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The angular power spectrum of the cosmic microwave backgr@@mB) contains information on virtually
all cosmological parameters of interest, including the geometry of the UnivEXsetiie baryon density, the
Hubble constantk), the cosmological constani\(, the number of light neutrinos, the ionization history, and
the amplitudes and spectral indices of the primordial scalar and tensor perturbation spectra. We review the
imprint of each parameter on the CMB. Assuming only that the primordial perturbations were adiabatic, we use
a covariance-matrix approach to estimate the precision with which these parameters can be determined by a
CMB temperature map as a function of the fraction of sky mapped, the level of pixel noise, and the angular
resolution. For example, with no prior information about any of the cosmological parameters, a full-sky CMB
map with 0.5° angular resolution and a noise level of /% per pixel can determin€), h, and A with
standard errors of 0.1 or better, and provide determinations of other parameters which are inaccessible with
traditional observations. Smaller beam sizes or prior information on some of the other parameters from other
observations improves the sensitivity. The dependence on the underlying cosmological model is discussed.
[S0556-282196)02014-0

PACS numbsgps): 98.70.Vc, 98.80.Bp, 98.80.Es

I. INTRODUCTION Inflation may produce a spectrum of gravity waves, quanti-
fied by an amplitud&; and spectral index;. A neutrino
One of the fundamental goals of observational cosmologgpecies with a mass greater than 1 eV affects structure for-
today is measurement of the classical cosmological parammation, and so the numbét, of light (meaningm,<1 eV)
eters: the total densitfor, equivalently, the geomefrpf the  neutrinos is another cosmological parameter of importance.
Universe,(); the cosmological constark; the baryon den- The ionization history of the Universe is also certainly re-
sity Qp,; and the Hubble constary. Accurate measure- lated to the evolution of structure in the Universe.
ment of these quantities will test the cornerstones of the hot In this paper, we estimate how well cosmological param-
big-bang theory and will provide answers to some of theeters can be determined from a cosmic microwave back-
outstanding guestions in cosmology. For example, determiground (CMB) temperature map. Since the initial detection
nation of the geometry of the Universe will tell us the ulti- of temperature anisotropies in the CMB by the Cosmic Back-
mate fate of the Universe and test the inflationary paradigmground Explorer(COBE) satellite [1], over a dozen other
while an independent check 61, can confirm the predic- balloon-borne and ground-based experiments have an-
tions of big-bang nucleosynthesis. nounced anisotropy detections on smaller angular s¢2les
In addition, parameters describing primordial perturba-With the existence of anisotropies now firmly established,
tions are related to the origin of large-scale structure in th&ights are shifting to accurate determination of the CMB
Universe and may shed light on a possible inflationary eppower spectrum over a wide range of angular scales. Several
och. Perhaps the most important of these are the normalizaechnological advances, including improved amplifiers, inter-
tion Qg and spectral inderg of the primordial spectrum of ferometry, and long-duration balloon flights, hold great
scalar perturbations that gave rise to the observed structurpromise for high-precision measurements. Ultimately, a sat-
ellite with subdegree angular resolution will provide a de-
tailed map of the entire microwave sky in multiple frequency

*Electronic address:jungman@npac.syr.edu bands[3].

TElectronic address: kamion@phys.columbia.edu A detailed map of the cosmic microwave background can
*Electronic address: akosowsky@cfa.harvard.edu potentially provide a wealth of information on the values of
SElectronic address: dns@astro.princeton.edu cosmological parameters. Roughly speaking, the amount of

0556-2821/96/5¢)/133213)/$10.00 54 1332 © 1996 The American Physical Society



54 COSMOLOGICAL-PARAMETER DETERMINATION WITH . .. 1333

information in a map is proportional to the number of pixelsSec. VI, we discuss the validity of the covariance-matrix
on the sky, and this is inversely proportional to the square ofipproach to the analysis. In Sec. VI, we make some con-
the beam width. Thus, a map with a beam width of 0.5° will cluding remarks and discuss some future areas of investiga-
contain over 100 times as much information as COBE/ion.

which had a beam width of order 7°, and an 0.1°-resolution

experiment would have, roughly speaking,?1fimes as Il. CALCULATION OF THE CMB SPECTRUM

much information. It should be no surprise, therefore, that a

map with good angular relsolgtloln shouldtbe atbhle tocdg;erfailed quantitative predictions as properties of complex sys-
miné many more cosmological parameters -than Etems depend on the nonlinear physics of poorly measured
which really only constrains the.normahzatlon of th_e CMB and poorly understood phenomena. Fortunately, the early
lpower spelctrum Iand the effective CMB spectral index Ayniverse was very simple and nearly uniform. The density
arg\;/s angu "?‘é scales. . t which . fract fluctuations are all in the linear regimeSg/p~10 %) and

€ consider an experiment which maps a given 1raclion, 5 jine gy effects are unimportant. Different groups using dif-
of th_e sky V‘."th a given angular re_solutlon an_d agien Ievelferent gauge choices and numerical algorithms make very
of pixel noise. We use a covariance-matrix approach Qg predictions for CMB fluctuations for a given model.

evaluate the standard_ errors Wh.'Ch wou!d arise by fitting the1‘his simple linearity makes possible the detailed parameter
power spectrum obtained in this experiment to all the UN-jetermination that we describe in this paper

known cosmological parameters. We display results for a The CMB angular power spectru(6) is defined as
range of realistic values for the fraction of sky covered, level
of pixel noise, and angular resolution. Our results are quite

promising: With minimal assumptions, realistic satellite ex- C(0)5<T—(rﬁ)_|_—(ﬁ)>, m-N=cogY, 1)
periments could potentially determif¢, A, and the infla- 0 0

tionary observables to far greater precision than any traoli\'/vhere the angular brackets represent an ensemble average

tional measurements. Furthermore, the information provided, .. - angles and observer positions. HATE(A)/T, is the
on other parameters will be competitive witand with ad- fractional temperature fluctuation in the directionand the

ditional reasonable assumptions, superigrdarrent probes. mean CMB temperature ig,=2.726+0.010K [7]. This

Although we focus here only on models with primordial power spectrum is conveniently expressed in terms of its

adiabatic perturbations, we are confident that if the perturb%ultipole momentsC,, defined by expanding the angular
tions turn out to be isocurvature, it will be evident in the dependence in Legeln'dre polynomia®s(x):

temperature mapgand perhaps also in polarization maps,
spectral distortions, and non-Gaussian temperature distribu- o
tions), and that similar results on parameter determination = ZILl

ons), P c(o)=2, C,P,(cosd). )
will apply. Indeed, recent calculations of the CMB power =2 4m
spectrum in defect mode]d] and in isocurvature model§]
suggest that such models should be clearly distinguishabl@iV9” a model for structure formation, calculation of the
from the adiabatic case. Although we have satellite mappingnultipole moments is straightforward and is accomplished
experiments in mind, our results can also be applied td®Y solution of the coupled system of Boltzmann equations
ground or balloon experiments, or to the combined results ofor €ach particle specidse., photons, baryons, massless and
several complementary measurements. possibly massive neutrinos, and cold dark matserd Ein-

