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We evaluate the leading infrared behavior of the scalar susceptibility in QCD and in the multiflavor
Schwinger model for a small nonzero quark massm and/or small nonzero temperature as well as the scalar
susceptibility for the finite-volume QCD partition function. In QCD, it is determined by one-loop chiral
perturbation theory, with the result that the leading infrared singularity behaves as; lnm at zero temperature
and as;T/Am at finite temperature. In the Schwinger model with several flavors we use exact results for th
scalar correlation function. We find that the Schwinger model has a phase transition atT50 with critical
exponents that satisfy the standard scaling relations. The singular behavior of this model depends on
number of flavors with a scalar susceptibility that behaves as;m22/(Nf11). At finite volumesV we show that
the scalar susceptibility is proportional to 1/m2V. Recent lattice calculations of this quantity by Karsch and
Laermann are discussed.@S0556-2821~96!04111-2#

PACS number~s!: 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

The scalar susceptibility in QCD is defined as

x5E d4xK (
i51

Nf

q̄qiqi~x!(
i51

Nf

q̄iqi~0!L 2VK (
i51

Nf

q̄iqi L 2

5
1

V
]m
2 ln Zum50 , ~1.1!

whereV is the four-dimensional Euclidean volume and t
averaging is performed either over the vacuum state or o
the thermal ensemble.~In the Euclidean approach the latte
corresponds to an asymmetric box with imaginary time e
tension ofb51/T!L, i.e.,V5L3b.) The definition~1.1! is
for a diagonal mass matrix with equal quark masses. I
especially interesting to study this quantity in the neighb
hood of the thermal phase transition point. It is expected t
for QCD with two massless flavors a second-order ph
transition occurs leading to restoration of chiral symme
@1# ~see@2,3# for recent reviews! with a diverging suscepti-
bility. This can be understood simply in terms of Landa
mean field theory. For a system with order parameterh
coupled to external fieldh with a second-order phase trans
tion at T5Tc , the fluctuations of the order parameter a
described by the effective potential

Veff~h!5A~T2Tc!h
21Bh41Chh. ~1.2!

In QCD h is the chiral condensate andh is the quark mass.
At T5Tc , the minimum of the potential occurs ath;h1/3

which gives the lawx5]h/]h;h22/3 for the susceptibility.
On the other hand, ifT is close toTc but TÞTc and the
external field is weak enough,

h!uT2Tcu3/2, ~1.3!
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the quartic term in~1.2! is irrelevant, and the scaling law is
x;uT2Tcu21 both above and belowTc ~the proportionality
constant in these two regions differs by a factor of 2!.

Recently, on the basis of lattice simulations of the three-
dimensional Gross-Neveu model it has been suggested that a
second-order phase transition involving soft modes consist-
ing of fermions has critical exponents given by mean field
theory@4#. In particular, if this is also true for QCD with two
massless flavors, we get

^q̄q&;m1/3, ~1.4!

x;m22/3, ~1.5!

at T5Tc , and

x;
1

uT2Tcu
~1.6!

at

L1/3m2/3!uT2Tcu!Tc , ~1.7!

whereL is a typical hadronic mass scale. These scaling laws
have been reproduced by a simple stochastic matrix model
@5,6#. The scalar susceptibility was recently measured for
lattice QCD with two light flavors@7#. They found a diverg-
ing susceptibility at T5Tc with critical exponent
d2150.2460.03, which does not agree with the prediction
d2151/3 of the Landau mean field theory. Obviously, fur-
ther numerical measurements of the critical indices in QCD
are highly desirable.

In this paper we will study the scalar susceptibility in
three different cases. First, in Sec. II the scalar susceptibility
is evaluated for the multiflavor massive Schwinger model
which shares many common qualitative features with QCD
and, in particular, it shows a phase transition with ‘‘restora-
tion’’ of chiral symmetry atT50. All other critical expo-
1087 © 1996 The American Physical Society
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1088 54A. SMILGA AND J. J. M. VERBAARSCHOT
nents that can be defined in the Schwinger model~SM! will
be evaluated as well, and it will be shown that they satis
the scaling relations modified for a phase transition at ze
temperature. Second, we evaluate the scalar susceptibility
QCD at low temperatures using chiral perturbation theor
Third, in order to estimate finite-size effects in lattice calcu
lations, we calculate the scalar susceptibility in volumes wi
spatial length below the Compton wavelength of the pion.

