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We describe a numerical method for calculating the~311!-dimensional general relativistic hydrodynamics
of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice w
spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field eq
tions, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational ra
tion signal is derived via a multipole expansion of the metric perturbation to the hexadecapole (l54) order
including both mass and current moments and a correction for the slow-motion approximation. Using
expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducin
acceleration term in the matter evolution. In the present work we illustrate the method by applying this mo
to evaluate various orbits of two neutron stars with a gravitational mass of 1.45M( near the time of the final
merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic ef
may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause
last stable orbit to occur at a larger separation distance and lower frequency than previously estima
@S0556-2821~96!01412-9#
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I. INTRODUCTION

Coalescing neutron stars are currently of interest fo
number of reasons. Several neutron-star binaries are kn
to exist in the Galaxy~e.g., PSR 1913116 @1#, PSR
2303146 @2#, PSR 2127111C @3#, PSR 1534111 @4#!
whose orbits are observed to decay on a time scale of
3108 yr. It has been recognized for some time@5–10# that
the final stages of coalescence of such systems could be
pious producers of gravitational radiation. This possibil
has recently received renewed interest with the developm
of next generation gravity-wave detectors such as cryoge
bar detectors@11#, the Caltech-MIT Laser Interferometric
Gravitational Wave Observatory~LIGO! detector@12#, and
its European counterparts, GEO and VIRGO~e.g.,@13#! for
which an event rate due to binary neutron-star coalesce
out to 200 Mpc could be*3 per yr @6,14,15#. It has also
been proposed that such events~when integrated over the
number of galaxies out to high redshifts! could account for
the observed event rate and energy requirements ofg-ray
bursts@16–18#. Coalescing neutron stars might even be s
nificant contributors to heavy element nucleosynthesis in
Galaxy @19,20#.

For much of the evolution of a neutron-star binary, t
system should be amenable to a point source description
ing post-Newtonian techniques@21–23#. However, as the
stars approach one another the gravitational fields bec
quite strong and hydrodynamic effects should become
nificant. Indeed, it is expected that the wave forms co
become quite complex as the stars merge. This complex
however, may be sensitive to various physical properties
the coalescing system@10# such as the neutron-star equatio
5421/96/54~2!/1317~15!/$10.00
r a
own

1–3

co-
ity
ent
nic

nce

ig-
the

he
us-

ome
sig-
uld
ity,
of
n

of state ~EOS!. Hence, careful modeling is needed which
includes both the nonlinear general relativistic effects and a
realistic neutron-star equation of state. Such calculations ca
be used as a foundation for extraction of the information
contained in the detected gravity waves and as a framewor
in which to analyze possibleg-ray burst models.

A computation of the hydrodynamic evolution is compli-
cated, however, due to the inherently three-dimensional char
acter of the orbiting system. To this end several attempts
have been made to model the hydrodynamics of coalescenc
in either a Lagrangian smoothed-particle Newtonian approxi-
mation @24,25# or using conventional finite-difference meth-
ods in the post-Newtonian approximation@26–29#. It is im-
portant to appreciate, however, that as the two neutron star
coalesce the system becomes strongly relativistic, and th
validity of Newtonian or post-Newtonian hydrodynamics
may be questionable. In the present work, therefore, we im
prove upon such calculations in that we explicitly include
most of the effects of a fully general relativistic treatment.

Some preliminary discussion of this work has been re-
ported previously@30–35#. In this paper we present detailed
discussion of our method of solving the relativistic field
equations and hydrodynamics. As an illustration and for
comparison with existing calculations in the literature, we
present orbit calculations for two neutron stars with a gravi-
tational mass of 1.45M( each. We find that the last stable
orbit occurs for a separation distance'1.4 times larger and a
frequency smaller than those estimated using the post
Newtonian approximation. We also find the surprising result
that with a realistic equation of state, the strong fields may
induce otherwise stable neutron stars to collapse into black
holes prior to orbit instability and merging.
1317 © 1996 The American Physical Society
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II. THE MODEL

A. Coordinate system

We start with the usual slicing of spacetime into a on
parameter family of hypersurfaces separated by differen
displacements in timelike coordinates as defined in t
Arnowitt-Deser-Misner~ADM ! or ~311! formalism@36,37#.

For this work we have considered a number of possib
three-space coordinate systems, e.g., polar, bipolar, sph
cal, cylindrical. Ultimately, we have selected Cartesia
x,y,z isotropic coordinates. This is a natural coordinate sy
tem for three-dimensional problems, in that no special po
or singularity is introduced. It thus avoids problems asso
ated with finite differencing near coordinate singularities.
also has the advantage that the relativistic field equatio
assume a simpler and more symmetric form.

With this choice for coordinates, proper distance is e
pressed

ds252~a22b ib
i !dt212b idx

idt1g i j dx
idxj , ~1!

where the lapse functiona is a multiplier which describes
the differential lapse of proper time between two hypersu
faces. In the Newtonian limit this quantity approaches un
and is related to the Newtonian gravitational potential. T
quantityb i is the shift vector denoting the shift in spacelik
coordinates between hypersurfaces. The quantityg jk is the
metric of the three-geometry. It specifies the distance b
tween points within a hypersurface.

Here, we introduce an approximation that the thre
geometry is both conformal and flat. That is, we write,

g i j5f4ĝ i j , ~2!

and

ĝ i j5d i j , ~3!

where the conformal factorf is a positive scalar function
describing the ratio between the scale of distance in
curved space relative to our flat space manifold, andd jk is
the Kronecker delta. This is an approximate gauge condit
which we will henceforth refer to asthe conformally flat
condition ~CFC!. This approximation is motivated both by
the general observation that gravitational radiation in mo
systems studied so far is small@38,39#, and the fact that
conformal flatness on each spacelike slice considerably s
plifies the solution to the field equations.

To see the way in which the CFC allows us to solve th
relativistic field equations, consider the exact equation@40#

ġ i j522aKi j1Dib j1Djb i , ~4!

whereDi is the three-space covariant derivative@40#, and
Kab is the extrinsic curvature describing the deformation o
figure as it is carried forward by one unit in proper time in
direction normal to a hypersurface.

Equation~4! is well approximated by a conformal repre
sentation~2! only if the trace-free part of the right-hand sid
~RHS! vanishes. Thus, a spatially flat three-metric require

2aKi j5SDib j1Djb i2
2

3
g i j Dkb

kD , ~5!
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where we have also employed the maximal slicing conditio
tr(Kab)50 as a gauge choice.

We use Eq.~5! to determine the extrinsic curvature. A
convenient consequence of this is that any geometry which
initially conformally flat, will remain conformally flat to the
extent that energy in gravitational radiation is unimportant
Equation~5! allows us to derive constraint equations for the
lapse function and conformal factor as described in the ne
section.

As a final condition, we take the coordinate system to b
rotating in such a way as to minimize the matter motion in
the coordinate grid. This condition enhances the stability o
the computation of the hydrodynamic evolution. However
this is a nontrivial condition to impose in curved spacetime
which we achieve by boundary conditions onb i as described
below. All relevant forces are computed first in nonrotating
coordinates which are then transformed to update the matt
fields in a rotating grid.

B. General relativistic field equations

For most gravitating systems studied so far~e.g.,@38,39#!,
only a relatively small amount of energy is emitted by gravi-
tational waves. Even for the merger of two black holes it is
expected@39# that only a few tenths of a percent of the rest
mass will be radiated away in gravitation. For the case o
two neutron stars we would not expect any more radiation t
be emitted during the last few orbits than that for a two
black-hole merger, i.e., during the inspiral, the radiated en
ergy per orbit is a minuscule fraction of the energy in orbita
motion. Furthermore, an explicit treatment of the radiation
reaction is exceedingly difficult@38#. To treat the effects of
gravitational waves we use a multipole formalism@37,41#.
We use a radiation reaction potential in the hydrodynamic
equations to account for the effect of gravity waves on th
system.