An important issue facing any likelihood analysis is the Stéin equations for the evolution of the metric perturbations.
choice of the space of models considered. Here we considdie | =1 term is indistinguishable from the Doppler shift
models with primordial adiabatic perturbations. Our space oflue to proper motion with respect to the microwave back-
models allows a cosmological constant, an openclosed ground rest frame and is conventionally ignored. For theories
Universe, tensor moddgwth a free Spectra| |ndex varia- with Gaussian initial perturbations, the Set@f CompletEIy
tions in the baryon density and Hubble constant, tilted pri-SPecifies the statistical properties of the theory. Since we can
mordial spectra, and primordial spectra that deviate fronPnly observe from a single vantage point in the Universe,
pure power laws. We assume that the dark matter is coldhe observed multipole momen&™ will be distributed
however, the CMB power spectrum is only slightly altered inabout the mean valueC, with a “cosmic variance”
mixed and hot-dark-matter model§], and we allow the o,=2/(2+1)C;; no measurement can defeat this vari-
number of massless neutrinos to vary. Therefore, our concliance. Power-spectrum predictions and measurements are tra-
sions on parameter determination will be virtually indepen-ditionally plotted ad (I +1)C, versusl.
dent of the fraction of hot dark matter. For the purposes of covariance-matrix evaluation, as well

In the following section, we describe our calculation of as for likelihood maximizatioi8] and Monte Carlo analy-
the power spectrum. In Sec. Ill, we illustrate the effect ofsis, it is useful to have an algorithm for rapid evaluation of
each cosmological parameter that we consider on the CMBhe CMB spectrum for a given set of cosmological param-
spectrum. In Sec. IV, we discuss the covariance matrix. Teters. We begin with a semianalytic solution of the coupled
illustrate, in Sec. V, we present results for the standard errorBoltzmann, fluid, and Einstein equations developed by Hu
to the parameters that would be obtained assuming the truend Sugiyam@9] for flat cold-dark-matter models, which we
cosmological model is standard cold dark mat@DPM). We  generalize to accommodate an open Universe, a cosmologi-
also discuss how these results change if the underlyingal constant, tensor modes, and reionization. The code is fast
model differs from the canonical standard-CDM model. Inenough to enable likelihood analyses requiring tens of

In many areas of astrophysics, it is difficult to make de-
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thousands of power-spectrum evaluations. We have checked 3pp 30,a
that our semianalytic calculation agrees with the results of a R= P 2(1-f,)0,
publicly available numerical codglLQ] for several param- Py v/SR0
eters. Here we briefly describe our calculation.

The multipole moments are expressed as

®

is the scale factor normalized to 3/4 at baryon-radiation
equality, withQ, the fraction of critical density in baryons,
c=ci+cf, (3) (o the fraction of critical density in nonrelativistic matter
(baryons and cold dark matjerand f, the fraction of the
where C|S is the contribution from scalar perturbations andtotal radiation density contributed by massless neutrinos. Our

C/ is the contribution from tensor modes. The scalar contrinumerical evaluation of these expressions reproduces the
bution is given by power spectrum obtained from Boltzmann codes to an accu-

racy of a few percent for standard CDM.

s 2 (" ) Analytic approximations to the CMB anisotropy due to

C :;fo dkiC|@,(70,k)|?, (4)  tensor modesgravity waves are given in Refs[13,14. The
contribution to each multipole moment of the CMB power

where 7, is the conformal time todaythe conformal time ~ Spectrum is
7= [dt/a with a the scale factor of the Universe normalized
to unity at matter-radiation equality The contribution of
wave numbek to thelth multipole moment i$9]

O1(70,K)=[0Oo+W](Kk,7,)]ji(Kpo—Kkn,)

(1+2
(-2

! o)
Cl =36r2 ;!fo dkPr(OF()% (9

whereP;xk"T"4 is the initial power spectrum of tensor per-

+01(K, 74)j (Kpo—Kkmny ) turbations and, is given by
[ — D, (kg — o K\ ialkn)
o] P dlitonkn,© p g dnn[[l—wwm(—,n)—z
- . keq'” (k)
where®, and® are the monopole gnd dipole perturbations i1(kn) ) j1(kmo— k)
of the photon distribution function,® and V¥ are +w(7n) 3Ky | (kno—K7)2" (10)
0

gravitational-potential perturbations in the Newtonian gauge,

j) are spherical Bessel functions ayjdtheir first derivatives, . , :
and an overdot denotes a derivative with respect to confor\évr:ttirze%h%ezgerg ois atthem;vt?gfr:oll]i;it:)e; (e)f Jgﬁt mc_)rdhee Vf\llg:ﬁh
mal time. Herey, is the conformal time at decouplin(See quafty. 9

Ref. [9] for more details. The third term in this expression function w(7) describes the evolution of the gravity-wave

gives the integrated Sachs-WollW) effect: Anisotropies mode function through the transition between the radiation-
are generated by time variations in the gravitational potengomlnated af?d matter_-qlommated ep_ochs, age, ) is a
tials along the line-of-sight path. Analytic fits to the gravita- transfer function describing the evolution of the tensor-mode
tional potentials are given in Refd], as are WKB solutions amphtude. Good analytic fits to these two functions are
for the photon distributions in the tight-coupling regime, given by[14]
0, and®,. At decoupling, photon diffusiofSilk damping B _ 05
damps photon perturbations on small angular sddlgk the W( )= exp(—0.25°), (1D
perturbations to the photon distribution functions are given )
by [@,+W =[0,+V¥ D(k), where the mean N _ah —ayt
(12)
D(k)zjnoa-e*[k/ko(n)]zdn (6) ) ) )
0 ' These approximations match numerical results to 1% well
_ pastl =100, where the tensor contribution to the multipoles
Here r=x.n.0qal/ay is the differential optical depth for drops to a small fraction of the scalar contribution.