Before proceeding further, we should note that the sca
susceptibility as defined in~1.1! involves a quadratic ultra-
violet divergence due to a trivial perturbative graph depicte
in Fig. 1~a!. The situation is the same as with the chira
condensate which involves a trivial divergent perturbativ
contribution;mLUV

2 . The predictions~1.4!–~1.6! hold for
the infrared-sensitive part of^q̄q& andx.

The susceptibility~1.1! can be written as the sum of a
connected and a disconnected contribution corresponding
the graphs of Figs. 1~a! and 1~b!, respectively:

x5Nfx
con1Nf

2xdis. ~1.8!

The connected contribution to the susceptibility was calc
lated in @8#. The disconnected contribution is defined by

xdis5E d4x^ūu~x!d̄d~0!&2V^ūu&^d̄d&5
1

V
]mu

]md
ln Z,

~1.9!

wheremu andmd are two different quark masses that are s
to zero after differentiation. We will obtain the latter contri
bution from the difference ofx andxcon.

Both scalar susceptibilities can be expressed in terms
the eigenvalueslk of the Dirac operator,

xdis5
1

V F K S (
k

1

ilk1mD 2L 2K (
k

1

ilk1m L 2G ,
~1.10!

xcon52
1

V K (
k

1

~ ilk1m!2 L . ~1.11!

A related susceptibility is the pseudoscalar susceptibili
which in terms of the Dirac eigenvalues is given by

xp5
1

V K (
k

1

lk
21m2 L . ~1.12!

II. THE SCHWINGER MODEL

In this section we discuss the Schwinger model~SM! with
Nf light flavors, and determine the critical exponents from

FIG. 1. Connected~a! and disconnected~b! graphs contributing
to the scalar susceptibility of quarks propagating in a backgrou
gluon field.
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known results for the correlation functions. The Lagrangian
of the model is

L52 1
4Fmn

2 1 i(
f51

Nf

q̄fgm~]m2 igAm!qf2m(
f51

Nf

q̄fqf ,

~2.1!

whereg is the coupling constant and all quark masses are
chosen equal.

In the standard Schwinger model (Nf51), there is no
nonanomalous global symmetry to be broken spontaneously
and no reason for the phase transition to occur, e.g., the
scalar susceptibility is just a finite constant@9#. The theory
with Nf.1 and zero fermion masses has the global symme-
try SUL(Nf)3SUR(Nf) ~much as in QCD! and the potential
possibility of its spontaneous breaking with generation of
fermion condensate exists. However, because of Coleman’s
theorem@10# a QCD-like phase transition cannot occur in a
two-dimensional~2D! theory at a nonzero temperature. Nev-
ertheless, the dynamics of the SM at smallT resembles a
theory with second-order phase transition in the region of
temperatures slightly above critical. One can say that the
phase transitiondoesoccur atT50.

Form!g the particle spectrum of the SM involves a mas-
sive photon @11# with mass m1;gANf /p1O(m) and
‘‘quasi Goldstone’’ particles1 with the mass@12,13#

m2;g1/~Nf11!mNf /~Nf11!. ~2.2!

This gives us the critical exponentm5Nf /(Nf11).
At nonzerom, the SUL(Nf)3SUR(Nf) symmetry of the

massless SM Lagrangian is broken explicitly, and the forma-
tion of the chiral condensate becomes possible. The chiral
condensate involves an UV-divergent piece;m ln LUV and
an infrared contribution~sensitive to the small eigenvalues of
the Euclidean Dirac operator!. The latter has been deter-
mined in @13,14#:

^q̄q&;m~Nf21!/~Nf11!g2/~Nf11!, ~2.3!

providing us with the critical exponent
d5(Nf11)/(Nf21). The susceptibility is

x5
]^q̄q&m

]m
;S gmD 2/~Nf11!

. ~2.4!

In the regionm1
21!uxu!m2

21 the vacuum scalar correlator is
given by @11,15,13#

^q̄q~x!q̄q~0!&0;
g2/Nf

uxu222/Nf
. ~2.5!

