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Relativistic numerical model for close neutron-star binaries

J. R. Wilson
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

G. J. Mathews and P. Marronetti
University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556

(Received 21 December 1995

We describe a numerical method for calculating (8¢ 1)-dimensional general relativistic hydrodynamics
of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a
spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field equa-
tions, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radia-
tion signal is derived via a multipole expansion of the metric perturbation to the hexadeckpdlg ¢rder
including both mass and current moments and a correction for the slow-motion approximation. Using this
expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an
acceleration term in the matter evolution. In the present work we illustrate the method by applying this model
to evaluate various orbits of two neutron stars with a gravitational mass dfiL4tear the time of the final
merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic effects
may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause the
last stable orbit to occur at a larger separation distance and lower frequency than previously estimated.
[S0556-282(96)01412-9

PACS numbes): 98.80.Fk, 04.25.Dm, 04.30.Db, 04.40.Dg

I. INTRODUCTION of state (EOS. Hence, careful modeling is needed which
includes both the nonlinear general relativistic effects and a
Coalescing neutron stars are currently of interest for aealistic neutron-star equation of state. Such calculations can
number of reasons. Several neutron-star binaries are knowse used as a foundation for extraction of the information
to exist in the Galaxy(e.g., PSR 191816 [1], PSR contained in the detected gravity waves and as a framework
2303+46 [2], PSR 212#11C [3], PSR 153411 [4)) in which to analyze possiblg-ray burst models.
whose orbits are observed to decay on a time scale of 1-3 A computation of the hydrodynamic evolution is compli-
X 10° yr. It has been recognized for some tiffle-10] that  cated, however, due to the inherently three-dimensional char-
the final stages of coalescence of such systems could be caeter of the orbiting system. To this end several attempts
pious producers of gravitational radiation. This possibility have been made to model the hydrodynamics of coalescence
has recently received renewed interest with the developmeiin either a Lagrangian smoothed-particle Newtonian approxi-
of next generation gravity-wave detectors such as cryogenimation[24,25 or using conventional finite-difference meth-
bar detectord11], the Caltech-MIT Laser Interferometric ods in the post-Newtonian approximatif@6—29. It is im-
Gravitational Wave Observator.IGO) detector[12], and  portant to appreciate, however, that as the two neutron stars
its European counterparts, GEO and VIRG®g.,[13]) for ~ coalesce the system becomes strongly relativistic, and the
which an event rate due to binary neutron-star coalescenogalidity of Newtonian or post-Newtonian hydrodynamics
out to 200 Mpc could be=3 per yr[6,14,19. It has also may be questionable. In the present work, therefore, we im-
been proposed that such eveffiighen integrated over the prove upon such calculations in that we explicitly include
number of galaxies out to high redshjftsould account for most of the effects of a fully general relativistic treatment.
the observed event rate and energy requirementg-fy Some preliminary discussion of this work has been re-
bursts[16—18. Coalescing neutron stars might even be sig-ported previously30—-35. In this paper we present detailed
nificant contributors to heavy element nucleosynthesis in théiscussion of our method of solving the relativistic field
Galaxy[19,20. equations and hydrodynamics. As an illustration and for
For much of the evolution of a neutron-star binary, thecomparison with existing calculations in the literature, we
system should be amenable to a point source description upresent orbit calculations for two neutron stars with a gravi-
ing post-Newtonian techniqud®1-23. However, as the tational mass of 1.44 each. We find that the last stable
stars approach one another the gravitational fields becomarbit occurs for a separation distarred..4 times larger and a
quite strong and hydrodynamic effects should become sigfrequency smaller than those estimated using the post-
nificant. Indeed, it is expected that the wave forms could\Newtonian approximation. We also find the surprising result
become quite complex as the stars merge. This complexitghat with a realistic equation of state, the strong fields may
however, may be sensitive to various physical properties oinduce otherwise stable neutron stars to collapse into black
the coalescing systefii0] such as the neutron-star equation holes prior to orbit instability and merging.

0556-2821/96/5¢)/1317115)/$10.00 54 1317 © 1996 The American Physical Society



1318 J. R. WILSON, G. J. MATHEWS, AND P. MARRONETTI 54

Il. THE MODEL where we have also employed the maximal slicing condition
tr(K,p) =0 as a gauge choice.

We use Eq.(5) to determine the extrinsic curvature. A

We start with the usual slicing of spacetime into a one-convenient consequence of this is that any geometry which is
parameter family of hypersurfaces separated by differentighitially conformally flat, will remain conformally flat to the
displacements in timelike coordinates as defined in thextent that energy in gravitational radiation is unimportant.
Arnowitt-Deser-MisnefADM) or (3+1) formalism[36,37.  Equation(5) allows us to derive constraint equations for the

For this work we have considered a number of possiblaapse function and conformal factor as described in the next
three-space coordinate systems, e.g., polar, bipolar, sphedection.
cal, cylindrical. Ultimately, we have selected Cartesian As a final condition, we take the coordinate system to be
X,Y,z isotropic coordinates. This is a natural coordinate sysrotating in such a way as to minimize the matter motion in
tem for three-dimensional problems, in that no special pointhe coordinate grid. This condition enhances the stability of
or singularity is introduced. It thus avoids problems associthe computation of the hydrodynamic evolution. However,
ated with finite differencing near coordinate singularities. Itthis is a nontrivial condition to impose in curved spacetime
also has the advantage that the relativistic field equationghich we achieve by boundary conditions ghas described

A. Coordinate system

assume a simpler and more symmetric form. . below. All relevant forces are computed first in nonrotating
With this choice for coordinates, proper distance is eX-coordinates which are then transformed to update the matter
pressed fields in a rotating grid.

ds?=—(a?— ;B dt*+2p;,dX dt+ y;;dxdx, (1)
where the lapse function is a multiplier which describes B. General relativistic field equations
the differential lapse of proper time between two hypersur- For most gravitating systems studied so(&ag.,[38,39),
faces. In the Newtonian limit this quantity approaches unityonly a relatively small amount of energy is emitted by gravi-
and is related to the Newtonian gravitational potential. Thetational waves. Even for the merger of two black holes it is
quantity B; is the shift vector denoting the shift in spacelike expected39] that only a few tenths of a percent of the rest
coordinates between hypersurfaces. The quanijfyis the ~ mass will be radiated away in gravitation. For the case of
metric of the three-geometry. It specifies the distance betwo neutron stars we would not expect any more radiation to

tween points within a hypersurface. be emitted during the last few orbits than that for a two
Here, we introduce an approximation that the three-black-hole merger, i.e., during the inspiral, the radiated en-
geometry is both conformal and flat. That is, we write, ergy per orbit is a minuscule fraction of the energy in orbital
) motion. Furthermore, an explicit treatment of the radiation

Yii= Yy, i 2 reaction is exceedingly difficult38]. To treat the effects of

gravitational waves we use a multipole formali$8v,41.