Thomson scattering), is the electron density, is the ion- Equations4) and(9) are difficult to evaluate numerically
ization fraction, ando is the Thomson cross section. The because of the oscillatory spherical Bessel functions in the
visibility function—the combinationre™ " —is the probabil- integrand. Asymptotic expansions, a Bessel-function cache,

ity density that a photon last scattered at given conformahnd various interpolation techniques further speed evaluation
time, and is sharply peaked near the surface of last scatteof the integrals. We calculate every 40th multip@ieore for
semianalytic fits are given in RgP]. As pointed out in Ref. [<<100) and perform a cubic spline to recover the entire
[12], photon polarization must be included to obtain thespectrum.

proper Silk-damping scale; the result is We consider models which are well described by a
5 power-law spectrum of metric perturbations over the range

K=2( )= Ej”d 1R+16(1+R)/15 o of scales affecting CMB anisotropies. This class includes all

A P (1+R)? ' inflation models. For the scalar perturbations, we also allow

a deviation from power-law behavior and parametrize the
where power spectrum afl5]
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k \ Nstaln(k/ks) multipole moments probe scales comparable to or larger than
P(k)o PR : (13)  the curvature scale, and so these moments are suppressed,
S due heuristically to the exponential growth of volume in an

whereks is the normalization scale at which the power law OPen Universe at large distances. Finally, some ambiguity
indexng is defined. The parameterquantifies the deviation €Xists as to the correct generalization of a power-law spec-
from the power law or the “running” of the spectral index. frum to an open Universe. Naive power laws of volume,
Realistic inflation models can produce values mflarge ~ Wave number, or eigenvalue of the Laplace operator differ in
enough to change the multipole moments by as much as 508N open Univers¢l17], as do spectra predicted by various
For the tensor spectrum, we assume a pure power-law spegPen-Universe inflationary scenari¢20]. However, these
trum with spectral indexiy. In principle, ny can run with ~ POWer laws differ only in their predictions for the lowest
scale as well, but because of the comparatively small amoufultipole moments, which have little statistical weight; for
of information contained in the tensor multipole momems,deflnltgness, we use thg predictions of a specific |nflat!onary
the CMB constraint on the index; is weak, and the scen_arlo[21]. A good fit to these effect¢for 1=0.1) is
running-index effect for the tensor perturbations is negli-Provided by multiplying the multipole moments by

gible.
Extensions of this basic cosmological model are incorpo- 1+e_0_3,,cuwg(ﬂ) (17
rated through various fitting formulas. In a cosmological- [+1/2’

constant (\) Universe, the gravitational potentidl begins

to vary at low redshift when the Universe becomeswherel,,,=m(1—Q)/Q is the multipole corresponding to
cosmological-constant dominated, and this leads to a contrthe curvature scale of the Universe, and

bution to the anisotropy at large angles from the ISW effect.

In a flat Universe(that is, 0o+ A =1, whereA is the cos- 1—) 0817
mological constant in units of critical densifythis is ap- 9(9)24-5<T) , (18
proximated by multiplying the multipole moments by a fac-
tor [1+g(A)/I] [16,17), where for 0=0.1.
2 If the Universe has experienced significant reionization

(mo—m)dn, (14  between recombination and today, then a fraction
1— e Treion of the CMB photons has scattered since recombi-
H da/a nation, whererreion is the optical depth to thg epoch of re-
F(n)=— —03 (15)  combination. If the Universe becomes reionized at a redshift
aJ (Halap) Zreion With @ constant ionization fractior,, then the optical

. . . . i 0. —1/2 47 )32
is the time dependence of the potential, atheka/a is the ﬂe?sthtrllse Tﬁ'ﬁ%biogfgg eterX?rE(lunif;elog)f 103]’kr:’1\lh2$:

Hubble parameter. This approximation slightly overestimate?vlpcfln The precise effects of reionization depend on the

the Iov_vest few multipole moments, but this Iarge-angle ISWbaryon density, Hubble parameter, and the ionization history.
effect is generally not a large fraction of the total anisotropy, owever, as illustrated in Ref19] (see Fig. 3 therein the

;n?“;iizrlgvevelsztoxﬂtépgle r?\orrlzr:sbgaa\‘/e rao::ir:]r:zcej dsLatlsUca ffects of reionization are fairly accurately quantified solely
9 ' =0.7.9(A) PP y in terms ofr.jo,. COMpton scattering is an isotropizing pro-
)0.817 cess, and so the multipole moments on angular scales smaller

_ 7 1 (dF
Q(A)‘%“fo [F(0) 2| d7

(16 than those subtended by the horizon at the epoch of reion-
ization are suppressed by a facwr?7eion, while those on
larger angular scales are unaffected. We interpolate between
the asymptotic effects of reionization on small and large an-
gular scales by multiplying the multipole moments by

An additional effect of a cosmological constant is a shift in
the conformal distance to the surface of last scatteen
with the mass densitf2,h? held fixed, which we account
for by multiplying the current conformal timgg by the cor- 5
rection factor H 0.085In(1-A) [18]. exp{ ~ 2reiord | reion/ 770) (19
Generalization to an open Universe is somewhat more 1+ (1 7reion/ 70)° |’
complicated because several different effects contribute to
the anisotropy{17]. The angular scale subtended by the ho-where 7o, is the conformal time at reionization. In addi-
rizon at the surface of last scatter scales (¥’ where tion, reionization also induces a broad Doppler peak centered
O =0y+ A is the total densityin units of critical densityof  nearl= 7/ 76i0n [22,23, but this secondary peak is shallow
the Universg[19]. Therefore, the multipole moments in an and we do not include it in the power-spectrum calculation.
open Universe are related to those in a flat Universe approxi- Between the surface of last scatter and the present, several
mately by D;(Q)=D,q2(Q2=1) with D;=I(I+1)C,. In  other physical processes, besides reionization, produce new
other words, the CMB spectrum in an open Universe re-CMB fluctuations and smear out primordial fluctuati¢24]:
sembles that in a flat Universe with the same matter densitygravitational lensing lowers the amplitude of the spectral
but shifted to smaller angular scales. A large-angle ISW efpeaks and fills in the valleys in the spectrigb], the non-
fect arises from the evolution of the gravitational potentials linear growth of structure produces additional small-scale
although the functiong(Q) differs from that in a fluctuations[26], the scattering of photons off of hot gas in
cosmological-constant Univer$&7]. In addition, the lowest clusters and superclusters produces both thermal and non-
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thermal cosmic microwave fluctuatiof27,29, and second-
order effects in a reionized Universe also produce additional
small-scale fluctuationg28,29. These nonlinear effects are
relatively small and typically produce onty1 uK changes

in the microwave multipoles. However, they are systematic.
If they are not included in an analysis of a full-sky CMB
map, they will lead to systematic errors in parameter estima-
tion. We do not include these effects in our sensitivity analy- o o
ses as_they are unl_lkely to alter 'ghe size and shape of _the error 0 0 500 1000 0 500 1000
ellipsoid. It will be important to include these effects in any 1 1

analysis of a future all-sky CMB map.

