PHYSICAL REVIEW D VOLUME 54, NUMBER 2 15 JULY 1996

Scattered light noise in gravitational wave interferometric detectors: Coherent effects
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Large interferometric detectors of gravitational waves involve high power light beams stored in optical
resonators or Fabry-Perot cavities, installed in km long vacuum pipes. Scattering of light by mirrors, interac-
tion of the scattered light with the walls of the vacuum vessel, and final rescattering on any mirror is a source
of noise in such antennas. We present some results obtained within the framework of a coherent approach of
scattered light propagation using a coherence function allowing us to study, namely, the effects of small
reflecting surfaces along the tube, of diffraction, and of reflection by eventual baffle edges.
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PACS numbd(s): 04.80.Nn, 95.55.Ym

[. INTRODUCTION treated by well-known techniques based on very general
Monte Carlo codes mastered by specialized companies, but

Laser interferometers for gravitational wag@W) detec- not addressing the question of seismic noise injection. The
tion are presently being developed by at least three collabdirst attempt to make a thorough analysis of the spectral den-
rations[1—3]. A common feature to all of these future facili- Sity of noise caused by scattered light in GW interferometers
ties is the storage of light power in long resonant cavitiesis due to Thorn¢7] who introduced the basic concepts some
The optical system must operate in a vacuum and requires ¥€ars ago. Since this paper, theoretical, numerical, or even
the same time a very efficient seismic isolation. Here, a spueXperimental work, often unpublished, has been carried out
rious effect arises: The imperfect mirrors constituting the opin the above-mentioned collaborations, for instance by Win-
tical system scatter a weak but finite amount of the storedler et al.[8,9].
light over wide angles, allowing it to interact with the  \We present here a very special study restricted to effects
vacuum vessel's walls, to be reflected, diffracted, or scatthat can be treated by wave optics and evaluated by a simple
tered again, and finally reach any mirror of the system, in2nalytical calculation, namely, the effects of reflecting sur-
cluding the initial one, where a second scattering recombinekgices existing in a vacuum pipe, for instance, resulting from
a part of that scattered light into the stored standing wavelmperfections(weldings, scratchgsfrom junctions of sec-
The trouble comes from the fact that, during its interactionondary pipes to pumping stations, bellows, and even edges of
with the walls or any linked structure, the light acquires abaffles installed for the purpose of scattered light suppres-
phase modulation determined by the vibration state of th&ion, but being able not only to reflect, but also to diffract
vacuum tank, sustained by the seismic activity of the groungScattered light and to couple directly the two mirrors of a
and transfers the resulting noise to the standing wave. TheaVity by their edges as a residual effect.
result is a bypass of the seismic isolation sytem. This effect We describe in Sec. Il the theory to be used; then, for
was first noticed by the German team operating the Garchinglore convenience we give the results of physical interest in
prototype of interferomete,5). ec. lll and the detailed calculations in the Appendix.

Owing to the second order scattering process on superpol-
ished mirrors(the best of the present state of the)athe
overall effect is expected to be very small, but the shot-
noise-equivalent spectral density of phase noise in such op-
tical devices can be as low as T3 Rd/\/Hz, and, as cus- We propose here a general formalism allowing us to treat
tomary in this field, even currently negligible effects must bescattered light within the wave optics framework.
carefully investigated.

Mirrors scatter light because of their roughness. Scatter-
ing of electromagnetic waves by rough surfaces has been
studied by a number of autho§] even in the case of large The scattered light we are faced with is generated by re-
rms roughnesses. Fortunately, we have to deal here only witthection of a Gaussian beam on mirrors with weak rough-
very weak roughnesses, which allows a significant simplifi-nesses. The mirrors planned for GW interferometers will
cation of the general theory. On the other hand, propagatiohave rms roughness small compared to a wavelength of the
of stray light in complex systems, and its attenuation, can béaser source. Typically, optical surfaces of rms roughness

Il. BASIC THEORY OF COHERENT SCATTERED
LIGHT NOISE

A. Emission of scattered light
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54 SCATTERED LIGHT NOISE IN GRAVITATIONAL WAVE ... 1277
less than 1 A will be illuminated by the~1um radiation <|¢ |2> (1-4K20r 2)|¢0(p)|2
of a Nd yttrium aluminum garndiYAG) laser.

