* ! j l8~kh02kh* !

1E
h
*

h0
dh@Ċ2Ḟ# j l~kh02kh!, ~5!

whereQ0 andQ1 are the monopole and dipole perturbation
of the photon distribution function,F and C are
gravitational-potential perturbations in the Newtonian gaug
j l are spherical Bessel functions andj l8 their first derivatives,
and an overdot denotes a derivative with respect to conf
mal time. Hereh* is the conformal time at decoupling.~See
Ref. @9# for more details.! The third term in this expression
gives the integrated Sachs-Wolfe~ISW! effect: Anisotropies
are generated by time variations in the gravitational pote
tials along the line-of-sight path. Analytic fits to the gravita
tional potentials are given in Ref.@9#, as are WKB solutions
for the photon distributions in the tight-coupling regime
Q̂0 andQ̂1 . At decoupling, photon diffusion~Silk damping!
damps photon perturbations on small angular scales@11#; the
perturbations to the photon distribution functions are giv
by @Q01C#(h* )5@Q̂01C#(h* )D(k), where the mean
damping factor is

D~k!5E
0

h0
ṫe2@k/kD~h!#2dh. ~6!

Here ṫ5xenesTa/a0 is the differential optical depth for
Thomson scattering,ne is the electron density,xe is the ion-
ization fraction, andsT is the Thomson cross section. Th
visibility function—the combinationṫe2t —is the probabil-
ity density that a photon last scattered at given conform
time, and is sharply peaked near the surface of last sca
semianalytic fits are given in Ref.@9#. As pointed out in Ref.
@12#, photon polarization must be included to obtain th
proper Silk-damping scale; the result is

kD
22~h!5

1

6E0
h
dh

1

ṫ

R2116~11R!/15

~11R!2
, ~7!

where
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R5
3rb
4rg

5
3Vba

4~12 f n!V0
~8!

is the scale factor normalized to 3/4 at baryon-radiatio
equality, withVb the fraction of critical density in baryons,
V0 the fraction of critical density in nonrelativistic matter
~baryons and cold dark matter!, and f n the fraction of the
total radiation density contributed by massless neutrinos. O
numerical evaluation of these expressions reproduces
power spectrum obtained from Boltzmann codes to an acc
racy of a few percent for standard CDM.

Analytic approximations to the CMB anisotropy due to
tensor modes~gravity waves! are given in Refs.@13,14#. The
contribution to each multipole moment of the CMB powe
spectrum is

Cl
T536p2

~ l12!!

~ l22!! E0
`

dkPT~k!uFl~k!u2, ~9!

wherePT}k
nT14 is the initial power spectrum of tensor per-

turbations andFl is given by

Fl~k![k23/2E
h
*

h0
dhhH @12w~h!#TS k

keq
,h D j 2~kh!

~kh!2

1w~h!
j 1~kh!

3kh J j l~kh02kh!

~kh02kh!2
, ~10!

with keq defined as the wave number of the mode whic
enters the horizon at matter-radiation equality. The fittin
function w(h) describes the evolution of the gravity-wave
mode function through the transition between the radiatio
dominated and matter-dominated epochs, andT(k,h) is a
transfer function describing the evolution of the tensor-mod
amplitude. Good analytic fits to these two functions ar
given by @14#

w~h!5exp~20.2h0.55!, ~11!

T~y,h!5
h2

a
@e24y4~111.34y12.5y2!1/2112e24y4#.

~12!

These approximations match numerical results to 1% we
pastl5100, where the tensor contribution to the multipole
drops to a small fraction of the scalar contribution.

Equations~4! and~9! are difficult to evaluate numerically
because of the oscillatory spherical Bessel functions in th
integrand. Asymptotic expansions, a Bessel-function cach
and various interpolation techniques further speed evaluati
of the integrals. We calculate every 40th multipole~more for
l,100) and perform a cubic spline to recover the entir
spectrum.

We consider models which are well described by
power-law spectrum of metric perturbations over the rang
of scales affecting CMB anisotropies. This class includes a
inflation models. For the scalar perturbations, we also allo
a deviation from power-law behavior and parametrize th
power spectrum as@15#



an
sed,
n
ity
c-
e,
in
s

t
r
ry

n
n
i-
-
ift

e
ry.

ly
-
ller
on-

een
n-

red

n.
eral
ew

al

le

on-

54 1335COSMOLOGICAL-PARAMETER DETERMINATION WITH . . .
P~k!}S kkSD
nS1a ln~k/kS!

, ~13!

wherekS is the normalization scale at which the power law
indexnS is defined. The parametera quantifies the deviation
from the power law or the ‘‘running’’ of the spectral index.
Realistic inflation models can produce values ofa large
enough to change the multipole moments by as much as 5
For the tensor spectrum, we assume a pure power-law sp
trum with spectral indexnT . In principle, nT can run with
scale as well, but because of the comparatively small amo
of information contained in the tensor multipole moment
the CMB constraint on the indexnT is weak, and the
running-index effect for the tensor perturbations is neg
gible.

Extensions of this basic cosmological model are incorp
rated through various fitting formulas. In a cosmologica
constant (L) Universe, the gravitational potentialF begins
to vary at low redshift when the Universe become
cosmological-constant dominated, and this leads to a con
bution to the anisotropy at large angles from the ISW effec
In a flat Universe~that is,V01L51, whereL is the cos-
mological constant in units of critical density!, this is ap-
proximated by multiplying the multipole moments by a fac
tor @11g(L)/ l # @16,17#, where

g~L!536pE
0

h0 1

@F~0!#2 S dFdh D 2~h02h!dh, ~14!