We use a radiation reaction potential in the hydrodynamics
3) equations to account for the effect of gravity waves on the

system.

where the conformal factos is a positive scalar function "€ implementation of this approximation means that,
describing the ratio between the scale of distance in th@iVen & distribution of mass and momentum on some mani-
curved space relative to our flat space manifold, apdis fold, we first solve the constraint equations of general rela-
the Kronecker delta. This is an approximate gauge conditiolVity (GR) at each time in the calculation for a fixed distri-
which we will henceforth refer to athe conformally flat bution of matter. Then, we let the matter and gravitational
condition (CFO). This approximation is motivated both by fadiation respond to this geometry. That is, we evolve the
the general observation that gravitational radiation in mosflydrodynamic equations to the next time step under an as
systems studied so far is smaB8,39, and the fact that SUMPtion of “instantaneous gravity.” However, at each time
conformal flatness on each spacelike slice considerably sinE€P We obtain a time symmetric solution to the field equa-
plifies the solution to the field equations. tions. , . _ _ ,
To see the way in which the CFC allows us to solve the As an alternative to the explicit coupling of emitted gravi-

relativistic field equations, consider the exact equafitdi t_ational radiation to the _hyo_lrodynam_ic and geometric_evolu-
tions of the system, the initial evolution of the systémhile

:Yij:_za’Kij'i'Di,Bj'i'Dj,Bi’ (4) the gra_witational radiation i_s a small perturbajiazan be
approximated by stable orbits in the absence of energy and
where D; is the three-space covariant derivatip0], and  momentum loss due to gravitational radiation. One can then
Kb is the extrinsic curvature describing the deformation of a(after the fackt compute the expected gradual loss rates of
figure as it is carried forward by one unit in proper time in aenergy and momentum in gravity waves. This latter approach
direction normal to a hypersurface. is applied in some illustrative calculation presented here. In a
Equation(4) is well approximated by a conformal repre- future paper we will apply the former method to describe the
sentation(2) only if the trace-free part of the right-hand side late time merging and coalescence.
(RHS) vanishes. Thus, a spatially flat three-metric requires  Our basic approach to a solution to the GR equations is to
reduce all of the constraint equations to effective flat-space
5) elliptic equations which are amenable to standard techniques.
In what follows we make use of the usual natural units in

and

Yii= i,

2
2aKj=|D;iBj+D;Bi— §7ijDk,3k )
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which G=c=1. Thus, at each time slice we can obtain a P=(I'-1)pe, (12)
numerically valid static solution to the exact GR field equa-

tions and information on the hydrodynamic evolution andwherel is a function of state variable for each zone. With
generation of gravitational radiation. However, the advancehis equation of stat€;7) becomes

from one time slice to the next incorporates the approxima-

tion that the effects of gravitational radiation can be de- a2 _( - )
scribed using a multipole expansion. pr=pWitpeW TW= g (13
1. Hamiltonian constraint For the hydrodynamic Lorentz contracted density,

We begin with the Hamiltonian constraint equatiat©]. Dczl_pnwsand energyE=peW, we introduce the conformal
We use the forms of equations as given by EVi8&. We scaling
show here that the Hamiltonian constraint and the maximal D=¢ %D (14)
slicing condition[tr(K) =0] can be combined so as to form '
elliptic equations for both the conformal factgr and the E:(ﬁ,epé (15)

product @¢).

The Hamiltonian constraint equation can be written The reasons for these choices will be made clear when we
consider the hydrodynamic equations given in Sec. Il C.

_ kil k2 N ;
R=16mpy+K;K! =K, 6 The extrinsic curvature is scaled by
whereR is the Ricci scalar curvature, and Kii :d)—lokij (16)
pnu=phW?—P, (7)  which gives
wherep is the proper baryonic matter density, is the gen- K= ¢—2ki. ) (17
eralization of the special relativistiy factor (W=aU!, . .
whereU* is the four-velocity, P is the pressure, artdis the With the introduction of these scalings, the Hamiltonian
specific relativistic enthalpy, constraint can be written into the desired form:
h=1+¢e+Pl/p, (8)

Vigp=—

27DW¢ 1+ 27TE(FW— F—Wl) $> 6"
with e the associated matter energy above the baryon rest
energy, and® the matter pressure.

The conformal scaling of the three-metric, E8), defines
a conformal metric and manifoldy{ M) related to the physi-
cal metric and manifold ¢,M) (see Refs[40,38). Covari- This can be written in a more familiar Poisson form:
ant derivativesD; and D; on M and M can be related by
calculating the transformation of the Christoffel connections:

KiK'~ (18)

CDII—‘

Vih=—4mpy, (19

P A d R P T in which the source term can be identified in terms of physi-
P =Tjc+2¢ 716Dk + D=7y D¢l (9) cal hydrodynamic variables by transforming the conformal

With this, the transformation of the Ricci scalar curvaturesca“ngs in Eq(18):

is ¢5 (F_ 1) .
R n pP1= 2 DW+E W +FK”KJ . (20)
R=¢ *R—8¢ °Ad, (10 4
whereR=R(y), R=R(%), andA=%D,D;. As mentioned 2. Lapse function
in Sec. Il A, we choose a conformally flat metrig)) = ', We also use the Hamiltonian constraint together with the
for which F'k_>o D,—V, R—0, andA—V?, the flat-space maximal slicing conditiorir (k) =0 to obtain an elliptic con-
Laplacian. straint equation for the lapse functien We begin with the
Solving Eq.(10) for A¢, and combining with the Hamil- identities
tonian constraint gives the desired form for an elliptic e ua
fonfor g PUC CAUN 4= A[ ¢ H(ah)]= DD Ha )] (21)
L ¢t ) =dflA(aqs)—2¢f6“y”f>i¢f),-<a¢>+a¢A<¢*l>.
V2= — 5 [16mpy+K;KI]. (12) (22)

Now, in our conformally flat metric, one can write, for any

In order to put this constraint equation into a form which scalar function, and, in particular, for the quantityd),
is useful for a solution along with the hydrodynamic vari-

ables, we must introduce conformal scalings for the source A(aqﬁ):¢>‘4A(a¢)+2¢‘53/”([5i¢)[|5j(a¢)]. (23
terms. To do this, the equation of state is introduced through
the adiabatic indeX: Substituting this into Eq(22) gives
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Aa= ¢—5A(a¢)+ adA(p ). (24)  Where the source ter® is defined

Now, from the transformation properties of the Ricci curva- _ dei f)ig N 2
ture scala(10), Eq. (24) can be rearranged as Q'=16ra¢"s+ 3 D'#+D'p'— 27 DuBY|,

N - 34

Alag)=¢°Aa+ 5 ad”[Ry™*=R]. (25) (34

. I _ _ whereé= a/ ¢°.
Rewriting th_e Hamﬂ;oman co_qstrau(ﬁ) to include the Equation(33) can be reduced to
CFC and maximal slicing conditions, then leads to a flat-
space elliptic equation ina(¢):
V2,81=—-(—V~,8 +Ql. (35

V2(ad)= } a*[16mp(3W2—2) xS

+16mpe[ 3T (W2+1)—5]+7K;K']. (26)  Thus, by introducing a decomposition gf into
In Poisson-like form this is Bi=B—%ax,. (36)

Vi(ap)=4mp,, (27) _ " _
the following two elliptic equations result:

with the source term written in terms of hydrodynamic vari-
ables as Vy=4%V.B, (37)

a¢p®[D(BW?—2)+E[3I(W?+1)—5] i

7 - These we use to determine the components of the shift vec-
+ EK”— KIJ . (28) tor.

This is the desired result except for the fact that most of

A solution of equation(27) determines the lapse function the momentum encompassed in E(l) and(38) is simply

after Eq.(19) is used to determine the conformal factor. the orbital motion of the binary. We, therefore, define a ro-
tating coordinate system with a rotation-subtracted shift vec-

3. Momentum constraint

With the lapse function and conformal factor determined

from the Hamiltonian constraint and maximal slicing condi-
tion, we then use the momentum constraints to find the shi
vector.

The momentum constraints have the ford8],

Di(K'—»1K)=879, (29

whereD; is the three-space covariant derivativo). S is

tor in which the nonorbital aspects of matter evolution and
relativity (e.g., frame drajgcan be more easily studied. To do
this we decompos®' into a frame-drag ternG' and an

ﬁ)rbital motion term:

B'=G'+(wXr)', (39
and subtract the orbital velocity of the coordinate system
from both sides of Eq(35). Ultimately, we write Eq(38) in

the Poisson-like form

the contravariant material momentum density which is de-

rived from the solution to the hydrodynamic equations, Sec.

