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Large-scale magnetic fields from hydromagnetic turbulence in the very early universe
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We investigate hydromagnetic turbulence of primordial magnetic fields using magnetohydrodynamics
(MHD) in an expanding universe. We present the basic, covariant MHD equations, find solutions for MHD
waves in the early universe, and investigate the equations numerically for random magnetic fields in two spatial
dimensions. We find the formation of magnetic structures at larger and larger scales as time goes on. In three
dimensions we use a cascad®el) model that has been rather successful in the study of certain aspects of
hydrodynamic turbulence. Using such a model we find that aft&@® times the initial time the scale of the
magnetic field fluctuatioin the comoving framgehas increased by 4-5 orders of magnitude as a consequence
of an inverse cascade effe@te., transfer of energy from smaller to larger scalékhus at large scales
primordial magnetic fields are considerably stronger than expected from considerations which do not take into
account the effects of MHD turbulendes0556-282(196)02712-9

PACS numbe(s): 95.30.Qd, 04.40.Nr, 98.62.En

. INTRODUCTION vation implies thatB,,«~R~?, whereR is the scale factor,
the field could have been much stronger at earlier times. On
It has been suggested that primordial magnetic fieldglimensional grounds, a typical value of the magnetic field
might arise during the early cosmic phase transitidijsand  fluctuation should beB,«~T?, so that at the time of the
recently it has been shown that magnetic fields are indeed @lectroweak phase transition one could locally obtain fields
stable feature of the electroweak phase transif@in In a  as high as 1% G. Depending on how such a strong, random
first order phase transition magnetic fields could also be gemagnetic field scales at large distances, it cd@fbe the
erated when bubbles of the new vacuum collide, whence aeed field needed to explain the magnetic fields observed on
ring of magnetic field may arise in the intersecting regionthe scale of galaxies and larger.
[3]. It has also been suggested that at very high temperatures However, even assuming that a primordial magnetic field
the ground state of a non-Abelian particle theory is a “fer-is created at some very early epoch, a number of issues re-
romagnetic” vacuum with a permanent nonzero magnetianain to be worked out before one can say anything definite
field [4]. The plasma of the early universe has a high conabout the role of primordial fields in generating galactic
ductivity so that a primordial magnetic field would be im- magnetic fields. At earliest times magnetic fields are gener-
printed on the comoving plasma and would dissipate venated by particle physics processes with length scales typical
slowly [5]. Such a field could then contribute to the seedof particle physics. If the inflation hypothesis proves correct,
field needed to understand the presently observed galactihen after inflation rather long correlation lengths are pos-
magnetic fieldd6], which have been measured both in thesible[9]. The question is if it is at all possible for the small-
Milky Way and in other spiral galaxies, including their halos. scale fluctuations to grow to large scales, and what exactly
Typically the observed present day magnetic field is of thés the scaling behavior ofB,,; or the correlator
order of~107° G. (B(r+x)B(x)). Even in an inflationary scenario it would be
Locally the primordial field could be very large; it is lim- of interest to see if the relatively large scale can grow even
ited only by the magnetic energy density and effects it in-further. To study these problems one needs to consider the
duces in the electron statistics which both affect primordialdetailed evolution of the magnetic field to account for such
nucleosynthesif7]. The actual limits depend on whether or issues as what happens when uncorrelated field regions come
not one assumes a homogenous field, but a typical uppénto contact with each other during the course of the expan-
limit at nucleosynthesis i8<10'? G. Because flux conser- sion of the universe. In general, turbulence is an essential
feature of such phenomena. These questions can only be an-
swered by considering magnetohydrodynangd$iD) in an
“Permanent address: Department of Mathematics and Statisticexpanding universgLQ]. It is the main purpose of this paper
University of Newcastle upon Tyne, NE1 7RU, U.K. Electronic ad- to investigate the subsequent development of the primordial

dress: Axel.Brandenburg@Newcastle.ac.uk field. Expressed in a general way, our conclusion turns out to
"Electronic address: enqvist@pcu.helsinki.fi be that MHD turbulence is operative, and hence the scale of
*Electronic address: polesen@nbivax.nbi.dk magnetic fields is considerably larger than one would expect
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if MHD turbulence was ignored. This means that the previ-The Maxwell equations read

ous estimates of the strength of the primordial magnetic field

“today” need to be reconsidered. Fev,=34 Fru,,=0. ©)
We begin by posing the basic equations and consider cer- } . ) o

tain simplified models. A full1+3)-dimensional numerical We defineF,, in terms of the electric and magnetic fields

simulation would be desirable, but is beyond the scope of the -

present paper. In Sec. Il we derive the relativistic MHD Fio=RE, Fjj=e;R*BY, )

equations for relativistic plasma, which is appropriate for the

. . vyhere latin letters go from 1 to 3. With this definition the
very early universe. In Sec. lll we discuss the appearance 9l hression for the total enerav has Rofactors and takes
waves in relativistic MHD. To elucidate the various MHD P gy

o . therefore the familiar form
effects pertaining to the early universe, we also present nu-

merical solutions to the MHD equations for a two- 00_ 2_ 1R2, g2

dimensional slice. In Sec. IV we study a cascade model that T=(ptp)y =p+2(BTHED, ®
reflects important properties of fully three-dimensional t“r'whereyzuo.