Cl(1+1)
Cl(1+1)

12
10

10|||||||||

Ill. COSMOLOGICAL PARAMETERS
AND THE CMB SPECTRUM

Cl(1+1)
Cl(1+1)

(=T I R o e

The suite of cosmological models that we consider all
make broadly similar predictions for the CMB spectrum: The
fluctuations on large angular scales are nearly scale invariant
and are primarily due to large-scale variations in the gravi-
tational potential at the surface of last scatter, while on small

scale_s the fluctua_tions are primarily due to yariations inthe F16. 1. Predicted multipole moments for standard CDM and
velocity and density of the baryon-photon fluid at the surfaceariants. The heavy curves in each graph are for a model with
of last scatter. The details of the spectrum, however, depengtimordial adiabatic perturbations witfd=1, A=0, ng=1,
sensitively on properties of the Universe: its geometry, itsq,h2=0.01,h=0.5, «=0, and no tensor modes. The graphs show
size, the baryon density, the matter density, and the shape @fe effects of varying), A, h, 7,e0:=0, andQ,h? while holding
the primordial fluctuation spectrum. In this section, we dis-all other parameters fixed. In th@ panel, from left to right, the
cuss each parameter that we consider and illustrate its mosblid curves are fofd=1, Q=0.5, and2=0.3. The curves in the
salient effect on the CMB spectrum. Figure 1 illustrates the,h? panel are (from lower to upper for Qyh?=0.01,
following discussion. Qph?=0.03, andQ,h?=0.05. In theh panel, the heavy curves is

The first Doppler peak occurs at the angular scale subfor h=0.5, while the other two curves are for=0.3 (the upper
tended by the sonic horizon at the surface of last scattefight curve andh=0.7 (the lower light curvé The curves in the
Since the photon energy density exceeds the baryon enerdy panel are for(from lower to upper A=0, A=0.3, and
density at that epoch, the sound speed of the Universe i8=0.7.

close tO,C/\/E’ so that the sonic horizon corresponds o ajjstance from the present back to the surface of last scatter is
nearly fixed physical scale. The angular scale subtended ynaller in aA-dominated flat Universe than in a matter-
this fixed physical scale will depend on the geometry of thegominated flat Universe. Thus, increasifigshifts the Dop-
Universe. In an open Universe, the angular scale SUbtendEMer peak to |arger angu|ar scales, the OppOSite effect of
by an object of fixed diameter at fixed large redshift scales afpwer Q. This effect, along with the late-time ISW effect
). On the other hand, the causal horizon at last scatter igiduced byA, breaks the degeneracy and enables an inde-
actually Q ~ 2 times as large in an open Universe as it is inpendent determination of all of the cosmological parameters
a flat Universe. Thus, to a first approximation, the flat-directly from an all-sky high-resolution CMB map.
Universe CMB spectrum is stretched by a facfot? to The value ofN,,, the effective number of noninteracting
smaller angular scales in an open Universe. relativistic degrees of freedortin standard CDM, this is
Increasing the baryon densify,h? reduces the pressure equal to three for the three light-neutrino spegiesso shifts
at the surface of last scatter and therefore increases the aifte epoch of matter-radiation equality and thus the height of
isotropy at the surface of last scatter. This reduction in presthe first Doppler peak as discussed above. In addition, if
sure also lowers the sound speed of the baryon-photon fluidy, is changed, the value of the anisotropic stress at early
which alters the location and spacing of the Doppler peakstimes—before the Universe is fully matter dominated—is al-
Increasing the matter densit,h? shifts matter-radiation tered, and this has a slight effect on the ISW contribution to
equality to a higher redshift. This reduces the early-ISW conthe rise of the first Doppler peak.
tribution to the spectrum and lowers and narrows the first The tensor-mode contribution to the multipole moments
Doppler peak. If we knew thak =0, then the combination simply adds in quadrature with the scalar-mode contribution
of these three effect@ressure, sound speed, and redshift ofsince there is no phase correlation between them. The ampli-
matter-radiation equalijywould be sufficient to enable a de- tude of the tensor modes is parametrizedrbyQ3/Q3, the
termination ofQ),(,, andh from the CMB spectrum. ratio of the squares of the tensor and scalar contributions to
The cosmological constant introduces a near degeneradiie quadrupole momehtThe indexn is defined so that the
in parameter determination. Bomd al. [30] stressed that the tensor-mode spectrum is roughly flat at large angular scales
CMB spectrum changed little ih was varied whileQoh?
and Q,h? were held fixed in a flat Universe. Changing
however, does alter the size of the Universe. The conformal Note that this definition differs from that in ReB1].

o N A O O

0 500 1000 0 500 1000
1 1
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for ny=0; it falls steeply near the rise to the first Doppler 6
peak. Thus, tensor modes may contribute to the anisotropy at
large scales, but they will have little or no effect on the
structure of the Doppler peaks. Increasing the tensor spectral= 4
index, ny, increases the contribution at small angular scales\f,
relative to those at larger angles. U2

The overall normalizatio® raises or lowers the spectrum
uniformly. The effect of the scalar spectral index is similarly il ol iy
simple: ifngis increased there is more power on small scales 0 500 1000 0 500 1000
andvice versaThe effects ofa are obvious from Eq(13). 1 (Cosmic Var.) 1 (0,,0n=0-1°)
Finally, the effects of reionization have been discussed in the
previous section.

6|||||||||

IV. ERROR ESTIMATES

Cl(1+1)

We consider an experiment which maps a fractigy of
the sky with a Gaussian beam with full width at half maxi-
mum Gy and a pixel noiseryix=Ss/tyx, wheres is the
detector sensitivity ant,, is the time spent observing each
Orwam X Oewnm Pixel. We adopt the inverse weight per solid
angle,w‘lz(apiXGFWHM/To), as a measure of noise that is
pixel-size independen82]. Current state-of-the-art detectors
achieve sensitivities af=200 uK Jsec, corresponding to an FIG. 2. Simulated data that might be obtained with a CMB
inverse weight ofw 1=2x10"1° for a 1-year experiment. mapping experiment, for beam sizes of 0.3° and 0.1°, and a noise
Realistically, however, foregrounds and other systematic eflevel of w™*=2x10"*.
fects may increase the effective noise level; conservatively,
w1 will likely fall in the range (0.9-4 x 10~ Treating accurately measure the individual values of these higiul-
the pixel noise as Gaussian and ignoring any correlationiPoles. The smoothing here is used for display and is not the
between pixels, estimates 6f can be approximated as nor- Optimal approach for parameter estimation.