The associated critical exponent isz5222/Nf . At
uxu@m2

21 the correlator levels off at the value of the square
of the chiral condensate~2.3!.

1It is better to use the term ‘‘quasi Goldstone’’ than the term
‘‘pseudo Goldstone’’ commonly used for pions because quasi Gold-
stone states in the SM become sterile in the chiral limitm→0. That
conforms with Coleman’s theorem, which forbids the existence of
massless interacting particles in two dimensions.
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In the regionm2!T!m1 ~weak field limit! the conden-
sate is given by@14#

^q̄q&;mS gTD 2/Nf

, ~2.6!

which leads to the susceptibility

x;S gTD 2/Nf

, ~2.7!

and the critical exponentg52/Nf .
The correlation length is the inverse fermion Matsuba

frequency;1/T which gives the critical exponentn51. For
m2!T the energy density is that of a gas of massless p
ticles. Thereforee;(p/3)T2 and the specific heat for zero
field is given by

C5
de

dT
;T, ~2.8!

leading toa521.
The above results for the critical exponents have be

summarized in Table I. Note that forNf52 some, but not all,
of the exponents~namely,d andg) coincide with the pre-
dictions of the mean field theory~MFT! ~second column!.
These values of critical exponents can be summarized by
effective nonlocal Lagrangian

L5Ah~D1BT2!1/Nfh1Ch2Nf /~Nf21!1Dhh. ~2.9!

Of course,~2.9! is just a shorthand for the values of critica
indices obtained and cannot be used forseriousloop calcu-
lations.

In the standard theory of second-order phase transitio
with a nonzerocritical temperature the above eight critica
exponents satisfy five universal relations and the hypersc
ing relation. A zero critical temperature brings about the fo
lowing modifications.

The critical exponentb refers to the broken phase and
therefore cannot be defined.

In the strong field limith@tn/m the partition function
}exp$2hm/n/t%. Then the critical exponent« becomes singu-
lar for t→0 and cannot be defined.~For the SM the free
energy remains exponentially small untilt;m2}mm.)

TABLE I. The critical exponents for mean field theory~MFT!
and the Schwinger model~SM!. Conventions are as in Landau and
Lifshitz @32#.

Exponent MFT SM

a 0 21
b 1/2
g 1 2/Nf

d 3 (Nf11)/(Nf21)
« 0
m 1/3 Nf /(Nf11)
n 1/2 1
z 0 222/Nf
a

r-

en
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l
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l
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Becausecp52T]2F/]T2 and Tc50, the Rushbrooke
scaling relation readsa12b1g51 instead of 2. After
elimination ofb ande we are left with only three relations:

a1
g~d11!

d21
51,

n~22z!5g,

m~11g2a!52n. ~2.10!

The hyperscaling relation follows from the condition that the
total free energy is of the order ofTV/jd, whereV is the
spatial volume of dimensiond and j is the correlation
length. ForTc50, we obtain, instead ofnd522a,

nd52a. ~2.11!

The meaning of the hyperscaling relation is that loop correc
tions to the Green’s functions estimated from the effectiv
Lagrangian~2.9! are of the same order, as far as powers ar
concerned, as the tree expressions. We leave it to the rea
to verify that the critical exponents of the SM satisfy the
relations~2.10! and ~2.11!.

III. QCD AT LOW TEMPERATURES

The primary interest of the quantity~1.1! is that its critical
behavior can provide information on the physics of the phas
transition in QCD. However, our second remark is that th
leading infrared behavior ofx can be determinedexactlyin
the low-temperature region. The proper technique to extra
it is chiral perturbation theory@16#. The leading infrared be-
havior is determined by the graph in Fig. 2 involving a loop
of quasimassless pseudo Goldstone bosons. The effect
low-energy Lagrangian of QCD has the form

Leff5 1
4Fp

2Tr~]mU
†!~]mU !1S Re Tr$MU%1•••,

~3.1!

whereU5exp$2ifata/Fp% andfa are the pseudo Goldstone
fields. The chiral condensate is denoted byS5u^q̄q&0u ~no
summing over colors assumed!, andM is the quark mass
matrix. The partition function withM5diag(m,m, . . . ,m)
has been calculated by Gasser and Leutwyler@17#. Their
expression for the free energy density of lukewarm pion ga
is

f5e0~Mp!2
Nf
221

2
g0~T,Mp!1

Nf
221

4Nf

Mp
2

Fp
2 g1

2~T,Mp!