bulence. The cascade model has been rather successful in|, order to solve(2) and (3) we rewrite the equations of
ordinary hydrodynamics. We find that in the early universeq,qtion explicitly in 3+1 dimensions. We start by writing)
magnetic energy is transferred from small scales to larggg
scales. We also compute the correlation function
(B(r+x)B(x)) in the cascade model. In Sec. V we offer an

) ) 1 ap
interpretation of our results. T W[ \/a(p+p)U”UV]+Fﬁ)\(p+p)U"U“+g‘”
g

ox”

II. RELATIVISTIC MHD IN THE EXPANDING UNIVERSE =F#vg. J° (6)
9ugds

We begin by presenting a derivation of the fully general - .
relativistic MHD equationgsee also Ref.11], where further wherg\/—_g= R% andi the _nonvainlshimg Chrlstoffel symbols
references can be foupavhich we rewrite in a form suitable 7€ 1'ij =RRd; ?”.d Ioj=(R/R)6j=To. Itis useful to de-
for our numerical work. We consider the early universe adine U'=yR™ "', because then the normalization
consisting of ideal fluid with an equation of state of the formY"U,.=~1 gives the familiar form for the Lorentz factor
p=3p, wherep is pressurep the energy density, and the y=(1-v ). : ]
speed of light is set to unity. We further assume that the fluid For «=i we obtain
supports arandom magnetic field. The energy-momentum

. B )
e o 0332 %[—(V.v)(R4S)—(v-V)(R4S)—V(R4IO)
TH'=(p+p)UrU"+pgt” +(R%)x (R?B)], @
1 1
. Fropy _ Zg’”FmF” ' (1)  whereS=(p+p)y?v. It should be noticed that in this equa-
au

tion all quantities are scaled by the appropriate powers of
R. Thus, e.g.R*S is expected to be independent Rf be-
whereU* is the four-velocity of the plasma, normalized as causep+p scales like 1R*, andv is expected to be inde-
u*J,=-1, andF,,=d,A,—3d,A, is the electromagnetic pendent ofR. Also, V occurs always multiplied by R, or,
field tensor. Note that, as long as diffusion can be neglectedilternatively, the operato#/dt is replaced by itself multi-
the presence of the magnetic field does not change the equgtied by R, which means that time is replaced by conformal

tion of state. _ timet=fdt/R. To emphasize this, it is convenient to intro-
The magnetic energy is assumed to be much smaller thagyce new scaled “tilde” variables:

the radiation energy, so that it can be neglected as far as the

expansion of the universe is concerned. We therefore assume S=R'S, P=R%, 7p=R%, B=RZ?B,
a flat, isotropic, and homogeneous universe with a _ _
Robertson-Walker metrids?= —dt?+ R?(t)dx?. Although J=R3J), and E=R’E. (8)

the magnetic field generates local bulk motion, this may still

be consistent with isotropy and homogeneity at sufficientlylt should be noticed that is not scaled. Equatiofi7) can
large scales, e.g., if the magnetic field is random, i.e., statighen be written

tically homogeneous and isotropic on scales much larger
than the intrinsic correlation scale of the field. Even very d ~ ~ o~ o~

large magnetic fields, together with the ensuing very fast EZ_(V'V)S_(V'V)S_VDJFJXB- ©)
bulk motion, might not contradict isotropy and homogeneity.

The equations of mo.tion for the fluid arise from energy- For =0 we obtain, using scaled quantities,
momentum conservation

( 1 )aln’ﬁ+alnyz+ Iy + ¥ J-E
T = JEgTHTAT =0, (2) avijioo 2t P+9)y’

ETES (10
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In order to solve this equation numerically with an explicit

code we need to eliminate the time derivatiiy?/ét. To
this end we first solve the normalization condition fgf:

2—1+ ! & " (11)
T2 B
We then differentiate
dlny? 1 oS It —-14Inp "
a2y 1) (p+p)2 , 1 dt (12
y2— =
2

Combining(10) and(12) we obtain a final equation suitable

for numerical work:

2y*+1  alnp IS 3t Vi)
—=— —v-Vin
4y%(2y*-1) i 4_ 1\ Py
zPY| (2y°—1)

JE

-V.v+ , (13
4"" 2
3PY

where we have used+p=
equation only scale invariant quantities enter.
The Maxwell equations can be written explicitly as

JB - ~
—==-VxE V-B=o0, (14)

and

= Pe (15)

ml

~ ~ d
J=VXB—-—, V.
at

wherep, is the charge density ang,=R3p,. Further,

E=—vXxB, (16)

which is valid in the limit of high conductivity11]. Again,

these equations have the natural scaling properties with re-

spect to powers oR. We emphasize that in the relativistic

regime the displacement current JE/ot cannot be ne-

glected. However in all cases considered we were able tﬁ/hereg*

solve for — E VX B+ VX B iteratively by evaluating/ and

B from the previous iteration.
The equation of energy conservation'ﬁ%”;fo, or

L7 RATO0) 1 701 4 RRTII = 1
R at' ol =0 @
but since T",=0, we have TI=T|/R?=-T%

IR?=TOYR?, and therefore the energy equatlon is
J Jd )
_ RAT00_ _ _~ _pR4T0j
pm R*T o] R*TH, (18

or integrated over the whole space

3p for later convenience. In this

1293
dR'E
dt tot: ' (19)
where
Eor= f T3x=(T%). (20)

HenceR*E,, is conserved.

The conclusion from the above expressions is thus that
the MHD equations in an expanding universe with zero cur-
vature are the same as the relativistic MHD equations in a
nonexpanding universe, provided the dynamical quantities
are replaced by the scaled “tilde” variables, and provided
conformal time tis used.The effect of this is, as usual, that
the expansion slows down the rate of dynamical evolution.

It should be noted that the velocityis the bulk velocity.
Thus, in general, we expect thatis nonrelativistic. This is
physically reasonable since, although the gas particles move
with velocity near unity, we expect no strong collective ef-
fects which could give rise to a relativistic bulk velocity. The
equations for nonrelativistic bulk motions of a relativistic gas
are given in the Appendix.

In the early universe conductivity is large, and hence the
diffusion length is also large. The conductivity of the isotro-
pic relativistic electron gas, which interacts with hedmgn-
relativistic) ions, is related to the Coulomb scattering cross
section and readdl 2]

ws T 21
 A4mogne 3ma’ 21)

wherew, is the plasma frequency is the collision cross
section, andw is the fine structure constant. This result is
valid for fields smaller than the critical fieldB,
=mZ/e=4.41x 10" G, above which the electrons cannot be
treated as free, and the conductivi®l) should be multi-
plied by a factoB/B.. On dimensional grounds, conductiv-
ity of the fully relativistic standard model gas will also scale
aso~T. The expansion rate of the radiation dominated uni-
verse is given by

H_R_l_ [y, T2 ’
"R 2t 90 My’ 22

is the number of the effective degrees of freedom,
andMp=1.2x10" GeV is the Planck mass. Equati¢®?)

also provides the time-temperature relationghipl, and the
inverse the length scale of the universe. A measure of the
importance of the diffusion is the magnetic Reynolds num-
ber, which may be defined as Rév o, whereL andv are,
respectively, the typical length scale and velocity in the sys-
tem under consideration. A Reynolds number less than 1
means that diffusion dominates. In the early universe, say at
the electroweak phase transitidg,,~ 100 GeV where in the
standard modey, =106.75, the Reynolds number is huge,

typically

M
Re,~voH 1~ 7P~1o”, (23)
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wherev has been arbitrarily chosen to be 0 In this sense _ t dt’
the very early universe is almost a perfect conductor. Also, =J R (30
the extremely large value of the Reynold’s number indicates fo

a turbulent situation, which we shall find by other method

later S\Nhereto is the initial time, in accordance with the results

obtained in the previous section.
We therefore see that with the scaling properties men-
lll. ASPECTS OF RELATIVISTIC MHD tioned above the equations are similar to the nonrelativistic
case[provided we use the timein (30)]. Thus we find the
group velocitydw/ok=B//p+ p. Because the scaling prop-
_Let us begin by first presenting some general consideraties ofB and \p+ p with respect to the expansion of the
ations. In the framework of relativistic MHD in an expand- njverse are the same, it follows that the group velocity is
ing universe, we can still discuss waves. Although the equandependent oR. As far as the phase velocities are con-
tions exhibited in the previous section are considerably MOr@erned, the same is true. Assuming the background field to
complicated than their nonrelativistic counterparts, the MHDpq iny thex direction, thensB andv are in thez direction, as

waves are linear perturbations of the standard cosmologica), ihe case of nonrelativistic wavgs4]. One then finds that
background. Thus the bulk velocity must necessarily be he velocities are given by

small relative to the velocity of light. It therefore follows that

the displacement current can be ignored. The' paqurounq is 1 1 382 2B, 1 3B% 2B,
homogeneous, and we assume the relativistic relation - e —— [+ ——-—Z|. (3D
3 4p  Jp 3 4p p

p=p/3 for the background as well as for the fluctuations.
The continuity equation, i.e(10), gives to the lowest order

the well known resu|b:c0nstR4_ To the next order we get Of COUrSS, these velocities are given in terms of the confor-
mal timet. It should be noted that the assumption of small