F~h!5
H

a E da/a0
~Ha/a0!

3 ~15!

is the time dependence of the potential, andH5ȧ/a is the
Hubble parameter. This approximation slightly overestimat
the lowest few multipole moments, but this large-angle ISW
effect is generally not a large fraction of the total anisotrop
and the lowest multipole moments have a limited statistic
significance. ForL&0.7, g(L) can be approximated by

g~L!.0.637S L

12L D 0.817. ~16!

An additional effect of a cosmological constant is a shift i
the conformal distance to the surface of last scatter~even
with the mass densityV0h

2 held fixed!, which we account
for by multiplying the current conformal timeh0 by the cor-
rection factor 110.085ln(12L) @18#.

Generalization to an open Universe is somewhat mo
complicated because several different effects contribute
the anisotropy@17#. The angular scale subtended by the ho
rizon at the surface of last scatter scales asV1/2 where
V5V01L is the total density~in units of critical density! of
the Universe@19#. Therefore, the multipole moments in an
open Universe are related to those in a flat Universe appro
mately by Dl(V).DlV1/2(V51) with Dl5 l ( l11)Cl . In
other words, the CMB spectrum in an open Universe r
sembles that in a flat Universe with the same matter dens
but shifted to smaller angular scales. A large-angle ISW e
fect arises from the evolution of the gravitational potential
although the function g(V) differs from that in a
cosmological-constant Universe@17#. In addition, the lowest
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multipole moments probe scales comparable to or larger th
the curvature scale, and so these moments are suppres
due heuristically to the exponential growth of volume in a
open Universe at large distances. Finally, some ambigu
exists as to the correct generalization of a power-law spe
trum to an open Universe. Naive power laws of volum
wave number, or eigenvalue of the Laplace operator differ
an open Universe@17#, as do spectra predicted by variou
open-Universe inflationary scenarios@20#. However, these
power laws differ only in their predictions for the lowes
multipole moments, which have little statistical weight; fo
definiteness, we use the predictions of a specific inflationa
scenario@21#. A good fit to these effects~for V*0.1) is
provided by multiplying the multipole moments by

11e20.3l/ lcurv
g~V!

l11/2
, ~17!

wherelcurv5pA(12V)/V is the multipole corresponding to
the curvature scale of the Universe, and

g~V!.4.5S 12V

V D 0.817, ~18!

for V*0.1.
If the Universe has experienced significant reionizatio

between recombination and today, then a fractio
12e2treion of the CMB photons has scattered since recomb
nation, wheret reion is the optical depth to the epoch of re
combination. If the Universe becomes reionized at a redsh
zreion with a constant ionization fractionxe , then the optical
depth is t reion.0.04VbhV21/2xe@(11zreion)

3/221#, where
h is the Hubble parameter in units of 100 km sec21

Mpc21. The precise effects of reionization depend on th
baryon density, Hubble parameter, and the ionization histo
However, as illustrated in Ref.@19# ~see Fig. 3 therein!, the
effects of reionization are fairly accurately quantified sole
in terms oft reion. Compton scattering is an isotropizing pro
cess, and so the multipole moments on angular scales sma
than those subtended by the horizon at the epoch of rei
ization are suppressed by a factore22treion, while those on
larger angular scales are unaffected. We interpolate betw
the asymptotic effects of reionization on small and large a
gular scales by multiplying the multipole moments by

expF22t reion~ lh reion/h0!
2

11~ lh reion/h0!
2 G , ~19!

whereh reion is the conformal time at reionization. In addi-
tion, reionization also induces a broad Doppler peak cente
nearl.h0 /h reion @22,23#, but this secondary peak is shallow
and we do not include it in the power-spectrum calculatio

Between the surface of last scatter and the present, sev
other physical processes, besides reionization, produce n
CMB fluctuations and smear out primordial fluctuations@24#:
gravitational lensing lowers the amplitude of the spectr
peaks and fills in the valleys in the spectrum@25#, the non-
linear growth of structure produces additional small-sca
fluctuations@26#, the scattering of photons off of hot gas in
clusters and superclusters produces both thermal and n
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thermal cosmic microwave fluctuations@27,29#, and second-
order effects in a reionized Universe also produce additio
small-scale fluctuations@28,29#. These nonlinear effects are
relatively small and typically produce only;1 mK changes
in the microwave multipoles. However, they are systemat
If they are not included in an analysis of a full-sky CMB
map, they will lead to systematic errors in parameter estim
tion. We do not include these effects in our sensitivity ana
ses as they are unlikely to alter the size and shape of the e
ellipsoid. It will be important to include these effects in an
analysis of a future all-sky CMB map.

III. COSMOLOGICAL PARAMETERS
AND THE CMB SPECTRUM

The suite of cosmological models that we consider
make broadly similar predictions for the CMB spectrum: Th
fluctuations on large angular scales are nearly scale invar
and are primarily due to large-scale variations in the gra
tational potential at the surface of last scatter, while on sm
scales the fluctuations are primarily due to variations in t
velocity and density of the baryon-photon fluid at the surfa
of last scatter. The details of the spectrum, however, dep
sensitively on properties of the Universe: its geometry,
size, the baryon density, the matter density, and the shap
the primordial fluctuation spectrum. In this section, we di
cuss each parameter that we consider and illustrate its m
salient effect on the CMB spectrum. Figure 1 illustrates t
following discussion.