We define the rough surface of a mirror by a random 5 5 ~ e~ s e o
departure from its ideal shape, so thﬁtbeing the coordi- +ako mf C(@)lbo(p—a)l*da.
nates in the mirror’s tangent plane, the equation of the mir-
ror's surface can be written as=F(x)+f(x). F(X) refers
to the nominal geometry of the mirrgpossibly spherica)
and the functionf(i) will be viewed as a two-dimensional
stationnary, centered stochastic process, of standard dev'5|gn|f|cant values only in the neighborhood pnﬁf: 6. This is

tion . This means that for fixed, f(x) is a random vari- especially true for the TEN, modes of the giant Virgo or
able with expectation value(f(x))=0 and variance Ligo-type Fabry-Perot cavities, for which the angular diver-
<f(x)2) o2. For two different locations andx’, f(x) and  gence of the beam is less than 2(Rd. Denoting byw, the
f(x’) are not, in general, independent random variables, anaist of the beam{about 2 cm for the Virgo cavitigswe
we can define the autocorrelation functi6x) of the pro- have | bo(p)|2=2mwiexp(— p>w§/2). Identifying spatial
cess by frequencies with angles according pe= (kdcosp kdsing)
(5 being interpreted as the projection of the wave vector
on the transverse plape vyields |¢o(9,¢)|?
=2ww§exp(—21‘}2/ﬁ§) wheredy is the angular divergence
so that, obviouslyC(0)=1. The fact thaC depends on the ©Of the beam, defined byd =\/mwo. Thus, clearly,
differencex—x’ results from stationnarity. Now, it will be [#o(P)|? is negligible for angles noticeably larger thay .
further assumed in what follows, th& depends only on (2) We assume thaf(p) does not appreciably vary over
[x—x"||, in other words that the roughness is isotropic. ~ @n angular interval of the order df, .
Suppose now that a Gaussian transverse-electromagnetic This allows us to replace Eq2. 2) by the approximation
(TEM g wave is impinging normally onto the preceding - . -
mirror. Let us cally(X) the reemitted wave angy(x) the (|4(p)[?)=(1—-4K*0?)| o(p)|*+4k*a*C(p),
(normalized TEMy, wave which would have been reflected
by the smooth version of the same mirrer£0); we have where we see that the spatial spectral density of reemitted
light is the sum of two contributions, one having the angular
- 20kE (30 properties of a specularly reflected beam, with a loss factor
p(x)=e bo(x), of 4k?¢?, and a second one directly tied to the statistical
properties of the surface. Moreover, the total relative reemit-
wherek=2x/\. We are now interested in the spatial spec-ted power(the TEM,, mode was assumed normalizeid
tral density of ». We can for this purpose compute the conserved, but shared between what we identify to specular
squared modulus of its Fourier transforfwe notep the  reflection,

conjugate variable with respect fr):

(2.2

At this point, we introduce the following remarks.
(1) |#o(p)|? is a sharply peaked function cﬁ‘ taking

Cx—x)={f(x)f(x"))/ 2, (2.1

mam

Pspec7 2[(1 4K20?)| fo(p)|2dp= (1~ 4k?0®) Progin,

(P [2= J gIP O XEZLI =167 (%) (X7 * XX
whereP..in is the light power flux of the stored wave, and
what we identify to scattering,
Owing to the hypothesis thdi<\, we can expand the sec-
ond exponential and write Pmai ~ .
Pscat=7 f 4k**C(p)dp=4K>0?P o,
[ (p)|?= J P (1+ 20k f(x) — f(x)]— 2K f(x)? the quantitye= Pcau/ Pmaii=4k?0? will be called integrated
scattering loss rate or scattering loss for brevity. We can,

+H(X)2=28(X)F(X7)]) o(X) ho(X7 ) * dxdx’, therefore, write, as well,
which yields the expectation value 1 dpsca“: LE 3
P . > 4 2 (p)y
main dp ™
<|J(5)|2>=(1—4k202)|’$0(5)|2+4k202f giP(x=x") by identifying, as above, spatial frequencies and angles by
L 5E(ksinﬁcos¢,ksinﬁsin¢) or
X C(X=X") po(X) po(X")* dxdlX'.
d N d AN d

After some elementary algebra, this becomes dp " 477 singddd¢  4n? dQ
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We obtain where ¢4(X) is the TEM, diffracted at the distance. The
argument already used in Sec. Il A holds again: The integral
1 d Pscaﬂ: 1 dpscatt:’é(ksinﬂ) N2, (2.3 is in fact restricted to a narrow frequency domain where the
€Pmain dQ Pscar d2 ,

neighborhood of|50=k)7ld intersects the neighborhood of
po=Kky’/d. Within this elementary regionC(p) does not
vary appreciably, and moreover, as we would expect, the

integral vanishes iy —y’||/d is larger thark®,, for in this
case, the overlap between the two neighborhoods numeri-

cally reduces to void. This allows us to replaééﬁ) by
C(po)=C(pp) in the integral, giving

where C(x) depending only onx=|x| (isotropy of the

roughnesg also consequently 6(5)=E(p). Now,
dPgcarf Pscad) is @ normalized distribution, isotropic with
respect to angleb, and we can write

dPscart _ p(9)
Pscad) 2m '

(2.9

> — € ~ > TN - >
with [p(9)sinddd=1. And finally, by a comparison be- C(diy.y )=m0(ky/d)f e P gy(y+ pd/k)
tween the two last equations,