The implementation of this approximation means that
given a distribution of mass and momentum on some man
fold, we first solve the constraint equations of general rela
tivity ~GR! at each time in the calculation for a fixed distri-
bution of matter. Then, we let the matter and gravitationa
radiation respond to this geometry. That is, we evolve th
hydrodynamic equations to the next time step under an a
sumption of ‘‘instantaneous gravity.’’ However, at each time
step we obtain a time symmetric solution to the field equa
tions.

As an alternative to the explicit coupling of emitted gravi-
tational radiation to the hydrodynamic and geometric evolu
tions of the system, the initial evolution of the system~while
the gravitational radiation is a small perturbation! can be
approximated by stable orbits in the absence of energy an
momentum loss due to gravitational radiation. One can the
~after the fact! compute the expected gradual loss rates o
energy and momentum in gravity waves. This latter approac
is applied in some illustrative calculation presented here. In
future paper we will apply the former method to describe th
late time merging and coalescence.

Our basic approach to a solution to the GR equations is
reduce all of the constraint equations to effective flat-spac
elliptic equations which are amenable to standard technique
In what follows we make use of the usual natural units in
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which G5c51. Thus, at each time slice we can obtain
numerically valid static solution to the exact GR field equ
tions and information on the hydrodynamic evolution an
generation of gravitational radiation. However, the advan
from one time slice to the next incorporates the approxim
tion that the effects of gravitational radiation can be d
scribed using a multipole expansion.

1. Hamiltonian constraint

We begin with the Hamiltonian constraint equation@40#.
We use the forms of equations as given by Evans@38#. We
show here that the Hamiltonian constraint and the maxim
slicing condition@tr(K)50# can be combined so as to form
elliptic equations for both the conformal factorf and the
product (af).

The Hamiltonian constraint equation can be written

R516prH1Ki jK
i j2K2, ~6!

whereR is the Ricci scalar curvature, and

rH5rhW22P, ~7!

wherer is the proper baryonic matter density,W is the gen-
eralization of the special relativisticg factor (W5aUt,
whereUm is the four-velocity!, P is the pressure, andh is the
specific relativistic enthalpy,

h511e1P/r, ~8!

with e the associated matter energy above the baryon r
energy, andP the matter pressure.

The conformal scaling of the three-metric, Eq.~2!, defines
a conformal metric and manifold (ĝ,M̂ ) related to the physi-
cal metric and manifold (g,M ) ~see Refs.@40,38#!. Covari-
ant derivativesDi and D̂ i on M and M̂ can be related by
calculating the transformation of the Christoffel connection

G jk
i 5Ĝjk

i 12f21@d j
i D̂kf1dk

i D̂ jf2ĝ jkĝ
i l D̂ lf#. ~9!

With this, the transformation of the Ricci scalar curvatu
is

R5f24R̂28f25D̂f, ~10!

whereR5R(g), R̂5R̂(ĝ), andD̂5ĝ i j D̂ i D̂ j . As mentioned
in Sec. II A, we choose a conformally flat metric,ĝ i j5d i j ,
for which Ĝjk

i →0, D̂ i→¹, R̂→0, andD̂→¹2, the flat-space
Laplacian.

Solving Eq.~10! for D̂f, and combining with the Hamil-
tonian constraint gives the desired form for an elliptic equ
tion for f:

¹2f52
f5

8
@16prH1Ki jK

i j #. ~11!

In order to put this constraint equation into a form whic
is useful for a solution along with the hydrodynamic var
ables, we must introduce conformal scalings for the sou
terms. To do this, the equation of state is introduced throu
the adiabatic indexG:
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P5~G21!re, ~12!

whereG is a function of state variable for each zone. With
this equation of state,~7! becomes

rH5rW21reWFGW2
~G21!

W G . ~13!

For the hydrodynamic Lorentz contracted density,
D5rW and energyE5reW, we introduce the conformal
scalings

D5f26D̂, ~14!

E5f26GÊ. ~15!

The reasons for these choices will be made clear when w
consider the hydrodynamic equations given in Sec. II C.

The extrinsic curvature is scaled by

Ki j5f210K̂ i j , ~16!

which gives

Ki j5f22K̂ i j . ~17!

With the introduction of these scalings, the Hamiltonian
constraint can be written into the desired form:

¹2f52F2pD̂Wf2112pÊS GW2
G21

W Df526G

1
1

8
K̂ i j K̂

i jf27G . ~18!

This can be written in a more familiar Poisson form:

¹2f524pr1 , ~19!

in which the source term can be identified in terms of physi-
cal hydrodynamic variables by transforming the conformal
scalings in Eq.~18!:

r15
f5

2 FDW1ES GW2
~G21!

W D1
1

16p
Ki jK

i j G . ~20!

2. Lapse function

We also use the Hamiltonian constraint together with the
maximal slicing conditiontr (k)50 to obtain an elliptic con-
straint equation for the lapse functiona. We begin with the
identities

Da5D@f21~af!#5DiD
i@f21~af!# ~21!

5f21D~af!22f26ĝ i j D̂ ifD̂ j~af!1afD~f21!.
~22!

Now, in our conformally flat metric, one can write, for any
scalar function, and, in particular, for the quantity (af),

D~af!5f24D̂~af!12f25ĝ i j ~D̂ if!@D̂ j~af!#. ~23!

Substituting this into Eq.~22! gives
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Da5f25D̂~af!1afD~f21!. ~24!

Now, from the transformation properties of the Ricci curv
ture scalar~10!, Eq. ~24! can be rearranged as

D̂~af!5f5Da1 1
8 af5@R̂f242R#. ~25!

Rewriting the Hamiltonian constraint~6! to include the
CFC and maximal slicing conditions, then leads to a fl
space elliptic equation in (af):

¹2~af!5 1
8 af5@16pr~3W222!

116pre@3G~W211!25#17Ki jK
i j #. ~26!

In Poisson-like form this is

¹2~af!54pr2 , ~27!

with the source term written in terms of hydrodynamic va
ables as

r25
af5

2 FD~3W222!1E@3G~W211!25#

W

1
7

16p
Ki jK

i j G . ~28!

A solution of equation~27! determines the lapse functio
after Eq.~19! is used to determine the conformal factor.

3. Momentum constraint

With the lapse function and conformal factor determin
from the Hamiltonian constraint and maximal slicing cond
tion, we then use the momentum constraints to find the s
vector.

The momentum constraints have the form@38#,

Di~K
i j2g i j K !58pSj , ~29!

whereDj is the three-space covariant derivative@40#. Si is
the contravariant material momentum density which is d
rived from the solution to the hydrodynamic equations, S
II C. In our maximal-slicing conformally flat conditions, th
second term on the left-hand side~LHS! of Eq. ~29! vanishes
and we have

DiK
i j58pSj . ~30!

Using ~17! and ~9!, it can be verified that

DiK
i j5f210D̂ i~f10Ki j !. ~31!

Now converting our ‘‘conformally flat condition’’@i.e.,
Eq. ~5!# from covariant derivatives toD̂a or ordinary deriva-
tives, and inserting into Eq.~31!, gives

DiK
i j5

f210

2
D̂ iFf6

a S D̂ ib j1D̂ jb i2
2

3
ĝ i j D̂kb

kD G . ~32!