0
0 500 1000 0 500 1000

1 (6,,,=0.3°) 1 (6,,,.=0.8°, smoothed)

beam

beam

mal distributions with a standard errf82,33 We now wish to determine the precision with which a
given CMB temperature map will be able to determine the

2 12 e various cosmological parameters. The answer to this ques-
o= 2+ Doy, [Ci+w™ e “b], (200 tion will depend not only on the experimental arrangement,

but also on the correct underlying cosmological parameters
where o,=7.42< 107 3(0 ryyuw/1°). Note that Eq(20) ap- which we seek to determine. For any given set of cosmologi-
plies only if the entire sky has been mapped and then &2l parameterss={Q,Qyh%h,A,ng,r,n7,a, Treion, Q,N, },
fraction 1-f,, has been subtracted. On the other hand, ithe multipole moments;,(s), can be calculated as described
only a fractionf, of the sky is mapped, then the integration @00ve. Suppose that the true parameters which describe the
time per pixel increases by a factor @i andw~! should Universe aresy. If the probability for observing each multi-

be replaced bwilfsky [33]. pole momentC?bS, is nearly a Gaussian centeredCGtwith

In Fig. 2, we show simulated data that might be obtainedstandard errowr;, and fryuu<1 so that the largest multi-
with a CMB mapping experiment, given an underlying cos-Pole moments sampled afe 1, then the probability distri-
mological model of “standard CDM"(see the following bution for observmg a CMB power spectrum which is best fit
section. The “cosmic variance” panel illustrates the multi- by the parametersis [31,34,24
pole moments that would be measured by an ideal experi-
ment(i.e., perfect angular resolution and no pixel npishe P()xexd — 3 (s—%)-[a]-(s—%)], (21)
scatter is due only to cosmic variance. The top-right and
bottom-left panels show multipole moments that might bewhere the curvature matrixx] is given approximately by
measured by full-sky mapping experiments with a realistic
level of pixel noise and angular resolutions of 0.1° and ICI(So) 9Ci(0)
0.3°, respectively. The cosmic variance slightly increases the s Js;
errors at lowet, while the finite beam width is evident in the
increased noise at/700)=(#pwm/0.3°) L in the lower-left  As discussed in Ref.[31], the covariance matrix
plot. The lower-right panel shows the moments from the[C]=[a] ! gives an estimate of the standard errors that
lower-left panel after the total signal is smoothed with awould be obtained from a maximume-likelihood fit to data:
Gaussian window of width/20. This illustrates that al- The standard error in measuring the paramsteobtained
though the individual moments may be quite noisy, an exdy integrating over all the other paramedassapproximately
periment with a beam width of 0.3° can still use the infor- Cﬁ’z. Prior information about the values of some of the pa-
mation in the location and shape of the third peak inrameters, from other observations or by assumption, is easily
parameter estimation. An experiment with this size beam caimcluded. In the simplest case, if some of the parameters are
extract useful information out tb~900, although it cannot known, then the covariance matrix for the others is deter-

1
= —
ij I 0'|2

. (22
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mined by inverting the submatrix of the undetermined pa-
rameters. For example, if all parameters are fixed except for
si, the standard error ig; is simply a;; V2.

Previous authors have investigated the sensitivity of a
given experimental configuration to some small subset of the
parameters we investigate here. For example, Knox investi-
gated the sensitivity of mapping experiments to the inflation-

St
15)
ary parameters)g, ny, andr, but assumed all other param- &
o

)]

eters (including Q, and h) were known[32]. Similarly,
Hinshaw, Bennett, and Kogut investigated the sensitivity to
Qy assuming all other parameters were fi{@b|. These
were Monte Carlo studies which mapped the peak of the'g
likelihood function. Another technique is to repeatedly simu- &
late an experimental measurement of a given underlying”2
theory, maximize the likelihood in each case, and see how
well the underlying parameters are reproduf@d Such cal-
culations require numerous evaluations of the CMB spec-
trum, and so the results have been limited to a small range of
experimental configurations. If any of these analyses are lim-

ar

01 F

001 E

000t |

0.0001
0.1

1

0.001

0.1 1

ited to a small subset of cosmological parameters, they do
not investigate the possible correlation with other undeter-
mined parameters and will therefore overestimate the capa-

bility of the experiment to measure the parameters under g 3 The standard errors f6F. A Q,h?, andh that can be

consideration. . obtained with a full-sky mapping experiment as a function of the
The covariance-matrix approach has the advantage thgtam Width@pyiw for noise levelsy~t=2x 10715, 9% 10715, and

numerous experimental configurations and correlations begx 10714 (from lower to upper curves The underlying model is
tween all the unknown cosmological parameters can be in“standard CDM.” The solid curves are the sensitivities attainable
vestigated with minimal computational effort. For example,with no prior assumptions about the values of any of the other
if there areN undetermined parameters, then we need onlyosmological parameters. The dotted curves are the sensitivities that
N+1 evaluations of the&€,’s to calculate the partial deriva- would be attainable assuming that all other cosmological param-
tives in Eq.(21). Once these are evaluated, the curvatureeters, except the normalizatioQ), were fixed. The results for a
matrix for any combination ofv—! and Orwum for fsky: 1 mapping experiment which covers only a fractibyg,, of the sky

can be obtained trivially. The results are generalized tesan be obtained by scaling Hyg” [cf., Eq.(20)].

fsy<1 by multiplying the results for the curvature matrix by

fory [cf., Egs.(20) and (22)]. Furthermore, the covariance assumptions. First, we consider the case where none of the
matrix includes all correlations between parameters. Thergparameters are known. Then we consider the results under
fore, our results reproduce and generalize those in Reféhe most optimistic assumption that all of the other param-
[32,35,4, and we comment on this further below. eters, except the normalizatidgwhich will never be deter-
mined more accurately by any other observatipage fixed.
Realistically, prior information on some of the parameters
will be available, and so the standard errors will fall between

As discussed above, the sensitivity of a CMB map tothese two extremes.
cosmological parameters will depend not only on the experi- Figures 3 and 4 show the standard errors for various pa-
ment, but also on the underlying parameters themselves. Féameters that can be obtained with a full-sky mapping ex-
illustration, we show results for a range of experimental paPeriment as a function of the beam widtiy for noise
rameters under the assumption that the underlying cosmdevels w™'=2x10"", 9x107 %%, and 4x10 '* (from
logical parameters take on the “standard-CDM” values,lower to upper curvgs The underlying model is “standard
$%=1{1,0.01,0.5,0,1,0,0,0,Qc0ge 3}, WhereQ cope=20u K CDM.” The solid curves are the sensitivities attainable with
is the COBE normalizatiori36]. (It assumes a Harrison- NO prior assumptions about the values of any of the other
Zeldovich primordial spectrum, no tensor modes, no cosmocosmological parameters. The dotted curves are the sensitivi-
logical constant, a flat Universe, and the central big-bandies that would be attainable assuming that all other cosmo-
nucleosynthesis value for the baryon-to-photon ratidter ~ logical parameters, except the normalizati@) ( were fixed.
presenting results for this assumed cosmological model, w&he analogous results for a mapping experiment which cov-
briefly discuss how the results will be altered for differenters only a fractiorf, of the sky can be obtained by scaling
cosmological models. by faa [cf., Eq.(20)].

