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Discriminating signal from background using neural networks:
Application to top-quark search at the Fermilab Tevatron
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The application of neural networks in high energy physics to the separation of signal from background
events is studied. A variety of problems usually encountered in this sort of analysis, from variable selection to
systematic errors, are presented. The top-quark search is used as an example to illustrate the problems and
proposed solution§S0556-282196)06013-4

PACS numbgs): 14.65.Ha, 02.50.Sk, 13.85.Qk

It is well known that neural networkéNN's) are useful quarks and/or gluons. The obtained events were passed
tools for pattern recognition. In high energy physics, theythrough a fast MC program which simulates the segmenta-
have been used or proposed as good candidates for taskstigin of a DO-like calorimeter. Jets are reconstructed with a
signal versus background classification. However, most o$imple algorithm based on the routine used in the LUND
the existing studies are somewhat academic, in the sense tiackage and electrons are defined as isolated clusters with
they essentially compare the NN performances with othefore than 90% electromagnetic energy.
classical techniques of classification using Monte Carlo Uncorrelated MC signal samples were generated for top
(MC) events for that purpose. In realistic applications, realmassesn=150, 168, 174, 189, and 200 GeV. Events with
events should be analyzed and compared with simulate@"€-charged-lepton and four jets saﬂsf;l/mg the following ac-
events, introducing systematic effects which have to be takef:le.pt"’mlCe cuts were selectedy;, p;, p;>20 GeV;
into account and could significantly modify the efficiency of | 7'[,]7<2 andARy ,AR;;>0.7. The symbop, (#) stands
the analysis. We try to give some insight in this directionfOr transverse momenturfpseudorapidity and the indices
using the top quark search at the Fermilab Tevatron as iIIusJ—Zl’ .4’ and| .refer to Fhe_ four jets and charged lepton, re-
tration. The top quark has been observed by the CoIIide?peCt'Vely; P is the missing transverse momentum associ-

. . ted with the undetected neutrino and
Detector at Fermila@CDF) [1] and DO[2] collaborations. a — S (AH)2 ) .
Recently, NN’s have been applied to experimental top—quarléR_ (An)"+(A¢)” is the distance in they—¢ space,

searches by the DO Collaborati¢8], for a fixed top-quark where ¢ is the azimuthal angle. The cross sections after the

mass, concluding that NN's are more efficient than tradi-ﬁl]cg_zﬁinlce cuts for the signal and the background are given

tional methods, in agreement with previous parton level stud- In order to use NN's as signallbackground classifiers, we

iesl[4]fh' " d lete th vsi onsidered layered feed-forwmard NN’s with topologies
n this paper we continué and complete the analysiS Of s\ » N, (N;, Ny, andN, are the number of input, hid-

Ref._ [4] for the. top-quark searc_h at t_he Tevatron. A MOr€yen, and output neurons, respectiyelyith back propaga-
realistic study is performed by including parton h""dror"z""'tion as the learning algorithm to minimize a quadratic output

:!on and ttjeteci{torRSIchzlatlﬁn W':E Jett reconstructlo?_. Irzja?hd"error. Using a set of physical variables as inputs and taking
ion, contrary to Ref[4] where the top mass was fixed, the the desired output as 1 for signal events and O for back-

present study is valid for a Iarge_range .Of top mass value_ round events, the network output gives, after learning, the
Moreover, the r?“mbef of kinematical _varlables considered i onditional probability that new test events are of signal or
enlarged and different ways of selecting su.bsets.of the mo.?)tackground typd8,9], provided that the signal/background
relevant ones to thgz process under c0n5|derat|on are di atio used in the learning phase corresponds to the real one.
cussed. Finally, the influence of systematic errors on the NN . ob istness of the NN method is shown by making the
res%I]ts IS StIUd'_ed_' ¢ q the t K h at thresults independent of the top mass, using several values in
_the analysis 1S focused on the fop-quark search at e earning and testing phases. During the learning phase a
pp Fermilab Tevatron operating @E_ 1.8 TeV. The one-  general networkGN) is fed with a set of events which con-
charged-lepton channgdp—tt—lvjjjj withl=e~, u=, is
considered as the signal to look for. The main background is ) _
pp—Wijjjj—1vjjjj . Exact tree-level amplitudes with spin TABLE I. Signal and background cross sections after the accep-
correlations were used to generate MC samples for both sig&"ce cuts.

