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Scattered light noise in gravitational wave interferometric detectors: Coherent effects
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Large interferometric detectors of gravitational waves involve high power light beams stored in optical
resonators or Fabry-Perot cavities, installed in km long vacuum pipes. Scattering of light by mirrors, interac-
tion of the scattered light with the walls of the vacuum vessel, and final rescattering on any mirror is a source
of noise in such antennas. We present some results obtained within the framework of a coherent approach of
scattered light propagation using a coherence function allowing us to study, namely, the effects of small
reflecting surfaces along the tube, of diffraction, and of reflection by eventual baffle edges.
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I. INTRODUCTION

Laser interferometers for gravitational wave~GW! detec-
tion are presently being developed by at least three colla
rations@1–3#. A common feature to all of these future facil
ties is the storage of light power in long resonant caviti
The optical system must operate in a vacuum and require
the same time a very efficient seismic isolation. Here, a s
rious effect arises: The imperfect mirrors constituting the o
tical system scatter a weak but finite amount of the sto
light over wide angles, allowing it to interact with th
vacuum vessel’s walls, to be reflected, diffracted, or sc
tered again, and finally reach any mirror of the system,
cluding the initial one, where a second scattering recombi
a part of that scattered light into the stored standing wa
The trouble comes from the fact that, during its interacti
with the walls or any linked structure, the light acquires
phase modulation determined by the vibration state of
vacuum tank, sustained by the seismic activity of the grou
and transfers the resulting noise to the standing wave.
result is a bypass of the seismic isolation sytem. This eff
was first noticed by the German team operating the Garch
prototype of interferometer@4,5#.

Owing to the second order scattering process on super
ished mirrors~the best of the present state of the art!, the
overall effect is expected to be very small, but the sh
noise-equivalent spectral density of phase noise in such
tical devices can be as low as 10211 Rd/AHz, and, as cus-
tomary in this field, even currently negligible effects must
carefully investigated.

Mirrors scatter light because of their roughness. Scat
ing of electromagnetic waves by rough surfaces has b
studied by a number of authors@6# even in the case of large
rms roughnesses. Fortunately, we have to deal here only
very weak roughnesses, which allows a significant simp
cation of the general theory. On the other hand, propaga
of stray light in complex systems, and its attenuation, can
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treated by well-known techniques based on very gener
Monte Carlo codes mastered by specialized companies, b
not addressing the question of seismic noise injection. Th
first attempt to make a thorough analysis of the spectral de
sity of noise caused by scattered light in GW interferometer
is due to Thorne@7# who introduced the basic concepts some
years ago. Since this paper, theoretical, numerical, or eve
experimental work, often unpublished, has been carried o
in the above-mentioned collaborations, for instance by Win
kler et al. @8,9#.

We present here a very special study restricted to effec
that can be treated by wave optics and evaluated by a simp
analytical calculation, namely, the effects of reflecting sur
faces existing in a vacuum pipe, for instance, resulting from
imperfections~weldings, scratches!, from junctions of sec-
ondary pipes to pumping stations, bellows, and even edges
baffles installed for the purpose of scattered light suppre
sion, but being able not only to reflect, but also to diffrac
scattered light and to couple directly the two mirrors of a
cavity by their edges as a residual effect.

We describe in Sec. II the theory to be used; then, fo
more convenience we give the results of physical interest
Sec. III and the detailed calculations in the Appendix.

II. BASIC THEORY OF COHERENT SCATTERED
LIGHT NOISE

We propose here a general formalism allowing us to trea
scattered light within the wave optics framework.

A. Emission of scattered light

The scattered light we are faced with is generated by re
flection of a Gaussian beam on mirrors with weak rough
nesses. The mirrors planned for GW interferometers wi
have rms roughness small compared to a wavelength of t
laser source. Typically, optical surfaces of rms roughnes
1276 © 1996 The American Physical Society
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54 1277SCATTERED LIGHT NOISE IN GRAVITATIONAL WAVE . . .
less than 1 Å will be illuminated by thel'1mm radiation
of a Nd yttrium aluminum garnet~YAG! laser.

We define the rough surface of a mirror by a rand
departure from its ideal shape, so that,xW being the coordi-
nates in the mirror’s tangent plane, the equation of the
ror’s surface can be written asz5F(xW )1 f (xW ). F(xW ) refers
to the nominal geometry of the mirror~possibly spherical!,
and the functionf (xW ) will be viewed as a two-dimensiona
stationnary, centered stochastic process, of standard d
tion s. This means that for fixedxW , f (xW ) is a random vari-
able with expectation value^ f (xW )&50 and variance

^ f (xW )2&5s2. For two different locationsxW andx8W , f (xW ) and
f (x8W ! are not, in general, independent random variables,
we can define the autocorrelation functionC(xW ) of the pro-
cess by

C~xW2x8W !5^ f ~xW ! f ~x8W !&/s2, ~2.1!

so that, obviously,C(0W )51. The fact thatC depends on the
differencexW2x8W results from stationnarity. Now, it will be
further assumed in what follows, thatC depends only on
ixW2x8W i , in other words that the roughness is isotropic.