The first Doppler peak occurs at the angular scale su
tended by the sonic horizon at the surface of last scat
Since the photon energy density exceeds the baryon ene
density at that epoch, the sound speed of the Universe
close toc/A3, so that the sonic horizon corresponds to
nearly fixed physical scale. The angular scale subtended
this fixed physical scale will depend on the geometry of t
Universe. In an open Universe, the angular scale subten
by an object of fixed diameter at fixed large redshift scales
V. On the other hand, the causal horizon at last scatte
actuallyV21/2 times as large in an open Universe as it is
a flat Universe. Thus, to a first approximation, the fla
Universe CMB spectrum is stretched by a factorV1/2 to
smaller angular scales in an open Universe.

Increasing the baryon densityVbh
2 reduces the pressure

at the surface of last scatter and therefore increases the
isotropy at the surface of last scatter. This reduction in pr
sure also lowers the sound speed of the baryon-photon fl
which alters the location and spacing of the Doppler pea
Increasing the matter densityV0h

2 shifts matter-radiation
equality to a higher redshift. This reduces the early-ISW co
tribution to the spectrum and lowers and narrows the fi
Doppler peak. If we knew thatL50, then the combination
of these three effects~pressure, sound speed, and redshift
matter-radiation equality! would be sufficient to enable a de
termination ofV0 ,Vb , andh from the CMB spectrum.

The cosmological constant introduces a near degener
in parameter determination. Bondet al. @30# stressed that the
CMB spectrum changed little ifL was varied whileV0h

2

andVbh
2 were held fixed in a flat Universe. ChangingL,

however, does alter the size of the Universe. The conform
nal
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distance from the present back to the surface of last scatter i
smaller in aL-dominated flat Universe than in a matter-
dominated flat Universe. Thus, increasingL shifts the Dop-
pler peak to larger angular scales, the opposite effect o
lower V0 . This effect, along with the late-time ISW effect
induced byL, breaks the degeneracy and enables an inde
pendent determination of all of the cosmological parameters
directly from an all-sky high-resolution CMB map.

The value ofNn , the effective number of noninteracting
relativistic degrees of freedom~in standard CDM, this is
equal to three for the three light-neutrino species!, also shifts
the epoch of matter-radiation equality and thus the height of
the first Doppler peak as discussed above. In addition, if
Nn is changed, the value of the anisotropic stress at early
times—before the Universe is fully matter dominated—is al-
tered, and this has a slight effect on the ISW contribution to
the rise of the first Doppler peak.

The tensor-mode contribution to the multipole moments
simply adds in quadrature with the scalar-mode contribution
since there is no phase correlation between them. The ampl
tude of the tensor modes is parametrized byr5QT

2/QS
2 , the

ratio of the squares of the tensor and scalar contributions to
the quadrupole moment.1 The indexnT is defined so that the
tensor-mode spectrum is roughly flat at large angular scale

1Note that this definition differs from that in Ref.@31#.

FIG. 1. Predicted multipole moments for standard CDM and
variants. The heavy curves in each graph are for a model with
primordial adiabatic perturbations withV51, L50, nS51,
Vbh

250.01,h50.5, a50, and no tensor modes. The graphs show
the effects of varyingV, L, h, t reion50, andVbh

2 while holding
all other parameters fixed. In theV panel, from left to right, the
solid curves are forV51, V50.5, andV50.3. The curves in the
Vbh

2 panel are ~from lower to upper! for Vbh
250.01,

Vbh
250.03, andVbh

250.05. In theh panel, the heavy curves is
for h50.5, while the other two curves are forh50.3 ~the upper
light curve! andh50.7 ~the lower light curve!. The curves in the
L panel are for ~from lower to upper! L50, L50.3, and
L50.7.
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for nT50; it falls steeply near the rise to the first Doppl
peak. Thus, tensor modes may contribute to the anisotrop
large scales, but they will have little or no effect on th
structure of the Doppler peaks. Increasing the tensor spe
index,nT , increases the contribution at small angular sca
relative to those at larger angles.

The overall normalizationQ raises or lowers the spectrum
uniformly. The effect of the scalar spectral index is similar
simple: ifnS is increased there is more power on small sca
andvice versa. The effects ofa are obvious from Eq.~13!.
Finally, the effects of reionization have been discussed in
previous section.

IV. ERROR ESTIMATES

We consider an experiment which maps a fractionf sky of
the sky with a Gaussian beam with full width at half max
mum uFWHM and a pixel noisespix5s/Atpix, wheres is the
detector sensitivity andtpix is the time spent observing eac
uFWHM3uFWHM pixel. We adopt the inverse weight per sol
angle,w21[(spixuFWHM /T0), as a measure of noise that
pixel-size independent@32#. Current state-of-the-art detector
achieve sensitivities ofs5200mKAsec, corresponding to an
inverse weight ofw21.2310215 for a 1-year experiment.
Realistically, however, foregrounds and other systematic
fects may increase the effective noise level; conservativ
w21 will likely fall in the range ~0.9–4! 3 10214. Treating
the pixel noise as Gaussian and ignoring any correlati
between pixels, estimates ofCl can be approximated as no
mal distributions with a standard error@32,33#

s l5F 2

~2l11! f sky
G1/2@Cl1w21el

2sb
2
#, ~20!

wheresb57.4231023(u FWHM/1°). Note that Eq.~20! ap-
plies only if the entire sky has been mapped and the
fraction 12 f sky has been subtracted. On the other hand
only a fractionf sky of the sky is mapped, then the integratio
time per pixel increases by a factor off sky

21 , andw21 should
be replaced byw21f sky @33#.