With the 11 undetermined cosmological parameters we
survey here, some of which are better determined by experi-
ment than others, there is an endless number of combinations
that could conceivably be investigated. Instead of running The results fo) were discussed in Ref31]. From the
through all possible permutations, we present results for th€ panel in Fig. 3, it should be clear that a CMB mapping
standard errors that can be obtained with two extreme sets ekperiment with subdegree resolution could potentially de-

Beamwidth in degrees

V. COVARIANCE-MATRIX RESULTS

A. Total density and cosmological constant
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inflationary theory(or even if(=0.3 as suggested by cluster
dynamic$, then the bulk of the mass in the Universe must be
nonbaryonic. On the other hand, x-ray—cluster measurements
might be suggesting that the observed baryon density is too
high to be consistent with BBIN39]; this becomes especially
intriguing given the recent measurement of a large primor-
dial deuterium abundance in quasar absorption spé¢fia

The range in the BBN prediction can be traced primarily to
uncertainties in the primordial elemental abundances. There
is, of course, also some question as to whether the x-ray—
cluster measurements actually probe the universal baryon
density. Clearly, it would be desirable to have an indepen-
dent measurement 6I,h?. TheQyh? panel in Fig. 3 shows
that the CMB should provide such complementary informa-
tion. The implications of CMB maps for the baryon density
depend quite sensitively on the experiment. As long as
Oewums 0.5, the CMB shouldwith minimal assumptionsat
least be able to rule out a baryon-dominated Universe
(Qp=0.3) and therefore confirm the predictions of BBN.
Beamwidth in degrees With angular resolutions that approach O(hich might be
achievable, for example, with a ground-based interferometry
map[41] to complement a satellite mpm CMB map would
provide limits to the baryon-to-photon ratio that were com-
petitive with BBN. Furthermore, if other parameters can be
termine() to better than 10% with minimal assumptions, andfixed, the CMB might be able to restri€,h? to a small
perhaps better than 1% with prior information on other cos{raction of the range currently allowed by BBN.

mological parameters. This would be far more precise than Current state-of-the-art measurements of the Hubble pa-
any conventional measurement 9f. Furthermore, unlike rameter approach precisions of roughly 10%, and as a result
mass inventories which measure only the matter densitpf systematic uncertainties in the distance ladder, it is un-
Q,, this measurement includes the contribution to the denlikely that any determinations in the foreseeable future will
sity from a cosmological constafite., vacuum energyand, be able to improve upon this result. The panellian Fig. 3
therefore, directly probes the geometry of the Universe. Thishows that, even with minimal assumptions, a mapping ex-
determination follows from the angular location of the first periment with angular resolution better than 0.5° will pro-
Doppler peak. Therefore, our results show that if the Doppleride a competitive measurement; with additional assump-
peak is found to be ak=200, it will suggest a value of tions, a much more precise determination is possible. It
Q=1 to within a few percent of unity. This result will be should also be noted that the CMB provides a measurement
independenbf the values of other cosmological parametersof the Hubble parameter which is entirely independent of the
and will therefore be the most precise test for the flatness adflistance ladder or any cosmological distance determination.
the Universe and thus a direct test of the inflationary hypoth- As a technical aside, we mention that in calculating the
esis. Numerical calculations suggest that the effect of geonsurvature matrix, Eq(22), we choosegh? as an indepen-
etry on the CMB spectrum may be slightly more dramaticdent parameter instead lof and then transform the curvature
than indicated by our semianalytic algorithm. If so, our finalmatrix back to the displayed parameters. The reason for this
results on the sensitivity t&) are a conservative estimate. choice is that the power spectrum dependshoonly indi-

The sensitivity toA is similar. Currently, the strongest rectly through the quantitieQ ;h? andQ,h?, and the linear
bounds to the cosmological constant come fromapproximation to the change in the spectrum in E9) is
gravitational-lensing statisti¢87] which only constraim to  more accurate for the parametél,h?. This parameter
be less than 0.5. Measurement of the deceleration parametehnoice also explicitly accounts for the approximate degen-
do=Qo/2— A could provide some information ok, but the  eracy between models with the same valug)gh? but dif-
measurements are tricky, and the result will depend on théring A [30].
matter density. On the other hand, a CMB mapping experi-
ment should provide a measurement of Lambda to better C. Reionization

than =0.1, which will easily distinguish between a As discussed above. the effects of reionization can b
A-dominated Universe and either an open or flat matter- Iseu Ve, lonizatl an be

. . quantified, to a first approximation, by, the optical
dominated Universe. depth to the surface of last scatter, and there are several
arguments which suggest.i,n=1 [19]. First of all, signifi-
cant reionization would lead to anisotropies on arcminute

The current range for the baryon-to-photon ratio allowedscales due to the Vishniac effe¢R8] or to spectral
by big-bang nucleosynthesi§BBN) is 0.0075sQh? (Comptony) distortions of the CMB [42]. Order-of-
=<0.024[38]. This gives(),,<0.1 for the range of acceptable magnitude estimates for the valuesmf,, expected in adia-
values ofh, which implies that ifQQ=1, as suggested by batic models based on Press-Schechter estimates of the frac-

Standard Errors

FIG. 4. Like Fig. 3, but fora, N,,, 7 eion, @andng.

B. Baryon density and Hubble parameter
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tion of mass in collapsed objects as a function of redshifimits would be similar to limits on the number of relativistic
suggest that,, is probably less than unity19,43. More-  noninteracting species from BBN. However, at the time of
over, the numerous detections of anisotropy at the degreBBN, any particle with mass less than 1 MeV would be
scale[2] also show an absence of excessive reionizationye|ativistic, whereas at decoupling, only those with masses
Assuming complete reionization at a redstiffo,, the op-  |ess than 1 eV would be relativistic, and so the quantities
tical  depth ~with —our standard-CDM  values is o oneq by BBN and by the CMB are somewhat different,
Treior=0-00Feion, AN SO Trejor=1  COMESPONAS & rejon The panel folN, in Fig. 4 shows the sensitivity of CMB
=100. anisotropies to variations in the effective number of nonin-

The 7.e0n Panel of Fig. 4 illustrates that, with minimal " lativisti . t d i Wh
assumptions, any map with subdegree angular resolution wiff/@cting nonrelativistic species at decoupling. When one

probe the ionization historyi.e., Z 4jo:=<1000), and maps takes into account systematic unC(_artainties in primordial el-
with resolutions better than a half degree can restrict th&mental abundances, BBN constrains the effective number of

optical depth to 0.5 or less. While different ionization histo- relativistic (i.e., less than a few MeMheutrino species to be
ries with the same total optical depth can give differentless than 3.938]. Figure 1 illustrates that any mapping ex-
power spectra, as long as the reionization is not too sever@eriment with angular resolution better than 0.5° should pro-
simple damping of the primary anisotropies is always thevide complementary information; if other parameters can be
dominant effect. The lower curves, assuming other paramgetermined or constrained, then the CMB has the potential to
eters are fixed except f@, are flat bt_—zcause at scales S”_‘a”erprovide a much more precise probe of the number of light
thqn _2°, the effects of o, are premsely .degenerate_wnh @ neutrinos at the decoupling epoch.