Suppose now that a Gaussian transverse-electromag
~TEM00) wave is impinging normally onto the precedin
mirror. Let us callc(xW ) the reemitted wave andf0(xW ) the
~normalized! TEM00 wave which would have been reflect
by the smooth version of the same mirror (s50); we have

c~xW !5e2ik f ~x
W !f0~xW !,

wherek[2p/l. We are now interested in the spatial sp
tral density of c. We can for this purpose compute t
squared modulus of its Fourier transform~we note pW the
conjugate variable with respect toxW ):

uc̃~pW !u25E eip
W ~xW2x8W !e2ik@ f ~xW !2 f ~x8W !#f0~xW !f0~x8W !* dxWdx8W .

Owing to the hypothesis thatf!l, we can expand the se
ond exponential and write

uc̃~pW !u25E eip
W ~xW2x8W !~112ik@ f ~xW !2 f ~x8W !#22k2@ f ~xW !2

1 f ~x8W !222 f ~xW ! f ~x8W !# !f0~xW !f0~x8W !* dxWdx8W ,

which yields the expectation value

^uc̃~pW !u2&5~124k2s2!uf̃0~pW !u214k2s2E eip
W ~xW2x8W !

3C~xW2x8W !f0~xW !f0~x8W !* dxWdx8W .

After some elementary algebra, this becomes
om

mir-

l
evia-

and

netic
g

ed

ec-
he

c-

^uc̃~pW !u2&5~124k2s2!uf̃0~pW !u2

14k2s2
1

4p2E C̃~qW !uf̃0~pW 2qW !u2dqW .

~2.2!

At this point, we introduce the following remarks.
~1! uf̃0(pW )u2 is a sharply peaked function ofpW , taking

significant values only in the neighborhood ofpW 50W . This is
especially true for the TEM00 modes of the giant Virgo or
Ligo-type Fabry-Perot cavities, for which the angular diver
gence of the beam is less than 20mRd. Denoting byw0 the
waist of the beam~about 2 cm for the Virgo cavities!, we
have uf̃0(pW )u252pw0

2exp(2p2w0
2/2). Identifying spatial

frequencies with angles according topW [(kqcosf,kqsinf)
(pW being interpreted as the projection of the wave vecto
on the transverse plane! yields uf̃0(q,f)u2

52pw0
2exp(22q2/qg

2) whereqg is the angular divergence
of the beam, defined byqg[l/pw0 . Thus, clearly,
uf̃0(pW )u2 is negligible for angles noticeably larger thanqg .

~2! We assume thatC̃(pW ) does not appreciably vary over
an angular interval of the order ofqg .

This allows us to replace Eq.~2.2! by the approximation

^uc̃~pW !u2&5~124k2s2!uf̃0~pW !u214k2s2C̃~pW !,

where we see that the spatial spectral density of reemitte
light is the sum of two contributions, one having the angula
properties of a specularly reflected beam, with a loss facto
of 4k2s2, and a second one directly tied to the statistica
properties of the surface. Moreover, the total relative reemi
ted power~the TEM00 mode was assumed normalized! is
conserved, but shared between what we identify to specul
reflection,

Pspec5
Pmain

4p2 E ~124k2s2!uf̃0~pW !u2dpW 5~124k2s2!Pmain,

wherePmain is the light power flux of the stored wave, and
what we identify to scattering,

Pscatt5
Pmain

4p2 E 4k2s2C̃~pW !dpW 54k2s2Pmain,

the quantitye[Pscatt/Pmain[4k2s2 will be called integrated
scattering loss rate or scattering loss for brevity. We can
therefore, write, as well,

1

Pmain

dPscatt

dpW
5

e

4p2 C̃~pW !,

by identifying, as above, spatial frequencies and angles b
pW [(ksinqcosf,ksinqsinf) or

d

dpW
[

l

4p2

d

sinqdqdf
[

l

4p2

d

dV
.
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We obtain

1

ePmain

dPscatt
dV

5
1

Pscatt

dPscatt
dV

5C̃~ksinq!/l2, ~2.3!

where C(xW ) depending only onx5ixW i ~isotropy of the
roughness!, also consequently C̃(pW )5C̃(p). Now,
dPscatt/PscattdV is a normalized distribution, isotropic with
respect to anglef, and we can write

dPscatt
PscattdV

5
p~q!

2p
, ~2.4!

with *p(q)sinqdq51. And finally, by a comparison be
tween the two last equations,

C̃~ksinq!5
l2

2p
p~q!. ~2.5!

Information on the normalized angular density of sc
tered power~ADSP! p(q) can be obtained by different way
depending on the angular range. For very small angles,
responding to long correlation distance defects, a direct m
surement of the surface by using a profilometer can be
ried out. For larger angles, a direct measurement of
ADSP is possible. Here, we shall assume that in the ang
region of interest for our study (q*1024 Rd!, we can take a
reference model of the formp(q)5k/q2 @7,10#.

B. Coherence function

The central concept for a wave optics treatment of lig
scattered from a Gaussian beam is the coherence func
We see from the elementary theory developed above tha
light scattered from a Gaussian beam reflected off a mirro
roughnessf (xW ) can be viewed as emitted from the sour
s(xW )52k f(xW )f0(xW ) located in the planez50 of the mirror’s
surface. The paraxial theory of diffraction provides a mea
to compute the wavesd(xW ) propagated at a finite distanc
d from the source. Let us callGd(xW ) the paraxial diffraction
kernel

Gd~xW !52
i

ld
eikx

W2/2d;

we have, thus,

sd~yW !5E Gd~yW2xW !s~xW !dxW .