2 X gy’ +pd/k)*dp,

~ N

C(ksind)= -— . 2. - .
(ksin3) ZWP({}) @9 when C(d;y,y’) takes on significant values;,y’ are so

Information on the normalized angular density of scat close _fogether _  that e can write

= — ’ — _\2 H

tered powefADSP) p(®) can be obtained by different ways C(ky/d)—C_(ky /d)—C(kﬁ)_—)\ p(ﬁ)/?:’ whered 'S the

depending on the angular range. For very small angles, co”Ndl€ locating the small region arougcy’. Now the inte-

responding to long correlation distance defects, a direct me&lr@ can be explicitly carried out, and we find, after a cum-

surement of the surface by using a profilometer can be caf2€rSome but straightforward calculation using E25):

ried out. For larger angles, a direct measurement of the

ADSP is possible. Here, we shall assume that in the angular oo € —(y-y")

region of interest for our studyX=10 4 Rd), we can take a Cldiy.y")= dezp(ﬂ)e Y

reference model of the formp(9) = /92 [7,10]. (2.6)

2/2d2ﬂ§eik<y2—y'2)/2d_

B. Coherence function This function is equivalent to an autocorrelation function for

h | ¢ i f hthe scattered field, expressing the size of the speckle. If
e central concept ora wave.optlcs treatment o 9r t»zf , we have the expectation value of the relative scat-
scattered from a Gaussian beam is the coherence functloﬁéred intensity:

We see from the elementary theory developed above that the
light scatterefj from a Gaussian beam reflected off a mirror of .
rogghness‘gx) can be viewed as emitted from the source Is(d,¥)= Wp(ﬁ).
S(x) = 2kf(x) ¢o(x) located in the plane= 0 of the mirror’s

surface. The paraxial theory of diffraction provides a means

to compute the wavey(x) propagated at a finite distance C. Coupling factor
d from the source. Let us calb4(x) the paraxial diffraction Consider now a process in which an emitting mirhég
kernel sends scattered light to a reflecting or scattering object linked
_ to the ground, which in turn sends a part of that light to a
G (§)=—I—eiki2’2d' mirror M, (eventually, M1=M2). We first consider the
d N\ ' source of scattered light located on Mjy:

s1(X) = 2k f1(X) ¢bo(X) wheref(x) refers to the roughness of
we have, thus, the mirror. After propagation at a distangg where the cou-
pling object is located, the diffracted wave is

sa(y) = f Ga(y—X)s(x)dx. ) o
sz(y)=f Gg, (Y —x)s1(x)dx.
We shall call the coherence function associated with the scat-

tering process, the expectation value: The action of the coupling objedeither a reflection or a

S - — . diffraction) will be represented by the complex function
C(d;y.y")=(sq(y)sa(y")*). - : - Can i

m(t,y) of which some examples will be given in later sec-
After some elementary algebra, we find tions. The time dependence wfexpresses its motion caused
by the seismic vibrations. The wave diffracted off the ele-
ment to mirrorM,, at the distancel,, can be expressed as

3
3m

C(dy.y) = f & POV IE(B) da(y + BAIK)

Xd)d()?"‘ﬁd/k)*df), 53(2):f GdZ(Z—y)m(t,y)Sz(y)dY-
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This wave generates a source of scattered light on mirror R . - S
M,: namely, <w*>=J m(t,y)m(t’,y")*C(dy;y,y")C(dz;y,y")dydy’,
2.7)

which is equivalent to a temporal autocorrelation function.

After a Fourier transform with respect to time, one obtains
the spectral density.

s4(2) = 2kf,(2)M5(2)85(2),

wherefz(i) refers to the roughness ®fl,. f; andf, are
assumed to have the same statistical paraméireckiding
autocorrelation function Now, we compute the coupling of

that scattered light with the main TEjMbeam. The Hermit- D. Equivalent gravitational noise calculation
ian scalar product being denoted by. ., ...), wehave The phase noise induced in the interferometer can be re-
lated as follows toy. y(t) represents the amplitude of the
_ Sa) = V*Mo(2)sa(2)d 7. gontnbupon to the main wave from recombined scattgred
7=($0.5) f Po(2)*Ma(2)84(2) light. This means that the total amplitude reflected by mirror

M, into the TEM,; mode is
Another way of expressing is
A=Ag[1+y(1)],

YIJ m(t,y) ¥ 1(y)¥(y)dy, whereA, is the unperturbed amplitude. One easily sees that
the small change in complex optical amplitude results at first
with order iny in a phase modulation of the main wave given by

