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Scalar susceptibility in QCD and the multiflavor Schwinger model
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We evaluate the leading infrared behavior of the scalar susceptibility in QCD and in the multiflavor
Schwinger model for a small nonzero quark massind/or small nonzero temperature as well as the scalar
susceptibility for the finite-volume QCD partition function. In QCD, it is determined by one-loop chiral
perturbation theory, with the result that the leading infrared singularity behavedna® at zero temperature
and as~T/y/m at finite temperature. In the Schwinger model with several flavors we use exact results for the
scalar correlation function. We find that the Schwinger model has a phase transiflenOatvith critical
exponents that satisfy the standard scaling relations. The singular behavior of this model depends on the
number of flavors with a scalar susceptibility that behaves as ?(Nt*3 | At finite volumesV we show that
the scalar susceptibility is proportional tomV. Recent lattice calculations of this quantity by Karsch and
Laermann are discussd$0556-282(96)04111-3

PACS numbgs): 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Gc

[. INTRODUCTION the quartic term in(1.2) is irrelevant, and the scaling law is
x~|T—T. ! both above and below, (the proportionality
The scalar susceptibility in QCD is defined as constant in these two regions differs by a factor pf 2

Recently, on the basis of lattice simulations of the three-
Ny Ni Ny 2 dimensional Gross-Neveu model it has been suggested that a
xzf d4x< > qaig(x) > Eqi(0)> —V< > Eqi> second-order phase transition involving soft modes consist-
=1 =1 =1 ing of fermions has critical exponents given by mean field
1 theory[4]. In particular, if this is also true for QCD with two
==32In Z| =0, (1.)  massless flavors, we get

V
(ag)~m*?, (14
whereV is the four-dimensional Euclidean volume and the
averaging is performed either over the vacuum state or over x~m~28, (1.5
the thermal ensembléln the Euclidean approach the latter
corresponds to an asymmetric box with imaginary time exatT=T., and
tension of3=1/T<L, i.e.,V=L3B.) The definition(1.1) is

for a diagonal mass matrix with equal quark masses. It is 1

~ 1.6
especially interesting to study this quantity in the neighbor- X |T—T4 (1.8
hood of the thermal phase transition point. It is expected that
for QCD with two massless flavors a second-order phasét
transition occurs leading to restoration of chiral symmetry AVA2Re| T T | <T,, @

[1] (see[2,3] for recent reviewswith a diverging suscepti-

bility. This can be understood simply in terms of Landauhere A is a typical hadronic mass scale. These scaling laws

mean field theory. I_:or a _system with order parameyer_ have been reproduced by a simple stochastic matrix model
coupled to external fielth with a second-order phase transi- [5,6. The scalar susceptibility was recently measured for
tion a_t T=T,, the fluc'guations 01_‘ the order parameter are|giice QCD with two light flavor§7]. They found a diverg-
described by the effective potential ing susceptibility at T=T, with critical exponent
off ) 4 5 1=0.24+0.03, which does not agree with the prediction
VI =A(T-Te)n°+By"+Cayh. (1.2)  571=1/3 of the Landau mean field theory. Obviously, fur-
ther numerical measurements of the critical indices in QCD
In QCD 7 is the chiral condensate amdis the quark mass. gre highly desirable.
At T=T,, the minimum of the potential occurs gt-h'? In this paper we will study the scalar susceptibility in
which gives the lawy= d5/dh~h~?3for the susceptibility. three different cases. First, in Sec. Il the scalar susceptibility
On the other hand, il is close toT; but T#T. and the s evaluated for the multiflavor massive Schwinger model

external field is weak enough, which shares many common qualitative features with QCD
and, in particular, it shows a phase transition with “restora-
h<|T—T¢%? (1.3)  tion” of chiral symmetry atT=0. All other critical expo-