A. Magnetohydrodynamic waves

dR'p 4, (1 bulk velocities can only be maintained [iB|<p. If this
ot +§R p ﬁV'V =0, (24) condition is not satisfied, we cannot expect the nonlinear
effects to be small.
where dp is the fluctuation inp. Also, from (7) we get, to
lowest order in the fluctuations, B. Two-dimensional slice
IRASS 1 1 1 Ideally, we would like to solve the MHD equations in
=——VR4(—5P+ BSB |+ = (R?B)V(R?8B). three (plus ong dimensions. However, as indicated in
ot R 3 R Sec. Il, this is a major computational task. We restrict our-

(25 selves therefore to a two-dimensional slice only. The main

4 . . conclusion will be that much of the qualitative behavior of
Here 5S= 5pv, anddB is the fluctuation of ”;e background 1 elativistic MHD carries over to the case of relativistic
field B, which is assumed to behave likel/R°. Of course, \1p

5_B is expected tlo have a similar §caling behavior as a func- Wé solve(9) and(13)—(16) numerically using sixth order
tion of time, but it also has a spatial dependence. Finally, We.entered differences to compute the spatial derivatives and a
have the fluctuation equation third order Runge-Kutta scheme for the time step. We adopt
R2sB 1 random initial conditions foB. First we selecB at each grid
J = Z VX (VXR?B), (26) point independently from a Gaussia_n distribution, but in or-
ot R der to guarantee tha& -B=0 for all times, we advance the
. ) ) z component of the vector potential by means of the equation
which follows from(14), since the displacement current can jx Idt=e,. (VX g) where§=Vx(K e,). The initial A, is
z J z2%z) - z

be ignored for small bulk velocities. i 28 — e — ;
- . computed by solvingV<A,=—1J,. Initially (t=ty, i.e.,
We now seek a wave solution which, because of the struc~ P y gV A, z y (t=to

ture of (24)—(26), must contain the scale fact®® to the t=0) we putp to unity. Per|9d|c bOU”d?‘W. condltlops are
adopted in thex and y directions. The initial velocity is

power —2: chosen such that the velocity vanishes everywhere. Thus the
bo _ effects that we subsequently see are entirely generated by the
6B= —exfdi(k-x—wt)], (27)  random initial fieldB. We emphasize that our calculations
R are exploratory, and hence we do not use any particular
and model(e.g., based on the electroweak thganyselecting the

initial random magnetic field.
Our new equation$9) and (13)—(16) are scale invariant,
so it is sufficient to solve them on a computational domain
) with sizeL=1. The results for a different domain siké are
const . ~ the same, but taken at a different tirtfe= (L'/L)t.
5p—FEXQI(k~X @), @9 As in all turbulence calculations the(re ha)s to be some
diffusion to prevent the accumulation of energy at the small-
wherebgy andv, are constants. These expressions satisfy thest scale. In order to restrict the effects of dissipation only to
basic fluctuation equation4)—(26) with the largest possible wave numbers we use hyperdiffusion,

v=veexfi(k-x—wt)], (28)
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i.e., instead of the usual diffusion operaféf, we use an
operator of the form-V* for the evolution of all variables.
This technique is well known in turbulence reseafske, 0.4
e.g.,[15]). Also, since this procedure is merely of computa- 5 f
tional relevance, we did not use the relativistic expressions.
The minimum diffusion coefficient we can afford is 0.0¢,
given by the empirical constraint that the “mesh Reynolds
number” Rg,.q= U ox/v must not exceed the value 5-10.
Here, 6x is the mesh size and is a typical velocity that -0.4
includes the velocity of waves and bulk motions. As was
pointed out before, in the early universe the Reynolds num-
ber is very large, which means that the magnetic diffusivity
n=4/o should be much smaller than the adopted value of

-0.27

B Y2 o)

-0.4-0.2 00 0.2 04

v. In other words, in order to have realistic values 1gf 0.4
6X has to be extremely small. However, the maximum num-
ber of mesh pointsN=L/édx, is limited by computer 0-2¢

memory and time. Our present, rather exploratory, calcula-
tions were carried out on a workstation, and so we restricted
ourselves td\,,,=128. Even on larger computers we would —9-2¢
never reach realistic values. This demonstrates the difficulty _ ,
of a realistic simulation. It is obvious that numerical simula-
tions with a low Reynolds number cannot provide a realistic
picture of the early universe MHD. However, we believe
they are useful in illustrating the qualitative features of the
problem.