nal and background. The latter was evaluated witltBOS
[5]. The CTEQ structure function$] at the scaleQ=m m, (GeV) 150 168 174 189 200 Backg
(Q={(py)) for the top signalbackgroungwere utilized. The 4 (pb) 063 039 031 021 0.16 0.89
LUND fragmentation mode|7] was used to hadronize the
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18 ‘ : : . : { TABLE II. Average error per event. The asterisks indicate the
; 1Eop-2007 — top mass values used in the general network training.
o f% AR
5 oqal i ‘backgPound” General net Specialized net
] o
= 12p ':' . m, (GeV) (GN) (SN)
8 1o} P ] 150* 0.12 0.10
g N 167 0.12 0.10
w 174* 0.11 0.10
o
N 6L . 189 0.11 0.09
g, | 200* 0.10 0.07
3
a
2+
0

5 AR T T 250 —— never used in the learning phase. Nevertheless, it is clear that
Reconstructed top quark mass (GeV) the window for the top mass should be reduced if the mass is
o _ more precisely known.
FIG. 1. Reconstructed top mass dlftrlbutlon for several top sig- As a complementary check to the present analysis, we
nals and the background fd=100 pb . have passed the first top candidates—published by CDF
[13]—through our initial 15¢15X 1 network in order to see
tains a signal sample, composed by three subsamples corfghether they are compatible with our simulated signal and/or
sponding tom;= 150, 174, and 200 GeV, and a backgroundpackground. Although our NN was trained with the simula-
sample in a 1:1 proportion. In so doing, the NN output losesjon of the DO detector, such a check is still valid, since CDF
its direct Bayesian interpretation when applied over datajuotes the parton level momenta assigned to their top candi-
whose signal/background proportion is not 1:1. Neverthedates. One can therefore process those events through our DO
less, the NN is still useful for classificati¢B]. This way of  detector simulation, reconstruct the variables used in our
proceeding has been shown to optimize the learning proceggalysis, and obtain the individual output for the published
and allows us to use the network in a wide interval for theCDF top quark candidates. The results are shown in Table
masses of the signfl0]. ll. It can be seen that most of them give values close to 1,
A set of N=15 initial variables was considered. Some of showing that they are more compatible with our signal simu-
them are chosen specifically to pin down theriori main  |ation than our simulated background.
characteristics of the top signal, while others are not specific The selection of the most relevant variables for a given
to the signal. For each reconstructed event we computgirocess is one of the major problems in experimental analy-
(1) S, the sphericity;(2) A, the aplanarity;(3) my, , the  ses. Too many variables may introduce noise and make the

invariant mass of the hadronically decayig (4) p:N', the event selection task very difficult. On the other hand, too

transverse momentum of the letonicallv deca 5) much sensitivity may be lost when too few variables are
P | y yiNg used. In general, a large number of variablss, can be
E+, the total transverse energf6) p;, the charged lepton

¢ ¢ the ch d lept q considered and measured for an event.MWariables carry
ransverse momentuny) #,, the charged lepton pseudora- g, mq information on signal versus background differences,

pidity; (8—11 p;, i=1.4, the transverse momenta of the jetsy, v it is obvious that some subset of them will be more

in decreasing order, ard2-13 #;, i=1,4, the jet pseudo- 4jyaple than other subsets for the separation task. Therefore
rapidities in decreasing order. The missing transverse MQne selection of a subset with the “best’ variables

mentum has been assigned to the undetectable neutrino apd Ny carrying the largest discrimination power between
its longitudinal momentum inferred along the lines suggeste

: ignal and background samples, even if lower classification
in Ref.[11].