0556-2821/96/54.)/10877)/$10.00 54 1087 © 1996 The American Physical Society



1088 A. SMILGA AND J. J. M. VERBAARSCHOT 54

known results for the correlation functions. The Lagrangian
99 @ qq i @ @ dd of the model is

Ny Ny
) ) =3R4 E, 0, igA A - M, Gy,
(2.1

FIG. 1. Connecteda) and disconnectetb) graphs contributing ] )
to the scalar susceptibility of quarks propagating in a backgroundvhereg is the coupling constant and all quark masses are

gluon field. chosen equal.
In the standard Schwinger modeN{=1), there is no
nents that can be defined in the Schwinger mg¢8&fl) will nonanomalous global symmetry to be broken spontaneously

be evaluated as well, and it will be shown that they satisfyand no reason for the phase transition to occur, e.g., the
the scaling relations modified for a phase transition at zer&calar susceptibility is just a finite constd®f. The theory
temperature. Second, we evaluate the scalar susceptibility Mith Nt>1 and zero fermion masses has the global symme-
QCD at low temperatures using chiral perturbation theorytry SU, (N¢) X SUg(N;) (much as in QCDand the potential
Third, in order to estimate finite-size effects in lattice calcu-possibility of its spontaneous breaking with generation of
lations, we calculate the scalar susceptibility in volumes withfermion condensate exists. However, because of Coleman’s
spatial length below the Compton wavelength of the pion. theorem[10] a QCD-like phase transition cannot occur in a

Before proceeding further, we should note that the scalaiwo-dimensional2D) theory at a nonzero temperature. Nev-
susceptibility as defined ifiL.1) involves a quadratic ultra- ertheless, the dynamics of the SM at sniklresembles a
violet divergence due to a trivial perturbative graph depictedheory with second-order phase transition in the region of
in Fig. 1(a). The situation is the same as with the chiral temperatures slightly above critical. One can say that the
condensate which involves a trivial divergent perturbativephase transitiomloesoccur atT=0.

contribution ~ mAf,V. The predictiong1.4)—(1.6) hold for Form<g the particle spectrum of the SM involves a mas-
the infrared-sensitive part ¢fjq) and . sive photon[11] with mass u,~gyN;/7+0O(m) and

The susceptibility(1.1) can be written as the sum of a “quasi Goldstone” particleswith the mas§12,13
connected and a disconnected contribution corresponding to

I /
the graphs of Figs. (&) and Xb), respectively: -~ gHNF DN N D), (2.2

=N x*"+ Nfzxdis_ (1.8 This gives us the critical exponept=N;/(N;+1).
At nonzerom, the SU (N;) X SUg(N¢) symmetry of the

The connected contribution to the susceptibility was calcuMassless SM Lagrangian is broken explicitly, and the forma-

lated in[8]. The disconnected contribution is defined by ~ tion of the chiral condensate becomes possible. The chiral
condensate involves an UV-divergent pieeen In Ay, and

dis 4 — T . — 1 an infrared contributiofsensitive to the small eigenvalues of
X ZJ d*x(uu(x)dd(0)) = V{uu)(dd) = 1 dm dmIn Z, the Euclidean Dirac operaforThe latter has been deter-
(1.9 mined in[13,14:

. NA -1)/ /|
wherem, andmy are two different quark masses that are set (qq)~mNe =D/ (N Dg2/Ne L), 2.3

to zero after differentiation. We will obtain the latter contri- - . .
bution from the difference of and y®" providing us with the critical exponent

Both scalar susceptibilities can be expressed in terms o(?:(Nerl)/(Nf_l)' The susceptibility Is
the eigenvalued, of the Dirac operator, 9 m ( g)z/<Nf+1>

<(;i)\k1+m 2>_<2ki>\k1+m>2}' Lo

In the regionu *<|x|<w_" the vacuum scalar correlator is
(1.10 given by[11,15,13

. = 2.4

dis_

X7y

con 1 1 L 2/N¢
XUV Ek: (inetm)2 ) (.19 <QQ(X)QQ(0)>0’“|X|WN7- (2.5
A related susceptibility is the pseudoscalar susceptibilityThe associated critical exponent ig=2—2/N;. At
which in terms of the Dirac eigenvalues is given by |x|>u_* the correlator levels off at the value of the square
of the chiral condensat@.3).
. 1 E 1 112
X VK )\ﬁ-i- m? /" (1.