Il C. In our maximal-slicing conformally flat conditions, the

second term on the left-hand sifleHS) of Eq. (29) vanishes
and we have
D;K''=87%9. (30)
Using (17) and (9), it can be verified that
DiK'l = ¢~ 1%D;('K)). (31)

Now converting our “conformally flat condition’{i.e.,
Eq. (5)] from covariant derivatives tB?2 or ordinary deriva-
tives, and inserting into Eq31), gives

B I U B
DiK=— Di;(D'ﬁ'JrDJ,B'—gy”DkBk”. (32)
Combining this with(30) then gives
Di[D'A+DIg' - £ 51D, 8Y=Q), (33

V2B =4mph, (40)
where
py=[4ad*S—4BW(D+TE)]
1 o0& (ap op 2  9pk
TmEax \ax T ax 30k 4D

SinceV?(wxr)=0, B' andG' can be used interchangeably
in Eq. (40).

As the meaning of orbital angular velocity becomes ob-
scured in curved spacetime,in Eg. (39) takes on the mean-
ing of a Lagrange multiplier which minimizes the matter
motion with respect to the coordinate system. It only reduces
to the orbital angular velocity in the Newtoniafi.e.,
r—oo) limit. Confining orbital motion to thes,y plane, we
determine the coordinate rotation frequeneyat each time
step from the weighted average of the matter four-velocity
and the frame-drag shift vector:
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r a(xUy—yU,) 4 &E_ r ding Jd . ;
de(D+ E) (1+U /¢4) —d) (XGy—yGX) E__6 E_ﬁt —ggﬁ—xr(d) EV)
0=
2,2 oW W o )
de(DJrrE)(x +y?) b W+EW(¢6WV')}' (50

(42

This rotation is then subtracted from the velocities andMomentum conservation takes the form
added to the coordinate rotation, thereby maintaining a cen-

tering of the stars along=0. S g dng 1 65 \/i)_ P
The fact that the constraint conditions @t9), (27), and o ST @5 i (P7S ) @ oxt
(40) can be written in the form of flat-spaced Poisson equa- J.
tions, allows for these variables to be solved by fast numeri- +2a(D+FE)(W— i) ‘”_”‘er .ﬁ
cal techniques as discussed below. However, their solution W/ ax' I ox!
requires that boundary values for these variables be specified
at distances relatively close to the neutron stars. Our method —W(D+FE)@—— aW(DJrFE)(?_X (51)
of determining the boundary values is described in Sec. ox' ax"’
IIF2.

where y is the radiation reaction potential, which is de-
C. Relativistic hydrodynamics scribed in Sec. Il E. Note that the repeated occurrences of the

. . . ¢°® factors simply account for proper volume factfpsoper
To solve for the fluid motions of the system in curved volume = ¢5(dx)3]. This is the reason for the choice of

spacetime it is convenient to use an Eulerian fluid descriptio'&onformal scalings introduced in Eq44) and(15). That is
[42]. We begin with the perfect fluid stress-energy tensorWe preserveﬁ, E, andéﬁ when ¢ is changed.

which in covariant form can be written Our routines for evolving the hydrodynamics have been

T,,=(p+pe+P)U,U,+Pg,,. (43) previously very well tested at the spe_cial relativistic Ievr—;l in

[32,43—-48, where the hydrodynamics method described

By introducing a set of Lorentz-contracted state variableshere was used to simulate relativistic heavy ion calculations.

it is possible to write the relativistic hydrodynamic equationsin that work, shock-wave solutions were compared for both
in a form which is reminiscent of their Newtonian counter- decelerating and accelerating shocks. For the former case,
parts. The hydrodynamic state variables are the coordinatéae numerical results were accurate to better than 1% over

covariant baryon mass density the range of special relativistig¢ factors from 1 to 10, i.e.
Eerma=0—10pc2. For the case of shocks accelerating mat-
D=Wp, (44 ter, errors increased to 1% for>2.

A shock-tube calculation was made using a constant adia-
batic index of'=2. The density ratio was 100:1, and the
_ initial thermal energy density of the dense matter was equal
E=Wpe, (45) e ) . ) .
to the initial baryonic density. The compression ratio of the
the three-velocity shocked bow density material was 8% too high. The rest of
the density profile was accurate to better than 1%. Relativis-

the internal energy density

i U; : tic shock-tube solutions were also calculated to test the ac-

Vi=a ¢>4W_’8 , (46) curacy of the rarefactions. Again, in the range of interest

(Etermar= pC?), the overall agreement of numerical results

and the momentum density with exact solutions was of order 1%.

On the basis of these results, we anticipate all shocks

S=(D+I'E)U;, (47)  occurring in the neutron-star coalescence will be treated with

) ) sufficient accuracy. Numerical errors are not Lorentz invari-
whereW is a Lorentz-like factor ant, but tests for invariance have shown that our numerical
2 112 methods are reliable for changes of frame by a factor of a

W= aUt= 1+2 &4 ’ (48) few in rapidi_ty. In the present work we have _extended_ th(_e
¢ hydrodynamics to curved space. However, this extension is

) ) o ) straightforward and we do not anticipate any new instability
andI' is an adiabatic index for the equation of Stif.  or unacceptable inaccuracy to be introduced thereby. For the

(12)]. . . calculations described here there is little fluid motion and no
In terms of these state variables, the hydrodynamic equastrong shock in our rotating frame.

tions are as follows: The equation for the conservation of

baryon number takes the form D. Equation of state

dD dlng
Fa

For the orbital calculations presented here we use the zero
temperature, zero neutrino chemical potential equation of
state from the supernova numerical model of Mayle and Wil-
The equation for internal energy conservation becomes  son[47,48. While the orbital calculations of concern in this

19 6pvi 49
T‘?W(‘ﬁ ). (49)
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TABLE |. Zero-temperature equation of state. Neutron Star Parameters

p (gcm™2) e (ergg ) P (dyne cni ?) r 45

1.4656x 102 1.1332< 10'° 4.3839x 10%° 1.2639 4ot

2.1512< 10" 1.2429< 10'° 6.6872< 10 1.2501 ss b

3.1575<10%  1.3578x10% 1.0153<10° 1.2368 ol p

4.6345< 1012 1.4775< 10 1.5364% 10° 1.2244 ‘ o

6.8024x 10'2 1.6016x 10'° 2.3244x 10° 1.2133 25

9.9847x 10" 1.7346< 10" 3.6993x 10°* 1.2136 20} M,

1.4656x 103 1.8714x10'° 5.6944x 10°! 1.2076 is y

2151210 2.0241x 10 9.2761x 10° 1.2130 N

3.1575< 10" 3.3004x 10%° 1.0549< 10°2 1.1012 E— F

4.6345< 10% 1.2097x 10° 8.0239%x 10! 1.1431 05 "

6.8024x 10" 1.2750< 10" 1.1593x< 10% 1.1337 00 -

9.9847x 103 1.3474< 10" 2.2347 10% 1.1661 otz 14 s 151 (e 24 B %0

1.4656x 10 1.4785< 10° 6.4224x 10°2 1.2964

2.1512<10" 1.747710% 2.2614<10% 1.6015 FIG. 1. Various parameters characterizing isolated neutron stars

3.1575< 10" 2.3671x 10" 7.0623<10% 1.9449  with the adopted equation of state as a function of the central

4.6345< 10* 3.5634x 10"° 1.8609< 10** 2.1268  baryon densityp.. Mg andMg are the baryonic and gravitational

6.8024x 104 5.6410< 10'° 4.6988< 10> 2.2245  masses, respectively, in units bf, . The radius is given in both

0.9847x 104 0.1848x 10° 1.1911x 103® 2.2988 Schwarzschild coordinatess and in isotropic coordinates, in

1.4656x 1015 1.5307x 1020 3.0204x 10%° 2.3464 units of 10 km. Also shown are central values for the minimum

2 2850« 105 2 7681x 10%° 8.9079% 10% 2 4078 lapse functiona, and the total mass energy density=p(1+ €)

3.1575¢10%  4.5386x 10%° 2.1148< 10° 24757  (in units of 16°g cm™).