A o A o AD(t)=Im[ y(1)].
)= [ Gy TR 2K (R (X105, | N
In order to compute the equivalent gravitational signal, we
first find the elementary change induced by a translation
oL of a mirror on the phase of one interferometer arm:
AD =47 6L/IN; now, this translation may be viewed as
caused by a GW amplituda such thatdL(t)=3h(t)L,
but it can be seen thaMl ,(X) o(X)* is nothing butpe(x),  WhereL is the length ot the interferometer arms. The total
because both reflection on a matched mirror and phase cophase change in the interferometer when it is due to a GW is
jugation reverse the wave front, so that, as well, twice the elementary one, so thatb(t)=4=Lh(t)/\ [7].
By comparing with the phase modulation caused by scattered

Wo(y)= f Ga, (¥ —X) 2KF2(X)M 5(X) ho(X)* X,

- - - - .. light, we can say that the gravitational signal which would
‘Pz(y)=f Gg,(y—X) 2k f2(X) do(X)dX; cause the same phase modulation is
soV,; andW¥, have similar expressions, andcan be viewed h(t)= A Im[y(t)].
as a scalar product of two waves coming from the two mir- 47l

rors, taken on the studied surface element, an idea which has ) ) ]
been already presented fi]. If the two mirrors M, and Th_e h_equwalent of the spectral density of scattered light
M, are different, the processés and f, are obviously in- Noise is, thus,

dependent. IM; andM, are the same mirror, we shall still N

consider that the roughness at departure is statistically inde- h(f)=—— y(f), (2.9
pendent of that on return. This is justified by the physical 4wl

argument that the returning wave is not at all distributed as )

the initial one on the mirror, and, does not see the samdhere y(f) refers to the spectral density of the temporal
realization of the stochastic process, and that the effects wrocess Ifiy(t)]. In some casesreflectiong, we obtain a
want to evaluate would remain essentially unchanged if th€oupling coefficient of the formy(t)= yoe'®o* 47O
mirror were suddenly replaced by a statistically equivalentvhere yq is a real positive constantb, a dc phase, and
one in between emission and reception of the scattered lighX(t) the motion of the coupling element. In these cases, we

Now, y is a centered random variable of variance havey(f)= yon(f), wheren(f) is the spectral density of the
process sifbg+4mdx(t)/\]. If the maximum amplitude of

R _ . _ displacement is small compared to the wavelength of light,
(yy*)= f m(t,y)m(t",y")* (V1 (y)¥(y")*) taking a uniform random variable for the phase offset, we get
Y v ) *Ndvdy' 22 ox(f
X(Wo(y)Wo(y))*)dydy’. )= 22 modf) 29

Note thatf,; and f, being independent processéek; and

¥, too, and the expectation value acts separately on the twhere 6x(f) is the spectral density of displacement. If now
waves. But the statistical parameters of both processes beirige amplitude of displacement is large compared talue,
the same, we get, using the coherences functions of theder instance, to a resonance at a given frequeicydenot-
scattering processes, ing by 8y the rms displacement in the width of the reso-
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nance, the density(f) becomes flat until a cutoff frequency N, wavelength, 1.0810°% m,
fmax=foX4mdxg/N\, and we can write, approximately, ex, scattering, 108,

" (2f e M2 for f<fp., S, reflecting surf., 10 m?,

n =
0 for f>f - R, tube radius 0.6 m,

Since[yn(f)2df=3, it is clear that in the regime of strong L, arm length, X10° m,
excitation, the spectral density lowers and widens. In other R, reflectivity, 1,
cases(diffraction) we obtain coupling coefficients of the 10 Hz 2
form y(t)=yo(t)e'®o where ®, is an unknown constant ox(f), seis. noise, 1078 Hz 2x ) ,
phase, andyy(t) a real function. In this case we shall take

the spectral density
we find, for one mirror and one reflecting element

1
')’(f):E'YO(f)- (2.10 10 Hz|2

f

Nmax=10"2% Hz—”{

S
10 ® m?|
Ill. DISCUSSION OF SOME NOISY EFFECTS

IN GW INTEREEROMETERS The spectral densities of several such elements randomly dis-

tributed along the tube should be uncoherently added, i.e.,
the global noise scales af, n being the number of spuri-

We address here the case of small reflecting surfaces I®us reflectors. In a bare vacuum tube, numerous defects or
cated near the internal surface of the vacuum pipe, wherspecial sites like bellows and junctions, can provide reflect-
scattered light can be directly reflected to the emitting mirroring zones of variable effective areas. The result obtained for
(see Fig. 1L The pipe’s internal radius being denoted bya single 1 mrf site seems to show that it would be more
R;, the surface of the element can be represented bgonservative to hide the tube from the mirrors by a series of

y=(R+X,Y). Itis convenient to take a rectangular elementPaffles.