It is better to use the term “quasi Goldstone” than the term
Il. THE SCHWINGER MODEL “pseudo Goldstone” commonly used for pions because quasi Gold-
stone states in the SM become sterile in the chiral Imit0. That
In this section we discuss the Schwinger ma@&) with conforms with Coleman’s theorem, which forbids the existence of
N; light flavors, and determine the critical exponents frommassless interacting particles in two dimensions.
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TABLE |. The critical exponents for mean field theofyIFT)
and the Schwinger modésM). Conventions are as in Landau and

Lifshitz [32].

Exponent MFT SM
FIG. 2. Pseudo Goldstone loop determining the scalar suscepti-
a! 0 -1 bility.
B 1/2
Y 1 2IN; Becausec,= —T#?®/dT? and T,=0, the Rushbrooke
o 3 (Ni+1)/(N¢—1) scaling relation readsr+28+y=1 instead of 2. After
e 0 elimination of 8 and e we are left with only three relations:
" 1/3 N;/(Ns+1)
v 1/2 1 v(6+1)
¢ 0 2-2IN; at—s——=1
In the regionu_<T<u, (weak field limip the conden- v2=D=,
sate is given by14] w14 y—a)=2v. (2.10
2INg
(®>~m(—> , (2.6)  The hyperscaling relation follows from the condition that the
T total free energy is of the order @f\V/¢9, whereV is the
] o spatial volume of dimensiord and ¢ is the correlation
which leads to the susceptibility length. ForT.=0, we obtain, instead ofd=2—a,
2/N¢

The meaning of the hyperscaling relation is that loop correc-
and the critical exponeng=2/N; . tions to the Green’s functions estimated from the effective
The correlation length is the inverse fermion MatsubaralLagrangian(2.9) are of the same order, as far as powers are
frequency~ 1L/T which gives the critical exponemt=1. For  concerned, as the tree expressions. We leave it to the reader
n_<T the energy density is that of a gas of massless parto verify that the critical exponents of the SM satisfy the
ticles. Thereforee~ (7/3)T? and the specific heat for zero relations(2.10 and(2.11).
field is given by
d Ill. QCD AT LOW TEMPERATURES
€
=gt " (2.8 The primary interest of the quantitg.1) is that its critical
behavior can provide information on the physics of the phase
leading toa=—1. transition in QCD. However, our second remark is that the

The above results for the critical exponents have beelgading infrared behavior of can be determinedxactlyin
summarized in Table I. Note that foF; =2 some but not all, the low-temperature region. The proper technique to extract

of the exponentgnamely, 8 and y) coincide with the pre- it is chiral perturbation theor}/16]. The leading infrared be-
dictions of the mean field theofMFT) (second column havior is determined by the graph in Fig. 2 involving a loop

These values of critical exponents can be summarized by tHY duasimassless pseudo Goldstone bosons. The effective
effective nonlocal Lagrangian low-energy Lagrangian of QCD has the form

C

L=An(A+BT?)Wiy+Cy?Ni/Ni=Dirpyh. (2.9 L= 3F2Tr(9,U")(9,U)+3 Re TEMU}+ -,
(3.1
Of course,(2.9) is just a shorthand for the values of critical

indices obtained and cannot be usedderiousloop calcu-  WhereU =exp2i¢*"/F,} and 4 are the pseudo Goldstone
lations. fields. The chiral condensate is denotedXy |(qq)e| (no