4.6345< 10" 7.7418<107° 4.6612< 10% 2.3016 ) _ _ _ )

8.1628< 1015 1.2080% 102 1.4007% 1057 21238 calculation was compa_red w_|th a one-d|men3|onal spherical

9.9847x 105 1.8434¢ 1021 2 0691 1057 2 0865 hydrodynamic calculation with fine zoning. For the same

baryonic mass, 1.8, the gravitational masses agreed to
0.7%, i.e., yielding a gravitational mass of 1IM§ and 1.46

paper should only involve zero temperature, there is som& o for the three-dimensiondBD) and 1D calculations, re-
small shock heating of the stars as they adjust to changingPectively. This we take as indicative of the accuracy of the
conditions on the grid. Thus, we augment this equation ofalculated gravitational binding energy of the binary system
state with a thermal componeritaken to behave as a as well. Figure 2 shows the density profile for a single iso-
I'=5/3 ga$ in order to follow the dynamic evolution equa- lated Mg=1.45M neutron star with the adopted equation
tions. Thus, we write

P=Po(p)+ 5 ple—e€o(p)],

(52

of state.

E. Gravitational radiation

whereP, and ¢, are the zero-temperature pressures and en- In general, it is possible to express the emission of gravi-

ergies.

Table | gives the the zero-temperature value®gf g,

tational radiation in terms of an “exact” expansion of mul-
tipole moments of the effective stress-energy tensor, includ-

andI’ vs p. In Fig. 1 we present the baryonic malsks,
gravitational masd g, the stellar radius in Schwarzschild
(rs) and isotropic ;) coordinates, the lapse functien and
the total mass energy densitf1+ €) as a function of the
central density of an isolated neutron star. From this figure it
can be seen that this equation of state gives an upper limit to
the gravitational mass of an isolated neutron star of
Ms=<1.60My. (Note that this value supersedes the lower
value previously quoted if34].) This limit roughly agrees
with the upper limit of the smallest range of neutron-star
masses which overlaps all observational determinations. The
fact that this upper limit is close to the typically observed
neutron-star maddl s~ 1.49M  has important consequences
for the examples considered below.

The three-dimensional calculations reported here have

only about 15 zones in radius to represent each neutron star.

10

16

Single Star Profile
M, =1.45

0.0

20

4.0

650 BTO
r; (km)

10.0

As another test of the accuracy of our three-dimensional cal- £, 2. pensity profile as a function of raditis isotropic co-

culations, therefore, a hydrodynamic calculation was mad@dinatesr,) for an isolated neutron star with a gravitational mass
of a single star using typical zoning in three dimensions. Thigy 1.48M .
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ing corrections for the so-called ‘“slow motion” then the Einstein field equations take the form
approximation[41]. It is important to appreciate that these
formulas apply to strong-field sources as well as to weak-
field sourced49,41 as long as the relevant components of
the effective stress-energy tensor can be identified. Since, in ) )
the present paper, we are only concerned with orbital motiotthere 7% is the “effective stress-energy tensof41].
of equal mass binaries, the multipole expansions reduce to As long as the de Donder condition is valid, E§9) can
only a few nonzero terms. These we evaluate and test fdpe inverted(using the flat-space outgoing Green's funcfion
convergence of the expansion. We summarize below the agnd the Green's function expanded in terms of vacuum basis
pects of[41] which are relevant to our model. functions. The resultant expression can then be reditHd

In any coordinate systerfsuch as the one we are using t0 provide expansions for the desired mass and current mo-
here in which the gravity waves far from the source can beMents:
characterized as linear metric perturbations propagating on a
flat background, the transverse traceless part of the metric 167 (I+1)(1+2)\1?

. . .. . m_ Imx 143

perturbation characterizes the radiation completely. This | NEE ( 20— D)l ) J TooY | rd°X
metric perturbation can be expressetl] in terms of the

Oh*f= — 167 1P, (59

o0

mass multipole '™) and current multipole momentsS{") 167
as + . (19t)2kf 7_pqr|+2k
&5 2%k (21 + 2k+ 1)1
o |
1/2
thkT:Z Z [r—1(|)||m(t_r)-|-ﬁ(2,lm y (21+2k+1) [ (1+1)(1+2) 21— 2ims
S5 M=t 2(k+1) \2(21—-1)(21+1)] Pa
- I
+r - H08mMt—r) TR, (53 L[ 30-Dd+2) R, 2k
o1—1 pq
where the superscript T denotes the transverse traceless (21=1)(21+3) 2l +2k+3
part of the metric perturbation and the notatidi4'™ and 1(1—-1) V2 atms |
r(r:)esr:tnsdemte thekth time derivative of the respective mo- X 202+ 1) (2113 Tog 7 |d%X, (60)
From this, the general expression for energy loss is and
o |
dE 1
azﬁlzzz mzz_l <|(I+l)|Im|2+|(|+1)slm|2>’ (54) . — 327 (|+2)(2|+1) 1/2
S+ i20-1)(1+1)

where the angular brackets denote averages over several

wavelengths. Angular momentum loss can similarly be writ- X | €ipgXo( — Toq)Yzfl,lm* =13y

ten
i = - 167i
dJ i 2k+1j I+2k+1
_ !l [ [ Hal [ | +
0 32ny 2, (1T (S TmST), & K2+ 2k Dy W) Tod
(59 12
X 1 I+2 ) 21-1Imx
where the expressiofb5) assumes an alignment of the an- 2(k+1)\21+1 pa
gular momentum vector with the axis. 1 |_1\12
The radiation reaction potentigl for Eq. (51) can be + 21+ 1Imx | 43y (61)
written 21+2k+3\21+1 pa '
w
1 h the Y™ are the usual spherical harmonics, and
_ (D Im2 [0+ Dgimi2y (5 wnere p )
X 327T|:22 m;—l x| [*+] %). (56 T2LIMm* are the pure-orbital tensor harmonics as defined in

[41]. The first integral in Eqs(60) and (61) is the usual

Our problem then reduces to the identification of the relevangpherical harmonic expansion. At the=2 level, Eq.(60)
mass and current moments in our coordinates. For an asympaduces to the well-known quadrupole approximation. The
totical_ly Minkowski coordinate system, one can define asecond integral in Eq$60) and(61) is the correction to the
quantity slow motion approximation, which is non-negligible in the

_ present application, i.ev/c”0.1.

h*f=—(-g)Yg*’+ n**, (57) To evaluate the time derivatives of the mass and current
multipole moments we make use of the rotation properties of
spherical tensors, whereby rotations can be generated in
terms of the WigneD matrices:

where g is the determinant of the metric ang®? is the
Minkowski metric tensor. Ifh*? satisfies the de Donder
gauge condition

o = T
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wherelgn' and S'Om' are evaluated in the rotating frame. For ~ TABLE II. Contributions to energy and momentum losses from
stable orbits(neglecting gravitational radiatiorand hydro-  the orbit calculation with)=2.7x 10" (cm?).
static stars, these are time-independent quantities.

