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Heavy quark potential and effective actions on blocked configurations

Tetsuya Takaishi
Swiss Center for Scientific Computing (SCSC), ETH-Zu¨rich, CH-8092 Zu¨rich, Switzerland

~Received 26 January 1996!

Blocked SU~3! gauge configurations are analyzed to obtain a heavy quark potential and effective actions.
Swendsen’s optimized scale factorb52 blocking scheme is used to generate blocked configurations. The
heavy quark potential calculated on twice blocked configurations produced from 323364 lattices atb56.30
shows good rotational invariance in contrast with the Wilson action. The determination of effective actions
which are responsible for blocked configurations is carried out, in a space with up to nine coupling constants,
by use of the canonical demon method. We find that the effective actions are not local. Apart from complicated
actions, simple actions with two coupling constants are compared.@S0556-2821~96!02713-0#

PACS number~s!: 11.15.Ha, 12.38.Gc
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In lattice Monte Carlo simulations, improvements on t
action are crucial in order to obtain accurate and relia
continuum results within reasonable CPU time. The histo
of improved actions is rather old. More than 10 years a
Symanzik proposed the perturbative improved action@1#
which eliminates errors ofO(a2). On the other hand, early
Monte Carlo tests on the Symanzik action showed no cl
advantage to using it@2#. However, recent studies revitalize
improved actions and offered the fixed point action@3# and
the tadpole-improved Symanzik action@4#. These actions
show good rotational invariance. Therefore they could
effective when used in Monte Carlo simulations. Their act
effectiveness for physical quantities has been investigated
Monte Carlo simulations@3–5#.

It is still important to search for other improved action
which give us great improvements in Monte Carlo simu
tions since the effectiveness of existing improved actions
not fully confirmed. In this report, we analyze blocked SU~3!
gauge configurations and try to obtain improved actions. T
blocked configurations are generated by using the Mo
Carlo renormalization group~MCRG! method @6# with
Swendsen’s optimized scale factorb52 blocking scheme.
The MCRG method was intensively used in determining
nonperturbativeb function of SU~3! lattice gauge theory, in
terms of the coupling shiftDb @7–10#. The method uses the
fact that each blocked trajectory~BT!, starting from the Wil-
son axis, reaches the renormalized trajectory~RT! after
enough blocking steps. On the RT, which stems from
fixed point on the critical surface, the gauge system has
lattice artifact@11#. Performing enough blocking steps or u
ing the optimized blocking scheme which takes a block
gauge system to the RT quickly, it may be possible to g
erate blocked configurations sitting on the RT. Su
blocked configurations—let us call themperfect
configurations—can give us information about a perfect a
tion possessing good scaling behavior and rotational inv
ance. Even if the blocking is not enough to let the BT rea
the RT, the blocked gauge system near the RT should h
better behavior than the original~Wilson action! unblocked
one.

In order to check the improvement by the MCRG metho
we calculate the heavy quark potential on blocked confi
rations. The blocking scheme we take in the MCRG meth
is Swendsen’s optimized scale factorb52 blocking scheme
546-2821/96/54~1!/1050~4!/$10.00
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@6,10#. The blocking scheme was optimized by multiplying a
blocked link by a Gaussian SU~3! matrix, exp(i( ll lcl),
wherel l is a generator of SU~3! andcl is a Gaussian random
number generated with a probabilityP(cl);exp(2cl

2/q2).
The parameterq can be adjusted to ensure fast convergence
to the RT @10,11#. We found that the optimal value ofq
aroundb56.0 is equal to zero@12#; i.e., in this case the
Gaussian SU~3! matrix exp(i(lllcl) is always unity. In order
to fix the blocking scheme we takeq50 in our analysis. All
the blocked configurations analyzed in this report were gen
erated by the QCD-TARO Collaboration@10,13#.

Figure 1 shows the heavy quark potential on 83316
blocked configurations. The blocked configurations were
generated by two blocking steps from 323364 lattice at
b56.30. The solid curve is a fit to on-axis potential indi-
cated by the circles. There is no visible difference between
on-axis and off-axis potentials. From the fit to on-axis poten-
tial we obtain sa250.287(26) which corresponds to the
value of the string tension atb;5.56 for the Wilson action.
This is in very good agreement with theDb results @10#
which predictDb;0.75 for a change of scale by 4, starting
from b56.30.