We shall call the coherence function associated with the s
tering process, the expectation value:

C~d;yW ,y8W !5^sd~yW !sd~y8W !* &.

After some elementary algebra, we find

C~d;yW ,y8W !5
e

4p2E e2 ipW ~yW2y8W !C̃~pW !fd~yW1pWd/k!

3fd~y8W1pWd/k!* dpW ,
-
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wherefd(xW ) is the TEM00 diffracted at the distanced. The
argument already used in Sec. II A holds again: The integ
is in fact restricted to a narrow frequency domain where t
neighborhood ofpW 05kyW /d intersects the neighborhood o
p08W5ky8W /d. Within this elementary region,C̃(pW ) does not
vary appreciably, and moreover, as we would expect, t
integral vanishes ifkiyW2y8W i /d is larger thankqg , for in this
case, the overlap between the two neighborhoods num
cally reduces to void. This allows us to replaceC̃(pW ) by
C̃(pW 0).C̃(p08W ! in the integral, giving

C~d;yW ,y8W !5
e

4p2 C̃~kyW /d!E e2 ipW ~yW2y8W !fd~yW1pWd/k!

3fd~y8W1pWd/k!* dpW ,

when C(d;yW ,y8W ! takes on significant values;yW ,y8W are so
close together that we can write
C̃(ky/d).C̃(ky8/d).C̃(kq)5l2p(q)/2p, whereq is the
angle locating the small region aroundyW ,y8W . Now the inte-
gral can be explicitly carried out, and we find, after a cum
bersome but straightforward calculation using Eq.~2.5!:

C~d;yW ,y8W !5
e

2pd2
p~q!e2~yW2y8W !2/2d2qg

2
eik~y22y82!/2d.

~2.6!

This function is equivalent to an autocorrelation function fo
the scattered field, expressing the size of the speckle.
yW5y8W , we have the expectation value of the relative sca
tered intensity:

I s~d,q!5
e

2pd2
p~q!.

C. Coupling factor

Consider now a process in which an emitting mirrorM1
sends scattered light to a reflecting or scattering object link
to the ground, which in turn sends a part of that light to
mirror M2 ~eventually,M15M2). We first consider the
source of scattered light located on M1:
s1(xW )52k f1(xW )f0(xW ) wheref 1(xW ) refers to the roughness of
the mirror. After propagation at a distanced1 where the cou-
pling object is located, the diffracted wave is

s2~yW !5E Gd1
~yW2xW !s1~xW !dxW .

The action of the coupling object~either a reflection or a
diffraction! will be represented by the complex function
m(t,yW ) of which some examples will be given in later sec
tions. The time dependence ofm expresses its motion caused
by the seismic vibrations. The wave diffracted off the ele
ment to mirrorM2 , at the distanced2 , can be expressed as

s3~zW !5E Gd2
~zW2yW !m~ t,yW !s2~yW !dyW .
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54 1279SCATTERED LIGHT NOISE IN GRAVITATIONAL WAVE . . .
This wave generates a source of scattered light on mi
M2: namely,

s4~zW !52k f2~zW !M2~zW !s3~zW !,

where f 2(xW ) refers to the roughness ofM2 . f 1 and f 2 are
assumed to have the same statistical parameters~including
autocorrelation function!. Now, we compute the coupling o
that scattered light with the main TEM00 beam. The Hermit-
ian scalar product being denoted by( . . . , . . . ), wehave

g5~f0 ,s4!5E f0~zW !*M2~zW !s4~zW !dzW.

Another way of expressingg is

g5E m~ t,yW !C1~yW !C2~yW !dyW ,

with

C1~yW !5E Gd1
~yW2xW !2k f1~xW !f0~xW !dxW ,

C2~yW !5E Gd2
~yW2xW !2k f2~xW !M2~xW !f0~xW !* dxW ,

but it can be seen thatM2(xW )f0(xW )* is nothing butf0(xW ),
because both reflection on a matched mirror and phase
jugation reverse the wave front, so that, as well,

C2~yW !5E Gd2
~yW2xW !2k f2~xW !f0~xW !dxW ;

soC1 andC2 have similar expressions, andg can be viewed
as a scalar product of two waves coming from the two m
rors, taken on the studied surface element, an idea which
been already presented in@7#. If the two mirrorsM1 and
M2 are different, the processesf 1 and f 2 are obviously in-
dependent. IfM1 andM2 are the same mirror, we shall sti
consider that the roughness at departure is statistically in
pendent of that on return. This is justified by the physi
argument that the returning wave is not at all distributed
the initial one on the mirror, and, does not see the sa
realization of the stochastic process, and that the effects
want to evaluate would remain essentially unchanged if
mirror were suddenly replaced by a statistically equival
one in between emission and reception of the scattered l
Now, g is a centered random variable of variance

^gg* &5E m~ t,yW !m~ t8,y8W !* ^C1~yW !C1~y8W !* &

3^C2~yW !C2~y8W !* &dyWdy8W .