In the standard theory of second-order phase transition&iMming over colors assumednd M is the quark mass
with a nonzerocritical temperature the above eight critical Matrix. The partition function withM=diag(m,m, .. . ,m)

exponents satisfy five universal relations and the hyperscal?@s been calculated by Gasser and Leutwylef]. Their
ing relation. A zero critical temperature brings about the fol-€XPression for the free energy density of lukewarm pion gas

lowing modifications. IS

The critical exponenp3 refers to the broken phase and N2 ) )
therefore cannot be defined. _ N Mz 5

In the strong field limith>t"# the partition function F=€o(M-) 7 9o(T.Mo)+ 4AN; F2 95(T.M-)
«exp{—h*"/t}. Then the critical exponent becomes singu- (3.2

lar for t—0 and cannot be definedFor the SM the free
energy remains exponentially small urttit x_cm#.) where
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-
gO(T,M,,)=—?f p2dp In[1—exp(—E/T)], (3.3

E=p?+MZ, and X X X X
p2dp 9go(TM) o

91(T.M7)= _ZJ ElexpE/T)—1] M2 * b

(3.4 FIG. 3. Two-loop contributions to the scalar susceptibilig):

Here M _ stands for the common mass of INé—l pseudo mass renormalizatior(p) vertex renormalization.
1 T

Goldstone modes given by the Gell-Mann—Oakes—Renner

relation F2ZM2=2m3,. r (Nf-1) T 3% 31
Substituting in Eq(3.2) the expansioh18,19 XT T an \/ﬁ F2) 313
o, TPMIOTMS where the Gell-Mann—Oakes—Renner relation has been used.
90—4—5 12 * 67 ' (39 The connected contribution to the susceptibility was not cal-
. culated in[8]. However, the zero-temperature result of Ref.
we obtain [8] can be extended immediately to finifeby making the
) 2 s substitution
o T Ne— )T N2 NI T
=~ goNim DT - 5 FaM5 12N, F2 dp 5 d*p (.12
2 a2 , (2m)* (2m)* '
Ne—=1T Ni=1_ . 17T
N 288N? F_i) T T 12m TMz| 1+ 8N; F_fr) where the sum is over all Matsubara frequencies
(po=2mn/B). The infrared singular part comes only from
Nf-1 ( Az) the termn=0 and the result is
- >~MZIn| —|. (3.6
64 M< 2 312
IR con N 4 T 2
Consider first the case of zero temperature. For the infrared T 87N JZ_ |:2 313
singular contribution to the scalar susceptibility we obtain
[33] This implies that at finite temperature the spectrum of the
) s o Dirac operator is nonanalytic for small eigenvalues. The dis-
r Ni—1[ % | A 3 connected contribution is
X"=g7 |\Fz) "uz: (3.7
IR dis__ N +2 T 2 32
The infrared singular connected contribution to the suscepti- XT 2 (3.19
b ) ) i 877Nf \/2_ Fe
bility was calculated if8]. [One should just substitute 1 for
Tr{t*"} = 6°"/2 in Eq.(2.13 of Ref.[8].] The result is The relationg3.11), (3.13, and(3.14 are quite analogous to
NZ—4 [ 312 A2 the relations for the magnetic susceptibility for ferromagnets
IRcon_ _ T (_) N— . (3.9 known for a long time. They are also determined by a loop of
16m°N¢ | F2) "' M2 pseudo Goldstone particléhe magnonsdepicted in Fig. 2
and have the same behaVi¢21]:
Using (1.8) we immediately obtain the disconnected contri-
bution magnon_ IM T (3.18
X = ~ . .
Ras_ NTt2 2)2nA2 (3.9 Mo W
X T 1eaNE | F2) T2 The relations(3.1), (3.13, and (3.14 hold in the low-
Instead of using the partition function of Gasser and Leut_temperature region,
wyler we can calculate the susceptibility also using the same M, <T<T,. (3.16
technique as if8]. ChoosingM=diag(m,m, ...,m), one
immediately obtains the vertex This makes a direct comparison with recent lattice calcula-