~3.2!

where

FIG. 2. Pseudo Goldstone loop determining the scalar suscep
bility.
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g0~T,Mp!52
T

p2E p2dp ln@12exp~2E/T!#, ~3.3!

E5Ap21Mp
2 , and

g1~T,Mp!5
1

2p2E p2dp

E@exp~E/T!21#
52

]g0~T,Mp!

]Mp
2 .

~3.4!

Here,Mp stands for the common mass of theNf
221 pseudo

Goldstone modes given by the Gell-Mann–Oakes–Ren
relationFp

2Mp
252mS.

Substituting in Eq.~3.2! the expansion@18,19#

g05
p2

45
T42

T2Mp
2

12
1
TMp

3

6p
, ~3.5!

we obtain

f52
p2

90
~Nf

221!T42
Nf

2
Fp
2Mp

2 S 12
Nf
221

12Nf

T2

Fp
2

2
Nf
221

288Nf
2

T4

Fp
4 D 2

Nf
221

12p
TMp

3 S 11
1

8Nf

T2

Fp
2 D

2
Nf
221

64p2 Mp
4 lnS L2

Mp
2 D . ~3.6!

Consider first the case of zero temperature. For the infra
singular contribution to the scalar susceptibility we obta
@33#

x IR5
Nf
221

8p2 S S

Fp
2 D 2lnL2

Mp
2 . ~3.7!

The infrared singular connected contribution to the susce
bility was calculated in@8#. @One should just substitute 1 for
Tr$tatb%5dab/2 in Eq. ~2.13! of Ref. @8#.# The result is

x IR con5
Nf
224

16p2Nf
S S

Fp
2 D 2lnL2

Mp
2 . ~3.8!

Using ~1.8! we immediately obtain the disconnected contr
bution

x IR dis5
Nf
212

16p2Nf
2 S S

Fp
2 D 2lnL2

Mp
2 . ~3.9!

Instead of using the partition function of Gasser and Le
wyler we can calculate the susceptibility also using the sa
technique as in@8#. ChoosingM5diag(m,m, . . . ,m), one
immediately obtains the vertex

K 0U(
f
q̄ fqfUfafbL 5

2S

Fp
2 dab, ~3.10!

which, by evaluation of the diagram in Fig. 2 reproduces t
result ~3.7!.

The infrared singular contribution to the susceptibility a
finite temperature can be obtained directly from~3.6! as
well:
er

ed
n

ti-

-

t-
e

e

t

xT
IR5

~Nf
221!

4p

T

A2m S S

Fp
2 D 3/2, ~3.11!

where the Gell-Mann–Oakes–Renner relation has been use
The connected contribution to the susceptibility was not cal
culated in@8#. However, the zero-temperature result of Ref.
@8# can be extended immediately to finiteT by making the
substitution

E d4p

~2p!4
→T(

n
E d3p

~2p!3
, ~3.12!

where the sum is over all Matsubara frequencies
(p052pn/b). The infrared singular part comes only from
the termn50 and the result is

xT
IR con5

Nf
224

8pNf

T

A2m S S

Fp
2 D 3/2. ~3.13!

This implies that at finite temperature the spectrum of the
Dirac operator is nonanalytic for small eigenvalues. The dis
connected contribution is

xT
IR dis5

Nf
212

8pNf
2

T

A2m S S

Fp
2 D 3/2. ~3.14!

The relations~3.11!, ~3.13!, and~3.14! are quite analogous to
the relations for the magnetic susceptibility for ferromagnets
known for a long time. They are also determined by a loop o
pseudo Goldstone particles~the magnons! depicted in Fig. 2
and have the same behavior2 @21#:

xmagnon5
]M

]H U
H50

;
T

AH
. ~3.15!

The relations~3.11!, ~3.13!, and ~3.14! hold in the low-
temperature region,

Mp!T!Tc . ~3.16!