Note that f 1 and f 2 being independent processes,C1 and
C2 too, and the expectation value acts separately on the
waves. But the statistical parameters of both processes b
the same, we get, using the coherences functions of t
scattering processes,
rror
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^gg* &5E m~ t,yW !m~ t8,y8W !*C~d1 ;yW ,y8W !C~d2 ;yW ,y8W !dyWdy8W ,

~2.7!

which is equivalent to a temporal autocorrelation functio
After a Fourier transform with respect to time, one obtai
the spectral density.

D. Equivalent gravitational noise calculation

The phase noise induced in the interferometer can be
lated as follows tog. g(t) represents the amplitude of th
contribution to the main wave from recombined scatter
light. This means that the total amplitude reflected by mir
M2 into the TEM00 mode is

A5A0@11g~ t !#,

whereA0 is the unperturbed amplitude. One easily sees t
the small change in complex optical amplitude results at fi
order ing in a phase modulation of the main wave given b

DF~ t !5Im@g~ t !#.

In order to compute the equivalent gravitational signal,
first find the elementary change induced by a translat
dL of a mirror on the phase of one interferometer ar
DF elem54pdL/l; now, this translation may be viewed a
caused by a GW amplitudeh such thatdL(t)5 1

2h(t)L,
whereL is the length ot the interferometer arms. The to
phase change in the interferometer when it is due to a GW
twice the elementary one, so thatDF(t)54pLh(t)/l @7#.
By comparing with the phase modulation caused by scatte
light, we can say that the gravitational signal which wou
cause the same phase modulation is

h~ t !5
l

4pL
Im@g~ t !#.

The h equivalent of the spectral density of scattered lig
noise is, thus,

h~ f !5
l

4pL
g~ f !, ~2.8!

where g( f ) refers to the spectral density of the tempor
process Im@g(t)#. In some cases~reflections!, we obtain a
coupling coefficient of the formg(t)5g0e

iF014ipdx(t)/l

where g0 is a real positive constant,F0 a dc phase, and
dx(t) the motion of the coupling element. In these cases,
haveg( f )5g0n( f ), wheren( f ) is the spectral density of the
process sin@F014pdx(t)/l#. If the maximum amplitude of
displacement is small compared to the wavelength of lig
taking a uniform random variable for the phase offset, we

n~ f !5
2A2pdx~ f !

l
, ~2.9!

wheredx( f ) is the spectral density of displacement. If no
the amplitude of displacement is large compared tol, due,
for instance, to a resonance at a given frequencyf 0 , denot-
ing by dx0 the rms displacement in the width of the res
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nance, the densityn( f ) becomes flat until a cutoff frequency
fmax5 f 034pdx0 /l, and we can write, approximately,

n~ f !5H ~2 fmax!
21/2 for f, fmax,

0 for f. fmax.

Since*0
`n( f )2d f5 1

2, it is clear that in the regime of strong
excitation, the spectral density lowers and widens. In oth
cases~diffraction! we obtain coupling coefficients of the
form g(t)5g0(t)e

iF0 where F0 is an unknown constant
phase, andg0(t) a real function. In this case we shall tak
the spectral density

g~ f !5
1

A2
g0~ f !. ~2.10!

III. DISCUSSION OF SOME NOISY EFFECTS
IN GW INTERFEROMETERS

A. Small spurious mirrors

We address here the case of small reflecting surfaces
cated near the internal surface of the vacuum pipe, wh
scattered light can be directly reflected to the emitting mirr
~see Fig. 1!. The pipe’s internal radius being denoted b
Rt , the surface of the element can be represented
yW5(Rt1X,Y). It is convenient to take a rectangular eleme
such that2a/2,X,a/2 , 2b/2,Y,b/2. It is further as-
sumed to have a normal making an angle (a,b) with the
optical axis, and a mean curvature radius ofr c , so that its
action on any wave front is expressed by means of the co
plex function

m~yW !5ARe22ika@Xcos~b!1Ysin~b!#

3eik~X21Y2!/2r cei @F014pdx~ t !/l#,

where R is the intensity reflection coefficient. The stati
phaseF0 represents the mean position of the element alo
thez axis, anddx(t) its longitudinal motion sustained by the
seismic noise. We get the spectral density of noise~see Ap-
pendix A1!,

h~ f !5hmax~ f !F,

whereF is a form factor (0,F,1) depending on the vari-
ous parameters~see Figs. 1–4!, and

hmax~ f !5
l

4pL

e

2pd2
p~q!ARSn~ f !,

whered is the distance of the reflecting element from th
emitting mirror, andn( f ) the spectral density discussed i
Sec. II D. If we use the reference model of ADSP, so th
p(q)5k(d/Rt)

2, and assume that the seismic displaceme
amplitude is small compared to the wavelength, we get

hmax~ f !5
ek

2A2p

S

Rt
2

dx~ f !