The main contribution to the time derivatives is that dueEwt (Mo sec™) 6.11x10 °
to orbital motion. Evaluation of the orbital motion reduces toEi22 6.32<10°°
derivatives of theD!  which for our coordinates have a Esu —2.2x10°*
simple ~ cosfnwt) dependence. Eias 2.0x10°’

The problem with evaluating Eq&0) and(61) is that the  Esgz, 3.3x10°8
multipole moments are only defined in the de Donder gauge,,, 2.2x10° 1

and not for our conformally flat coordinates. Furthermore,:

even if the transformation to our coordinates were straightJtot (CM 1.07
forward (which it is nob, the effective stress-energy tensor Jiz2 1.11
would not be known. Jsm —0.034
Fortunately, however, a transformation to the de Dondeg,,, 3.6x10°°
coordinates is not necessary. It is only necessary that the,, —5.8x10°°
moments of the metric coordinates be defined in a coordinatg 4.2X10°°

system which, such as a de Donder coordinate system, is
asymptotically Cartesian and mass centef&CMC). In

[41] it is proved that in such coordinate systems and the
covariant metric components are time independent and e>g
pandable into a spherical harmonic r(iLstructure in terms N
of the same momenfse., Eqs(60) and(61)] relevant to the
radiation field. Furthermore, these multipole moments ar
invariant under transformations between two ACMC coordi- . . L .
nate systems. From these expansions we can deduce tﬁgrrectlons with the Newtonian-like counterpartlso, Le., we set
source for the slow-motion moments to be used in the equal®i = 10j 7ij=Tij. We compute terms out te ™, which

tions for the radiation field(54) and (55). For example, the Include mass multi.poles out tf;: 4, current multipol_es outto
spatial three-metric must ob@¢1] I =3, and the leading correction for the slow-motion correc-

The contribution from the current moments is expected to
small as is the slow-motion correction. Therefore, we are
mainly concerned with estimating the magnitude of those
econtributions. To the accuracy desired, we identify the
source for the current momen8™ and the slow-motion

tion.
N 12 In Table Il we summarize the relative contributions of
1 |@2-nn 2(1-2)l X
Yii= i +2 1 | I various moments to the energy and angular momentum loss
=or 2 (I+1)(1+2) rates. As expected, the quadrupole term dominates. The next

largest term is the slow-motion correction which contributes
(63) only a few percent to the gravitational radiation and tends to
decrease the loss rate.

|
X > 1'mymy(|—1 pole+---+(0 pole

m=—|

On the other hand, our spatial three-mefkg. (2)] can also
be expanded as the fourth power of a multipole expansion of F. Numerical methods

the flat-space Poisson equation #iEq. (19)]: The elliptic equations for the field and differential evolu-

4 tion equations for the hydrodynamic variables were finite
gy -+ | s differenced in a Cartesian grid. The intrinsic state variables,
! D,W,E,T",a,¢, are treated as zone-centered quantities,
(64)  while the four-velocityU; and momentum densitieS, are
node centered. The shift vectgt and the three-velocity/
where are face centered. After finite differencing, the elliptic equa-
tions are reduced to a matrix equation

qIm:J d3Xpl(X)r|Y|m*, (65) M- x=Db, (67)

1+§ é am

W= =t 2 o

andp, is the source term fop [Eq. (20)]. If we collect the

dominant linear terms in Eq$63) and(64) according to the whereM is a sparse matrixg is a vector representing the
recipe given in[41], then we can identify the relation be- relevant field variable at each zone, dnid derived from the
tween the sourcp; for the conformal factor elliptic equation source terms. This equation can then be solved using any one
(19 and the mass multipole moments, i.e., of a number of fast matrix inversion techniques.

When we solve the elliptic equation fgr, the coordinate
densityD is adjusted so as to preserve the conformal scal-
ings, Egs.(14) and (15). That is,D = ¢°D is kept constant,
which preserves baryon number. Also, the coordinate energy
This identification also reduces to the correct Newtoniandensity is changed to preser\zﬁGF.E and the momentum
limit. As can be seen from Eq20), p;— p/2, wherep is the  density is changed to preservéS', which maintains the
Newtonian matter density, so thago— p as required. entropy.

1/2
Im

jim_ 32w ((|+1)(|+2) 66

Sl+nn 20—l
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1. Extracting physical observables tion over the grid. For stars well separated on the grid, this

The gravitational mass we obtain from the asymptotic be residual source typically accounts for onIy. a few percent of
havior of ¢— 1+ (GM/2r) [cf. Eq. (64)]. The angular mo- the tptal boundary yalue. Also, the spherical harmonic ex-
mentum is more difficult to define. We estimate this from anPansion for the residuals converges faster than that for the
integral over the spacetime components of the stress-enerWSUb"aCted source function. Hence, a truncation of the ex-

tensor[37], neglecting angular momentum in the radiation Pansion td =4 is sufficiently accurate.
field: A Gaussian source profile turns out to be an excellent

approximation in the early stages before the neutron stars
i 0l —i0ui be_zgin to coalesce. _In future calculations in which the stars
J —J (T =T")dV. (68)  will be followed until they merge, however, they will more
closely represent a single source function. At some point in
Aligning the z axis with the angular momentum vector then the calculation it will become expedient, therefore, to apply

gives the spherical harmonic expansion directly to the unsubtracted
source function.
_ e We note that the expansion of the three-meliiq. (63)]
J f (xS =ySHdv. (69) requires that the asymptotic form fgr obeys
iti m
2. Boundary conditions b1t 2_;3 (72)

As noted above, our choices for the metric and slicing
condition lead to a form for the Hamiltonian and momentum
constraints in terms of flat-space elliptic equations, i.e., Eq
(19), (27), and(40), for the metric variablesp, (a¢), and
B'. A solution to these elliptic equations, however, requires Mg
that we specify values fop, (a¢), andg' along the outer a—1- T (73
boundaries of the grid. For a Poisson-like equation, the field
variables could be specified by integrating the source funcin order that our time coordinate becomes proper time as
tion over the interior: e.g., r—oo. The Poisson equatiof27) for (a¢) can also be ex-
panded in spherical harmonifs.g., Eq.(71)], yielding

Similarly, from the ACMC expansion fagqg[41], the lapse
Sfunction must approach

¢(x)=j PIX) 5 (70)

|x—x']| m

ad
2r '’

(ad)—(ad).— (74)

However, the evaluation of this integral for each point along
the boundaries is computationally slow. In principle, an ex-where m,,, is the volume integral over twice the source

pflin:lsion of the source function in spherica! harmonicspz_ Since, in generalm, ,#mg, we choose the boundary
Y'™M( 6, $) could be applied to obtain the field variables along¢ondition