Combining this with~30! then gives

D̂ i [ D̂
ib j1D̂ jb i2 2

3 ĝ i j D̂kb
k]5Qj , ~33!
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where the source termQj is defined

Qj[16paf4Sj1
D̂ ij

j F D̂ ib j1D̂ jb i2
2

3
ĝ i j D̂kb

kG ,
~34!

wherej[a/f6.
Equation~33! can be reduced to

¹2b j5
]

]xj S 13¹•b D1Qj . ~35!

Thus, by introducing a decomposition ofb i into

b i5Bi2 1
4 ] ix, ~36!

the following two elliptic equations result:

¹2x5 4
3 ¹•b, ~37!

¹2Bi5Qi . ~38!

These we use to determine the components of the shift ve
tor.

This is the desired result except for the fact that most o
the momentum encompassed in Eqs.~34! and~38! is simply
the orbital motion of the binary. We, therefore, define a ro
tating coordinate system with a rotation-subtracted shift vec
tor in which the nonorbital aspects of matter evolution and
relativity ~e.g., frame drag! can be more easily studied. To do
this we decomposeBi into a frame-drag termGi and an
orbital motion term:

Bi5Gi1~v3r ! i , ~39!

and subtract the orbital velocity of the coordinate system
from both sides of Eq.~35!. Ultimately, we write Eq.~38! in
the Poisson-like form

¹2Bi54pr3
i , ~40!

where

r3
i 5@4af4Si24b iW~D1GE!#

1
1

4pj

]j

]xj S ]b i

]xj
1

]b j

]xi
2
2

3
d i j

]bk

]xk D . ~41!

Since¹2(v3r )50, Bi andGi can be used interchangeably
in Eq. ~40!.

As the meaning of orbital angular velocity becomes ob
scured in curved spacetime,v in Eq. ~39! takes on the mean-
ing of a Lagrange multiplier which minimizes the matter
motion with respect to the coordinate system. It only reduce
to the orbital angular velocity in the Newtonian~i.e.,
r→`) limit. Confining orbital motion to thex,y plane, we
determine the coordinate rotation frequencyv at each time
step from the weighted average of the matter four-velocit
and the frame-drag shift vector:
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*dV~D1GE!Fa~xUy2yUx!

~11U2/f4!
2f4~xGy2yGx!G

E dV~D1GE!~x21y2!

.

~42!

This rotation is then subtracted from the velocities a
added to the coordinate rotation, thereby maintaining a c
tering of the stars alongy50.

The fact that the constraint conditions on~19!, ~27!, and
~40! can be written in the form of flat-spaced Poisson eq
tions, allows for these variables to be solved by fast num
cal techniques as discussed below. However, their solu
requires that boundary values for these variables be spec
at distances relatively close to the neutron stars. Our met
of determining the boundary values is described in S
II F 2.

C. Relativistic hydrodynamics

To solve for the fluid motions of the system in curve
spacetime it is convenient to use an Eulerian fluid descript
@42#. We begin with the perfect fluid stress-energy tens
which in covariant form can be written

Tmn5~r1re1P!UmUn1Pgmn . ~43!

By introducing a set of Lorentz-contracted state variabl
it is possible to write the relativistic hydrodynamic equatio
in a form which is reminiscent of their Newtonian counte
parts. The hydrodynamic state variables are the coordin
covariant baryon mass density

D5Wr, ~44!

the internal energy density

E5Wre, ~45!

the three-velocity

Vi5a
Ui

f4W
2b i , ~46!

and the momentum density

Si5~D1GE!Ui , ~47!

whereW is a Lorentz-like factor

W5aUt5F11(
Ui
2

f
4G1/2, ~48!

and G is an adiabatic index for the equation of state@Eq.
~12!#.

In terms of these state variables, the hydrodynamic eq
tions are as follows: The equation for the conservation
baryon number takes the form

]D

]t
526D

] lnf

]t
2

1

f6

]

]xj
~f6DVj !. ~49!

The equation for internal energy conservation becomes
d
en-
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]E

]t
526GE

] lnf

]t
2

1

f6

]

]xj
~f6EVj !

2PF]W]t 1
W

f6

]

]xj
~f6WVj !G . ~50!

Momentum conservation takes the form

]Si
]t

526Si
] lnf

]t
2

1

f6

]

]xj
~f6SiV

j !2a
]P

]xi

12a~D1GE!SW2
1

WD ] lnf

]xi
1Sj

]b j

]xi

2W~D1GE!
]a

]xi
2aW~D1GE!

]x

]xi
, ~51!

where x is the radiation reaction potential, which is de-
scribed in Sec. II E. Note that the repeated occurrences of t
f6 factors simply account for proper volume factors@proper
volume 5f6(dxi)3#. This is the reason for the choice of
conformal scalings introduced in Eqs.~14! and~15!. That is,
we preserveD̂, Ê, andŜi whenf is changed.

Our routines for evolving the hydrodynamics have bee
previously very well tested at the special relativistic level in
@32,43–46#, where the hydrodynamics method describe
here was used to simulate relativistic heavy ion calculation
In that work, shock-wave solutions were compared for bot
decelerating and accelerating shocks. For the former ca
the numerical results were accurate to better than 1% ov
the range of special relativisticg factors from 1 to 10, i.e.
Ethermal50–10rc2. For the case of shocks accelerating ma
ter, errors increased to 1% forg.2.

A shock-tube calculation was made using a constant ad
batic index ofG52. The density ratio was 100:1, and the
initial thermal energy density of the dense matter was equ
to the initial baryonic density. The compression ratio of th
shocked bow density material was 8% too high. The rest
the density profile was accurate to better than 1%. Relativi
tic shock-tube solutions were also calculated to test the a
curacy of the rarefactions. Again, in the range of intere
(Ethermal'rc2), the overall agreement of numerical results
with exact solutions was of order 1%.

On the basis of these results, we anticipate all shoc
occurring in the neutron-star coalescence will be treated wi
sufficient accuracy. Numerical errors are not Lorentz invar
ant, but tests for invariance have shown that our numeric
methods are reliable for changes of frame by a factor of
few in rapidity. In the present work we have extended th
hydrodynamics to curved space. However, this extension
straightforward and we do not anticipate any new instabilit
or unacceptable inaccuracy to be introduced thereby. For t
calculations described here there is little fluid motion and n
strong shock in our rotating frame.

D. Equation of state

For the orbital calculations presented here we use the ze
temperature, zero neutrino chemical potential equation
state from the supernova numerical model of Mayle and Wi
son@47,48#. While the orbital calculations of concern in this
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paper should only involve zero temperature, there is so
small shock heating of the stars as they adjust to chang
conditions on the grid. Thus, we augment this equation
state with a thermal component~taken to behave as a
G55/3 gas! in order to follow the dynamic evolution equa
tions. Thus, we write

P5P0~r!1 2
3 r@e2e0~r!#, ~52!

whereP0 ande0 are the zero-temperature pressures and
ergies.

Table I gives the the zero-temperature values ofP0 , e0 ,
and G vs r. In Fig. 1 we present the baryonic massMB ,
gravitational massMG , the stellar radius in Schwarzschil
(r S) and isotropic (r I) coordinates, the lapse functiona, and
the total mass energy densityr(11e) as a function of the
central density of an isolated neutron star. From this figur
can be seen that this equation of state gives an upper lim
the gravitational mass of an isolated neutron star
MG<1.60M( . ~Note that this value supersedes the low
value previously quoted in@34#.! This limit roughly agrees
with the upper limit of the smallest range of neutron-s
masses which overlaps all observational determinations.
fact that this upper limit is close to the typically observe
neutron-star massMG'1.45M( has important consequence
for the examples considered below.