shift in Q. The lower curves nearly coincide for the different

noise levels because all of the leverage in distinguishing

Treion COMeS at low where the degeneracy wif is broken, E. Inflationary observables
and at these scales the cosmic variance dominates the mea-
surement errors. We have also studied the precision with which the infla-

Although temperature maps alone may not provide gjsnary observabless, ny, andr can be probed. Inflation

stringent probe of the ionization history, polarization maps . - -
may provide additional constraints. The polarization pro_predlcts relations between the scalar spectral intigxthe

duced at recombination is generally small, but that produce&ens_Or spectral indexy, and the ratior [46]. Thgrefore,
during reionization can be much larger. Heuristically, thePrécise measurement of these parameters provides a test of

temperature anisotropy which is damped by reionizatiorinflationary cosmology and perhaps probes the inflaton po-
goes into polarization. Therefore, it is likely that polarization tential [47].

maps will be able to better constraif,, when used in Knox [32] performed a Monte Carlo calculation to ad-
conjunction with temperature maps. dress the question of how accurately CMB anisotropies can
measure the inflationary observables assuming all other cos-
D. Neutrinos mological parameters were known. Here, we generalize the

We have also investigated the sensitivity of CMB results to a broader range of pixel noises and beam widths

anisotropies tdN,,, the effective number of neutrino degrees anq take into account the uncertaint_ies in all qther cosmo-
of freedom at decoupling. The number of noninteracting'©9ical parameters through the covariance matrix.
relativistic species affects the CMB spectrum by changing In Fig. 5, we show the standard errors on the inflationary
the time of matter-radiation equality, although this cannot beobservables that could be obtained with mapping experi-
distinguished from the same effect due to changed,n Mments with various levels of pixel noise and beam widths.
Q,, and A. However, neutrinogand other noninteracting The parameters of the underlying model used here are the
degrees of freedom which are relativistic at decouplinge =~ same “standard-CDM” parameters used in Figs. 3 and 4,
stream and therefore have a unique effect on the growth afxcept here we setr=Q%/Q%=0.28, ng=0.94, and
potential perturbations. This will be reflected in the detailedny= —0.04. We do so for two reasons: First, the tensor spec-
shape of the CMB spectrum, especially from the contributiortral index is unconstrained without a tensor contribution; sec-
of the early-time ISW effect. In standard CDM, there are theond, these parameters will facilitate comparison with the re-
three light-neutrino species. However, some particle-physicsults of Ref.[32]. The solid curves are the standard errors
models predict the existence of additional very light particleshat would be obtained with no assumptions about the values
which would exist in abundance in the Universe. Further-of these or any other of the cosmological parameters. The
more, if one of the light neutrinos has a mass greater than atotted curves are the standard errors that would be attainable
eV, as suggested by mixed dark-matter mo@ié§ and pos- by fitting to only these four inflationary observables and as-
sibly by the Los Alamos experimeif@5], then it would be suming all other cosmological parameters are knoiMote
nonrelativistic at decoupling, and so the effective number othat this differs from the dotted curves in Figs. 3 ang 4.
neutrinos measured by the CMB would?bd,<3. These The dotted curves in Fig. 5 with a beam width of 0.33°
are in good numerical agreement with the results of Ref.
[32]. This verifies that the covariance-matrix and Monte
2In such a case, the massive neutrino would have additional efCarlo calculations agree. Next, note that unless the other cos-
fects on the CMHS]. Although we have not included these effects, mological parameters can be determirfedare fixed by as-
our analysis still probes variations M,, and our results are sug- sumption, the results of Ref[32] for the sensitivities of
gestive of the sensitivity of CMB anisotropies to a massive neu-CMB anisotropy maps to the inflationary observables are
trino. very optimistic. In particular, temperature maps will be un-
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known. This standard error would be slightly larger if there
were no tensor modes included, because as increased
(with the overall normalizatio® held fixed, the scalar con-
tribution is decreased. Therefore, tensor modes decrease the
anisotropy on smaller angular scales, the signal to noise is
smaller, and the sensitivity tQ (and other parameterss

01 k

Now we consider what might be expected if the underly-
ing theory differs from that assumed here. Generally, the
parameter determination will be less precise in models in
which there is less cosmological anisotropy, as reflected in
Q ] Eq. (20).

What happens if the normalization differs from the central
— s S— COBE value we have adopted here? The normalization
o . o raises or lowers all the multipole moments; therefore, from
Beamwidth in degrees Eq. (20), the effect of replacing) with Q' is equivalent to
replacingw™! with w=%(Q/Q’). In Figs. 3, 4, and 5, the
FIG. 5. The standard errors on the inflationary observablesolid curves, which are spread over valuesvof that differ
—N2/02 ; : ! . .
Ns, nr, r=Q7/Qs, andQ that can be obtained with a full-sky py more than an order of magnitude, are all relatively close.
mapping experiment as a function of the beam widium for - 5 the other hand, the uncertainty in the COBE normaliza-
noise levelsv " 1=2x10"% 9x 10715 and 4x 10~ * (from lower o j ) .
. tion is 10%. Therefore, our results are insensitive to the un-
to upper curves The parameters of the underlying model are the ) . D
certainty in the normalization of the power spectrum.

“standard=CDM” values, except we have set=0.28, ng=0.94, . e g
and n;=—0.04. The solid curves are the sensitivities attainable T there is a significant contribution to the COBE-scale

with no prior assumptions about the values of any of the othe@nisotropy from tensor modes, then the normalization of the
cosmological parameters. The dotted curves are the standard err@€alar power spectrum is lower, the Doppler peaks will be
that would be attainable by fitting to only these four inflationary lower, and parameter determinations that depend on the
observables and assuming all other cosmological parameters aoppler-peak structure will be diluted accordingly. On the
known. (Note that this differs from the dotted curves in Fig). #ihe other hand, the tensor spectral index, which is important for
results for a mapping experiment which covers only a fractiontesting inflationary models, will be better determined.

f iy of the sky can be obtained by scaling byg” [cf., Eq.(20)]. Similarly, reionization damps structure on Doppler-peak

able to provide any useful constrainttandn; (and it will ~ @ngular scales, and so if there is a significant amount of
be impossible to reconstruct the inflaton potentiadless the ~ reionization, then much of the information in the CMB wiill
other parameters can be measured independently. Howevde obscured. On the other hand, there are several indications
if the classical cosmological parameters can be determinesimmarized above that damping due to reionization is not
by other meangor fixed by assumptionthe dotted curves in dramatic. In Ref[31], we displayed(in Fig. 2 therein re-

Fig. 5 show that fairly precise information about the inflatonsults for the standard error if) for a model with
potential will be attainable. CMB polarization maps may 7reion=0.5. As expected, the standard error is largert by
provide another avenue towards improved determination ofio more than a factor of)2han in a model with no reion-

the inflationary observabld48]. ization.