the boundaries: e.g.,

My
- (79

0 | o )OO:
pOO=1+20 > ;T”lr—““)q'mv'm(o,cﬁ). (7D o
=
to guarantee that E(73) is satisfied. For the systems studied
However, the convergence of a spherical harmonic exparhere, (@¢)..~0.98.
sion for a source dominated by two separate nearly spherical In our computation of the boundary conditions, we im-
distributions is quite slow. In order to accommodate thesgose a spherical cutoff in the matter distributions at a radius
two features, we employ a combination of them which isequal to the largest sphere that fits within our cubical grid.
numerically efficient even at distances relatively close to thelhis avoids the possibility of a spurious hexadecapole mo-
neutron stars. ment associated with the cubic grid employed in the calcu-
In the equations forp and (¢ ¢), the boundary values are lation. For matter terms this is a reasonable truncation for the
dominated by contributions from the effective point sourcecalculations presented here, since only a negligible amount
potential from each star. Our method of specifying theof matter appears beyond the surface of the neutron stars.
boundary for¢ and (a¢), therefore, is to first make a best However, theK;;K" terms in Eqs(19) and (27) contribute
fit to the source densityp; or p,, of each star with a trun- beyond the matter boundary. Also, the shift vector elliptic
cated spherical Gaussian profile located at the source-densigguations,(37) and (38), involve a source which extends
center of mass in each half of the grid. The boundary valuebeyond the source boundary.
on the computational grid then begin with the sum of the two  Regarding theK;;K" terms we note that these terms are
point-mass contributions from the truncated spherical Gaussmall. For example, the contribution to the gravitational
ian profiles for each star. This provides a simple analytionass from an integration over the interior source function is
contribution around the boundary for the bulk of the sourceonly ~0.000M,. Furthermore, the asymptotic form for
These Gaussian density profiles are then subtracted froi;;K" should decay as 9. Assuming this form, we esti-
the source density to yield a residual density. An expansiomate that the exterior contribution from thg;K" term is
in spherical harmonics up to=4 [Eq. (71)] is then utilized <10 °M, and can, therefore, be neglected in the examples
to compute the contribution from the residual source func-considered in this paper.
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Regarding the solution for the shift vectidggs. (37) and TABLE Ill. Parameters characterizing the orbit calculations at
(38)], we note tha¥ - 8 is small and changes sign across thethe final edit.M is just the total mass of the binary divided by 2.
grid. This means that the variabje asymptotically goes to
zero. Hence, we imposg=0 along the boundary for Eq. J (cn?) 2.2x 10 2.3x 10 2.7x 10
(37). A solution forB' requires that we specify the boundary
condition for the “drag” componenG'. For this we note Mg (Mo) 1.598 1.598 1.598

thatG' behaves as an angular momentum density and shou (GHS\AQ) 14‘3%)6 13“1%0 12'253
scale along the boundary as 122 () L 10¢ 1018 128410 5 31% 1018
4yJ 4xJ d, (km) 338 34.8 57.0
G=-—3, G=—3. (76)  dp (km) 39.4 40.6 53.0
Pmax (g cm™3) 2.03<10" 27010  1.93x10"
Winax 1.070 1.090 1.085
Ill. ORBIT CALCULATIONS Amin 0.440 0.379 0.463
It is a nontrivial endeavor to find initial configurations for S 1.90 2.05 1.84
the two neutron stars prior to coalescence. Our method coll'’ (cm) 1.03x10f 6.76<10° 9.60< 10°
sists of placing two neutron stars on the grid with a rotationaF (Mo sec ) 0.016 0.0040 0.0061
velocity sufficient to keep them in orbit and an initial Jit (M) 1.23 0.607 1.07
“guess” density profile from a solution to the Tolman- Orbit Unstable Stable Stable
Oppenheimer-Volkoff-like equation for two single neutron Stars Unstable Unstable Stable

stars in our isotropic coordinates. The conversion from single
star solution to a binary solution is achieved by allowing the

stars to relax to an equilibrium configuration on the grid.0f 100<X25x25 zones for the matter and 160X 50 for
That is, the field equations are then solved and the hydrodyhe field variables. We make use of reflection symmetry in
namics evolvedwithout the radiation reaction potential and the orbital plane. Also, since here we study equal-mass bina-
with viscous damping of the fluid motiorntil equilibrium ~ fies, we exploit reflection inversion symmetry through the
is achieved. For the examples to be presented below, w@Xis joining the centers of the two stars. In effect, this calcu-
follow the time evolution of the system with constant angularlation then is equivalent to a three-space grid of zones.

momentum until it has settled down. As the stars settle down Initial conditions for two 1.6M ¢ baryonic mass neutron
the damping is slowly removed. stars were obtained from the isotropic-coordinate form of the

Tolman-Oppenheimer-Volkoff hydrostatic equilibrium. Two
single-star solutions were then placed on the grid and the
hydrodynamic and field equations evolved with viscous

In this paper we are presenting principally the method ofd@mping until a new quasiequilibrium configuration was ob-
solving the field equations and hydrodynamics for binarytained. In practice, this need only be done once for a selected
neutron stars. As examples, we also discuss below three ilnitial angular momentum. Subsequent orbits are then calcu-
lustrative calculations made at selected values of the orbitddted by perturbing the angular momentum and allowing the
angular momentum with no radiation damping of the orbits.System to relax to a new stable configuratidione exists.
Highlights of these results have been presented previously The first calculation was made with an orbital angular
[34]. Here, we supply more details of the application of themomentum of 2.X 10" cm® The stars settled down into
method. what appeared at first as a stable orbit, but lakess than

In these calculations the neutron stars are taken to be @mne complete orbjtthe stars began to slowly spiral in. For
equal mass. The baryonic mass was selected so that in isBls system the angular momentum was not enough to sup-
lation each star has a gravitational mass of M45 Al- port the orbit. Parameters characterizing this binary at the
though the calculations presented here ignore radiatiofinal time slice calculated are given in Table I(Note that
damping, during most of the evolution the radiation dampingthis table supersedes the table[Bb] where lower values
is small. Therefore, the stars should follow a sequence oWvere quoted for the central densitleShe stars were fol-
quasiequilibrium configurations which closely match thelowed to a coordinate separatiah~34 km which corre-
equilibria computed here. These equilibria can be analyzeg@ponds to a ratio of proper distance to total isolated mass of
to obtain the rates of energy and momentum losses. Ultithe systenm=2Mg of d,/m=9.2, whereM, is the gravi-
mately, the implied orbit decay could be used to infer thetational mass of a single isolated neutron star. By this time it
approximate time evolution through this sequence of quasicould be concluded that no stable orbit would result. Note
equilibrium orbits. that the minimum coordinate light speed¢? is only 0.23

We have placed the stars at various separation distancés this case.
on the grid and only run the calculation long enough to check Figure 3 showsx,y contours in thez=0 plane for the
whether the system obtains what would be a stable orbit ifmmydrodynamic densityd and the metric variables, and
the absence of gravitational radiation. In total for the threep?. Countours are drawn for the final time slice calculated,
orbit calculations presented below, we have followed theor this angular momentum and the other two cases studied.
stars through more than 20 revolutiofsith roughly two We note that even at the last time calculated, the stars are
hours of Cray/YMP CPU time per orbito ensure that the still quite far apart, i.e., the ratio of coordinate separation
orbits have had time to settle down. We have utilized a griddistanced, to their single-star radiug], /r;=4. Even in a

IV. RESULTS
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30 1 2. T > 1=27x10" (cm?)
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Newtonian hydrodynamic calculati¢B0], one would expect corotating, as the stars relax to their equilibrium orbit, they
at most a few percent tidal distortion at this distance. Theacquire net rotation relative to the orbital motion. The net
distortion is made even less, however, by the strong relativfluid motion is still much greater than the collapse velocity
istic gravita‘[iona| field(evidenced ina and ¢2 in F|g 3) which is more than an order of magnitude slower than the
around the stars. We also note that the central density in- L
creased continuously as the stars spiraled in. The orbit decay 151 U.-U j=23
time, however, is shorter than the collapse time. Thus, it 1. Y )
seems likely that neither the stars nor the orbit are stable for

this system as summarized at the bottom of Table IlI.