In Fig. 2, we show simulated data that might be obtain
with a CMB mapping experiment, given an underlying co
mological model of ‘‘standard CDM’’~see the following
section!. The ‘‘cosmic variance’’ panel illustrates the mult
pole moments that would be measured by an ideal exp
ment~i.e., perfect angular resolution and no pixel noise!; the
scatter is due only to cosmic variance. The top-right a
bottom-left panels show multipole moments that might
measured by full-sky mapping experiments with a realis
level of pixel noise and angular resolutions of 0.1° a
0.3°, respectively. The cosmic variance slightly increases
errors at lowerl, while the finite beam width is evident in th
increased noise at (l /700)*(uFWHM/0.3°)

21 in the lower-left
plot. The lower-right panel shows the moments from t
lower-left panel after the total signal is smoothed with
Gaussian window of widthl /20. This illustrates that al-
though the individual moments may be quite noisy, an e
periment with a beam width of 0.3° can still use the info
mation in the location and shape of the third peak
parameter estimation. An experiment with this size beam
extract useful information out tol;900, although it cannot
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accurately measure the individual values of these highl mul-
tipoles. The smoothing here is used for display and is not t
optimal approach for parameter estimation.

We now wish to determine the precision with which a
given CMB temperature map will be able to determine th
various cosmological parameters. The answer to this que
tion will depend not only on the experimental arrangemen
but also on the correct underlying cosmological paramete
which we seek to determine. For any given set of cosmolog
cal parameters,s5$V,Vbh

2,h,L,nS ,r ,nT ,a,t reion,Q,Nn%,
the multipole moments,Cl(s), can be calculated as described
above. Suppose that the true parameters which describe
Universe ares0 . If the probability for observing each multi-
pole moment,Cl

obs, is nearly a Gaussian centered atCl with
standard errors l , anduFWHM!1 so that the largest multi-
pole moments sampled arel@1, then the probability distri-
bution for observing a CMB power spectrum which is best fi
by the parameterss is @31,34,24#

P~s!}exp@2 1
2 ~s2s0!•@a#•~s2s0!#, ~21!

where the curvature matrix@a# is given approximately by

a i j5(
l

1

s l
2 F]Cl~s0!

]si

]Cl~s0!

]sj
G . ~22!

As discussed in Ref. @31#, the covariance matrix
@C#5@a#21 gives an estimate of the standard errors tha
would be obtained from a maximum-likelihood fit to data
The standard error in measuring the parametersi ~obtained
by integrating over all the other parameters! is approximately
Ci i1/2. Prior information about the values of some of the pa
rameters, from other observations or by assumption, is eas
included. In the simplest case, if some of the parameters a
known, then the covariance matrix for the others is dete

FIG. 2. Simulated data that might be obtained with a CMB
mapping experiment, for beam sizes of 0.3° and 0.1°, and a no
level of w2152310215.
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mined by inverting the submatrix of the undetermined p
rameters. For example, if all parameters are fixed except
si , the standard error insi is simplya i i

21/2.
Previous authors have investigated the sensitivity of

given experimental configuration to some small subset of
parameters we investigate here. For example, Knox inve
gated the sensitivity of mapping experiments to the inflatio
ary parameters,nS , nT , andr , but assumed all other param
eters ~including Vb and h) were known @32#. Similarly,
Hinshaw, Bennett, and Kogut investigated the sensitivity
Vb assuming all other parameters were fixed@35#. These
were Monte Carlo studies which mapped the peak of t
likelihood function. Another technique is to repeatedly sim
late an experimental measurement of a given underly
theory, maximize the likelihood in each case, and see h
well the underlying parameters are reproduced@8#. Such cal-
culations require numerous evaluations of the CMB spe
trum, and so the results have been limited to a small range
experimental configurations. If any of these analyses are l
ited to a small subset of cosmological parameters, they
not investigate the possible correlation with other undet
mined parameters and will therefore overestimate the ca
bility of the experiment to measure the parameters und
consideration.

The covariance-matrix approach has the advantage
numerous experimental configurations and correlations
tween all the unknown cosmological parameters can be
vestigated with minimal computational effort. For exampl
if there areN undetermined parameters, then we need on
N11 evaluations of theCl ’s to calculate the partial deriva-
tives in Eq. ~21!. Once these are evaluated, the curvatu
matrix for any combination ofw21 and uFWHM for f sky51
can be obtained trivially. The results are generalized
f sky,1 by multiplying the results for the curvature matrix b
f sky

21 @cf., Eqs. ~20! and ~22!#. Furthermore, the covariance
matrix includes all correlations between parameters. The
fore, our results reproduce and generalize those in Re
@32,35,8#, and we comment on this further below.

V. COVARIANCE-MATRIX RESULTS

As discussed above, the sensitivity of a CMB map
cosmological parameters will depend not only on the expe
ment, but also on the underlying parameters themselves.
illustration, we show results for a range of experimental p
rameters under the assumption that the underlying cosm
logical parameters take on the ‘‘standard-CDM’’ value
s05$1,0.01,0.5,0,1,0,0,0,0,QCOBE,3%, whereQ COBE520m K
is the COBE normalization@36#. ~It assumes a Harrison-
Zeldovich primordial spectrum, no tensor modes, no cosm
logical constant, a flat Universe, and the central big-ba
nucleosynthesis value for the baryon-to-photon ratio.! After
presenting results for this assumed cosmological model,
briefly discuss how the results will be altered for differen
cosmological models.

With the 11 undetermined cosmological parameters
survey here, some of which are better determined by exp
ment than others, there is an endless number of combinat
that could conceivably be investigated. Instead of runni
through all possible permutations, we present results for
standard errors that can be obtained with two extreme set
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assumptions. First, we consider the case where none of th
parameters are known. Then we consider the results und
the most optimistic assumption that all of the other param
eters, except the normalization~which will never be deter-
mined more accurately by any other observations!, are fixed.
Realistically, prior information on some of the parameters
will be available, and so the standard errors will fall between
these two extremes.