) , . efficiencies may follow, is of interest.
In the testing phase, the GN with topology> 355X 1 is In the process of reducing the number of variables, it is

fed with new background and top events. The latter can bgsnyenient to control the efficiency loss in the classification
chosen with masses either corresponding to the values usegky \we suggest that NN’s can be used for both the variable
for learning or to new valuesn, =167 or 189 GeV. This = sejection and the evaluation of the efficiency loss. For the

differs from previous work$§12,4] where the same mass val- tormer, there are several methods suggested in the literature,
ues were used in both learning and testing steps. Figure 1

shows the reconstructed top mass obtained for five top sig-
nals and the background, corresponding to an integrated lu-
minosity £=100pbt. A good top reconstruction is Event number/Run Net output
achieved for all masses considered but there is a substantial

TABLE lll. NN output for published CDF events.

background contribution. To further appreciate the GN’s44414/40758 0.98
usefulness, five specialized NN(SN) were trained with a 47223/43096 0.82
top mass specific to each one of them and a generic baclkz66423/43351 0.66
ground common to all NN’s. Again, a 1:1 signal to back- 139604/45610 0.90
ground ratio was used for learning. The GN and SN average4765/45705 0.92
errors, shown in Table II, are similar for all masses consid-123158/45879 0.76
ered. This indicates that the GN performs fairly well for a 31838/45880 0.58

wide range of top mass values and, in particular, for those



54 BRIEF REPORTS 1235

some of which have been considered in the present analysis. 5
The latter will naturally be estimated in terms of the error
function. When reducing the number of variables, it is con-
venient to eliminate only a few variables in one step rather 2
than making multivariable rejection at once. This introduces 9
a mild dependence of the chosen variables on the number ofi
rejection steps, but turns out to be more efficient. The fol- =
lowing approach was adopted:

Step 1: AnNXNX1 network is trained with the initial
N =15 variables and its final error is computéty=E,.

Step 2: A particular variable selection method is applied,
rejectingn (keepingN—n) variables.(lt is convenient to
choose small values for.)

Step 3: A new N—n)X(N—n)X1 network is trained 0001 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
with the N—n variables kept and its final error computed, Net Ourput

ENO—n- If the quantityEo/Ey-, is larger than, for instance, g5 5 The statistical significance as a function of the cut on the
75%, step 2 is repeate@eplacingN by N—n) to further  w output. The symbols on the curves and the vertical line indicate

reduce the set of relevant variables. The algorithm stops e maximum network output cuts such that more than five signal
Eo/En-n<0.75. This cut is arbitrary and the number of se-and five background events survive, respectively.

lected variables depends on it.

We have considered three methods involving weights folground around 0, it is clear that increasing the cut makes the
the selection of the variables carried at step 2. For evergignal/background ratio larger. A typical quantity that is used
input neurork, the following quantities—in terms of its con- to reveal the existence of a signal is the statistical signifi-
nections with the hidden layer units, —have been consid- cance, defined &8,= Ns/+/N,, whereNg (N,) is the number
ered: the sum of the weigh8], the variance$14], and the  of signal (backgrounyl events passing some NN output cut.
saliencied15], defined, respectively, as It is assumed thalil,, can be estimated with negligible error,
but Ng should be obtained from the actual number of ob-
served eventsN,, asN;=N,—N,. If both quantitiesN,,
andN; are large enough>5), S can be interpreted as the
number of standard deviations that the background has to

Statistical Si

Np
method 1: W= >, |wy|,
=

Nj, fluctuate to obtain the observed number of events. In such a
method 2; Vatrk)= —>, w2, case, the number of signal events is also given by
Nif= Ns=No—Np= VN

and£=100 pb L. Conservative limits of validity are shown
in the figure. The vertical line at network outputg).8 indi-
cates the maximum network output cut such figt5. In a
Nn o 92E similar way, the symbols on the curves indicate the maxi-
§|:1 T2 Pkl mum output cut such that more than five signal events still
ki 1 survive. NN output cuts between 0.6 and 0.8 increase the
@ ratio signal/background with a minimal loss on the signal
The surviving sets of relevant variables with error in- and a significant loss on the background. Figure 3 shows the

crease up to 25%: 3,5,8,10,11 for methods 1 and 3, and
3,8,10,11,12,15 for method 2. The associated output error 8