The next calculation was made with an angular momen-
tum of 2.3x 10" cm?. The orbit now appeared stable as
summarized at the bottom of Table IIl. However, after about
1-2 revolutions, the central densities were noticed to be ris-
ing. By the end of the calculation the central baryonic den-
sities had continuously risen to about 270" g cm™3
(=10 times nuclear matter densitywhich is near the maxi-
mum density for a stable neutron staf. Fig. 1). It appears
that neutron stars of this mass range and the adopted equa-
tion of state may continue to collapse as long as the released
gravitational energy can be dissipated. For this orbit the stars
are at a separation distancedyf/m=29.5, far from merging.
However, the nonlinearities in the gravitational field have
pushed the stars over the critical density for forming a black
hole. By the time the calculation was ended, the minimum
« had diminished to 0.379 angi® risen to 2.05, correspond-
ing to a minimum light speed of 0.18. Figure 3 shows the
stars as somewhat more compact objects which are continu-
ing to collapse.

The final calculation was made with the angular momen-
tum increased to 2:710' cm?. As can be seen in Table IlI
and Fig. 3, the stars at this separatidyym=12.4 appear
both stable and in a stable orbit. Note that even for this
distance, the gravitational fieldx(and ¢) remains strong.

Figure 4 shows vector fields fdd,,U,, V,,V,, and X (km)
BBy for the calculation withJ=2.3x 10" cm?. Figures
for the other two runs look quite similar. The maximum
value of the covariant velocity By, Uyl =0.9. The contra-  5_; 3, 1011 ¢m2, The various figures are fola) four-velocity
vangnt three-veloc'ltles shpw the net flu'ld motion aﬁer S“_b‘ux,uy (showing the overall orbit motion (b) the rotation sub-
traction of the orbital motion. The maximum ma_gn'tUde IS tracted contravariant three-velocit§*, V¥ (showing the corotation
[V, Vy| =0.07. We note that even in the corotating frame,ang collapse of the fluid and (c) the rotation-subtracted shift vec-
Vy,Vy exhibits some rotation. Although the stars are initially tors g, ,By (showing the relativistic frame drag around the star

e b
x 10" (em?) [

Y (km)

FIG. 4. Vectors in the,y orbit plane around the star centered at
x=—17.4 km. This is at the final time calculated for the binary with
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maximum vector shown here. A peculiar aspect of the velocthis analysis, however, is that we have assumed zero-thermal
ity field in the rotating frame is that the fluid appears to beenergy as the stars collapse, that is, we have assumed that
circulating about a vorticity which does not coincide with the neutrino emission is efficient enough to radiate away the
central extrema in density or field variables. It also appearseleased gravitational binding energy so that the stars remain
that the parts of the stars most distant from the companioeffectively cold.

rotate in an opposite sense, generating a second vorticity.
The shift vectors are also plotted with the rotation subtracted.
What remains is frame drag around the star due to its rotation

which has a maximum amplitude of 0.015. It is also slighty Much of the early evolution of a neutron-star binary
offset from the centers of the stars. should be describable with post-Newtonian techniques.

However, one desires an understanding of where in the evo-
lution the post-Newtonian approximation diverges from a
fully relativistic treatment. For this reason it is of interest to
Having observed the Collapse instability numerically in compare the results here with those obtained by a post-
the neutron-star binary, one, of course, would like to have ajewtonian treatment. We caution, however, that such a com-
least a qualitative understanding of the source of this deviaparison is ambiguous. The two formalisms invoke different
tion from Newtonian intuition. Here, we present a heuristicgauge choices. Hence, parameters can have different mean-
explanation of the observed increase in density as the stafggs.
approach each other. We trace this increase to the effects of Qur intermediate orbitJ=2.3x 10'* cm?) appears to be

the Lorentz-like factoM/”— 1. This factor accounts for the on the verge of the transition from steady inspiral to unstable
specific kinetic energy of the orbital motion of the stars. Itsplunge. Therefore, it is convenient to compare these results
effect is to increase the effective source strength. with the (posh ¥>Newtonian analysis of this transition in an
From Eq. (13 the Hamiltonian densitypy; has a term  equal mass binary as given in R¢R2]. In that paper a
(W?—1)(p+ pel’) which enters into the source term for  search was made for the innermost stable circular orbit in the
¢. Similarly, the source for the Poisson equation fai#)  absence of radiation-reaction terms in the equations of mo-
[cf. Eq. (26)] has a term W?~1)x3(p+pel’). Thus, the tion. This is analogous to the calculations performed here
source terms for botkp anda will increase as the separation which also have analyzed orbit stability in the absence of
distance decreases ald exceeds unity. A stronger source radiation reaction.
term will imply larger values for botlkp and« at the centers In the (posy >%-Newtonian equations of motion, a circular
of the stars and therefore steeper gradients of these quantitiegbit is derived by setting time derivatives of the separation,
as one moves outward from the center of each star. angular frequency, and the radial acceleration to zero. This
In isotropic coordinates, the general relativistic conditionleads to the circular orbit conditidi22]
of hydrostatic equilibrium for each star can be inferred from

B. Comparison with post-Newtonian results

A. Analysis of the collapse instability

the dominant terms in the momentum equatibf), w=mAy/d3, (79
P _ —(p+p6F)( &In“+ dina__dIné (W2— 1))’ wherewy is the circular orbit frequencyn=2M2, dj, is the
X' ax' | ax ax separation in harmonic coordinates, akglis a relative ac-

(77) celeration parameter which for equal mass stars becomes

where we have ignored the centrifugal ter8)(dg!/dx'). 3am 7m 9

From this we see that the effective gravitational fongght- A =1- >4 3— sat (wodp)?|+ Z(wodh)z- (80)
hand side of Eq(77)] increases both becausé/{—1) ex- h h

ceeds unity and because the gradientav@nd ¢ are more . _ _
steep asW? increases. A further increase of binding arisesEquations(79) and (80) can be solved to find the orbit an-

from theK'K;; terms in the field sources, but these terms aregular frequency as a function of harmonic separatign
much smaller than th&/2— 1 contributions. The gravity wave frequency is then twice the orbit fre-
In our rotating coordinate system, the fluid three-quency,f=wq/m.
velocitiesV' are nearly zero. Hence, from E@6) we have Figure 5 shows the circular orbit post-Newtonian gravity
wave frequency vs separation distance compared with the
) 1 present numerical calculations. A striking feature of the
W—1= (% 0®R%2pH—1" (78) present work is that as the stars approach one another, the

frequency becomes nearly independent of the separation dis-
whereR is the distance from the center of mass. Along thetance until the orbit becomes unstable to plunge at a rela-
line between centers in the=2.3x 10'* cm? model, an ef- tively large separation.
fective velocity of @R®?/a)=0.28 is obtained. In the stars ~ The main parameter characterizing the last stable orbit in
the average value iSN?>— 1)~ 5-10%. Including both the the post-Newtonian calculation is the ratio of coordinate
« and¢ terms in Eq(77), we then estimate that the effective Separation to total mag isolation d,/m. The analogous
hydrostatic gravitational force on the stars is increased byuantity in our nonperturbative calculation is proper separa-
10-20% over that of stationary nonorbiting stars for whichtion to gravitational massip /m. The separation correspond-
(W2—1)=0. This increased gravitational attraction is suffi- ing to the last stable orbit in the post-Newtonian analysis
cient to induce the calculated increase of central densities @#pes not occur until the stars have approached h0For
the stars approach one another. An important ingredient iM2=1.45M, stars this would correspond to a separation
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3000.0 Jdna
(?—X=wa. (82
2500.0
Taking the fluid three-velocities in the rotating frame to be
2000.0 zero,V'=0, then, from Eq(46),
E 1500.0 a)X¢4
- /‘ Uy=—F 75" (83
a‘J1—w "X
1000.0
Hence,
500.0 o
.
-~ ¢ dlna o*
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FIG. 5. Comparison of gravity-wave frequendyvs proper ~From this we see that the analogue of the Newtonian centrip-
separation distancdp from the present workpoints and post- €tal term is enhanced by a factor of1(a?\1— w2 d™X?).
Newtonian circular orbit conditiofiine). The arrows show approxi- The average of this quantity along a line joining the centers
mate locations of the last stable circular orbit in the two schemes.of the stars is~7.0. Thus, a much smaller value for the

orbital frequencyw provides a sufficient centripetal force to
distance of about 26 km. In the results reported here, howmaintain a stable orbit.
ever, the last stable orbit occurs somewhere just below 9.4
mg at a proper separation distancedy~40 km: V. CONCLUSION