Figures 3 and 4 show the standard errors for various pa
rameters that can be obtained with a full-sky mapping ex
periment as a function of the beam widthuFWHM for noise
levels w2152310215, 9310215, and 4310214 ~from
lower to upper curves!. The underlying model is ‘‘standard
CDM.’’ The solid curves are the sensitivities attainable with
no prior assumptions about the values of any of the othe
cosmological parameters. The dotted curves are the sensitiv
ties that would be attainable assuming that all other cosmo
logical parameters, except the normalization (Q), were fixed.
The analogous results for a mapping experiment which cov
ers only a fractionf sky of the sky can be obtained by scaling
by f sky

21/2 @cf., Eq. ~20!#.

A. Total density and cosmological constant

The results forV were discussed in Ref.@31#. From the
V panel in Fig. 3, it should be clear that a CMB mapping
experiment with subdegree resolution could potentially de

FIG. 3. The standard errors forV, L, Vbh
2, andh that can be

obtained with a full-sky mapping experiment as a function of the
beam widthuFWHM for noise levelsw2152310215, 9310215, and
4310214 ~from lower to upper curves!. The underlying model is
‘‘standard CDM.’’ The solid curves are the sensitivities attainable
with no prior assumptions about the values of any of the othe
cosmological parameters. The dotted curves are the sensitivities th
would be attainable assuming that all other cosmological param
eters, except the normalization (Q), were fixed. The results for a
mapping experiment which covers only a fractionf sky of the sky
can be obtained by scaling byf sky

21/2 @cf., Eq. ~20!#.
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termineV to better than 10% with minimal assumptions, a
perhaps better than 1% with prior information on other c
mological parameters. This would be far more precise t
any conventional measurement ofV. Furthermore, unlike
mass inventories which measure only the matter den
V0 , this measurement includes the contribution to the d
sity from a cosmological constant~i.e., vacuum energy! and,
therefore, directly probes the geometry of the Universe. T
determination follows from the angular location of the fir
Doppler peak. Therefore, our results show that if the Dopp
peak is found to be atl.200, it will suggest a value o
V51 to within a few percent of unity. This result will b
independentof the values of other cosmological paramete
and will therefore be the most precise test for the flatnes
the Universe and thus a direct test of the inflationary hypo
esis. Numerical calculations suggest that the effect of ge
etry on the CMB spectrum may be slightly more drama
than indicated by our semianalytic algorithm. If so, our fin
results on the sensitivity toV are a conservative estimate.

The sensitivity toL is similar. Currently, the stronges
bounds to the cosmological constant come fro
gravitational-lensing statistics@37# which only constrainL to
be less than 0.5. Measurement of the deceleration param
q05V0/22L could provide some information onL, but the
measurements are tricky, and the result will depend on
matter density. On the other hand, a CMB mapping exp
ment should provide a measurement of Lambda to be
than 60.1, which will easily distinguish between
L-dominated Universe and either an open or flat mat
dominated Universe.

B. Baryon density and Hubble parameter

The current range for the baryon-to-photon ratio allow
by big-bang nucleosynthesis~BBN! is 0.0075&Vbh

2

&0.024@38#. This givesVb&0.1 for the range of acceptabl
values ofh, which implies that ifV51, as suggested b

FIG. 4. Like Fig. 3, but fora, Nn , t reion, andnS .
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inflationary theory~or even ifV*0.3 as suggested by cluster
dynamics!, then the bulk of the mass in the Universe must be
nonbaryonic. On the other hand, x-ray–cluster measuremen
might be suggesting that the observed baryon density is to
high to be consistent with BBN@39#; this becomes especially
intriguing given the recent measurement of a large primor
dial deuterium abundance in quasar absorption spectra@40#.
The range in the BBN prediction can be traced primarily to
uncertainties in the primordial elemental abundances. Ther
is, of course, also some question as to whether the x-ray
cluster measurements actually probe the universal baryo
density. Clearly, it would be desirable to have an indepen
dent measurement ofVbh

2. TheVbh
2 panel in Fig. 3 shows

that the CMB should provide such complementary informa-
tion. The implications of CMB maps for the baryon density
depend quite sensitively on the experiment. As long as
uFWHM&0.5, the CMB should~with minimal assumptions! at
least be able to rule out a baryon-dominated Universe
(Vb*0.3) and therefore confirm the predictions of BBN.
With angular resolutions that approach 0.1°~which might be
achievable, for example, with a ground-based interferometr
map@41# to complement a satellite map!, a CMB map would
provide limits to the baryon-to-photon ratio that were com-
petitive with BBN. Furthermore, if other parameters can be
fixed, the CMB might be able to restrictVbh

2 to a small
fraction of the range currently allowed by BBN.

Current state-of-the-art measurements of the Hubble pa
rameter approach precisions of roughly 10%, and as a resu
of systematic uncertainties in the distance ladder, it is un
likely that any determinations in the foreseeable future will
be able to improve upon this result. The panel forh in Fig. 3
shows that, even with minimal assumptions, a mapping ex
periment with angular resolution better than 0.5° will pro-
vide a competitive measurement; with additional assump
tions, a much more precise determination is possible. I
should also be noted that the CMB provides a measureme
of the Hubble parameter which is entirely independent of the
distance ladder or any cosmological distance determination

As a technical aside, we mention that in calculating the
curvature matrix, Eq.~22!, we chooseV0h

2 as an indepen-
dent parameter instead ofh, and then transform the curvature
matrix back to the displayed parameters. The reason for thi
choice is that the power spectrum depends onh only indi-
rectly through the quantitiesV0h

2 andVbh
2, and the linear

approximation to the change in the spectrum in Eq.~22! is
more accurate for the parameterV0h

2. This parameter
choice also explicitly accounts for the approximate degen
eracy between models with the same value ofV0h

2 but dif-
fering L @30#.