L
AR, ~3.1!

with the parameters
er

lo-
re
or
y
by
t

m-

ng

e

at
nt

l, wavelength, 1.0631026 m,

ek, scattering, 1026,

S, reflecting surf., 1026 m2,

Rt , tube radius 0.6 m,

L, arm length, 33103 m,

R, reflectivity, 1,

dx~ f !, seis. noise, 1028 Hz21/23S 10 Hz

f D 2,
we find, for one mirror and one reflecting element

hmax510224 Hz21/2F10 Hz

f G2F S

1026 m2G .
The spectral densities of several such elements randomly di
tributed along the tube should be uncoherently added, i.e
the global noise scales asAn, n being the number of spuri-
ous reflectors. In a bare vacuum tube, numerous defects
special sites like bellows and junctions, can provide reflect
ing zones of variable effective areas. The result obtained fo
a single 1 mm2 site seems to show that it would be more
conservative to hide the tube from the mirrors by a series o
baffles.

B. Reflection off baffle edges

For this reason and others, it is generally planned to in
stall light traps or baffles inside the vacuum pipe in order to
strongly attenuate scattered light propagation. Some pro
posed type of baffles~Virgo design! are of conical shape~see
Fig. 5!. A series of about 80 identical units could typically be
installed in each interferometer arm, involving two subseries
of 40, symmetrically distributed with respect to the middle
point of each arm~see Fig. 6!, so as to cover the solid angle
spanned by the vacuum pipe seen from any point of a cavit
mirror. The problem we address here arises from the edge o
the conical surface, which faces the light beam and can re
flect the scattered light, as did the small reflectors in the
preceding section. The special feature here is that in case
perfect alignment of the baffles there are rings of finite
width, coherently reflecting. The edge of any baffle will be
modelized by a torus of main curvature radiusRb ~the radius
of the baffle aperture!, and second curvature radiusr c defin-
ing the sharpness of the edge. Special machining can giv
very smallr c , but likely not smaller than 1024 m. Taking
z as the abscissa along the optical axis, the equation of ou
parabolic torus is

z52
~Ax21y22Rb!

2

2r c
.

The effect of an imperfect machining will be simulated by an
extra functionz(f) representing the departure of the edge
from axial symmetry. We shall assume the form
z(f)5Acos(nf), nPN. Applying exactly the same formal-
ism as in Sec. III A, and using the reference model of ADSP
we obtain the spectral density of noise as~see Appendix A2!:
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h~ f !5
ek

8p7/4ARrefn~ f !F l4r cd

Rb
3w0L

2 i 0~2n
2A2d2/Rb

2w0
2!G1/2,

wheren( f ) refers to the spectral density of phase modulatio
discussed in Sec. II D. For values ofA around 1 mm, even
for n51, the functioni 0(x) can be replaced by its asymp-
totic form i 0(x);1/A2px, and the preceding formula be-
comes independent ofd:

h~ f !5
ek

8A2p2
ARref n~ f !

l2

RbL
A r c

nA
. ~3.2!

If now, the seismic amplitude is small compared to the wav
length, and ifN is the number of baffles facing the mirror,
we obtain

h~ f !5
ek

4p
ANRref

dx~ f !

L

l

Rb
A r c

nA
~m.0.2!.

Using the parameters

FIG. 1. Long vacuum pipe with a spurious reflecting element.

FIG. 2. Form factor vs alignment of the reflector (a5b52 mm!
(b50, a5Rt /d1Da).
n

-

l, wavelength , 1.0631026 m,

ek, scattering, 1026,

Rb , baffle rad., 0.5 m,

A, tilt, 1023 m,

Rref , refl. coef., 431022 ~glass!,

L, arm length, 33103 m,

r c , curv. rad., 1024 m,

dx~ f !, seis. noise, 1028 mHz21/23S 10 Hz

f D 2,
N, nb. of baffles, 40,

n, nb. of nodes, 1,

and considering the effect of the four mirrors constituting th
two cavities being in the same situation, yields

h~ f !54.5310225 Hz21/23F10 Hz

f G2.
The choice ofn51 corresponds to the most likely defect of
a baffle, i.e., a global tilt of its structure, so that a point of th
edge is shifted by a lengthA along thez axis, and the oppo-

FIG. 3. Form factor vs optical matching of the reflector surfac
(a5b52 mm! r[r c /d21.

FIG. 4. Form factor vs distance for two aspect ratios.
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site one by a length2A. It is clear that these sorts of defects
breaking the coherence of the reflected field, are a benefit,
far as coherent effects are concerned, but it remains to de
mine what tilts are compatible with the purpose of the baffl
As a global effect, the previous result is very small, and f
from the sensitivity of present and even advanced interfe
ometers. In the strong excitation regime, the spectral dens
is slightly decreased, but the frequency dependence is mo
fied as indicated in Sec. II D.

C. Diffraction by edges

We now address the question of direct propagation
scattered light from an emitting mirror to the opposite one
a cavity of lengthL, through the baffling system. Each baffle
can be seen as a circular aperture in a perfectly absorb
screen, it receives scattered light, and its edge become
source of diffracted light. Let us consider a particular baffl
at a distanced1 from the emitter mirror~and d25L2d1
from the receiver mirror!. The fact that the edge is vibrating
in the transverse plane causes a modulation of th
source. The spectral density of noise is derived in Appe
dix A3. We assume the baffle to have an offse
(Dx5Ecosm,Dy5Esinm) in the tranverse plane. This offset
is, however, moderate in the sense that the scattered li
intensity can be regarded as roughly constant along the e
of the baffle~say a few cm!. Let us callj( f ,f) the spectral
density of displacement of the baffle’s edge vs azimuth
angle, and set

Xk
2~ f ![

1

2pE0
2p

j2~ f ,f!cos~2kf22km!df.