such that—a/2<X<al/2 , —b/2<Y<b/2. It is further as-

sumed to have a normal making an angte §) with the B. Reflection off baffle edges
optical axis, and a mean curvature radiusr gf so that its

action on any wave front is expressed by means of the com- For this reason and °t.heFS' it is generally _pIar]ned to In-
plex function stall light traps or baffles inside the vacuum pipe in order to

strongly attenuate scattered light propagation. Some pro-

A. Small spurious mirrors

m(y) = Re~2kalXcod )+ Ysin(p)] posed type of baffle@/irgo design are of conical shapesee
Fig. 5. A series of about 80 identical units could typically be
X @K+ Y22 ogi[@o+amax(t/N] installed in each interferometer arm, involving two subseries

of 40, symmetrically distributed with respect to the middle

where R is the intensity reflection coefficient. The static Point of each arnisee Fig. 6, so as to cover the solid angle
phased, represents the mean position of the element alongPanned by the vacuum pipe seen from any point of a cavity
the z axis, anddx(t) its longitudinal motion sustained by the Mirror. The problem we address here arises from the edge of

seismic noise. We get the spectral density of n¢ése Ap- the conical surface, which faces the light beam and can re-
pendix AJ), flect the scattered light, as did the small reflectors in the

preceding section. The special feature here is that in case of
h(f)=hpaF)F, perfect alignment of the baffles there are rings of finite
width, coherently reflecting. The edge of any baffle will be
whereF is a form factor (6<F<1) depending on the vari- modelized by a torus of main curvature radRis(the radius
ous parametergsee Figs. 1-4 and of the baffle apertude and second curvature radiogdefin-
ing the sharpness of the edge. Special mgchining can give
€ very smallr., but likely not smaller than 10" m. Taking
Pmax( 1) = AwL 2md? p(f})\/§8r(f), Z as the abscissa along the optical axis, the equation of our
parabolic torus is
whered is the distance of the reflecting element from the

emitting mirror, andn(f) the spectral density discussed in _ (VX +y*—Rp)?
Sec. Il D. If we use the reference model of ADSP, so that 2r '

p(9) = «(d/Ry)?2, and assume that the seismic displacement

amplitude is small compared to the wavelength, we get The effect of an imperfect machining will be simulated by an

extra function{(¢) representing the departure of the edge

__ex S Ox(f) from axial symmetry. We shall assume the form
hma)&f)_ D2 R, (3-1) K
227 Rt L {(¢p)=Acosfi¢), neN. Applying exactly the same formal-

ism as in Sec. Il A, and using the reference model of ADSP,
with the parameters we obtain the spectral density of noise(ase Appendix AR
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FIG. 1. Long vacuum pipe with a spurious reflecting element.

)\4r d 1/2
ng—;ino(zn2A2d2/R§w§) ,

EK
h(f)=m Rie(f)

wheren(f) refers to the spectral density of phase modulation

discussed in Sec. Il D. For values Afaround 1 mm, even
for n=1, the functioniy(x) can be replaced by its asymp-
totic form io(x)~1/y2mX, and the preceding formula be-

comes independent af,
A2 \/TC
ﬁ.

h(f)= Ret (1) (3.2

€K
8\/577'2

If now, the seismic amplitude is small compared to the wave-

length, and if\is the number of baffles facing the mirror,

we obtain
\/ i 0.2

Sx(f) A

L Ry

€K
h(f)= E\/NRref
Using the parameters
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FIG. 2. Form factor vs alignment of the reflectar{b=2 mm)
(B=0, a=R;/d+Aq).
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FIG. 3. Form factor vs optical matching of the reflector surface
(a=b=2 mm) p=r./d—1.

\, wavelength , 1.0810 & m,

€K, scattering, 108,

Ry, baffle rad., 0.5 m,

A, tilt, 1073 m,
Rief refl. coef., 4x10°? (glass,

L, arm length, X10° m,

les curv. rad., 10% m,

Sx(f), seis.noise, 10 8 mHz 12x 10 HZ)Z,

N, nb. of baffles, 40,

n, nb. of nodes, 1,

and considering the effect of the four mirrors constituting the
two cavities being in the same situation, yields

10 Hz?
h(f)=4.5x10"2% Hz ¥2x .

The choice ofn=1 corresponds to the most likely defect of
a baffle, i.e., a global tilt of its structure, so that a point of the
edge is shifted by a length along thez axis, and the oppo-

Fd)

\
1Y

-
s

-

"
Sl
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N &
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1000.
d(m)

FIG. 4. Form factor vs distance for two aspect ratios.
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FIG. 6. Series of baffles.