The flatness of the dotted curves foandny in Fig. 5 is If A is nonzeroh is small, orQ,h? is large, then the
due to the fact that the contribution of the tensor modes t@ignal to noise should increase and there will be more infor-
the CMB anisotropy drops rapidly on angular scales smallemation in the CMB. If the scalar spectral indexig> 1, then
than roughly 1°. The solid curves decrease Wi,y be-  the Doppler peaks will be higher, but in the more likely case
cause the other cosmological parameters.,(2,h? andh) (that predicted by inflation ng will be slightly smaller than
become determined with much greater precision as the anguity. This would slightly decrease the errors.
lar resolution is improved. If Q is less than unity, then the Doppler pe@hd all the

Of course, the precision with which the normalization of information encoded thereiris shifted to smaller angular
the perturbation spectrum can be measured with CMBscales. Thus one might expect parameter determinations to
anisotropies(even current COBE measuremenis—and become less precise 8 <1. By explicit numerical calcula-
will continue to be—unrivaled by traditional cosmological tion, we find that fo) = 0.5 (with all other parameters given
observations. Galactic surveys probe only the distribution oby the “standard-CDM” valueg our estimates for the stan-
visible mass, and the distribution of dark matter could bedard error for(} is at the same level as the estimate we
significantly different(this is the notion of biasing The dot-  obtained for()=1. Therefore, even if) is as small as 0.3,
ted figures in the panel fa@ in Fig. 5 are the sensitivities our basic conclusions th& can be determined t&: 0.1 with
that would be obtained assuming all other parameters wemminimal assumptions are valid. The sensitivity to some of

n

‘50'01 ] slightly decreased. The effect of variations in other
ol E underlying-model parameters on our results is discussed fur-
2 o y o ; ther below.
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N 0 S — Although we have not done an exhaustive survey of the
[ ] [ 1 likelihood contours in the 11-dimensional parameter space,
Fig. 6 also suggests that there are no local maxima anywhere
near the true maximum. Therefore, fitting routines will prob-

[ ] I ] ably not be troubled by local maxima. This also suggests,
200 1 Hor ] then, that there will be no degeneracy between various cos-
] [ ] mological models with a CMB mafin contrast to the con-

-300 1 enof - clusions of Ref.[30]), unless the models are dramatically
- e me s T e IS BN B different. In this eventwhich we consider unlikely one
Q09 0% 09d 0% 0% 0 et 92 0 \would then be forced to choose between two quite different
i= models, and it is probable that additional data would deter-
mine which of the two models is correct.

-100 -1 200 F -

-2000 |

-4000 VIl. CONCLUSIONS

-6000 1 We have used a covariance-matrix approach to estimate
i the precision with which 11 cosmological parameters of in-
terest could be determined with a CMB temperature map.
We used realistic estimates for the pixel noise and angular
resolution and quantified the dependence on the assumptions
about various cosmological parameters that would go into
FIG. 6. Plots of the log likelihood as a function €I, A, the analysis. The most interesting result is §br With only
Q,h2, andng for the “standard-CDM” model with tensor modes the minimal assumption of primordial adiabatic perturba-
(song=0.94 andr =0.28). Note that the log likelihood looks para- tions, proposed CMB satellite experimef8 could poten-
bolic. tially measure() to 5%. With prior information on the val-
ues of other cosmological parameters possibly attainable in
the other parameters, in particulby is (not surprisingly ~ the forthcoming yeard) might be determined to better than
significantly degraded in an open Universe. 1%. This would provide an entirely new and independent
determination of) and would be far more accurate than the
values given by any traditional cosmological observations.
Furthermore, typical mass inventories yield only the matter
density. Therefore, they tell us nothing about the geometry of
It is an implicit assumption of the covariance-matrix the Universe if the cosmological constant is nonzero. A ge-
analysis that the likelihood function has an approximateneric prediction of inflation is a flat Universe; therefore, lo-
Gaussian form within a sufficiently large neighborhood ofcating the Doppler peak will provide a crucial test of the
the maximum-likelihood point. Equatiof21) only approxi- inflationary hypothesis.
mates the likelihood function in a sufficiently small neigh- CMB temperature maps will also provide constraints on
borhood around the maximum. The detailed functional formA far more stringent than any current ones, and will provide
of the likelihood function is given in Ref32]. If the likeli-  a unique probe of the inflationary observables. Information
hood function fails to be sufficiently Gaussian near the maxi-on the baryon density and Hubble constant will complement
mum, then the covariance-matrix method is not guaranteednd perhaps even improve upon current observations. Fur-
to produce an estimate for the standard error, and a morntermore, although we have yet to include polarization maps
involved (Monte Carlg analysis would be essential. There- in our error estimates, it is likely that they will provide ad-
fore, in the following we indicate the applicability of the ditional information, at least regarding ionization history.
Gaussian assumption for the likelihood. We have attempted to display our results in a way that
First, we note that our parametrization has the propertyill be useful for future CMB experimental design. Although
that the individual parameters are approximately indepena satellite mission offers the most promising prospect for
dent. This is suggested by direct examination of the eigenmaking a high-resolution CMB map, our error estimates
vectors of the covariance matrix. This is also supported byshould also be applicable to complementary balloon-borne or
preliminary Monte Carlo results. Therefore it is simplest toground-based experiments which map a limited region of the
examine the behavior of the likelihood as a function of indi-sky. The estimates presented here can also be used for a
vidual parameters in order to determine if a parabolic apcombination of complementary experiments.
proximation to In{) (the log likelihood is admissible. Although we have been able to estimate the precision
In Fig. 6, we display the dependence ofdi(on several with which CMB temperature maps will be able to determine
parameters of interest. In this example, we usedtosmological parameters, there is still much theoretical work
w1=9%x10"*®and§ pyuu=0.25. As is clear from this fig- that needs to be done before such an analysis can realistically
ure, the functional forms are well fit by parabolic approxi- be carried out. To maximize the likelihood in a multidimen-
mations, within regions of size-3¢ around the maximum sional parameter space, repeated evaluation of the CMB
point. This is sufficient to apply the covariance-matrix analy-spectrum for a broad range of model parameters is needed.
sis to the determination of the standard errors, and our analyrherefore, quick and accurate calculations of the CMB an-
sis above is justified. isotropy spectrum will be crucial for the data analysis. Sev-
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eral independent numerical calculations of the CMB anisotorigin of structure in the Universe and test ideas about the
ropy spectrum now agree to roughly 1P49]. However, earliest Universe. We hope that these results provide addi-
these calculations typically require hours of workstation timetional impetus for experimental efforts in this direction.

per spectrum and are therefore unsuitable for fitting data. We

have begun to extend recent analytic approximations to the

CMB spectrd 9,50] with the aim of creating a highly accu- ACKNOWLEDGMENTS
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