The three-dimensional calculations reported here h
only about 15 zones in radius to represent each neutron
As another test of the accuracy of our three-dimensional
culations, therefore, a hydrodynamic calculation was ma
of a single star using typical zoning in three dimensions. T

TABLE I. Zero-temperature equation of state.

r ~g cm23) e ~erg g21) P ~dyne cm22) G

1.465631012 1.133231019 4.383931030 1.2639
2.151231012 1.242931019 6.687231030 1.2501
3.157531012 1.357831019 1.015331031 1.2368
4.634531012 1.477531019 1.536431031 1.2244
6.802431012 1.601631019 2.324431031 1.2133
9.984731012 1.734631019 3.699331031 1.2136
1.465631013 1.871431019 5.694431031 1.2076
2.151231013 2.024131019 9.276131031 1.2130
3.157531013 3.300431019 1.054931032 1.1012
4.634531013 1.209731019 8.023931031 1.1431
6.802431013 1.275031019 1.159331032 1.1337
9.984731013 1.347431019 2.234731032 1.1661
1.465631014 1.478531019 6.422431032 1.2964
2.151231014 1.747731019 2.261431033 1.6015
3.157531014 2.367131019 7.062331033 1.9449
4.634531014 3.563431019 1.860931034 2.1268
6.802431014 5.641031019 4.698831034 2.2245
9.984731014 9.184831019 1.191131035 2.2988
1.465631015 1.530731020 3.020431035 2.3464
2.285931015 2.768131020 8.907931035 2.4078
3.157531015 4.538631020 2.114831036 2.4757
4.634531015 7.741831020 4.661231036 2.3016
8.162831015 1.208031021 1.400731037 2.1238
9.984731015 1.843431021 2.069131037 2.0865
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calculation was compared with a one-dimensional spheric
hydrodynamic calculation with fine zoning. For the same
baryonic mass, 1.60M( , the gravitational masses agreed to
0.7%, i.e., yielding a gravitational mass of 1.45M( and 1.46
M( for the three-dimensional~3D! and 1D calculations, re-
spectively. This we take as indicative of the accuracy of th
calculated gravitational binding energy of the binary system
as well. Figure 2 shows the density profile for a single iso
latedMG51.45M( neutron star with the adopted equation
of state.

E. Gravitational radiation

In general, it is possible to express the emission of grav
tational radiation in terms of an ‘‘exact’’ expansion of mul-
tipole moments of the effective stress-energy tensor, includ

FIG. 1. Various parameters characterizing isolated neutron sta
with the adopted equation of state as a function of the centra
baryon densityrc . MB andMG are the baryonic and gravitational
masses, respectively, in units ofM( . The radius is given in both
Schwarzschild coordinatesr S and in isotropic coordinatesr I in
units of 10 km. Also shown are central values for the minimum
lapse functiona, and the total mass energy densityr tot5r(11e)
~in units of 1015 g cm23).

FIG. 2. Density profile as a function of radius~in isotropic co-
ordinatesr I) for an isolated neutron star with a gravitational mass
of 1.45M( .
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ing corrections for the so-called ‘‘slow motion’’
approximation@41#. It is important to appreciate that these
formulas apply to strong-field sources as well as to wea
field sources@49,41# as long as the relevant components o
the effective stress-energy tensor can be identified. Since,
the present paper, we are only concerned with orbital motio
of equal mass binaries, the multipole expansions reduce
only a few nonzero terms. These we evaluate and test
convergence of the expansion. We summarize below the
pects of@41# which are relevant to our model.

In any coordinate system~such as the one we are using
here! in which the gravity waves far from the source can b
characterized as linear metric perturbations propagating o
flat background, the transverse traceless part of the me
perturbation characterizes the radiation completely. Th
metric perturbation can be expressed@41# in terms of the
mass multipole (I lm) and current multipole moments (Slm)
as

hjk
TT5(

l52

`

(
m52 l

l

@r21~ l !I lm~ t2r !Tjk
E2,lm

1r21~ l !Slm~ t2r !Tjk
B2,lm#, ~53!

where the superscriptTT denotes the transverse traceles
part of the metric perturbation and the notations(k)I lm and
(k)Slm denote thekth time derivative of the respective mo-
ments.

From this, the general expression for energy loss is

dE

dt
5

1

32p(
l52

`

(
m52 l

l

^u~ l11!I lmu21u~ l11!Slmu2&, ~54!

where the angular brackets denote averages over sev
wavelengths. Angular momentum loss can similarly be wri
ten

dJ

dt
5

i

32p(
l52

`

(
m52 l

l

^~ l !I lm*m~ l11!I lm&1^~ l !Slm*m~ l11!Slm&,

~55!

where the expression~55! assumes an alignment of the an
gular momentum vector with thez axis.

The radiation reaction potentialx for Eq. ~51! can be
written

x5
1

32p(
l52

`

(
m52 l

l

xixj^u~ l11!I lmu21u~ l11!Slmu2&. ~56!

Our problem then reduces to the identification of the releva
mass and current moments in our coordinates. For an asym
totically Minkowski coordinate system, one can define
quantity

h̄ab[2~2g!1/2gab1hab, ~57!

where g is the determinant of the metric andhab is the
Minkowski metric tensor. Ifh̄ab satisfies the de Donder
gauge condition

h̄ ,b
ab50, ~58!
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then the Einstein field equations take the form

h h̄ab5216ptab, ~59!

wheretab is the ‘‘effective stress-energy tensor’’@41#.
As long as the de Donder condition is valid, Eq.~59! can

be inverted~using the flat-space outgoing Green’s function!
and the Green’s function expanded in terms of vacuum bas
functions. The resultant expression can then be reduced@41#
to provide expansions for the desired mass and current m
ments:

I lm5
16p

~2l11!!! S ~ l11!~ l12!

2~ l21!l D 1/2E t00Y
lm* r ld3x

1 (
k50

`
16p

2kk! ~2l12k11!!!
~] t!

2kE tpqr
l12k

3F ~2l12k11!

2~k11! S ~ l11!~ l12!

2~2l21!~2l11! D
1/2

Tpq
2 l22,lm*

1S 3~ l21!~ l12!

~2l21!~2l13! D
1/2

Tpq
2 l ,lm*1

2k

2l12k13

3S l ~ l21!

2~2l11!~2l13! D
1/2

Tpq
2 l12,lm* Gd3x, ~60!

and

Slm5
232p

~2l11!!! S ~ l12!~2l11!

2~ l21!~ l11! D
1/2

3E e jpqxp~2t0q!Yj
l21,lm* r l21d3x

1 (
k50

`
16p i

2kk! ~2l12k11!!!
~] t!

2k11E tpqr
l12k11

3F 1

2~k11! S l12

2l11D
1/2

Tpq
2 l21,lm*

1
1

2l12k13 S l21

2l11D
1/2

Tpq
2 l11,lm* Gd3x, ~61!

where theYlm* are the usual spherical harmonics, and
Tpq
2 l ,lm* are the pure-orbital tensor harmonics as defined i

@41#. The first integral in Eqs.~60! and ~61! is the usual
spherical harmonic expansion. At thel52 level, Eq. ~60!
reduces to the well-known quadrupole approximation. Th
second integral in Eqs.~60! and~61! is the correction to the
slow motion approximation, which is non-negligible in the
present application, i.e.,v/c;

.0.1.
To evaluate the time derivatives of the mass and curren

multipole moments we make use of the rotation properties o
spherical tensors, whereby rotations can be generated
terms of the WignerD matrices:

I lm5Dmm8
l I 0

lm8 , Slm5Dmm8
l S0

lm8 , ~62!
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whereI 0
lm8 andS0

lm8 are evaluated in the rotating frame. Fo
stable orbits~neglecting gravitational radiation! and hydro-
static stars, these are time-independent quantities.

The main contribution to the time derivatives is that d
to orbital motion. Evaluation of the orbital motion reduces
derivatives of theDmm8

l which for our coordinates have
simple;cos(mvt) dependence.