12

3

><<p,f>=[io<m>><é<p.f>+2kE1 I (M)Xg(p, )

FIG. 5. Conical baffle structure.

wherei, (m)=exp(=m)l(m), I, being the modified Bessel

site one by a length- A. Itis clear that these sorts of defects,sfgnction_ We have the resulsee Appendix AB

breaking the coherence of the reflected field, are a benefit,
far as coherent effects are concerned, but it remains to deter- \ | ¥2X(p. 1)

mine what tilts are compatlb_le with the purpose of the baffle. h(f)=21’4(27r)7’4e;<<—) " F(p)Y2 (3.3

As a global effect, the previous result is very small, and far Rep vLwg

from the sensitivity of present and even advanced interfer-

ometers. In the strong excitation regime, the spectral densitg special but useful example can be solved when the motion
is slightly decreased, but the frequency dependence is moddf the baffle is rigid, its edge being simply displaced so that

fied as indicated in Sec. Il D.
£(f, )= E(f)co(p— ),

where &y(f) = 6x(f), i.e., the spectral density of displace-

We now address the question of direct propagation ofnent is equal to that of the seismic noigegives the polar-
scattered light from an emitting mirror to the opposite one injzation of the motion. In this case we obtain

a cavity of length_, through the baffling system. Each baffle

can be seen as a circular aperture in a perfectly absorbing 1 1

screen, it receives scattered light, and its edge becomes a X?(p.f)= E&Z(f) o(m)+ 5C08 20 —2B)iy(m) |,

source of diffracted light. Let us consider a particular baffle

at a distanced; from the emitter mirror(and d,=L—d;  \yhich is a maximum when the vibration polarization is
from the receiver mirrgr The fact that the edge is vibrating aligned with the offset of the baffle. Assume the baffles

in the transverse plane causes a modulation of tha({numbered byk=1,...,80) distributed inside the vacuum
source. The spectral density of noise is derived in Appe”bipe according to the law

dix A3. We assume the baffle to have an offset

C. Diffraction by edges

(Ax=Ecosu,Ay=Esinu) in the tranverse plane. This offset, p=pi(1+ 1K1 k=1,...,40,
is, however, moderate in the sense that the scattered light
intensity can be regarded as roughly constant along the edge p=1—pgrr, k=41,...80

of the baffle(say a few cm Let us call¢(f, @) the spectral
density of displacement of the baffle’s edge vs azimutha|yposed by the requirement that a baffle be located at the

angle, and set end of the shadow of its predecessor, with a small overlap.
1 fon This yields, withp;=2x 102 (the first baffle is assumed at
Xg()=5—| = &(f.¢)cod2kg—2ku)ds. 6 m) and7=0.15,
0
80 12
Let us define the following notation, using the reduced dis- ( 2 F(pk)) =43.
tancep=d, /L: k=1

= With m=0 (on axis bafflesand two arms, we find the fol-
m= o2+ (1=p)Ew2" lowing spectral density whatever the amplitude of motion

s n \ 3/2 @((f) 80 1/2
E(p)= 2\2p(1-p) Ngiobal ) =2""%(27) ex(R—b> m(kl F(Pk)) :
Vp?+(1-p)? (3.4

(so thatF =1 for p=3), With the parameters
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N,  wavelength, 1.0810 % m, . S .
i scattering 10° (yy*)= | m(y)m(y")*C(d;y,y")“dydy
E, offset, 0 m, or, explicitly, using Eq.(2.6),
Ry, baffle rad., 0.5 m, (92
€ - — ST
L, arm length, X10° m, (yy*)= 2p77d2) f m(y)m(y’)*e'vy Pa?ig
W,  beam waist, X102 m, L
10 Hz|2 x ey Idydy’.
Oox(f), seis. noise, 10°8 mHz 2x ) . A
f By substituting the expression af(y), we find

We obtain &2
, (77*):WP(1‘})2RFT”,
10 Hz
h f)=4.1x10"% Hz‘l’z(—) .
globa( ) f with

This result seem rather negligible, as the preceding one did, , (2?2 q al2 4X = (X=X 21202 2iK(R, 1d— acos) (X—X)
but we must keep in mind that contrarily to the preceding™ — |__, X a2 X'e o€
results, the spectral density of noise will remain proportional

to that of the tube’s motion even in the strong excitation x elk(1d—1rg (X?=Xx'2)

regime. It is therefore conservative to pay attention to damp-

ing of the mechanical resonances of the tube, especially for b/2 b/2 o 22 o ,
the transverse modes bending sections of pipe in between I'"= dY| dy’e (Y7Y)Td7ge2ikasins(Y=YD)
two anchor points. Let us emphasize that the given formula b2 b2

is valid for small offsets. If the beam is strongly decentered X k(=1 ) (Y2-Y'2).