Let us define the following notation, using the reduced di
tancer5d1 /L:

m5
E2

@r21~12r!2#w0
2 ,

F~r![
2A2r~12r!

Ar21~12r!2

~so thatFmax51 for r5 1
2!,

FIG. 5. Conical baffle structure.
,
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X~r, f !5F i 0~m!X0
2~r, f !12 (

k51

`

i k~m!Xk
2~r, f !G1/2,

where i k(m)[exp(2m)Ik(m), I k being the modified Bessel
function. We have the result~see Appendix A3!

h~ f !5221/4~2p!27/4ekS l

Rb
D 3/2X~r, f !

ALw0

F~r!1/2. ~3.3!

A special but useful example can be solved when the motion
of the baffle is rigid, its edge being simply displaced so that

j2~ f ,f!5j0
2~ f !cos2~f2b!,

where j0( f )5dx( f ), i.e., the spectral density of displace-
ment is equal to that of the seismic noise;b gives the polar-
ization of the motion. In this case we obtain

X2~r, f !5
1

2
dx2~ f !F i 0~m!1

1

2
cos~2m22b!i 1~m!G ,

which is a maximum when the vibration polarization is
aligned with the offset of the baffle. Assume the baffles
~numbered byk51, . . . ,80) distributed inside the vacuum
pipe according to the law

rk5r1~11t!k21, k51, . . .,40,

rk512r812k , k541, . . .,80,

imposed by the requirement that a baffle be located at the
end of the shadow of its predecessor, with a small overlap.
This yields, withr15231023 ~the first baffle is assumed at
6 m! andt50.15,

S (
k51

80

F~rk!D 1/2.4.3.

With m50 ~on axis baffles! and two arms, we find the fol-
lowing spectral density whatever the amplitude of motion

hglobal~ f !5223/4~2p!27/4ekS l

Rb
D 3/2dx~ f !

ALw0
S (
k51

80

F~rk!D 1/2.
~3.4!

With the parameters

FIG. 6. Series of baffles.
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l, wavelength, 1.0631026 m,

ek, scattering, 1026,

E, offset, 0 m,

Rb , baffle rad., 0.5 m,

L, arm length, 33103 m,

w0, beam waist, 231022 m,

dx~ f !, seis. noise, 1028 mHz21/23S 10 Hz

f D 2.
We obtain

hglobal~ f !54.1310225 Hz21/2S 10 Hzf D 2.
This result seem rather negligible, as the preceding one
but we must keep in mind that contrarily to the preced
results, the spectral density of noise will remain proportio
to that of the tube’s motion even in the strong excitat
regime. It is therefore conservative to pay attention to da
ing of the mechanical resonances of the tube, especiall
the transverse modes bending sections of pipe in betw
two anchor points. Let us emphasize that the given form
is valid for small offsets. If the beam is strongly decente
~the offset is not small compared to the edge’s radi!,
an other regime arises, which we have not addressed h

IV. CONCLUSION

We have given a general method, based on a coher
function, for the study of Gaussian beams scattering by
permirrors, within the framework of wave optics. This
lowed us to solve some reflection and diffraction proble
arising in gravitational wave interferometric detectors, an
compute the spectral density of noise caused by the sei
vibrations of the ground transmitted this way to the sto
main standing wave. It has been shown that, if the vacu
pipe were to remain empty of any baffling system, spe
attention should be paid to the surface state of the w
scratches, weldings, junctions, and metal waves of bell
can generate small surface elements having unfortunate
entations. The elementary level of noise is such that an a
dance of such defects could generate a global noise not s
from the present sensitivity (;10221 Hz21/2 at 10 Hz) of
GW antennas. If baffles are installed, it has been shown
coherent effects of these baffles on scattered light~reflection
on the edge, diffraction off the edge! are negligible at leas
for the present generation of GW antennas, including e
tual advanced versions at least for almost centered be
All problems related to scattered light in interferometric a
tennas can not be solved this way. Many other questions
better studied by means of a statistical uncoherent appro
and will be discussed in a foregoing paper.

APPENDIX: COUPLING FACTORS COMPUTATIONS

1. Reflecting elements

If we use Eq.~2.7! with the mirror operatorm(yW ) de-
scribed in Sec. III A, we get a coupling factorg such that
did,
ing
nal
ion
mp-
y for
een
ula
red
us
ere.

ence
su-
al-
ms
d to
smic
red
um
cial
alls:
ows
ori-

bun-
o far

that

t
ven-
ams.
n-
are
ach,

^gg* &5E m~yW !m~y8W !*C~d;yW ,y8W !2dyWdy8W

or, explicitly, using Eq.~2.6!,

^gg* &5S ep~q!

2pd2 D 2E m~yW !m~y8W !* ei ~y
W2y8W !2/d2qg

2

3eik~y22y82!dyWdy8W .