The evolution of the magnetic field is compared in Fig. 1
for lower and higher resolution. As time goes on, the coales- ¢ 2}
cence of magnetic structures leads to the gradual formation
of larger and larger scales. In the higher resolution case there ©-0
are more small-scale structures, but also here the develop- 5
ment of large-scale fields is evident. In turbulence research
this phenomenon is known as an inverse cascade. Such cas=0-4¢
cade processes are linked to certain conservation properties 5, 05 00 o2 o4 T 04-0200 02 04
that the basic equations obey. For further details, see Ref. 64x64 128x128
[16]. We mention here only a few important aspects. An
in.verse.cascade exists both in two-dimen.sional anq in thrge- FIG. 1. Left column: magnetic field lines at different times at
dlmenSIODaI MHD turbulencg. Thg only difference is that in low resolution (64< 64 mesh poings Right column: magnetic field
the_two-dlm_en5|onal case itis an inverse Cascade of th_e Malnes at different times at higher resolution (22828 mesh poinjs
netic potential, whereas in the three-dimensional case it is an
inverse cascade of the magnetic helicity dengityB. In  scales via an inverse cascade could be of major importance
fact, the conserved quantities in the two cases fatexA? in cosmology. It could provide a seed field at the parsec or
and [d3xA- B, respectively. For comparison we also men-kiloparsec scale, albeit at small amplitude.
tion that the difference between two- and three-dimensional
hydrodynamic(nonmagnetig turbulence is more drastic. In IV. A CASCADE MODEL
two-dimensional hydrodynamics there is an inverse energy
cascade associated with the conservation of enstrapbgan
squared vorticity, which has no counterpart in three-  The ultimate goal is to solve the basic MHD equations in
dimensional hydrodynamics. three dimensions at high resolution, using random initial

The significance of an inverse cascade is that it leads to eonditions. Although we would be unable to cover a realis-
transfer of magnetic energy to larger and larger scales. Thisically large range of length scales, it is important to know
process is due to the nonlinear terms giving rise to moda&vhether dynamo action could be possible in a relativistic
interactions. Energy spreads over different scales until somilow. This is a major task, which would go beyond the scope
balance is achieved where the kinetic and magnetic energyf this paper. To see the difficulties involved in such a pro-
spectra have a certain slope. In the ordinary MHD turbulencgram, the reader should recall the difficulties in making long-
a relevant energy spectrum could be the Iroshnikovterm weather predictions based on the Navier-Stokes equa-
Kraichnan spectrurfil 7], where the spectral energy varies astions. Therefore, in order to demonstrate some of the
k%2, or a Kolmogorov type spectrum like 5. These dif- anticipated behavior of the full43 MHD universe, we now
ferent spectra describe equilibrium situations, but in any casstudy a cascade model of hydromagnetic turbulence.
it is clear that the spectrum will be very different from white  In ordinary hydrodynamics and hydromagnetics many
noise, which has &*2 power spectrun{see Sec. IV B be- properties of turbulence, in particular those related to energy
low). The possibility of energy transfer from small to large transfer and to the spectral properties, including small inter-

0.4

A. Description
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mittency corrections, have been studied successfully using We useb=BR? and construct equations fof, andb, such
simple cascade mod¢lL8]. This is true not only qualita- that
tively, but also quantitatively, which is the reason why the N \
cascade model is how much used in studies of nonlinear 8 , dun , dby
physics(see, e.g.[19] and references thergin 59021 Un _dT+nzl by _dTZO- (36)

The basic idea is that the interactions due to the nonlinear
terms in the MHD equations are local in wave number spacein computing the conservation of the energy, the complex
In k space the quadratic nonlinear terms, such agonjugate of this equation should be added. However, it turns
VX (vXxB), v-Vv, and JXB, become a convolution and out that the “complex energy'(exhibited in the above equa-

have the general forrj20] tion) is conserved by the following construction.
As pointed out, the main idea of the cascade model is to
Nk(v,B)zf Capta(P)B4(P— K)d3p. (32) construct a set of equations that share the same basic conser-
vation properties of the nonlinegguadrati¢ terms as the

Th imil Iso for th h i . original equations. Thus we write equations which mimic
(There are similar terms also for the other two non ineari-oq 1ationg9) and (14):

ties) WhereC,z=C,z4(K) is a tensor which is linear ik.