The problem with evaluating Eqs.~60! and~61! is that the
multipole moments are only defined in the de Donder gau
and not for our conformally flat coordinates. Furthermo
even if the transformation to our coordinates were straig
forward ~which it is not!, the effective stress-energy tens
would not be known.

Fortunately, however, a transformation to the de Don
coordinates is not necessary. It is only necessary that
moments of the metric coordinates be defined in a coordin
system which, such as a de Donder coordinate system
asymptotically Cartesian and mass centered~ACMC!. In
@41# it is proved that in such coordinate systems and
covariant metric components are time independent and
pandable into a spherical harmonic (1/r ) structure in terms
of the same moments@i.e., Eqs.~60! and~61!# relevant to the
radiation field. Furthermore, these multipole moments
invariant under transformations between two ACMC coor
nate systems. From these expansions we can deduce
source for the slow-motion moments to be used in the eq
tions for the radiation field,~54! and ~55!. For example, the
spatial three-metric must obey@41#

g i j5d i j1(
l50

N
1

r l11 F ~2l21!!!

2 S 2~ l21!l

~ l11!~ l12!D 1/2
3 (

m52 l

l

I lmYlm1~ l21 pole!1•••1~0 pole!G . ~63!

On the other hand, our spatial three-metric@Eq. ~2!# can also
be expanded as the fourth power of a multipole expansion
the flat-space Poisson equation forf @Eq. ~19!#:

g i j5f4d i j5F11(
l50

`

(
m52 l

l
4p

~2l11!
qlmYlmr2~ l11!G4d i j ,

~64!

where

qlm5E d3xr1~x!r lYlm* , ~65!

andr1 is the source term forf @Eq. ~20!#. If we collect the
dominant linear terms in Eqs.~63! and~64! according to the
recipe given in@41#, then we can identify the relation be
tween the sourcer1 for the conformal factor elliptic equation
~19! and the mass multipole moments, i.e.,

I lm5
32p

~2l11!!! S ~ l11!~ l12!

2~ l21!l D 1/2qlm. ~66!

This identification also reduces to the correct Newton
limit. As can be seen from Eq.~20!, r1→r/2, wherer is the
Newtonian matter density, so thatt00→r as required.
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The contribution from the current moments is expected to
be small as is the slow-motion correction. Therefore, we are
mainly concerned with estimating the magnitude of those
contributions. To the accuracy desired, we identify the
source for the current momentsSlm and the slow-motion
corrections with the Newtonian-like counterparts, i.e., we se
t0 j5T0 j , t i j5Ti j . We compute terms out tov10, which
include mass multipoles out tol54, current multipoles out to
l53, and the leading correction for the slow-motion correc-
tion.

In Table II we summarize the relative contributions of
various moments to the energy and angular momentum los
rates. As expected, the quadrupole term dominates. The ne
largest term is the slow-motion correction which contributes
only a few percent to the gravitational radiation and tends to
decrease the loss rate.

F. Numerical methods

The elliptic equations for the field and differential evolu-
tion equations for the hydrodynamic variables were finite
differenced in a Cartesian grid. The intrinsic state variables
D,W,E,G,a,f, are treated as zone-centered quantities
while the four-velocityUi and momentum densitiesSi are
node centered. The shift vectorb i and the three-velocityVi

are face centered. After finite differencing, the elliptic equa-
tions are reduced to a matrix equation

M•x5b, ~67!

whereM is a sparse matrix,x is a vector representing the
relevant field variable at each zone, andb is derived from the
source terms. This equation can then be solved using any on
of a number of fast matrix inversion techniques.

When we solve the elliptic equation forf, the coordinate
densityD is adjusted so as to preserve the conformal scal
ings, Eqs.~14! and ~15!. That is,D̂5f6D is kept constant,
which preserves baryon number. Also, the coordinate energ
density is changed to preservef6GE and the momentum
density is changed to preservef6Si , which maintains the
entropy.

TABLE II. Contributions to energy and momentum losses from
the orbit calculation withJ52.731011 ~cm2).

Ėtot (M( sec21) 6.1131023

ĖI22 6.3231023

ĖSM 22.231024

ĖI44 2.031027

ĖS32 3.331028

ĖI42 2.2310211

J̇tot ~cm! 1.07

J̇I22 1.11

J̇SM 20.034

J̇I44 3.631025

J̇S32 25.831026

J̇I42 4.231029
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1. Extracting physical observables

The gravitational mass we obtain from the asymptotic b
havior off→11(GM/2r ) @cf. Eq. ~64!#. The angular mo-
mentum is more difficult to define. We estimate this from a
integral over the spacetime components of the stress-ene
tensor@37#, neglecting angular momentum in the radiatio
field:

Ji j5E ~Ti0xj2Tj0xi !dV. ~68!

Aligning the z axis with the angular momentum vector the
gives

J5E ~xSy2ySx!dV. ~69!

2. Boundary conditions

As noted above, our choices for the metric and slicin
condition lead to a form for the Hamiltonian and momentu
constraints in terms of flat-space elliptic equations, i.e., E
~19!, ~27!, and ~40!, for the metric variablesf, (af), and
b i . A solution to these elliptic equations, however, requir
that we specify values forf, (af), andb i along the outer
boundaries of the grid. For a Poisson-like equation, the fie
variables could be specified by integrating the source fun
tion over the interior: e.g.,

f~x!5E r1~x8!

ux2x8u
d3x8. ~70!

However, the evaluation of this integral for each point alon
the boundaries is computationally slow. In principle, an e
pansion of the source function in spherical harmoni
Ylm(u,f) could be applied to obtain the field variables alon
the boundaries: e.g.,

f~x!511(
l

`

(
m52 l

l
4p

2l11
r2~ l11!qlmYlm~u,f!. ~71!

However, the convergence of a spherical harmonic exp
sion for a source dominated by two separate nearly spher
distributions is quite slow. In order to accommodate the
two features, we employ a combination of them which
numerically efficient even at distances relatively close to t
neutron stars.

In the equations forf and (af), the boundary values are
dominated by contributions from the effective point sourc
potential from each star. Our method of specifying th
boundary forf and (af), therefore, is to first make a bes
fit to the source density,r1 or r2 , of each star with a trun-
cated spherical Gaussian profile located at the source-den
center of mass in each half of the grid. The boundary valu
on the computational grid then begin with the sum of the tw
point-mass contributions from the truncated spherical Gau
ian profiles for each star. This provides a simple analy
contribution around the boundary for the bulk of the sourc

These Gaussian density profiles are then subtracted fr
the source density to yield a residual density. An expans
in spherical harmonics up tol54 @Eq. ~71!# is then utilized
to compute the contribution from the residual source fun
e-
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tion over the grid. For stars well separated on the grid, th
residual source typically accounts for only a few percent o
the total boundary value. Also, the spherical harmonic e
pansion for the residuals converges faster than that for t
unsubtracted source function. Hence, a truncation of the e
pansion tol54 is sufficiently accurate.

A Gaussian source profile turns out to be an excelle
approximation in the early stages before the neutron sta
begin to coalesce. In future calculations in which the sta
will be followed until they merge, however, they will more
closely represent a single source function. At some point
the calculation it will become expedient, therefore, to appl
the spherical harmonic expansion directly to the unsubtract
source function.

We note that the expansion of the three-metric@Eq. ~63!#
requires that the asymptotic form forf obeys

f→11
mG

2r
. ~72!