By substituting the expression ofm(yW ), we find

^gg* &5
e2

4p2d4
p~q!2RG8G9,

with

G85E
2a/2

a/2

dXE
2a/2

a/2

dX8e2~X2X8!2/d2qg
2
e2ik~Rt /d2acosb!~X2X8!

3eik~1/d21/r c!~X22X82!,

G95E
2b/2

b/2

dYE
2b/2

b/2

dY8e2~Y2Y8!2/d2qg
2
e22ikasinb~Y2Y8!

3eik~1/d21/r c!~Y22Y82!.

After the change of variablesU[(X2X8)/2 and
V[(X1X8)/2, we get

G852E
2a/2

a/2

dUE
2a/21uUu

a/22uUu
dVe24U2/d2qg

2
e4ik~Rt /d2acosb!U

3e4ik~1/d21/r c!UV

and, similarly,

G952E
2b/2

b/2

dUE
2b/21uUu

b/22uUu
dVe24U2/d2qg

2
e24ikUasinb

3e4ik~1/d21/r c!UV.

Performing theV integration yields, for instance,

G854E
2a/2

a/2

e24U2/d2qg
2
e4ik~Rt /d2acosb!U

3
sin@4k~1/d21/r c!U~a/22uUu!#

4k~1/d21/r c!U
dU,

which can be written as

G85
2a2

q8
E
0

1

e2x2/s82
sin@q8x~12x!#cos~p8x!

x
dx,

with s85qgd/a, p852ka(Rt /d2acosb), and
q85ka2(r c2d)/drc . An analogous expression can be found
for G9:

G95
2b2

q9
E
0

1

e2x2/s92
sin@q9x~12x!#cos~p9x!

x
dx,
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with s95qgd/b, p9522kbasinb, and
q95kb2(r c2d)/drc . The integralsG8 andG9 can be easily
evaluated by the simplest numerical integration algorith
We can define a form factor by

F5
AG8G9

ab
.

Its maximum value of 1 is reached whenp85q850. Then,
using Eqs.~2.8! and ~2.9!, we find

h~ f !5
l

4pL

e

2pd2
p~q!ARSn~ f !F.

2. Reflecting edges

By applying the same method as in Appendix A1, w
obtain

h~ f !5
l

4pL

e

2pd2
p~q!ARrefGn~ f !,

where as above,L is the interferometer’s arm length,d the
distance between mirror and reflecting edge,Rref the reflec-
tion coefficient of the baffle’s material,Rb the radius of the
circular edge andq the angle of the baffle aperture seen fro
the emitter mirror,q5Rb /d, and

G5E e2~yW2y8W !2/d2qg
2
eik~y22y82!/dm~yW !m~y8W !* dyWdy8W ,

where we now perform the variable changeyW→(R,f) de-
fined by

yW5„~Rb1R!cosf,~Rb1R!sinf…,

y8W5„~Rb1R8!cosf8,~Rb1R8!sinf8….

The elementdyW will be approximated bydyW5RbdRdf.
m(yW ) represents the action of the reflecting edge on an o
cal amplitude

m~yW !5e22ikz~f!eikR
2/r c.

We have y22y8252Rb(R2R8)1R22R82 and (yW2yW 8)2

5(R2R8)214(Rb1R)(Rb1R8)sin2@(f2f8)/2#. Here,
some approximations are convenient:R is formally taken in
the range ]2`,`@ , but the region effectively contributing
the integral is practically restricted to a finite interv
@2Alr c,Alr c#. Now, dqg being less than 631022 m,
2Rb /dqg is larger than 16, so that the differenc
u[(f2f8)/2 is in practice very small. We get, keepin
only the significant terms,

G5Rb
2E e2~R2R8!2/d2qg

2
e2~2Rbu/dqg!2eik~R22R82!~1/d21/r c!

3e2ikRb~R2R8!/de2ik@z~f!2z~f8!#dRdR8dfdf8,

which can be split into two factorsG5G83G9 with
m.

e

m

pti-

al

e
g

G85Rb
2E e2~R2R8!2/d2ug

2
eik~1/d21/r c!~R22R82!

3e2ikRb~R2R8!/ddRdR8

and

G95E e2~2Rbu/dqg!2e2ik@z~f!2z~f8!#dfdf8.

We find

G85
1

2
Rb
2lr c

1

12r c /d
.
1

2
Rb
2lr c ~r c!d!.

We now assumez(f) of the form z(f)5Acos(nf) (n
PN), so that

G95E e2~2Rbu/dqg!2e4ikAsin~nu!sin~nv !dfdf8,

with v[(f1f8)/2; it can be numerically checked that the
replacement of sinu by u has a negligible effect on the value
of G9, even for relatively high values ofn, so that we obtain
a simple result

G952E
0

2p

dvE
2`

`

e2~2Rbu/dqg!2e4inkAsin~nv !udu

5Ap
dqg

Rb
E
0

2p

dve2~nqgkAd/Rb!2sin2~nv !,

so that

G95Ap
dqg

Rb
2p i 0F2S ndARbw0

D 2G ,
where the functioni 0(z) is related to the modified Bessel
function by i 0(z)[exp(2z)I 0(z). Finally, it turns out that

h~ f !5
ek

8p7/4ARrefn~ f !F l4r cd

Rb
3w0L

2 i 0~2n
2A2d2/Rb

2w0
2!G1/2.