C. Reionization

As discussed above, the effects of reionization can b
quantified, to a first approximation, byt reion, the optical
depth to the surface of last scatter, and there are sever
arguments which suggestt reion&1 @19#. First of all, signifi-
cant reionization would lead to anisotropies on arcminute
scales due to the Vishniac effect@28# or to spectral
~Compton-y) distortions of the CMB @42#. Order-of-
magnitude estimates for the values oft reion expected in adia-
batic models based on Press-Schechter estimates of the fra
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tion of mass in collapsed objects as a function of reds
suggest thatt reion is probably less than unity@19,43#. More-
over, the numerous detections of anisotropy at the deg
scale @2# also show an absence of excessive reionizati
Assuming complete reionization at a redshiftzreion, the op-
tical depth with our standard-CDM values
t reion.0.001zreion

3/2 , and so t reion&1 corresponds toz reion
&100.

The t reion panel of Fig. 4 illustrates that, with minima
assumptions, any map with subdegree angular resolution
probe the ionization history~i.e., z reion&1000), and maps
with resolutions better than a half degree can restrict
optical depth to 0.5 or less. While different ionization hist
ries with the same total optical depth can give differe
power spectra, as long as the reionization is not too sev
simple damping of the primary anisotropies is always t
dominant effect. The lower curves, assuming other para
eters are fixed except forQ, are flat because at scales smal
than 2°, the effects oft reion are precisely degenerate with
shift inQ. The lower curves nearly coincide for the differe
noise levels because all of the leverage in distinguish
t reion comes at lowl where the degeneracy withQ is broken,
and at these scales the cosmic variance dominates the
surement errors.

Although temperature maps alone may not provide
stringent probe of the ionization history, polarization ma
may provide additional constraints. The polarization p
duced at recombination is generally small, but that produ
during reionization can be much larger. Heuristically, t
temperature anisotropy which is damped by reionizat
goes into polarization. Therefore, it is likely that polarizatio
maps will be able to better constraint reion when used in
conjunction with temperature maps.

D. Neutrinos

We have also investigated the sensitivity of CM
anisotropies toNn , the effective number of neutrino degree
of freedom at decoupling. The number of noninteracti
relativistic species affects the CMB spectrum by chang
the time of matter-radiation equality, although this cannot
distinguished from the same effect due to changes inh,
V0 , andL. However, neutrinos~and other noninteracting
degrees of freedom which are relativistic at decoupling! free
stream and therefore have a unique effect on the growth
potential perturbations. This will be reflected in the detail
shape of the CMB spectrum, especially from the contribut
of the early-time ISW effect. In standard CDM, there are t
three light-neutrino species. However, some particle-phys
models predict the existence of additional very light partic
which would exist in abundance in the Universe. Furth
more, if one of the light neutrinos has a mass greater than
eV, as suggested by mixed dark-matter models@44# and pos-
sibly by the Los Alamos experiment@45#, then it would be
nonrelativistic at decoupling, and so the effective number
neutrinos measured by the CMB would be2 Nn,3. These

2In such a case, the massive neutrino would have additional
fects on the CMB@6#. Although we have not included these effect
our analysis still probes variations inNn , and our results are sug
gestive of the sensitivity of CMB anisotropies to a massive n
trino.
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limits would be similar to limits on the number of relativistic
noninteracting species from BBN. However, at the time o
BBN, any particle with mass less than 1 MeV would be
relativistic, whereas at decoupling, only those with masse
less than 1 eV would be relativistic, and so the quantitie
probed by BBN and by the CMB are somewhat different.

The panel forNn in Fig. 4 shows the sensitivity of CMB
anisotropies to variations in the effective number of nonin
teracting nonrelativistic species at decoupling. When on
takes into account systematic uncertainties in primordial e
emental abundances, BBN constrains the effective number
relativistic ~i.e., less than a few MeV! neutrino species to be
less than 3.9@38#. Figure 1 illustrates that any mapping ex-
periment with angular resolution better than 0.5° should pro
vide complementary information; if other parameters can b
determined or constrained, then the CMB has the potential
provide a much more precise probe of the number of ligh
neutrinos at the decoupling epoch.

E. Inflationary observables

We have also studied the precision with which the infla
tionary observablesnS , nT , and r can be probed. Inflation
predicts relations between the scalar spectral indexnS , the
tensor spectral indexnT , and the ratior @46#. Therefore,
precise measurement of these parameters provides a tes
inflationary cosmology and perhaps probes the inflaton po
tential @47#.

Knox @32# performed a Monte Carlo calculation to ad-
dress the question of how accurately CMB anisotropies ca
measure the inflationary observables assuming all other co
mological parameters were known. Here, we generalize th
results to a broader range of pixel noises and beam width
and take into account the uncertainties in all other cosmo
logical parameters through the covariance matrix.

In Fig. 5, we show the standard errors on the inflationar
observables that could be obtained with mapping exper
ments with various levels of pixel noise and beam widths
The parameters of the underlying model used here are t
same ‘‘standard-CDM’’ parameters used in Figs. 3 and 4
except here we setr5QT

2/QS
250.28, nS50.94, and

nT520.04. We do so for two reasons: First, the tensor spe
tral index is unconstrained without a tensor contribution; sec
ond, these parameters will facilitate comparison with the re
sults of Ref.@32#. The solid curves are the standard errors
that would be obtained with no assumptions about the value
of these or any other of the cosmological parameters. Th
dotted curves are the standard errors that would be attainab
by fitting to only these four inflationary observables and as
suming all other cosmological parameters are known.~Note
that this differs from the dotted curves in Figs. 3 and 4.!