tions[7] impossible. At not so low temperatures, in addition
2 PP 5. (3.10 to t_he graph in Fig. 2, higher-order graphs in chiral pertur-
A0 |:2 : bation theory also contribute. The relevant two-loop graphs
are depicted in Fig. 3, but the results for the susceptibility
which, by evaluation of the diagram in Fig. 2 reproduces the
result(3.7).
The infrared singular contribution to the susceptibility at 2Recently, a full nonlinear effective Lagrangian has been con-
finite temperature can be obtained directly fra816) as  structed20] in a way which makes the analogy between the theory
well: of ferromagnets an@PT most transparent.
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can be obtained directly from the partition function as wellbe used to test the validity of numerical calculations in QCD
(3.6): which are performed for finite volumes.

The theoretically simplest susceptibility is the pseudosca-
3 )3’2( 1 T2) (3.17 lar (or pion) susceptibility. Using the Banks-Casher relation

NZ-1 T
XITR: . _\/%<F_i 1+ S_NfF_fT [26], it can be related immediately to the chiral condensate
[see Eq(1.12]

The two-loop temperature dependence can be absorbed in

the one-loop temperature modification of the condensate and XWZE, 4.3
the pion decay constant as obtained 17]: m
NZ2—1 12 in the limit that>mV> 1. The validity of this result extends
2(T)=2(0)| 1— N, FZ) (3.18 into the thermodynamic limit outside the rangel).
F o As follows immediately from(1.11) and(1.10 x°°" can
N, T2 be calculated from the average spectral density,
F,T(T)=F7T(0)( 1- 2—:”:—2). (3.19

1

p(x>=<w(x,A>>=<vE 6<x—xn>>. (4.4
It is not clear what happens to next orderTin Temperature A
corrections to the condensate have been found to three-lo
level in [19]. Two-loop effects inM2(T) have been ex-
tracted in[22,23, but F2(T) at the two-loop level is cur-
rently unknown. It is not clear whether one can just substi- pc M) =V[{o(N,A)o(N,A))—p(N)p(N")]. (4.5
tute the temperature-dependeéntM ., andeT in (3.1 to
all orders in the temperature expansion. The same questidh apart from the pairing= A, the eigenvalues of the Dirac
can be asked concerning the Gell-Mann—Oakes—Renner reperator are uncorrelated [27], ie., if
lation. Taking into account corrections of ord&f/F2, it (f(Ap)g(Am))=(f(\p)){g(\m)) for n#m and A, , A >0,
also holds at nonzero temperatures. Whether it holds ave have, in the limit of larg&/ and for positivex,\’,
higher orders is an open questify].

Wn the other handy®™ can be expressed in the connected
two-point level correlation function:

PN A )=p(N)S(N—N"). (4.6)

IV. THE SCALAR SUSCEPTIBILITY
IN FINITE VOLUMES

The resultg3.7), (3.11), (3.13, and(3.14) are valid in the ) ’
thermodynamic limit, which means that the spatial length of dis_ f“’d)\J""d)\, 4m°pc(N,\')
the box where the theory is defined is much larger than the 0 o (N2+mH(\'%+m?)’
pion Compton wavelength. However, realistic boxes used in

lattice calculations can never be made so large if the pioRvhich after insertion of the correlation functi¢o4.6) leads to
mass is small enougfkwhich is in turn necessary for the

Using the Uy(1) symmetry of the Dirac spectrum the dis-
connected susceptibilitfl.10 can be written as

4.7

guantitative analytic predictions to be poss)bla this sec- R dis wmp(0) X
tion we consider the opposite limit, X E = (4.8
Al <M-te 1 4.1) where the second equality is the Banks-Casher rel@fi6h
™ JmA’ ' Because the diagonalization of the Dirac operator induces

correlations between the eigenvalues, we expect quite a dif-
where the susceptibility can be found from the exact resultgerent prediction from the finite-volume partition function.
for the finite-volume partition function di25]. In this range For N;=2 the finite-volume partition function is known
the susceptibility is expected to be determined by finite{25]. For #=0,
volume effects and to be of order