(the offset is not small compared to the edge’s radius
an other regime arises, which we have not addressed hereafter the change of variablesU=(X—X')/2 and
V=(X+X")/2, we get
IV. CONCLUSION

al2 a/l2—|U| 12,0292 i _
We have given a general method, based on a coherenceF'=2J dUJ dVve 4Ud"getik(Ry/d—acoss)U

function, for the study of Gaussian beams scattering by su- al a2+l

permirrors, within the framework of wave optics. This al- x @4k(1d=1Ir)UV

lowed us to solve some reflection and diffraction problems

arising in gravitational wave interferometric detectors, and taand, similarly,

compute the spectral density of noise caused by the seismic

vibrations of the ground transmitted this way to the stored F"szblz dUJ'b/2—|U| Ve 4U2d02g~ aikUasing
main standing wave. It has been shown that, if the vacuum —bl2 —bi2+|U ’

pipe were to remain empty of any baffling system, special
attention should be paid to the surface state of the walls:
scratches, weldings, junctions, and metal waves of bellows
can generate small surface elements having unfortunate oferforming theV integration yields, for instance,
entations. The elementary level of noise is such that an abun-

dance of such defects could generate a global noise not so far r :4J'a’2 o 4U2202 dik(R; [d— acos)U
from the present sensitivity410" 2 Hz 2 at 10 Hz) of —ai2

GW antennas. If baffles are installed, it has been shown that )

coherent effects of these baffles on scattered lig#tection XS'F[4k( 1/d—1/r)U(a/2—|U[)]
on the edge, diffraction off the edgare negligible at least 4k(1d—1kHU

for the present generation of GW antennas, including even-

tual advanced versions at least for almost centered beamshich can be written as

All problems related to scattered light in interferometric an-

tennas can not be solved this way. Many other questions are ,_2a2f1 2142 SINg"X(1—x)]cog p’X) q
better studied by means of a statistical uncoherent approach, _? 0 € X X
and will be discussed in a foregoing paper.

 @HK(Ld—1/r UV

du,

with o' =194d/a, p’'=2ka(R;/d— acosB), and

APPENDIX: COUPLING FACTORS COMPUTATIONS q' =ka’(r,—d)/dr.. An analogous expression can be found

. for I'":
1. Reflecting elements

N 2 H n _ "
If we use Eg.(2.7) with the mirror operatom(y) de- ruzﬂfle—lev”z S g"™(1~x) Jeos p >()dx
scribed in Sec. lll A, we get a coupling factersuch that q” Jo X
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with o"=104d/b, p”= —2kbasing, and
q"=kb?(r,—d)/dr.. The integrald”’ andI'” can be easily
evaluated by the simplest numerical integration algorithm.
We can define a form factor by x @2ikRp(R-R/dJRdR

1"/1"[/ and

ab

F’=R§f e~ (R=R")?d?62 aik(1/d—1hr o) (R2~R'2)

. . "_ —(2R,U/d D)2 R2iK[ L(B) — L( ") /
lts maximum value of 1 is reached when=gq’=0. Then, r _J' e~ (2Rol/d0g g2l Ll ldpde’.

using Egs(2.8) and(2.9), we find
We find

A
h(f)= -1 5-azP(9)VRSHNF. .

I''=-R2\r,

5 INre  (re<<d).

T-rgd 2R
2. Reflecting edges
We now assumel(¢) of the form {(¢)=Acosfi¢) (n

By applying the same method as in Appendix Al, weEN), <o that

obtain

)\ € _ 2 . . .
_ F//:f e (2Rbu/df)g) e4|kAsm(nu)sm(nv)d¢d¢r,
h(f) P mzp(ﬂ)\/Rrean(f).

where as abovd, is the interferometer’s arm lengthl, the ~ With v=(¢+¢")/2; it can be numerically checked that the
distance between mirror and reflecting edBgy the reflec-  replacement of simby u has a negligible effect on the value
tion coefficient of the baffle’s materiaR, the radius of the 0f I'”, even for relatively high values of, so that we obtain
circular edge and the angle of the baffle aperture seen froma simple result

the emitter mirror,9=R,/d, and

F”=2J2Wdqu o (2Ryuld9g)2gdinkAsin(no)ug
S 52,0202 L2 12 N . S Cw
F:f e~ VY )Td 0 k(Y =y ) dmyym(y ") * dydy’, 0

) _ \/;%fzwdve(nﬂgkAleb)zsinZ(nv)
where we now perform the variable change: (R, ¢) de- Ry Jo ’
fined by
R so that
y=((Ry+R)cosp,(Ry+R)sing),
” dﬁg .
Yy’ =((Ry+R’')cosp’,(Ry+ R’ )sing’). r _\/;R_bzmo

) ndA\?2
RpWo/ |’
The elementdy will be approximated bydy= RpdRde. where the functioniy(z) is related to the modified Bessel

m(y) represents the action of the reflecting edge on an optifunction byio(z)=exp(-2)1o(2). Finally, it turns out that
cal amplitude

€K )\4I’Cd ] 5 DD a2 2 12
m(y) = e~ 2K kR h(f)=g_—mVRen(f) Wlo(2n A“d“/Rywp)

We havey?—y'2=2R,(R-R’)+R?~R’2 and (y—y’)?
=(R—R")?+4(R,+R)(R,+ R’)sirf[(¢— ¢')/2]. Here,
some approximations are convenieRtis formally taken in The functionm(t,y) introduced in Sec. Il C can be writ-
the range }«,[ , but the region effectively contributing ten as

the integral is practically restricted to a finite interval . .