This makes a direct comparison with recent lattice calcula
tions @7# impossible. At not so low temperatures, in addition
to the graph in Fig. 2, higher-order graphs in chiral pertur-
bation theory also contribute. The relevant two-loop graphs
are depicted in Fig. 3, but the results for the susceptibility

2Recently, a full nonlinear effective Lagrangian has been con-
structed@20# in a way which makes the analogy between the theory
of ferromagnets andCPTmost transparent.

FIG. 3. Two-loop contributions to the scalar susceptibility:~a!
mass renormalization;~b! vertex renormalization.
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can be obtained directly from the partition function as w
~3.6!:

xT
IR5

Nf
221

4p

T

A2m S S

Fp
2 D 3/2S 11

1

8Nf

T2

Fp
2 D . ~3.17!

The two-loop temperature dependence can be absorbe
the one-loop temperature modification of the condensate
the pion decay constant as obtained in@17#:

S~T!5S~0!S 12
Nf
221

12Nf

T2

Fp
2 D , ~3.18!

Fp~T!5Fp~0!S 12
Nf

24

T2

Fp
2 D . ~3.19!

It is not clear what happens to next order inT. Temperature
corrections to the condensate have been found to three-
level in @19#. Two-loop effects inMp

2 (T) have been ex-
tracted in@22,23#, but Fp

2 (T) at the two-loop level is cur-
rently unknown. It is not clear whether one can just subs
tute the temperature-dependentS, Mp , andFp

2 in ~3.11! to
all orders in the temperature expansion. The same ques
can be asked concerning the Gell-Mann–Oakes–Renne
lation. Taking into account corrections of orderT2/Fp

2 , it
also holds at nonzero temperatures. Whether it holds
higher orders is an open question@24#.

IV. THE SCALAR SUSCEPTIBILITY
IN FINITE VOLUMES

The results~3.7!, ~3.11!, ~3.13!, and~3.14! are valid in the
thermodynamic limit, which means that the spatial length
the box where the theory is defined is much larger than
pion Compton wavelength. However, realistic boxes used
lattice calculations can never be made so large if the p
mass is small enough~which is in turn necessary for the
quantitative analytic predictions to be possible!. In this sec-
tion we consider the opposite limit,

L21!L!Mp
21;

1

AmL
, ~4.1!

where the susceptibility can be found from the exact res
for the finite-volume partition function of@25#. In this range
the susceptibility is expected to be determined by fini
volume effects and to be of order

S

m Fa01a1
1

mVS
1OS 1

~mVS!2D G , ~4.2!

which is much larger than the thermodynamic limit;L2 for
the susceptibility. Ifa0Þ0, the result becomes independe
of the volume, suggesting that it holds forV→` outside the
range ~4.1! provided that we are sufficiently close to th
chiral limit so thatS/m@L2. This is indeed what happen
for the pion susceptibility but not for the scalar susceptibil
~see below!. In general, the results of this section have t
same status as in Ref.@25#. They say little about the proper
ties of the theory in the physical infinite-volume limit but ca
ll
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be used to test the validity of numerical calculations in QCD
which are performed for finite volumes.

The theoretically simplest susceptibility is the pseudosca
lar ~or pion! susceptibility. Using the Banks-Casher relation
@26#, it can be related immediately to the chiral condensat
@see Eq.~1.12!#

xp5
S

m
, ~4.3!

in the limit thatSmV@1. The validity of this result extends
into the thermodynamic limit outside the range~4.1!.

As follows immediately from~1.11! and ~1.10! xcon can
be calculated from the average spectral density,

r~l!5^v~l,A!&5K 1V(
n

d~l2ln!L . ~4.4!

On the other hand,xdis can be expressed in the connected
two-point level correlation function:

rc~l,l8!5V@^v~l,A!v~l8,A!&2r~l!r~l8!#. ~4.5!

If, apart from the pairing6lk , the eigenvalues of the Dirac
operator are uncorrelated @27#, i.e., if
^ f (ln)g(lm)&5^ f (ln)&^g(lm)& for nÞm and ln ,lm.0,
we have, in the limit of largeV and for positivel,l8,

rc~l,l8!5r~l!d~l2l8!. ~4.6!

Using the UA(1) symmetry of the Dirac spectrum the dis-
connected susceptibility~1.10! can be written as

xdis5E
0

`

dlE
0

`

dl8
4m2rc~l,l8!