Interactions ink space involving triangles with similar side 4 dv,
lengths have the largest contribution, as discussef®h §Po*d{*:Nn(v,b), 37

This has led to the shell mod&dee, e.g.[19] and references
therein, which is formulated in the space of the modulus of db
the wave numbers. This space is approximatedbghells, —_—= M (v,b), (39

where each shell consists of wave numbers with dt
2"<k=2"*1 (in the appropriate unijs The Fourier trans-
. T Com where
form of the velocity over a length scale, = (k,=2") is
given by the complex quantity,,, andB,, denotes a similar 2Np(v,b) =ik (A+C)(v*, vk, ,—b*, b¥,,)
guantity for theB field. Furthermore, the convolution is ap-
proximated by a sum over the nearest and the next nearest +ikn(B=3C)(vp_qvpi1—bh_1b}. 1)
neighbors: o . v s
) —ikn(3B+7A)(vy-_vn-1—br_obr-1),
No(0:B)= 3 Cijon:iBasj. (33) (39

] ] ] Mp(v,b)=ikn(A—C)(vp,1bn 2 —bh,1vhs5)
Herev and B have lost their vectorial character, which re-

flects the fact that this model is not supposed to be an ap- +ikn(B+3C)(vn_1bpi1—br_107:1)
proximation of the original equations, but should be consid- oo N v L .

ered as a toy model that has simitaonservatiorproperties —ikn(z2B=2A) (vn-_2by -1 —bn_ovp-1),

as the original equations. Thus, e.g., the energy flow should (40)

be represented by these equations. It is quite remarkable that

such models show several realistic features, including interwith A, B, andC being free parameters. It is straightforward

mittency corrections to the structure function exponents, antb verify that Zv} N,+=bxM,=0, using thak,=2". The

are therefore rather popular both in the absgri&® and in 7 jifferentiations in Eqs.(37) and (39 are included to

the presencf21] of magnetic fields. There_fore we propose to mimic closely the nonrelativistic form of Eq¢9) and (14).

apply such a model also to the early universe. In the actual computations we have restored magnetic and
Velocity and_ magnetic fields are thLLS represented by &inematic diffusion terms — vkﬁvn and —Ukﬁbn, on the

scalar at the discrete wave numbégs=2" (n=1,... N),  \jgnt hand sides of37) and (38), respectively. We chose

i.e., k, increases exponentially. Therefore such a model can — 7 and as time goes on, lowered gradually using the

cover a large range of length scal@gpically up to ten or- formula v>(2kﬁ|vn|z)1’2/k2 where k....=2\. This for-

i i i i max?
ders 4Of magnitude TQOe 3|m.portant conserved qu_ant|ty IS mula estimates the minimum amount of diffusion necessary
EoiR*, whereE;=[T"d"°x is the total energy. Using that

the bulk velogity | lativisti h 1 to prevent the buildup of energy at the smallest resolved
€ bulkvelocity 1S nonrelativistic, we have—1, SO We €an  go51e. We use a third order time step, which is calculated via

2 2
expandy”~1+v". Hence the formulad, = 0.25mirf (=Ko, ).

Etot”f

The numerical study of the cascade model requires, of
Since we are here mostly interested in the evolution of theourse, that the parameteksB, andC are fixed. This prob-
magnetic field we ignore the detailed evolution @fand  |em turns out to be quite interesting, since it allows one to
assumep~poR~*. Thus we require that associate the cascade model with a dimension. In hydrody-
namics the parameters are fixed by taking into account a
conservation law which is nontrivial in the dimension con-
sidered. In two dimensions, for example, one uses the re-

2

4 2 1 2143
p+ 3PV + =B“|d°x. (34 B. Results

4 1
f <§p0V2+ EBZR“) d3x=const. (35
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FIG. 3. Left column: the correlation function @& for three

different times. Right column: the rms magnetic field as a function
of distance for three different times.

FIG. 2. Spectra of the magnetic energy at different times. Thenme?glg;eergzr?se:fa?]];g?r%rgt#g% éﬁq(a)_ﬂesgz;:e g?f:grgsges’crgli %
straight dotted-dashed line gives the initial conditidp={1), the o . o
solid line gives the final timetE& 3X 10%), and the dotted curves are This |s.called the |n\{erse cascade effect. Such an.effect IS
for intermediate timedin uniform intervals ofA In(t—t;)=0.6]. f‘?“”d '_n many nonlinear systems, for example, in two-
A=1 B=—1/4, andC=0. dimensional turbulence, relevant, e.g., for the atmosphere.
The quantity of paramount interest is the magnetic field