The dotted curves in Fig. 5 with a beam width of 0.33°
are in good numerical agreement with the results of Re
@32#. This verifies that the covariance-matrix and Monte
Carlo calculations agree. Next, note that unless the other co
mological parameters can be determined~or are fixed by as-
sumption!, the results of Ref.@32# for the sensitivities of
CMB anisotropy maps to the inflationary observables ar
very optimistic. In particular, temperature maps will be un-
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able to provide any useful constraint tor andnT ~and it will
be impossible to reconstruct the inflaton potential! unless the
other parameters can be measured independently. Howe
if the classical cosmological parameters can be determi
by other means~or fixed by assumption!, the dotted curves in
Fig. 5 show that fairly precise information about the inflat
potential will be attainable. CMB polarization maps ma
provide another avenue towards improved determination
the inflationary observables@48#.

The flatness of the dotted curves forr andnT in Fig. 5 is
due to the fact that the contribution of the tensor modes
the CMB anisotropy drops rapidly on angular scales sma
than roughly 1°. The solid curves decrease withuFWHM be-
cause the other cosmological parameters~e.g.,Vbh

2 andh)
become determined with much greater precision as the an
lar resolution is improved.

Of course, the precision with which the normalization
the perturbation spectrum can be measured with CM
anisotropies~even current COBE measurements! is—and
will continue to be—unrivaled by traditional cosmologic
observations. Galactic surveys probe only the distribution
visible mass, and the distribution of dark matter could
significantly different~this is the notion of biasing!. The dot-
ted figures in the panel forQ in Fig. 5 are the sensitivities
that would be obtained assuming all other parameters w

FIG. 5. The standard errors on the inflationary observab
nS , nT , r5QT

2/QS
2 , andQ that can be obtained with a full-sky

mapping experiment as a function of the beam widthuFWHM for
noise levelsw2152310215, 9310215, and 4310214 ~from lower
to upper curves!. The parameters of the underlying model are t
‘‘standard5CDM’’ values, except we have setr50.28, nS50.94,
and nT520.04. The solid curves are the sensitivities attaina
with no prior assumptions about the values of any of the ot
cosmological parameters. The dotted curves are the standard e
that would be attainable by fitting to only these four inflationa
observables and assuming all other cosmological parameters
known.~Note that this differs from the dotted curves in Fig. 4.! The
results for a mapping experiment which covers only a fract
f sky of the sky can be obtained by scaling byf sky

21/2 @cf., Eq. ~20!#.
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known. This standard error would be slightly larger if there
were no tensor modes included, because asr is increased
~with the overall normalizationQ held fixed!, the scalar con-
tribution is decreased. Therefore, tensor modes decrease
anisotropy on smaller angular scales, the signal to noise
smaller, and the sensitivity toQ ~and other parameters! is
slightly decreased. The effect of variations in othe
underlying-model parameters on our results is discussed f
ther below.

F. What if the underlying model is different?

Now we consider what might be expected if the underly
ing theory differs from that assumed here. Generally, th
parameter determination will be less precise in models
which there is less cosmological anisotropy, as reflected
Eq. ~20!.

What happens if the normalization differs from the centra
COBE value we have adopted here? The normalizatio
raises or lowers all the multipole moments; therefore, from
Eq. ~20!, the effect of replacingQ with Q8 is equivalent to
replacingw21 with w21(Q/Q8). In Figs. 3, 4, and 5, the
solid curves, which are spread over values ofw21 that differ
by more than an order of magnitude, are all relatively clos
On the other hand, the uncertainty in the COBE normaliza
tion is 10%. Therefore, our results are insensitive to the u
certainty in the normalization of the power spectrum.

If there is a significant contribution to the COBE-scale
anisotropy from tensor modes, then the normalization of th
scalar power spectrum is lower, the Doppler peaks will b
lower, and parameter determinations that depend on t
Doppler-peak structure will be diluted accordingly. On the
other hand, the tensor spectral index, which is important f
testing inflationary models, will be better determined.

Similarly, reionization damps structure on Doppler-pea
angular scales, and so if there is a significant amount
reionization, then much of the information in the CMB will
be obscured. On the other hand, there are several indicatio
summarized above that damping due to reionization is n
dramatic. In Ref.@31#, we displayed~in Fig. 2 therein! re-
sults for the standard error inV for a model with
t reion50.5. As expected, the standard error is larger~but by
no more than a factor of 2! than in a model with no reion-
ization.

If L is nonzero,h is small, orVbh
2 is large, then the

signal to noise should increase and there will be more info
mation in the CMB. If the scalar spectral index isnS.1, then
the Doppler peaks will be higher, but in the more likely cas
~that predicted by inflation!, nS will be slightly smaller than
unity. This would slightly decrease the errors.

If V is less than unity, then the Doppler peak~and all the
information encoded therein! is shifted to smaller angular
scales. Thus one might expect parameter determinations
become less precise ifV,1. By explicit numerical calcula-
tion, we find that forV50.5 ~with all other parameters given
by the ‘‘standard-CDM’’ values!, our estimates for the stan-
dard error forV is at the same level as the estimate w
obtained forV51. Therefore, even ifV is as small as 0.3,
our basic conclusions thatV can be determined to60.1 with
minimal assumptions are valid. The sensitivity to some o
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the other parameters, in particularh, is ~not surprisingly!
significantly degraded in an open Universe.