[—VAre,WArc]l. Now, ddy being less than 8102 m, m(t,y)=1 ifyisinthe aperture at timg
2R,/dd4 is larger than 16, so that the difference
u=(¢p—¢')/2 is in practice very small. We get, keeping
only the significant terms,

3. Diffracting edges

m(t,y)=0 otherwise.
The coupling coefficient introduced in Sec. Il C takes the
form
F:RE’J e—(R—R’)Z/dzﬁSe—(ZRbu/dﬁg)zeik(Rz—R’Z)(lld—llrc)

x @2KRy(R-R")Idg2ik[£(#)~ L ¢ IRAR dpd o, YZJ m(t,y)V1(y)¥o(y)*dy,

which can be split into two factorE=T"" XT"" with where
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R The minimum value oM (whend,=d,=L/2) is very large
‘1’1(Y)=J Gy (y X)2Kf1(X) bo(0X)dX, (=10%, so that only very small values af contribute the
emiter integral (|u|<1/N). For not too high values oE, the
maximum value ofP (whend; or d,=10 m) allows the
z(y)—f Ga,(Y—2)* 2kf5(2) do(L,2)d7Z, substitution sin—u. Moreover, we shall assume that the dis-
receiver placement¢ does not change appreciably over the angle
|u|<1/JM because the seismic noise will only excite low
frequency deformation modes for which the number of nodes
is small. Thus

d, being the distance from the emitter to the baffle from
the baffle to the receiver mirror, and the length of the
cavity, so thatd;+d,=L. The moving aperture can be rep-
resented by a mean static domddy, plus a thin region 2ar =
dD swept by the oscillating border, so that the dynamical T'=2RZ| &(t,v)&(t',v) \/:e<P2/4M>sin2(v—u>dv
part of the coupling coefficient has a variance 0 M

24242 - 2
(yy*)= f (d1;y,y )C(dy;y,y )dydy’. / 7¥qd1d; fz  2E*(dy+dy)?
2(0|2+d W2+ d2)

Inserting the definitiof2.6) of a coherence function into the ] )
this last equation yields X sin(v — ) | €(t,v) &t ,v)dv.
*\ €p(91) ep(r) By taking the temporal expectation value then performing
vy 2mwd]  2md; the Fourier transform with respect to time, we get the spec-
tral density
with ﬁlERb/dl! ﬁZERb/dZ! and
. )\Rb d,d,
B (y-y')? 1) ik I(f)=V2m —
F_faDeXF{ 2132 d2+d_§ +E(y _y ) dl+d2
27
1 1 d_)d_), Xe—mfo emcoin—Z,u)§2(f,v)dv,
, where we have seh=E?(d; +d,)%/w3(d?+d3). An expan-
We can write sion of the exponential in a series of modified Bessel func-
Ecosu + Ryc0s$ tions gives
y= dy=Ryé(t,$)d¢, dyd,
I'(f)=+2
Esinw + Rpsing (1= \/d§+ ds

whereRy, is the radius of the aperturelz(x) accounts for a
possible location of the baffle off the optical axis, and
&(t, @) is the radial motion of the border. We have

-m |o<m>x§<f)+2k§1|k<m>xﬁ<f> :

b’ with the definition
()7—)77)2:4R S'“2< ) 1 (2w
Xﬁ(f)zﬂfo £2(f,v)cog 2kv — 2ku)dv.

[Pt [ d—9'
2— ’2=—4ERsn( —p|sin :
=y oSIN =5 pJsIN =5 The h-equivalent noise is

After the change of variablesu=(¢—¢')/2 and A
v=(¢+¢')I2, we have h(f)=2,— —<77 )(F).
FZZRgJ' g(t,u,v)g(t’,u,u)e*’\"Si”Z(“) There is an extra factor of 2 with respect to the preceding
sections due to the fact that the coupling between the two
X @~ 1P —wsinug,, o mirrors is coherent in the two directions. It gives
i h(f)= PO P(ILT (D).
2R2 2\/5 L 277'd d p 1)P 2

1 1
~ . P=2KERy| =+ —|.
‘95 (dz dz) R dp d; By settingp=d, /L, d,=(1—p)L,
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_ E? . . N\ ¥2X(p,f)
M= 7+ (1= p) 2 W2’ h(f)=2"%%2m) 7’4eK(R—b) mlp)%)”%
p(91)=«(d1/Ry)2, p(9,)=x(d>/Ry)?, and _
. 1 with
X(p,f)=| e Mo(mX3(f)+2>, e ™ (mXf)| ,
k=1 2\2p(1-p)

O A e

we get the result
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