FIG. 1. Heavy quark potential on blocked configurations
(83316 lattice! atb56.3. The circles~diamonds! correspond to on
~off-! axis potentials. The solid curve is a fit to the on-axis poten-
tials.
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In order to evaluate the improvement we also calcula
the heavy quark potential for the Wilson action atb55.55.
Figure 2 shows the heavy quark potential calculated
83316 lattices. The solid curve is a fit to on-axis potential
which give ussa250.300(27). A large deviation from the
on-axis potentials to the off-axis ones can be seen, which
evidence of lack of rotational invariance. The definite im
provement of the rotational invariance would indicate th
already after two blocking steps the gauge system of o
blocked configurations is close to the RT.

We now turn to the question of obtaining effective action
from the blocked configurations. Once the effective action
obtained it can be used, as an improved action, in Mon
Carlo simulations to directly generate improved gauge co
figurations without blocking from larger lattices. Howeve
determination of an effective action is quite a hard task sin
we do not know the exact form of the effective action and
might be a complicated one. In determining the effecti
action, we use the canonical demon method which is sho
to be efficient@14,15#. Originally Creutz@17# proposed the
microcanonical demon method and it was utilized for dete
mination of an effective action for SU~2! gauge theory@16#.
An improved version, the canonical demon method, was d
cussed by Hasenbushet al. @14# who determined effective
actions for O~3! nonlinears model with accuracy. It was
also applied for SU~3! gauge theory and effective action
were successfully obtained@15#.

For our purpose we prepared 35~30! configurations
blocked twice from 323364 lattice atb56.0(6.3). Each of
those configurations are used in the canonical dem

FIG. 2. Same as in Fig. 1, but for the Wilson action a
b55.55.
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method. Our implementation of the canonical demon method
is briefly described as follows~see Refs.@14–17# for more
details!. First we choose one of those configurations and in-
troduce demons associated with coupling constants corre-
sponding to a given ansatz for the effective action. The joint
system of demons and links is updated by the microcanonical
simulation. After 100 microcanonical sweeps the demons
move into the next configuration selected from the rest. Val-
ues of the demons energy are recorded during the simulation
and average values will be converted to the values of the
coupling constants. Here let us assume that the effective ac-
tion of the configurations takes the form

S5(
i

b iSi@U#. ~1!

In this case demonsdi corresponding to each of the coupling
constantsb i should be introduced. The distribution of the
demon energyEdi

during the canonical demon simulation is
expected to be

P~Edi
!;exp~2b iEdi

!. ~2!

Thus the average demon energy is given by

^Edi
&5

1

b i
2Em /tanh~b iEm!, ~3!

provided that the demon energyEdi
is restricted to a region

of 2Em,Edi
,Em . This relation will be used to calculate

the values of the coupling constants numerically. In our
simulationEm was set to 10.

We consider the following ansatz action for an effective
action with nine coupling constants:

TABLE I. Path of Wilson loops.

Wilson loop Path (mÞnÞsÞg)

131 m,n,2m,2n
132 m,n,n,2m,2n ,2n
232 m,m,n,n,2m,2m,2n ,2n
Chair m,n,s,2n,2m ,2s
Sofa m,n,s,s,2n,2m,2s,2s
Twist m,n,s,2m,2n ,2s
4Dtwist m,n,s,g,2m,2n ,2s,2g

t

S5ReS b131( TrU1311b132( TrU1321b232( TrU2321bchair( TrUchair1bsofa( TrUsofa1b twist( TrU twist

1b4Dtwist( TrU4Dtwist1b6( @ 3
2 ~TrU131!

22 1
2 TrU131#1bA( @ 9

8 uTrU131u22
1
8 # D , ~4!
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TABLE II. Results for twice-blocked configurations atb56.0. The asterisks indicate truncation, i.e.
those not considered in the canonical demon simulation.

Case A B C D E F

b131 5.0643~35! 6.1564~53! 6.036~14! 6.484~16! 6.282~12! 6.619~11!
b132 * -0.6241~23! -0.6547~30! -0.6249~32! -0.7257~37! -0.7236~32!
bchair * * -0.0711~19! * -0.1055~17! -0.1079~14!
b twist * * 0.3004~23! * 0.2103~38! 0.2087~27!
b232 * * * * 0.0835 ~32! 0.0847~37!
bsofa * * * * 0.0327 ~16! 0.0319~10!
b4Dtwist * * * * 0.1058 ~08! 0.1065~11!
b6 * * * -0.339~12! * -0.325~13!
bA * * * -0.125~27! * -0.143~15!
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where TrUi are normalized to unity andi5{131,
132, . . . ,4Dtwist} indicate Wilson loop types whose path
are summarized in Table I. For this action nine demons
used in the canonical demon method. The results obta
with the canonical demon method are listed in Table II
b 56.0 and in Table III forb 56.3. Wealso consider sev
eral forms of the action truncated from Eq.~4!. The coupling
constants indicated by a asterisk in the tables are trunca
i.e., not used in the canonical demon simulation. In gener
is expected that starting from the smallest Wilson loop~131!
and adding larger Wilson loops we could see smaller val
of the coupling constants for the larger Wilson loops. If
the adding process the coupling constants correspondin
the larger Wilson loops have no contribution to the effect
action, the values of the corresponding coupling consta
obtained with the canonical demon method should be ne
gibly small. We find out, however, that even for Wilso
loops with eight links~232 and sofa!, the corresponding
coupling constants are still rather large. This implies that
effective action of the blocked configurations we took here
not local.