N, )2 Figure 2 shows th&g for m;= 168, 174, and 189 GeV

method 3: Sdk)=

‘top.2

5 ; 00: -
turns out to be 0.145 and 0.178, respectively. At this stage, - :gég;ﬁg; ..... |
the set with the lowest associated output error, which corre-z 0 ,bagﬁgﬁgagg, -~

sponds to methods 1 and 3, can be safely chosen. The reB 6r
evant variables are the mass of the hadronically decaying™
W, the total transverse enerdy;, and the jets transverse
momentap;, p2, and p{. The quadratic error associated
with this set of five variables, obtained through systematic .
reduction, can be compared, for instance, with the one ob-,,
tained for the intuitive variables used in Ré#]: S, A, é 2
My, p:N', E;. The former is 18% lower than the latter, =

showing the usefulness of the methodical reduction. Y
We have trained an NN with the five relevant variables to 800 135 140 160 180 200 220 240 260 280 300
. . Reconstructed top quark mass (GeV)
study the enhancement of the signal/background ratio as a
function of the NN output cut. For a specific cut, only events  FIG. 3. Reconstructed top mass distribution for several top mass
with a network output higher than the specified cut are sesignals and the background, for events with outputs larger than
lected. Since the signal is peaked around 1 and the back-7 and£=100 pbZ.

Events
=y
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reconstructed top mass with only those events with the NNhe five selected variables were reconstructed to obtain a
output larger than 0.7. As can be observed the signals domitnew” test data to evaluate systematic effects. Notice that
nate clearly over the background. the 2% variation of the reconstructed cluster energies has
At this point, one can wonder about the benefits of usingheen chosen for illustration purposes. This procedure auto-
a reduced number of variables in the analysis. The maimatically includes the correlations of the NN input variables.
reason is to avoid possible noise when a large number Qfrhere are studies in the literature where this is not the case
average error franslates into decreases for the signal effyf jnterest, we have found that the uncertainty due to system-
ciency and statistical significance. We have found that theyic errors is comparable with the uncertainty coming from
efficiency (statistical 5|gn|f|can.(je d|m|n|she§ _f_rom 0.75  an error onm, of +11 GeV.
(6.8) to 0.58 (6.0) when reducing from the initial 15 to the The application of neural networks to discriminate signal

final 5 variables, for an NN output cut of 0.7, value choserlfrom background in high energy physics has been studied,

because it maximizes the statistical significance. These can_. ;
. . o using the top-quark search at Fermilab as an example. The
be considered dramatic losses. However, our initial numbe(;;l

of variables,N=15, was moderate and we could optimize nalysis is valid for a large range of top mass values. Special

the NN learning avoiding local minima. In aeneral. this Canattention was paid to the selection of the most relevant vari-
9 9 - ng ' ables. Several methods—in terms of the weights connecting

lk;er deogtra]ggr ;Tgntfjrt]s Ofo\gzgj}gl(tar?étbll\Jlﬁ\ll’ts,lstr;(ierz(?I\t\tlif#l;rfr?erxl he input and the hidden neurons—were considered. We con-
g ' gp lude that methods 1 and 3, making use of the sum of the

subsets of relevant variables reach better efficiencies and/or . - : L
statistical significances than NN'’s trained with larger vari-%le'ghts(In absolute valueand the weight saliencies, respec

tively, give similar results and are more suited for the vari-
able sets.

able selection than method 2, using the weight variances.

in V]\c/ri;Ogjédn%;o;\ilszoTeee;OeunrfseE;Lvsey;t]el\rxgt:nzﬂrzg Z(;rtnl:he performance of the reduced NN was studied in terms of
9 9 e statistical significance. When comparing it with the initial

In standard analyses, where single cuts are applied on sing we found a small decrease for the statistical signifi-

variables, the effects of systematic errors should be studie ance, and moderate loss of the signal efficiency. Finally, the

only in the region around the cuts in an easy and well under: : ; -
stood way. In the case of an NN the only possibility to studyeffeCt of propagating systematic errors arising from energy

shifts and changes in resolution have been studied. This au-

:clhe .system’:cltlc error in the cIaSS|f|cat|9n IS to propagate th‘taomatically accounts for the correct correlations among the
estimated” systematic errors on the input variables to the.

output. Two basic effects can be considered: shifts between puts.
data and MC and different resolutions for the used variables. This research was partly supported by EU under Contract
We have studied the effect of 2% shifts and 2% change oNo. CHRX-CT92-0004 and by the Comissionat per Univer-

resolution on the clusters energy. With these new energiesitats i Recerca de la Generalitat de Catalunya.
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