Similarly, from the ACMC expansion forg00@41#, the lapse
function must approach

a→12
mG

r
~73!

in order that our time coordinate becomes proper time
r→`. The Poisson equation~27! for (af) can also be ex-
panded in spherical harmonics@e.g., Eq.~71!#, yielding

~af!→~af!`2
maf

2r
, ~74!

wheremaf is the volume integral over twice the source
r2 . Since, in general,mafÞmG , we choose the boundary
condition

~af!`5
maf

mG
, ~75!

to guarantee that Eq.~73! is satisfied. For the systems studied
here, (af)`'0.98.

In our computation of the boundary conditions, we im
pose a spherical cutoff in the matter distributions at a radiu
equal to the largest sphere that fits within our cubical grid
This avoids the possibility of a spurious hexadecapole m
ment associated with the cubic grid employed in the calc
lation. For matter terms this is a reasonable truncation for th
calculations presented here, since only a negligible amou
of matter appears beyond the surface of the neutron sta
However, theKi jK

i j terms in Eqs.~19! and ~27! contribute
beyond the matter boundary. Also, the shift vector ellipti
equations,~37! and ~38!, involve a source which extends
beyond the source boundary.

Regarding theKi jK
i j terms we note that these terms are

small. For example, the contribution to the gravitationa
mass from an integration over the interior source function
only ;0.0001M( . Furthermore, the asymptotic form for
Ki jK

i j should decay as 1/r 6. Assuming this form, we esti-
mate that the exterior contribution from theKi jK

i j term is
&1025M( and can, therefore, be neglected in the exampl
considered in this paper.
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Regarding the solution for the shift vector@Eqs.~37! and
~38!#, we note that¹•b is small and changes sign across t
grid. This means that the variablex asymptotically goes to
zero. Hence, we imposex50 along the boundary for Eq
~37!. A solution forBi requires that we specify the bounda
condition for the ‘‘drag’’ componentGi . For this we note
thatGi behaves as an angular momentum density and sh
scale along the boundary as

Gx52
4yJ

r 3
, Gy5

4xJ

r 3
. ~76!

III. ORBIT CALCULATIONS

It is a nontrivial endeavor to find initial configurations fo
the two neutron stars prior to coalescence. Our method c
sists of placing two neutron stars on the grid with a rotatio
velocity sufficient to keep them in orbit and an initia
‘‘guess’’ density profile from a solution to the Tolman
Oppenheimer-Volkoff-like equation for two single neutro
stars in our isotropic coordinates. The conversion from sin
star solution to a binary solution is achieved by allowing t
stars to relax to an equilibrium configuration on the gr
That is, the field equations are then solved and the hydro
namics evolved~without the radiation reaction potential an
with viscous damping of the fluid motion! until equilibrium
is achieved. For the examples to be presented below,
follow the time evolution of the system with constant angu
momentum until it has settled down. As the stars settle do
the damping is slowly removed.

IV. RESULTS

In this paper we are presenting principally the method
solving the field equations and hydrodynamics for bina
neutron stars. As examples, we also discuss below thre
lustrative calculations made at selected values of the orb
angular momentum with no radiation damping of the orb
Highlights of these results have been presented previo
@34#. Here, we supply more details of the application of t
method.

In these calculations the neutron stars are taken to b
equal mass. The baryonic mass was selected so that in
lation each star has a gravitational mass of 1.45M( . Al-
though the calculations presented here ignore radia
damping, during most of the evolution the radiation dampi
is small. Therefore, the stars should follow a sequence
quasiequilibrium configurations which closely match t
equilibria computed here. These equilibria can be analy
to obtain the rates of energy and momentum losses. U
mately, the implied orbit decay could be used to infer t
approximate time evolution through this sequence of qua
equilibrium orbits.

We have placed the stars at various separation dista
on the grid and only run the calculation long enough to che
whether the system obtains what would be a stable orbi
the absence of gravitational radiation. In total for the thre
orbit calculations presented below, we have followed
stars through more than 20 revolutions~with roughly two
hours of Cray/YMP CPU time per orbit! to ensure that the
orbits have had time to settle down. We have utilized a g
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of 100325325 zones for the matter and 100350350 for
the field variables. We make use of reflection symmetry i
the orbital plane. Also, since here we study equal-mass bin
ries, we exploit reflection inversion symmetry through the
axis joining the centers of the two stars. In effect, this calcu
lation then is equivalent to a three-space grid of 106 zones.

Initial conditions for two 1.60M( baryonic mass neutron
stars were obtained from the isotropic-coordinate form of th
Tolman-Oppenheimer-Volkoff hydrostatic equilibrium. Two
single-star solutions were then placed on the grid and th
hydrodynamic and field equations evolved with viscous
damping until a new quasiequilibrium configuration was ob
tained. In practice, this need only be done once for a select
initial angular momentum. Subsequent orbits are then calc
lated by perturbing the angular momentum and allowing th
system to relax to a new stable configuration~if one exists!.

The first calculation was made with an orbital angula
momentum of 2.231011 cm2. The stars settled down into
what appeared at first as a stable orbit, but later~less than
one complete orbit! the stars began to slowly spiral in. For
this system the angular momentum was not enough to su
port the orbit. Parameters characterizing this binary at th
final time slice calculated are given in Table III.~Note that
this table supersedes the table in@35# where lower values
were quoted for the central densities.! The stars were fol-
lowed to a coordinate separationdI'34 km which corre-
sponds to a ratio of proper distance to total isolated mass
the systemm52MG

0 of dp /m59.2, whereMG
0 is the gravi-

tational mass of a single isolated neutron star. By this time
could be concluded that no stable orbit would result. Not
that the minimum coordinate light speeda/f2 is only 0.23
in this case.

Figure 3 showsx,y contours in thez50 plane for the
hydrodynamic densityD and the metric variablesa, and
f2. Countours are drawn for the final time slice calculated
for this angular momentum and the other two cases studie

We note that even at the last time calculated, the stars a
still quite far apart, i.e., the ratio of coordinate separation
distancedI to their single-star radius,dI /r I*4. Even in a

TABLE III. Parameters characterizing the orbit calculations a
the final edit.MG is just the total mass of the binary divided by 2.

J ~cm2! 2.231011 2.331011 2.731011

MB (M() 1.598 1.598 1.598
MG (M() 1.416 1.420 1.423
f ~Hz! 410 310 267
I 22 ~cm3) 1.1931018 1.2831018 2.3131018

dI ~km! 33.8 34.8 57.0
dP ~km! 39.4 40.6 53.0
rmax ~ g cm23) 2.0331015 2.7031015 1.9331015

Wmax 1.070 1.090 1.085
amin 0.440 0.379 0.463
fmax
2 1.90 2.05 1.84

h•r ~cm! 1.033104 6.763103 9.603103

Ė (M( sec21) 0.016 0.0040 0.0061

J̇tot ~cm! 1.23 0.607 1.07

Orbit Unstable Stable Stable
Stars Unstable Unstable Stable
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FIG. 3. Contours in the orbit
plane for various quantities at the
final time slice calculated for
J52.231011 cm2, J52.331011

cm2, andJ52.731011 cm2 as la-
beled. The various figures are for
coordinate densityD5rW; lapse
function a; conformal factorf2.
Note that theJ52.331011 cm2

density contours are more com-
pact illustrating the degree to
which these stars have collapsed
See Table III forrmax, fmax

2 , and
amin . Since Wmax51.09, Dmax

&rmax31.09.
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Newtonian hydrodynamic calculation@50#, one would expect
at most a few percent tidal distortion at this distance. T
distortion is made even less, however, by the strong rela
istic gravitational field~evidenced ina and f2 in Fig. 3!
around the stars. We also note that the central density
creased continuously as the stars spiraled in. The orbit de
time, however, is shorter than the collapse time. Thus
seems likely that neither the stars nor the orbit are stable
this system as summarized at the bottom of Table III.