In order to obtain the complete effective action whi
reproduces the blocked gauge configurations, it would
necessary to enlarge the coupling constant space. How
we are not interested in such a complicated action sinc
may be useless in Monte Carlo simulations; i.e., one ne
not only much computational time but also intricate pr
gramming skills. Recent studies showed that rather sim
actions, such as Iwasaki’s two couplings action, can gre
improve unwanted behavior in the deconfinement transi
with the dynamical Wilson fermion@18#. Similar improve-
s
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ments on finite temperature physics are also seen for the
Symanzik improved actions@20#. It might be interesting to
see if the improvement is achieved only by the interplay of
the dominant coupling constants.

In Table IV, we summarize the ratio between dominant
two couplings~i.e., 131 and 132) for various improved
actions. ‘‘SY’’ means the tree level Symanzik action@1#,
which has the form

S5b( ReTr~ 5
3U1312

1
12U132!. ~5!

‘‘TAD-1 ~2!’’ is the tadpole-improvedtree-levelSymanzik
action @4#, which corrects the coefficient of the 132 loop
coupling constant as

S5b( ReTrS 53U1312
1

12̂ U131&
1/2U132D , ~6!

where ^U131& is the average value of the plaquette. For
TAD-1~2!, we use the average values of the plaquette on the
blocked configurations, which are 0.5407~0.4103! at
b56.3 (6.0). ‘‘IW’’ is the renormalization-group-improved
action by Iwasaki@14# and ‘‘MCRG-1~2!’’ are taken from
our study. For all the cases theb132 coupling constant is
negative and it contributes~5–11!% of the b131 coupling
constant. Compared to the tree-level Symanzik-improved ac
tion, which givesb132 /b131520.05, the others which
may include some nonperturbative effects seem to prefer a
larger percentage, especially, our results are more than
10%. Moreover, note that the magnitude of the ratio in-
TABLE III. Same as in Table I, but atb56.3.

Case A B C D E F

b131 5.6804~37! 7.986~13! 8.652~20! 8.464~15! 9.443~29! 9.979~21!
b132 * -0.9169~41! -0.9241~41! -0.9226~32! -1.1698~31! -1.1627~47!
bchair * * -0.1648~38! * -0.2213~45! -0.2329~37!
b twist * * 0.2907~62! * 0.1108~54! 0.1195~66!
b232 * * * * 0.1603 ~73! 0.1606~49!
bsofa * * * * 0.0516 ~20! 0.0524~11!
b4Dtwist * * * * 0.0987 ~21! 0.0972~21!
b6 * * * -0.357~70! * -0.368~35!
bA * * * -0.150~72! * -0.140~68!
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TABLE IV. Ratio of b132 andb131 . MCRG-1~2! is taken from case B in Table II~III !.

SY TAD-1 TAD-2 IW MCRG-1 MCRG-2

b132 /b131 -0.05 -0.068 -0.078 -0.091 -0.10 -0.11
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creases from MCRG-1 to MCRG-2, even thoughb in-
creases. This would show that nonperturbative effects
dominate in the region we are studying.

There exists another possibility to improve gauge syst
which is to directly use the blocked configurations the
selves for measurements of physical quantities. As we h
seen in Fig. 1, rotational invariance is quite well recove
on the blocked configurations, which means that the ga
system of the blocked configurations has less artifact.
hadron spectroscopy using the same blocked configurat
we analyzed here has been already performed@21# and it was
shown that the hadron masses are in reasonable agree
with ones calculated on fine configurations when an app
priate improved fermion action is used.

In summary, we analyzed the blocked gauge configu
tions and then obtained the heavy quark potential and
till
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effective actions. The heavy quark potential showed goo
rotational invariance. Although the several forms of the e
fective action were obtained with the canonical demo
method, they only represent truncated forms of the effectiv
action. However, we think such truncated effective action
still hold some improvements when used in Monte Carl
simulations.
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