The fact that we observe the last stable orbit to occur at a
larger separation is consistent with the results of Wex and We have summarized a method to study the relativistic
Schder [23], who found that higher-order post-Newtonian evolution of a binary neutron-star system. We have illus-
terms beyond those considered 22] were significant. They trated the method by following the evolution of a close bi-
found an unstable orbit at 7.50 with a large possible un- nary through several orbits for different angular momenta in
certainty. A larger separation is also consistent with the nuthe absence of radiation reaction. These results show two
merical initial-data calculation for two black holes by Cook new results which to our knowledge have not been reported
[51]. In that paper a minimum proper separation betweerpreviously.
horizon’sof 4.88m was found. If the black hole results were ~ One significant aspect of these calculations is that the
naively applied to the curved space around the two neutrohinary orbit becomes unstable at a much larger separa-
stars by adding this distance to their Schwarzschild radii, thigion distance(a factor of ~1.6) than that derived from
would correspond to a separation of 8i@&etween centers. (pos)>>Newtonian analysis. This implies that the nonlinear

The difference ind/2M g“o also reflects this larger dis- effects of gravity become important much earlier on, and that
tance. Note, however, that even though the stars are mudarches for gravity waves may observe the final merger to
farther apart, the relativistic treatment gives a stronger gravioccur at a lower frequency than expected. This is important,
tational binding energy for this system. However, our bind-Since it places the coalescence closer to the maximum sensi-
ing energy includes the increased self-binding of the inditivity range of the LIGO detector and others. However, we
vidual stars. estimate little tidal distortion or hydrodynamic amplification

Given that the separation distance is greater and thaf the the gravity-wave signal. Our estimate of the gravity-
w~r%2 we would observe a frequency which is a factor ofwave amplitude near the final orbit is~3x 10" (at 100
(40/26)?>~2 slower than the post-Newtonian estimates ifMpC), (see Table Il for a summary of the gravitational wave
separation distance were the only relevant effect. Howeveinformation.
our angular frequency is about a factor of 2 less than the A second significant result of the present calculation is
post-Newtonian value even at the same separation distand@at the nonlinear effects of the fully relativistic gravity im-
We can understand this nonlinear effect of general relativityely deep gravitational wells as two neutron stars approach
heuristically. This difference in orbit frequency should trace€ach other. Indeed, the fields can become so strong that the
to the balance between the gravitational and centripetaitars areindividually unstable to collapse into two black
forces. From the momentum equati@l) with W=1 we holes. Exactly when or if this instability occurs is of course

can write the dominant terms as dependent upon théEOS equation of stateHowever, for
. the realistic EOS employed here, this collapse is observed to
dna B! occur while the stars are still in a quasistable orbit. This
(D+TE) o S o (81) suggests that there could be many orbits after black-hole for-

mation until the stars actually merge as two black holes. If

The left-hand side is the analogue of the Newtonian gravitaeorrect, this result will have a significant impact on future
tional force. The right-hand side is the analogue of the censtudies of binary neutron-star mergers and renders the two-
tripetal force. black-hole coalescence much more important. Furthermore,

Along the y=0 axis we have g¥~wx and the possibility of a collapse many orbit periods before coa-
S,=(D+T'E)Uy. Thus, we may write lescence may have observational consequences not only for
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gravity-wave detectors, but in electromagneipptical, ra-  rect. They must be supplemented with more detailed numeri-
dio, x-ray andvy-ray burst$ signals as well. We note that cal modeling. We are presently developing methods for
even for our unstable inner orbit, the specific angular moimproved numerical efficiency so that results will be of suf-
mentuma=J/M3~1.3 is greater than unity, implying that ficient accuracy to allow for a quantitative interpretation of
more angular momentum must be lost before merger cafuture observed neutron-star binary collapse and coales-
occur, although a transient black hole may be able to forn€ence. .
with a>1. Note that for the above exampleBwJ~10 * justifyies

The importance of the possibility of premerger stellar col-our neglect of gravitational radiation. Also, we point out that
lapse is dependent on the equation of state and the distribsince this paper was submitted it has come to our attention
tion of neutron star masses. As stated earlier, the EOS we ugkat a study has been mafls6] of the validity of the con-
is the same one used by Mayle and Wil4di7,48 in their  formally flat condition when applied to rapidly rotating iso-
supernova model. Calculations made with this EOS for dated neutron stars. This is the simplest case for which the
model of supernova 1987A give an explosion energy ofconformal approximation is different from the exact equa-
1.5x 10°* ergs, consistent with observation. Also, the neu-tions. This work is encouraging in that it has shown that the
trino spectra and time of neutrino emission are in goodnethod works remarkably well.
agreement with the IMB and Kamiokande neutrino detec- From the above discussion it is clear that further studies
tions [52]. These models also give a good reproduction ofare warranted, particularly an effort to better determine the
heavy element nucleosynthesis in the baryon wind from thdast stable orbit and the approach to this orbit, as well as a
proto-neutron staf53]. An important point is that with a systematic study of the sensitivity of the collapse instability
stiffer EOS(which would allow a higher-mass neutron $tar to the neutron-star EOS. Work along this line is currently in
Mayle and Wilson were not able to obtain satisfactory re-progress. There is also a need to investigate orbits at larger
sults. radii so that a reliable connection to calculations in the post-

Regarding, the upper mass limit to neutron stars fromNewtonian regime can be made. Once this is done, one can
observations, Finfi54] has recently analyzed the observed combine the post-Newtonian and numeri¢at1) results to
masses of neutron stars and has assigned a lower limit giroduce a template of expected gravity-wave signals. These
1.15-1.381, and an upper limit of 1.44-1.80, at the can then be used to better extract the gravity-wave signal
lo (68%) confidence level. At the @ (95%) confidence from the noise.
level the upper limit only increases to 1.43—-1M54. In an
independent approach, Bethe and Brof] have recently
argued from nucleosynthesis constraints that the maximum
neutron star mass is 1.88>. They also point out that if We gratefully acknowledge contributions from S. L. De-
kaon condensation is taken into account the critical massveiler and C. R. Evans who helped us with the derivation of
may only be 1.5M. As seen in Fig. 1, our upper mass the field equations and moment expansion. We also acknowl-
limit is 1.60M and the mass of the stars in our sampleedge contributions from Hannu Kurki-Suonio who helped us
calculations is 1.48l 5, quite consistent with the observa- with some of the code development. Helpful conversations
tional limits. If the maximum observed stellar mass was aswith D. Eardley and R. V. Wagoner are also gratefully ac-
low as the Ir upper limit, i.e., 1.5, it could be that knowledged. This work was performed in part under the aus-
almost all neutron-star binaries would precollapse beforgices of the U.S. Department of Energy by the Lawrence
coalescence. Livermore National Laboratory under Contract No. W-7405-

The sample calculations presented here were made withEBNG-48 and under NSF Grant No. PHY-9401636. The work
relatively coarse spatial zonin@gee Sec. Il ). We, there- at the University of Notre Dame was supported in part by
fore, consider the present results to be only qualitatively cort.S. DOE Nuclear Theory Grant No. DE-FG02-95ER40934.
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