VI. GAUSSIAN APPROXIMATION
TO THE LIKELIHOOD FUNCTION

It is an implicit assumption of the covariance-matr
analysis that the likelihood function has an approxim
Gaussian form within a sufficiently large neighborhood
the maximum-likelihood point. Equation~21! only approxi-
mates the likelihood function in a sufficiently small neig
borhood around the maximum. The detailed functional fo
of the likelihood function is given in Ref.@32#. If the likeli-
hood function fails to be sufficiently Gaussian near the ma
mum, then the covariance-matrix method is not guarant
to produce an estimate for the standard error, and a m
involved ~Monte Carlo! analysis would be essential. Ther
fore, in the following we indicate the applicability of th
Gaussian assumption for the likelihood.

First, we note that our parametrization has the prope
that the individual parameters are approximately indep
dent. This is suggested by direct examination of the eig
vectors of the covariance matrix. This is also supported
preliminary Monte Carlo results. Therefore it is simplest
examine the behavior of the likelihood as a function of in
vidual parameters in order to determine if a parabolic
proximation to ln(L) ~the log likelihood! is admissible.

In Fig. 6, we display the dependence of ln(L) on several
parameters of interest. In this example, we us
w2159310215 andu FWHM50.25. As is clear from this fig-
ure, the functional forms are well fit by parabolic approx
mations, within regions of size;3s around the maximum
point. This is sufficient to apply the covariance-matrix ana
sis to the determination of the standard errors, and our an
sis above is justified.

FIG. 6. Plots of the log likelihood as a function ofV, L,
Vbh

2, andnS for the ‘‘standard-CDM’’ model with tensor mode
~sonS50.94 andr50.28). Note that the log likelihood looks para
bolic.
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Although we have not done an exhaustive survey of t
likelihood contours in the 11-dimensional parameter spa
Fig. 6 also suggests that there are no local maxima anywh
near the true maximum. Therefore, fitting routines will prob
ably not be troubled by local maxima. This also sugges
then, that there will be no degeneracy between various c
mological models with a CMB map~in contrast to the con-
clusions of Ref.@30#!, unless the models are dramaticall
different. In this event~which we consider unlikely!, one
would then be forced to choose between two quite differe
models, and it is probable that additional data would det
mine which of the two models is correct.

VII. CONCLUSIONS

We have used a covariance-matrix approach to estim
the precision with which 11 cosmological parameters of i
terest could be determined with a CMB temperature ma
We used realistic estimates for the pixel noise and angu
resolution and quantified the dependence on the assumpt
about various cosmological parameters that would go in
the analysis. The most interesting result is forV: With only
the minimal assumption of primordial adiabatic perturb
tions, proposed CMB satellite experiments@3# could poten-
tially measureV to 5%. With prior information on the val-
ues of other cosmological parameters possibly attainable
the forthcoming years,V might be determined to better than
1%. This would provide an entirely new and independe
determination ofV and would be far more accurate than th
values given by any traditional cosmological observation
Furthermore, typical mass inventories yield only the matt
density. Therefore, they tell us nothing about the geometry
the Universe if the cosmological constant is nonzero. A g
neric prediction of inflation is a flat Universe; therefore, lo
cating the Doppler peak will provide a crucial test of th
inflationary hypothesis.

CMB temperature maps will also provide constraints o
L far more stringent than any current ones, and will provid
a unique probe of the inflationary observables. Informati
on the baryon density and Hubble constant will compleme
and perhaps even improve upon current observations. F
thermore, although we have yet to include polarization ma
in our error estimates, it is likely that they will provide ad
ditional information, at least regarding ionization history.

We have attempted to display our results in a way th
will be useful for future CMB experimental design. Althoug
a satellite mission offers the most promising prospect f
making a high-resolution CMB map, our error estimate
should also be applicable to complementary balloon-borne
ground-based experiments which map a limited region of t
sky. The estimates presented here can also be used f
combination of complementary experiments.

Although we have been able to estimate the precisi
with which CMB temperature maps will be able to determin
cosmological parameters, there is still much theoretical wo
that needs to be done before such an analysis can realistic
be carried out. To maximize the likelihood in a multidimen
sional parameter space, repeated evaluation of the C
spectrum for a broad range of model parameters is need
Therefore, quick and accurate calculations of the CMB a
isotropy spectrum will be crucial for the data analysis. Se
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eral independent numerical calculations of the CMB anis
ropy spectrum now agree to roughly 1%@49#. However,
these calculations typically require hours of workstation tim
per spectrum and are therefore unsuitable for fitting data.
have begun to extend recent analytic approximations to
CMB spectra@9,50# with the aim of creating a highly accu-
rate and efficient power spectrum code. Our current co
evaluates spectra in a matter of seconds on a workstat
though our calculations are not yet as accurate as the
numerical computations, except in a limited region of para
eter space. It is likely, however, that the analytic results c
be generalized with sufficient accuracy.

The other necessary ingredient will be an efficient a
reliable likelihood-maximization routine. Preliminary fits to
simulated data with a fairly simple likelihood-maximizatio
algorithm suggest that the cosmological parameters can
deed be reproduced with the precision estimated here@8#.

In summary, our calculations indicate that CMB temper
ture maps with good angular resolution can provide an u
precedented amount of quantitative information on cosm
logical parameters. These maps will also inform us about
ot-
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origin of structure in the Universe and test ideas about th
earliest Universe. We hope that these results provide add
tional impetus for experimental efforts in this direction.
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