3. Diffracting edges

The functionm(t,yW ) introduced in Sec. II C can be writ-
ten as

m~ t,yW !51 if yW is in the aperture at timet,

m~ t,yW !50 otherwise.

The coupling coefficient introduced in Sec. II C takes the
form

g5E m~ t,yW !C1~yW !C2~yW !* dyW ,

where
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C1~yW !5E
emitter

Gd1
~yW2xW !2k f1~xW !f0~0,xW !dxW ,

C2~yW !5E
receiver

Gd2
~yW2zW !* 2k f2~zW !f0~L,zW !dzW,

d1 being the distance from the emitter to the baffle,d2 from
the baffle to the receiver mirror, andL the length of the
cavity, so thatd11d25L. The moving aperture can be re
resented by a mean static domainD0 , plus a thin region
]D swept by the oscillating border, so that the dynam
part of the coupling coefficient has a variance

^gg* &5E
]D
C~d1 ;yW ,y8W !C~d2 ;yW ,y8W !dyWdy8W .

Inserting the definition~2.6! of a coherence function into th
this last equation yields

^gg* &5
ep~q1!

2pd1
2

ep~q2!

2pd2
2 G,

with q1[Rb /d1, q2[Rb /d2 , and

G5E
]D
expF2

~yW2y8W !2

2qg
2 S 1

d1
2 1

1

d2
2D 1

ik

2
~y22y82!

3S 1d1 1

d2
D GdyWdy8W .

We can write

yW5H Ecosm1Rbcosf

dyW5Rbj~ t,f!df,

Esinm1Rbsinf

whereRb is the radius of the aperture, (E,m) accounts for a
possible location of the baffle off the optical axis, a
j(t,f) is the radial motion of the border. We have

~yW2y8W !254Rb
2sin2S f2f8

2 D ,
y22y82524ERbsinS f1f8

2
2m D sinS f2f8

2 D .
After the change of variablesu[(f2f8)/2 and
v[(f1f8)/2, we have

G52Rb
2E j~ t,u,v !j~ t8,u,v !e2Msin2~u!

3e2 iPsin~v2m!sinudvdu,

with

M5
2Rb

2

qg
2 S 1d12 1

1

d2
2D , P52kERbS 1d1 1

1

d2
D .
p-

ical

e

nd

The minimum value ofM ~whend15d25L/2) is very large
(.103), so that only very small values ofu contribute the
integral (uuu,1/AM ). For not too high values ofE, the
maximum value ofP ~when d1 or d2.10 m) allows the
substitution sinu→u. Moreover, we shall assume that the dis-
placementj does not change appreciably over the angle
uuu,1/AM because the seismic noise will only excite low
frequency deformation modes for which the number of node
is small. Thus

G52Rb
2E

0

2p

j~ t,v !j~ t8,v !Ap

M
e~P2/4M !sin2~v2m!dv

52Rb
2A pqg

2d1
2d2

2

2Rb
2~d1

21d2
2!
E
0

2p

expS 2
2E2~d11d2!

2

w0
2~d1

21d2
2!

3sin2~v2m! D j~ t,v !j~ t8,v !dv.

By taking the temporal expectation value then performing
the Fourier transform with respect to time, we get the spec
tral density

G~ f !5A2p
lRb

pw0

d1d2

Ad121d2
2

3e2mE
0

2p

emcos~2v22m!j2~ f ,v !dv,

where we have setm[E2(d11d2)
2/w0

2(d1
21d2

2). An expan-
sion of the exponential in a series of modified Bessel func
tions gives

G~ f !5A2p
lRb

pw0

d1d2

Ad121d2
2

3e2mS I 0~m!X0
2~ f !12(

k51

`

I k~m!Xk
2~ f !D ,

with the definition

Xk
2~ f !5

1

2pE0
2p

j2~ f ,v !cos~2kv22km!dv.

Theh-equivalent noise is

h~ f !52
l

4pL
A1

2
^gg* &~ f !.

There is an extra factor of 2 with respect to the precedin
sections due to the fact that the coupling between the tw
mirrors is coherent in the two directions. It gives

h~ f !5
l

2A2pL

e

2pd1d2
Ap~q1!p~q2!G~ f !.

By settingr[d1 /L, d25(12r)L,
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m5
E2

@r21~12r!2#w0
2 ,

p(q1)5k(d1 /Rb)
2, p(q2)5k(d2 /Rb)

2, and

X~r, f !5S e2mI 0~m!X0
2~ f !12(

k51

`

e2mI k~m!Xk
2~ f !D 1/2,

we get the result
h~ f !5223/4~2p!27/4ekS l

Rb
D 3/2X~r, f !

ALw0

uP)F~r!1/2,

with

F~r![
2A2r~12r!

Ar21~12r!2
.

,
r
.

r-
f
al

-

-

t

@1# A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gu¨rsel, S.
Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spe
K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, and M.E
Zucker, Science256, 325 ~1992!.

@2# K. Danzmann, H. Lu¨ck, A. Rüdiger, R. Schilling, M. Schrem-
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