qguirement that the enstrophy is conserved, whereas in threceorrelanon function

dimensions the helicity should be conserved. In three dimen-
sions Jenseant al.[19] used the valued=1,B=—1/4, and
C=0, which we have adopted also in several models pre-
sented here. We compare the results with another set of pgyhich is related to the power spectrum via a Fourier trans-
rameters for which the quantity form, Cg(r) = JEy(K)coskn)dk It is difficult in general to
compute this quantity, due to the fluctuations in the spectrum
Em(K). Therefore we have computézk(r) from the spectra

of the cascade model by interpolatiig, (k) on a uniformly
spaced mesh. This, of course, introduces some uncertainty.
is conserved, in addition to the total ener@l]. This re-  The result is shown in Fig. 3. Note the clear increase of the
quires thatA=7/5, B=—1/10, andC=1. The quantity widths of the correlation functions.

Hum resembles the magnetic helicity- B, which is impor- Note also the anticorrelation at larger length scales. For a
tant, because associated with it is the inverse cascade @fagnetic field this is natural, because if one considers the
magnetic helicity and energ}22]. In Fig. 2 we plot the field in some region from a point far away from this region,
spectral magnetic energy densiy; (k,) =|b,|%/(kR*) com-  the magnetic field in the region appears to be approximately
puted for these values, with the initial field taken to be ran-a dipole. A negative correlation then arises because the field
dom[i.e., Ey (k) =k?]. The reason we interpret this expres- loop has to close. This would then basically be a conse-
sion as the magnetic energy is that we know tB&fi b, guence of diB=0, which has a tendency to lead to negative
enters in the conserved energy. HoweveX,~fdn  correlations. However, the cascade model of course has the
= [dk/(kIn2), soEy(k,) is the energy irk space. We used difficulty that it does not really operate in ordinary space, but
N=30, which covers a range of length scales of approxiinstead it is formulated in the modulus bfspace. Hence we

Cg(r)=(B(r+x)B(x)), (42

Hu=> (—1)";,'b%b, (42)
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cannot really investigate to what extent the condition
divB=0 is satisfied, in contrast to the two-dimensional case
discussed in Sec. Il B.

Another quantity of interest is the average magnetic field
as a function of distance,

B(r)EriD dPxB(x), (43

where the integration is over a volume of siZ¢in D di- 3
mensions. From this definition we have 10

v

10 10 10

£/t

1
2\ D D
(B()9)= rZDJ d Xf d®y(B(x)B(y)), (44) FIG. 4. Evolution of the integral scale. The plot symbols denote
uniform intervals ofA In(t—tg)=0.6. The circular points correspond

where both integrations are over a volume of gi2e Thus  to the hydrodynamic valueA=1, B=—1/4, andC=0, the dia-

the root mean square magnetic field monds correspond to the MHD valués=7/5, B=—1/10, and

C=1, and the triangles are the widths computed for the correlation
Br=<B(r)2>1’2 (45) function.

can be computed directly from the correlation functionphase transition as the initial state, the QCD phase transition

Cg(r) via occurs approximately fott/to=10°. The maximum time
" t/to=10° reached in our simulation corresponds to a tem-
B — iJrr’zdr’C (r') (46) perature of 3 MeV, which is close to the nucleosynthesis. It
i, B ’ should be noticed that from these results one cannot, of

course, say anything about what happens at later times.
For a random fieldB, behaves like ~’2, so the interesting Therefore it could be thalty(t) increases further, either by
question is whether this initial behavior changes as timeeaching new plateds), or otherwise.
passes. In Fig. 3 we show the results. There is a clear broad- We also measured the integral scale of the magnetic field
ening of B, towards larger distances as time passes, as wi the two-dimensional model of Sec. 11l B and found a clear
would expect from the inverse cascade behavior. increase with time. For the three times plotted in Fig. 1 we

The determination of the width of the correlation function found for the 64 64 case the valuek,=0.09, 0.50, and

above is not very accurate because of the fit involved ir0.95, whereas in the 128128 case the values were
computing the Fourier transform of the spectrum. We shall ;=0.04, 0.28, and 0.76. The initial difference of a factor of
therefore now introduce another length scale that is easier ® s due to the different resolution. At later times the integral
compute, but whose value is similar to the width of the cor-scales for low and high resolution are more similar.
relation function. The relevant length scale in turbulence The evolution ofl, is not straight, but if we make a linear
theory is the so-called integral scale, which is the charactefit through the values given by the diamonds in Fig. 4 we
istic length associated with the large energetic eddies of turfind (ignoring the steep initial increase
bulence. Roughly speaking one could view it as a measure of
the coherence of the magnetic field, too. It is defined by lo(t)=ro(t/tg) Y4 (48

_ -1 For further applications of the rough fit formu(d8) it may
lo JZWk Eu(k)dk /J Em(kdk, “7) be more sensible to express time in terms of temperature,