3

m

z

: 4.2) = VS (mormy VA (Mt my)] (4.9

1

1

mV2,

whereV=L3/T in the four-dimensional4D) Euclidean vol-
which is much larger than the thermodynamic limit\ ? for ume. The susceptibilitieg®" and ¥ can be disentangled
the susceptibility. Ifag#0, the result becomes independent by differentiating with respect tdifferentquark masses. Be-
of the volume, suggesting that it holds fér— outside the cause the partition function depends on the quark masses via
range (4.1) provided that we are sufficiently close to the the summ,+my, we find
chiral limit so thatS/m=>AZ2. This is indeed what happens
for the pion susceptibility but not for the scalar susceptibility x°"=0. (4.10
(see below. In general, the results of this section have the
same status as in R¢R5]. They say little about the proper- In the limit k=VXm>1 the disconnected contribution sim-
ties of the theory in the physical infinite-volume limit but can plifies to
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. 3 f
dis_ con__ ' col
X =amv: (4.11 X 1 Ay VF ), (4.19
In present day lattices the zero-mode states are completely Xdis=—2—4m VFdiS(K), (4.16

mixed with the much larger number of nonzero-mode states.

Therefore the partition function is effectively calculated inin agreement with the simplest possible flavor dependence
the sectow=0. Existing numerical calculations in the model consistent with4.13. Both F®Y«) andF¥S(«) approach 1

of the instanton—anti-instanton liqu[@8] are also done for for x>1, but will in general depend oN; for finite x. The
v=0. In a sector with fixed topological charge the finite- disconnected contribution is suppressed by a factorV
volume partition function has been calculated analytically forwith respect to the result for uncorrelated eigenvalues. The

an arbitrary number of flavors with equal mass. To leadincfoefficienta, in (4.2) turns out to be zero, which is in agree-
order in k1, the partition functions in the sector of zero Ment with the fact that there are no massless scalar particles.

topological charge is given b The quark mass dependence of the scalar susceptibility
polog g g y has been calculated by lattice QCD simulations only for rela-
tively large quark massdg]. In this work withm?V~1 (in

g exp(Ngk) units of the lattice spacinga quark mass dependence of
Z5 o~ W (4.12  ~1/mis found not only at the critical point but also at lower

temperatures where the susceptibility levels off at a signifi-
cantly lower value. This result is in between the finite-
volume prediction(4.13 and the result from chiral perturba-

For «x>1 we find tion theory (3.1D, with mass dependence ofni and
1/\Jm, respectively. The lattice results fgf's agree with the
N2 1 mass dependendd.8), suggesting that the eigenvalues of
N O+ Ng)(dis:_f — (4.13  the Dirac operator are only weakly correlated. Two different
2 mV types of correlations can be considered, namely, correlations

between eigenvalues corresponding to different gauge field
configurations and correlations between eigenvalues ob-
In general we have not been able to calculate th_e_c_:onnectqé)ined from the same lattice gauge configuration. It has been
and disconnected contributions to the susceptibility sepagnown[30] that lattice eigenvalues show strong spectral cor-
rately. However, foN=2 the partition function is known ye|ations(the latter typg but this does not exclude the pos-
for different quark masse5]. For »=0 we find sibility that correlations between eigenvalues corresponding
to different members of the ensemble are absent. In random
matrix theory it has been showWB1] that spectral averages
:if” 21 [ VE.(mg+mg+ 2mymycoss) ] and ensemb>lle averages are the same. Tth)a exciting pogsibility
v=0"2xm )0 VE(mﬁ+ m§+ 2m,mgcosh)? that this type of generalized ergodicity does not hold for the
(4.14 lattice Dirac eigenvalues deserves further attention.

z
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