The next calculation was made with an angular mom
tum of 2.331011 cm2. The orbit now appeared stable a
summarized at the bottom of Table III. However, after abo
1–2 revolutions, the central densities were noticed to be
ing. By the end of the calculation the central baryonic de
sities had continuously risen to about 2.731015 g cm23

('10 times nuclear matter density! which is near the maxi-
mum density for a stable neutron star~cf. Fig. 1!. It appears
that neutron stars of this mass range and the adopted e
tion of state may continue to collapse as long as the relea
gravitational energy can be dissipated. For this orbit the s
are at a separation distance ofdp /m59.5, far from merging.
However, the nonlinearities in the gravitational field ha
pushed the stars over the critical density for forming a bla
hole. By the time the calculation was ended, the minimu
a had diminished to 0.379 andf2 risen to 2.05, correspond
ing to a minimum light speed of 0.18. Figure 3 shows t
stars as somewhat more compact objects which are con
ing to collapse.

The final calculation was made with the angular mome
tum increased to 2.731011 cm2. As can be seen in Table II
and Fig. 3, the stars at this separationdp /m512.4 appear
both stable and in a stable orbit. Note that even for t
distance, the gravitational field (a andf) remains strong.

Figure 4 shows vector fields forUx ,Uy , Vx ,Vy , and
bx ,by for the calculation withJ52.331011 cm2. Figures
for the other two runs look quite similar. The maximu
value of the covariant velocity isuUx ,Uyu50.9. The contra-
variant three-velocities show the net fluid motion after su
traction of the orbital motion. The maximum magnitude
uVx ,Vyu50.07. We note that even in the corotating fram
Vx ,Vy exhibits some rotation. Although the stars are initia
he
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corotating, as the stars relax to their equilibrium orbit, the
acquire net rotation relative to the orbital motion. The n
fluid motion is still much greater than the collapse veloci
which is more than an order of magnitude slower than t

FIG. 4. Vectors in thex,y orbit plane around the star centered a
x5217.4 km. This is at the final time calculated for the binary wit
J52.331011 cm2. The various figures are for:~a! four-velocity
Ux ,Uy ~showing the overall orbit motion!; ~b! the rotation sub-
tracted contravariant three-velocityVx,Vy ~showing the corotation
and collapse of the fluid!; and ~c! the rotation-subtracted shift vec-
torsbx ,by ~showing the relativistic frame drag around the star!.
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maximum vector shown here. A peculiar aspect of the vel
ity field in the rotating frame is that the fluid appears to
circulating about a vorticity which does not coincide with th
central extrema in density or field variables. It also appe
that the parts of the stars most distant from the compan
rotate in an opposite sense, generating a second vorti
The shift vectors are also plotted with the rotation subtract
What remains is frame drag around the star due to its rota
which has a maximum amplitude of 0.015. It is also sligh
offset from the centers of the stars.

A. Analysis of the collapse instability

Having observed the collapse instability numerically
the neutron-star binary, one, of course, would like to have
least a qualitative understanding of the source of this de
tion from Newtonian intuition. Here, we present a heuris
explanation of the observed increase in density as the s
approach each other. We trace this increase to the effec
the Lorentz-like factorW221. This factor accounts for the
specific kinetic energy of the orbital motion of the stars.
effect is to increase the effective source strength.

From Eq. ~13! the Hamiltonian densityrH has a term
(W221)(r1reG) which enters into the source termr1 for
f. Similarly, the source for the Poisson equation for (af)
@cf. Eq. ~26!# has a term (W221)33(r1reG). Thus, the
source terms for bothf anda will increase as the separatio
distance decreases andW exceeds unity. A stronger sourc
term will imply larger values for bothf anda at the centers
of the stars and therefore steeper gradients of these quan
as one moves outward from the center of each star.

In isotropic coordinates, the general relativistic conditi
of hydrostatic equilibrium for each star can be inferred fro
the dominant terms in the momentum equation~51!,

]P

]xi
52~r1reG!S ] lna

] xi
1F] lna

] xi
22

] lnf

] xi G~W221! D ,
~77!

where we have ignored the centrifugal term,Sj (]b j /]xi).
From this we see that the effective gravitational force@right-
hand side of Eq.~77!# increases both because (W221) ex-
ceeds unity and because the gradients ofa andf are more
steep asW2 increases. A further increase of binding aris
from theKi jKi j terms in the field sources, but these terms a
much smaller than theW221 contributions.

In our rotating coordinate system, the fluid thre
velocitiesVi are nearly zero. Hence, from Eq.~46! we have

W2215
1

~a2/v2R2f4!21
, ~78!

whereR is the distance from the center of mass. Along t
line between centers in theJ52.331011 cm2 model, an ef-
fective velocity of (vRf2/a)50.28 is obtained. In the star
the average value is (W221); 5–10%. Including both the
a andf terms in Eq.~77!, we then estimate that the effectiv
hydrostatic gravitational force on the stars is increased
10–20% over that of stationary nonorbiting stars for whi
(W221)50. This increased gravitational attraction is suf
cient to induce the calculated increase of central densitie
the stars approach one another. An important ingredien
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this analysis, however, is that we have assumed zero-therma
energy as the stars collapse, that is, we have assumed th
neutrino emission is efficient enough to radiate away the
released gravitational binding energy so that the stars remai
effectively cold.

B. Comparison with post-Newtonian results

Much of the early evolution of a neutron-star binary
should be describable with post-Newtonian techniques
However, one desires an understanding of where in the evo
lution the post-Newtonian approximation diverges from a
fully relativistic treatment. For this reason it is of interest to
compare the results here with those obtained by a post
Newtonian treatment. We caution, however, that such a com
parison is ambiguous. The two formalisms invoke different
gauge choices. Hence, parameters can have different mea
ings.

Our intermediate orbit (J52.331011 cm2) appears to be
on the verge of the transition from steady inspiral to unstable
plunge. Therefore, it is convenient to compare these result
with the ~post! 5/2-Newtonian analysis of this transition in an
equal mass binary as given in Ref.@22#. In that paper a
search was made for the innermost stable circular orbit in the
absence of radiation-reaction terms in the equations of mo
tion. This is analogous to the calculations performed here
which also have analyzed orbit stability in the absence of
radiation reaction.

In the ~post! 5/2-Newtonian equations of motion, a circular
orbit is derived by setting time derivatives of the separation,
angular frequency, and the radial acceleration to zero. This
leads to the circular orbit condition@22#

v0
25mA0 /dh

3 , ~79!

wherev0 is the circular orbit frequency,m52MG
0 , dh is the

separation in harmonic coordinates, andA0 is a relative ac-
celeration parameter which for equal mass stars becomes

A0512
3

2

m

dh
F32

77

8

m

dh
1~v0dh!

2G1
9

4
~v0dh!

2. ~80!

Equations~79! and ~80! can be solved to find the orbit an-
gular frequency as a function of harmonic separationdh .
The gravity wave frequency is then twice the orbit fre-
quency,f5v0 /p.

Figure 5 shows the circular orbit post-Newtonian gravity
wave frequency vs separation distance compared with the
present numerical calculations. A striking feature of the
present work is that as the stars approach one another, th
frequency becomes nearly independent of the separation dis
tance until the orbit becomes unstable to plunge at a rela
tively large separation.