~l21m2!~l821m2!
, ~4.7!

which after insertion of the correlation function~4.6! leads to

x IR dis5
pr~0!

m
5

S

m
, ~4.8!

where the second equality is the Banks-Casher relation@26#.
Because the diagonalization of the Dirac operator induce

correlations between the eigenvalues, we expect quite a d
ferent prediction from the finite-volume partition function.

For Nf52 the finite-volume partition function is known
@25#. For u50,

Z5
2

VS~mu1md!
I 1@VS~mu1md!# ~4.9!

whereV5L3/T in the four-dimensional~4D! Euclidean vol-
ume. The susceptibilitiesxcon and xdis can be disentangled
by differentiating with respect todifferentquark masses. Be-
cause the partition function depends on the quark masses v
the summu1md , we find

xcon50. ~4.10!

In the limit k[VSm@1 the disconnected contribution sim-
plifies to
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xdis5
3

8m2V
. ~4.11!

In present day lattices the zero-mode states are comple
mixed with the much larger number of nonzero-mode sta
Therefore the partition function is effectively calculated
the sectorn50. Existing numerical calculations in the mod
of the instanton–anti-instanton liquid@28# are also done for
n50. In a sector with fixed topological charge the finit
volume partition function has been calculated analytically
an arbitrary number of flavors with equal mass. To lead
order in k21, the partition functions in the sector of zer
topological charge is given by

Zn50
eff ;

exp~Nfk!

kNf
2/2

. ~4.12!

For k@1 we find

Nfx
con1Nf

2xdis5
Nf
2

2

1

m2V
. ~4.13!

In general we have not been able to calculate the conne
and disconnected contributions to the susceptibility se
rately. However, forNf52 the partition function is known
for different quark masses@25#. For n50 we find

Zn505
1

2pE0
2p

du
2I 0@VS~mu

21md
212mumdcosu!1/2#

VS~mu
21md

212mumdcosu!1/2
,

~4.14!

which allows us to calculate the connected and disconne
pieces of the susceptibility separately. The result fork@1 is
xcon51/2m2V andxdis51/4m2V. ForNf50 the two contri-
butions to the susceptibility can be obtained from the spec
density and the two-level spectral correlation function wh
can be derived from chiral random matrix theory. The res
for k@1 is @29# xcon50 andxdis51/4m2V. Our conjecture
for arbitraryNf and n50 consistent with all the above re
sults is
tely
tes.
in
el

e-
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cted

tral
ch
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-

xcon5
Nf

4

1

m2V
Fcon~k!, ~4.15!

xdis5
1

4m2V
Fdis~k!, ~4.16!

in agreement with the simplest possible flavor dependence
consistent with~4.13!. BothFcon(k) andFdis(k) approach 1
for k@1, but will in general depend onNf for finite k. The
disconnected contribution is suppressed by a factor 1/mVS
with respect to the result for uncorrelated eigenvalues. The
coefficienta0 in ~4.2! turns out to be zero, which is in agree-
ment with the fact that there are no massless scalar particles

The quark mass dependence of the scalar susceptibility
has been calculated by lattice QCD simulations only for rela-
tively large quark masses@7#. In this work withm2V'1 ~in
units of the lattice spacing! a quark mass dependence of
;1/m is found not only at the critical point but also at lower
temperatures where the susceptibility levels off at a signifi-
cantly lower value. This result is in between the finite-
volume prediction~4.13! and the result from chiral perturba-
tion theory ~3.11!, with mass dependence of 1/m2 and
1/Am, respectively. The lattice results forxdis agree with the
mass dependence~4.8!, suggesting that the eigenvalues of
the Dirac operator are only weakly correlated. Two different
types of correlations can be considered, namely, correlation
between eigenvalues corresponding to different gauge field
configurations and correlations between eigenvalues ob
tained from the same lattice gauge configuration. It has been
shown@30# that lattice eigenvalues show strong spectral cor-
relations~the latter type!, but this does not exclude the pos-
sibility that correlations between eigenvalues corresponding
to different members of the ensemble are absent. In random
matrix theory it has been shown@31# that spectral averages
and ensemble averages are the same. The exciting possibilit
that this type of generalized ergodicity does not hold for the
lattice Dirac eigenvalues deserves further attention.
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