Tt~ 12 so
which, in  our cascade model, corresponds to
lo=327k; Y|by|%/=|by|2. If the spectrum is random we get lo(T)~ro(T/Ty) "2 (49)
lo=3/227k L., where 27/k. is the shortest length scale
present in the model. This length scale in the initial randomwherer,~10"5; see Fig. 4. If we wish to extrapolate to the
spectrum is determined by the mechanism generating the prpresent time we first have to fix the scalg by physical
mordial field. In Fig. 4 we show the evolution kf{(t) intwo  arguments. The various models presented in the literature
cases, namely, for the hydromagneti,B,C (circular [1,9] give characteristic scales for the primordial field when
pointg and for the MHDA,B,C (diamond-shaped points it is generated. This scale should be identified with the low-
Although the two sets of values fok,B,C do not yield est scale in our calculations which, in the case of the shell
identical results, we see that the curves are qualitatively simimodel, is about 10%. The scaler, is typically somewhat
lar. In both case, increases rapidly by 4—5 orders of mag- larger (10 © in the shell model The reason for this is pre-
nitude, and there is a plateau structure. The MHD resulsumably that a purely random initial condition is not consis-
(diamond-shaped pointshas a plateau stretching to tent with the MHD equations.
t/to=10°, but for larger timed, keeps increasing. The in- In order to clarify these points we take an example. If we
crease of ; by almost five orders of magnitude is important, assume that at the time of the electroweak phase transition
because it could lead to magnetic fields at the present time 47=100 GeV} r, was 103 cm (the horizon scale was
length scales comparable to 1 pc. If we take the electroweak 4 cm) then, using our extrapolatio9), we arrive at a

D/
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scale of 2 pc. If we assume that the initial magnetic field wadence, and one would instead haMes< 10'°, which reduces
10'8 G, then the present day value would be 1bG. Such  the stochastic decrease Bf. It should be emphasized that
values would lead to sufficiently strong seed magnetic fieldsrom our calculations one can only say what happens up to a
to explain the field even in high redshift galaxies by dynamatime of order 16tg,,, So presumably is considerably be-
action[6]. This extrapolation may be too naive, because thdow 10'° today.

nature of turbulence will change as the universe cools down. The turbulent nature of the magnetic field may have in-
Furthermore, at later times, when structure formation begingeresting effects on the various phase transitions in the early
gravitational energy may lead to additional stirring and en-universe. Also, the inherent shift of energy from small to

hancement of turbulence in localized regions. large scales may be of interest in connection with the density
fluctuations due to the magnetic energy.
V. DISCUSSION Of course, the cascade model isnsodel of the real

) . . (1+3)-dimensional MHD turbulence. Its successful applica-
In the two-dimensional case we found that, starting from g, in many, widely different nonlinear physical problems

small-scale magnetic field, magnetic structures develop 3§uggests, however, that it might also be applicable to the
progressively larger scales. This process of self-organizatiogimordial magnetic fields of the early universe. Therefore
corresponds to an inverse cascade of magnetic energy agg pelieve that its indication of the strong increase in the
helicity. Using then a cascader shel) model to study three-  coherence scale of the primordial field should be taken seri-

dimensional MHD turbulence we were able to follow this oy5ly and that further, more detailed studies are warranted.
inverse cascade over much longer times. Such a cascade

nme?rgi(i:l tt?gu?::cne rather successful in the study of hydrody- ACKNOWLEDGMENTS
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Taking the parametép as a measure of the coherence length APPENDIX
of the magnetic field, we see that there is an increase in the . .
coherence of 4-5 orders of magnitude. This means that pre- W? give here the equations for t.he cas.e.vv_here t.he .bUIk
vious estimates of the field strengths in various mechanism?éeloc"[y is small(the gas remains St.'l,l reIaEwsﬂc, which is
for generating a primordial field should be revised accorg.Mportant for the scaling properties pfandp):
ingly. For example, let us consider the estimate by Va-

chaspati in Ref[1]. Taking the area average one has the a_l,rl’iz_f(v.v |n;;_|_v.v)_‘];’_E, (A1)
estimate at 3 P
B, ~gT?/4N, (50 Dv D Inp ) 1 - JxB
——~=—V|—=—+V.v|==VInp+——, (A2
whereN is the number of steps needed to reach a given scale Dt Dt 4 4_
in terms of the “fundamental” scale at which the field is 3P
generated. In this case the fundamental scale is the elec- _ _ ) o
troweak scale[1]. Proceeding as in Ref[1] one has WhereD/Dt=0d/dt+v-V is the total derivative, and
N~ 10%* today, if the relevant scale is of order 100 kpc. ~
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