The main parameter characterizing the last stable orbit in
the post-Newtonian calculation is the ratio of coordinate
separation to total mass~in isolation! dh /m. The analogous
quantity in our nonperturbative calculation is proper separa-
tion to gravitational mass,dP /m. The separation correspond-
ing to the last stable orbit in the post-Newtonian analysis
does not occur until the stars have approached 6.03m. For
MG

0 51.45M( stars this would correspond to a separation
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distance of about 26 km. In the results reported here, h
ever, the last stable orbit occurs somewhere just below
mG
0 at a proper separation distance ofdP'40 km.
The fact that we observe the last stable orbit to occur

larger separation is consistent with the results of Wex
Schäfer @23#, who found that higher-order post-Newtonia
terms beyond those considered in@22# were significant. They
found an unstable orbit at 7.50m with a large possible un
certainty. A larger separation is also consistent with the
merical initial-data calculation for two black holes by Coo
@51#. In that paper a minimum proper separation betwe
horizon’sof 4.88m was found. If the black hole results wer
naively applied to the curved space around the two neu
stars by adding this distance to their Schwarzschild radii,
would correspond to a separation of 8.88m between centers

The difference inJ/2MG
0m0 also reflects this larger dis

tance. Note, however, that even though the stars are m
farther apart, the relativistic treatment gives a stronger gr
tational binding energy for this system. However, our bin
ing energy includes the increased self-binding of the in
vidual stars.

Given that the separation distance is greater and
v;r 3/2, we would observe a frequency which is a factor
(40/26)3/2'2 slower than the post-Newtonian estimates
separation distance were the only relevant effect. Howe
our angular frequency is about a factor of 2 less than
post-Newtonian value even at the same separation dista
We can understand this nonlinear effect of general relati
heuristically. This difference in orbit frequency should tra
to the balance between the gravitational and centrip
forces. From the momentum equation~51! with W51 we
can write the dominant terms as

~D1GE!
] lna

]xi
5Sj

]b j

]xi
. ~81!

The left-hand side is the analogue of the Newtonian grav
tional force. The right-hand side is the analogue of the c
tripetal force.

Along the y50 axis we have by'vx and
Sy5(D1GE)Uy . Thus, we may write

FIG. 5. Comparison of gravity-wave frequencyf vs proper
separation distancedP from the present work~points! and post-
Newtonian circular orbit condition~line!. The arrows show approxi
mate locations of the last stable circular orbit in the two schem
ow-
9.4

at a
and
n

-
nu-
k
en
e
tron
this
.
-
uch
avi-
d-
di-

that
of
if
ver,
the
nce.
vity
ce
etal

ita-
en-

] lna

] x
5vUy . ~82!

Taking the fluid three-velocities in the rotating frame to b
zero,Vi50, then, from Eq.~46!,

Uy5
vxf4

a2A12v2f4x2
. ~83!

Hence,

] lna

]x
5v2x

f4

a2A12v2f4x2
. ~84!

From this we see that the analogue of the Newtonian centr
etal term is enhanced by a factor off4/(a2A12v2f4x2).
The average of this quantity along a line joining the cente
of the stars is'7.0. Thus, a much smaller value for the
orbital frequencyv provides a sufficient centripetal force to
maintain a stable orbit.

V. CONCLUSION

We have summarized a method to study the relativist
evolution of a binary neutron-star system. We have illus
trated the method by following the evolution of a close bi
nary through several orbits for different angular momenta
the absence of radiation reaction. These results show tw
new results which to our knowledge have not been report
previously.

One significant aspect of these calculations is that th
binary orbit becomes unstable at a much larger sepa
tion distance~a factor of '1.6) than that derived from
~post! 5/2-Newtonian analysis. This implies that the nonlinea
effects of gravity become important much earlier on, and th
searches for gravity waves may observe the final merger
occur at a lower frequency than expected. This is importan
since it places the coalescence closer to the maximum sen
tivity range of the LIGO detector and others. However, w
estimate little tidal distortion or hydrodynamic amplification
of the the gravity-wave signal. Our estimate of the gravity
wave amplitude near the final orbit ish'3310223 ~at 100
Mpc!, ~see Table II for a summary of the gravitational wave
information!.

A second significant result of the present calculation
that the nonlinear effects of the fully relativistic gravity im-
ply deep gravitational wells as two neutron stars approa
each other. Indeed, the fields can become so strong that
stars areindividually unstable to collapse into two black
holes. Exactly when or if this instability occurs is of course
dependent upon the~EOS equation of state!. However, for
the realistic EOS employed here, this collapse is observed
occur while the stars are still in a quasistable orbit. Thi
suggests that there could be many orbits after black-hole fo
mation until the stars actually merge as two black holes.
correct, this result will have a significant impact on future
studies of binary neutron-star mergers and renders the tw
black-hole coalescence much more important. Furthermo
the possibility of a collapse many orbit periods before coa
lescence may have observational consequences not only

-
es.
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gravity-wave detectors, but in electromagnetic~optical, ra-
dio, x-ray andg-ray bursts! signals as well. We note tha
even for our unstable inner orbit, the specific angular m
mentuma5J/MG

2'1.3 is greater than unity, implying tha
more angular momentum must be lost before merger
occur, although a transient black hole may be able to fo
with a.1.

The importance of the possibility of premerger stellar c
lapse is dependent on the equation of state and the distr
tion of neutron star masses. As stated earlier, the EOS we
is the same one used by Mayle and Wilson@47,48# in their
supernova model. Calculations made with this EOS fo
model of supernova 1987A give an explosion energy
1.531051 ergs, consistent with observation. Also, the ne
trino spectra and time of neutrino emission are in go
agreement with the IMB and Kamiokande neutrino dete
tions @52#. These models also give a good reproduction
heavy element nucleosynthesis in the baryon wind from
proto-neutron star@53#. An important point is that with a
stiffer EOS~which would allow a higher-mass neutron sta!,
Mayle and Wilson were not able to obtain satisfactory
sults.

Regarding, the upper mass limit to neutron stars fr
observations, Finn@54# has recently analyzed the observe
masses of neutron stars and has assigned a lower lim
1.15–1.35M( and an upper limit of 1.44–1.50M( at the
1s ~68%! confidence level. At the 2s ~95%! confidence
level the upper limit only increases to 1.43–1.64M( . In an
independent approach, Bethe and Brown@55# have recently
argued from nucleosynthesis constraints that the maxim
neutron star mass is 1.56M(. They also point out that if
kaon condensation is taken into account the critical m
may only be 1.50M( . As seen in Fig. 1, our upper mas
limit is 1.60M( and the mass of the stars in our samp
calculations is 1.45M( , quite consistent with the observa
tional limits. If the maximum observed stellar mass was
low as the 1s upper limit, i.e., 1.50M( , it could be that
almost all neutron-star binaries would precollapse bef
coalescence.

The sample calculations presented here were made w
relatively coarse spatial zoning~see Sec. II D!. We, there-
fore, consider the present results to be only qualitatively c
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rect. They must be supplemented with more detailed nume
cal modeling. We are presently developing methods f
improved numerical efficiency so that results will be of su
ficient accuracy to allow for a quantitative interpretation o
future observed neutron-star binary collapse and coal
cence.

Note that for the above examples,J̇/vJ'1024 justifyies
our neglect of gravitational radiation. Also, we point out tha
since this paper was submitted it has come to our attent
that a study has been made@56# of the validity of the con-
formally flat condition when applied to rapidly rotating iso
lated neutron stars. This is the simplest case for which t
conformal approximation is different from the exact equa
tions. This work is encouraging in that it has shown that th
method works remarkably well.

From the above discussion it is clear that further studi
are warranted, particularly an effort to better determine t
last stable orbit and the approach to this orbit, as well as
systematic study of the sensitivity of the collapse instabili
to the neutron-star EOS. Work along this line is currently
progress. There is also a need to investigate orbits at lar
radii so that a reliable connection to calculations in the po
Newtonian regime can be made. Once this is done, one
combine the post-Newtonian and numerical~311! results to
produce a template of expected gravity-wave signals. The
can then be used to better extract the gravity-wave sig
from the noise.
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